JP2003322421A - High pressure side pressure control method in supercritical vapor compression circuit and circuit device - Google Patents

High pressure side pressure control method in supercritical vapor compression circuit and circuit device

Info

Publication number
JP2003322421A
JP2003322421A JP2002130513A JP2002130513A JP2003322421A JP 2003322421 A JP2003322421 A JP 2003322421A JP 2002130513 A JP2002130513 A JP 2002130513A JP 2002130513 A JP2002130513 A JP 2002130513A JP 2003322421 A JP2003322421 A JP 2003322421A
Authority
JP
Japan
Prior art keywords
oil
pressure
compressor
pressure side
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002130513A
Other languages
Japanese (ja)
Other versions
JP3990186B2 (en
Inventor
Sumio Watanabe
澂雄 渡邉
Yuji Murase
祐司 村瀬
Katsumi Fujima
克己 藤間
Tomoiku Yoshikawa
朝郁 吉川
Hirokazu Yoneda
弘和 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mayekawa Manufacturing Co
Original Assignee
Chubu Electric Power Co Inc
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mayekawa Manufacturing Co filed Critical Chubu Electric Power Co Inc
Priority to JP2002130513A priority Critical patent/JP3990186B2/en
Publication of JP2003322421A publication Critical patent/JP2003322421A/en
Application granted granted Critical
Publication of JP3990186B2 publication Critical patent/JP3990186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive circuit device and a control method for controlling high pressure side pressure in a supercritical vapor compression circuit using an oil feeding type screw compressor. <P>SOLUTION: This supercritical vapor compression circuit device is composed of the oil feeding type screw compressor, an oil separator, a gas cooler, an expansion valve, a closed circuit including an evaporator, and a circuit for resupplying oil supplied to the compressor, included in delivery gas, and separated by the oil separator to the compressor, and is provided with at least one of an adjusting means for adjusting at least one of a flow rate or a temperature of the supply oil or an adjusting means for adjusting an oil quantity in the oil separator by supplying the oil from an external part in the oil separator or taking out the oil to the external part in the circuit for supplying the oil to the compressor, and is provided with a control means for controlling these adjusting means so that COP becomes optimal. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、給油式スクリュー
圧縮機を備え、超臨界条件で運転される冷凍、空調、お
よびヒートポンプのような蒸気圧縮回路に関し、より詳
しくは、外部条件が変った際の冷凍能力を維持確保し、
および外部条件の変化に対応して最大の効率で運転でき
るように高圧側の圧力を制御する制御方法および回路装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression circuit such as a refrigeration, air conditioning, and heat pump which is equipped with a refueling screw compressor and is operated under supercritical conditions, and more specifically, when external conditions change. Maintain and secure the refrigeration capacity of
Also, the present invention relates to a control method and a circuit device for controlling the pressure on the high-pressure side so as to operate with maximum efficiency in response to changes in external conditions.

【0002】[0002]

【従来の技術】給油式スクリュー圧縮機は信頼性、耐久
性が優れていて、振動も少なくコストも低いことから、
冷凍機等に多用されている。従来、冷凍装置や空調、ヒ
ートポンプの冷媒として多用されてきたハロゲン化炭化
水素(フロン)系冷媒はオゾン層の破壊をもたらす原因
物質として規制され、脱フロン対策の一つとして、例え
ば二酸化炭素(CO2)を冷媒として使用する蒸気圧縮冷
凍サイクルを行う装置、運転方法が種々提案されてい
る。CO2は従来から一部の冷凍装置には冷媒として用い
られていたが、その臨界温度が31℃と従来多用されて
いたフロンの臨界温度(例えばR12では約112℃)
と比べて低いので、圧縮された冷媒を冷却する放熱器
(凝縮器)へ入る冷却水あるいは冷却空気の温度が高い
夏季等では冷却能力を確保するために、高圧側が冷媒の
臨界点を越えた状態となる超臨界蒸気圧縮サイクルとし
て運転することが行われる。
2. Description of the Related Art Refueling type screw compressors are excellent in reliability and durability, have less vibration, and have low cost.
It is often used in refrigerators. Conventionally, halogenated hydrocarbon (CFC) refrigerants, which have been frequently used as refrigerants for refrigeration systems, air conditioners, and heat pumps, are regulated as a causative agent that causes destruction of the ozone layer. Various devices and operation methods for vapor compression refrigeration cycle using 2 ) as a refrigerant have been proposed. CO 2 has conventionally been used as a refrigerant in some refrigeration systems, but its critical temperature is 31 ° C, which is the critical temperature for CFCs that have been widely used in the past (for example, about 12 ° C for R12).
Since it is lower than that of the refrigerant, the high pressure side exceeded the critical point of the refrigerant in order to secure the cooling capacity in summer when the temperature of the cooling water or cooling air entering the radiator (condenser) that cools the compressed refrigerant is high. It is operated as a supercritical vapor compression cycle in which the state is reached.

【0003】図4は、超臨界蒸気圧縮サイクルの圧力−
エンタルピ線図(P−h線図)を示す。同図において、K
は冷媒の臨界点であり、CO2の場合は温度TKは31.0
5℃、臨界圧力PKは7.39MPaである。S−K線は飽和
液線、K−V線は飽和蒸気線であり、TI、TK、TX、TY、T
Z、TW線は等温線である。同図において横軸は比エンタ
ルピ(単位質量当りのエンタルピ)であるが単にエンタ
ルピと記した。以下、本明細書においては比エンタルピ
を単にエンタルピと記す。A−B−C−Dは一つの超臨界蒸
気圧縮サイクルを示し、飽和蒸気よりも若干過熱状態の
A点の冷媒が圧縮機に吸入され、該冷媒は圧縮機で圧縮
されて圧力と温度が上昇してB点状態となる。該圧縮さ
れた冷媒がガスクーラで冷却媒体により温度TXまで冷却
されるとC点状態になる。C点状態のガスは膨張弁(絞り
弁)で絞られて等エンタルピ変化をして圧力と温度が降
下しD点の湿り蒸気状態となる。該湿り蒸気の液相分が
蒸発器内で被冷却媒体から蒸発潜熱を奪って蒸発し、さ
らに被冷却媒体からの奪熱により若干過熱状態となった
温度TIのA点の状態となり、冷媒は再び圧縮機に吸入さ
れて圧縮される。このサイクルにおいて、h1が蒸発器に
おける冷媒のエンタルピ増大即ち被冷却媒体からの奪熱
量であり、H1がガスクーラにおける冷媒のエンタルピの
減少即ち冷却媒体への放熱量である。
FIG. 4 shows the pressure of the supercritical vapor compression cycle--
An enthalpy diagram (Ph diagram) is shown. In the figure, K
Is the critical point of the refrigerant, and in the case of CO 2 , the temperature T K is 31.0
5 ° C., the critical pressure P K is 7.39MPa. The SK line is a saturated liquid line, the KV line is a saturated vapor line, and T I , T K , T X , T Y , T
Z, T W lines are isotherms. In the figure, the horizontal axis is the specific enthalpy (enthalpy per unit mass), but is simply described as enthalpy. Hereinafter, in the present specification, the specific enthalpy is simply referred to as enthalpy. A-B-C-D show one supercritical vapor compression cycle, which is slightly superheated than saturated vapor.
The refrigerant at the point A is sucked into the compressor, and the refrigerant is compressed by the compressor to increase the pressure and temperature, and the state becomes the point B. When the compressed refrigerant is cooled to the temperature T X by the cooling medium by the gas cooler, the state becomes point C. The gas at the point C is throttled by an expansion valve (throttle valve) and undergoes an isenthalpic change, the pressure and temperature drop, and a wet vapor state at the point D is reached. The liquid phase component of the wet vapor takes evaporation latent heat from the medium to be cooled in the evaporator and evaporates, and becomes a state of point A of the temperature T I that is slightly overheated due to the heat taken from the medium to be cooled, and the refrigerant Is again sucked into the compressor and compressed. In this cycle, h 1 is the increase in the enthalpy of the refrigerant in the evaporator, that is, the amount of heat removed from the medium to be cooled, and H 1 is the decrease in the enthalpy of the refrigerant in the gas cooler, that is, the amount of heat released to the cooling medium.

【0004】前記ガスクーラの冷却媒体である水あるい
は空気の温度が高くて該ガスクーラ出口の冷媒温度をTX
よりも高いTYまでしか冷却できない場合は、サイクルは
A−B−C'−D'となり、蒸発器での被冷却媒体からの奪熱
量はh2に減少し、ガスクーラでの冷却媒体への放熱量は
H2に減少する。圧縮機出口状態をB点よりも圧力が高い
B”にすると、サイクルはA−B−C''−D''となり、蒸発
器での被冷却媒体からの奪熱量はh3に、ガスクーラでの
冷却媒体への放熱量はH3になり、両者はそれぞれサイク
ルA−B−C−Dの場合にほぼ等しくなる。
The temperature of water or air, which is the cooling medium of the gas cooler, is high, and the refrigerant temperature at the outlet of the gas cooler is T X
If it can only cool to a higher T Y than
A-B-C'-D ', the amount of heat taken from the medium to be cooled in the evaporator is reduced to h 2 , and the amount of heat released to the cooling medium in the gas cooler is
Reduced to H 2 . Pressure at the compressor outlet is higher than point B
When the B ", cycle A-B-C '' - D '' , and the deactivating amount of heat from the cooling medium in the evaporator is h 3, the heat radiation amount of the cooling medium in the gas cooler becomes H 3 , And both are almost equal in the case of cycles A-B-C-D.

【0005】このように、冷凍サイクルの高圧側圧力を
高くすることにより冷凍能力を高めることができる。高
圧側の圧力を高める方法として、蒸発器と圧縮機入口の
間に低圧冷媒レシーバを設け絞り弁の操作によって高圧
側の充填冷媒質量を変えて圧力を変える装置が特公平7
−18602号公報に開示されており、また、絞り弁と
蒸発器の間に分離膨張容器を設け該容器の冷媒貯留量を
調節することによって回路の充填冷媒質量を変えて高圧
側の圧力を変える装置が特許第2804844号に開示
されている。また、前記特公平7−18602号公報に
開示された装置においてガスクーラ出口の冷媒温度を検
出し、該温度に対して冷凍サイクルの成績係数(COP)が
最大となる高圧側圧力となるように絞り弁を操作する高
圧側圧力調節方法が特許第2931668号に開示され
ている。さらに、ガスクーラと絞り弁の中間に、内部に
設けた移動可能な隔壁手段を移動させることによって高
圧側の回路容積を変えて高圧側圧力を変える可変容積要
素を設けた超臨界蒸気圧縮回路装置が開示されている。
As described above, the refrigerating capacity can be enhanced by increasing the pressure on the high pressure side of the refrigerating cycle. As a method for increasing the pressure on the high pressure side, a device for changing the pressure by changing the mass of the refrigerant charged on the high pressure side by operating a throttle valve by providing a low pressure refrigerant receiver between the evaporator and the compressor inlet is disclosed in Japanese Patent Publication No.
No. -18602, a separate expansion container is provided between the throttle valve and the evaporator to adjust the refrigerant storage amount of the container to change the mass of the refrigerant charged in the circuit and change the pressure on the high pressure side. The device is disclosed in Japanese Patent No. 2804844. Further, in the apparatus disclosed in Japanese Patent Publication No. 7-18602, the refrigerant temperature at the gas cooler outlet is detected and throttled so that the coefficient of performance (COP) of the refrigeration cycle is the maximum pressure side with respect to the temperature. A high-side pressure regulation method for operating a valve is disclosed in Japanese Patent No. 2931668. Further, a supercritical vapor compression circuit device provided with a variable volume element for changing the high-pressure side circuit volume by moving a movable partition means provided inside the gas cooler and the throttle valve is provided. It is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記い
ずれの開示においても、高圧側圧力を調節するために、
新たに低圧冷媒レシーバ、分離膨張容器、あるいは可変
容積要素を設ける必要がある。例えば、CO2を冷媒とす
る超臨界蒸気圧縮回路では低圧側といえども相当に高い
圧力となるので、これらの容器は相当の耐圧性が求めら
れ、また相当のスペースをも要するので、コストアップ
の要因となる。本発明の目的は、給油式スクリュー圧縮
機を用いた冷凍サイクル回路に特に新規に容器等を設け
ることなく高圧側圧力を調節して常に効率の高い運転が
できる制御方法及び回路装置を提供することである。
However, in any of the above disclosures, in order to adjust the pressure on the high-pressure side,
It is necessary to newly provide a low pressure refrigerant receiver, a separate expansion container, or a variable volume element. For example, in a supercritical vapor compression circuit using CO 2 as a refrigerant, the pressure is considerably high even on the low pressure side, so these containers require considerable pressure resistance and require a considerable amount of space. It becomes a factor of. An object of the present invention is to provide a control method and a circuit device that can always operate with high efficiency by adjusting the high-pressure side pressure without newly providing a container or the like in a refrigeration cycle circuit using a refueling screw compressor. Is.

【0007】[0007]

【課題を解決するための手段】本発明の超臨界蒸気圧縮
回路における高圧側圧力の制御方法は給油式スクリュー
圧縮機と、油分離器と、ガスクーラと、膨張弁と、蒸発
器を含む閉回路と、前記圧縮機に供給されて吐出ガスに
含まれ前記油分離器で分離された油を前記圧縮機に再び
供給する回路とからなり、前記閉回路の高圧側が臨界超
過圧力において作動する超臨界蒸気圧縮回路における高
圧側圧力制御方法において、前記圧縮機に供給される油
の流量もしくは温度の少なくとも1を調節することによ
って前記圧縮機の吐出ガス温度を調節し、該吐出ガス温
度調節により高圧側の圧力を調節することを特徴とす
る。
A method for controlling a high-pressure side pressure in a supercritical vapor compression circuit according to the present invention is a closed circuit including a refueling type screw compressor, an oil separator, a gas cooler, an expansion valve and an evaporator. And a circuit for supplying again the compressor the oil supplied to the compressor and contained in the discharge gas and separated by the oil separator, wherein the high-pressure side of the closed circuit operates at a supercritical pressure. In the high-pressure side pressure control method in a vapor compression circuit, the discharge gas temperature of the compressor is adjusted by adjusting at least one of the flow rate or temperature of oil supplied to the compressor, and the high-pressure side is adjusted by adjusting the discharge gas temperature. It is characterized by adjusting the pressure of.

【0008】給油式スクリュー圧縮機は圧縮機ロータ間
に油を噴射することによりロータの潤滑に資するととも
に、ロータ間やロータとケーシング間のシール性が向上
されて内部漏れが少なく、また圧縮中のガスが油により
冷却されるため圧縮動力が節減される等の特徴を有して
いる。ガス中に噴射された油は吐出後に油分離器で分離
されて再び圧縮機に供給され、油が分離されたガスが所
定の所に供給される。この圧縮機に供給される油の流量
もしくは温度の少なくとも1を変えることにより吐出ガ
スの温度を変えることができる。
The oil-filled screw compressor contributes to the lubrication of the rotor by injecting oil between the compressor rotors, and the sealability between the rotors and between the rotor and the casing is improved so that internal leakage is small, and during compression. Since the gas is cooled by oil, the compression power is saved. The oil injected into the gas is separated by the oil separator after being discharged and is supplied to the compressor again, and the gas separated from the oil is supplied to a predetermined place. The temperature of the discharge gas can be changed by changing at least one of the flow rate and the temperature of the oil supplied to the compressor.

【0009】超臨界蒸気圧縮回路では、高圧側は常に気
体であるので、ある質量の気体の容積と温度が決まれば
その圧力が決まる。回路の容積は設計時に決定されてお
り、通常高圧側の回路容積は低圧側のそれよりも大幅に
大きい。回路に充填されている冷媒質量は一定であり、
低圧側回路に存在する冷媒質量が運転条件によって若干
変っても、高圧側回路容積が前述のように低圧側回路容
積よりも大幅に大きいので高圧側回路に存在する冷媒質
量は運転条件によってほとんど変化しない。したがっ
て、圧縮機から吐出される冷媒の温度を変えることによ
って回路の高圧側圧力を変えることができる。即ち、前
記給油式スクリュー圧縮機に供給される油の温度を高く
するか或は流量を減少することによって圧縮機からの吐
出冷媒の温度を高めて高圧側の圧力を高めることがで
き、前述したように冷凍能力を大きくすることができ
る、つまりガスクーラの冷却媒体の入口温度上昇による
冷凍能力の減少を防ぐことができる。
In the supercritical vapor compression circuit, the high-pressure side is always a gas, so if the volume and temperature of a gas of a certain mass are determined, its pressure will be determined. The circuit volume is determined at the time of design, and the circuit volume on the high voltage side is usually much larger than that on the low voltage side. The refrigerant mass filled in the circuit is constant,
Even if the refrigerant mass in the low-pressure side circuit changes slightly depending on the operating conditions, the high-pressure side circuit volume is significantly larger than the low-pressure side circuit volume as described above, so the refrigerant mass in the high-pressure side circuit changes almost depending on the operating conditions. do not do. Therefore, the pressure on the high pressure side of the circuit can be changed by changing the temperature of the refrigerant discharged from the compressor. That is, the temperature of the refrigerant discharged from the compressor can be increased by increasing the temperature of the oil supplied to the oil supply type screw compressor or by decreasing the flow rate to increase the pressure on the high pressure side. Thus, the refrigerating capacity can be increased, that is, the refrigerating capacity can be prevented from decreasing due to the rise in the inlet temperature of the cooling medium of the gas cooler.

【0010】請求項2に記載の発明は、給油式スクリュ
ー圧縮機と、油分離器と、ガスクーラと、膨張弁と、蒸
発器を含む閉回路と、前記圧縮機に供給されて吐出ガス
に含まれ前記油分離器で分離された油を前記圧縮機に再
び供給する回路とからなり、前記閉回路の高圧側が臨界
超過圧力において作動する超臨界蒸気圧縮回路における
高圧側圧力制御方法において、前記油分離器内の油量を
外部から油を供給あるいは外部に取り出して調節するこ
とによって高圧側の回路容積を調節し、該高圧側の回路
容積の調節により高圧側の圧力を調節することを特徴と
する。
According to a second aspect of the present invention, a refueling screw compressor, an oil separator, a gas cooler, an expansion valve, a closed circuit including an evaporator, and a discharge gas supplied to the compressor and included in discharge gas. And a circuit for supplying the oil separated by the oil separator to the compressor again, wherein the high pressure side of the closed circuit is operated at a supercritical pressure, and the high pressure side pressure control method in a supercritical vapor compression circuit comprises: A circuit volume on the high-pressure side is adjusted by adjusting the amount of oil in the separator by supplying oil to the outside or extracting the oil from the outside, and the pressure on the high-pressure side is adjusted by adjusting the circuit volume on the high-pressure side. To do.

【0011】給油式スクリュー圧縮機を用いた蒸気圧縮
回路の油分離器で分離された油は油分離器と圧縮機の間
を循環するので、その間における若干の油の損耗を無視
すれば油分離器内の油量は運転中一定に保たれる。油分
離器は圧縮機の吐出口とガスクーラ間に配置されるの
で、オイルクーラ内で冷媒ガスが占める空間容積は高圧
側回路容積に含まれる。したがって、外部から油分離器
に油を供給して油分離器内の油量を増加すれば油分離器
内で冷媒ガスが占める容積が減少し、高圧側回路容積が
減少する。前記したように、高圧側に存在する冷媒質量
はほぼ一定であるので、高圧側回路容積の減少により高
圧側圧力を増大することができる。
Since the oil separated by the oil separator of the vapor compression circuit using the oil supply type screw compressor circulates between the oil separator and the compressor, the oil separation is neglected if some wear of the oil during that time is ignored. The amount of oil in the vessel is kept constant during operation. Since the oil separator is arranged between the discharge port of the compressor and the gas cooler, the space volume occupied by the refrigerant gas in the oil cooler is included in the high pressure side circuit volume. Therefore, if oil is externally supplied to the oil separator to increase the amount of oil in the oil separator, the volume occupied by the refrigerant gas in the oil separator decreases, and the high-pressure side circuit volume decreases. As described above, since the mass of the refrigerant existing on the high pressure side is substantially constant, the high pressure side pressure can be increased by reducing the high pressure side circuit volume.

【0012】請求項3に記載の発明は、実際の運転状態
における前記ガスクーラ出口の冷媒温度に対応して成績
係数(COP)が最適になるように予め設定された高圧側
圧力と運転状態の高圧側圧力とを比較して、その差が規
定範囲内に入るように前記圧縮機に供給する油の流量も
しくは温度の少なくとも1を調節して運転状態の高圧側
圧力を調節することを特徴とする。また請求項4に記載
の発明は、油分離器内の油量調節によって高圧側回路容
積を調節し、請求項3に記載と同様に運転状態における
高圧側圧力制御を行うものである。
According to a third aspect of the present invention, the high pressure side pressure and the high pressure side in the operating state which are preset so that the coefficient of performance (COP) is optimized corresponding to the refrigerant temperature at the gas cooler outlet in the actual operating state. It is characterized in that the high pressure on the operating side is adjusted by comparing at least one of the flow rate or the temperature of the oil supplied to the compressor so that the difference is within a specified range. . Further, in the invention described in claim 4, the high-pressure side circuit volume is adjusted by adjusting the amount of oil in the oil separator, and the high-pressure side pressure control in the operating state is performed similarly to the third aspect.

【0013】蒸気圧縮冷凍サイクルの成績係数(COP)
と圧縮機吐出圧力(ガスクーラ出口冷媒圧力つまり高圧
側圧力)との間には、例えば図5に示すような関係があ
る。なお、超臨界蒸気圧縮サイクルでは、通常の蒸気圧
縮サイクルにおける凝縮器(放熱器)内で冷媒は気相で
あるので、凝縮器(放熱器)は一般にガスクーラと称さ
れる。同図はCO2を冷媒とし、蒸発器における蒸発温度
を−15℃の飽和状態とした場合で、圧縮機の断熱効率
と機械効率を共に100%とした場合の計算結果であ
る。同図より、ガスクーラ出口冷媒温度が高いほどCOP
が最大となる吐出圧は高く、該圧力を超えるとCOPは低
下することが分る。しかしながら、ガスクーラ(放熱
器)出口のCO2温度が30℃以上ではCOP最大点付近では
吐出圧力の変化に対するCOPの変化は緩やかである。吐
出圧が高いと圧縮機や配管に負担がかかるので、むやみ
に吐出圧を高めてCOP向上の利得が少ないのは得策では
ない。したがって、COPが最大となる吐出圧よりも低い
吐出圧でCOPも高い吐出圧(高圧側圧力)を最適高圧側
圧力としてガスクーラ出口の冷媒温度に対応して予め設
定しておき、運転状態における高圧側圧力と前記のよう
に設定した最適高圧側圧力との差が規定範囲に入るよう
に高圧側圧力を制御するのがよい。この規定範囲は、例
えば±0.1MPa等、その範囲の高圧側圧力の変化によ
るCOPの変化が許容できるような範囲に設定される。
Coefficient of performance (COP) of vapor compression refrigeration cycle
And the compressor discharge pressure (gas cooler outlet refrigerant pressure, that is, high-pressure side pressure) have a relationship as shown in FIG. 5, for example. In the supercritical vapor compression cycle, the refrigerant is in the vapor phase in the condenser (radiator) in the normal vapor compression cycle, so the condenser (radiator) is generally called a gas cooler. The figure shows the calculation results when CO 2 is used as a refrigerant, the evaporation temperature in the evaporator is set to a saturated state of −15 ° C., and the adiabatic efficiency and mechanical efficiency of the compressor are both 100%. From the figure, the higher the refrigerant temperature at the gas cooler outlet, the higher the COP
It can be seen that the discharge pressure that maximizes the pressure is high, and that the COP decreases when the pressure exceeds that pressure. However, when the CO 2 temperature at the gas cooler (radiator) outlet is 30 ° C or higher, the COP changes gradually with respect to the discharge pressure change near the COP maximum point. Since high discharge pressure puts a burden on the compressor and piping, it is not a good idea to increase the discharge pressure unnecessarily to reduce the COP improvement gain. Therefore, the discharge pressure (high-pressure side pressure) that is lower than the discharge pressure that maximizes the COP and that also has a high COP is set as the optimum high-pressure side pressure in advance according to the refrigerant temperature at the gas cooler outlet, and the high pressure in the operating state is set. It is preferable to control the high pressure side pressure so that the difference between the side pressure and the optimum high pressure side pressure set as described above falls within a specified range. The specified range is set to, for example, ± 0.1 MPa or the like in which a change in COP due to a change in high-pressure side pressure within that range is allowable.

【0014】図5は、蒸発温度が一定で圧縮機の断熱効
率が100%として計算した結果であるが、圧縮機に供
給する油流量や温度を変えた場合は圧縮のポリトロープ
指数が変り、また蒸発器における蒸発温度が異なると圧
縮機入口温度が異なり、COPが最大となる吐出温度はそ
れらの影響を受ける。図4において、冷媒をAからB状態
まで圧縮するのに要する仕事は(H1−h1)であり、冷凍
の成績係数(COP)はh 1/(H1−h1)で定義される。給
油式スクリュー圧縮機の場合、圧縮ガスは圧縮過程にお
いてロータに噴射された油によって冷却されるので、圧
縮のポリトロープ指数は断熱指数(等エントロピ指数)
よりも小さく、圧縮仕事は断熱圧縮の場合よりも小さく
なる。この油による冷却の度合いは油温が低いほど、ま
た油流量が大きいほど大きくなる。
FIG. 5 shows the adiabatic effect of the compressor at a constant evaporation temperature.
It is the result of calculation assuming that the rate is 100%.
Compressed polytrope when the oil flow rate or temperature to be supplied is changed
If the index changes and the evaporation temperature in the evaporator changes, the pressure
The compressor inlet temperature is different, and the discharge temperature that maximizes COP is
Affected by them. In Figure 4, the state of the refrigerant from A to B
Work required to compress up to (H1−h1) And frozen
The coefficient of performance (COP) of is h 1/ (H1−h1) Is defined by. Salary
In case of oil type screw compressor, compressed gas is
Is cooled by the oil injected to the rotor,
Polytropic index of contraction is adiabatic index (isoentropic index)
Smaller, compression work less than in adiabatic compression
Become. The lower the oil temperature, the lower the degree of cooling by this oil.
The larger the oil flow rate is, the larger it becomes.

【0015】したがって、そのような場合にはガスクー
ラ出口の冷媒温度のみでなく、圧縮機入口冷媒温度もし
くは圧力の少なくとも1及び出口冷媒温度、圧力とCOP
との関係を算出してそれらの値に対し前述したような意
味で最適なガスクーラ出口冷媒圧力を設定しておき、運
転状態の高圧側圧力とガスクーラ出口温度、圧縮機入口
温度もしくは圧力の少なくとも1つ及び出口温度、圧力
の検出値に対応する前記最適な高圧側圧力との差が規定
範囲内に入るように高圧側圧力を制御するのがよい。圧
縮機入口冷媒温度は入口圧力における冷媒の飽和蒸気温
度よりも若干高い温度にされるので、その分を予め見込
んでおけば、前記圧縮機入口温度、圧力に関しては圧
力、あるいは温度のどちらか一方を検出すれば他方は算
出できる。入口温度が大きく変化する用途の場合は、ガ
スクーラ出口冷媒温度と圧縮機入口冷媒温度とに対応す
る最適な高圧側圧力を設定しておき、運転状態の高圧側
圧力とガスクーラ出口温度の検出値及び圧縮機入口温度
もしくは圧力の1の検出値とに対応する最適な高圧側圧
力との差が規定範囲内に入るように高圧側圧力を制御し
てもよい。
Therefore, in such a case, not only the refrigerant temperature at the gas cooler outlet but also at least one of the compressor inlet refrigerant temperature or pressure and the outlet refrigerant temperature, pressure and COP
Is calculated and the optimum gas cooler outlet refrigerant pressure is set for those values in the above-mentioned sense, and at least one of the operating high pressure side pressure, gas cooler outlet temperature, compressor inlet temperature or pressure is set. It is preferable to control the high-pressure side pressure so that the difference between the optimum pressure and the high-pressure side pressure corresponding to the detected temperature and outlet temperature and pressure falls within the specified range. Since the compressor inlet refrigerant temperature is set to a temperature slightly higher than the saturated vapor temperature of the refrigerant at the inlet pressure, if that amount is estimated in advance, either the compressor inlet temperature or the pressure will be either the pressure or the temperature. The other can be calculated by detecting. For applications where the inlet temperature changes significantly, the optimum high-pressure side pressure corresponding to the gas cooler outlet refrigerant temperature and the compressor inlet refrigerant temperature is set, and the high-pressure side pressure in operation and the gas cooler outlet temperature detection value and The pressure on the high-pressure side may be controlled so that the difference between the detected value of the compressor inlet temperature or the pressure of 1 and the optimum pressure on the high-pressure side falls within a specified range.

【0016】請求項6記載の発明は、給油式スクリュー
圧縮機と、油分離器と、ガスクーラと、膨張弁と、蒸発
器を含む閉回路と、前記圧縮機に供給されて吐出ガスに
含まれ前記油分離器で分離された油を前記圧縮機に再び
供給する回路とからなる超臨界蒸気圧縮回路装置におい
て、前記圧縮機に油を供給する回路に該供給油の流量も
しくは温度の少なくとも1を調節する調節手段を設けた
ことを特徴とし、請求項7記載の発明は、油分離器内に
外部から油を供給あるいは外部に取り出すことによって
油分離器内の油量を調節する調節手段を設けたことを特
徴とする回路装置である。請求項8記載の発明は、油の
流量、温度の調節手段とともに油分離器内油量の調節手
段を設けたものである。
According to a sixth aspect of the present invention, a refueling type screw compressor, an oil separator, a gas cooler, an expansion valve, a closed circuit including an evaporator, and a compressor which is supplied to the compressor and is included in discharge gas. In a supercritical vapor compression circuit device comprising a circuit for supplying the oil separated by the oil separator to the compressor again, at least one of the flow rate or temperature of the supplied oil is supplied to the circuit for supplying the oil to the compressor. The invention according to claim 7 is characterized in that adjustment means for adjusting is provided, and the adjustment means for adjusting the amount of oil in the oil separator is provided by supplying or extracting oil from the outside into the oil separator. It is a circuit device characterized by that. According to the eighth aspect of the invention, the oil flow rate and temperature adjusting means as well as the oil amount adjusting means for the oil separator are provided.

【0017】請求項9に記載の発明は、高圧側圧力検出
手段と、前記ガススクーラ出口の冷媒温度検出手段と、
前記圧縮機に供給する油の流量もしくは温度もしくは前
記油分離器内の油量を調節する少なくとも1の調節手段
を前記検出手段により検出したガスクーラ出口冷媒温度
に対応して成績係数(COP)が最適になるように予め設
定された高圧側圧力と運転状態の高圧側圧力とを比較し
てその差が規定の範囲内に入るように制御する制御手段
とを備えたことを特徴とする。かかる発明により、本発
明の高圧側圧力の制御を自動的に行い、常に最適なCO
P、つまり可能な限り低い高圧側圧力でCOPの高い運転を
行うことができる。
According to a ninth aspect of the present invention, there is provided a high pressure side pressure detecting means, a refrigerant temperature detecting means at the gas scooter outlet,
The coefficient of performance (COP) is optimum in accordance with the gas cooler outlet refrigerant temperature detected by the detecting means by at least one adjusting means for adjusting the flow rate or temperature of the oil supplied to the compressor or the oil amount in the oil separator. And a control means for comparing the high-pressure side pressure set in advance with the high-pressure side pressure in the operating state and controlling the difference so as to fall within a specified range. With such an invention, the high-side pressure of the present invention is automatically controlled, and the optimum CO
High COP operation can be performed at P, that is, at the low side pressure as low as possible.

【0018】請求項10に記載の発明は、最適な高圧側
圧力をガスクーラ出口温度のみではなく、圧縮機入口の
冷媒温度もしくは圧力の少なくとも1、及び出口の冷媒
温度、圧力を考慮して設定しておき、運転時のこれらの
検出値に対応して最適な高圧側圧力の制御を自動的に行
うもので、運転条件によって圧縮機入口冷媒温度が大幅
に変化する場合や、圧縮機による圧縮のポリトロープ指
数が変化する場合に対しても適応して、常に最適なCO
P、つまり可能な限り低い高圧側圧力でCOPの高い運転を
行うことができる。また、超臨界蒸気圧縮回路装置にお
いて使用される冷媒は二酸化炭素であることを特徴とす
る。
According to a tenth aspect of the present invention, the optimum high-pressure side pressure is set in consideration of not only the gas cooler outlet temperature but also at least one of the refrigerant temperature or pressure at the compressor inlet and the refrigerant temperature or pressure at the outlet. The optimum high-side pressure is automatically controlled in response to these detected values during operation.When the refrigerant temperature at the compressor inlet changes significantly depending on operating conditions, or when compression by the compressor It adapts even when the polytropic index changes, and always provides the optimum CO
High COP operation can be performed at P, that is, at the low side pressure as low as possible. The refrigerant used in the supercritical vapor compression circuit device is carbon dioxide.

【0019】請求項12に記載の発明は、スクリュー圧
縮機を圧縮要素としたCO2超臨界蒸気圧縮回路におい
て、前記圧縮機による圧縮中に液インジェクションを行
うことにより吐出ガス温度を変化させて回路の高圧側圧
力を制御する方法であり、インジェクション液の温度や
量を制御することにより回路の高圧側圧力を制御するも
のである。スクリュー圧縮機は無給油式であっても給油
式であってもよい。請求項13の発明は、この制御方法
を行うための回路装置であって、スクリュー圧縮機に液
インジェクションを行う手段とともに圧縮機の吐出ガス
から前記インジェクション液を分離する手段を備えてい
る。
In a twelfth aspect of the present invention, in a CO 2 supercritical vapor compression circuit using a screw compressor as a compression element, liquid injection is performed during compression by the compressor to change the discharge gas temperature and the circuit. Is a method for controlling the pressure on the high-pressure side, and the pressure on the high-pressure side of the circuit is controlled by controlling the temperature and amount of the injection liquid. The screw compressor may be a non-lubricating type or a refueling type. According to a thirteenth aspect of the present invention, there is provided a circuit device for carrying out this control method, which comprises means for performing liquid injection into the screw compressor and means for separating the injection liquid from the gas discharged from the compressor.

【0020】[0020]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る寸法、材質、形状、その相対位置などは特に特定的な
記載がない限り、この発明の範囲をそれのみに限定する
趣旨ではなく単なる説明例に過ぎない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples.

【0021】図1(A)は、本発明の超臨界蒸気圧縮回
路装置の実施例を示し、1は給油式スクリュー圧縮機、
2はガスクーラ、3は蒸発器、4は絞り弁、5は油分離
器であり、これらは直列の閉回路を構成している。2a
は前記ガスクーラ2で冷媒を冷却する冷却媒体の流れを
示し、3aは前記蒸発器3で冷却される被冷却媒体の流
れを示す。前記蒸発器3から圧縮機1に吸入されて圧
縮、昇温された冷媒ガスは圧縮機に供給された油を含ん
でおり、該油は前記油分離器5で冷媒ガスから分離さ
れ、油が分離された冷媒ガスは前記ガスクーラ2で冷却
媒体2aにより冷却され、絞り弁4で絞られ圧力と温度
が降下して液相と気相からなる湿り蒸気となり、前記蒸
発器3内で被冷却媒体3aから熱を奪って蒸発し、さら
に飽和蒸気よりも若干過熱状態にされて前記圧縮機1に
吸入される。
FIG. 1 (A) shows an embodiment of a supercritical vapor compression circuit device of the present invention, in which 1 is a refueling type screw compressor,
2 is a gas cooler, 3 is an evaporator, 4 is a throttle valve, 5 is an oil separator, and these constitute a series closed circuit. 2a
Indicates the flow of the cooling medium that cools the refrigerant by the gas cooler 2, and 3a indicates the flow of the cooled medium that is cooled by the evaporator 3. The refrigerant gas sucked from the evaporator 3 to the compressor 1 and compressed and heated includes oil supplied to the compressor, and the oil is separated from the refrigerant gas by the oil separator 5, and the oil is The separated refrigerant gas is cooled by the cooling medium 2a in the gas cooler 2 and is throttled by the throttle valve 4 to reduce the pressure and temperature to become wet vapor composed of a liquid phase and a gas phase, and the medium to be cooled in the evaporator 3 is cooled. The heat is taken from 3a to evaporate, and is made slightly superheated than the saturated steam and sucked into the compressor 1.

【0022】前記油分離器5で分離された油はオイルク
ーラ6で冷却されて前記圧縮機1に供給される。この油
は圧縮機のロータ間、ロータとケーシング間、及び軸受
けの潤滑を行うとともに、圧縮過程における冷媒ガスの
冷却をも行う。前記オイルクーラ6の後流には該オイル
クーラをバイパスさせる油量を調節して圧縮機に供給さ
れる油の温度を調節する三方制御弁8が設けられてお
り、さらに該三方制御弁8の後流には圧縮機に供給され
る油流量を調節する制御弁7が設けられている。前記油
分離器内の圧力は油が供給される圧縮機の低圧側よりも
高圧であるので、油は圧力差によって供給され、前記制
御弁7の開度を調節することにより油流量が調節され
る。給油式スクリュー圧縮機ではロータに噴射される油
による圧縮過程の冷媒の冷却効果が大きいので、油の温
度もしくは流量の少なくとも1を変えることにより圧縮
機から吐出される冷媒ガスの温度を変えることができ
る。回路の高圧側容積は一定であり、また高圧側の冷媒
の充填質量も運転状態に関わらず略一定であるので、冷
媒ガスの吐出温度を変えることにより回路の高圧側圧力
を変えることができる。
The oil separated by the oil separator 5 is cooled by an oil cooler 6 and supplied to the compressor 1. This oil not only lubricates the rotor of the compressor, the rotor and the casing, and the bearings, but also cools the refrigerant gas in the compression process. A three-way control valve 8 for adjusting the temperature of the oil supplied to the compressor by adjusting the amount of oil that bypasses the oil cooler is provided in the downstream of the oil cooler 6, and the three-way control valve 8 A control valve 7 for adjusting the flow rate of oil supplied to the compressor is provided in the wake. Since the pressure in the oil separator is higher than the low pressure side of the compressor to which the oil is supplied, the oil is supplied by the pressure difference, and the oil flow rate is adjusted by adjusting the opening degree of the control valve 7. It In the oil-filled screw compressor, since the effect of cooling the refrigerant in the compression process by the oil injected to the rotor is great, it is possible to change the temperature of the refrigerant gas discharged from the compressor by changing at least one of the oil temperature and the flow rate. it can. Since the high-pressure side volume of the circuit is constant and the charged mass of the high-pressure side refrigerant is substantially constant regardless of the operating state, the high-pressure side pressure of the circuit can be changed by changing the discharge temperature of the refrigerant gas.

【0023】図1(B)は本発明の他の実施例を示し、
前記油分離器5に外部から油を供給したり油分離器5か
ら油を外部へ取り出したりする調節手段を設けたもので
ある。該調節手段は、油タンク10、油ポンプ11、開
閉弁12からなり、前記油分離器5内の油量を増加する
際には前記油ポンプ11により前記油タンクから油を油
分離器5に供給し、前記油分離器5内の油量を減少する
際には前記開閉弁12を開いて油分離器5内の油を油タ
ンク10に取り出す。前記油分離器5内の圧力はタンク
10内の圧力よりも高いので前記開閉弁12を開けば油
分離器5内の油はタンク10へ流出する。前記油分離器
5内の冷媒ガス空間容積は回路の高圧側容積の一部を構
成しているので、該油分離器5内の油量を変えることに
より、油分離器5内の冷媒ガス空間容積を変えることが
でき、回路の高圧側容積を変えることができる。前記し
たように高圧側の冷媒の充填質量は運転状態に関わらず
略一定であるので、油分離器5内の冷媒ガス空間容積を
変えることにより回路の高圧側容積を変えて高圧側圧力
を変えることができる。
FIG. 1B shows another embodiment of the present invention,
The oil separator 5 is provided with adjusting means for supplying oil from the outside or taking oil out of the oil separator 5. The adjusting means includes an oil tank 10, an oil pump 11, and an opening / closing valve 12, and when increasing the amount of oil in the oil separator 5, the oil pump 11 transfers oil from the oil tank to the oil separator 5. When supplying and reducing the amount of oil in the oil separator 5, the on-off valve 12 is opened and the oil in the oil separator 5 is taken out to the oil tank 10. Since the pressure inside the oil separator 5 is higher than the pressure inside the tank 10, the oil inside the oil separator 5 flows out to the tank 10 when the on-off valve 12 is opened. Since the refrigerant gas space volume in the oil separator 5 constitutes a part of the high-pressure side volume of the circuit, the refrigerant gas space in the oil separator 5 can be changed by changing the amount of oil in the oil separator 5. The volume can be varied and the high side volume of the circuit can be varied. As described above, since the charged mass of the high-pressure side refrigerant is substantially constant regardless of the operating state, the high-pressure side pressure of the circuit is changed by changing the high-pressure side volume of the circuit by changing the refrigerant gas space volume in the oil separator 5. be able to.

【0024】図2は、本発明の装置が常に冷凍の成績係
数(COP)が最適で運転されるべく自動制御されるよう
に構成した装置を示す。○印で囲んだ記号はその位置に
おける温度、圧力の検出手段あるいはその位置における
温度、圧力、あるいは制御信号を示している。圧縮機1
の吐出圧力とガスクーラ2の出口圧力とはその間の管路
抵抗分だけ異なるが、通常この抵抗は小さいので無視し
て圧縮機吐出圧力とガスクーラ出口圧力は同じとしてあ
る。
FIG. 2 shows the apparatus of the present invention, which is constructed so that the coefficient of performance (COP) of refrigeration is automatically controlled so that it is always operated optimally. A symbol surrounded by a circle indicates the temperature and pressure detecting means at that position, or the temperature, pressure, or control signal at that position. Compressor 1
Although the discharge pressure and the outlet pressure of the gas cooler 2 differ by the amount of the line resistance between them, since this resistance is usually small, they are ignored and the compressor discharge pressure and the gas cooler outlet pressure are the same.

【0025】ガスクーラ2の出口の冷媒温度T3と圧力P2
を検出する検出手段がガスクーラ2の冷媒出口に設けら
れ、検出値は制御手段20に送られる。該制御手段20
は、検出された温度T3に対応する予め定められた最適高
圧側圧力と検出された高圧側圧力P2とを比較し、その差
が規定内に入るように、例えば三方制御弁8に制御信号
C2を送って圧縮機1に供給される油の温度を調節するこ
とによって高圧側圧力を調節する、或は制御弁7に制御
信号C1を送って圧縮機1に供給される油の流量を調節す
ることによって高圧側圧力を調整する、或はポンプ11
又は開閉弁12に制御信号C又はC3を送って油分離器
5内の油量を調節することによって高圧側の回路容積を
調節して高圧側圧力を調節する。
Refrigerant temperature T 3 and pressure P 2 at the outlet of the gas cooler 2
A detection means for detecting is detected at the refrigerant outlet of the gas cooler 2, and the detected value is sent to the control means 20. The control means 20
Compares the predetermined optimum high-pressure side pressure corresponding to the detected temperature T 3 with the detected high-pressure side pressure P 2, and controls the three-way control valve 8 so that the difference falls within the regulation. signal
The pressure on the high-pressure side is adjusted by sending C 2 to adjust the temperature of the oil supplied to the compressor 1, or the flow rate of the oil supplied to the compressor 1 by sending a control signal C 1 to the control valve 7. To adjust the high pressure side by adjusting the
Alternatively, the control signal C 4 or C 3 is sent to the open / close valve 12 to adjust the amount of oil in the oil separator 5 to adjust the circuit volume on the high pressure side to adjust the pressure on the high pressure side.

【0026】最適高圧側圧力とは前述したように、ガス
クーラ出口冷媒温度の上昇に対して高圧側圧力をむやみ
に高くすることなくCOPが最大近くになる高圧側圧力で
あって、ガスクーラ出口冷媒温度に対応して予め設定さ
れた圧力である。該最適高圧側圧力とガスクーラ出口冷
媒温度との関係はマップとして前記制御手段にインプッ
トしてある。
As described above, the optimum high-pressure side pressure is the high-pressure side pressure at which the COP is close to the maximum without unnecessarily increasing the high-pressure side pressure with respect to the rise in the gas cooler outlet refrigerant temperature. The pressure is preset in accordance with. The relationship between the optimum high-pressure side pressure and the gas cooler outlet refrigerant temperature is input to the control means as a map.

【0027】前記三方制御弁8制御による高圧側圧力調
節効果と開閉弁7による高圧側圧力調節効果とは異なる
ので、図示しないが油温と油流量を検出して前記制御手
段20にインプットし、これらの検出値と高圧側圧力の
必要調節量によりどちらをどの程度調節するかのマップ
を前記制御手段20にインプットしておき、該マップに
従って選択するようにしてある。図2のように圧縮機1
に供給する油温、油流量調節による高圧側圧力調節と同
時に油分離器5内油量調節による高圧側圧力調節も可能
とした回路装置の場合は、図示しないが油分離器5の油
面を検出して前記制御手段20にインプットし、前記油
温、油流量、及び該油面と高圧側圧力の必要調節量によ
り調節手段を選択するマップを作成して前記制御手段に
インプットしておく。例えば、油温度が規定値よりも高
い場合は油温を上げる調節は行わないようにし、油流量
が規定値よりも少ない場合は油流量を減少する調整は行
わないようにする。
Since the high pressure side pressure adjusting effect by the control of the three-way control valve 8 and the high pressure side pressure adjusting effect by the opening / closing valve 7 are different, although not shown, the oil temperature and the oil flow rate are detected and input to the control means 20. A map indicating which and to what extent these values are adjusted according to the detected values and the required adjustment amount of the high-pressure side pressure is input to the control means 20 and selected according to the map. Compressor 1 as shown in FIG.
In the case of a circuit device capable of adjusting the high pressure side pressure by adjusting the oil temperature and oil flow rate to be supplied to the oil separator and the high pressure side pressure adjustment by adjusting the oil amount in the oil separator 5, the oil level of the oil separator 5 is not shown. It is detected and input to the control means 20, and a map for selecting the adjustment means is created according to the oil temperature, the oil flow rate, and the necessary adjustment amount of the oil surface and the high-pressure side pressure, and is input to the control means. For example, if the oil temperature is higher than the specified value, the adjustment to increase the oil temperature is not performed, and if the oil flow rate is lower than the specified value, the adjustment to reduce the oil flow rate is not performed.

【0028】図3は、図2に対して、ガスクーラ2入口
冷媒圧力、温度(圧縮機吐出圧力、温度)P2、T2と蒸発
器3出口冷媒圧力、温度(圧縮機吸入圧力、温度)P1
TIとを制御手段20に追加インプットしたものである。
冷凍負荷が大幅に変化する場合、例えば冷凍のためにTI
が−20℃で運転される場合と冷房のためにTIが20℃
で運転される場合とでは、同じガスクーラ出口冷媒温度
に対してもCOPが最大となる高圧側圧力は異なり、した
がって最適高圧側圧力として設定すべき圧力も異なるこ
とになる。そのような場合は、ガスクーラ出口冷媒温度
T3と蒸発器出口冷媒温度TIとに対する最適高圧側圧力の
マップを作成して制御手段20にインプットしておき、
T3、TIの検出値に対応して最適高圧側圧力を制御する。
FIG. 3 is different from FIG. 2 in the gas cooler 2 inlet refrigerant pressure, temperature (compressor discharge pressure, temperature) P 2 , T 2 and evaporator 3 outlet refrigerant pressure, temperature (compressor suction pressure, temperature). P 1 ,
T I and T I are additionally input to the control means 20.
If the refrigeration load changes significantly, for example due to refrigeration, T I
Is operated at -20 ° C and T I is 20 ° C due to cooling
The pressure on the high-pressure side at which the COP is maximized is different for the same gas cooler outlet refrigerant temperature, and therefore the pressure to be set as the optimum high-pressure side pressure is also different from the case of operating at. In such a case, the gas cooler outlet refrigerant temperature
A map of the optimum high-pressure side pressure with respect to T 3 and the evaporator outlet refrigerant temperature T I is created and input to the control means 20,
The optimum high-side pressure is controlled according to the detected values of T 3 and T I.

【0029】油分離器5から圧縮機1に供給される油の
温度、流量を調節して圧縮機吐出温度を変えて高圧側圧
力を調節する場合は、圧縮機のポリトトープ指数が変化
して圧縮機仕事が変化し、COPが最大となるガスクーラ
出口冷媒圧力に影響する。圧縮に要する仕事(図4にお
ける(H1−h1)あるいは(H2−h2)、(H3−h3))は
P1、TI、P2、T2によって求められるので、同じガスクー
ラ出口冷媒温度に対してもCOPが最大となる高圧側圧力
はこれらの圧力、温度によって異なり、したがって最適
高圧側圧力として設定すべき圧力も異なることになる。
その場合には、ガスクーラ出口冷媒温度T3のほか蒸発器
入口および出口の冷媒圧力、温度P1、TI、P2、T2をも含
めてこれらに対する最適高圧側圧力のマップを作成して
制御手段20にインプットしておき、T3、P1、TI、P2
T2等の検出値に対応して最適高圧側圧力を制御する。蒸
発器出口冷媒温度(圧縮機入口温度)TIは圧力P1におけ
る冷媒の飽和蒸気温度よりも若干高い温度で運転される
ので、予めその分を見込んでおけば、P1が分ればTIが分
り、逆にTIが分ればP1が分る。したがって、P1かTIのど
ちらか一つを検出する検出手段を設けて前記制御手段2
0に入力してもよい。
When the temperature and flow rate of the oil supplied from the oil separator 5 to the compressor 1 are adjusted to change the compressor discharge temperature to adjust the high-pressure side pressure, the polytopotope index of the compressor is changed to compress the oil. Machine work changes, which affects the gas cooler outlet refrigerant pressure where COP is maximized. Work required to compress (in FIG. 4 (H 1 -h 1) or (H 2 -h 2), ( H 3 -h 3)) is
Since it is determined by P 1 , T I , P 2 , and T 2 , the high-pressure side pressure that maximizes COP for the same gas cooler outlet refrigerant temperature depends on these pressures and temperatures, and is therefore set as the optimum high-pressure side pressure. The pressure to be used will also be different.
In that case, in addition to the gas cooler outlet refrigerant temperature T 3 , create a map of the optimum high-side pressure for these, including the refrigerant pressure at the evaporator inlet and outlet, and the temperatures P 1 , T I , P 2 , and T 2. It is input to the control means 20 and T 3 , P 1 , T I , P 2 ,
The optimum high-side pressure is controlled according to the detected value such as T 2 . The evaporator outlet refrigerant temperature (compressor inlet temperature) T I is operated at a temperature slightly higher than the saturated vapor temperature of the refrigerant at the pressure P 1, so if you anticipate that amount in advance, if P 1 is known, then T If I knows, on the other hand, if T I knows, P 1 knows. Therefore, the control means 2 is provided with a detection means for detecting either P 1 or T I.
You may enter 0.

【0030】図5に見られるように、ガスクーラ(放熱
器)出口温度が低くなるとCOPが最大となる吐出圧力
(高圧側圧力)は低くなる。ガスクーラ(放熱器)出口
の冷媒温度が冷媒の臨界温度よりも低くなると冷媒は液
相となって密度は急激に増大するので高圧側圧力も低下
するのであるが、液相となる冷媒は放熱器出口付近の冷
媒のみであり、大部分の冷媒は気相であるので、高圧側
圧力の低下は大きくはない。本発明の油分離器内の油量
を調節して高圧側圧力を調節する方法によれば、高圧側
圧力を十分に低下させることが可能となり、ガスクーラ
(放熱器)出口温度が臨界温度以下になる場合にも高い
COPで運転できるように高圧側圧力を制御することがで
きる。
As shown in FIG. 5, when the gas cooler (radiator) outlet temperature becomes lower, the discharge pressure (high-pressure side pressure) at which COP becomes maximum becomes lower. When the temperature of the refrigerant at the outlet of the gas cooler (radiator) becomes lower than the critical temperature of the refrigerant, the refrigerant becomes a liquid phase and the density rapidly increases, so the high-pressure side pressure also drops, but the refrigerant in the liquid phase becomes a radiator. Since there is only the refrigerant near the outlet and most of the refrigerant is in the vapor phase, the pressure drop on the high-pressure side is not large. According to the method of adjusting the amount of oil in the oil separator of the present invention to adjust the high-pressure side pressure, the high-pressure side pressure can be sufficiently reduced, and the gas cooler (radiator) outlet temperature becomes equal to or lower than the critical temperature. High if
The high-side pressure can be controlled so that the COP can be operated.

【0031】図2あるいは図3において、冷媒としてCO
2を用いる場合は、ガスクーラ2の入口冷媒温度は90
〜110℃程度まで上昇されるので、該ガスクーラ2の
冷却媒体2aを水とすると出口温度は80〜90℃程度
まで上昇することができ、ガスクーラを熱湯供給用の熱
源として使用することができる。その場合、冷却媒体2
aの温度や流量を冷凍装置のために常に一定に保つこと
は困難であるが、本発明の回路装置および制御方法によ
ればそれらの変動に対しても常に高いCOPで運転するこ
とができる。
In FIG. 2 or 3, CO is used as the refrigerant.
When using 2, the inlet refrigerant temperature of the gas cooler 2 is 90
Since the temperature is raised to about 110 ° C, if the cooling medium 2a of the gas cooler 2 is water, the outlet temperature can be raised to about 80 to 90 ° C, and the gas cooler can be used as a heat source for supplying hot water. In that case, the cooling medium 2
Although it is difficult to always keep the temperature and flow rate of a constant for the refrigeration system, the circuit device and the control method of the present invention can always operate with a high COP against these variations.

【0032】[0032]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記述されるような効果を奏する。
The present invention is carried out in the form as described above and has the following effects.

【0033】給油式スクリュー圧縮機に油分離器から供
給される油の温度および流量を調整することによって圧
縮機の吐出冷媒温度を調節して高圧側圧力を調節するこ
とができる。また、油分離器内の油量を外部からの給油
あるいは外部へ取り出すことにより調節することによっ
て回路の高圧側容積を調節して高圧側圧力を調節するこ
とができる。そして、運転中の温度、圧力を検出して、
これら温度、圧力におけるCOPを効果的に最大付近まで
高める高圧側圧力となるように自動的に制御することが
できる。本発明の回路装置は高圧にさらされるタンク等
を付加する必要がなく、従来の回路装置に制御弁等を付
加するだけで容易に構成できる。
By adjusting the temperature and flow rate of the oil supplied from the oil separator to the oil supply screw compressor, the temperature of the refrigerant discharged from the compressor can be adjusted to adjust the high pressure side pressure. Further, by adjusting the amount of oil in the oil separator by supplying oil from the outside or taking it out to the outside, the high-pressure side volume of the circuit can be adjusted and the high-pressure side pressure can be adjusted. Then, by detecting the temperature and pressure during operation,
The COP at these temperatures and pressures can be automatically controlled so that the pressure on the high-pressure side effectively raises the COP to near the maximum. The circuit device of the present invention does not need to be added with a tank or the like exposed to high pressure, and can be easily configured by adding a control valve or the like to the conventional circuit device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態に係わる超臨界蒸気圧縮
回路装置の回路構成図である。
FIG. 1 is a circuit configuration diagram of a supercritical vapor compression circuit device according to an embodiment of the present invention.

【図2】 本発明の実施の形態に係わる超臨界蒸気圧縮
回路装置の制御系統図の実施例である。
FIG. 2 is an example of a control system diagram of a supercritical vapor compression circuit device according to an embodiment of the present invention.

【図3】 本発明の実施の形態に係わる超臨界蒸気圧縮
回路装置の制御系統図の他の実施例である。
FIG. 3 is another example of the control system diagram of the supercritical vapor compression circuit device according to the embodiment of the present invention.

【図4】 冷媒の圧力−エンタルピ線図である。FIG. 4 is a pressure-enthalpy diagram of a refrigerant.

【図5】 放熱器出口冷媒温度をパラメータとして高圧
側圧力と成績係数(COP)の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a high pressure side pressure and a coefficient of performance (COP) using a radiator outlet refrigerant temperature as a parameter.

【符号の説明】[Explanation of symbols]

1 給油式スクリュー圧縮機 2 ガスクーラ(放熱器) 3 蒸発器 4 絞り弁 5 油分離器 6 オイルクーラ 7 制御弁 8 三方制御弁 10 油タンク 11 油ポンプ 12 開閉弁 1 Lubricating screw compressor 2 gas cooler (radiator) 3 evaporator 4 Throttle valve 5 oil separator 6 oil cooler 7 control valve 8 three-way control valve 10 oil tank 11 oil pump 12 open / close valve

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 1/047 F25B 1/047 R T 43/02 43/02 N (72)発明者 村瀬 祐司 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社エネルギー応用研 究所内 (72)発明者 藤間 克己 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 吉川 朝郁 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 米田 弘和 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F25B 1/047 F25B 1/047 RT 43/02 43/02 N (72) Inventor Yuji Murase Midori Ward, Nagoya City, Aichi Prefecture 1 at 20 Kitakanyama, Otakacho Chubu Electric Power Co., Inc. Energy Research Laboratory (72) Inventor Katsumi Fujima 2-13-1 Botan, Koto-ku, Tokyo Maekawa Works, Ltd. (72) Inventor Asahi Yoshikawa Iku 2-13-1 Botan, Koto-ku, Tokyo Stock company Maekawa Works (72) Inventor Hirokazu Yoneda 2-3-1 Botan, Koto-ku, Tokyo Maekawa Works Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 給油式スクリュー圧縮機と、油分離器
と、ガスクーラと、膨張弁と、蒸発器を含む閉回路と、
前記圧縮機に供給されて吐出ガスに含まれ前記油分離器
で分離された油を前記圧縮機に再び供給する回路とから
なり、前記閉回路の高圧側が臨界超過圧力において作動
する超臨界蒸気圧縮回路における高圧側圧力制御方法に
おいて、前記圧縮機に供給される油の流量もしくは温度
の少なくとも1を調節することによって前記圧縮機の吐
出ガス温度を調節し、該吐出ガス温度調節により高圧側
の圧力を調節することを特徴とする超臨界蒸気圧縮回路
における高圧側圧力制御方法。
1. A closed circuit including a refueling screw compressor, an oil separator, a gas cooler, an expansion valve, and an evaporator,
A supercritical vapor compression circuit comprising a circuit for supplying the oil supplied to the compressor and contained in the discharge gas and separated by the oil separator to the compressor again, and the high-pressure side of the closed circuit operates at a supercritical pressure. In the high pressure side pressure control method for a circuit, the discharge gas temperature of the compressor is adjusted by adjusting at least one of the flow rate or temperature of the oil supplied to the compressor, and the high pressure side pressure is adjusted by adjusting the discharge gas temperature. A pressure control method for a high pressure side in a supercritical vapor compression circuit, characterized in that:
【請求項2】 給油式スクリュー圧縮機と、油分離器
と、ガスクーラと、膨張弁と、蒸発器を含む閉回路と、
前記圧縮機に供給されて吐出ガスに含まれ前記油分離器
で分離された油を前記圧縮機に再び供給する回路とから
なり、前記閉回路の高圧側が臨界超過圧力において作動
する超臨界蒸気圧縮回路における高圧側圧力制御方法に
おいて、前記油分離器内の油量を外部から油を供給ある
いは外部に取り出して調節することによって高圧側の回
路容積を調節し、該高圧側の回路容積の調節により高圧
側の圧力を調節することを特徴とする超臨界蒸気圧縮回
路における高圧側圧力制御方法。
2. A closed circuit including a refueling screw compressor, an oil separator, a gas cooler, an expansion valve, and an evaporator,
A supercritical vapor compression circuit comprising a circuit for supplying the oil supplied to the compressor and contained in the discharge gas and separated by the oil separator to the compressor again, and the high-pressure side of the closed circuit operates at a supercritical pressure. In the high-pressure side pressure control method in a circuit, the circuit volume on the high-pressure side is adjusted by adjusting the amount of oil in the oil separator by externally supplying or extracting oil, and by adjusting the circuit volume on the high-pressure side. A high pressure side pressure control method in a supercritical vapor compression circuit, characterized by adjusting the high pressure side pressure.
【請求項3】 実際の運転状態における前記ガスクーラ
出口の冷媒温度に対応して成績係数(COP)が最適にな
るように予め設定された高圧側圧力と運転状態の高圧側
圧力とを比較して、その差が規定範囲内に入るように前
記圧縮機に供給する油の流量もしくは温度の少なくとも
1を調節して運転状態の高圧側圧力を調節することを特
徴とする請求項1記載の超臨界蒸気圧縮回路における高
圧側圧力制御方法。
3. A high pressure side pressure preset so that the coefficient of performance (COP) is optimized corresponding to the refrigerant temperature at the gas cooler outlet in an actual operating state and a high pressure side pressure in an operating state are compared. 2. The supercritical pressure according to claim 1, wherein at least one of the flow rate or temperature of oil supplied to the compressor is adjusted so that the difference falls within a specified range to adjust the high-pressure side pressure in the operating state. High pressure side pressure control method in vapor compression circuit.
【請求項4】 実際の運転状態における前記ガスクーラ
出口の冷媒温度に対応して成績係数(COP)を最適にす
るように予め設定された高圧側圧力と運転状態の高圧側
圧力とを比較して、その差が規定の範囲内に入るように
前記油分離器内の油量を調節して高圧側回路容積を調節
することによって運転状態の高圧側圧力を調節すること
を特徴とする請求項2記載の超臨界蒸気圧縮回路におけ
る高圧側圧力制御方法。
4. The high pressure side pressure preset to optimize the coefficient of performance (COP) corresponding to the refrigerant temperature at the gas cooler outlet in an actual operating state is compared with the high pressure side pressure in the operating state. 3. The high-pressure side pressure in the operating state is adjusted by adjusting the amount of oil in the oil separator and adjusting the high-pressure side circuit volume so that the difference falls within a specified range. A method for controlling a high-pressure side pressure in the described supercritical vapor compression circuit.
【請求項5】 前記した予め設定される最適高圧側圧力
が前記ガスクーラ出口冷媒温度のほか前記圧縮機入口冷
媒温度もしくは圧力の少なくとも1及び出口冷媒温度と
圧力に対応して成績係数(COP)が最適となるように設
定された圧力であることを特徴とする請求項3或は4に
記載の超臨界蒸気圧縮回路における高圧側圧力制御方
法。
5. The coefficient of performance (COP) corresponds to at least one of the gas cooler outlet refrigerant temperature, the compressor inlet refrigerant temperature or pressure, and the outlet refrigerant temperature and pressure, in addition to the gas cooler outlet refrigerant temperature. The high pressure side pressure control method in a supercritical vapor compression circuit according to claim 3 or 4, wherein the pressure is set to be optimum.
【請求項6】 給油式スクリュー圧縮機と、油分離器
と、ガスクーラと、膨張弁と、蒸発器を含む閉回路と、
前記圧縮機に供給されて吐出ガスに含まれ前記油分離器
で分離された油を前記圧縮機に再び供給する回路とから
なる超臨界蒸気圧縮回路装置において、前記圧縮機に油
を供給する回路に該供給油の流量もしくは温度の少なく
とも1を調節する調節手段を設けたことを特徴とする超
臨界蒸気圧縮回路装置。
6. A closed circuit including a refueling screw compressor, an oil separator, a gas cooler, an expansion valve, and an evaporator,
A circuit for supplying oil to the compressor, in a supercritical vapor compression circuit device comprising a circuit for supplying again the oil supplied to the compressor and contained in discharge gas and separated by the oil separator. A supercritical vapor compression circuit device, characterized in that an adjusting means for adjusting at least one of the flow rate and the temperature of the supplied oil is provided in the.
【請求項7】 給油式スクリュー圧縮機と、油分離器
と、ガスクーラと、膨張弁と、蒸発器を含む閉回路と、
前記圧縮機に供給されて吐出ガスに含まれ前記油分離器
で分離された油を前記圧縮機に再び供給する回路とから
なる超臨界蒸気圧縮回路装置において、前記油分離器内
に外部から油を供給あるいは外部に取り出すことによっ
て該油分離器内の油量を調節する調節手段を設けたこと
を特徴とする超臨界蒸気圧縮回路装置。
7. A closed circuit including a refueling screw compressor, an oil separator, a gas cooler, an expansion valve, and an evaporator,
In a supercritical vapor compression circuit device comprising a circuit that supplies oil to the compressor and is contained in discharge gas and separated by the oil separator, and supplies the oil again to the compressor, an oil is externally supplied into the oil separator. A supercritical vapor compression circuit device, characterized in that adjustment means is provided for adjusting the amount of oil in the oil separator by supplying or extracting the oil to the outside.
【請求項8】 給油式スクリュー圧縮機と、油分離器
と、ガスクーラと、膨張弁と、蒸発器を含む閉回路と、
前記圧縮機に供給されて吐出ガスに含まれ前記油分離器
で分離された油を前記圧縮機に再び供給する回路とから
なる超臨界蒸気圧縮回路装置において、前記圧縮機に油
を供給する回路に該供給油の流量もしくは温度の少なく
とも1を調節する調節手段と前記油分離器内に外部から
油を供給あるいは外部に取り出すことによって該油分離
器内の油量を調節する調節手段とを設けたことを特徴と
する超臨界蒸気圧縮回路装置。
8. A closed circuit including a refueling screw compressor, an oil separator, a gas cooler, an expansion valve, and an evaporator,
A circuit for supplying oil to the compressor, in a supercritical vapor compression circuit device comprising a circuit for supplying again the oil supplied to the compressor and contained in discharge gas and separated by the oil separator. And an adjusting means for adjusting at least one of the flow rate or the temperature of the supplied oil and an adjusting means for adjusting the amount of oil in the oil separator by supplying or extracting oil from the outside into the oil separator. A supercritical vapor compression circuit device characterized in that
【請求項9】 高圧側圧力検出手段と、前記ガススクー
ラ出口の冷媒温度検出手段と、前記圧縮機に供給する油
の流量もしくは温度もしくは前記油分離器内の油量を調
節する少なくとも1の調節手段を前記検出手段により検
出したガスクーラ出口冷媒温度に対応して成績係数(CO
P)が最適になるように予め設定された高圧側圧力と運
転状態の高圧側圧力とを比較してその差が規定の範囲内
に入るように制御する制御手段とを備えたことを特徴と
する請求項6乃至8のいずれか1項に記載の超臨界蒸気
圧縮回路装置。
9. A high-pressure side pressure detecting means, a refrigerant temperature detecting means at the gas scooter outlet, and at least one adjusting means for adjusting the flow rate or temperature of oil supplied to the compressor or the amount of oil in the oil separator. The coefficient of performance (CO
And a control means for comparing the high-pressure side pressure preset to optimize P) with the high-pressure side pressure in the operating state and controlling the difference so as to fall within a specified range. The supercritical vapor compression circuit device according to any one of claims 6 to 8.
【請求項10】 高圧側圧力検出手段と、前記ガススク
ーラ出口の冷媒温度、前記圧縮機入口の冷媒温度もしく
は圧力の少なくとも1、及び出口の冷媒温度と圧力を検
出する検出手段と、前記圧縮機に供給する油の流量もし
くは温度もしくは前記油分離器内の油量を調節する少な
くとも1の調節手段を前記検出手段により検出した冷媒
温度、圧力に対応して成績係数(COP)が最適になるよ
うに予め設定された高圧側圧力と運転状態の高圧側圧力
とを比較してその差が規定の範囲内に入るように制御す
る制御手段とを備えたことを特徴とする請求項6乃至8
のいずれか1項に記載の超臨界蒸気圧縮回路装置。
10. A high pressure side pressure detecting means, a detecting means for detecting at least one of a refrigerant temperature at the gas scooter outlet, a refrigerant temperature or pressure at the compressor inlet, and an outlet refrigerant temperature and pressure, and the compressor. At least one adjusting means for adjusting the flow rate or temperature of the oil to be supplied or the oil amount in the oil separator is used to optimize the coefficient of performance (COP) in accordance with the refrigerant temperature and pressure detected by the detecting means. 9. A control means for comparing a preset high pressure side pressure with an operating high pressure side pressure and controlling the difference so as to fall within a prescribed range.
The supercritical vapor compression circuit device according to any one of 1.
【請求項11】 使用される冷媒が二酸化炭素であるこ
とを特徴とする請求項6乃至8記載の超臨界蒸気圧縮回
路装置。
11. The supercritical vapor compression circuit device according to claim 6, wherein the refrigerant used is carbon dioxide.
【請求項12】 スクリュー圧縮機を圧縮要素としたCO
2超臨界蒸気圧縮回路において、前記圧縮機による圧縮
中に液インジェクションを行うことにより吐出ガス温度
を変化させて回路の高圧側圧力を制御することを特徴と
する超臨界蒸気圧縮回路における高圧側圧力制御方法。
12. A CO using a screw compressor as a compression element.
2 In the supercritical vapor compression circuit, the high pressure side pressure in the supercritical vapor compression circuit characterized by controlling the high pressure side pressure of the circuit by changing the discharge gas temperature by performing liquid injection during compression by the compressor Control method.
【請求項13】 スクリュー圧縮機を圧縮要素としたCO
2超臨界蒸気圧縮回路装置において、前記圧縮機に液イ
ンジェクションを行う手段と吐出ガス中に含まれるイン
ジェクション液を分離する手段を設けたことを特徴とす
る超臨界蒸気圧縮回路装置。
13. CO using a screw compressor as a compression element
2. In the supercritical vapor compression circuit device, the compressor is provided with a means for performing liquid injection and a means for separating the injection liquid contained in the discharge gas.
JP2002130513A 2002-05-02 2002-05-02 High pressure side pressure control method and circuit device in supercritical vapor compression circuit Expired - Fee Related JP3990186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002130513A JP3990186B2 (en) 2002-05-02 2002-05-02 High pressure side pressure control method and circuit device in supercritical vapor compression circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002130513A JP3990186B2 (en) 2002-05-02 2002-05-02 High pressure side pressure control method and circuit device in supercritical vapor compression circuit

Publications (2)

Publication Number Publication Date
JP2003322421A true JP2003322421A (en) 2003-11-14
JP3990186B2 JP3990186B2 (en) 2007-10-10

Family

ID=29543536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002130513A Expired - Fee Related JP3990186B2 (en) 2002-05-02 2002-05-02 High pressure side pressure control method and circuit device in supercritical vapor compression circuit

Country Status (1)

Country Link
JP (1) JP3990186B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108881A1 (en) * 2004-05-07 2005-11-17 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Air-conditioning compressor
JP2006105458A (en) * 2004-10-04 2006-04-20 Mitsubishi Electric Corp Refrigerant circulation system and hermetic compressor
JP2006234225A (en) * 2005-02-23 2006-09-07 Fuji Electric Retail Systems Co Ltd Refrigerant circuit
JP2006292229A (en) * 2005-04-08 2006-10-26 Mayekawa Mfg Co Ltd Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP2007292426A (en) * 2006-04-27 2007-11-08 Sanden Corp Refrigerating circuit
KR100836273B1 (en) 2007-04-06 2008-06-10 한국기계연구원 Evaporating apparatus combining with expansion using the liquid medium injection type
JP2008281265A (en) * 2007-05-10 2008-11-20 Hitachi Appliances Inc Refrigerating device
WO2009098862A1 (en) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. Refrigeration device
WO2009098863A1 (en) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. Refrigeration device
JP2009185681A (en) * 2008-02-06 2009-08-20 Daikin Ind Ltd Compressor
JP2009236483A (en) * 2006-04-11 2009-10-15 Mayekawa Mfg Co Ltd Hot water supply device using co2 refrigerant and its operating method
JP2011133209A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
CN102865690A (en) * 2012-09-26 2013-01-09 美意(浙江)空调设备有限公司 Novel water cooling unit
CN103032981A (en) * 2011-09-30 2013-04-10 复盛股份有限公司 Refrigerant compressor unit
JP2013072564A (en) * 2011-09-27 2013-04-22 Hitachi Appliances Inc Refrigerator
CN104136780A (en) * 2012-05-22 2014-11-05 株式会社日立产机系统 Screw compressor
EP2339265A3 (en) * 2009-12-25 2015-06-24 Sanyo Electric Co., Ltd. Refrigerating apparatus
CN106225340A (en) * 2016-07-25 2016-12-14 信易电热机械有限公司 A kind of refrigeration system
US20170016651A1 (en) * 2015-07-15 2017-01-19 Korea Institute Of Energy Research Engery system
JP2017040396A (en) * 2015-08-18 2017-02-23 関東精機株式会社 Cooling device
WO2018181057A1 (en) * 2017-03-31 2018-10-04 ダイキン工業株式会社 Refrigeration device
CN114111107A (en) * 2021-10-27 2022-03-01 中国长江三峡集团有限公司 Carbon storage and high-temperature heat pump dual-function system and method based on carbon dioxide supercritical circulation

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108881A1 (en) * 2004-05-07 2005-11-17 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Air-conditioning compressor
JP2006105458A (en) * 2004-10-04 2006-04-20 Mitsubishi Electric Corp Refrigerant circulation system and hermetic compressor
JP2006234225A (en) * 2005-02-23 2006-09-07 Fuji Electric Retail Systems Co Ltd Refrigerant circuit
JP4529727B2 (en) * 2005-02-23 2010-08-25 富士電機リテイルシステムズ株式会社 Refrigerant circuit
JP2006292229A (en) * 2005-04-08 2006-10-26 Mayekawa Mfg Co Ltd Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP2009236483A (en) * 2006-04-11 2009-10-15 Mayekawa Mfg Co Ltd Hot water supply device using co2 refrigerant and its operating method
JP2007292426A (en) * 2006-04-27 2007-11-08 Sanden Corp Refrigerating circuit
KR100836273B1 (en) 2007-04-06 2008-06-10 한국기계연구원 Evaporating apparatus combining with expansion using the liquid medium injection type
JP2008281265A (en) * 2007-05-10 2008-11-20 Hitachi Appliances Inc Refrigerating device
WO2009098863A1 (en) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. Refrigeration device
JP2009210248A (en) * 2008-02-06 2009-09-17 Daikin Ind Ltd Refrigeration device
JP2009185681A (en) * 2008-02-06 2009-08-20 Daikin Ind Ltd Compressor
JP2010032195A (en) * 2008-02-06 2010-02-12 Daikin Ind Ltd Refrigerating device
KR101185307B1 (en) * 2008-02-06 2012-09-26 다이킨 고교 가부시키가이샤 Refrigeration device
WO2009098862A1 (en) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. Refrigeration device
AU2009210984B2 (en) * 2008-02-06 2011-11-24 Daikin Industries, Ltd. Refrigeration apparatus
JP2011133209A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
US9353976B2 (en) 2009-12-25 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Refrigerating apparatus
EP2339265A3 (en) * 2009-12-25 2015-06-24 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP2013072564A (en) * 2011-09-27 2013-04-22 Hitachi Appliances Inc Refrigerator
CN103032981A (en) * 2011-09-30 2013-04-10 复盛股份有限公司 Refrigerant compressor unit
CN103032981B (en) * 2011-09-30 2015-03-25 复盛股份有限公司 Refrigerant compressor unit
CN104136780A (en) * 2012-05-22 2014-11-05 株式会社日立产机系统 Screw compressor
CN102865690B (en) * 2012-09-26 2015-09-23 美意(浙江)空调设备有限公司 Water cooling unit
CN102865690A (en) * 2012-09-26 2013-01-09 美意(浙江)空调设备有限公司 Novel water cooling unit
US20170016651A1 (en) * 2015-07-15 2017-01-19 Korea Institute Of Energy Research Engery system
US9982918B2 (en) * 2015-07-15 2018-05-29 Korea Institute Of Energy Research Energy system
JP2017040396A (en) * 2015-08-18 2017-02-23 関東精機株式会社 Cooling device
CN106225340A (en) * 2016-07-25 2016-12-14 信易电热机械有限公司 A kind of refrigeration system
WO2018181057A1 (en) * 2017-03-31 2018-10-04 ダイキン工業株式会社 Refrigeration device
CN114111107A (en) * 2021-10-27 2022-03-01 中国长江三峡集团有限公司 Carbon storage and high-temperature heat pump dual-function system and method based on carbon dioxide supercritical circulation

Also Published As

Publication number Publication date
JP3990186B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP3990186B2 (en) High pressure side pressure control method and circuit device in supercritical vapor compression circuit
JP5169295B2 (en) Refrigeration equipment
EP1757879B1 (en) Refrigerant cycle apparatus
JPH0886516A (en) Refrigerating device
KR20060022275A (en) Supercritical pressure regulation of vapor compression system
JP2007278686A (en) Heat pump water heater
JP5367100B2 (en) Dual refrigeration equipment
KR101220741B1 (en) Freezing device
KR20110074711A (en) Freezing device
JP6814974B2 (en) Refrigeration equipment
CN103196250A (en) Refrigerating apparatus and refrigerating unit
JP2015148407A (en) Refrigeration device
JP2015148406A (en) Refrigeration device
KR20110074706A (en) Freezing device
JP2015148431A (en) Refrigeration device
JP5812726B2 (en) Heat pump water heater
JP6388260B2 (en) Refrigeration equipment
KR101332478B1 (en) Freezing device
KR101190317B1 (en) Freezing device
WO2002090843A1 (en) Refrigerating device
KR100644407B1 (en) Air conditioning system with co2refrigerant
JP2001147048A (en) Superheat extent controller for refrigeration circuit
JP2005214444A (en) Refrigerator
CN108603697B (en) Refrigerating device
JP2013064573A (en) Refrigerating apparatus for container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees