JP4787794B2 - Oil level detection mechanism and air conditioner in low-pressure vessel compressor - Google Patents

Oil level detection mechanism and air conditioner in low-pressure vessel compressor Download PDF

Info

Publication number
JP4787794B2
JP4787794B2 JP2007166957A JP2007166957A JP4787794B2 JP 4787794 B2 JP4787794 B2 JP 4787794B2 JP 2007166957 A JP2007166957 A JP 2007166957A JP 2007166957 A JP2007166957 A JP 2007166957A JP 4787794 B2 JP4787794 B2 JP 4787794B2
Authority
JP
Japan
Prior art keywords
oil level
low
pipe
oil
detection mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007166957A
Other languages
Japanese (ja)
Other versions
JP2009002317A (en
Inventor
道美 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2007166957A priority Critical patent/JP4787794B2/en
Publication of JP2009002317A publication Critical patent/JP2009002317A/en
Application granted granted Critical
Publication of JP4787794B2 publication Critical patent/JP4787794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compressor (AREA)

Description

この発明は、冷凍装置や空気調和機の圧縮機における潤滑油貯留容器の油面検知機構に関し、特に温度センサを利用して油面を検知する機構に関するものである。   The present invention relates to an oil level detection mechanism of a lubricating oil storage container in a compressor of a refrigeration apparatus or an air conditioner, and more particularly to a mechanism for detecting an oil level using a temperature sensor.

従来のこの種の油面検知機構としては、例えば特許文献1に示すように、潤滑油に冷媒が溶け込んでいることを利用したものが知られている。この特許文献1では、圧縮機容器の潤滑油が貯留している底部と冷媒ガスが充満している上部との間に、加熱機構を付帯させた連通管を設けるとともに、前記底部及び連通管にそれぞれ第1、第2の2つの温度センサを配設するように構成してあって、加熱機構としては、ヒータを連通管に連設したり、高温の潤滑油をオイルセパレータからキャピラリチューブを介して連通管に戻すといった構成が紹介されている。   As a conventional oil level detection mechanism of this type, as shown in Patent Document 1, for example, a mechanism utilizing the fact that a refrigerant is dissolved in lubricating oil is known. In Patent Document 1, a communication pipe with a heating mechanism is provided between a bottom portion in which a lubricating oil in a compressor container is stored and an upper portion in which refrigerant gas is filled, and the bottom portion and the communication pipe are provided with the bottom portion and the communication pipe. Each of the first and second temperature sensors is arranged, and as a heating mechanism, a heater is connected to the communication pipe, or high-temperature lubricating oil is passed from the oil separator through the capillary tube. The configuration of returning to the communication pipe is introduced.

このような構成によると、標準油量時、すなわち連通管内の潤滑油の油面が第2温度センサより上にある場合には、潤滑油に溶け込んでいる冷媒が蒸発するために温度上昇が小さくなり、第1温度センサと第2温度センサとの温度差が小さくなる一方、低油量時、すなわち油面が第2温度センサより下にある場合には、連通管内はガス冷媒なので温度上昇が大きくなり、第1温度センサと第2温度センサとの温度差が大きくなる。このことから、第1温度センサと第2温度センサとの温度差を判別することで、油面の低下を検知することができる。   According to such a configuration, when the amount of oil is standard, i.e., when the oil level of the lubricating oil in the communication pipe is above the second temperature sensor, the refrigerant dissolved in the lubricating oil evaporates, so the temperature rise is small. Thus, while the temperature difference between the first temperature sensor and the second temperature sensor becomes small, when the oil level is low, that is, when the oil level is below the second temperature sensor, the communication pipe is a gas refrigerant and the temperature rises. The temperature difference between the first temperature sensor and the second temperature sensor increases. From this, it is possible to detect a decrease in the oil level by determining the temperature difference between the first temperature sensor and the second temperature sensor.

また、特許文献2には、圧縮機の高圧容器から低圧の冷媒吸入管へのバイパス経路を設け、そのバイパス経路が、標準油量時には潤滑油で閉止され、低油量時には開放されるように構成するとともに、そのバイパス経路の途中に冷却部を設け、その冷却部を吸入管からの冷媒によって冷却するようにした油面検知機構が記載されている。そして、バイパス経路上の冷却部より上流側、下流側にそれぞれ第1、第2の温度センサを設けて、その部位の温度をセンシングできるように構成している。   Further, Patent Document 2 provides a bypass path from the high-pressure container of the compressor to the low-pressure refrigerant suction pipe so that the bypass path is closed with lubricating oil when the standard oil amount is used, and is opened when the oil amount is low. In addition, there is described an oil level detection mechanism in which a cooling part is provided in the middle of the bypass path and the cooling part is cooled by a refrigerant from a suction pipe. Then, first and second temperature sensors are provided on the upstream side and the downstream side of the cooling unit on the bypass path, respectively, so that the temperature of the part can be sensed.

このような構成によると、標準油量時には、バイパス経路の下流だけ冷却されて第1、第2の温度センサによる温度差が大きくなる一方、低油量時には、高圧容器からの高温冷媒がバイパス経路に流れ込んでバイパス経路全体が暖められ、第1、第2の温度センサによる温度差が小さくなるので、その温度差を検知することによって油面低下を検知することができる。
特開2003−97443号公報 特開2004−85083号公報
According to such a configuration, when the standard oil amount is reached, only the downstream of the bypass path is cooled, and the temperature difference between the first and second temperature sensors is increased. On the other hand, when the oil amount is low, the high-temperature refrigerant from the high-pressure vessel is bypassed. And the entire bypass path is warmed, and the temperature difference between the first and second temperature sensors becomes small. Therefore, the oil level drop can be detected by detecting the temperature difference.
JP 2003-97443 A JP 2004-85083 A

しかしながら、従来のものは、いずれも2つの温度センサを利用するため、各センサの誤差が重畳された場合に、正確な温度差を検知することができなくなって誤動作するおそれがある。また、複数の温度センサを使用するためコストアップの要因にもなる。   However, since the conventional ones use two temperature sensors, when the errors of the respective sensors are superimposed, an accurate temperature difference cannot be detected and there is a risk of malfunction. In addition, since a plurality of temperature sensors are used, the cost increases.

また、特許文献1のように、連通管を加熱する方式であると、専用の加熱機構が必要となって構造の複雑化を招くだけでなく、潤滑油がある場合でも、連通管(銅管などの金属管)自身の熱伝導により、連通管温度が上昇するため、潤滑油がない場合と比較して明確な温度差を得られない場合がある。さらに、キャピラリチューブからのオイル戻しにより連通管を加熱するものでは、高圧側からのバイパスのため、連通管内に潤滑油がある場合でも当該連通管にキャピラリチューブからの潤滑油の流れが発生し、油面の高低にかかわらず高温を検知してしまう恐れも生じる。   In addition, as in Patent Document 1, the method of heating the communication pipe not only requires a dedicated heating mechanism, resulting in a complicated structure, but also in the presence of lubricating oil, the communication pipe (copper pipe) Since the temperature of the communication pipe rises due to its own heat conduction, there may be a case where a clear temperature difference cannot be obtained as compared with the case where there is no lubricating oil. Furthermore, in the case of heating the communication pipe by returning the oil from the capillary tube, because of the bypass from the high pressure side, even if there is lubricating oil in the communication pipe, the flow of the lubricating oil from the capillary tube occurs in the communication pipe, There is also the risk of detecting high temperatures regardless of the oil level.

一方、特許文献2では、高圧側(高圧容器)から低圧側(吸入管)にバイパスさせているので、その分のエネルギロスが必ず生じ、冷凍装置や空気調和装置などのシステム全体における効率低下を招くという不具合がある。   On the other hand, in Patent Document 2, since the bypass is made from the high pressure side (high pressure vessel) to the low pressure side (suction pipe), an energy loss correspondingly occurs, and the efficiency of the entire system such as the refrigeration apparatus and the air conditioner is reduced. There is a problem of inviting.

かかる問題点に対し、本発明はそれらを一挙に解決すべく図ったものであって、その主たる目的は、単一の温度センサを用いた簡単な構造で、精度よく、しかも熱システム全体の効率低下を招かない油面検知機構を提供することにある。   In order to solve these problems, the present invention is intended to solve them all at once. The main purpose of the present invention is to provide a simple structure using a single temperature sensor with high accuracy and the efficiency of the entire thermal system. The object is to provide an oil level detection mechanism that does not cause a drop.

すなわち、本発明に係る油面検知機構は、潤滑油を貯留する低圧容器及びその低圧容器に冷媒を導入するための吸入管を備えた低圧容器型圧縮機に用いられるものであって、前記低圧容器内の標準油量時の油面高さを基準として当該低圧容器の上側位置及び下側位置からそれぞれ引き出された上側接続管及び下側接続管と、前記上側接続管及び前記下側接続管を連通し、当該内部空間内で前記低圧容器内の油面変位と同一の油面変位をする内部空間を有する連通管と、基端部が前記吸入管から分岐するとともに先端開口が当該連通管の内部空間における前記標準油量時の油面高さより高い位置に開口する分岐管と、を具備し、標準油量時には前記下側接続管が潤滑油によって満たされて冷媒の流通を遮断させる一方、低油量時には前記下側接続管から潤滑油を排出させてその内部に冷媒を流通させるようにしたことを特徴とするものである。   That is, the oil level detection mechanism according to the present invention is used in a low pressure container compressor having a low pressure container for storing lubricating oil and a suction pipe for introducing a refrigerant into the low pressure container. An upper connecting pipe and a lower connecting pipe drawn from an upper position and a lower position of the low-pressure container on the basis of the oil level height at the time of the standard oil amount in the container, the upper connecting pipe and the lower connecting pipe, respectively. A communication pipe having an internal space in which the oil level displacement is the same as the oil level displacement in the low-pressure vessel in the internal space, and a base end portion branches from the suction pipe and a distal end opening is the communication pipe A branch pipe that opens at a position higher than the oil level height at the time of the standard oil amount in the internal space of the engine, and when the standard oil quantity is reached, the lower connecting pipe is filled with lubricating oil to block the refrigerant flow When the oil level is low, Was drained lubricating oil from the pipe is characterized in that so as to circulate coolant therein.

このようなものであれば、低油量時には、吸入管から導かれた低温冷媒の流通によって下側接続管が冷やされるため、下側接続管の温度は、潤滑油で満たされて冷媒の流通が遮断されている標準油量時での温度よりも低くなる。したがって、例えば前記温度センサで下側接続管の温度を随時監視しておき、その温度低下を検出することによって、油量低下を精度よく検知することができる。   If this is the case, when the amount of oil is low, the lower connecting pipe is cooled by the flow of the low-temperature refrigerant introduced from the suction pipe, so the temperature of the lower connecting pipe is filled with lubricating oil and the refrigerant flows. It becomes lower than the temperature at the time of standard oil amount that is blocked. Therefore, for example, by monitoring the temperature of the lower connecting pipe at any time with the temperature sensor and detecting the temperature drop, it is possible to accurately detect the oil quantity drop.

また、時系列測定を採用することで温度センサを1つにできるうえに、分岐管や接続管などを配管するだけで、その他の加熱機構などの専用機構を必要としないため、簡単な構造で実現できてコストアップを抑制できる。   In addition, by adopting time series measurement, the temperature sensor can be integrated into one, and only a branch pipe or connecting pipe is installed, and no other special mechanism such as a heating mechanism is required. It can be realized and cost increase can be suppressed.

さらに、低圧容器への吸入過程にある低温冷媒、すなわち吸入管内にある冷媒を、温度差確保のための低温熱源として用い、従来のような高低圧間のバイパス通路を設ける必要が無いため、冷凍装置や空気調和装置などのシステム全体における冷媒循環量減少による性能低下を防止することができる。   Furthermore, the low-temperature refrigerant in the suction process into the low-pressure container, that is, the refrigerant in the suction pipe is used as a low-temperature heat source for ensuring a temperature difference, and there is no need to provide a bypass passage between high and low pressures as in the prior art. It is possible to prevent performance degradation due to a decrease in the amount of refrigerant circulation in the entire system such as a device or an air conditioner.

単一の温度センサで構成でき、しかも短時間での測定が可能な好ましい具体構成としては、前記下側接続管の表面温度を検知する温度センサと、前記分岐管に設けられた開閉弁と、その開閉弁の開放時及び閉止時における前記温度センサの検知結果に基づいて、前記低圧容器内の潤滑油の油面高さを判断する油面判断手段と、をさらに備えているものを挙げることができる。このようなものであれば、標準油量時には、下側接続管が潤滑油によって閉塞されているため、開閉弁の開閉にかかわらず、下側接続管を低温ガスが流通せず、温度差は生じないが、低油量時のときには、開閉弁を開放することで、吸入管からの低温冷媒が下側接続管に流入してその温度が短時間で低下するので、開放時と閉止時との間で温度差が生じる。したがって、この温度差を監視しておくことで、精度よく油面低下を検知できる。   A preferred specific configuration that can be configured with a single temperature sensor and that can be measured in a short time includes a temperature sensor that detects the surface temperature of the lower connecting pipe, and an on-off valve provided in the branch pipe, An oil level judgment means for judging the oil level height of the lubricating oil in the low-pressure vessel based on the detection result of the temperature sensor when the on-off valve is opened and closed is mentioned. Can do. In such a case, at the time of standard oil amount, the lower connecting pipe is closed by the lubricating oil, so that the low temperature gas does not flow through the lower connecting pipe regardless of opening / closing of the on / off valve, and the temperature difference is Although it does not occur, when the amount of oil is low, by opening the on-off valve, low-temperature refrigerant from the suction pipe flows into the lower connection pipe and the temperature decreases in a short time. Temperature difference between the two. Therefore, by monitoring this temperature difference, it is possible to accurately detect the oil level drop.

下側接続管に極端に多くの冷媒が流入すると、動圧による油面押し下げ効果が働いて、誤動作の原因となる。これを防止して冷媒の流入量適正化を図り、油面検知精度をより向上させるためには、前記分岐管に冷媒の流量を調整する流量調整部を設けておくことが好ましい。   If an extremely large amount of refrigerant flows into the lower connecting pipe, the effect of pushing down the oil level due to the dynamic pressure works and causes malfunction. In order to prevent this, optimize the inflow amount of the refrigerant, and improve the oil level detection accuracy, it is preferable to provide a flow rate adjusting unit for adjusting the flow rate of the refrigerant in the branch pipe.

動圧影響をさらに減少させるためには、前記分岐管の先端開口の向きを、連通管内の油面に対して直接動圧のかからない角度に設定しておくことが望ましい。その向きとしては、例えば、鉛直上向きが好適である。   In order to further reduce the influence of dynamic pressure, it is desirable to set the direction of the distal end opening of the branch pipe to an angle at which no dynamic pressure is directly applied to the oil level in the communication pipe. As the direction, for example, a vertically upward direction is suitable.

このように本発明は、単一の温度センサと配管構造を付加するだけで、精度よく油面を検知できて、しかもコストアップを最低限に抑えることができる。さらに、高圧側から低圧側へのバイパス経路がないため、冷凍装置や空気調和装置などのシステム全体における性能低下を防止することもできる。   As described above, according to the present invention, the oil level can be detected with high accuracy only by adding a single temperature sensor and a piping structure, and cost increase can be minimized. Furthermore, since there is no bypass path from the high pressure side to the low pressure side, it is possible to prevent performance degradation in the entire system such as the refrigeration apparatus and the air conditioner.

以下、本発明の一実施形態を、図面を参照して説明する。
本実施形態に係る油面検知機構4は、図1に示すように、冷凍装置や空気調和装置などの動力―熱変換システム(図示しない)を構成する低圧容器型圧縮機1に設けられるものであって、より具体的には、圧縮機1の低圧容器2内に貯留されている潤滑油面を検知するためのものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the oil level detection mechanism 4 according to the present embodiment is provided in a low-pressure container compressor 1 that constitutes a power-heat conversion system (not shown) such as a refrigeration apparatus or an air conditioner. More specifically, it is for detecting the lubricating oil surface stored in the low-pressure vessel 2 of the compressor 1.

まず、低圧容器型圧縮機1について簡単に説明しておくと、この圧縮機1は、内部圧力が少なくとも吐出圧力よりも低く設定された低圧容器2と、その低圧容器2内へのガス冷媒の流入口である吸入ポートPIと、低圧容器2の内部に配置されたロータリポンプなどからなる圧縮手段(図示しない)と、その圧縮手段により圧縮された冷媒を吐出する吐出ポートPOと、を備えたものである。この図1において、符号3は、前記吸入ポートPIに接続された、冷媒を導入するための吸入管である。   First, the low-pressure vessel compressor 1 will be briefly described. The compressor 1 includes a low-pressure vessel 2 in which the internal pressure is set at least lower than the discharge pressure, and the gas refrigerant into the low-pressure vessel 2. A suction port PI that is an inflow port, a compression means (not shown) including a rotary pump disposed inside the low-pressure vessel 2, and a discharge port PO that discharges the refrigerant compressed by the compression means. Is. In FIG. 1, reference numeral 3 denotes a suction pipe for introducing a refrigerant connected to the suction port PI.

次に、本実施形態に係る油面検知機構4について詳述する。この油面検知機構4は、前記吸入管3から分岐して当該吸入管3と並列に低圧容器2に連通する油面検知用流路5と、その油面検知用流路5に設けられた単一の温度センサ6と、情報処理部7と、を有したものである。   Next, the oil level detection mechanism 4 according to the present embodiment will be described in detail. The oil level detection mechanism 4 is provided in an oil level detection flow path 5 that branches from the suction pipe 3 and communicates with the low pressure vessel 2 in parallel with the suction pipe 3 and the oil level detection flow path 5. A single temperature sensor 6 and an information processing unit 7 are provided.

油面検知用流路5は、低圧容器2からそれぞれ引き出された上側接続管54及び下側接続管53と、前記上側接続管54及び前記下側接続管53を連通する連通管52と、吸入管3から分岐して前記連通管52に接続された分岐管51と、から構成されている。   The oil level detection flow path 5 includes an upper connection pipe 54 and a lower connection pipe 53 drawn from the low-pressure vessel 2, a communication pipe 52 that connects the upper connection pipe 54 and the lower connection pipe 53, and a suction pipe. The branch pipe 51 is branched from the pipe 3 and connected to the communication pipe 52.

上側接続管54は、低圧容器2の標準油面H(1)より高い位置(上側接続口54a)から引き出されており、通常に定められた使用では、この上側接続管54内に低圧容器2からの潤滑油が浸入しないように構成してある。   The upper connection pipe 54 is drawn from a position (upper connection port 54a) higher than the standard oil level H (1) of the low-pressure vessel 2, and in a normal use, the upper connection pipe 54 is placed in the low-pressure vessel 2 in the upper connection pipe 54. It is configured so that the lubricating oil from

下側接続管53は、低圧容器2の標準油面H(1)より低い位置から引き出されている。より具体的に説明すれば、標準油量時には、図1に示すように、低圧容器2に対する下側接続管53の接続口53aが、油面H(1)下に完全に埋没して、下側接続管53が潤滑油で閉塞される一方、低油量時には、図2に示すように、前記接続口53aの少なくとも一部が油面H(2)上に現れて、下側接続管53が開通するように構成されている。また、前記接続口53aは、上側接続管54の低圧容器2に対する接続口54aにできるだけ近い位置(例えば略真下)に設けられている。   The lower connecting pipe 53 is drawn from a position lower than the standard oil level H (1) of the low-pressure vessel 2. More specifically, at the time of standard oil amount, as shown in FIG. 1, the connection port 53a of the lower connection pipe 53 with respect to the low pressure vessel 2 is completely buried under the oil level H (1), While the side connecting pipe 53 is closed with lubricating oil, when the amount of oil is low, at least a part of the connecting port 53a appears on the oil surface H (2) as shown in FIG. Is configured to open. The connection port 53a is provided at a position as close as possible to the connection port 54a for the low-pressure vessel 2 of the upper connection pipe 54 (for example, substantially directly below).

連通管52は、上下方向に所定の長さを有したものであって、その上端部に上側接続管54が接続され、下端部に下側接続管53が接続されることにより、その内部空間の油面変位が、低圧容器2内の油面変位と同一となるように構成されている。なお、上側接続管54の当該連通管52に対する接続部位は、標準油面H(1)より上方に設定されており、前述したように、上側接続管54に潤滑油が浸入して閉塞することがないように構成してある。また、下側接続管53の当該連通管52に対する接続部位は、標準油面H(1)より下方に設定されている。   The communication pipe 52 has a predetermined length in the vertical direction. The upper connection pipe 54 is connected to the upper end of the communication pipe 52, and the lower connection pipe 53 is connected to the lower end of the communication pipe 52. The oil level displacement is the same as the oil level displacement in the low-pressure vessel 2. In addition, the connection site | part with respect to the said communication pipe | tube 52 of the upper side connection pipe 54 is set above the standard oil level H (1), and as above-mentioned, lubricating oil infiltrates into the upper side connection pipe | tube 54, and it obstruct | occludes. It is configured so that there is no. Moreover, the connection site | part with respect to the said communication pipe | tube 52 of the lower side connection pipe | tube 53 is set below the standard oil level H (1).

分岐管51は、少なくとも標準油面H(1)よりも上方に設定されたその先端開口51aにおいて連通管52に接続されており、通常に定められた使用では、この分岐管51内に低圧容器2からの潤滑油が浸入しないように構成してある。また、この実施形態では、分岐管51が、前記連通管52の底面から当該連通管52内に挿入されて二重管構造をなすように構成されていて、前記先端開口51aが、鉛直上向きに連通管52内に位置するように設定されている。さらに、この分岐管51上には、開閉弁55と、冷媒の流量を調整する流量調整部であるキャピラリ56とが直列に設けられている。   The branch pipe 51 is connected to the communication pipe 52 at its tip opening 51a set at least above the standard oil level H (1), and in a normal use, the branch pipe 51 has a low-pressure container. It is comprised so that the lubricating oil from 2 may not permeate. Further, in this embodiment, the branch pipe 51 is configured to be inserted into the communication pipe 52 from the bottom surface of the communication pipe 52 to form a double pipe structure, and the tip opening 51a is vertically upward. It is set so as to be located in the communication pipe 52. Further, on the branch pipe 51, an on-off valve 55 and a capillary 56 which is a flow rate adjusting unit for adjusting the flow rate of the refrigerant are provided in series.

温度センサ6は、この下側接続管53の外周面に取り付けられており、その取付部位の高さは、標準油面H(1)より下方に設定されている。   The temperature sensor 6 is attached to the outer peripheral surface of the lower connection pipe 53, and the height of the attachment site is set below the standard oil level H (1).

情報処理部7は、物理的にはアナログ電気回路や、あるいはCPU、メモリなどからなるデジタル電気回路で構成されたもので、その回路構成に基づいて、開閉弁55の駆動信号を出力する開閉弁駆動部、温度センサ6からの出力信号を受け付ける信号受付部、その出力信号の値、すなわち測定温度を記憶する記憶部、開閉弁55を開放したときの測定温度及び開閉弁55を閉止したときの温度センサ6による各測定温度に基づいて、前記低圧容器2内の潤滑油の油面高さを判断する油面検知部、等としての機能を発揮する。   The information processing unit 7 is physically constituted by an analog electric circuit or a digital electric circuit composed of a CPU, a memory, etc., and the on-off valve that outputs a drive signal of the on-off valve 55 based on the circuit configuration. Drive unit, signal receiving unit that receives an output signal from the temperature sensor 6, a value of the output signal, that is, a storage unit that stores the measured temperature, a measured temperature when the on-off valve 55 is opened, and an on-off valve 55 when the on-off valve 55 is closed Based on each temperature measured by the temperature sensor 6, it functions as an oil level detector for determining the oil level of the lubricating oil in the low pressure vessel 2.

次に、このように構成した油面検知機構4について、その動作を簡単に説明する。   Next, the operation of the oil level detection mechanism 4 configured as described above will be briefly described.

開閉弁55は、情報処理部7からの駆動信号により、定期的に又は非定期的に繰り返し開閉される。開放期間及び閉止期間の長さは、下側接続管53の温度が、ある程度安定するだけの時間に少なくとも設定されている(具体的には5分〜20分)。そして、信号受付部が温度センサ6からの出力信号を受信し、記憶部において、開放期間の例えば終期に取得された測定温度(以下、開放期間温度とも言う)と、その開放時間に続く閉止期間の例えば終期に取得された測定温度(以下、閉止期間温度とも言う)とが記憶される。   The on-off valve 55 is repeatedly opened and closed periodically or irregularly according to a drive signal from the information processing unit 7. The length of the opening period and the closing period is set at least to a time that the temperature of the lower connecting pipe 53 is stabilized to some extent (specifically, 5 minutes to 20 minutes). Then, the signal receiving unit receives the output signal from the temperature sensor 6, and the storage unit acquires a measured temperature (hereinafter also referred to as an open period temperature) acquired at the end of the open period, for example, and a close period following the open time. For example, the measured temperature acquired at the end (hereinafter also referred to as a closing period temperature) is stored.

このとき、潤滑油が標準量貯留されている場合は、図1に示すように、下側接続管53が潤滑油で閉塞されている。そのため、この状態で開閉弁55を開放した場合、吸入管3からの低温冷媒は、分岐管51を通じて連通管52に流入するが、この下側接続管53には流入せず、全て上側接続管54を通じて低圧容器2に導かれる。したがって、開閉弁55の開閉にかかわらず、その下側接続管53の温度はほとんど変化しない。実際に測定した温度の時間変化グラフを図3に示す。この図3から明らかなように、前記開放期間温度と閉止期間温度との差は、ほとんどみられない。この結果、前記油面検知部は、前記開放期間温度と閉止期間温度とを比較して、その差が所定値よりも小さいと判断し、油面が正常である旨の検知信号を出力する。   At this time, when a standard amount of lubricating oil is stored, as shown in FIG. 1, the lower connecting pipe 53 is closed with the lubricating oil. Therefore, when the on-off valve 55 is opened in this state, the low-temperature refrigerant from the suction pipe 3 flows into the communication pipe 52 through the branch pipe 51, but does not flow into the lower connection pipe 53, but all of the upper connection pipe. 54 is led to the low-pressure vessel 2. Therefore, the temperature of the lower connection pipe 53 hardly changes regardless of whether the on-off valve 55 is opened or closed. FIG. 3 shows a time variation graph of the actually measured temperature. As is apparent from FIG. 3, there is almost no difference between the opening period temperature and the closing period temperature. As a result, the oil level detection unit compares the opening period temperature and the closing period temperature, determines that the difference is smaller than a predetermined value, and outputs a detection signal indicating that the oil level is normal.

一方、低油量時、すなわち潤滑油面が低下して下側接続管53の接続口53aよりも低くなった場合は、図2に示すように、下側接続管53から潤滑油が排出されて、当該下側接続管53が開通する。この状態においても開閉弁55が閉止状態のときには、下側接続管53には、吸入管3からの低温冷媒が流れ込んでくることはないので、下側接続管53は、低圧容器2からの熱伝導の影響を受け、潤滑油で充満されている場合とほぼ同じ温度に保たれる。しかし、この状態から開閉弁55が開放されると、吸入管3から分岐管51、連通管52を介して下側接続管53に低温冷媒が流れ込むとともに、上側接続口54aと下側接続口53aとが近いため、上側接続管54からも、低圧容器2を介して低温冷媒が回り込んで流入するので、急激に下側接続管53が冷却され、その温度が短時間(5〜10分)で低下する。実際に測定した温度の時間変化グラフを図4に示す。この図4から明らかなように、前記開放期間温度と閉止期間温度との間にはっきりとした差が生じている。この結果、検知出力部は、前記開放期間温度と閉止期間温度とを比較し、その差が所定値以上であると判断して、異常な油面低下が生じている旨の検知信号を出力する。   On the other hand, when the amount of oil is low, that is, when the surface of the lubricating oil decreases and becomes lower than the connection port 53a of the lower connection pipe 53, the lubricating oil is discharged from the lower connection pipe 53 as shown in FIG. Thus, the lower connection pipe 53 is opened. Even in this state, when the on-off valve 55 is in the closed state, the low-temperature refrigerant from the suction pipe 3 does not flow into the lower connection pipe 53, so the lower connection pipe 53 is heated from the low-pressure vessel 2. Under the influence of conduction, it is kept at the same temperature as when it is filled with lubricating oil. However, when the on-off valve 55 is opened from this state, the low-temperature refrigerant flows from the suction pipe 3 to the lower connection pipe 53 via the branch pipe 51 and the communication pipe 52, and the upper connection port 54a and the lower connection port 53a. Therefore, the low-temperature refrigerant flows from the upper connection pipe 54 through the low-pressure vessel 2 and flows in, so that the lower connection pipe 53 is rapidly cooled and the temperature is short (5 to 10 minutes). Decrease. FIG. 4 shows a time variation graph of the actually measured temperature. As is apparent from FIG. 4, there is a clear difference between the opening period temperature and the closing period temperature. As a result, the detection output unit compares the open period temperature with the close period temperature, determines that the difference is equal to or greater than a predetermined value, and outputs a detection signal indicating that an abnormal oil level drop has occurred. .

したがって、この実施形態にかかる油面検知機構4によれば、図3、図4からも明らかなように、短時間でかつ精度よく、油面検知を行うことができる。   Therefore, according to the oil level detection mechanism 4 according to this embodiment, as is apparent from FIGS. 3 and 4, the oil level can be detected in a short time and with high accuracy.

また、時系列測定による温度比較を行っているので、温度センサ6は1つでよいうえ、油面検知用流路5を配管するだけでよく、その他の加熱機構といった専用機構を必要としないため、簡単な構造で実現できコストアップを抑制できる。   In addition, since temperature comparison is performed by time series measurement, only one temperature sensor 6 is required, and only the oil level detection flow path 5 is provided, and no other dedicated mechanism such as a heating mechanism is required. It can be realized with a simple structure, and the increase in cost can be suppressed.

さらに、低圧容器2への吸入過程にある低温冷媒を、温度差確保のための低温熱源として用いており、従来のような高低圧間のバイパス通路を設ける必要が無いため、冷媒循環量減少によるシステム全体の性能低下を防止することができる。さらにこのようにエネルギロスが無いことから、この油面検知機構4によれば、実質的に常時と言える10〜20分程度の間隔で油面監視をすることができ、信頼性が向上する。これに対し、従来のように高低圧間のバイパス通路を設けた構成であると、常時油面監視をすることでシステム全体の性能低下が著しくなるといったことから、せいぜい2〜3時間おきにしか油面監視を行えない。また、常時油面監視をできることから、オイルセパレータからの潤滑油戻し量をフィードバック制御して、標準油量に精度よく戻すこともできるようになる。   Furthermore, the low-temperature refrigerant in the process of sucking into the low-pressure vessel 2 is used as a low-temperature heat source for securing a temperature difference, and there is no need to provide a bypass passage between high and low pressures as in the prior art. Performance degradation of the entire system can be prevented. Furthermore, since there is no energy loss in this way, according to the oil level detection mechanism 4, the oil level can be monitored at intervals of about 10 to 20 minutes which can be said to be always constant, and the reliability is improved. On the other hand, when the bypass passage between the high and low pressures is provided as in the prior art, the performance of the entire system is significantly deteriorated by constantly monitoring the oil level, so at most every 2 to 3 hours. The oil level cannot be monitored. In addition, since the oil level can be constantly monitored, the amount of lubricating oil returned from the oil separator can be feedback controlled to return to the standard oil amount with high accuracy.

加えて、前記分岐管51にキャピラリ56を設けてガス冷媒の流入量適正化を図っているので、動圧による油面押し下げを減少させることができ、油面検知精度の向上を図れる。この実施形態では、前記分岐管51の先端開口51aの向きを、連通管52内の油面に対して直接動圧のかからない角度、具体的には油面と正反対の鉛直上向きに設定していることで、動圧による油面押し下げをさらに減少させることができる。   In addition, since the capillary 56 is provided in the branch pipe 51 to optimize the inflow amount of the gas refrigerant, the oil level depression due to the dynamic pressure can be reduced, and the oil level detection accuracy can be improved. In this embodiment, the direction of the tip opening 51a of the branch pipe 51 is set to an angle at which no direct dynamic pressure is applied to the oil level in the communication pipe 52, specifically, vertically upward opposite to the oil level. Thus, the oil level depression due to the dynamic pressure can be further reduced.

なお、本発明は前記実施形態に限られるものではない。
図5に、開閉弁及び流路調整部を省略した本発明の最も基本となる構成を示す。このような構成の場合、標準油量時の温度センサ6による測定温度を記憶しておき、その温度を基準にして、随時、下側接続管53の温度を測定し、比較すればよい。なお、この図5では、分岐管51は連通管52の上端に接続され、その開口51aは下向きである。
The present invention is not limited to the above embodiment.
FIG. 5 shows the most basic configuration of the present invention in which the on-off valve and the flow path adjusting unit are omitted. In the case of such a configuration, the temperature measured by the temperature sensor 6 at the time of the standard oil amount is stored, and the temperature of the lower connecting pipe 53 may be measured and compared as needed based on the temperature. In FIG. 5, the branch pipe 51 is connected to the upper end of the communication pipe 52, and the opening 51a faces downward.

図6、図7は、図5における分岐管51に、開閉弁55のみを設けた例、開閉弁55及び流量調整部56を設けた例をそれぞれ示している。   6 and 7 show an example in which only the on-off valve 55 is provided on the branch pipe 51 in FIG. 5, and an example in which the on-off valve 55 and the flow rate adjusting unit 56 are provided.

図8は、分岐管51を連通管52の側面に接続し、その先端開口51aが水平を向くように構成した例を示している。   FIG. 8 shows an example in which the branch pipe 51 is connected to the side surface of the communication pipe 52, and the tip opening 51a is oriented horizontally.

図9は、分岐管51を連通管52の側面から挿入し、さらにその内部で屈曲させて、その先端開口51aが鉛直上向きとなるように構成した例である。このような構成であると、先端開口51aを、理想的な向きに設定できるだけでなく、連通管52の上部に分岐管51を挿入することができるため、加工時などでの油漏れを好適に防止できる。なお、以上に説明した図5〜図9において、前記実施形態に対応する部材や部位については、同様の符号を付している。   FIG. 9 shows an example in which the branch pipe 51 is inserted from the side surface of the communication pipe 52 and bent inside thereof so that the tip opening 51a is vertically upward. With such a configuration, not only the tip opening 51a can be set in an ideal direction, but also the branch pipe 51 can be inserted into the upper part of the communication pipe 52. Can be prevented. In addition, in FIGS. 5-9 demonstrated above, the same code | symbol is attached | subjected about the member and site | part corresponding to the said embodiment.

また、流量調整部はキャピラリのようなチョーク構造のもののみならず、絞り構造のものでも構わないし、流量調整弁を用いて流量を可変にできるようにしてもよい。   In addition, the flow rate adjusting unit may have not only a choke structure such as a capillary but also a throttle structure, and the flow rate may be made variable using a flow rate adjusting valve.

その他、本発明は前記実施形態等に限られるものではなく、その趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。   In addition, the present invention is not limited to the above-described embodiment and the like, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

本発明を適用することにより、単一の温度センサを用いた簡単な構造で、精度よく、しかも熱システム全体の効率低下を招かない油面検知機構を提供することが可能になる。   By applying the present invention, it is possible to provide an oil level detection mechanism with a simple structure using a single temperature sensor with high accuracy and without causing a decrease in the efficiency of the entire thermal system.

本発明の一実施形態における標準油量時の油面検知機構等を示す模式的概略図。The schematic diagram which shows the oil level detection mechanism at the time of the standard oil amount in one Embodiment of this invention. 同実施形態における低油量時の油面検知機構等を示す模式的概略図。The typical schematic diagram which shows the oil level detection mechanism etc. at the time of the low oil amount in the same embodiment. 同実施形態の標準油量時における開閉弁の開閉にともなって生じる温度の経時変化を示す温度変化グラフ。The temperature change graph which shows the time-dependent change of the temperature which arises with opening and closing of the on-off valve at the time of the standard oil amount of the embodiment. 同実施形態の低油量時における開閉弁の開閉にともなって生じる温度の経時変化を示す温度変化グラフ。The temperature change graph which shows the time-dependent change of the temperature which arises with opening and closing of the on-off valve at the time of the low oil amount of the embodiment. 本発明のさらに他の実施形態における油面検知機構等を示す模式的概略図。The schematic schematic diagram which shows the oil level detection mechanism etc. in other embodiment of this invention. 本発明のさらに他の実施形態における油面検知機構等を示す模式的概略図。The schematic schematic diagram which shows the oil level detection mechanism etc. in other embodiment of this invention. 本発明のさらに他の実施形態における油面検知機構等を示す模式的概略図。The schematic schematic diagram which shows the oil level detection mechanism etc. in other embodiment of this invention. 本発明のさらに他の実施形態における油面検知機構等を示す模式的概略図。The schematic schematic diagram which shows the oil level detection mechanism etc. in other embodiment of this invention. 本発明のさらに他の実施形態における油面検知機構等を示す模式的概略図。The schematic schematic diagram which shows the oil level detection mechanism etc. in other embodiment of this invention.

符号の説明Explanation of symbols

1・・・低圧容器型圧縮機
2・・・低圧容器
3・・・吸入管
4・・・油面検知機構
51・・・分岐管
51a・・・先端開口
52・・・連通管
53・・・下側接続管
54・・・上側接続管
55・・・開閉弁
56・・・流量調整部(キャピラリ)
6・・・温度センサ
7・・・情報処理部
H(1)・・・標準油面
DESCRIPTION OF SYMBOLS 1 ... Low pressure vessel type compressor 2 ... Low pressure vessel 3 ... Suction pipe 4 ... Oil level detection mechanism 51 ... Branch pipe 51a ... End opening 52 ... Communication pipe 53 ... Lower connection pipe 54 Upper connection pipe 55 Open / close valve 56 Flow rate adjustment unit (capillary)
6 ... Temperature sensor 7 ... Information processing section H (1) ... Standard oil level

Claims (6)

装潤滑油を貯留する低圧容器及びその低圧容器に冷媒を導入するための吸入管を備えた低圧容器型圧縮機に用いられるものであって、
前記低圧容器内の標準油量時の油面高さを基準として当該低圧容器の上側位置及び下側位置からそれぞれ引き出された上側接続管及び下側接続管と、前記上側接続管及び前記下側接続管を連通し、当該内部空間内で前記低圧容器内の油面変位と同一の油面変位をする内部空間を有する連通管と、基端部が前記吸入管から分岐するとともに先端開口が当該連通管の内部空間で前記標準油量時の油面高さより高い位置となるように密閉収容された分岐管と、前記下側接続管の表面温度を検知する温度センサと、前記温度センサの検知結果に基づいて、前記低圧容器内の潤滑油の油面高さを判断する油面判断部と、を具備し、標準油量時には前記下側接続管が潤滑油によって満たされて冷媒の流通を遮断させる一方、低油量時には前記下側接続管から潤滑油を排出させてその内部に冷媒を流通させるようにしたことを特徴とする油面検知機構。
A low-pressure container for storing the lubricating oil and a low-pressure container type compressor equipped with a suction pipe for introducing a refrigerant into the low-pressure container,
The upper connecting pipe and the lower connecting pipe drawn from the upper position and the lower position of the low pressure container with reference to the oil level height at the time of the standard oil amount in the low pressure container, the upper connecting pipe and the lower side, respectively. A connecting pipe is connected, and a communicating pipe having an internal space in which the same oil level displacement as that in the low-pressure vessel is made in the internal space, a base end portion branches from the suction pipe, and a distal end opening is A branch pipe that is hermetically housed so as to be higher than the oil level height at the time of the standard oil amount in the internal space of the communication pipe, a temperature sensor that detects the surface temperature of the lower connection pipe, and detection of the temperature sensor And an oil level judgment part for judging the oil level height of the lubricating oil in the low-pressure vessel based on the result, and the lower connecting pipe is filled with the lubricating oil when the standard oil amount is reached, and the refrigerant flows. On the other hand, when the oil level is low, the lower connecting pipe It drained lubricating oil oil level detection mechanism, characterized in that so as to circulate coolant therein.
前記分岐管に設けられた開閉弁をさらに備え、前記油面判断部が、前記開閉弁の開放時及び閉止時における前記温度センサの検知結果に基づいて、前記低圧容器内の潤滑油の油面高さを判断する請求項1に記載の油面検知機構。 Further comprising an on-off valve provided in the branch pipe, and the oil level judgment unit determines the oil level of the lubricating oil in the low-pressure vessel based on the detection results of the temperature sensor when the on-off valve is opened and closed. The oil level detection mechanism according to claim 1, wherein the height is determined . 前記分岐管に冷媒の流量を調整する流量調整部を設けている請求項1又は2いずれか記載の油面検知機構。   The oil level detection mechanism according to claim 1, wherein a flow rate adjusting unit that adjusts a flow rate of the refrigerant is provided in the branch pipe. 前記分岐管の先端開口の向きが、連通管内の油面に対して直接動圧のかからない角度に設定されている請求項1乃至3いずれか記載の油面検知機構。   The oil level detection mechanism according to any one of claims 1 to 3, wherein the direction of the tip opening of the branch pipe is set to an angle that does not directly apply dynamic pressure to the oil level in the communication pipe. 前記分岐管の先端開口の向きが鉛直上向きに設定されている請求項1乃至4いずれか記載の油面検知機構。   The oil level detection mechanism according to any one of claims 1 to 4, wherein a direction of a tip opening of the branch pipe is set to be vertically upward. 請求項1乃至5に記載の油面検知機構を有する低圧容器型圧縮機を搭載した空気調和機。   An air conditioner equipped with a low-pressure vessel type compressor having the oil level detection mechanism according to claim 1.
JP2007166957A 2007-06-25 2007-06-25 Oil level detection mechanism and air conditioner in low-pressure vessel compressor Expired - Fee Related JP4787794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166957A JP4787794B2 (en) 2007-06-25 2007-06-25 Oil level detection mechanism and air conditioner in low-pressure vessel compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166957A JP4787794B2 (en) 2007-06-25 2007-06-25 Oil level detection mechanism and air conditioner in low-pressure vessel compressor

Publications (2)

Publication Number Publication Date
JP2009002317A JP2009002317A (en) 2009-01-08
JP4787794B2 true JP4787794B2 (en) 2011-10-05

Family

ID=40318951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166957A Expired - Fee Related JP4787794B2 (en) 2007-06-25 2007-06-25 Oil level detection mechanism and air conditioner in low-pressure vessel compressor

Country Status (1)

Country Link
JP (1) JP4787794B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503326B2 (en) * 2010-02-18 2014-05-28 ナブテスコ株式会社 Air compressor for railway vehicles
CN103114986A (en) * 2013-02-26 2013-05-22 苏州英华特制冷设备技术有限公司 Oil level detecting device for compressor
JP6455755B2 (en) * 2014-10-21 2019-01-23 パナソニックIpマネジメント株式会社 Oil level detector for compressor
WO2017212531A1 (en) * 2016-06-06 2017-12-14 三菱電機株式会社 Refrigeration cycle device
JP6618617B2 (en) * 2016-06-06 2019-12-11 三菱電機株式会社 Refrigeration cycle equipment
WO2024116246A1 (en) * 2022-11-28 2024-06-06 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097443A (en) * 2001-09-25 2003-04-03 Mitsubishi Heavy Ind Ltd Compressor and refrigeration unit
JP4278351B2 (en) * 2002-07-31 2009-06-10 三洋電機株式会社 Oil level detection method and apparatus for compressor
JP4004356B2 (en) * 2002-08-27 2007-11-07 三洋電機株式会社 Oil level detection method and apparatus for compressor
JP5169295B2 (en) * 2007-03-27 2013-03-27 ダイキン工業株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JP2009002317A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP4787794B2 (en) Oil level detection mechanism and air conditioner in low-pressure vessel compressor
CN109983286B (en) Method for fault mitigation in a vapor compression system
US20110209485A1 (en) Suction superheat conrol based on refrigerant condition at discharge
US20090090117A1 (en) System and method for monitoring overheat of a compressor
JP6959660B2 (en) Cooling system control and protection device
US9605893B2 (en) Heat source device
US20070240870A1 (en) Temperature control apparatus
ES2797538T3 (en) A procedure to control a vapor compression system during startup
US20180340719A1 (en) Detection of lack of refrigerant in a cooling system having multiple cooling locations
JP6184503B2 (en) Oil level detection device and refrigeration air conditioner equipped with the oil level detection device
CN110651163B (en) Air conditioner
EP3173714B1 (en) Refrigerating cycle system and liquid flow-back prevention method
JP5500161B2 (en) Refrigeration cycle equipment
US9581371B2 (en) System for operating an HVAC system having tandem compressors
JP2011102652A (en) Refrigerant condition determining device, refrigerant condition determining system, and method of detecting refrigerant liquid-level position
US7069734B2 (en) Methods for detecting surge in centrifugal compressors
JP6008416B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
TW202108943A (en) Refrigerant state detection device, refrigerant state detection method, and temperature control system
KR101465572B1 (en) Heat pump water heater
JP2006037724A (en) Enclosed electric compressor
US20070266709A1 (en) Self-contained refrigerant powered system
JP7150191B2 (en) Outdoor unit and refrigeration cycle equipment
JP3693036B2 (en) Refrigeration equipment
JP5775793B2 (en) Oil-free air compressor and control method thereof
KR20050090597A (en) Self m110lfuntion-di110gnostic system for refregir110tor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Ref document number: 4787794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees