JPH06281270A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH06281270A
JPH06281270A JP9494493A JP9494493A JPH06281270A JP H06281270 A JPH06281270 A JP H06281270A JP 9494493 A JP9494493 A JP 9494493A JP 9494493 A JP9494493 A JP 9494493A JP H06281270 A JPH06281270 A JP H06281270A
Authority
JP
Japan
Prior art keywords
oil
compressor
temperature
gas
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9494493A
Other languages
Japanese (ja)
Inventor
Kan Kushiro
款 久城
Hiroki Aoshima
宏樹 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP9494493A priority Critical patent/JPH06281270A/en
Publication of JPH06281270A publication Critical patent/JPH06281270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To maintain a required amount of oil constantly in a compressor by connecting an oil separator in a refrigerant feed line between a compressor and a four-way valve to the compressor through two oil circuits and providing an oil-bypass valve in one of the oil circuits. CONSTITUTION:High-temperature, high-pressure gas from a comppressor 1 in the quantities in excess of the required quantities is returned to an accumulator 7 after a hot-gas bypass valve 12 in a line interconnecting the downstream side of an oil separator 9 and the accumulator 7 is actuated. At this moment, oil having been separated from gas at the separator 9 flows into an oil cooler 11 through a filter and is returned to the compressor 1, wherein two oil return circuits 13, 14 of capillary tube are utilized. An oil bypass valve 15 which is opened and closed by indoor temperature is provided in the circuit 14 and when return oil in the quantities larger than usually required is needed, the oil bypass valve 15 is opened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、省エネルギータイプの
空調装置に関し、特に詳述すれば、ガスヒートポンプタ
イプの空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy-saving type air conditioner, and more particularly to a gas heat pump type air conditioner.

【0002】[0002]

【従来の技術】一般に空調システムは、電気モータによ
りコンプレッサーを駆動するタイプのものが普及してい
るが、このタイプのものは、電気料金が高く維持費がか
さむ欠点を有す。この欠点解消のため、都市ガス、LP
ガスを用いるガスエンジンによりコンプレッサーを駆動
するタイプが電気モータを用いるタイプに代って普及し
つつある。ガスエンジンを用いる方式は、エンジンの排
熱を利用でき、スピード暖房が可能な利点を有す。
2. Description of the Related Art Generally, air-conditioning systems of the type in which a compressor is driven by an electric motor are in widespread use, but this type of air-conditioning system has the drawback of high electricity charges and high maintenance costs. To eliminate this drawback, city gas, LP
A type in which a compressor is driven by a gas engine that uses gas is becoming widespread instead of a type that uses an electric motor. The method using a gas engine has an advantage that exhaust heat of the engine can be used and speed heating is possible.

【0003】電動モータを用いるタイプも、ガスエンジ
ンを用いるタイプも冷暖房の基本サイクルは同じであ
る。冷房サイクルは、コンプレッサーからの高温高圧ガ
スを四方切換弁を介して室外機熱交換器に送り、高温高
圧ガスを凝縮させ高温高圧液とさせる。高温高圧液は、
膨脹弁により低温低圧の気液二相となって室内機熱交換
器に入り、蒸発して低温低圧ガスとなり、室内冷房をな
して、低温低圧ガスがコンプレッサーに戻る。このサイ
クルのくり返しにより冷房を行なう。暖房サイクルは、
コンプレッサーからの高温高圧ガスを四方切換弁を介し
て室内機熱交換器に送り、高温高圧ガスを凝縮させ高温
高圧液とさせ室内暖房を行なう。高温高圧液は膨脹弁に
より、低温低圧の気液二相となって室外機熱交換器に入
り、外部から熱をとり蒸発して低温低圧ガスとなってコ
ンプレッサーに戻る。このサイクルのくり返しにより暖
房を行なう。
Both the type using an electric motor and the type using a gas engine have the same basic cycle of heating and cooling. In the cooling cycle, the high-temperature high-pressure gas from the compressor is sent to the outdoor unit heat exchanger via the four-way switching valve, and the high-temperature high-pressure gas is condensed into a high-temperature high-pressure liquid. The high temperature and high pressure liquid is
The expansion valve forms a low-temperature low-pressure gas-liquid two-phase into the indoor unit heat exchanger, evaporates into a low-temperature low-pressure gas, performs indoor cooling, and returns the low-temperature low-pressure gas to the compressor. Cooling is performed by repeating this cycle. The heating cycle is
The high-temperature high-pressure gas from the compressor is sent to the indoor unit heat exchanger via a four-way switching valve, and the high-temperature high-pressure gas is condensed to form a high-temperature high-pressure liquid for indoor heating. The high-temperature high-pressure liquid enters the outdoor unit heat exchanger as a low-temperature low-pressure gas-liquid two-phase by the expansion valve, takes heat from the outside and evaporates to become a low-temperature low-pressure gas and returns to the compressor. Heating is performed by repeating this cycle.

【0004】[0004]

【本発明が解決しようとする課題】このような空調シス
テムは、コンプレッサーから吐出された冷媒中のオイル
をオイルセパレータで分離し、これをコンプレッサーに
戻す。この場合、キャピラリチューブを用いるが、圧力
差、温度、オイル粘性によりオイルの戻り量が変化す
る。たとえば、低温冷房および低温暖房の場合、オイル
の戻りが少く、又、高温冷房時にはオイルの戻りが大と
なり過ぎる。それ故に、本発明は、すべての運転条件下
で、必要量のオイルの戻りを可能にさせる。
In such an air conditioning system, the oil in the refrigerant discharged from the compressor is separated by the oil separator and returned to the compressor. In this case, a capillary tube is used, but the amount of returned oil changes depending on the pressure difference, temperature, and oil viscosity. For example, in the case of low temperature cooling and low temperature heating, there is little oil return, and during high temperature cooling the oil returns too much. Therefore, the present invention allows for the return of the required amount of oil under all operating conditions.

【0005】[0005]

【課題を解決するための手段】本発明は、前述した課題
を解決するために、コンプレッサーと四方切換弁との間
の冷媒供給ライン中のオイルセパレータを少くとも二本
のオイル回路を介してコンプレッサーに結合させ、一方
のオイル回路にオイルバイパス弁を配す手段を採用す
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an oil separator in a refrigerant supply line between a compressor and a four-way switching valve via at least two oil circuits. The oil bypass valve is connected to one of the oil circuits.

【0006】[0006]

【作用】暖房時には室内温度、冷房時には外気温に応
じ、オイルバイパス弁を開閉操作し、コンプレッサーに
必要な量のオイルを、いかなる運転条件下でも確保す
る。
[Function] The oil bypass valve is opened and closed according to the room temperature during heating and the outside air temperature during cooling to secure the required amount of oil for the compressor under any operating condition.

【0007】[0007]

【実施例】図1に参照して空調サイクルの基本原理を説
明する。暖房時コンプレッサー1からの高温高圧ガス
が、室内機熱交換器2に入り、外部へ熱を出し即ち室内
暖房をなすが、絞り機構3を通るため、高温高圧ガスが
気液二相となって、過冷却熱交換部4に入る。ここで高
温高圧液となって膨脹弁5に入り、低温低圧液に変態
し、室外機熱交換器6に入り、外部からの熱により蒸発
して低温低圧ガスとなって、コンプレッサー1に戻る。
冷房時は、前述とは逆のサイクルをなし、室内機熱交換
器2が室内の熱を奪い低温低圧液を低温低圧ガスに変態
させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic principle of an air conditioning cycle will be described with reference to FIG. The high-temperature high-pressure gas from the compressor 1 during heating enters the indoor unit heat exchanger 2 and outputs heat to the outside, that is, performs indoor heating. Then, the supercooling heat exchange section 4 is entered. Here, the high-temperature high-pressure liquid enters the expansion valve 5, transforms into the low-temperature low-pressure liquid, enters the outdoor unit heat exchanger 6, evaporates by the heat from the outside, becomes a low-temperature low-pressure gas, and returns to the compressor 1.
During cooling, the cycle opposite to the above is performed, and the indoor unit heat exchanger 2 absorbs heat in the room to transform the low temperature low pressure liquid into low temperature low pressure gas.

【0008】前述した暖房時のサイクルの圧力とエンタ
ルピーの関係を図2に示す。同図から明らかなように、
絞り機構3で気液二相とさせ、次いで液相とさせ膨脹弁
5に入る。絞り機構3により気液二相としたことによ
り、省冷媒を可能にする。
FIG. 2 shows the relationship between the cycle pressure during heating and the enthalpy. As is clear from the figure,
The expansion mechanism 5 makes the gas-liquid two phases and then the liquid phase, and enters the expansion valve 5. Refrigerant can be saved by using gas-liquid two-phase by the throttling mechanism 3.

【0009】図3に詳細な実施例を示す。暖房時の例を
とってそのサイクルを説明する。アキュムレータ7にフ
ィルター8を介して接続されたコンプレッサー1からの
高温高圧のガスを、オイルセパレータ9と四方切換弁1
0を介して、室内機熱交換器2に送る。室内機熱交換器
2は、冷媒を凝縮させ、室内を暖房させながら高温高圧
液とする。しかし、絞り機構3による圧降下のため気液
二相となり、過冷却熱交換部4に気液二相を入れ、これ
を液相とさせる。この液相は、膨脹弁5により、低温低
圧液となって室外機熱交換器6に入る。室外機熱交換器
6は、低温低圧液を、外部熱により蒸発させ、低温低圧
ガスとさせる。低温低圧ガスは、四方切換弁10とオイ
ル冷却器11とを介して、アキュムレータ7へ戻る。
FIG. 3 shows a detailed embodiment. The cycle will be described by taking an example of heating. The high-temperature and high-pressure gas from the compressor 1 connected to the accumulator 7 via the filter 8 is supplied to the oil separator 9 and the four-way switching valve 1.
0 to the indoor unit heat exchanger 2. The indoor unit heat exchanger 2 condenses the refrigerant into a high-temperature high-pressure liquid while heating the room. However, due to the pressure drop by the throttling mechanism 3, the gas-liquid two-phase is formed, and the gas-liquid two-phase is introduced into the supercooling heat exchange section 4 to make it the liquid phase. This liquid phase becomes low-temperature low-pressure liquid by the expansion valve 5 and enters the outdoor unit heat exchanger 6. The outdoor unit heat exchanger 6 evaporates the low-temperature low-pressure liquid by external heat to form a low-temperature low-pressure gas. The low-temperature low-pressure gas returns to the accumulator 7 via the four-way switching valve 10 and the oil cooler 11.

【0010】コンプレッサー1からの必要以上の高温高
圧ガスは、オイルセパレータ9の下流側とアキュムレー
タ7とを結合させるライン中のホットガスバイパス弁1
2を動作させ、アキュムレータ7へ戻す。
Unnecessarily high temperature and high pressure gas from the compressor 1 is connected to the hot gas bypass valve 1 in the line connecting the downstream side of the oil separator 9 and the accumulator 7.
2 is operated and returned to the accumulator 7.

【0011】オイルセパレータ9でガスから分離したオ
イルは、フィルターを介してオイル冷却器11へ流入す
る。通常の熱交換器の構成のオイル冷却器11内のオイ
ルは、室外機熱交換器6からの低温低圧のガス温度を上
げ、自身の温度を下げて、コンプレッサー1へ戻る。こ
の際、キャピラリチューブの二つのオイル戻し回路1
3、14が利用され、一方の回路14に室内温度(暖房
時)又は外気温(冷房時)により開閉するオイルバイパ
ス弁15を配し、通常のオイル戻し量以上のオイル戻し
を必要とする時、オイルバイパス弁15を開とする。
The oil separated from the gas by the oil separator 9 flows into the oil cooler 11 through the filter. The oil in the oil cooler 11 having a normal heat exchanger configuration raises the temperature of the low-temperature low-pressure gas from the outdoor unit heat exchanger 6, lowers its own temperature, and returns to the compressor 1. At this time, the two oil return circuits 1 of the capillary tube
3 and 14 are used, and one circuit 14 is provided with an oil bypass valve 15 that opens and closes depending on the indoor temperature (when heating) or the outside temperature (when cooling), and it is necessary to return more oil than the normal oil return amount. The oil bypass valve 15 is opened.

【0012】過冷却熱交換部4の下流側を、液インジェ
クトシン弁16を介して、アキュムレータ7へ接続し、
液相の一部をアキュムレータ7へ戻すことを可能にす
る。
The downstream side of the supercooling heat exchange section 4 is connected to the accumulator 7 via the liquid injector syn valve 16.
It makes it possible to return part of the liquid phase to the accumulator 7.

【0013】オイル冷却器11の下流側の感温筒17と
膨脹弁5とを接続し、感温筒17からの温度信号により
膨脹弁5の開度を調節させる。たとえば、感温筒17か
らの温度信号が上ると、膨脹弁5の開度を大とさせる。
The temperature sensing cylinder 17 on the downstream side of the oil cooler 11 is connected to the expansion valve 5, and the opening of the expansion valve 5 is adjusted by the temperature signal from the temperature sensing cylinder 17. For example, when the temperature signal from the temperature sensing cylinder 17 rises, the opening degree of the expansion valve 5 is increased.

【0014】暖房時の冷媒のサイクルを述べたが、冷房
時には、四方切換弁10を切換え、コンプレッサー1か
らの高温高圧ガスを室外機熱交換器6へ送り、これを凝
縮させ高温高圧液とする。冷媒は、次いで、膨脹弁5と
蒸発器としての室内機熱交換器2とを介して、アキュム
レータ7へ戻る。これらのサイクルは、暖房時の冷媒の
流れと逆になるもので、詳細な説明は省略する。尚、冷
房時、冷媒は絞り機構3をバイパスする。
Although the refrigerant cycle during heating has been described, during cooling, the four-way switching valve 10 is switched, the high temperature high pressure gas from the compressor 1 is sent to the outdoor unit heat exchanger 6, and this is condensed into a high temperature high pressure liquid. . The refrigerant then returns to the accumulator 7 via the expansion valve 5 and the indoor unit heat exchanger 2 as an evaporator. These cycles are the reverse of the flow of the refrigerant during heating, and detailed description thereof will be omitted. During cooling, the refrigerant bypasses the throttle mechanism 3.

【0015】[0015]

【効果】コンプレッサーへのオイル戻り量の少ない運転
領域でのみ、電磁弁のオイルバイパス弁を開閉操作すれ
ばよいので、コンプレッサーへの必要オイル量を常時確
保できる。
[Effect] Since the oil bypass valve of the solenoid valve can be opened / closed only in the operation region where the amount of oil returned to the compressor is small, the required amount of oil to the compressor can be secured at all times.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空調装置の原理を示す図である。FIG. 1 is a diagram showing the principle of an air conditioner of the present invention.

【図2】エンタルピーと圧力との関係を示すグラフ図で
ある。
FIG. 2 is a graph showing the relationship between enthalpy and pressure.

【図3】本発明の一例の詳細を示す図である。FIG. 3 is a diagram showing details of an example of the present invention.

【符号の説明】[Explanation of symbols]

1 コンプレッサー 2、6 熱交換器 3 絞り機構 4 過冷却熱交換部 5 膨脹弁 9 オイルセパレータ 10 四方切換弁 11 オイル冷却器 13、14 キャピラリーチューブ回路 15 バイパス弁 1 Compressor 2, 6 Heat Exchanger 3 Throttle Mechanism 4 Supercooling Heat Exchange Section 5 Expansion Valve 9 Oil Separator 10 Four-way Switching Valve 11 Oil Cooler 13, 14 Capillary Tube Circuit 15 Bypass Valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒回路が、コンプレッサーと、四方切
換弁と、室内機熱交換器と、過冷却熱交換部と、膨脹弁
と、および室外機熱交換器とを有する空調装置におい
て、コンプレッサーと四方切換弁との間の冷媒供給ライ
ン中のオイルセパレータを少くとも二本のオイル回路を
介してコンプレッサーに結合させ、一方のオイル回路に
オイルバイパス弁を設けることを特徴とする空調装置。
1. A compressor in an air conditioner in which a refrigerant circuit has a compressor, a four-way switching valve, an indoor unit heat exchanger, a subcooling heat exchange section, an expansion valve, and an outdoor unit heat exchanger. An air conditioner characterized in that an oil separator in a refrigerant supply line between a four-way switching valve and a compressor is connected to a compressor via at least two oil circuits, and one oil circuit is provided with an oil bypass valve.
JP9494493A 1993-03-31 1993-03-31 Air conditioner Pending JPH06281270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9494493A JPH06281270A (en) 1993-03-31 1993-03-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9494493A JPH06281270A (en) 1993-03-31 1993-03-31 Air conditioner

Publications (1)

Publication Number Publication Date
JPH06281270A true JPH06281270A (en) 1994-10-07

Family

ID=14124061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9494493A Pending JPH06281270A (en) 1993-03-31 1993-03-31 Air conditioner

Country Status (1)

Country Link
JP (1) JPH06281270A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105458A (en) * 2004-10-04 2006-04-20 Mitsubishi Electric Corp Refrigerant circulation system and hermetic compressor
JP2007139276A (en) * 2005-11-16 2007-06-07 Sanden Corp Cooling system
EP2075518A2 (en) 2007-12-26 2009-07-01 Sanyo Electric Co., Ltd. Air conditioner
JP2011133209A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105458A (en) * 2004-10-04 2006-04-20 Mitsubishi Electric Corp Refrigerant circulation system and hermetic compressor
JP2007139276A (en) * 2005-11-16 2007-06-07 Sanden Corp Cooling system
EP2075518A2 (en) 2007-12-26 2009-07-01 Sanyo Electric Co., Ltd. Air conditioner
JP2011133209A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus

Similar Documents

Publication Publication Date Title
US4646539A (en) Transport refrigeration system with thermal storage sink
MXPA02006289A (en) Multi-type gas heat pump air conditioner.
US4240269A (en) Heat pump system
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP2007127369A (en) Gas heat pump type air conditioner
JPH06281270A (en) Air conditioner
JP2000292016A (en) Refrigerating cycle
JP2003121025A (en) Heating-cooling combination appliance
JPH10253204A (en) Method for operating air conditioner and air conditioner
JPH06281267A (en) Air conditioner
JP3365027B2 (en) Air conditioner
JP2000028186A (en) Air conditioner
JPH06281269A (en) Air conditioner
JP4773637B2 (en) Multi-type gas heat pump type air conditioner
JP2757660B2 (en) Thermal storage type air conditioner
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP3138491B2 (en) Air conditioner
JP4658395B2 (en) Multi-type gas heat pump type air conditioner
JP2833339B2 (en) Thermal storage type air conditioner
JPH03170758A (en) Air conditioner
JPS58102067A (en) Air conditioner
JP2001280729A (en) Refrigerating device
JP4658394B2 (en) Multi-type gas heat pump type air conditioner
JPH06323674A (en) Air-conditioner
KR100329269B1 (en) Device and method for defrosting for inverter cooling and heating system