JP2006105458A - Refrigerant circulation system and hermetic compressor - Google Patents

Refrigerant circulation system and hermetic compressor Download PDF

Info

Publication number
JP2006105458A
JP2006105458A JP2004291295A JP2004291295A JP2006105458A JP 2006105458 A JP2006105458 A JP 2006105458A JP 2004291295 A JP2004291295 A JP 2004291295A JP 2004291295 A JP2004291295 A JP 2004291295A JP 2006105458 A JP2006105458 A JP 2006105458A
Authority
JP
Japan
Prior art keywords
lubricating oil
refrigerant
pressure
compressor
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004291295A
Other languages
Japanese (ja)
Other versions
JP2006105458A5 (en
Inventor
Minoru Ishii
稔 石井
Hideaki Maeyama
英明 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004291295A priority Critical patent/JP2006105458A/en
Publication of JP2006105458A publication Critical patent/JP2006105458A/en
Publication of JP2006105458A5 publication Critical patent/JP2006105458A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant circulation system using a heat pump cycle capable of reducing the temperature of discharged refrigerant gas to a temperature not causing troubles in an electric motor or lubricating oil without deteriorating the heating capability to a heating fluid even in application of a high-pressure shell-type hermetic compressor to the refrigerant circulation system. <P>SOLUTION: This system comprises the heat pump cycle, a radiator heating the heating fluid by heat exchange with high-temperature refrigerant, the high-pressure shell-type hermetic compressor, an oil basin for storing lubricating oil formed within a sealed container, and a lubricating oil circulating passage extending from the oil basin to the radiator and then returning to a suction side that is an inlet of the hermetic compressor through a restriction mechanism. The lubricating oil in the oil basin is circulated to the lubricating oil circulating circuit by a pressure difference between high pressure and low pressure, and then guided to the radiator, in which the lubricating oil is cooled by heat exchange with the heating fluid together with a refrigerant. The lubricating oil is then reduced in pressure by the restriction mechanism, and supplied to the suction side that is the inlet of the hermetic compressor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は給湯用などに使用されるヒートポンプサイクルを用いた冷媒循環装置及びその冷媒循環装置に用いられる密閉形圧縮機に関するものである。   The present invention relates to a refrigerant circulation device using a heat pump cycle used for hot water supply and the like, and a hermetic compressor used in the refrigerant circulation device.

近年、COなどの高圧側圧力が臨界点を越える超臨界冷媒を冷媒として使用したヒートポンプサイクルを利用し、加熱流体である水を所定温度まで加熱させる給湯用冷媒循環装置が商品化されている。このヒートポンプサイクルの構成要素の1つとして、冷媒を高温高圧に圧縮する密閉形圧縮機があるが、この圧縮機の密閉容器内の底部には、圧縮機の摺動部を潤滑するための潤滑油が貯溜されており、ポンプや圧力差を利用して密閉容器内の底部に在る潤滑油を汲み上げ、圧縮機の駆動軸に軸方向に設けられた油穴などを通して、圧縮機内部の各摺動部に潤滑油が供給されている。潤滑油は通常、摺動部を潤滑した後は再度、密閉容器内部の油溜めに戻される。COを冷媒として使用した場合、圧縮機の吐出圧力と吸入圧力の差圧、所謂高低圧差が非常に大きいため、上記潤滑油を圧縮室内部に供給し、圧縮室24のシール性を向上させ、圧縮室内での高圧側から低圧側への冷媒の洩れによる効率低下を防止する手段が取られる場合がある。 In recent years, a hot water supply refrigerant circulation device that heats water, which is a heating fluid, to a predetermined temperature using a heat pump cycle that uses a supercritical refrigerant whose high-pressure side pressure such as CO 2 exceeds a critical point as a refrigerant has been commercialized. . As one of the components of this heat pump cycle, there is a hermetic compressor that compresses a refrigerant to high temperature and high pressure. The bottom of the hermetic container of this compressor is lubricated to lubricate the sliding part of the compressor. Oil is stored, pumping up the lubricating oil at the bottom of the sealed container using a pump or pressure difference, and through the oil holes provided in the axial direction on the drive shaft of the compressor, Lubricating oil is supplied to the sliding part. The lubricating oil is usually returned again to the oil sump inside the sealed container after the sliding portion has been lubricated. When CO 2 is used as the refrigerant, the difference between the discharge pressure and the suction pressure of the compressor, the so-called high / low pressure difference is very large, so that the lubricating oil is supplied to the inside of the compression chamber to improve the sealing performance of the compression chamber 24. In some cases, measures are taken to prevent a reduction in efficiency due to refrigerant leakage from the high pressure side to the low pressure side in the compression chamber.

圧縮室24に潤滑油を供給する場合、圧縮された冷媒と共に、供給された潤滑油も吐出冷媒ガスと共に圧縮室24より吐き出されるが、この潤滑油が冷媒と圧縮機内部で分離できないと、吐出冷媒ガスと共に圧縮機の吐出管からこの吐出管に接続されるヒートポンプサイクルの配管に流出し、サイクルを循環してしまう。一般にこれを圧縮機の油上がりと呼んでいるが、この圧縮機油上がりによるサイクルの潤滑油循環量が増加すると、放熱器や蒸発器での熱交換効率が低下するなどしてヒートポンプサイクル効率の低下が発生する。   When supplying the lubricating oil to the compression chamber 24, the supplied lubricating oil is discharged together with the discharged refrigerant gas from the compression chamber 24 together with the compressed refrigerant. If the lubricating oil cannot be separated from the refrigerant and the inside of the compressor, the discharge is performed. Together with the refrigerant gas, it flows out from the discharge pipe of the compressor to the piping of the heat pump cycle connected to this discharge pipe, and circulates the cycle. Generally speaking, this is called compressor oil rise. However, if the amount of lubricating oil circulation in the cycle increases due to this compressor oil rise, the heat exchange efficiency in the radiator and evaporator will decrease, resulting in a decrease in heat pump cycle efficiency. Will occur.

また、サイクル内の潤滑油循環量が増加すれば、圧縮機内部の潤滑油量が減少し、最悪の場合、圧縮機内部の潤滑油が枯渇する問題が生じる。そのような状態になると、圧縮機内部の摺動部に潤滑油が供給されず、潤滑不良により摺動部に異常摩耗が生じたり、焼付いてロックし、圧縮機の運転が不能となる事態につながる。   Further, if the amount of lubricating oil circulating in the cycle increases, the amount of lubricating oil inside the compressor decreases, and in the worst case, there is a problem that the lubricating oil inside the compressor is depleted. In such a state, the lubricating oil is not supplied to the sliding portion inside the compressor, and abnormal wear occurs on the sliding portion due to poor lubrication, or seizure occurs and locks, and the compressor cannot be operated. Connected.

圧縮機内部を吸入圧力雰囲気とする低圧シェル方式の圧縮機の場合は、油溜めや圧縮機の主軸を駆動する電動機が吸入圧雰囲気にあり、潤滑油や電動機の温度が高温の冷媒にさらされないという利点があるが、圧縮室内部に供給された潤滑油の全量が、吐出圧まで昇圧された冷媒ガスとともに圧縮機外部のサイクルへ流出してしまうため、油上がりによるサイクルの潤滑油循環量が非常に多くなり、圧縮機内部の潤滑油枯渇を招きやすい。   In the case of a low-pressure shell type compressor with a suction pressure atmosphere inside the compressor, the oil sump and the motor that drives the main shaft of the compressor are in the suction pressure atmosphere, and the temperature of the lubricating oil and the motor is not exposed to high-temperature refrigerant However, the total amount of lubricating oil supplied to the inside of the compression chamber flows out to the cycle outside the compressor together with the refrigerant gas whose pressure has been increased to the discharge pressure. It becomes very large and tends to lead to exhaustion of lubricating oil inside the compressor.

そこでサイクル中の圧縮機の下流に位置する高圧側に油分離器を設置し、この油分離器にて吐出ガスに含まれる潤滑油を分離して、分離された潤滑油を圧力差から毛細管を経て減圧させて低圧側に送り、冷媒の吸入ガスとともに再度圧縮機内部に供給し、圧縮機底部の油溜めに戻し、潤滑油の枯渇を防止している(例えば、特許文献1、特許文献2参照)。   Therefore, an oil separator is installed on the high-pressure side located downstream of the compressor in the cycle. The oil separator separates the lubricating oil contained in the discharge gas, and the separated lubricating oil is removed from the pressure difference by a capillary tube. Then, the pressure is reduced and sent to the low pressure side, and supplied again together with the refrigerant suction gas to the inside of the compressor and returned to the oil sump at the bottom of the compressor to prevent depletion of the lubricating oil (for example, Patent Document 1 and Patent Document 2). reference).

しかしこの油分離器の設置は、部品点数が増えることになり、当然のごとくシステムのコストが上昇する。そこでCO冷媒を用いたシステムの設計に際しては、圧縮室内部に潤滑油を多く供給しても圧縮機内部で油分離ができ、油上がりを小さく抑えられる圧縮機を使用したいという要求がある。そこでその要求を満たす圧縮機として、発明者らは密閉容器内部が吐出圧力雰囲気である高圧シェル方式の密閉形圧縮機の使用を提案してきている。 However, the installation of this oil separator increases the number of parts, which naturally increases the cost of the system. Therefore, when designing a system using a CO 2 refrigerant, there is a demand to use a compressor that can perform oil separation inside the compressor even if a large amount of lubricating oil is supplied to the inside of the compression chamber, and can suppress oil rising. Therefore, the inventors have proposed the use of a high-pressure shell-type hermetic compressor in which the inside of the hermetic container is a discharge pressure atmosphere as a compressor that satisfies the requirement.

高圧シェル方式の密閉形圧縮機では、圧縮室で圧縮された冷媒ガスが密閉容器内に吐出され、その後に密閉容器に設置された吐出管を経て吐出冷媒ガスをサイクルへと送り込むので、密閉容器内部で圧縮室から吐出された冷媒ガスが吐出管に到るまでの過程で、冷媒の流れる通路の構成や面積を変えることで、流れ方向や流速を変化させたり、主軸の回転の遠心力を利用したりなどする油分離手段を設けることができるためである。そのため、圧縮室に供給された潤滑油の全量を圧縮機外へ吐出せざるを得ない低圧シェル方式の密閉形圧縮機に比べ、高圧シェル方式は大幅に油上がりを低減させることができる圧縮機なのである。
特開2000−274844号公報 特開2001−304701号公報
In a high-pressure shell type hermetic compressor, the refrigerant gas compressed in the compression chamber is discharged into the sealed container, and then the discharged refrigerant gas is sent to the cycle through a discharge pipe installed in the sealed container. In the process until the refrigerant gas discharged from the compression chamber reaches the discharge pipe, the flow direction and flow velocity can be changed or the centrifugal force of rotation of the main shaft can be changed by changing the configuration and area of the passage through which the refrigerant flows. This is because an oil separating means can be provided. Therefore, the high-pressure shell method can greatly reduce oil rise compared to the low-pressure shell type hermetic compressor that must discharge the entire amount of lubricating oil supplied to the compression chamber. That's it.
JP 2000-274844 A JP 2001-304701 A

ところが上記のように油上がりの小さい高圧シェル方式の密閉形圧縮機を用いた場合、密閉容器内部を高温の吐出冷媒ガスが満たすことで、密閉容器内部に位置する駆動用の電動機や油溜め内の潤滑油が、高温の冷媒ガスにさらされることになり、そのことに起因するいくつかの問題点が生じる。   However, when a high-pressure shell type hermetic compressor with low oil rise as described above is used, the inside of the hermetic container is filled with high-temperature discharged refrigerant gas, so that the drive motor and oil sump located inside the hermetic container Are exposed to a high-temperature refrigerant gas, resulting in several problems.

特にCOを冷媒として使用した寒冷地向の給湯用冷媒循環装置では、環境条件によっては、吐出ガス温度を150℃程度まで上昇させないと所定の温度(例えば90℃)の温水が所定量得られない場合など、吐出ガス温度が高温となる。 In particular, in a cold water supply refrigerant circulating apparatus using CO 2 as a refrigerant, a predetermined amount of hot water at a predetermined temperature (eg, 90 ° C.) can be obtained unless the discharge gas temperature is increased to about 150 ° C. depending on environmental conditions. In the case where there is no discharge gas, the discharge gas temperature becomes high.

このような高温の吐出冷媒ガスに電動機がさらされると、電動機固定子の巻線抵抗が増すことで、電動機効率が低下したり、電動機固定子に使用されているポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)などの樹脂製の絶縁材料の劣化が促進され、場合によってはそれらが抽出され、冷媒とともにシステム内を移動し、細管部やフィルター部に堆積し、目詰まりを起こし、システムの効率低下や最悪の場合には運転不可となる問題がある。   When the electric motor is exposed to such high-temperature discharged refrigerant gas, the winding resistance of the electric motor stator increases, so that the electric motor efficiency decreases, or polyethylene terephthalate (PET) or polyethylene naphthalate used in the electric motor stator. Deterioration of resin insulation materials such as phthalate (PEN) is promoted, and in some cases they are extracted, move in the system together with the refrigerant, and accumulate on the narrow tube and filter, causing clogging and system efficiency There is a problem that driving is impossible in the case of decline or worst case.

また、電動機回転子に磁石を内蔵した直流ブラシレスモータでは、磁石の磁束密度が低下して電動機の効率が低下したり、さらにその磁石に希土類磁石を用いた場合には、高温により磁石が減磁してしまうという問題点が生じる。   In addition, in a DC brushless motor with a built-in magnet in the motor rotor, the magnetic flux density of the magnet is reduced and the efficiency of the motor is reduced, and when a rare earth magnet is used for the magnet, the magnet is demagnetized at a high temperature. This causes the problem of

また、同様に高温の冷媒ガスに油溜め内の潤滑油がさらされることで、潤滑油の熱劣化が促進され、潤滑性の低下や、スラッジと呼ばれる不純物の析出やそのスラッジの細管部やフィルター部への堆積によるシステム経路が目詰まりするという問題点が生じる。   Similarly, when the lubricating oil in the oil sump is exposed to a high-temperature refrigerant gas, thermal deterioration of the lubricating oil is promoted, resulting in a decrease in lubricity, precipitation of impurities called sludge, sludge's narrow tube section and filter. The problem arises that the system path is clogged due to the deposition on the part.

一方で運転圧力を制御し、圧力に制限をかけて吐出ガス温度の上昇を防ごうとした場合には、十分な水の加熱能力が得られないことになったり、密閉形圧縮機をファンなどで外部から冷却し、吐出ガス温度を下げようとすれば、エネルギーの損失につながるし、同様に十分な水の加熱能力が得られないことになる。   On the other hand, if you control the operating pressure and limit the pressure to prevent the discharge gas temperature from rising, you will not be able to obtain sufficient water heating capacity, or you may use a hermetic compressor or a fan. If the cooling is performed from the outside and the discharge gas temperature is lowered, energy loss is caused, and similarly, sufficient water heating ability cannot be obtained.

この発明は上記のような問題点を解決するためになされたもので、給湯用などに使用されるヒートポンプサイクルを用いた冷媒循環装置に高圧シェル方式の密閉形圧縮機を使用した場合でも、水などの加熱流体に対する加熱能力を低下させることなく、吐出冷媒ガス温度を電動機や潤滑油に不具合の発生しない程度の温度に低減させる冷媒循環装置及びその冷媒循環装置に使用するための密閉形圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and even when a high-pressure shell-type hermetic compressor is used in a refrigerant circulation device using a heat pump cycle used for hot water supply or the like, Refrigerant circulation device that reduces discharge refrigerant gas temperature to a temperature that does not cause problems with electric motors and lubricating oil without reducing the heating capacity for heating fluid such as, and hermetic compressor for use in the refrigerant circulation device The purpose is to provide.

この発明に係る冷媒循環装置は、冷媒を循環させるヒートポンプサイクルと、このヒートポンプサイクルに設置され、ヒートポンプサイクルを流れる高温冷媒との熱交換により加熱流体を加熱する放熱器と、ヒートポンプサイクルに設けられ、密閉容器を有し、密閉容器内部の圧力雰囲気が吐出圧力となる高圧シェル方式の密閉形圧縮機と、この密閉形圧縮機の密閉容器内部に形成され、密閉形圧縮機の各摺動部を潤滑するための潤滑油を貯める油溜めと、この油溜めから放熱器を通過し、その後絞り機構を経て密閉形圧縮機の入口となる吸入側へ戻る、ヒートポンプサイクルとは別の潤滑油循環回路とを備え、潤滑油循環回路に油溜めの潤滑油を高低圧の圧力差によって循環させ、潤滑油を放熱器へ導き、冷媒とともに加熱流体と熱交換させて潤滑油を冷却し、その後絞り機構により減圧させ、密閉形圧縮機の入口となる吸入側に潤滑油を供給することを特徴とする。   A refrigerant circulation device according to the present invention is provided in a heat pump cycle for circulating a refrigerant, a radiator that is installed in the heat pump cycle and heats a heated fluid by heat exchange with a high-temperature refrigerant flowing through the heat pump cycle, and a heat pump cycle. A high-pressure shell type hermetic compressor that has a hermetic container and the pressure atmosphere inside the hermetic container becomes discharge pressure, and is formed inside the hermetic container of this hermetic compressor, and each sliding portion of the hermetic compressor is Oil reservoir for storing lubricating oil for lubrication, and a lubricating oil circulation circuit different from the heat pump cycle that passes through the radiator from this oil reservoir and then returns to the suction side that becomes the inlet of the hermetic compressor through the throttle mechanism The oil in the oil sump is circulated in the lubricating oil circulation circuit by the pressure difference between high and low pressure, and the lubricating oil is guided to the radiator to exchange heat with the heating fluid together with the refrigerant. The lubricating oil cooled Te, reduce the pressure by the subsequent diaphragm mechanism, and supplying the lubricating oil to the suction side of the inlet of the hermetic compressor.

この発明に係る冷媒循環装置は、上記構成により、油溜めの高温の潤滑油の放熱を水の加熱に利用するので、加熱流体への加熱能力を低下させることなく、冷媒の吐出ガス温度を下げることができる。そのため高温の吐出冷媒ガスに起因した電動機効率の低下や、電動機固定子に使用されている絶縁材料の劣化、また油溜め内の潤滑油の熱劣化による潤滑性の低下やスラッジと呼ばれる不純物の析出を防止できる効果がある。   With the above configuration, the refrigerant circulation device according to the present invention uses the heat released from the high-temperature lubricating oil in the oil reservoir to heat the water, so that the discharge gas temperature of the refrigerant is lowered without reducing the heating capacity to the heating fluid. be able to. As a result, the motor efficiency decreases due to high-temperature discharged refrigerant gas, the insulation material used in the motor stator deteriorates, the lubricity decreases due to the thermal deterioration of the lubricating oil in the oil sump, and impurities called sludge are deposited. There is an effect that can be prevented.

実施の形態1.
図1〜4は実施の形態1を示す図で、図1はヒートポンプサイクルを用いた給湯用冷媒循環装置の構成を示す概略図、図2は冷媒循環装置に使用される高圧シェル方式の密閉形圧縮機の縦断面図、図3は同密閉形圧縮機の横断面図、図4は第2絞り機構にキャピラリーチューブを使用した給湯用冷媒循環装置の構成を示す概略図である。
Embodiment 1 FIG.
1 to 4 are diagrams showing the first embodiment, FIG. 1 is a schematic diagram showing the configuration of a hot water supply refrigerant circulation device using a heat pump cycle, and FIG. 2 is a high-pressure shell type sealed type used in the refrigerant circulation device. FIG. 3 is a longitudinal sectional view of the compressor, FIG. 3 is a transverse sectional view of the hermetic compressor, and FIG. 4 is a schematic view showing a configuration of a hot water supply refrigerant circulation device using a capillary tube as a second throttle mechanism.

図1のヒートポンプサイクルを用いた給湯用冷媒循環装置では、冷媒としては超臨界冷媒であるCO(二酸化炭素)を使用している。ヒートポンプサイクルに使用される密閉形圧縮機1は、図2、3に示すように、密閉容器10内部の上部に駆動用の電動機11(固定子11a、回転子11bを有する)を、密閉容器10内部の下部に冷媒を圧縮する圧縮機構部12を配置したロータリ圧縮機である。密閉形圧縮機1は、吸入管13から直接圧縮機構部12に形成される吸入室22に直接吸入冷媒ガスを吸い込み、電動機11によって主軸14に駆動力を付与し、これによりローリングピストン23を偏心回転運動させ、圧縮室24の容積を減じさせていくことで、冷媒ガスを必要な吐出圧力まで圧縮し、高温高圧な吐出冷媒ガスを圧縮室24から密閉容器10内部へと吐出するものである。このように密閉容器10内部は、吐出冷媒ガスで満たされ、その圧力雰囲気は吐出圧力となる。このような形式の密閉形圧縮機は一般に高圧シェル方式と呼ばれ、本発明のヒートポンプサイクルに使用する密閉形圧縮機1は、この高圧シェル方式の圧縮機である。 In the hot water supply refrigerant circulation apparatus using the heat pump cycle of FIG. 1, CO 2 (carbon dioxide), which is a supercritical refrigerant, is used as the refrigerant. As shown in FIGS. 2 and 3, the hermetic compressor 1 used in the heat pump cycle includes a driving motor 11 (having a stator 11 a and a rotor 11 b) in the upper part of the hermetic container 10, and the hermetic container 10. This is a rotary compressor in which a compression mechanism unit 12 for compressing a refrigerant is arranged in the lower part inside. The hermetic compressor 1 directly sucks the sucked refrigerant gas from the suction pipe 13 into the suction chamber 22 formed in the compression mechanism 12 and applies a driving force to the main shaft 14 by the electric motor 11, thereby eccentricizing the rolling piston 23. By rotating and reducing the volume of the compression chamber 24, the refrigerant gas is compressed to the required discharge pressure, and the high-temperature and high-pressure discharge refrigerant gas is discharged from the compression chamber 24 into the sealed container 10. . Thus, the inside of the sealed container 10 is filled with the discharged refrigerant gas, and the pressure atmosphere becomes the discharge pressure. This type of hermetic compressor is generally called a high-pressure shell type, and the hermetic compressor 1 used in the heat pump cycle of the present invention is this high-pressure shell type compressor.

密閉形圧縮機1の密閉容器10内部の底部は油溜め15となっており、ここに主軸14を半径方向に支持する軸受などの密閉形圧縮機1の各摺動部を潤滑する潤滑油が貯留されている。油溜め15内の潤滑油の上面は、所謂油面15aである。潤滑油は密閉容器10内部の高圧と吸入圧力との圧力差や主軸14の回転による遠心作用によって、図示しない主軸14に軸方向に設けられる油穴を通って各摺動部に供給される。なおその他に、主軸14の回転を利用してトロコイドポンプなどの機械式ポンプを駆動して、潤滑油を汲み上げるものもある。摺動部に供給された潤滑油は、各摺動部を潤滑した後、再び油溜め15に戻される。   The bottom of the hermetic container 1 of the hermetic compressor 1 is an oil sump 15 where lubricating oil that lubricates each sliding portion of the hermetic compressor 1 such as a bearing that supports the main shaft 14 in the radial direction is provided. Reserved. The upper surface of the lubricating oil in the oil sump 15 is a so-called oil surface 15a. Lubricating oil is supplied to each sliding portion through an oil hole provided in the axial direction of the main shaft 14 (not shown) due to a pressure difference between the high pressure and the suction pressure inside the sealed container 10 and a centrifugal action caused by rotation of the main shaft 14. In addition, there is a pump that uses a rotation of the main shaft 14 to drive a mechanical pump such as a trochoid pump to pump up lubricating oil. The lubricating oil supplied to the sliding parts is returned to the oil sump 15 again after lubricating each sliding part.

CO冷媒が循環するヒートポンプサイクル100は、所謂ヒートポンプサイクルで、低圧の冷媒を高圧の冷媒に圧縮する高圧シェル方式の密閉形圧縮機1の他に、冷媒が高圧である側に位置する放熱器2、冷媒を高圧から低圧に減圧する第1絞り機構3、低圧側に位置する蒸発器4によって構成される。密閉形圧縮機1によって高温高圧に圧縮され、吐出管16によりサイクルに吐出された冷媒ガスが放熱器2にて、水配管200を流れる水と熱交換し、水は所定の温度まで加熱される。加熱された温水は図示しない給湯タンクに貯留され、使用者の必要に応じて随時給湯タンクより取り出される。尚、図1に示すように、冷媒の流れ方向と水配管200内を流れる水の流れる方向は反対で、放熱器2内部で互いが対向する流れとなるように構成されている。 The heat pump cycle 100 in which the CO 2 refrigerant circulates is a so-called heat pump cycle. In addition to the high-pressure shell-type hermetic compressor 1 that compresses a low-pressure refrigerant into a high-pressure refrigerant, a radiator located on the side where the refrigerant is at a high pressure. 2. A first throttle mechanism 3 for reducing the refrigerant pressure from high pressure to low pressure, and an evaporator 4 located on the low pressure side. The refrigerant gas compressed to high temperature and high pressure by the hermetic compressor 1 and discharged into the cycle by the discharge pipe 16 exchanges heat with water flowing through the water pipe 200 in the radiator 2, and the water is heated to a predetermined temperature. . The heated hot water is stored in a hot water tank (not shown) and is taken out from the hot water tank as needed by the user. In addition, as shown in FIG. 1, the flow direction of a refrigerant | coolant and the flow direction of the water which flows through the inside of the water piping 200 are opposite, and it is comprised so that it may become a flow which mutually opposes inside the heat radiator 2. As shown in FIG.

第1絞り機構3は、リニア膨張弁で構成され、運転条件に応じて電気信号により開度が調整され、放熱器2にて水との熱交換を終えた高圧であるが低温となったCO冷媒を、低圧な冷媒へと減圧させる。そしてCO冷媒は、その後蒸発器4にて大気と熱交換することで蒸発する。但し、必ずしも常に冷媒が100%全てガス化するわけではなく、条件によっては蒸発器4を出た後でも気液混合の2相冷媒の状態の場合もある。 The first throttle mechanism 3 is composed of a linear expansion valve, the opening degree is adjusted by an electrical signal according to the operating conditions, and the heat exchange with water in the radiator 2 is finished at a high pressure but at a low temperature. 2. Reduce the pressure of the refrigerant to a low-pressure refrigerant. Then, the CO 2 refrigerant evaporates by exchanging heat with the atmosphere in the evaporator 4. However, 100% of the refrigerant is not always completely gasified, and depending on conditions, there may be a state of a two-phase refrigerant mixed with gas and liquid even after leaving the evaporator 4.

密閉形圧縮機1が吸入冷媒を直接圧縮室24に取り込む高圧シェル方式であるため、吸入冷媒に液冷媒が大量に混合されていると、液圧縮により圧縮機にダメージを与える場合がある。このため、密閉形圧縮機1には、冷媒が圧縮室24に取り込まれる手前の位置に余剰液冷媒を一時的に貯留するアキュームレータ17(内部にフィルター17aを有する)が設置されており、ここで冷媒の気液を分離して、ガス冷媒のみを圧縮室24に取り込ませるようにしている。アキュームレータ17は、密閉容器10に溶接固定されたホルダー18に溶接されることで、密閉形圧縮機1と一体に固定される。   Since the hermetic compressor 1 is a high-pressure shell type in which the suction refrigerant is directly taken into the compression chamber 24, if a large amount of liquid refrigerant is mixed with the suction refrigerant, the compressor may be damaged by liquid compression. For this reason, the hermetic compressor 1 is provided with an accumulator 17 (having a filter 17a inside) that temporarily stores excess liquid refrigerant at a position before the refrigerant is taken into the compression chamber 24. The gas-liquid of the refrigerant is separated, and only the gas refrigerant is taken into the compression chamber 24. The accumulator 17 is fixed integrally with the hermetic compressor 1 by being welded to a holder 18 that is welded and fixed to the hermetic container 10.

次ぎに、この発明の特徴である潤滑油循環回路300について説明する。潤滑油循環回路300は、密閉形圧縮機1の油溜め15の潤滑油内に開口し、ここを起点として、ヒートポンプサイクル100の放熱器2を冷媒の通る配管とは別の配管で通過し、その後第2絞り機構5を経て、密閉形圧縮機1の吸入管13に接続され、ここを終点とする回路構成となっている。油溜め15は吐出圧力雰囲気下に置かれ、吸入管13は吸入冷媒ガスが通る吸入圧力雰囲気であるため、ここに圧力差が生じ、油溜め15内の潤滑油はその圧力差により、この潤滑油循環回路300を油溜め15から吸入管13に向かって流れる。   Next, the lubricating oil circulation circuit 300 that is a feature of the present invention will be described. The lubricating oil circulation circuit 300 opens into the lubricating oil of the oil sump 15 of the hermetic compressor 1, and starts from here through the radiator 2 of the heat pump cycle 100 through a pipe different from the pipe through which the refrigerant passes, Thereafter, it is connected to the suction pipe 13 of the hermetic compressor 1 through the second throttle mechanism 5, and has a circuit configuration with this point as the end point. The oil sump 15 is placed under a discharge pressure atmosphere, and the suction pipe 13 is a suction pressure atmosphere through which the suction refrigerant gas passes. Therefore, a pressure difference is generated here, and the lubricating oil in the oil sump 15 is lubricated by the pressure difference. The oil circulation circuit 300 flows from the oil reservoir 15 toward the suction pipe 13.

油溜め15から潤滑油循環回路300へ流れる潤滑油は、放熱器2にて、ヒートポンプサイクル100を流れる冷媒と同様に水配管200の水と熱交換し、水に熱を奪われることでその温度(油温)を下げる。一方水は冷媒だけでなく潤滑油から奪った熱量によっても加熱される。潤滑油の流れ方向は、冷媒と同様に、放熱器2の内部で水の流れと対向する方向となるように構成する。油温を下げた潤滑油は、第2絞り機構5により吸入圧力まで減圧され、吸入管13へと供給される。   The lubricating oil flowing from the oil sump 15 to the lubricating oil circulation circuit 300 exchanges heat with the water in the water pipe 200 in the radiator 2 in the same manner as the refrigerant flowing in the heat pump cycle 100, and the heat is deprived of the temperature. Reduce (oil temperature). On the other hand, water is heated not only by the refrigerant but also by the amount of heat taken from the lubricating oil. Like the refrigerant, the flow direction of the lubricating oil is configured to face the water flow inside the radiator 2. The lubricating oil whose oil temperature has been lowered is reduced to the suction pressure by the second throttle mechanism 5 and supplied to the suction pipe 13.

吸入管13へ供給された潤滑油は、そのまま吸入冷媒ガスと共に圧縮室24に取り込まれ、ここで高低圧力差の大きいCO冷媒のリークを防ぐシール効果を発揮する。ロータリ圧縮機の場合、圧縮途中や圧縮室24から吐出工程中の高圧側の圧縮室24からの、吸入冷媒ガスの吸い込み工程にある低圧側の吸入室22への高圧冷媒のリーク、あるいは密閉容器10内部の圧縮室24から吐出された吐出冷媒ガスの圧縮室24および吸入室22へのリークが存在する。これらのリークを、潤滑油循環回路300を経て圧縮室24へと供給された潤滑油が圧縮室24の半径方向隙間や端面間の軸方向隙間をシールすることで大幅に低減することができ、圧縮機の効率が向上する。 The lubricating oil supplied to the suction pipe 13 is directly taken into the compression chamber 24 together with the suction refrigerant gas, and exhibits a sealing effect that prevents leakage of the CO 2 refrigerant having a large high and low pressure difference. In the case of a rotary compressor, high-pressure refrigerant leaks from the high-pressure side compression chamber 24 during the compression process or from the compression chamber 24 to the low-pressure side suction chamber 22 in the suction refrigerant gas suction process, or a sealed container. There is a leak of the refrigerant gas discharged from the compression chamber 24 inside 10 to the compression chamber 24 and the suction chamber 22. These leaks can be greatly reduced by the lubricating oil supplied to the compression chamber 24 via the lubricating oil circulation circuit 300 sealing the radial gap of the compression chamber 24 and the axial gap between the end faces, The efficiency of the compressor is improved.

さらに潤滑油循環回路300を経た潤滑油は、放熱器2で水と熱交換されてその油温を下げているため、油溜め15にある吐出冷媒ガス温度に近い温度の潤滑油が供給される場合と異なり、低温の潤滑油が圧縮室24に供給されることになる。そして潤滑油は非圧縮性であるため、圧縮される冷媒から低温の潤滑油が熱を奪うことなり、冷媒の吐出ガス温度を低減させることができる。   Further, since the lubricating oil that has passed through the lubricating oil circulation circuit 300 is heat-exchanged with water in the radiator 2 to lower its oil temperature, lubricating oil having a temperature close to the discharged refrigerant gas temperature in the oil reservoir 15 is supplied. Unlike the case, low temperature lubricating oil is supplied to the compression chamber 24. Since the lubricating oil is incompressible, the low-temperature lubricating oil takes heat from the compressed refrigerant, and the discharge gas temperature of the refrigerant can be reduced.

圧縮室24に供給された低温の潤滑油は冷媒から熱量を奪い、冷媒の吐出ガス温度を低減させ、ミスト状に吐出冷媒ガスと共に圧縮室24から密閉容器10内部に吐出され、吐出管16からヒートポンプサイクル100へ冷媒が吐き出されるまでの密閉容器10内での流れの中で、冷媒から分離され、油溜め15に戻る。密閉容器10内での圧縮室24から吐出された冷媒と潤滑油の分離をより促進させ、ヒートポンプサイクル100に潤滑油が流出してしまう油上がりを極力少なくするために、図示していないが、電動機11の固定子11aの積層鋼板に軸方向に設けた風穴や、積層鋼板の外周切欠き(コアカット部)といった吐出管16に向かう吐出冷媒ガスの通路の面積を拡大しその吐出冷媒ガスの流速を下げたりしている。   The low-temperature lubricating oil supplied to the compression chamber 24 takes heat from the refrigerant, reduces the discharge gas temperature of the refrigerant, and is discharged into the sealed container 10 from the compression chamber 24 together with the discharge refrigerant gas in a mist form. In the flow in the sealed container 10 until the refrigerant is discharged to the heat pump cycle 100, the refrigerant is separated from the refrigerant and returned to the oil sump 15. Although not shown in order to further promote the separation of the refrigerant discharged from the compression chamber 24 and the lubricating oil in the sealed container 10 and reduce the oil rising out of the heat pump cycle 100 as much as possible, The area of the discharge refrigerant gas passage toward the discharge pipe 16 such as an air hole provided in the laminated steel plate of the stator 11a of the electric motor 11 in the axial direction and the outer circumferential notch (core cut portion) of the laminated steel plate is enlarged, and the discharge refrigerant gas The flow rate is lowered.

また、電動機11の回転子11bの上部に羽根や反電動機側に開口したカップ21を固定し、回転子11bの回転によるこれら羽根やカップ21の遠心力により潤滑油の混合冷媒ガスを半径方向に流速を持たせ、その時冷媒ガスと潤滑油の密度差から潤滑油を分離したりする油上がり防止対策が密閉形圧縮機1には盛り込まれている。これらの油上がり防止対策により、圧縮室24に供給した潤滑油のヒートポンプサイクル100への流出を防止している。   Further, a cup 21 opened on the blade or the counter-motor side is fixed to the upper portion of the rotor 11b of the electric motor 11, and the mixed refrigerant gas of the lubricating oil is caused to be radial by the centrifugal force of the blade and the cup 21 due to the rotation of the rotor 11b. The hermetic compressor 1 incorporates an oil rise prevention measure that gives a flow velocity and then separates the lubricating oil from the density difference between the refrigerant gas and the lubricating oil. These oil rising prevention measures prevent the lubricating oil supplied to the compression chamber 24 from flowing out into the heat pump cycle 100.

冷媒の吐出ガス温度を低減させることができるので、発明が解決しようとする課題の欄で述べた種々の問題点が解消できる。即ち、電動機効率の低下や、電動機固定子に使用されている絶縁材料の劣化を防止できる。また、電動機11を直流ブラシレスモータとして磁石に希土類磁石を用いた場合でも、磁石の減磁が防止できる。このことは別の観点でみると、従来は高い吐出ガス温度に対応できるような、グレードが高い絶縁材料や希土類磁石を使用していたが、本発明に用いる電動機では、それらのグレードを低下させたり、希土類磁石の体積を減じることができることとなるので、密閉形圧縮機1のコスト低減の効果が得られる。   Since the discharge gas temperature of the refrigerant can be reduced, various problems described in the column of problems to be solved by the invention can be solved. That is, it is possible to prevent a decrease in motor efficiency and a deterioration of the insulating material used in the motor stator. Moreover, even when the electric motor 11 is a DC brushless motor and a rare earth magnet is used as the magnet, demagnetization of the magnet can be prevented. From another viewpoint, conventionally, high-grade insulating materials and rare earth magnets that can cope with high discharge gas temperatures have been used. However, in the motor used in the present invention, these grades are reduced. Since the volume of the rare earth magnet can be reduced, the cost reduction effect of the hermetic compressor 1 can be obtained.

また、油溜め15内の潤滑油の熱劣化による潤滑性の低下やスラッジと呼ばれる不純物の析出が防止できる。そして吐出冷媒ガス温度の低減は、吐出ガスを内包する密閉容器10の温度を低減させることにもなるので、密閉容器10と外気との温度差が縮小され、密閉容器10から外気への放熱の減少につながる。密閉容器10からの外気への放熱は熱量ロスであるため、この減少はシステムの断熱効率の向上となり、加熱能力が増加する。   Further, it is possible to prevent deterioration of lubricity due to thermal deterioration of the lubricating oil in the oil sump 15 and precipitation of impurities called sludge. The reduction of the discharge refrigerant gas temperature also reduces the temperature of the sealed container 10 containing the discharged gas, so that the temperature difference between the sealed container 10 and the outside air is reduced, and the heat radiation from the sealed container 10 to the outside air is reduced. Leads to a decrease. Since the heat radiation from the sealed container 10 to the outside air is a heat loss, this reduction improves the heat insulation efficiency of the system and increases the heating capacity.

冷媒吐出ガス温度が低減されることで、放熱器2での冷媒と水の熱交換量は減少し、CO冷媒自身の放熱器2での水の加熱能力は低下することになるが、油溜め15の高温の潤滑油の放熱を水の加熱に利用しているので、本給湯システムの全体的な水の加熱能力が従来に比べ低下することない。冷媒の吐出ガス温度を低減しても、潤滑油の熱量を破棄せずに水の加熱に利用するため、システム加熱能力は従来同様に維持できるのである。 By reducing the refrigerant discharge gas temperature, the heat exchange amount of the refrigerant and water in the radiator 2 is reduced, and the water heating capacity of the CO 2 refrigerant itself in the radiator 2 is reduced. Since the heat radiation of the hot lubricating oil in the reservoir 15 is used for heating the water, the overall water heating capacity of the hot water supply system does not decrease compared to the conventional case. Even if the discharge gas temperature of the refrigerant is reduced, the heat amount of the lubricating oil is used for heating the water without being discarded, so that the system heating capacity can be maintained as in the conventional case.

潤滑油循環回路300の第2絞り機構5は、最も安価に構成する場合として、ここではキャピラリーチューブ5aを使用する(図4に示す)。但し、キャピラリーチューブ5aを使用すると、潤滑油流路の抵抗値が常に一定となるため、吐出圧力と吸入圧力の差圧によってのみ、潤滑油の循環量が決定される。運転条件の変化すなわち吐出圧力と吸入圧力の差圧が変化のみが、潤滑油循環回路300を循環する潤滑油の循環量の変化をもたらすことになる。差圧が大きければ潤滑油循環量が増加する。基本的に差圧が大きければ、シールに必要な油量も多く必要となるので、密閉形圧縮機1が一定速度(回転数50Hzまたは60Hz)で運転される一定速機であれば、第2絞り機構5はキャピラリーチューブ5aで構成すればよく、それによって本給湯システムのコストを安価に抑えることができる。   The second throttle mechanism 5 of the lubricating oil circulation circuit 300 uses a capillary tube 5a as shown in FIG. 4 as the most inexpensive configuration. However, when the capillary tube 5a is used, the resistance value of the lubricating oil passage is always constant, and therefore, the circulation amount of the lubricating oil is determined only by the differential pressure between the discharge pressure and the suction pressure. Only the change in the operating condition, that is, the change in the differential pressure between the discharge pressure and the suction pressure, causes a change in the circulation amount of the lubricating oil circulating in the lubricating oil circulation circuit 300. If the differential pressure is large, the lubricating oil circulation rate increases. Basically, if the differential pressure is large, a large amount of oil is required for sealing. Therefore, if the hermetic compressor 1 is a constant speed machine operated at a constant speed (rotation speed 50 Hz or 60 Hz), the second The throttling mechanism 5 may be composed of the capillary tube 5a, thereby reducing the cost of the hot water supply system.

上述の実施の形態の冷媒循環装置は、密閉形圧縮機1を高圧シェル方式の圧縮機とし、ヒートポンプサイクル100(冷媒循環回路)とは別個の潤滑油循環回路300を構成し、密閉形圧縮機1の油溜め15の潤滑油を圧力差によって放熱器2へ導き、冷媒とともに加熱流体と熱交換させて潤滑油を冷却し、その後で第2絞り機構5により減圧させ、密閉形圧縮機1の入口となる吸入管13に潤滑油を供給する構成とし、油溜め15の高温の潤滑油の放熱を水の加熱に利用するので、加熱流体への加熱能力を低下させることなく、冷媒の吐出ガス温度を下げることができる。そのため高温の吐出冷媒ガスに起因した電動機効率の低下や、電動機11の固定子11aに使用されている絶縁材料の劣化、また油溜め15内の潤滑油の熱劣化による潤滑性の低下やスラッジと呼ばれる不純物の析出が防止できる効果がある。   In the refrigerant circulation device of the above-described embodiment, the hermetic compressor 1 is a high-pressure shell type compressor, and the lubricating oil circulation circuit 300 is configured separately from the heat pump cycle 100 (refrigerant circulation circuit). The lubricating oil in the oil sump 15 is guided to the radiator 2 by a pressure difference, and heat is exchanged with the heating fluid together with the refrigerant to cool the lubricating oil, and then the pressure is reduced by the second throttle mechanism 5. Since the lubricating oil is supplied to the suction pipe 13 serving as the inlet and the heat release from the high-temperature lubricating oil in the oil sump 15 is used for heating the water, the refrigerant discharge gas is not reduced without reducing the heating capacity to the heating fluid. The temperature can be lowered. For this reason, the motor efficiency is reduced due to the high-temperature discharged refrigerant gas, the insulating material used for the stator 11a of the motor 11 is deteriorated, and the lubricity is reduced due to the thermal deterioration of the lubricating oil in the oil sump 15, and sludge. There is an effect of preventing precipitation of impurities called.

実施の形態2.
図5、6は実施の形態2を示す図で、図5はヒートポンプサイクルを用いた給湯用冷媒循環装置の構成を示す概略図、図6は圧縮室へ供給する潤滑油の冷媒に対する重量%と吐出ガス温度及び図示効率との関係を示す図である。尚、密閉形圧縮機1の説明には、電動機が異なるだけなので、実施の形態1の図2、3を用いる。
近年は、給湯用システムに使用される圧縮機も省エネルギーの観点から外気の状態に敏感に対応できるように、密閉形圧縮機1はインバータを使用した可変速機が使用される傾向にある。さらに密閉形圧縮機1の効率を高めるために、電動機には回転子にフェライト磁石や希土類磁石を内蔵した電動機効率の高い直流ブラシレスモータ31を使用することもあり、実施の形態2として、密閉形圧縮機1は電動機に直流ブラシレスモータ31を用いた可変速対応の圧縮機を用いる。但し、誘導機をインバータで駆動するものも含む。
Embodiment 2. FIG.
FIGS. 5 and 6 are diagrams showing the second embodiment, FIG. 5 is a schematic diagram showing a configuration of a hot water supply refrigerant circulating apparatus using a heat pump cycle, and FIG. 6 is a weight% of the lubricating oil supplied to the compression chamber with respect to the refrigerant. It is a figure which shows the relationship between discharge gas temperature and illustration efficiency. In the description of the hermetic compressor 1, only the motor is different, and therefore FIGS. 2 and 3 of the first embodiment are used.
In recent years, a variable speed machine using an inverter tends to be used for the hermetic compressor 1 so that the compressor used in the hot water supply system can also respond sensitively to the state of the outside air from the viewpoint of energy saving. Furthermore, in order to increase the efficiency of the hermetic compressor 1, a DC brushless motor 31 having a high motor efficiency in which a ferrite magnet or a rare earth magnet is incorporated in the rotor may be used for the motor. The compressor 1 uses a variable speed compressor using a DC brushless motor 31 as an electric motor. However, this includes those in which induction machines are driven by inverters.

密閉形圧縮機1が可変速対応の場合、第2絞り機構5にキャピラリーチューブ5aを使用すると、吐出圧力と吸入圧力の圧力差のみでしか潤滑油循環量を変化させられないので、回転数の変化には対応できない。仮に50Hzや60Hzといった定格での運転時に最適となるような抵抗に調整したキャピラリーチューブ5aを使用すると、低速運転時には1回転の時間が遅くなるため、圧縮室24への潤滑油の供給量が過多になり、逆に高速運転時には供給量が過少となる。   When the hermetic compressor 1 is compatible with the variable speed, if the capillary tube 5a is used for the second throttle mechanism 5, the circulation amount of the lubricating oil can be changed only by the pressure difference between the discharge pressure and the suction pressure. It cannot respond to changes. If the capillary tube 5a adjusted to have the optimum resistance at the time of operation at a rating of 50 Hz or 60 Hz is used, the time for one rotation is delayed at low speed operation, so that the amount of lubricating oil supplied to the compression chamber 24 is excessive. On the contrary, the supply amount becomes too small during high-speed operation.

圧縮室24への潤滑油循環回路300を経た低温の潤滑油供給量が過多となると、冷媒の吐出ガス温度の低減が大きくなり過ぎ、所定の水量を所定の温度まで加熱するのに必要な加熱能力が得られなくなる。また、圧縮室24に取り込まれる冷媒と冷凍機油の混合体積のなかで冷凍機油の体積の占める割合が大きくなるので、圧縮機の体積効率が低下し、これによりヒートポンプサイクル100の冷媒循環量が減少することで、水の加熱能力が低下する。さらに圧縮室24からの吐出ガスの潤滑油油量が過剰であると、密閉容器10内での冷媒との油分離が十分に行えず、油上がりが増加し、ヒートポンプサイクル100の水と冷媒の熱交換を阻害し、加熱能力が低下するなどの問題が生じる。   If the amount of low-temperature lubricating oil supplied to the compression chamber 24 through the lubricating oil circulation circuit 300 becomes excessive, the reduction of the refrigerant discharge gas temperature becomes too large, and the heating necessary to heat the predetermined amount of water to the predetermined temperature. The ability cannot be obtained. Further, since the ratio of the volume of the refrigerating machine oil in the mixed volume of the refrigerant and the refrigerating machine oil taken into the compression chamber 24 becomes larger, the volume efficiency of the compressor is lowered, thereby reducing the refrigerant circulation amount of the heat pump cycle 100. By doing so, the ability to heat water decreases. Further, if the amount of lubricating oil in the discharge gas from the compression chamber 24 is excessive, oil separation from the refrigerant in the sealed container 10 cannot be performed sufficiently, oil rise increases, and the water and refrigerant of the heat pump cycle 100 increase. Problems such as hindering heat exchange and lowering of heating capacity occur.

また、逆に圧縮室24への潤滑油の供給量が不足すると、冷媒の吐出ガス温度が下がらず、高温雰囲気に電動機や潤滑油がさらされることによる発明が解決しようとする課題の欄で述べた種々の問題点が解消されず、さらに圧縮室24のシール効果が小さくなって、圧縮室24の冷媒リークが増加し、圧縮機の図示効率が低下するので、システムの効率が低下する問題が生じる。   Conversely, if the supply amount of the lubricating oil to the compression chamber 24 is insufficient, the discharge gas temperature of the refrigerant does not decrease, and the invention to be solved by the invention in which the electric motor and the lubricating oil are exposed to a high temperature atmosphere is described in the column of problems to be solved. However, the sealing effect of the compression chamber 24 is reduced, the refrigerant leakage in the compression chamber 24 is increased, and the illustration efficiency of the compressor is lowered. Therefore, the efficiency of the system is lowered. Arise.

そこで実施の形態2は、密閉形圧縮機1に直流ブラシレスモータ31を使用した可変速対応の圧縮機を使用し、潤滑油循環回路300の第2絞り機構5には、電気信号によってその開度を調整できる電磁弁5bを使用する。そして圧縮機の運転回転数、および吐出圧力と吸入圧力の運転条件を制御因子として、電磁弁5bの開度を調整し、潤滑油循環回路300を循環する潤滑油の循環量を最適化する。ここで潤滑油の最適循環量は、独立した2つの要因で決定する必要がある。1つは冷媒吐出ガス温度で、これが低すぎれば加熱能力が不足し、高すぎれば電動機や潤滑油に悪影響を与える。もう1つは圧縮室24のシール性(図示効率)で、油量が少ないと洩れが多くなり図示効率が低下し、多すぎると体積効率が低下し加熱能力が不足する。   Therefore, in the second embodiment, a variable speed compressor using a DC brushless motor 31 is used for the hermetic compressor 1, and the opening degree of the second throttle mechanism 5 of the lubricating oil circulation circuit 300 is determined by an electrical signal. The electromagnetic valve 5b that can adjust the angle is used. Then, using the operating speed of the compressor and the operating conditions of the discharge pressure and the suction pressure as control factors, the opening degree of the electromagnetic valve 5b is adjusted, and the amount of lubricating oil circulating through the lubricating oil circulation circuit 300 is optimized. Here, the optimum circulation amount of the lubricating oil needs to be determined by two independent factors. One is the refrigerant discharge gas temperature. If it is too low, the heating capacity is insufficient, and if it is too high, the electric motor and lubricating oil are adversely affected. The other is the sealing performance (illustration efficiency) of the compression chamber 24. When the amount of oil is small, leakage increases and the efficiency of illustration decreases, and when it is too large, the volumetric efficiency decreases and the heating capacity becomes insufficient.

吐出冷媒ガス温度は吐出管16や、吐出管16に接続されるヒートポンプサイクル100の配管の吐出管16近傍に温度センサーなどの吐出冷媒ガス温度検知手段20を取り付けることで、その情報を把握でき、それを電気信号に変換できるので、これを制御因子として、第2絞り機構5である電磁弁5bの開度調整に使用してもよい。また図示しないが、吐出冷媒ガス温度ではなく、温度検出を密閉容器10の外壁に温度センサーなどの温度検知手段を設置し、密閉容器外壁温度を把握し、それを制御因子として、第2絞り機構5である電磁弁5bの開度調整に使用してもよい。   The discharge refrigerant gas temperature can be grasped by attaching the discharge refrigerant gas temperature detection means 20 such as a temperature sensor in the vicinity of the discharge pipe 16 and the discharge pipe 16 of the pipe of the heat pump cycle 100 connected to the discharge pipe 16, Since it can be converted into an electrical signal, this may be used as a control factor for adjusting the opening of the electromagnetic valve 5b, which is the second throttle mechanism 5. Although not shown in the drawing, the temperature of the discharged refrigerant gas is not detected, but a temperature detecting means such as a temperature sensor is installed on the outer wall of the sealed container 10 to grasp the temperature of the outer wall of the sealed container, and this is used as a control factor. 5 may be used for adjusting the opening of the solenoid valve 5b.

給湯サイクル実機への実装試験や圧縮機単体の試験によって、市場にて想定されるあらゆる環境下において、回転数の下限側の方が上限側より圧縮室24への潤滑油供給量を多くしないと、洩れによる図示効率の低下が大きくなる傾向はあるものの、下限から上限まで全域に渡って、潤滑油循環回路300を経て圧縮室24へ供給する潤滑油の油量は、冷媒に対し重量割合で10〜20%の量が望ましいことが解った(図6参照)。これは、1つの圧縮室24に取り込まれる冷媒の重量をR、潤滑油の重量をXとしたときに、X/(R+X)=10〜20%が適正ということである。従って、第2絞り機構5の電磁弁5bの開度調整は、圧縮室24に供給される潤滑油の油量が10〜20重量%となるように、運転回転数および運転圧力である吐出圧力と吸入圧力を、あるいはそれに加えて吐出ガス温度または密閉容器外壁温度を制御因子として、潤滑油循環回路300を循環する潤滑油の循環量を調整する。   According to the mounting test on the actual hot water supply cycle and the test of the compressor alone, under all circumstances assumed in the market, the lower limit side of the rotational speed must be more lubricated to the compression chamber 24 than the upper limit side. Although there is a tendency that the reduction in the efficiency of illustration due to leakage tends to be large, the amount of lubricating oil supplied to the compression chamber 24 through the lubricating oil circulation circuit 300 over the entire area from the lower limit to the upper limit is in weight ratio to the refrigerant. An amount of 10-20% has been found desirable (see FIG. 6). This means that X / (R + X) = 10 to 20% is appropriate when the weight of the refrigerant taken into one compression chamber 24 is R and the weight of the lubricating oil is X. Accordingly, the adjustment of the opening degree of the electromagnetic valve 5b of the second throttle mechanism 5 is performed so that the amount of lubricating oil supplied to the compression chamber 24 is 10 to 20% by weight, and the discharge pressure is the operating rotational speed and operating pressure. And the suction pressure, or in addition thereto, the discharge gas temperature or the outer wall temperature of the sealed container is used as a control factor to adjust the circulation amount of the lubricating oil circulating in the lubricating oil circulation circuit 300.

尚、必ずしも上記の物理量すべてを制御因子としなくてもよい。制御因子が少ない方がコストを安価にできるので、加熱能力維持を最重視して、特に吐出冷媒ガス温度または密閉容器外壁温度のみを制御因子としてもよいし、密閉形圧縮機1が一定速機の場合には、第2絞り機構5をキャピラリーチューブで構成して、圧縮室24への潤滑油の供給量が適正になるようにできることから、運転回転数のみの情報で第2絞り機構5の電磁弁5bの開度を調整してもよい。また吐出圧力と吸入圧力の運転圧力を加えて、1つの物理量よりは精度を高くするために、運転圧力と吐出ガス温度または密閉容器外壁温度を制御因子としてもよいし、運転圧力と運転回転数を制御因子とすることでもよい。   It is not always necessary to use all of the above physical quantities as control factors. Since the cost can be reduced if the number of control factors is small, it is important to maintain the heating capacity, and only the discharge refrigerant gas temperature or the temperature of the outer wall of the sealed container may be used as the control factor. The hermetic compressor 1 is a constant speed machine. In this case, the second throttle mechanism 5 is configured by a capillary tube so that the amount of lubricating oil supplied to the compression chamber 24 can be made appropriate. The opening degree of the electromagnetic valve 5b may be adjusted. In addition, in order to add the operating pressures of the discharge pressure and the suction pressure to make the accuracy higher than one physical quantity, the operating pressure and the discharge gas temperature or the temperature of the outer wall of the sealed container may be used as control factors. May be used as a control factor.

潤滑油循環回路300の第2絞り機構5の開度を圧縮機回転数や運転条件に応じて、開度調整のできる電磁弁5bとしたとことにより、可変速圧縮機に対応して、常に潤滑油循環回路300を経て圧縮室24へ供給される潤滑油の量を適正化できるので、水の加熱能力が低減してしまうほど吐出ガス温度を低下させてしまったり、その逆に供給油量が少なく吐出ガス温度が下がらなかったりすることなく、電動機や潤滑油にダメージを与えない適切な吐出ガス温度を維持できる。なお、冷媒循環回路すなわちヒートポンプサイクル100単体での水の加熱量は、150℃程度まで冷媒の吐出ガス温度を上げていた従来ヒートポンプサイクルよりは低下しているが、潤滑油循環回路300により、潤滑油の熱量を水の加熱に利用しているので、システム全体としてみれば、加熱能力は従来同様に維持できている。   Since the opening of the second throttle mechanism 5 of the lubricating oil circulation circuit 300 is an electromagnetic valve 5b whose opening can be adjusted according to the rotational speed of the compressor and operating conditions, it is always compatible with a variable speed compressor. Since the amount of lubricating oil supplied to the compression chamber 24 through the lubricating oil circulation circuit 300 can be optimized, the discharge gas temperature may be lowered as the water heating capacity is reduced, and vice versa. Therefore, it is possible to maintain an appropriate discharge gas temperature that does not damage the electric motor and the lubricating oil without reducing the discharge gas temperature. The heating amount of water in the refrigerant circulation circuit, that is, the heat pump cycle 100 alone is lower than that in the conventional heat pump cycle in which the refrigerant discharge gas temperature is increased to about 150 ° C., but the lubricating oil circulation circuit 300 performs lubrication. Since the amount of heat of oil is used for heating water, the heating capacity can be maintained as in the conventional system as a whole system.

尚、実施の形態1で潤滑油循環回路300の第2絞り機構5にキャピラリーチューブを使用した場合でも、チューブ内径と長さで決まる抵抗値は、潤滑油循環回路300を経て圧縮室24へ供給される潤滑油の油量が10〜20重量%となるようにチューニングする。またコストは上昇するが、密閉形圧縮機1に一定速機を使用した場合にでも、第2絞り機構5に開度調整可能な電磁弁を使用して、潤滑油循環回路300を循環する潤滑油の量を制御すれば、より圧縮室24への供給油量がより精度の高い運転が可能となる。   Even when a capillary tube is used in the second throttle mechanism 5 of the lubricating oil circulation circuit 300 in the first embodiment, the resistance value determined by the inner diameter and length of the tube is supplied to the compression chamber 24 via the lubricating oil circulation circuit 300. Tuning is performed so that the amount of lubricating oil is 10 to 20% by weight. Although the cost increases, even when a constant speed machine is used for the hermetic compressor 1, the second throttle mechanism 5 uses an electromagnetic valve whose opening degree can be adjusted to circulate the lubricating oil circulation circuit 300. If the amount of oil is controlled, an operation with higher accuracy in the amount of oil supplied to the compression chamber 24 becomes possible.

尚、前記特許文献2には、オイルセパレータで分離した潤滑油を、オイルセパレータから放熱器を通って圧縮機に戻どすオイル還流通路を形成し、オイルセパレータから圧縮機に戻る潤滑油の熱量を放熱器で水の加熱に利用し、熱ロスの少ない高効率な温水システム得ることが記載されているが、本発明は、オイルセパレータを不要とすべく、圧縮室24に潤滑油を供給しても油上がりを低く抑えることが可能な高圧シェル方式の密閉形圧縮機を使用し、加熱流体への加熱能力を低下させることなく、吐出ガス温度を低減させるために、その圧縮機の油溜めを起点とし、圧縮機吸入側を終点とする潤滑油循環回路を形成し、その潤滑油循環回路にて潤滑油の熱量を放熱器で水の加熱に利用するもので、さらには、潤滑油循環回路の絞り機構を開度調整可能とし、絞り機構の抵抗を調整することで潤滑油循環回路の潤滑油の循環量を調整して、圧縮室24へ供給する潤滑油量を制御するもので、特許文献2とは異なるものである。   In Patent Document 2, an oil recirculation passage is formed in which the lubricating oil separated by the oil separator is returned from the oil separator to the compressor through the radiator, and the amount of heat of the lubricating oil returning from the oil separator to the compressor is determined. Although it is described that a highly efficient hot water system with little heat loss can be obtained by heating water with a radiator, the present invention supplies lubricating oil to the compression chamber 24 in order to eliminate the need for an oil separator. In order to reduce the discharge gas temperature without reducing the heating capacity to the heated fluid, the oil reservoir of the compressor is used. A lubricating oil circulation circuit starting from the compressor suction side is formed, and the heat quantity of the lubricating oil is used for heating the water by a radiator in the lubricating oil circulation circuit. Furthermore, the lubricating oil circulation circuit The aperture mechanism The amount of lubricating oil supplied to the compression chamber 24 is controlled by adjusting the amount of lubricating oil circulating in the lubricating oil circulation circuit by adjusting the resistance of the throttle mechanism. Is.

実施の形態3.
図7〜9は実施の形態3を示す図で、冷媒循環装置の構成を示す概略図である。
上記実施の形態1,2では、潤滑油循環回路300の潤滑油と、ヒートポンプサイクル100の冷媒の、放熱器2への入口と出口が同じになっていたが、潤滑油循環回路300を経て圧縮室24へ供給する潤滑油の油量を10〜20重量%にすることを重視すると、供給する潤滑油の温度を放熱器2での水との熱交換で低減させすぎてしまい、吐出ガス温度が下がりすぎてしまい、加熱能力が低下してしまう事態がシステムの容量によっては生じる場合がある。このような場合には、供給油量を10%未満に低下させて、吐出ガス温度を適切な温度に上げることで加熱能力の回復を図ることは可能だが、このときは圧縮室内の潤滑油量が減るので、冷媒のリークが増加し、圧縮機の図示効率が低下してしまう。
Embodiment 3 FIG.
7-9 is a figure which shows Embodiment 3, and is the schematic which shows the structure of a refrigerant circulation apparatus.
In the first and second embodiments, the inlet and outlet of the lubricating oil in the lubricating oil circulation circuit 300 and the refrigerant in the heat pump cycle 100 to the radiator 2 are the same. If it is important to set the amount of lubricating oil supplied to the chamber 24 to 10 to 20% by weight, the temperature of the lubricating oil to be supplied is excessively reduced by heat exchange with water in the radiator 2, and the discharge gas temperature Depending on the capacity of the system, there may be a situation in which the heating capacity is reduced due to excessive reduction of the temperature. In such a case, it is possible to recover the heating capacity by lowering the supply oil amount to less than 10% and raising the discharge gas temperature to an appropriate temperature, but at this time, the amount of lubricating oil in the compression chamber Therefore, the refrigerant leakage increases, and the efficiency of the compressor illustration decreases.

このような給湯システムに対する潤滑油循環回路300は、放熱器2の全体ではなく、放熱器2の任意の部分的な箇所のみを通るような構成にして、潤滑油の油温が過剰低下を防ぎ、適正な潤滑油温を得られるようにすればよい。例えば、図7に示すように潤滑油循環回路300は、放熱器2の入口をヒートポンプサイクル100と同じとして、ヒートポンプサイクル100の放熱器2の出口よりも手前(入口寄り)で、放熱器2から離れてもよい。   The lubricating oil circulation circuit 300 for such a hot water supply system is configured to pass only an arbitrary part of the radiator 2 instead of the entire radiator 2 to prevent the oil temperature of the lubricating oil from excessively decreasing. It is only necessary to obtain an appropriate lubricating oil temperature. For example, as shown in FIG. 7, the lubricating oil circulation circuit 300 assumes that the inlet of the radiator 2 is the same as the heat pump cycle 100, and is closer to the outlet (closer to the inlet) than the outlet of the radiator 2 of the heat pump cycle 100. You may leave.

また、図8に示すように、図7の逆で出口を共通として、潤滑油循環回路300は放熱器2の途中から、すなわちヒートポンプサイクル100の放熱器2の入口よりも後(出口寄り)から、放熱器2を通るように構成してもよい。   Further, as shown in FIG. 8, the lubricating oil circulation circuit 300 is arranged in the middle of the radiator 2, that is, after the inlet of the radiator 2 of the heat pump cycle 100 (closer to the outlet), with the outlet in common with the reverse of FIG. 7. The heat radiator 2 may be configured to pass through.

また、図9に示すように、入口も出口も共通とせず、潤滑油循環回路300は放熱器2の途中から、すなわちヒートポンプサイクル100の放熱器2の入口よりも後(出口寄り)から放熱器2を通るようにし、ヒートポンプサイクル100の放熱器2の出口よりも手前(入口寄り)で、放熱器2から離れるように構成してもよい。   Further, as shown in FIG. 9, the inlet and the outlet are not common, and the lubricating oil circulation circuit 300 is disposed in the middle of the radiator 2, that is, after the radiator 2 in the heat pump cycle 100 (closer to the outlet). 2, and may be configured to be separated from the radiator 2 in front of the outlet of the radiator 2 of the heat pump cycle 100 (closer to the inlet).

実施の形態4.
図10は実施の形態4を示す図で、冷媒循環装置の構成を示す概略図である。
上記実施の形態1〜3では、潤滑油循環回路300の終点、すなわち潤滑油循環回路300を循環した潤滑油が密閉形圧縮機1の吸入側に供給される位置は、アキュームレータ17と圧縮室24をつなぐ吸入管13であった。油温を低下させた潤滑油を供給することで、冷媒の吐出ガス温度を低下させるので、その潤滑油に密閉形圧縮機1から熱が与えられないように圧縮室24により近い位置が望ましいので、その点で吸入管13は最も相応しい位置であると言えるが、実施の形態4では、図10に示すように、アキュームレータ17の上流側のアキュームレータ17近傍に位置する吸入側配管に、潤滑油循環回路300を経た潤滑油を供給するように構成している。アキュームレータ17の内部には、フィルター17aが設けられていて、ここで回路中の異物を除去することできる。
Embodiment 4 FIG.
FIG. 10 is a diagram showing the fourth embodiment, and is a schematic diagram showing the configuration of the refrigerant circulation device.
In the first to third embodiments, the end point of the lubricating oil circulation circuit 300, that is, the position where the lubricating oil circulated through the lubricating oil circulation circuit 300 is supplied to the suction side of the hermetic compressor 1 is the accumulator 17 and the compression chamber 24. It was the suction pipe 13 which connects. By supplying the lubricating oil whose oil temperature has been lowered, the refrigerant discharge gas temperature is lowered. Therefore, a position closer to the compression chamber 24 is desirable so that heat is not applied to the lubricating oil from the hermetic compressor 1. In this respect, it can be said that the suction pipe 13 is the most suitable position. However, in the fourth embodiment, as shown in FIG. 10, the lubricating oil circulation is provided in the suction side pipe located in the vicinity of the accumulator 17 on the upstream side of the accumulator 17. The lubricating oil that has passed through the circuit 300 is supplied. A filter 17a is provided inside the accumulator 17, and foreign substances in the circuit can be removed here.

実施の形態4は、潤滑油循環回路300を経た潤滑油をこのフィルター17aの上流側の吸入配管に供給するので、供給された潤滑油は、圧縮室24に供給される前にアキュームレータ17を通過することになり、その際フィルター17aを通過するので、潤滑油に混入された鉄粉や銅粉などの異物がここで除去できるので、圧縮室24へのこれら異物の混入を防止でき、ローリングピストンの異物噛みによる密閉形圧縮機1のロック(運転停止)を防ぐことができる。   In the fourth embodiment, the lubricating oil that has passed through the lubricating oil circulation circuit 300 is supplied to the suction pipe on the upstream side of the filter 17a, so that the supplied lubricating oil passes through the accumulator 17 before being supplied to the compression chamber 24. In this case, since it passes through the filter 17a, foreign matters such as iron powder and copper powder mixed in the lubricating oil can be removed here, so that these foreign matters can be prevented from being mixed into the compression chamber 24, and the rolling piston can be prevented. It is possible to prevent the hermetic compressor 1 from being locked (stopped operation) due to the biting of foreign matter.

実施の形態5.
図11、12は実施の形態5を示す図で、図11は2気筒のロータリ圧縮機の縦断面図、図12はスクロール圧縮機の縦断面図である。
上記実施の形態に示した潤滑油循環回路300は、密閉形圧縮機1の密閉容器10内の底部にある油溜め15より、密閉容器10内部の高圧と、潤滑油循環回路300の終点である吸入側との圧力差によって潤滑油循環回路300内に潤滑油を導くものであるが、図2に示すように密閉形圧縮機1の密閉容器10の外壁には、密閉容器10内部の油溜め15と潤滑油循環回路300を接続する潤滑油導出管19が設けられている。この潤滑油導出管19は、一方を油溜め15に開口しており、運転中に潤滑油の油面15aが低下しても確実に潤滑油内に開口されるように、なるべく底部に近い位置に取り付けられる。他方は、密閉容器10の外部に開口しており、この他方の開口部19aを潤滑油循環回路300の配管とロウ付などにより接続する。
Embodiment 5. FIG.
11 and 12 show the fifth embodiment. FIG. 11 is a longitudinal sectional view of a two-cylinder rotary compressor, and FIG. 12 is a longitudinal sectional view of a scroll compressor.
The lubricating oil circulation circuit 300 shown in the above embodiment is the high pressure inside the sealed container 10 and the end point of the lubricating oil circulation circuit 300 from the oil sump 15 at the bottom of the sealed container 10 of the hermetic compressor 1. The lubricating oil is guided into the lubricating oil circulation circuit 300 by the pressure difference from the suction side. However, as shown in FIG. 2, an oil reservoir inside the sealed container 10 is formed on the outer wall of the sealed container 10 of the hermetic compressor 1. 15 and a lubricating oil outlet pipe 19 for connecting the lubricating oil circulation circuit 300 are provided. One end of the lubricating oil lead-out pipe 19 is open to the oil sump 15 and is positioned as close to the bottom as possible so that the lubricating oil can be reliably opened even if the oil level 15a of the lubricating oil drops during operation. Attached to. The other is opened to the outside of the hermetic container 10 and the other opening 19a is connected to the piping of the lubricating oil circulation circuit 300 by brazing or the like.

ここで潤滑油導出管19の密閉容器10外部での開口部19aは、油溜め15の油面15aより高い位置に配置する。本給湯システムが工場にて製作される際、密閉形圧縮機1には潤滑油が内部に封入されるが、この時の油面すなわち初期油面よりも高い位置に開口部19aを位置させる。この開口部19aに潤滑油循環回路300の配管が接続されるまでは、開口部19aにはゴム栓などが圧入されている。本給湯システムの製作過程で、このゴム栓を取り外し、開口部19aに潤滑油循環回路300の配管をロウ付するが、このゴム栓を抜いたときに、開口部19aがその時の油面15aよりも高い位置にあるので、開口部19aから潤滑油がこぼれ出してしまうということはなく、流出による封入潤滑油量の不足といった事態は発生することなく、またロウ付作業を安全にかつ衛生的に行うことができる。   Here, the opening 19 a outside the sealed container 10 of the lubricating oil outlet pipe 19 is arranged at a position higher than the oil surface 15 a of the oil reservoir 15. When the hot water supply system is manufactured in a factory, the hermetic compressor 1 is filled with lubricating oil, and the opening 19a is positioned higher than the oil level at this time, that is, the initial oil level. Until the piping of the lubricating oil circulation circuit 300 is connected to the opening 19a, a rubber plug or the like is press-fitted into the opening 19a. In the manufacturing process of the hot water supply system, the rubber plug is removed, and the piping of the lubricating oil circulation circuit 300 is brazed to the opening 19a. When the rubber plug is removed, the opening 19a extends from the oil surface 15a at that time. Therefore, the lubricating oil does not spill out from the opening 19a, there is no shortage of the amount of lubricating oil due to outflow, and the brazing operation is performed safely and hygienically. It can be carried out.

尚、上記実施の形態はいずれも密閉形圧縮機1として、単気筒のロータリ圧縮機を使用したが、これに限らず、密閉容器の内部が吐出圧雰囲気となる高圧シェル方式の密閉形圧縮機であれば、単気筒ロータリ圧縮機に限らず、多気筒のロータリ圧縮機(一例を図11に示す)や、またスクロール圧縮機(一例を図12に示す)であっても構わないし、密閉容器の内部が吐出圧雰囲気でなくとも、差圧によって潤滑油循環回路を潤滑油が循環できるように、吸入圧力よりは高い中間圧力に維持する圧縮機であれば、本発明の構成を適用することで同様の効果が得られる。   In each of the above embodiments, a single-cylinder rotary compressor is used as the hermetic compressor 1. However, the present invention is not limited to this, and a high-pressure shell-type hermetic compressor in which the inside of the hermetic container has a discharge pressure atmosphere. As long as it is not limited to a single-cylinder rotary compressor, it may be a multi-cylinder rotary compressor (an example is shown in FIG. 11) or a scroll compressor (an example is shown in FIG. 12). The configuration of the present invention is applied to any compressor that maintains an intermediate pressure higher than the suction pressure so that the lubricating oil can circulate in the lubricating oil circulation circuit by the differential pressure even if the inside of the compressor is not in the discharge pressure atmosphere. A similar effect can be obtained.

また実施の形態の冷媒循環装置はCO冷媒を使用した給湯用システムであるが、この用途のみでなく、また他の冷媒であっても本発明の構成を適用でき、更に、フロンガスを冷媒として使用し、空調用途などに用いられる高圧側が超臨界圧力未満で、冷媒が凝縮する工程を有する一般的なヒートポンプサイクルに本発明の構成を適用させた場合でも、暖房能力を低下させることなく、吐出冷媒ガス温度を低下させる手段として有効である。 The refrigerant circulation device of the embodiment is a hot water supply system using a CO 2 refrigerant. However, the present invention can be applied not only to this application but also to other refrigerants. Even when the configuration of the present invention is applied to a general heat pump cycle in which the high pressure side used for air conditioning applications is less than supercritical pressure and the refrigerant condenses, the discharge is not reduced. This is effective as a means for lowering the refrigerant gas temperature.

実施の形態1を示す図で、ヒートポンプサイクルを用いた給湯用冷媒循環装置の構成を示す概略図である。It is a figure which shows Embodiment 1, and is the schematic which shows the structure of the refrigerant circulating apparatus for hot water supply using a heat pump cycle. 実施の形態1を示す図で、冷媒循環装置に使用される高圧シェル方式の密閉形圧縮機の縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1, and is a longitudinal cross-sectional view of the high pressure shell type hermetic compressor used for a refrigerant circulation device. 実施の形態1を示す図で、冷媒循環装置に使用される高圧シェル方式の密閉形圧縮機の横断面図である。FIG. 2 is a diagram showing the first embodiment, and is a cross-sectional view of a high-pressure shell type hermetic compressor used in the refrigerant circulation device. 実施の形態1を示す図で、第2絞り機構にキャピラリーチューブを使用した給湯用冷媒循環装置の構成を示す概略図である。FIG. 5 shows the first embodiment, and is a schematic diagram showing a configuration of a hot water supply refrigerant circulating apparatus using a capillary tube as a second throttling mechanism. 実施の形態2を示す図で、ヒートポンプサイクルを用いた給湯用冷媒循環装置の構成を示す概略図である。It is a figure which shows Embodiment 2, and is the schematic which shows the structure of the hot water supply refrigerant | coolant circulating apparatus using a heat pump cycle. 実施の形態2を示す図で、圧縮室へ供給する潤滑油の冷媒に対する重量%と吐出ガス温度及び図示効率との関係を示す図である。FIG. 6 is a diagram illustrating the second embodiment and is a diagram illustrating a relationship between the weight% of the lubricating oil supplied to the compression chamber with respect to the refrigerant, the discharge gas temperature, and the illustrated efficiency. 実施の形態3を示す図で、冷媒循環装置の構成を示す概略図である。It is a figure which shows Embodiment 3, and is the schematic which shows the structure of a refrigerant circulation apparatus. 実施の形態3を示す図で、冷媒循環装置の構成を示す概略図である。It is a figure which shows Embodiment 3, and is the schematic which shows the structure of a refrigerant circulation apparatus. 実施の形態3を示す図で、冷媒循環装置の構成を示す概略図である。It is a figure which shows Embodiment 3, and is the schematic which shows the structure of a refrigerant circulation apparatus. 実施の形態4を示す図で、冷媒循環装置の構成を示す概略図である。It is a figure which shows Embodiment 4, and is the schematic which shows the structure of a refrigerant circulation apparatus. 実施の形態5を示す図で、2気筒のロータリ圧縮機の縦断面図である。FIG. 10 is a diagram illustrating the fifth embodiment and is a longitudinal sectional view of a two-cylinder rotary compressor. 実施の形態5を示す図で、スクロール圧縮機の縦断面図である。It is a figure which shows Embodiment 5, and is a longitudinal cross-sectional view of a scroll compressor.

符号の説明Explanation of symbols

1 密閉形圧縮機、2 放熱器、3 第1絞り機構、4 蒸発器、5 第2絞り機構、5a キャピラリーチューブ、5b 電磁弁、10 密閉容器、11 電動機、11a 固定子、11b 回転子、12 圧縮機構部、13 吸入管、14 主軸、15 油溜め、15a 油面、16 吐出管、17 アキュームレータ、17a フィルター、18 ホルダー、19 潤滑油導出管、19a 開口部、20 吐出冷媒ガス温度検知手段、21 カップ、22 吸入室、23 ローリングピストン、24 圧縮室、31 直流ブラシレスモータ、100 ヒートポンプサイクル、200 水配管、300 潤滑油循環回路。   DESCRIPTION OF SYMBOLS 1 Hermetic compressor, 2 Heat radiator, 3 1st aperture mechanism, 4 Evaporator, 5 2nd aperture mechanism, 5a Capillary tube, 5b Solenoid valve, 10 Airtight container, 11 Electric motor, 11a Stator, 11b Rotor, 12 Compression mechanism, 13 suction pipe, 14 main shaft, 15 oil sump, 15a oil level, 16 discharge pipe, 17 accumulator, 17a filter, 18 holder, 19 lubricating oil outlet pipe, 19a opening, 20 discharged refrigerant gas temperature detecting means, 21 Cup, 22 Suction chamber, 23 Rolling piston, 24 Compression chamber, 31 DC brushless motor, 100 Heat pump cycle, 200 Water piping, 300 Lubricating oil circulation circuit.

Claims (12)

冷媒を循環させるヒートポンプサイクルと、
このヒートポンプサイクルに設置され、該ヒートポンプサイクルを流れる高温冷媒との熱交換により加熱流体を加熱する放熱器と、
前記ヒートポンプサイクルに設けられ、密閉容器を有し、該密閉容器内部の圧力雰囲気が吐出圧力となる高圧シェル方式の密閉形圧縮機と、
この密閉形圧縮機の前記密閉容器内部に形成され、該密閉形圧縮機の各摺動部を潤滑するための潤滑油を貯める油溜めと、
この油溜めから前記放熱器を通過し、その後絞り機構を経て前記密閉形圧縮機の入口となる吸入側へ戻る、前記ヒートポンプサイクルとは別の潤滑油循環回路と、
を備え、該潤滑油循環回路に前記油溜めの潤滑油を高低圧の圧力差によって循環させ、前記潤滑油を前記放熱器へ導き、冷媒とともに加熱流体と熱交換させて潤滑油を冷却し、その後前記絞り機構により減圧させ、前記密閉形圧縮機の入口となる吸入側に前記潤滑油を供給することを特徴とする冷媒循環装置。
A heat pump cycle for circulating the refrigerant;
A radiator that is installed in the heat pump cycle and heats the heating fluid by heat exchange with a high-temperature refrigerant flowing through the heat pump cycle;
A high-pressure shell-type hermetic compressor that is provided in the heat pump cycle, has a hermetic container, and a pressure atmosphere inside the hermetic container becomes a discharge pressure;
An oil sump that is formed inside the hermetic container of the hermetic compressor and stores lubricating oil for lubricating each sliding portion of the hermetic compressor;
A lubricating oil circulation circuit different from the heat pump cycle, which passes through the heat sink from the oil reservoir and then returns to the suction side which becomes the inlet of the hermetic compressor through a throttle mechanism,
And circulating the lubricating oil in the oil reservoir to the lubricating oil circulation circuit by a pressure difference between high and low pressure, guiding the lubricating oil to the radiator, heat-exchanging with the heating fluid together with the refrigerant, and cooling the lubricating oil, Thereafter, the refrigerant is depressurized by the throttling mechanism, and the lubricating oil is supplied to the suction side serving as the inlet of the hermetic compressor.
前記絞り機構を開度調整可能な電磁弁とし、該電磁弁の開度を調整することで、前記潤滑油循環回路を循環する前記潤滑油の量を調整し、前記密閉形圧縮機の吸入側に供給する前記潤滑油の量を制御することを特徴とする請求項1記載の冷媒循環装置。   The throttle mechanism is an electromagnetic valve whose opening degree can be adjusted, and the amount of the lubricating oil circulating in the lubricating oil circulation circuit is adjusted by adjusting the opening degree of the electromagnetic valve, and the suction side of the hermetic compressor The refrigerant circulation device according to claim 1, wherein the amount of the lubricating oil supplied to the refrigerant is controlled. 前記ヒートポンプサイクルは、吐出側の配管に吐出冷媒ガス温度を検知する吐出冷媒ガス温度検知手段、又は前記密閉容器の外壁に密閉容器温度を検知する密閉容器温度検知手段の少なくも1つを有し、該温度検知手段から得られる前記吐出冷媒ガス温度又は前記密閉容器温度の情報を因子として、前記電磁弁の開度を調整することを特徴とする請求項2記載の冷媒循環装置。   The heat pump cycle has at least one of a discharge refrigerant gas temperature detection means for detecting a discharge refrigerant gas temperature in a discharge side pipe or a closed container temperature detection means for detecting a closed container temperature on an outer wall of the closed container. 3. The refrigerant circulation device according to claim 2, wherein the opening degree of the electromagnetic valve is adjusted by using information on the discharged refrigerant gas temperature or the closed container temperature obtained from the temperature detecting means as a factor. 前記密閉形圧縮機は可変速対応の圧縮機とし、該圧縮機の運転回転数の情報を因子として、前記電磁弁の開度を調整することを特徴とする請求項2記載の冷媒循環装置。   3. The refrigerant circulation device according to claim 2, wherein the hermetic compressor is a variable speed compressor, and the opening degree of the electromagnetic valve is adjusted by using information on the operating rotational speed of the compressor as a factor. 運転圧力である吐出圧力及び吸入圧力の情報を因子に加え、前記電磁弁の開度を調整することを特徴とする請求項3記載の冷媒循環装置。   4. The refrigerant circulation device according to claim 3, wherein the opening degree of the electromagnetic valve is adjusted by adding information on discharge pressure and suction pressure, which are operating pressures, to factors. 前記密閉形圧縮機は可変速対応の圧縮機とし、該圧縮機の運転回転数の情報と、運転圧力である吐出圧力および吸入圧力の情報の複数因子により、前記電磁弁の開度を調整することを特徴とする請求項2記載の冷媒循環装置。   The hermetic compressor is a variable speed compressor, and the opening degree of the solenoid valve is adjusted by a plurality of factors including information on the operating rotational speed of the compressor and information on discharge pressure and suction pressure as operating pressure. The refrigerant circulating apparatus according to claim 2. 前記密閉形圧縮機の運転回転数の情報を因子に加え、前記電磁弁の開度を調整することを特徴とする請求項5記載の冷媒循環装置。   6. The refrigerant circulation device according to claim 5, wherein the opening degree of the electromagnetic valve is adjusted by adding information on the operating rotational speed of the hermetic compressor to a factor. 前記潤滑油循環回路は、前記放熱器を冷媒が通過する範囲に対して一部の範囲だけ放熱器を通過することを特徴とする請求項1記載の冷媒循環装置。   2. The refrigerant circulation device according to claim 1, wherein the lubricating oil circulation circuit passes through a radiator only in a part of a range in which the refrigerant passes through the radiator. 前記潤滑油循環回路を循環し、密閉形圧縮機の吸入側に供給される潤滑油の量を、冷媒に対する重量割合で10から20%の範囲とすることを特徴とする請求項1〜8のいずれかに記載の冷媒循環装置。   9. The amount of lubricating oil that circulates in the lubricating oil circulation circuit and is supplied to the suction side of the hermetic compressor is in the range of 10 to 20% by weight with respect to the refrigerant. The refrigerant circulation device according to any one of the above. 前記密閉形圧縮機は内部にフィルターを有するアキュームレータを保有し、前記潤滑油循環回路を循環した潤滑油を吸入側へ戻す位置を前記アキュームレータの上流側とすることを特徴とする請求項1〜9のいずれかに記載の冷媒循環装置。   10. The hermetic compressor includes an accumulator having a filter therein, and a position where the lubricating oil circulated through the lubricating oil circulation circuit is returned to the suction side is an upstream side of the accumulator. The refrigerant circulation device according to any one of the above. 前記冷媒として超臨界冷媒である二酸化炭素を使用し、前記加熱流体は水である給湯用のシステムであることを特徴とする請求項1〜10のいずれかに記載の冷媒循環装置。   The refrigerant circulation device according to claim 1, wherein carbon dioxide, which is a supercritical refrigerant, is used as the refrigerant, and the heating fluid is a hot water supply system that is water. 密閉容器内部の圧力雰囲気が吐出圧力となる高圧シェル方式であって、前記密閉容器の底部の油溜めに潤滑油を貯留する密閉形圧縮機において、
一方が前記油溜め内の前記潤滑油に開口し、他方が前記密閉容器の外部に開口し、前記潤滑油を前記油溜めから前記密閉容器の外部へ導出する潤滑油導出管を前記密閉容器の底部に設け、前記他方の外部への開口部の位置を、前記油溜め内の潤滑油の油面よりも高い位置とすることを特徴とする密閉形圧縮機。
In the hermetic compressor in which the pressure atmosphere inside the hermetic container is a discharge pressure, and the lubricating oil is stored in the oil sump at the bottom of the hermetic container,
One opening opens to the lubricating oil in the oil reservoir, the other opens to the outside of the hermetic container, and a lubricating oil outlet pipe for leading the lubricating oil from the oil reservoir to the outside of the hermetic container A hermetic compressor provided at the bottom, wherein the position of the opening to the other outside is higher than the oil level of the lubricating oil in the oil sump.
JP2004291295A 2004-10-04 2004-10-04 Refrigerant circulation system and hermetic compressor Pending JP2006105458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291295A JP2006105458A (en) 2004-10-04 2004-10-04 Refrigerant circulation system and hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291295A JP2006105458A (en) 2004-10-04 2004-10-04 Refrigerant circulation system and hermetic compressor

Publications (2)

Publication Number Publication Date
JP2006105458A true JP2006105458A (en) 2006-04-20
JP2006105458A5 JP2006105458A5 (en) 2007-02-15

Family

ID=36375418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291295A Pending JP2006105458A (en) 2004-10-04 2004-10-04 Refrigerant circulation system and hermetic compressor

Country Status (1)

Country Link
JP (1) JP2006105458A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115135A (en) * 2007-11-02 2009-05-28 Denso Corp Thrust slide bearing and scroll type compressor with thrust slide bearing
JP2010127521A (en) * 2008-11-27 2010-06-10 Sanyo Electric Co Ltd Air conditioner
WO2010131061A1 (en) * 2009-05-12 2010-11-18 JENSEN, Söby, Stefan Hermetically closed compressor and related methods
JP2011012895A (en) * 2009-07-02 2011-01-20 Panasonic Corp Heat pump device
CN101644247B (en) * 2009-08-26 2011-02-02 常熟市格威普气体设备有限公司 Refrigeration compressor for heat pump system of heat-pump water heater
ITMI20100429A1 (en) * 2010-03-16 2011-09-17 Climaveneta S P A THERMO FRIGORIFIA ENERGY PRODUCTION PLANT AND OPTIMIZATION METHOD OF ITS EFFICIENCY
JP2014145556A (en) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd Two-stage compression device and refrigeration/air-conditioning apparatus employing the same
CN104380009A (en) * 2012-05-09 2015-02-25 三菱电机株式会社 Refrigerant compressor and heat pump device
JP2015148194A (en) * 2014-02-06 2015-08-20 パナソニックIpマネジメント株式会社 Refrigerating circuit
CN108150421A (en) * 2017-12-19 2018-06-12 广东也节能科技有限公司 A kind of waste heat recovery system of air compressor
WO2018181057A1 (en) * 2017-03-31 2018-10-04 ダイキン工業株式会社 Refrigeration device
CN108915999A (en) * 2018-07-04 2018-11-30 蚌埠艾普压缩机制造有限公司 A kind of mixed device for cooling of the cooler enclosed of hydrogenation stations high pressure hydrogen compressor
CN109519355A (en) * 2019-01-23 2019-03-26 南京恒达压缩机有限公司 A kind of automatic oil changing device of air compressor machine lubrication
CN110332089A (en) * 2019-08-08 2019-10-15 北京杰利阳能源设备制造有限公司 A kind of gas compressor set of zero power supply
CN112815584A (en) * 2021-02-24 2021-05-18 孟雷 Low-filling-amount full liquid supply system and oil return method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818061A (en) * 1981-07-25 1983-02-02 富士電機株式会社 Refrigerator
JPH03271583A (en) * 1990-03-20 1991-12-03 Hitachi Ltd Scroll compressor
JPH05240512A (en) * 1992-02-26 1993-09-17 Daikin Ind Ltd Multi-element refrigerator
JPH06281270A (en) * 1993-03-31 1994-10-07 Aisin Seiki Co Ltd Air conditioner
JPH06337171A (en) * 1993-03-30 1994-12-06 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH07139825A (en) * 1993-11-15 1995-06-02 Nippondenso Co Ltd Freezer device
JPH11351709A (en) * 1998-06-05 1999-12-24 Fujitsu General Ltd Accumulator
JP2001174102A (en) * 1999-12-13 2001-06-29 Mitsubishi Heavy Ind Ltd Air conditioner
JP2001304701A (en) * 2000-04-19 2001-10-31 Denso Corp Heat pump type water heater
JP2002048421A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Refrigerating cycle system
JP2002180075A (en) * 2000-12-12 2002-06-26 Nippon Mitsubishi Oil Corp Refrigerating machine oil for carbon dioxide refrigerant and fluid composition for refrigerating machine
JP2003121031A (en) * 2001-10-12 2003-04-23 Denso Corp Accumulator
JP2003322421A (en) * 2002-05-02 2003-11-14 Chubu Electric Power Co Inc High pressure side pressure control method in supercritical vapor compression circuit and circuit device
JP2004061056A (en) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd Oil level detecting method and device for compressor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818061A (en) * 1981-07-25 1983-02-02 富士電機株式会社 Refrigerator
JPH03271583A (en) * 1990-03-20 1991-12-03 Hitachi Ltd Scroll compressor
JPH05240512A (en) * 1992-02-26 1993-09-17 Daikin Ind Ltd Multi-element refrigerator
JPH06337171A (en) * 1993-03-30 1994-12-06 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH06281270A (en) * 1993-03-31 1994-10-07 Aisin Seiki Co Ltd Air conditioner
JPH07139825A (en) * 1993-11-15 1995-06-02 Nippondenso Co Ltd Freezer device
JPH11351709A (en) * 1998-06-05 1999-12-24 Fujitsu General Ltd Accumulator
JP2001174102A (en) * 1999-12-13 2001-06-29 Mitsubishi Heavy Ind Ltd Air conditioner
JP2001304701A (en) * 2000-04-19 2001-10-31 Denso Corp Heat pump type water heater
JP2002048421A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Refrigerating cycle system
JP2002180075A (en) * 2000-12-12 2002-06-26 Nippon Mitsubishi Oil Corp Refrigerating machine oil for carbon dioxide refrigerant and fluid composition for refrigerating machine
JP2003121031A (en) * 2001-10-12 2003-04-23 Denso Corp Accumulator
JP2003322421A (en) * 2002-05-02 2003-11-14 Chubu Electric Power Co Inc High pressure side pressure control method in supercritical vapor compression circuit and circuit device
JP2004061056A (en) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd Oil level detecting method and device for compressor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115135A (en) * 2007-11-02 2009-05-28 Denso Corp Thrust slide bearing and scroll type compressor with thrust slide bearing
JP2010127521A (en) * 2008-11-27 2010-06-10 Sanyo Electric Co Ltd Air conditioner
WO2010131061A1 (en) * 2009-05-12 2010-11-18 JENSEN, Söby, Stefan Hermetically closed compressor and related methods
JP2011012895A (en) * 2009-07-02 2011-01-20 Panasonic Corp Heat pump device
CN101644247B (en) * 2009-08-26 2011-02-02 常熟市格威普气体设备有限公司 Refrigeration compressor for heat pump system of heat-pump water heater
ITMI20100429A1 (en) * 2010-03-16 2011-09-17 Climaveneta S P A THERMO FRIGORIFIA ENERGY PRODUCTION PLANT AND OPTIMIZATION METHOD OF ITS EFFICIENCY
EP2366967A1 (en) * 2010-03-16 2011-09-21 Climaveneta S.p.A. Plant for the production of thermo-frigorific energy and method for the optimization of its efficiency
CN104380009A (en) * 2012-05-09 2015-02-25 三菱电机株式会社 Refrigerant compressor and heat pump device
CN104380009B (en) * 2012-05-09 2017-05-03 三菱电机株式会社 Refrigerant compressor and heat pump device
JP2014145556A (en) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd Two-stage compression device and refrigeration/air-conditioning apparatus employing the same
JP2015148194A (en) * 2014-02-06 2015-08-20 パナソニックIpマネジメント株式会社 Refrigerating circuit
WO2018181057A1 (en) * 2017-03-31 2018-10-04 ダイキン工業株式会社 Refrigeration device
CN108150421A (en) * 2017-12-19 2018-06-12 广东也节能科技有限公司 A kind of waste heat recovery system of air compressor
CN108915999A (en) * 2018-07-04 2018-11-30 蚌埠艾普压缩机制造有限公司 A kind of mixed device for cooling of the cooler enclosed of hydrogenation stations high pressure hydrogen compressor
CN109519355A (en) * 2019-01-23 2019-03-26 南京恒达压缩机有限公司 A kind of automatic oil changing device of air compressor machine lubrication
CN110332089A (en) * 2019-08-08 2019-10-15 北京杰利阳能源设备制造有限公司 A kind of gas compressor set of zero power supply
CN112815584A (en) * 2021-02-24 2021-05-18 孟雷 Low-filling-amount full liquid supply system and oil return method thereof
CN112815584B (en) * 2021-02-24 2023-05-23 孟雷 Liquid filling and supplying system with low filling amount and oil return method thereof

Similar Documents

Publication Publication Date Title
KR102006045B1 (en) Screw compressor
JP2006105458A (en) Refrigerant circulation system and hermetic compressor
JP4967435B2 (en) Refrigeration equipment
JP4715615B2 (en) Refrigeration equipment
JP4816220B2 (en) Refrigeration equipment
WO2015025514A1 (en) Refrigeration device
JP2007285681A5 (en)
WO2015025515A1 (en) Refrigeration device
JP2008209036A (en) Refrigeration device
WO2014083901A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP4550843B2 (en) Compressor
JP2011202817A (en) Refrigerating cycle device
CN103175346B (en) Oil injection type split-compressor and heat pump
JP4591402B2 (en) Refrigeration equipment
JP2009092060A (en) Oil separator
JP6370593B2 (en) Oil-cooled multistage screw compressor and oil draining method thereof
EP1705379B1 (en) Screw compressor
WO2015104822A1 (en) Refrigeration cycle device
JP4720594B2 (en) Refrigeration equipment
JP4720593B2 (en) Refrigeration equipment
JP2013238191A (en) Compressor
EP3745049B1 (en) Refrigeration apparatus
JP6091575B2 (en) Hermetic compressor and refrigeration cycle apparatus provided with the hermetic compressor
JP5892261B2 (en) Refrigeration cycle apparatus and heat pump water heater
JP5688903B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A621 Written request for application examination

Effective date: 20061221

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090729

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090818

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323