JP4278351B2 - Oil level detection method and apparatus for compressor - Google Patents

Oil level detection method and apparatus for compressor Download PDF

Info

Publication number
JP4278351B2
JP4278351B2 JP2002223052A JP2002223052A JP4278351B2 JP 4278351 B2 JP4278351 B2 JP 4278351B2 JP 2002223052 A JP2002223052 A JP 2002223052A JP 2002223052 A JP2002223052 A JP 2002223052A JP 4278351 B2 JP4278351 B2 JP 4278351B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
temperature
communication pipe
oil level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002223052A
Other languages
Japanese (ja)
Other versions
JP2004061056A (en
Inventor
卓 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002223052A priority Critical patent/JP4278351B2/en
Publication of JP2004061056A publication Critical patent/JP2004061056A/en
Application granted granted Critical
Publication of JP4278351B2 publication Critical patent/JP4278351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures

Landscapes

  • Compressor (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮機の油面検出方法及び装置に関する。
【0002】
【従来の技術】
空気調和装置、特に、複数個の圧縮機を備えた空気調和装置では、各圧縮機から冷媒と共に吐出された潤滑油が、同一の冷媒回路内を流れて各圧縮機へ戻されることになるので、各圧縮機内の潤滑油量が不均一となる場合が生ずる。
【0003】
このため、このような空気調和装置にあっては、圧縮機内の潤滑油の油面を検出する油面検出装置が設置されて、各圧縮機内の潤滑油量を適正に保持できるようにしたものがある。
【0004】
上述の油面検出装置は、従来、特開平6‐323645号公報に記載のようなフロート式の油面検出装置や、温度式の油面検出装置が提案されている。この温度式の油面検出装置では、検出用管路内を流れる流体の温度を検出して、温度低下が著しい場合に上記流体がガス冷媒であって、圧縮機内の潤滑油が少ないことを検出できる。
【0005】
【発明が解決しようとする課題】
ところが、フロート式の油面検出装置では、フロートなどの真円度や肉厚、加工精度などの不具合から検出精度が低下してしまう恐れがある。
【0006】
また、温度式の油面検出装置では、検出温度の差が小さく、このため、この場合も油面の検出精度が低下してしまう恐れがある。
【0007】
本発明の目的は、上述の事情を考慮してなされたものであり、圧縮機内の油面を正確に検出できる圧縮機の油面検出方法及び装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、圧縮機の底部から連通管を経て上記圧縮機に接続された吸込管へ流れる冷媒または潤滑油を含む流体を、上記圧縮機からのガス冷媒が凝縮された液冷媒を用いて冷却する冷却装置が冷却し、この冷却装置は上記流体が冷媒を含む場合に機能して冷媒の液化を促し、その後減圧装置が減圧し、上記冷却装置の下流側における連通管内の流体温度と、減圧装置の下流側における上記連通管内の流体温度の差を求め、該差と上記圧縮機内の潤滑油の油面が検出基準面以上ある場合に生じる温度差ΔTm1,ΔTm2、及びない場合に生じる温度差ΔTn1,ΔTn2とを比較することにより、当該連通管内の流体の大部分が潤滑油であるか冷媒であるかを判断して、上記圧縮機内の検出基準面に対する潤滑油の油面を検出することを特徴とするものである。
【0010】
請求項2に記載の発明は、圧縮機の底部と当該圧縮機に接続された吸込管とが冷媒または潤滑油を含む流体を流す連通管を用いて連通され、この連通管に冷却装置及び減圧装置が、上記吸込管へ向かう下流に沿って順次設けられ、上記冷却装置は、上記圧縮機から吐出されたガス冷媒を凝縮する熱交換器からの液冷媒を導いて上記連通管内の流体を冷却し、この冷却装置は上記流体が冷媒を含む場合に機能して冷媒の液化を促し、上記連通管には、冷却装置の下流に第1温度センサが、減圧装置の下流に第2温度センサがそれぞれ設置され、これらの第1温度センサおよび第2温度センサが検出する上記連通管内の流体温度の差を求め、該差と上記圧縮機内の潤滑油の油面が検出基準面以上ある場合に生じる温度差ΔTm1,ΔTm2、及びない場合に生じる温度差ΔTn1,ΔTn2とを比較することにより、当該連通管内の流体の大部分が潤滑油であるか冷媒であるかを判断して、上記圧縮機内の検出基準面に対する潤滑油の油面を検出するよう構成されたことを特徴とするものである。
【0012】
請求項に記載の発明は、請求項に記載の発明において、上記減圧装置がキャピラリチューブであることを特徴とするものである。
【0013】
請求項に記載の発明は、請求項2又は3に記載の発明において、上記冷却装置の下流側に開閉弁が配設され、この開閉弁が所定間隔で適宜開弁されるよう構成されたことを特徴とするものである。請求項に記載の発明は、請求項2乃至4のいずれかに記載の発明において、上記連通管の圧縮機側は二股に分岐され、この圧縮機内の油面の検出基準面に対して上下位置で上記圧縮機に各々接続されることを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づき説明する。
【0015】
図1は、本発明に係る圧縮機の油面検出装置が適用された空気調和装置を示す系統図である。
【0016】
この空気調和装置10は、室外機11及び室内機12を有し、室外機11の室外冷媒配管19と室内機12の室内冷媒配管16とが接続されて構成される。また、上記室外機11が備える後述の圧縮機20は単一ではなく、複数個が並列に設置されたものである。
【0017】
上記室内機12は、室内冷媒配管16に室内膨張弁17及び室内熱交換器18が配設されて構成され、室内膨張弁17は、その弁開度が空調負荷に応じて調整される。上記室内熱交換器18には、この室内熱交換器18へ送風する室内ファン22が隣接して配置されている。
【0018】
上記室外機11は、室外冷媒配管19に圧縮機20が配設され、この圧縮機20の吸込側にアキュムレータ21が配設され、吐出側に四方弁23が配設され、更に、四方弁23側の室外冷媒配管19に室外熱交換器24、室外膨張弁25、レシーバタンク27が順次配設されて構成される。上記室外膨張弁25は、その弁開度が空調負荷に応じて調整される。また、上記室外熱交換器24には、この室外熱交換器24へ送風する室外ファン26が隣接して配置されている。
【0019】
上記四方弁23の切換により空気調和装置10が冷房運転又は暖房運転に設定される。
【0020】
つまり、四方弁23が冷房側に切り替えられると、冷媒が実線矢印αの如く流れ、室外機11の圧縮機20から吐出された冷媒は、四方弁23を経て室外熱交換器24に至り、この室外熱交換器24で凝縮され、室外膨張弁25及びレシーバタンク27を経て室内機12に至り、室内膨張弁17を経て減圧された後、室内熱交換器18で蒸発されて室内を冷房する。室内熱交換器18からの冷媒は室外機11に流れ、この室外機11の四方弁23及びアキュムレータ21を経て圧縮機20に戻される。
【0021】
また、四方弁23が暖房側に切り替えられると、冷媒が破線矢印βの如く流れ、室外機11の圧縮機20から吐出された冷媒は、四方弁23を経て室内機12に至り、この室内機12の室内熱交換器18にて凝縮して室内を暖房する。室内熱交換器18にて凝縮された冷媒は、室内膨張弁17を経て室外機11に流れ、レシーバタンク27を経て室外膨張弁25で減圧され、室外熱交換器24で蒸発された後、四方弁23及びアキュムレータ21を経て圧縮機20に戻される。
【0022】
蒸発器として機能する室内熱交換器18または室外熱交換器24から圧縮機20へ冷媒(ガス冷媒)が戻される室外冷媒配管19のうちの吸込管30と、上記圧縮機20とが連通管32にて連通される。図2に示すように、この連通管32の圧縮機20側は二股に分岐され、一方が圧縮機20の底部31に、他方が圧縮機20の鉛直方向ほぼ中央位置にそれぞれ接続されている。
【0023】
この連通管32には、合流部から吸込管30へ向かう下流側に冷却装置33と、減圧装置としてのキャピラリチューブ34とが順次配設されている。
【0024】
上記冷却装置33は、図2及び図3に示すように二重管構造にて構成され、内管が室外冷媒配管19である。この内管(室外冷媒配管19)と外管35とに囲まれた空間36に連通管32が接続される。従って、連通管32内に流入した圧縮機20内の冷媒、または当該圧縮機20潤滑用の潤滑油は、連通管32内を流れて冷却装置33に至ると、この冷却装置33の作用で、空間36を流動する間に、室外熱交換器24(冷房運転の場合)または室内熱交換器18(暖房運転の場合)により凝縮された液冷媒と熱交換されて冷却される。
【0025】
その後、連通管32内に流入した冷媒または潤滑油は、キャピラリチューブ34の作用で減圧されて、吸込管30内へ戻される。このキャピラリチューブ34は断熱構造にて構成されている。
【0026】
また、連通管32には、冷却装置33の下流側に第1温度センサ38が設置され、キャピラリチューブ34の下流側に第2温度センサ39が設置される。これらの第1温度センサ38及び第2温度センサ39は、連通管32内を流れる流体(つまり冷媒、潤滑油)の温度を検出する。
【0027】
上述の連通管32、冷却装置33、キャピラリチューブ34、第1温度センサ38及び第2温度センサ39を備えて、圧縮機の油面検出装置40が構成される。
【0028】
上記第1温度センサ38、第2温度センサ39によりそれぞれ検出される連通管32内の流体の検出温度T1、T2について、次に述べる。
【0029】
圧縮機20内の潤滑油の油面が検出基準面H以上であるときには、連通管32内の流体の大部分が潤滑油となる。この場合、潤滑油は、熱容量が大きいので冷却装置33による温度低下が少なく、しかもキャピラリチューブ34による減圧の影響も受けない。このため、第1温度センサ38による検出温度T1は図4の点Bの温度となり、第2検出センサ39による検出温度は、点Bから自然放熱分低下して、点Cの温度となる。点Bは等温線b上にあり、点Cは等温線c上にあることから、検出温度T1と検出温度T2の温度差は、等温線bと等温線cとの温度差ΔTm1となる。
【0030】
なお、図4中の点Aの温度は、圧縮機20から連通管32へ流入し始めた時の連通管32内の流体温度であり、等温線a上に存在する。また、図4中の点Dは、冷却装置33の内管(室外冷媒配管19)内を流れる液冷媒の温度であり、等温線e上に存在する。
【0031】
同様に圧縮機20内の潤滑油の油面が検出基準面H以上であって、外気温が非常に低く、且つ空気調和装置10における冷媒の高圧と低圧との差が小さく、圧縮機20から連通管32へ流入する潤滑油量が少ない場合には、連通管32内に流入してから冷却装置33に至るまでに、潤滑油の温度は著しく低下してしまう。そのときの温度は、例えば等温線g上の点Gの温度まで低下してしまう。しかし、この連通管32内の潤滑油は、冷却装置33の作用で点Dの温度まで加熱される。この点Dの温度が検出温度T1となる。この連通管32内の潤滑油は、キャピラリチューブ34内で自然放熱により冷却されて、等温線f上の点Hの温度となり、この温度が検出温度T2となる。従って、このときの検出温度T1と検出温度Tの温度差は、等温線eと等温線fとの温度差ΔTm2となる。
【0032】
また、圧縮機20内の潤滑油の油面が検出基準面H以下であるときには、連通管32内の流体の大部分が冷媒となる。この冷媒は、冷却装置33の内管(室外冷媒配管19)内を流れる液冷媒に比べその流量が著しく少ないため、この冷却装置33の作用で、図4の飽和液線X及び飽和ガス線Yに囲まれた領域内に至り、点Dに近い温度まで冷却されて液化され、その温度は等温線d上に存在する点Eの温度となる。この温度が、第1温度センサ38による検出温度T1となる。この冷媒は、次にキャピラリチューブ34により減圧され、このとき蒸発潜熱が奪われるため低圧飽和温度まで低下し、図4の点Fの温度となる。この点Fの温度が上記検出温度T2となり、図4の等温線h上に存在する。従って、このときの検出温度T1と検出温度T2の温度差は、等温線dと等温線hの温度差ΔTn1(≫ΔTm1、ΔTm2)となる。
【0033】
同様に圧縮機20内の潤滑油の油面が検出基準面H以下であって、外気温が非常に低く、且つ圧縮機20から連通管32へ流入する冷媒量が少ない場合には、連通管32に流入してから冷却装置33に至るまでに、冷媒の温度は、例えば図4の点Gの温度まで著しく低下してしまう。しかし、この場合にも、この連通管32内の冷媒は、冷却装置33の作用で、例えば点Dの温度まで加熱され、この温度が検出温度T1となる。この点Dの温度まで加熱された連通管32内の冷媒は、キャピラリチューブ34の減圧作用で、等温線h上の点Iの温度まで低下する。この点Iの温度が検出温度T2となる。従って、このときの検出温度T1と検出温度T2の温度差は、等温線eと等温線hとの温度差ΔTn2(≫ΔTm1、ΔTm2)となる。
【0034】
これらの結果、検出温度T1と検出温度T2との温度差が、上述の温度差ΔTm1、ΔTm2の如く小さい場合には、圧縮機20内の潤滑油の油面が検出基準面H以上で、圧縮機20内に「潤滑油有り」と判断でき検出できる。また、検出温度T1と検出温度T2との温度差が、上述の温度差ΔTn1、ΔTn2の如く大きい場合には、圧縮機20内の潤滑油の油面が検出基準面H以下で、圧縮機20内に「潤滑油無し」と判断でき検出できる。上記温度差ΔTm1、ΔTm2と温度差ΔTn1、ΔTn2との温度差が大きなことから、検出誤差が少なく、圧縮機20内での潤滑油の有無の検出が正確となる。
【0035】
従って、上記実施の形態によれば、次の効果▲1▼及び▲2▼を奏する。
【0036】
▲1▼圧縮機20の底部31から連通管32を経て吸込管30へ流れる流体を、圧縮機20から吐出されたガス冷媒を凝縮する室外熱交換器24または室内熱交換器18からの液冷媒を用いて冷却装置33が冷却し、キャピラリチューブ34が減圧し、第1温度センサ38による検出温度T1と第2温度センサ39による検出温度T2との温度差を、圧縮機20内に潤滑油が検出基準面H以上ある場合(温度差ΔTm1、ΔTm2)とない場合(温度差ΔTn1、ΔTn2)とで比較することによって、連通管32内の流体の大部分が潤滑油であるか冷媒であるかを判断し、これにより、圧縮機20内に潤滑油が検出基準面H以上あるか否かを検出することから、圧縮機20内での潤滑油の有無を正確に検出できる。
【0037】
▲2▼圧縮機20の底部31と吸込管30とを連通する連通管32にキャピラリチューブ34が配設されたことから、このキャピラリチューブ34の上流側の連通管32内における流体圧力を適正に確保できるので、圧縮機20の能力低下を防止できる。
【0038】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0039】
例えば、図1に示すように、連通管32において冷却装置33と第1温度センサ38との間に開閉弁(電磁弁)41を設けてもよい。この開閉弁41は、所定間隔(例えば10分間に1回)で適宜時間開弁され、開弁時に圧縮機20から連通管32内へ流入した潤滑油や冷媒が、閉弁時に冷却装置33の空間36内に貯溜可能とされる。
【0040】
従って、圧縮機20から連通管32内へ液冷媒が流入した場合にも、この液冷媒は、冷却装置33内で室外冷媒配管19(内管)を流れる液冷媒により確実に熱交換されて冷却され、図4に示す飽和液線Xと飽和ガス線Yとで囲まれた領域内の温度となる。この温度が検出温度T1となる。このため、開閉弁41が開弁された時に、キャピラリチューブ34の減圧作用で、このキャピラリチューブ34内に至った液冷媒は低圧飽和温度(等温線h上の温度)まで低下し、この温度が検出温度T2となる。この結果、この場合にも、検出温度T1と検出温度T2との温度差を大きくできるので、圧縮機20内の潤滑油の有無の検出精度を向上させることができる。
【0041】
また、圧縮機20と吸込管30とを連通する連通管32に、所定間隔で開弁される開閉弁41が設置されたので、この開閉弁41の閉弁時に圧縮機20の高圧状態が良好に確保されて、圧縮機20の能力低下を防止できる。
【0042】
【発明の効果】
本発明に係る圧縮機の油面検出方法および油面検出装置によれば、圧縮機内の油面を正確に検出できる。
【図面の簡単な説明】
【図1】図1は、本発明に係る圧縮機の油面検出装置が適用された空気調和装置を示す系統図である。
【図2】図1の圧縮機の油面検出装置を示す回路図である。
【図3】図2のIII-III線に沿う断面図である。
【図4】図1の空気調和装置の冷凍サイクルを示す圧力(P)‐エンタルピ(h)線図である。
【符号の説明】
18 室内熱交換器
24 室外熱交換器
20 圧縮機
30 吸込管
31 底部
32 連通管
33 冷却装置
34 キャピラリチューブ(減圧装置)
38 第1温度センサ
39 第2温度センサ
40 圧縮機の油面検出装置
41 開閉弁
T1 検出温度
T2 検出温度
H 検出基準面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil level detection method and apparatus for a compressor.
[0002]
[Prior art]
In an air conditioner, particularly an air conditioner having a plurality of compressors, the lubricating oil discharged together with the refrigerant from each compressor flows through the same refrigerant circuit and is returned to each compressor. In some cases, the amount of lubricating oil in each compressor becomes non-uniform.
[0003]
For this reason, in such an air conditioner, an oil level detection device that detects the oil level of the lubricating oil in the compressor is installed so that the amount of lubricating oil in each compressor can be properly maintained. There is.
[0004]
As the above-described oil level detection device, a float type oil level detection device and a temperature type oil level detection device as described in JP-A-6-323645 have been proposed. This temperature-type oil level detection device detects the temperature of the fluid flowing in the detection pipe and detects that the fluid is a gas refrigerant and the amount of lubricating oil in the compressor is low when the temperature drops significantly. it can.
[0005]
[Problems to be solved by the invention]
However, in the float type oil level detection device, there is a risk that the detection accuracy may decrease due to problems such as roundness, thickness, processing accuracy, etc. of the float.
[0006]
Further, in the temperature type oil level detection device, the difference in detection temperature is small, and therefore, the accuracy of detection of the oil level may be lowered in this case as well.
[0007]
An object of the present invention is to provide an oil level detection method and apparatus for a compressor that can accurately detect the oil level in the compressor in view of the above-described circumstances.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a fluid containing refrigerant or lubricating oil flowing from the bottom of the compressor to a suction pipe connected to the compressor through a communication pipe, and a liquid in which gas refrigerant from the compressor is condensed. A cooling device that cools using the refrigerant cools, and this cooling device functions when the fluid contains the refrigerant and promotes liquefaction of the refrigerant, and then the decompression device decompresses the pressure in the communication pipe on the downstream side of the cooling device. Find the difference between the fluid temperature and the fluid temperature in the communication pipe on the downstream side of the decompression device, and the difference between the difference and the temperature difference ΔTm1, ΔTm2 that occurs when the oil level of the lubricating oil in the compressor is above the detection reference plane By comparing the temperature differences ΔTn1 and ΔTn2 that occur in this case, it is determined whether most of the fluid in the communication pipe is lubricating oil or refrigerant, and the lubricating oil relative to the detection reference surface in the compressor is determined. Detect faces It is characterized in.
[0010]
According to the second aspect of the present invention, the bottom of the compressor and the suction pipe connected to the compressor are communicated with each other using a communication pipe for flowing a fluid containing a refrigerant or lubricating oil. An apparatus is sequentially provided along the downstream toward the suction pipe, and the cooling apparatus guides the liquid refrigerant from the heat exchanger that condenses the gas refrigerant discharged from the compressor to cool the fluid in the communication pipe. and, the cooling device prompts the liquefaction of the refrigerant to be functioning if containing the fluid refrigerant, the above-mentioned communicating pipe, a first temperature sensor downstream of the cooling device, the second temperature sensor downstream of the pressure reducing device This occurs when the difference between the fluid temperatures in the communication pipes that are installed and detected by the first temperature sensor and the second temperature sensor is obtained and the difference and the oil level of the lubricating oil in the compressor are equal to or greater than the detection reference plane. Temperature difference ΔTm1, ΔTm2, and The difference in temperature ΔTn1, ΔTn2 that occurs in the case of the engine is determined to determine whether most of the fluid in the communication pipe is lubricating oil or refrigerant, and the lubricating oil relative to the detection reference surface in the compressor is determined. The oil level is configured to be detected.
[0012]
According to a third aspect of the present invention, in the second aspect of the present invention, the pressure reducing device is a capillary tube.
[0013]
The invention according to claim 4 is the invention according to claim 2 or 3 , wherein an on-off valve is disposed on the downstream side of the cooling device, and the on-off valve is appropriately opened at a predetermined interval. It is characterized by this. According to a fifth aspect of the present invention, in the invention according to any of the second to fourth aspects, the compressor side of the communication pipe is bifurcated, and the oil level in the compressor is vertically above and below the detection reference plane. Each of the compressors is connected to the compressor at a position.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a system diagram showing an air conditioner to which an oil level detection device for a compressor according to the present invention is applied.
[0016]
The air conditioner 10 includes an outdoor unit 11 and an indoor unit 12, and is configured by connecting an outdoor refrigerant pipe 19 of the outdoor unit 11 and an indoor refrigerant pipe 16 of the indoor unit 12. Moreover, the below-mentioned compressor 20 with which the said outdoor unit 11 is provided is not single, but several are installed in parallel.
[0017]
The indoor unit 12 is configured by arranging an indoor expansion valve 17 and an indoor heat exchanger 18 in an indoor refrigerant pipe 16, and the opening degree of the indoor expansion valve 17 is adjusted according to the air conditioning load. An indoor fan 22 that blows air to the indoor heat exchanger 18 is disposed adjacent to the indoor heat exchanger 18.
[0018]
In the outdoor unit 11, a compressor 20 is disposed in the outdoor refrigerant pipe 19, an accumulator 21 is disposed on the suction side of the compressor 20, a four-way valve 23 is disposed on the discharge side, and further, the four-way valve 23. An outdoor heat exchanger 24, an outdoor expansion valve 25, and a receiver tank 27 are sequentially arranged in the outdoor refrigerant pipe 19 on the side. The outdoor opening of the outdoor expansion valve 25 is adjusted according to the air conditioning load. In addition, an outdoor fan 26 that blows air to the outdoor heat exchanger 24 is disposed adjacent to the outdoor heat exchanger 24.
[0019]
By switching the four-way valve 23, the air conditioner 10 is set to a cooling operation or a heating operation.
[0020]
That is, when the four-way valve 23 is switched to the cooling side, the refrigerant flows as indicated by the solid arrow α, and the refrigerant discharged from the compressor 20 of the outdoor unit 11 reaches the outdoor heat exchanger 24 through the four-way valve 23, It is condensed in the outdoor heat exchanger 24, reaches the indoor unit 12 through the outdoor expansion valve 25 and the receiver tank 27, is decompressed through the indoor expansion valve 17, and is evaporated in the indoor heat exchanger 18 to cool the room. The refrigerant from the indoor heat exchanger 18 flows into the outdoor unit 11 and is returned to the compressor 20 through the four-way valve 23 and the accumulator 21 of the outdoor unit 11.
[0021]
Further, when the four-way valve 23 is switched to the heating side, the refrigerant flows as indicated by a broken line arrow β, and the refrigerant discharged from the compressor 20 of the outdoor unit 11 reaches the indoor unit 12 via the four-way valve 23, and this indoor unit 12 indoor heat exchangers 18 condense and heat the room. The refrigerant condensed in the indoor heat exchanger 18 flows into the outdoor unit 11 through the indoor expansion valve 17, is decompressed by the outdoor expansion valve 25 through the receiver tank 27, is evaporated in the outdoor heat exchanger 24, and then It returns to the compressor 20 through the valve 23 and the accumulator 21.
[0022]
The suction pipe 30 in the outdoor refrigerant pipe 19 from which the refrigerant (gas refrigerant) is returned to the compressor 20 from the indoor heat exchanger 18 or the outdoor heat exchanger 24 functioning as an evaporator, and the compressor 20 is connected to the communication pipe 32. Communicated at As shown in FIG. 2, the compressor 20 side of the communication pipe 32 is bifurcated, one connected to the bottom 31 of the compressor 20 and the other connected to a substantially central position in the vertical direction of the compressor 20.
[0023]
In the communication pipe 32, a cooling device 33 and a capillary tube 34 as a decompression device are sequentially arranged on the downstream side from the junction to the suction pipe 30.
[0024]
As shown in FIGS. 2 and 3, the cooling device 33 has a double pipe structure, and the inner pipe is the outdoor refrigerant pipe 19. The communication pipe 32 is connected to a space 36 surrounded by the inner pipe (outdoor refrigerant pipe 19) and the outer pipe 35. Therefore, when the refrigerant in the compressor 20 that flows into the communication pipe 32 or the lubricating oil for lubricating the compressor 20 flows through the communication pipe 32 and reaches the cooling device 33, the cooling device 33 acts as follows. While flowing through the space 36, the heat is exchanged with the liquid refrigerant condensed by the outdoor heat exchanger 24 (in the case of cooling operation) or the indoor heat exchanger 18 (in the case of heating operation), and is cooled.
[0025]
Thereafter, the refrigerant or lubricating oil that has flowed into the communication pipe 32 is decompressed by the action of the capillary tube 34 and returned to the suction pipe 30. The capillary tube 34 has a heat insulating structure.
[0026]
In the communication pipe 32, a first temperature sensor 38 is installed on the downstream side of the cooling device 33, and a second temperature sensor 39 is installed on the downstream side of the capillary tube 34. The first temperature sensor 38 and the second temperature sensor 39 detect the temperature of the fluid (that is, the refrigerant and the lubricating oil) that flows in the communication pipe 32.
[0027]
The above-described communication pipe 32, cooling device 33, capillary tube 34, first temperature sensor 38, and second temperature sensor 39 are provided to constitute a compressor oil level detection device 40.
[0028]
The detected temperatures T1 and T2 of the fluid in the communication pipe 32 detected by the first temperature sensor 38 and the second temperature sensor 39 will be described next.
[0029]
When the oil level of the lubricating oil in the compressor 20 is equal to or greater than the detection reference plane H, most of the fluid in the communication pipe 32 becomes the lubricating oil. In this case, since the lubricating oil has a large heat capacity, the temperature drop by the cooling device 33 is small, and it is not affected by the pressure reduction by the capillary tube 34. For this reason, the detection temperature T1 detected by the first temperature sensor 38 becomes the temperature at point B in FIG. Since the point B is on the isotherm b and the point C is on the isotherm c, the temperature difference between the detected temperature T1 and the detected temperature T2 is the temperature difference ΔTm1 between the isotherm b and the isotherm c.
[0030]
The temperature at point A in FIG. 4 is the fluid temperature in the communication pipe 32 when it starts to flow from the compressor 20 into the communication pipe 32, and exists on the isotherm a. Further, a point D in FIG. 4 is the temperature of the liquid refrigerant flowing in the inner pipe (outdoor refrigerant pipe 19) of the cooling device 33, and exists on the isotherm e.
[0031]
Similarly, the oil level of the lubricating oil in the compressor 20 is equal to or higher than the detection reference plane H, the outside air temperature is very low, and the difference between the high pressure and the low pressure of the refrigerant in the air conditioner 10 is small. When the amount of the lubricating oil flowing into the communication pipe 32 is small, the temperature of the lubricating oil is remarkably lowered from the flow into the communication pipe 32 until the cooling device 33 is reached. The temperature at that time falls to, for example, the temperature of the point G on the isotherm g. However, the lubricating oil in the communication pipe 32 is heated to the temperature of the point D by the action of the cooling device 33. The temperature at this point D becomes the detected temperature T1. The lubricating oil in the communication pipe 32 is cooled by natural heat dissipation in the capillary tube 34 and becomes the temperature of the point H on the isotherm f, and this temperature becomes the detection temperature T2. Therefore, the temperature difference between the detected temperature T1 and the detected temperature T at this time is a temperature difference ΔTm2 between the isotherm e and the isotherm f.
[0032]
When the oil level of the lubricating oil in the compressor 20 is equal to or less than the detection reference plane H, most of the fluid in the communication pipe 32 becomes the refrigerant. Since this refrigerant has a remarkably small flow rate compared with the liquid refrigerant flowing in the inner pipe (outdoor refrigerant pipe 19) of the cooling device 33, the operation of the cooling device 33 causes the saturated liquid line X and the saturated gas line Y of FIG. And is cooled and liquefied to a temperature close to the point D, and the temperature becomes the temperature of the point E existing on the isotherm d. This temperature becomes the detected temperature T1 by the first temperature sensor 38. This refrigerant is then depressurized by the capillary tube 34, and at this time, the latent heat of vaporization is lost, so that the refrigerant is lowered to the low pressure saturation temperature and becomes the temperature at point F in FIG. The temperature at this point F becomes the detected temperature T2 and exists on the isotherm h in FIG. Accordingly, the temperature difference between the detected temperature T1 and the detected temperature T2 at this time is a temperature difference ΔTn1 (>> ΔTm1, ΔTm2) between the isotherm d and the isotherm h.
[0033]
Similarly, when the oil level of the lubricating oil in the compressor 20 is equal to or lower than the detection reference plane H, the outside air temperature is very low, and the amount of refrigerant flowing from the compressor 20 into the communication pipe 32 is small, the communication pipe The temperature of the refrigerant significantly decreases to the temperature at point G in FIG. However, also in this case, the refrigerant in the communication pipe 32 is heated to, for example, the temperature of the point D by the action of the cooling device 33, and this temperature becomes the detected temperature T1. The refrigerant in the communication pipe 32 heated to the temperature of the point D is lowered to the temperature of the point I on the isotherm h by the pressure reducing action of the capillary tube 34. The temperature at this point I becomes the detected temperature T2. Accordingly, the temperature difference between the detected temperature T1 and the detected temperature T2 at this time is a temperature difference ΔTn2 (>> ΔTm1, ΔTm2) between the isotherm e and the isotherm h.
[0034]
As a result, when the temperature difference between the detected temperature T1 and the detected temperature T2 is as small as the above-described temperature differences ΔTm1 and ΔTm2, the oil level of the lubricating oil in the compressor 20 is equal to or greater than the detection reference surface H and compressed. It can be detected because it can be determined that “the lubricating oil is present” in the machine 20. When the temperature difference between the detected temperature T1 and the detected temperature T2 is as large as the above-described temperature differences ΔTn1 and ΔTn2, the oil level of the lubricating oil in the compressor 20 is equal to or less than the detection reference surface H, and the compressor 20 It can be detected because it can be determined that there is no lubricant. Since the temperature difference between the temperature differences ΔTm1 and ΔTm2 and the temperature differences ΔTn1 and ΔTn2 is large, the detection error is small, and the presence or absence of the lubricating oil in the compressor 20 is accurately detected.
[0035]
Therefore, according to the above embodiment, the following effects (1) and (2) are achieved.
[0036]
(1) The liquid refrigerant from the outdoor heat exchanger 24 or the indoor heat exchanger 18 that condenses the gas refrigerant discharged from the compressor 20 from the bottom 31 of the compressor 20 through the communication pipe 32 to the suction pipe 30. Is used to cool the cooling device 33, the pressure of the capillary tube 34 is reduced, and the temperature difference between the detected temperature T1 detected by the first temperature sensor 38 and the detected temperature T2 detected by the second temperature sensor 39 is determined. Whether most of the fluid in the communication pipe 32 is lubricating oil or refrigerant by comparing with the detection reference plane H (temperature difference ΔTm1, ΔTm2) and without (temperature difference ΔTn1, ΔTn2). Accordingly, it is detected whether or not the lubricating oil is in the compressor 20 above the detection reference plane H, so that the presence or absence of the lubricating oil in the compressor 20 can be accurately detected.
[0037]
(2) Since the capillary tube 34 is disposed in the communication pipe 32 that communicates the bottom 31 of the compressor 20 and the suction pipe 30, the fluid pressure in the communication pipe 32 on the upstream side of the capillary tube 34 is appropriately adjusted. Since it can ensure, the capability fall of the compressor 20 can be prevented.
[0038]
As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.
[0039]
For example, as shown in FIG. 1, an open / close valve (electromagnetic valve) 41 may be provided between the cooling device 33 and the first temperature sensor 38 in the communication pipe 32. The on-off valve 41 is opened at appropriate intervals at a predetermined interval (for example, once every 10 minutes). When the valve is opened, the lubricating oil or refrigerant that has flowed into the communication pipe 32 from the compressor 20 is opened. Storage in the space 36 is possible.
[0040]
Therefore, even when the liquid refrigerant flows from the compressor 20 into the communication pipe 32, the liquid refrigerant is reliably heat-exchanged and cooled by the liquid refrigerant flowing in the outdoor refrigerant pipe 19 (inner pipe) in the cooling device 33. The temperature in the region surrounded by the saturated liquid line X and the saturated gas line Y shown in FIG. This temperature becomes the detection temperature T1. For this reason, when the on-off valve 41 is opened, the pressure of the capillary tube 34 reduces the liquid refrigerant that has reached the capillary tube 34 to a low-pressure saturation temperature (temperature on the isotherm h). The detected temperature T2. As a result, also in this case, since the temperature difference between the detected temperature T1 and the detected temperature T2 can be increased, the detection accuracy of the presence or absence of lubricating oil in the compressor 20 can be improved.
[0041]
In addition, since the open / close valve 41 that opens at a predetermined interval is provided in the communication pipe 32 that communicates the compressor 20 and the suction pipe 30, the high pressure state of the compressor 20 is good when the open / close valve 41 is closed. Therefore, it is possible to prevent a decrease in the capacity of the compressor 20.
[0042]
【The invention's effect】
According to the compressor oil level detection method and the oil level detection device of the present invention , the oil level in the compressor can be accurately detected.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an air conditioner to which an oil level detection device for a compressor according to the present invention is applied.
2 is a circuit diagram showing an oil level detection device of the compressor of FIG. 1; FIG.
3 is a cross-sectional view taken along line III-III in FIG.
4 is a pressure (P) -enthalpy (h) diagram showing a refrigeration cycle of the air conditioner of FIG. 1. FIG.
[Explanation of symbols]
18 Indoor Heat Exchanger 24 Outdoor Heat Exchanger 20 Compressor 30 Suction Pipe 31 Bottom 32 Communication Pipe 33 Cooling Device 34 Capillary Tube (Decompression Device)
38 1st temperature sensor 39 2nd temperature sensor 40 Oil level detection device 41 of compressor On-off valve T1 Detection temperature T2 Detection temperature H Detection reference plane

Claims (5)

圧縮機の底部から連通管を経て上記圧縮機に接続された吸込管へ流れる冷媒または潤滑油を含む流体を、上記圧縮機からのガス冷媒が凝縮された液冷媒を用いて冷却する冷却装置が冷却し、この冷却装置は上記流体が冷媒を含む場合に機能して冷媒の液化を促し、その後減圧装置が減圧し、
上記冷却装置の下流側における連通管内の流体温度と、減圧装置の下流側における上記連通管内の流体温度の差を求め、該差と上記圧縮機内の潤滑油の油面が検出基準面以上ある場合に生じる温度差ΔTm1,ΔTm2、及びない場合に生じる温度差ΔTn1,ΔTn2とを比較することにより、当該連通管内の流体の大部分が潤滑油であるか冷媒であるかを判断して、上記圧縮機内の検出基準面に対する潤滑油の油面を検出することを特徴とする圧縮機の油面検出方法。
A cooling device that cools a fluid containing refrigerant or lubricating oil flowing from the bottom of the compressor through a communication pipe to a suction pipe connected to the compressor using a liquid refrigerant in which a gas refrigerant from the compressor is condensed. Cooling, this cooling device works when the fluid contains a refrigerant to promote liquefaction of the refrigerant, and then the decompression device depressurizes,
When the difference between the fluid temperature in the communication pipe on the downstream side of the cooling device and the fluid temperature in the communication pipe on the downstream side of the decompression device is obtained, and the oil level of the lubricating oil in the compressor is greater than the detection reference plane By comparing the temperature difference ΔTm1, ΔTm2 occurring in the case with the temperature difference ΔTn1, ΔTn2 occurring in the absence, it is determined whether most of the fluid in the communication pipe is lubricating oil or refrigerant, and the compression An oil level detection method for a compressor, comprising: detecting an oil level of a lubricating oil relative to a detection reference plane in the machine.
圧縮機の底部と当該圧縮機に接続された吸込管とが冷媒または潤滑油を含む流体を流す連通管を用いて連通され、この連通管に冷却装置及び減圧装置が、上記吸込管へ向かう下流に沿って順次設けられ、
上記冷却装置は、上記圧縮機から吐出されたガス冷媒を凝縮する熱交換器からの液冷媒を導いて上記連通管内の流体を冷却し、この冷却装置は上記流体が冷媒を含む場合に機能して冷媒の液化を促し、
上記連通管には、冷却装置の下流に第1温度センサが、減圧装置の下流に第2温度センサがそれぞれ設置され、これらの第1温度センサおよび第2温度センサが検出する上記連通管内の流体温度の差を求め、該差と上記圧縮機内の潤滑油の油面が検出基準面以上ある場合に生じる温度差ΔTm1,ΔTm2、及びない場合に生じる温度差ΔTn1,ΔTn2とを比較することにより、当該連通管内の流体の大部分が潤滑油であるか冷媒であるかを判断して、上記圧縮機内の検出基準面に対する潤滑油の油面を検出するよう構成されたことを特徴とする圧縮機の油面検出装置。
The bottom of the compressor and a suction pipe connected to the compressor are communicated with each other using a communication pipe that flows a fluid containing a refrigerant or lubricating oil, and a cooling device and a decompression device are connected downstream of the communication pipe to the suction pipe. In order,
The cooling device guides the liquid refrigerant from the heat exchanger that condenses the gas refrigerant discharged from the compressor to cool the fluid in the communication pipe, and the cooling device functions when the fluid contains the refrigerant. To liquefy the refrigerant,
The communication pipe is provided with a first temperature sensor downstream of the cooling device and a second temperature sensor downstream of the decompression device, and the fluid in the communication pipe detected by the first temperature sensor and the second temperature sensor. By obtaining the temperature difference and comparing the difference with the temperature difference ΔTm1, ΔTm2 that occurs when the oil level of the lubricating oil in the compressor is greater than or equal to the detection reference surface, and the temperature difference ΔTn1, ΔTn2 that occurs when there is not, A compressor configured to detect whether most of the fluid in the communication pipe is lubricating oil or refrigerant, and to detect the oil level of the lubricating oil with respect to the detection reference surface in the compressor. Oil level detector.
上記減圧装置がキャピラリチューブであることを特徴とする請求項2に記載の圧縮機の油面検出装置。  The oil level detection device for a compressor according to claim 2, wherein the decompression device is a capillary tube. 上記冷却装置の下流側に開閉弁が配設され、この開閉弁が所定間隔で適宜開弁されるよう構成されたことを特徴とする請求項2又は3に記載の圧縮機の油面検出装置。  The oil level detection device for a compressor according to claim 2 or 3, wherein an on-off valve is disposed downstream of the cooling device, and the on-off valve is appropriately opened at a predetermined interval. . 上記連通管の圧縮機側は二股に分岐され、この圧縮機内の油面の検出基準面に対して上下位置で上記圧縮機に各々接続されることを特徴とする請求項2乃至4のいずれかに記載の圧縮機の油面検出装置。  The compressor side of the communication pipe is bifurcated and connected to the compressor in a vertical position with respect to a detection reference plane of the oil level in the compressor. The oil level detection apparatus of the compressor as described in 2.
JP2002223052A 2002-07-31 2002-07-31 Oil level detection method and apparatus for compressor Expired - Fee Related JP4278351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223052A JP4278351B2 (en) 2002-07-31 2002-07-31 Oil level detection method and apparatus for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223052A JP4278351B2 (en) 2002-07-31 2002-07-31 Oil level detection method and apparatus for compressor

Publications (2)

Publication Number Publication Date
JP2004061056A JP2004061056A (en) 2004-02-26
JP4278351B2 true JP4278351B2 (en) 2009-06-10

Family

ID=31942924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223052A Expired - Fee Related JP4278351B2 (en) 2002-07-31 2002-07-31 Oil level detection method and apparatus for compressor

Country Status (1)

Country Link
JP (1) JP4278351B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105458A (en) * 2004-10-04 2006-04-20 Mitsubishi Electric Corp Refrigerant circulation system and hermetic compressor
KR100693533B1 (en) 2005-12-20 2007-03-14 엘지전자 주식회사 Temperature adjusting structure and method of balancing oil pipe for air conditioner
JP4787794B2 (en) * 2007-06-25 2011-10-05 三星電子株式会社 Oil level detection mechanism and air conditioner in low-pressure vessel compressor
JP2014089021A (en) * 2012-10-31 2014-05-15 Panasonic Corp Freezing apparatus
JP6455755B2 (en) * 2014-10-21 2019-01-23 パナソニックIpマネジメント株式会社 Oil level detector for compressor

Also Published As

Publication number Publication date
JP2004061056A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US6845626B2 (en) Refrigeration apparatus
CN108139130B (en) Method for controlling a vapour compression system in a flooded state
EP3545241B1 (en) A method for handling fault mitigation in a vapour compression system
CN102365507B (en) Refrigerator
JP3743861B2 (en) Refrigeration air conditioner
JP2011208860A (en) Air conditioner
EP2257749B1 (en) Refrigerating system and method for operating the same
JP4418936B2 (en) Air conditioner
CN105627612A (en) Outdoor unit refrigerant pipeline system, air conditioner and refrigeration control method for air conditioner
JP2008111585A (en) Air conditioner
JP4278351B2 (en) Oil level detection method and apparatus for compressor
EP1655554B1 (en) Multi-type air conditioner
CN114151935A (en) Air conditioning system
CN110573810A (en) vapor compression system with suction line liquid separator
JP6373475B2 (en) Refrigerant amount abnormality detection device and refrigeration device
JP4004356B2 (en) Oil level detection method and apparatus for compressor
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JP4090240B2 (en) Cooling system
EP3978828B1 (en) Refrigeration cycle device
JP2018119746A (en) Refrigeration device
JPH01302072A (en) Heat pump type air conditioner
CN115143555B (en) Air conditioning system
WO2021229766A1 (en) Refrigerator
KR20100062117A (en) Air conditioner having plate heat exchanger and controlling method of the same of
JP2008111584A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees