JP2009236483A - Hot water supply device using co2 refrigerant and its operating method - Google Patents
Hot water supply device using co2 refrigerant and its operating method Download PDFInfo
- Publication number
- JP2009236483A JP2009236483A JP2009165771A JP2009165771A JP2009236483A JP 2009236483 A JP2009236483 A JP 2009236483A JP 2009165771 A JP2009165771 A JP 2009165771A JP 2009165771 A JP2009165771 A JP 2009165771A JP 2009236483 A JP2009236483 A JP 2009236483A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- compressor
- pressure
- supercritical
- hot water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 326
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 176
- 238000011017 operating method Methods 0.000 title abstract 3
- 238000005057 refrigeration Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 238000010257 thawing Methods 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 33
- 239000012530 fluid Substances 0.000 abstract description 19
- 238000001035 drying Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 33
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 229920006395 saturated elastomer Polymers 0.000 description 8
- 230000001932 seasonal effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
本発明は、外気温度の変化等にかかわらず安定した給湯および流体の加熱を行なうことができるヒートポンプシステム式のCO2冷媒を用いた給湯装置及びその運転方法に係わるものであり、特に前記ヒートポンプシステムに炭酸ガス(CO2)冷媒を用いた発明に関するものである。 The present invention relates to a hot water supply apparatus using a CO 2 refrigerant of a heat pump system type capable of performing stable hot water supply and fluid heating irrespective of a change in the outside air temperature, and the operation method thereof, in particular, the heat pump system. The present invention relates to an invention using a carbon dioxide (CO 2 ) refrigerant.
近年、地球環境にやさしい冷媒として炭酸ガス(CO2)冷媒の使用が促進されており、この炭酸ガス(CO2)冷媒を用いて高圧側を超臨界圧力によって循環させるヒートポンプシステム式の給湯装置について検討が行なわれており、種々の提案がされている。
例えば、炭酸ガス冷媒使用の超臨界蒸気圧縮サイクルにおいて、高圧側を流れる循環冷媒量を調節することによって、冷却能力を制御するものが知られている(特許文献1)。
また、高圧側のガスクーラ放熱を水加熱として用いて給湯する給湯装置において、年間を通じて効率よく安定した給湯を可能にするために、季節変動による外気温度の変化に応じて生じる低圧側冷媒の圧力変動に伴う高圧側冷媒量の変動差を吸収するバッファを、高圧側のガスクーラ出口部と冷媒膨張弁に至る間において主回路より枝分かれして設けられるものが知られている(特許文献2)。
さらに、同様に、季節変動による外気温度の変化に応じて生じる低圧側冷媒の圧力変動に伴う高圧側冷媒量の変動差を吸収するバッファを、冷媒膨張弁の上流側および下流側に接続して、冷媒膨張弁の上流側の高圧冷媒液と冷媒膨張弁の下流側の低圧冷媒液をバッファに回収して、圧縮機の吐出圧力をバッファ内部にかけ、またはバッファ内部の冷媒液をヒータで蒸発させて、冷媒液を冷媒膨張弁の上流側および下流側に向けて放出するものが知られている(特許文献3)。
In recent years, the use of carbon dioxide (CO 2 ) refrigerant as a refrigerant that is friendly to the global environment has been promoted, and a heat pump system type hot water supply device that uses this carbon dioxide (CO 2 ) refrigerant to circulate the high pressure side with supercritical pressure. Studies have been conducted and various proposals have been made.
For example, in a supercritical vapor compression cycle using a carbon dioxide refrigerant, a cooling capacity is controlled by adjusting the amount of circulating refrigerant flowing on the high pressure side (Patent Document 1).
In addition, in a water heater that uses the high-temperature side gas cooler heat dissipation as water heating, in order to enable efficient and stable hot water supply throughout the year, the pressure fluctuation of the low-pressure refrigerant that occurs in response to changes in the outside air temperature due to seasonal fluctuations It is known that a buffer that absorbs the fluctuation difference in the amount of high-pressure side refrigerant accompanying the branching from the main circuit is provided between the high-pressure side gas cooler outlet and the refrigerant expansion valve (Patent Document 2).
Furthermore, similarly, a buffer that absorbs the fluctuation difference in the high-pressure side refrigerant amount due to the pressure fluctuation of the low-pressure side refrigerant that occurs according to the change in the outside air temperature due to seasonal fluctuations is connected to the upstream side and the downstream side of the refrigerant expansion valve. The high-pressure refrigerant liquid upstream of the refrigerant expansion valve and the low-pressure refrigerant liquid downstream of the refrigerant expansion valve are collected in the buffer, and the discharge pressure of the compressor is applied to the inside of the buffer, or the refrigerant liquid inside the buffer is evaporated by the heater. In addition, there is known one that discharges a refrigerant liquid toward an upstream side and a downstream side of a refrigerant expansion valve (Patent Document 3).
しかし、特許文献1に記載の発明は、冷媒レシーバの液体残量を変更して蒸気圧縮サイクルの高圧サイドの圧力を変動させて冷凍能力を調整する発明であり、冷凍能力の調整については論じられているが、高圧側の冷却装置(ガスクーラ)における放熱を利用して水加熱、空気加熱等に着目して、外気温度の変化等に対して安定した加熱能力を発揮することについて記載されていない。
特に、図5に示すように特許文献1に示されている冷凍サイクルでは、冷却装置(ガスクーラ)211の下流側に熱交換器212が設けられその下流側から、絞り手段213をバイパスするように冷媒レシーバ225が設けられて、絞り手段213の出口側に接続される構成が示されている。しかし、レシーバ225内は特許文献1の特許請求の範囲に記載されているように液体残量が存在するため、レシーバ225から放出される冷媒は、液状態か湿り度の大きい飽和気液混相状態で放出されるため、放出後に蒸発器214を通過して、圧縮機210の流入側の過熱度に影響を与えやすく、過熱度の不安定な状態が長く続き適正過熱度が得にくい問題がある。圧縮機210の流入側での安定的な過熱度を得るために絞り手段213に応答の速い制御を適用するとか、熱交換器212を設けて加熱して改善する必要があり、装置が大型複雑化する問題を有する。
However, the invention described in
In particular, in the refrigeration cycle shown in
また、図6に示すような特許文献2の記載技術によれば、冷凍サイクルの高圧側のガスクーラの下流側に設けられた熱交換器214の出口部の主回路T11より枝分かれして枝回路T15が設けられ、該枝回路T15にバッファ209が設けられる構成である。このため、圧縮機出口圧力の急激な圧力上昇に対して時間的遅れが生じ、さらにバッファ209内部に回収された冷媒はバッファ209内部と主回路T11との圧力が同一の場合には主回路T11にバッファ209内部の冷媒が放出され難くなり、バッファ機能が十分発揮できない問題がある。
Further, according to the technology described in
図7に示すような特許文献3の記載技術によれば、第2のバッファ電磁弁311を開くことにより合流部Aより分岐部Cを通じてバッファ310に低圧冷媒液を回収し、さらに、高圧側のB点より分岐部Cを通じてバッファ310に高圧冷媒液を回収する。また、第1のバッファ電磁弁309を開けば圧縮機301の吐出圧力をバッファ310内部にかけることになり、内部の冷媒液を合流部Aや冷媒膨張弁304下流のB点に向けて放出するものが示されている。
また、冷媒は液状態でバッファ310内部に回収され、放出に圧縮機301の吐出圧力を利用している。また、他の例としてバッファ310をヒータ加熱して内圧を上昇させて放出させるものも示されている。
According to the technique described in Patent Document 3 as shown in FIG. 7, the low-pressure refrigerant liquid is recovered from the junction A to the
The refrigerant is recovered in the
しかし、バッファ310は、ガスクーラ出口部から蒸発器までの合流部AまたはBを通じて回収する構成であるため圧縮機出口での急激な圧力上昇に対応できない。
さらに、バッファ310内部へ回収される冷媒は液状態であることが示されており、放出される冷媒も液状態か湿り度の大きい飽和気液混相状態であるため、放出後下流側にある圧縮機301入口の過熱度に影響を与え、過熱度の不安定状態が長く続きやすく、圧縮機301の吐出ガス温度、圧力の変動も大きく、安定した給湯が得にくい問題がある。また、このような液状態で放出する場合には圧縮機301の前段に、気液の分離を行なうアキュムレータ307や熱交換器303を設けて加熱する必要があり、装置が大型複雑化する問題もある。
さらに、自動膨張弁によって圧縮機入口の過熱度を適正値に自動制御できることが示されているが、自動膨張弁による膨張制御は温度変化に対して応答するものであり、急激な状態変化に対して遅れが生じる。さらにキャピラリーチューブ等の制御性の無い固定絞り手段を使用するものに比べてコスト高となる問題も有している。
However, since the
Further, it is shown that the refrigerant recovered into the
Furthermore, although it has been shown that the superheat degree at the compressor inlet can be automatically controlled to an appropriate value by the automatic expansion valve, the expansion control by the automatic expansion valve is responsive to temperature changes, and to sudden state changes. Cause a delay. Furthermore, there is a problem that the cost is higher than that using a fixed throttle means without controllability such as a capillary tube.
そこで、本発明は、このような背景に鑑みなされたものであり、装置の大型複雑化を伴わずに安価で、且つ、季節の変動による外気温度の変化や冬期のデフロストに対応するとともに、装置の起動時の圧縮機出口での急激な圧力上昇に対しても安定した加熱能力を発揮するCO2冷媒を用いた給湯装置及びその運転方法を提供することを課題とする。 Therefore, the present invention has been made in view of such a background, is inexpensive without accompanying large-scale complexity of the apparatus, and responds to changes in the outside air temperature due to seasonal fluctuations and winter defrost, It is an object of the present invention to provide a hot water supply apparatus using a CO 2 refrigerant that exhibits a stable heating capability against a sudden pressure rise at the compressor outlet at the start-up and an operation method thereof.
前記課題を解決するため、本発明に係るCO2冷媒を用いた給湯装置は、
CO2冷媒経路上に圧縮機、ガスクーラ、膨張手段、蒸発器を直列に接続し、圧縮機吐出側より膨張手段入口側までの高サイド側冷媒経路内の圧力を超臨界状態に維持して運転される冷凍サイクルを形成し、前記ガスクーラに被昇温水を通水させて前記超臨界状態にあるCO2冷媒との熱交換により昇温させるCO2冷媒を用いた給湯装置において、
前記ガスクーラの上流側であって前記圧縮機の吐出側から前記膨張手段の出口側までを接続する冷媒バイパス経路を設けるとともに、該冷媒バイパス経路に加熱ヒータによりCO2冷媒の温度を32℃以上の臨界温度に保持された超臨界冷媒タンクを介装し、該超臨界冷媒タンクの入口側に第1の弁手段と出口側に第2の弁手段を設け、
圧縮機吐出側の圧力と蒸発器出口側から圧縮機吸入側までの圧力、温度とを検知して、前記ガスクーラに被昇温水を通水させるガスクーラ通水運転モード時に、前記超臨界冷媒タンク内のCO2冷媒とともに、前記圧縮機の吐出側から第2の弁手段入口側までの前記冷媒バイパス経路内のCO2冷媒を超臨界状態に維持するように前記第1及び第2の弁手段を開閉操作する制御装置を備えたことを特徴とする。
In order to solve the above-mentioned problem, a hot water supply apparatus using a CO 2 refrigerant according to the present invention is as follows.
A compressor, gas cooler, expansion means, and evaporator are connected in series on the CO 2 refrigerant path, and the pressure in the high-side refrigerant path from the compressor discharge side to the expansion means inlet side is maintained in a supercritical state. A hot water supply apparatus using a CO 2 refrigerant that forms a refrigeration cycle that is heated to heat the water to be heated through the gas cooler and heat-exchanged with the CO 2 refrigerant in the supercritical state,
A refrigerant bypass path is provided upstream from the gas cooler and connecting the discharge side of the compressor to the outlet side of the expansion means, and the temperature of the CO 2 refrigerant is set to 32 ° C. or higher by a heater in the refrigerant bypass path. Interposing a supercritical refrigerant tank maintained at a critical temperature, and providing a first valve means on the inlet side and a second valve means on the outlet side of the supercritical refrigerant tank;
Detects the pressure on the discharge side of the compressor and the pressure and temperature from the outlet side of the evaporator to the compressor suction side, and allows the water to be heated to flow through the gas cooler. Together with the CO 2 refrigerant, the first and second valve means so as to maintain the CO 2 refrigerant in the refrigerant bypass path from the discharge side of the compressor to the inlet side of the second valve means in a supercritical state. A control device for opening and closing is provided.
又、本発明に係るCO2冷媒を用いた給湯装置の運転方法は、CO2冷媒経路上に圧縮機、ガスクーラ、膨張手段、蒸発器を直列に接続し、圧縮機吐出側より膨張手段入口側までの高サイド側冷媒経路内の圧力を超臨界状態に維持して運転される冷凍サイクルを形成し、前記ガスクーラに被昇温水を通水させて前記超臨界状態にあるCO2冷媒との熱交換により昇温させる給湯装置の運転方法において、
前記ガスクーラの上流側であって前記圧縮機の吐出側から前記膨張手段の出口側までを接続する冷媒バイパス経路を設けるとともに、該冷媒バイパス経路に加熱ヒータによりCO2冷媒の温度を32℃以上の臨界温度に保持された超臨界冷媒タンクを介装し、該超臨界冷媒タンクの入口側に第1の弁手段と出口側に第2の弁手段を設け、
圧縮機吐出側の圧力と蒸発器出口側から圧縮機吸入側までの圧力、温度とを検知して、前記ガスクーラに被昇温水を通水させるガスクーラ通水運転モード時に、前記超臨界冷媒タンク内のCO2冷媒とともに、前記圧縮機の吐出側から第2の弁手段入口側までの前記冷媒バイパス経路内のCO2冷媒を超臨界状態に維持するように前記第1及び第2の弁手段を開閉操作することを特徴とする。
Further, the method of operating the hot water supply apparatus using CO 2 refrigerant according to the present invention, the compressor on the CO 2 refrigerant passages, a gas cooler, expansion means, an evaporator connected in series, the expansion means inlet side of the compressor discharge side To form a refrigeration cycle that is operated while maintaining the pressure in the high-side refrigerant path up to a supercritical state, and allows the water to be heated to flow through the gas cooler to heat the CO 2 refrigerant in the supercritical state. In the operation method of the hot water supply device that raises the temperature by replacement,
A refrigerant bypass path is provided upstream from the gas cooler and connecting the discharge side of the compressor to the outlet side of the expansion means, and the temperature of the CO 2 refrigerant is set to 32 ° C. or higher by a heater in the refrigerant bypass path. Interposing a supercritical refrigerant tank maintained at a critical temperature, and providing a first valve means on the inlet side and a second valve means on the outlet side of the supercritical refrigerant tank;
Detects the pressure on the discharge side of the compressor and the pressure and temperature from the outlet side of the evaporator to the compressor suction side, and allows the water to be heated to flow through the gas cooler. Together with the CO 2 refrigerant, the first and second valve means so as to maintain the CO 2 refrigerant in the refrigerant bypass path from the discharge side of the compressor to the inlet side of the second valve means in a supercritical state. It is characterized by opening and closing operations.
かかる発明によれば、第1の弁手段を開くと圧縮機によって加圧された超臨界状態のCO2冷媒が超臨界冷媒タンクに回収され、その後、第2の弁手段を開くことによって、膨張手段の下流側に超臨界状態のCO2冷媒が放出される。その結果、冷凍サイクル内のCO2冷媒量を最適な状態に調整保持することができるようになる。 According to this invention, when the first valve means is opened, the supercritical CO 2 refrigerant pressurized by the compressor is recovered in the supercritical refrigerant tank, and then the second valve means is opened to expand the refrigerant. A supercritical CO 2 refrigerant is released downstream of the means. As a result, the amount of CO 2 refrigerant in the refrigeration cycle can be adjusted and held in an optimal state.
特に、本発明においては、第1の弁手段によって超臨界冷媒タンクに回収されたCO2冷媒が、ヒータ加熱によって高圧高温の超臨界状態に保持され、第2の弁手段までこの状態が保持されているため、第2の弁手段から膨張手段の出口側へ放出する際に圧力差によって確実にCO2冷媒を放出することができる。
さらに、該タンク冷媒が超臨界状態であるため、液体状態または湿り度の大きい飽和気液混相状態で放出するものに比べて圧縮機の入口側での過熱度に与える影響が少なくまた長く続かないことから、圧縮機吐出側の温度及び圧力の変動を速く適正値に安定保持することができ、ガスクーラによる加熱能力が安定する。
また、該タンク冷媒が超臨界状態(少なくともホットガス状態)のため、気液分離のためのアキュムレータや加熱のための熱交換器等を設ける必要がなく、装置が複雑にならず小型軽量化できる。
さらには、該タンク冷媒が超臨界状態(少なくともホットガス状態)のため、膨張手段の出口側に放出されたCO2冷媒はその後蒸発器、圧縮機そしてガスクーラへと高サイド側冷媒経路への移動が早く行なわれるため応答性が良く、ヒートポンプシステムの不安定な状態が長く続くことが無い。
なお、超臨界状態とは、臨界圧力以上で臨界温度以上もしくは少なくとも温度が臨界温度以上の状態をいう。
In particular, in the present invention, the CO 2 refrigerant recovered in the supercritical refrigerant tank by the first valve means is maintained in a high-pressure and high-temperature supercritical state by heater heating, and this state is maintained until the second valve means. Therefore, the CO 2 refrigerant can be reliably released by the pressure difference when discharging from the second valve means to the outlet side of the expansion means.
Furthermore, since the tank refrigerant is in a supercritical state, it has less influence on the degree of superheat on the inlet side of the compressor and does not last longer than that discharged in a liquid state or a saturated gas-liquid mixed phase state with high wetness. Therefore, fluctuations in the temperature and pressure on the compressor discharge side can be quickly and stably maintained at appropriate values, and the heating ability by the gas cooler is stabilized.
Further, since the tank refrigerant is in a supercritical state (at least a hot gas state), it is not necessary to provide an accumulator for gas-liquid separation, a heat exchanger for heating, etc., and the apparatus is not complicated and can be reduced in size and weight. .
Furthermore, since the tank refrigerant is in a supercritical state (at least a hot gas state), the CO 2 refrigerant released to the outlet side of the expansion means is then transferred to the evaporator, the compressor, and the gas cooler to the high side refrigerant path. Is performed quickly, so that the responsiveness is good and the unstable state of the heat pump system does not last for a long time.
The supercritical state refers to a state where the pressure is higher than the critical pressure and higher than the critical temperature, or at least the temperature is higher than the critical temperature.
又本発明は、前記圧縮機が油潤滑式圧縮機であり、前記超臨界冷媒タンクの出口をタンク下端側に設定することにより、第2の弁手段及び蒸発器を介してタンク下部に貯留した油を前記圧縮機の入口側に戻しながら運転可能に構成請求項1の給湯装置の運転方法において、前記圧縮機が油潤滑式圧縮機の場合に、前記超臨界冷媒タンクの出口をタンク下端側に設定し、第2の弁手段及び蒸発器を介してタンク下部に貯留した油を前記圧縮機の入口側に戻しながら運転することを特徴とする。
In the present invention, the compressor is an oil lubricated compressor, and the outlet of the supercritical refrigerant tank is set at the lower end of the tank, so that it is stored in the lower part of the tank via the second valve means and the evaporator. The operation method of the hot water supply apparatus according to
かかる発明によれば、圧縮機が油潤滑式圧縮機の場合に、超臨界冷媒タンクの出口をタンク下端側に設置することによって、タンクの下部に溜まった圧縮機の潤滑油を第2の弁手段から冷凍サイクルに排出し、蒸発器を介して圧縮機入口側に戻すことができる。 According to this invention, when the compressor is an oil lubricated compressor, the outlet of the supercritical refrigerant tank is installed on the lower end side of the tank, so that the lubricating oil of the compressor accumulated in the lower portion of the tank is supplied to the second valve. It can be discharged from the means to the refrigeration cycle and returned to the compressor inlet side via an evaporator.
又本発明は、ガスクーラの通水運転モードが、前記膨張手段の入口側圧力と出口側圧力との圧力差が、定圧となるように、前記第1及び第2の弁手段を開閉操作して前記冷媒バイパス経路の超臨界冷媒タンクへのCO2冷媒の回収若しくは超臨界冷媒タンクよりCO2冷媒の放出を行う運転モードであるのがよい。 In the present invention, the water cooling operation mode of the gas cooler is such that the first and second valve means are opened and closed so that the pressure difference between the inlet side pressure and the outlet side pressure of the expansion means becomes a constant pressure. It is preferable that the operation mode is such that the CO 2 refrigerant is recovered to the supercritical refrigerant tank in the refrigerant bypass path or the CO 2 refrigerant is discharged from the supercritical refrigerant tank.
かかる発明によれば、前記ガスクーラ通水運転モード時に、膨張手段の入口側圧力と出口側圧力との圧力差が、定圧となるように圧縮機の吐出冷媒を前記超臨界冷媒タンクに回収若しくは回収した超臨界状態のCO2冷媒を前記膨張手段の出口側へ放出するように前記第1及び第2の弁手段を開閉操作するので、膨張手段の前後差圧が一定となるため、例えば膨張手段をキャピラリーチューブのような制御性の無い固定絞り手段によって構成した場合には、その本数を制御することで膨張手段の絞り量の制御が可能になり、可変絞り弁機構のような装置を設けずに絞り量の制御を安価に達成することができ、給湯装置全体を低コストで製造することができる。 According to this invention, the refrigerant discharged from the compressor is collected or collected in the supercritical refrigerant tank so that the pressure difference between the inlet side pressure and the outlet side pressure of the expansion means becomes a constant pressure in the gas cooler water flow operation mode. Since the first and second valve means are opened and closed so as to release the supercritical CO 2 refrigerant to the outlet side of the expansion means, the differential pressure across the expansion means becomes constant. Can be controlled by a fixed throttle means without controllability such as a capillary tube, it becomes possible to control the amount of expansion of the expansion means by controlling the number of them, and no device such as a variable throttle valve mechanism is provided. In addition, the control of the amount of drawing can be achieved at low cost, and the entire hot water supply apparatus can be manufactured at low cost.
又本発明は、前記蒸発器が外気を取り入れてCO2冷媒を蒸発させる外気取り込み型蒸発器であって、前記外気温度に基づいて若しくは季節単位により、圧縮機の目標吐出圧力範囲を選択し、該目標吐出圧力範囲になるように前記冷媒バイパス経路の超臨界冷媒タンクへのCO2冷媒の回収若しくは超臨界冷媒タンクよりCO2冷媒の放出を行うように制御するのがよい。 Further, the present invention is an outside air intake type evaporator in which the evaporator takes in outside air and evaporates CO 2 refrigerant, and selects a target discharge pressure range of the compressor based on the outside air temperature or in season units, it is preferable to control so as to perform the release of CO 2 refrigerant from the recovery or supercritical refrigerant tank CO 2 refrigerant into a supercritical refrigerant tank of said refrigerant bypass path so as to the target discharge pressure range.
かかる発明によれば、冬期の外気温度の低いときには、蒸発温度が低下して冷凍サイクルの膨張手段の出口側より圧縮機入口側までの低サイド側冷媒経路内の圧力が低下する。そのため、冷凍サイクル中のCO2冷媒量が一定であると高サイド側冷媒経路内のガス密度が高くなり高サイド側CO2冷媒経路の圧力が高くなるが、このとき、第1の弁手段を開操作して、圧縮機によって加圧され超臨界状態のCO2冷媒を超臨界冷媒タンクに回収することによって、高サイド側冷媒経路内の圧力の過上昇が防止されて冬期時の目標吐出圧力範囲に制御される。 According to this invention, when the outside air temperature in winter is low, the evaporation temperature is lowered, and the pressure in the low-side refrigerant path from the outlet side of the expansion means of the refrigeration cycle to the compressor inlet side is reduced. Therefore, if the amount of CO 2 refrigerant in the refrigeration cycle is constant, the gas density in the high side refrigerant path increases and the pressure in the high side CO 2 refrigerant path increases, but at this time, the first valve means is By opening and recovering the supercritical CO 2 refrigerant pressurized by the compressor to the supercritical refrigerant tank, the pressure in the high side refrigerant path is prevented from rising excessively, and the target discharge pressure in winter Controlled to range.
また、夏期の外気温度の高いときには、蒸発温度が上昇して冷凍サイクルの低サイド側冷媒経路内の圧力が上昇する。そのため、冷凍サイクル中のCO2冷媒量が一定であると高サイド側冷媒経路内のガス密度が低くなり高サイド側冷媒経路内の圧力が低くなるが、このとき、第2の弁手段を開操作して、超臨界冷媒タンク内に回収されている超臨界状態のCO2冷媒を膨張手段の出口側に放出させて、高サイド側冷媒経路内の圧力の低下を防止して夏期時の目標吐出圧力範囲に制御される。 Further, when the outside air temperature is high in summer, the evaporation temperature rises and the pressure in the low-side refrigerant path of the refrigeration cycle rises. Therefore, if the amount of CO 2 refrigerant in the refrigeration cycle is constant, the gas density in the high side refrigerant path becomes low and the pressure in the high side refrigerant path becomes low. At this time, the second valve means is opened. By operating, the supercritical state CO 2 refrigerant recovered in the supercritical refrigerant tank is discharged to the outlet side of the expansion means to prevent the pressure in the high side refrigerant path from decreasing, and the summer target The discharge pressure range is controlled.
このように、冬期時には高サイド側冷媒経路の圧力の過上昇を防止し、夏期時には高サイド側冷媒経路内の圧力の低下を防止して、1年を通じて外気温度が変化しても外気温度に基づいて若しくは季節単位により設定された圧縮機の目標吐出圧力範囲に入るように、第1の弁手段および第2の弁手段を開閉操作するため、低サイド側冷媒経路内と高サイド側冷媒経路内との圧力差を、四季を通じて一定の範囲内に収めることができ、膨張手段の前後差圧を一定の範囲に収めることができる。
その結果、例えば膨張手段をキャピラリーチューブのような固定絞り手段によって構成した場合には、その本数を制御することで四季を通じて一定範囲の絞り量の制御が可能になり、可変絞り弁機構のような装置を設けずに絞り量の制御を安価に達成することができ、給湯装置全体を低コストで製造することができる。
In this way, an excessive increase in the pressure in the high-side refrigerant path is prevented during the winter, and a decrease in the pressure in the high-side refrigerant path is prevented during the summer. In order to open and close the first valve means and the second valve means so as to fall within the target discharge pressure range of the compressor set based on the season or on a seasonal basis, the low side refrigerant path and the high side refrigerant path The pressure difference from the inside can be kept within a certain range throughout the four seasons, and the differential pressure across the expansion means can be kept within a certain range.
As a result, for example, when the expansion means is constituted by a fixed throttle means such as a capillary tube, it is possible to control the throttle amount within a certain range throughout the season by controlling the number of the expansion means, such as a variable throttle valve mechanism. Control of the drawing amount can be achieved at low cost without providing a device, and the entire hot water supply device can be manufactured at low cost.
従って本発明において、前記ガスクーラ通水運転の起動時に、前記第1の弁手段を開き前記第2の弁手段を閉じて前記超臨界冷媒タンクへCO2冷媒の回収を行なうことで高サイド側冷媒経路内の圧力を目標圧力値以下に制御し、その後前記ガスクーラ通水運転モードへ移行するように制御するのがよい。 Therefore, in the present invention, when the gas cooler water-flow operation is started, the first valve means is opened, the second valve means is closed, and the CO 2 refrigerant is recovered to the supercritical refrigerant tank, whereby the high side refrigerant is It is preferable to control the pressure in the path to be equal to or lower than the target pressure value and then shift to the gas cooler water flow operation mode.
前記ガスクーラ通水運転の通水温度は、(1)15℃前後の上水が供給される場合、(2)徐々に加温され貯湯槽水温が上昇し60℃前後の高温水が供給される場合、(3)追焚きのため起動時から60℃前後の高温水が供給される場合の三つの場合がある。
(1)の場合はガスクーラの圧力が超臨界圧力以下からの圧縮機起動であり、(2)の場合は圧縮機起動後通水温の上昇にしたがってガスクーラ圧力が上昇していくものでありいずれも圧縮機出口圧力の変化は急激なものではない。
(3)の場合は圧縮機起動前にガスクーラの圧力が超臨界圧力以上の高圧力下であり、そのような高圧力からの起動においては圧縮機出口の圧力は急激に上昇する。
The water flow temperature of the gas cooler water flow operation is as follows: (1) When water is supplied at around 15 ° C., (2) the water is gradually heated to increase the temperature of the hot water tank, and hot water at around 60 ° C. is supplied. In this case, there are three cases where (3) high-temperature water at around 60 ° C. is supplied from the start-up for pursuit.
In the case of (1), the compressor starts when the pressure of the gas cooler is below the supercritical pressure. In the case of (2), the gas cooler pressure increases as the water flow temperature rises after the compressor starts. The change in compressor outlet pressure is not abrupt.
In the case of (3), the pressure of the gas cooler is under a high pressure equal to or higher than the supercritical pressure before the compressor is started, and the pressure at the outlet of the compressor rises abruptly when starting from such a high pressure.
圧縮機出口部には許容圧力以下に戻すことができる安全装置として、安全弁と高圧遮断装置が取り付けられており、(3)の場合において通水温度や外気温度によっては高圧遮断装置が作動する。 A safety valve and a high-pressure shut-off device are attached to the compressor outlet as a safety device that can return to the allowable pressure or lower. In the case of (3), the high-pressure shut-off device operates depending on the water flow temperature or the outside air temperature.
かかる発明によれば、起動時において圧縮機出口部の圧力が上がりすぎても前記第1の弁手段を開き前記超臨界冷媒タンクへ圧縮機出口部冷媒を短絡に逃がすことにより給湯装置の非常停止用の高圧遮断装置を不必要に作動させることが防止され、ガスクーラ通水運転モードへの移行をスムーズに行なわせることができ、給湯装置を安定して使用することができる。 According to this invention, even if the pressure at the outlet of the compressor rises too much at the time of start-up, the emergency stop of the hot water supply device is performed by opening the first valve means and allowing the refrigerant at the outlet of the compressor to escape into the supercritical refrigerant tank. It is possible to prevent unnecessary operation of the high-pressure shut-off device, and to smoothly transition to the gas cooler water-flowing operation mode, so that the hot water supply device can be used stably.
ここで請求項1記載の超臨界冷媒タンクが加熱ヒータによりCO2冷媒の温度を臨界温度以上に保持されており液状態または湿り度の大きい飽和気液混相状態ではないことが急激に圧力上昇した圧縮機出口部冷媒を短絡に前記超臨界冷媒タンクへ逃がすことにおいても大きな役割となっている。
Here, the pressure of the supercritical refrigerant tank according to
すなわち、超臨界タンクの容積をVT、加熱されていない場合に存在する液の容積をVLとすると、圧縮機出口部冷媒を短絡に前記超臨界冷媒タンクへ逃がす時の前記超臨界冷媒タンクの容積は、次のとおりである。
(1)前記超臨界冷媒タンクが加熱ヒータによりCO2冷媒の温度を臨界温度以上に保持されている場合 V1=VT
(2)前記超臨界冷媒タンクが加熱されず液状態または湿り度の大きい飽和気液混相(蒸気)状態にある場合 V2=VT−VL
そのとき V1>V2 であり、圧縮機出口部の急激な圧力上昇を回避しやすくしている。
That is, if the volume of the supercritical tank is VT and the volume of the liquid that is not heated is VL, the volume of the supercritical refrigerant tank when the refrigerant at the compressor outlet is short-circuited and allowed to escape to the supercritical refrigerant tank. Is as follows.
(1) When the supercritical refrigerant tank holds the temperature of the CO 2 refrigerant at a critical temperature or higher by a heater V1 = VT
(2) When the supercritical refrigerant tank is not heated and is in a liquid state or a saturated gas-liquid mixed phase (vapor) state with high wetness V2 = VT−VL
At that time, V1> V2, and it is easy to avoid a sudden pressure increase at the outlet of the compressor.
又本発明は、前記制御装置に前記ガスクーラ通水運転モードとともに、前記蒸発器の除霜を行なうデフロスト運転モードが設定されており、前記デフロスト運転モードが、ガスクーラおよび蒸発器の奪熱負荷を停止した状態にして前記圧縮機を駆動させるとともに、膨張手段の経路に加えて前記第1の弁手段および第2の弁手段を開いて前記冷媒バイパス経路を開放して超臨界冷媒タンク内の超臨界ガスを蒸発器側に放出するモードであることを特徴とする。 In the present invention, a defrost operation mode for defrosting the evaporator is set together with the gas cooler water flow operation mode in the control device, and the defrost operation mode stops a heat sink load of the gas cooler and the evaporator. In this state, the compressor is driven, the first valve means and the second valve means are opened in addition to the path of the expansion means to open the refrigerant bypass path, and the supercritical refrigerant in the supercritical refrigerant tank is opened. In this mode, the gas is discharged to the evaporator side.
かかる発明によれば、デフロスト運転モードのときに膨張手段の経路に加えて第1の弁手段および第2の弁手段を開いて前記冷媒バイパス経路を開放して超臨界冷媒タンク内の超臨界状態のCO2冷媒を膨張手段の出口側と蒸発器の入口側との間に放出し、しかも、ガスクーラおよび蒸発器の奪熱負荷を停止した状態にして前記圧縮機を駆動させて、CO2冷媒を冷凍サイクルの経路内を循環させるため、超臨界冷媒タンクから放出された冷媒状態と圧縮機の駆動で供給されるCO2冷媒状態は超臨界状態であり、給湯装置の変動を小さく抑えることができ、放出された高温高圧の超臨界状態のCO2冷媒が直近の蒸発器に直ぐにいきわたり除霜(デフロスト)が行われ、短時間で除霜することができる。 According to this invention, in the defrosting operation mode, in addition to the path of the expansion means, the first valve means and the second valve means are opened to open the refrigerant bypass path, so that the supercritical state in the supercritical refrigerant tank is reached. The CO 2 refrigerant is discharged between the outlet side of the expansion means and the inlet side of the evaporator, and the compressor is driven with the heat sink load of the gas cooler and the evaporator stopped, and the CO 2 refrigerant is driven. In order to circulate the refrigerant in the path of the refrigeration cycle, the refrigerant state discharged from the supercritical refrigerant tank and the CO 2 refrigerant state supplied by driving the compressor are supercritical states, and fluctuations in the hot water supply device can be kept small. The released high-temperature and high-pressure supercritical CO 2 refrigerant immediately goes to the nearest evaporator and is defrosted, so that it can be defrosted in a short time.
又本発明は、前記膨張手段が前記冷媒経路に並列配置された複数の定圧絞り手段により構成され、前記ガスクーラ通水運転モード時に、該複数の定圧絞り手段を選択的に開放して得られる絞り範囲が前記圧縮機の入口側の目標過熱度範囲を外れた場合に、前記第1及び第2の弁手段を開閉操作して前記圧縮機の入口側の過熱度を目標過熱度範囲に維持するように制御される。 In the present invention, the expansion means is constituted by a plurality of constant pressure throttle means arranged in parallel in the refrigerant path, and the throttle obtained by selectively opening the plurality of constant pressure throttle means in the gas cooler water flow operation mode. When the range is outside the target superheat range on the inlet side of the compressor, the first and second valve means are opened and closed to maintain the superheat level on the inlet side of the compressor in the target superheat range. To be controlled.
かかる発明によれば、複数の定圧絞り手段を選択的に開放するため、絞り量は全ての定圧絞り手段を選択した場合と、1本の定圧絞り手段を選択した場合の範囲となり、またその間をステップ的に変化することになる。
このため、例えば、全ての定圧絞り手段を開放しても、圧縮機入口側の過熱度が目標過熱度範囲を超えて上がりすぎて下がらない場合には、第2の弁手段を開制御して圧縮機の入口側の過熱度を下げて目標過熱度範囲に維持する。逆に、1本の定圧絞り手段を選択しても、圧縮機入口側の過熱度が目標過熱度範囲を超えて下がりすぎて上がらない場合には、第1の弁手段を開制御して圧縮機の入口側の過熱度を上げて目標過熱度範囲に維持する。
このように、第1及び第2の弁手段を開閉制御して前記圧縮機入口側の過熱度を目標過熱度範囲に維持することができるため、圧縮機出口側の圧力と温度を変動なく維持でき、ガスクーラへの流入温度を安定させることができる。
また、例えば、定圧絞り手段にキャピラリーチューブを用いる場合には、可変絞り弁機構を用いて構成するよりも安価に給湯装置を構成することが可能になる。
According to this invention, since a plurality of constant pressure throttling means are selectively opened, the amount of throttling is in the range when all the constant pressure throttling means are selected and when one constant pressure throttling means is selected, and there is a gap between them. It will change step by step.
For this reason, for example, if the superheat degree on the compressor inlet side does not rise too much beyond the target superheat range even if all constant pressure throttling means are opened, the second valve means is controlled to open. Reduce the superheat on the inlet side of the compressor and maintain it in the target superheat range. On the other hand, even if one constant pressure throttle means is selected, if the degree of superheat on the compressor inlet side does not rise too much beyond the target superheat degree range, the first valve means is controlled to open and compressed. Increase the superheat on the inlet side of the machine and maintain it in the target superheat range.
In this way, the first and second valve means can be controlled to be opened and closed so that the superheat degree on the compressor inlet side can be maintained within the target superheat degree range, so that the pressure and temperature on the compressor outlet side can be maintained without fluctuation. It is possible to stabilize the inflow temperature to the gas cooler.
Further, for example, when a capillary tube is used as the constant pressure throttle means, it is possible to configure the hot water supply apparatus at a lower cost than when using a variable throttle valve mechanism.
又発明の運転方法において、運転停止時に、前記圧縮機の作動を停止するとともに前記膨張手段を閉じ、同時に前記第1の弁手段および第2の弁手段をともに開操作し、その後ガスクーラへの通水を遮断するとともに前記蒸発器への送風を停止することによって、前記圧縮機吐出側のCO2冷媒を前記冷媒バイパス経路を介して蒸発器側に通流させて高サイド側冷媒経路と低サイド側冷媒経路の両者間を均圧化させる。 In the operation method of the present invention, when the operation is stopped, the operation of the compressor is stopped and the expansion means is closed. At the same time, both the first valve means and the second valve means are opened, and then the gas cooler is connected. By shutting off water and stopping the blowing to the evaporator, the CO 2 refrigerant on the discharge side of the compressor is caused to flow to the evaporator side via the refrigerant bypass path, and the high side refrigerant path and the low side The pressure is equalized between the two refrigerant paths.
かかる発明によれば、給湯装置の停止時に、圧縮機を停止し、絞り手段を閉じてガスクーラを経由する高サイド側冷媒経路の蒸発器への通流を遮断し、前記第1の弁手段および第2の弁手段をともに開くことで、前記圧縮機吐出側冷媒を前記冷媒バイパス経路を介して蒸発器側に通流させて高サイド側冷媒経路と低サイド側冷媒経路の両者間を均圧化するため、停止後の起動時に圧縮機の前後の圧力差が無い状態になっているため、圧縮機の起動が容易に行なわれる。 According to this invention, when the hot water supply device is stopped, the compressor is stopped, the throttle means is closed, the flow to the evaporator of the high side refrigerant path via the gas cooler is interrupted, and the first valve means and By opening the second valve means together, the compressor discharge side refrigerant is caused to flow to the evaporator side via the refrigerant bypass path, and pressure is equalized between the high side refrigerant path and the low side refrigerant path. Therefore, since there is no pressure difference before and after the compressor at the start after the stop, the compressor can be easily started.
本発明によれば、装置の大型複雑化を伴わずに安価で、且つ、季節の変動による外気温度の変化や冬期のデフロストに対応するとともに装置の起動時の圧縮機出口での急激な圧力上昇に対しても安定した加熱能力を発揮する給湯装置及びその運転方法を提供することができる。 According to the present invention, the apparatus is inexpensive without increasing the size of the apparatus, and can respond to a change in the outside air temperature due to seasonal fluctuations and a defrost in winter, and a sudden pressure rise at the compressor outlet at the start of the apparatus In addition, a hot water supply apparatus that exhibits stable heating capability and an operation method thereof can be provided.
又本発明によれば、冬期、夏期等の季節の変動による外気温度の変化時、装置の起動時等において圧縮機吐出側の温度及び圧力を適正値に安定保持できガスクーラによる安定した加熱能力を得ることができ、さらに、装置の小型軽量化を達成できる給湯装置及びその運転方法を得ることができる。 In addition, according to the present invention, the temperature and pressure on the compressor discharge side can be stably maintained at appropriate values when the outside air temperature changes due to seasonal fluctuations such as winter and summer, and when the apparatus is started up, etc. Further, it is possible to obtain a hot water supply apparatus and an operation method thereof that can achieve a reduction in size and weight of the apparatus.
次に、本発明の実施の形態について、適宜図面を参照しながら詳細に説明する。ただし、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
参照する図面において、図1は本発明の第1の実施形態に係る給湯装置のシステム概要図である。図2は外気温度変化に対する電磁弁(弁手段)の制御を示すフローチャート図である。図3は一連の運転パターンを示す説明図である。図4は本発明の第2の実施形態に係る流体加熱装置のシステム概要図である。
Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. However, as long as there is no specific description, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
In the drawings to be referred to, FIG. 1 is a system schematic diagram of a hot water supply apparatus according to a first embodiment of the present invention. FIG. 2 is a flowchart showing the control of the solenoid valve (valve means) with respect to changes in the outside air temperature. FIG. 3 is an explanatory diagram showing a series of operation patterns. FIG. 4 is a system schematic diagram of a fluid heating apparatus according to the second embodiment of the present invention.
図1に示す給湯装置1のシステム概要図を参照して第1の実施形態を説明する。
圧縮機2、ガスクーラ4、膨張手段6、蒸発器8が直列に配設され、圧縮機2の吐出側より膨張手段6の入口側までの高サイド側冷媒経路T1と、膨張手段6の出口側より圧縮機2の入口側までの低サイド側冷媒経路T2とによって接続されて基本的な冷凍サイクルを形成している。そして、冷凍サイクルの冷媒として炭酸ガス(CO2)が用いられて、高サイド側冷媒経路T1内においては、冷媒が超臨界状態に維持されて運転されている。
1st Embodiment is described with reference to the system schematic diagram of the hot
The
膨張手段6は、冷媒経路に並列配置された4本の定圧絞り手段としてのキャピラリーチューブ7a、7b、7c、7dによって構成され、それぞれのキャピラリーチューブ7a、7b、7c、7dの入口側には電磁弁10a、10b、10c、10dが設けられている。
なお、キャピラリーチューブとは、細い管のことであり、冷媒がこの細管(チューブ)を流れるときの流れ抵抗(圧力降下または前後差圧)を利用して絞り膨張を行なうものであり、チューブの内径、長さ等によって絞り量が決まる。
The expansion means 6 is composed of four
A capillary tube is a thin tube that performs expansion by utilizing the flow resistance (pressure drop or differential pressure across the tube) when the refrigerant flows through the tube (tube). The aperture amount is determined by the length and the like.
蒸発器8は、送風ファン12で外気を取り入れて冷媒を蒸発させる外気取り込み型蒸発器である。また、ガスクーラ4には、冷凍サイクル中の超臨界状態の冷媒と熱交換して加熱される水を通水するための給水経路T3が接続され、この給水経路T3には、水入口14と水出口16と給水ポンプ18が設けられている。なお、給水ポンプ18は給水経路T3内でなく給湯装置1の外部に設けられていてもよい。
The
水入口14と水出口16は、給湯装置1の外部に設けられた貯湯槽20に接続される。貯湯槽20内の湯を追焚きする追焚き用給水管22と、追焚き用給水管22とは別に貯湯用の水を供給する貯湯用給水管24とのそれぞれは、切り換えバルブ26を介して水入口14に接続される。また、ガスクーラ4で加熱された水を貯湯槽20に戻して溜める貯湯用の配管28が、水出口16に接続される。
The
ガスクーラ4の上流側であって圧縮機2の吐出側と、膨張手段6の出口側とを接続して、ガスクーラ4と膨張手段6とをバイパスするように冷媒バイパス経路T4が設けられている。この冷媒バイパス経路T4には超臨界冷媒タンク30が介設され、超臨界冷媒タンク30の入口側には第1電磁弁32(第1の弁手段)が、超臨界冷媒タンク30の出口側には第2電磁弁34(第2の弁手段)がそれぞれ設けられている。
A refrigerant bypass path T4 is provided so as to bypass the
第1電磁弁32が開くと圧縮機2から高圧高温の超臨界冷媒がタンク30に回収され、第2電磁弁34が開くとタンク30に回収された冷媒が膨張手段6の出口側と蒸発器8との間に放出されるようになっている。
When the first
また、この超臨界冷媒タンク30の上端部に入口が接続され下端部に出口が接続されている。このため圧縮機2が油潤滑式の圧縮機であり冷媒中に潤滑油が混入しても、潤滑油は超臨界冷媒タンク30下部に蓄積され、タンク30の下端側に設置した出口から第2電磁弁34を介して膨張手段6の出口側と蒸発器8との間に放出されて、蒸発器8から圧縮機2に戻すことができる。
The supercritical refrigerant tank 30 has an inlet connected to the upper end and an outlet connected to the lower end. For this reason, even if the
超臨界冷媒タンク30は外気温の影響を受けて冷却されないように断熱材36で覆われ、さらに加熱ヒータ38によって臨界温度以上の32℃以上に常時加熱されており、タンク30内の冷媒が常時超臨界状態(少なくともホットガス状態)に保持されるように制御されている。
The supercritical refrigerant tank 30 is covered with a
このため、第1電磁32によって超臨界冷媒タンク30に回収された冷媒が、加熱ヒータ38の加熱によって高圧高温の超臨界状態に保持され、第2電磁弁34までこの状態が保持されているため、第2電磁弁34から膨張手段6の出口側へ放出する際に圧力差によって確実に冷媒を放出することができる。
さらに、該タンク冷媒が超臨界状態であるため、液体状態または湿り度の大きい飽和気液混相状態で放出するものに比べて圧縮機2の入口側での過熱度に与える影響が少くまた長く続かないことから、圧縮機吐出側の温度及び圧力の変動が少なく適正値に安定保持することができ、ガスクーラ4による加熱能力が安定する。
また、該タンク冷媒が超臨界状態(少なくともホットガス状態)のため、気液分離のためのアキュムレータや加熱のための熱交換器等を設ける必要がなく、装置が複雑にならず小型軽量化できる。
さらには、該タンク冷媒が超臨界状態(少なくともホットガス状態)のため、膨張手段の出口側に放出された冷媒はその後蒸発器8、圧縮機2そしてガスクーラ4へと高サイド側冷媒経路T1への移動が早く行なわれるため応答性が良く、ヒートポンプシステムの不安定な状態が長く続くことは無い。
For this reason, the refrigerant recovered in the supercritical refrigerant tank 30 by the first electromagnetic 32 is maintained in a high-pressure and high-temperature supercritical state by the heating of the heater 38, and this state is maintained up to the second
Further, since the tank refrigerant is in a supercritical state, it has less influence on the degree of superheat on the inlet side of the
Further, since the tank refrigerant is in a supercritical state (at least a hot gas state), it is not necessary to provide an accumulator for gas-liquid separation, a heat exchanger for heating, etc., and the apparatus is not complicated and can be reduced in size and weight. .
Furthermore, since the tank refrigerant is in a supercritical state (at least a hot gas state), the refrigerant released to the outlet side of the expansion means is then sent to the
給湯装置1は、以上のように構成されており、次に冷媒バイパス経路T4に設けられた第1電磁弁32と、第2電磁弁34と、キャピラリーチューブ7a、7b、7c、7dの入口側の電磁弁10a、10b、10c、10dとを制御する制御装置50について説明する。制御装置50は、第1電磁弁32と第2電磁弁34との開閉操作を制御するバイパス制御手段52と、キャピラリーチューブ7a、7b、7c、7dの選択開放を制御する絞り制御手段54とからなる。
The
バイパス制御手段52は、圧縮機2の吐出側の圧力Pdと、蒸発器8の出口側から圧縮機2の吸入側までの温度Tcと圧力Pcを検知して、これら検知信号から圧縮機2の吐出側から第2電磁弁の入口側までの冷媒バイパス経路T4内の冷媒を超臨界状態に維持するとともに、給湯装置1の運転モードに応じて圧縮機2の吐出冷媒を超臨界冷媒タンク30に回収し、または回収した冷媒を膨張手段6の出口側へ放出するように制御する。
The bypass control means 52 detects the pressure Pd on the discharge side of the
バイパス制御手段52は、四季を通じて外気温度が変化しても膨張手段6を構成するキャピラリーチューブ7a、7b、7c、7dの入口側圧力と出口側圧力との圧力差が、定圧となるように制御し、または圧縮機2の吐出側圧力が起動時において異常上昇しないように適正圧力に制御する。
さらに、バイパス制御手段52は、後で説明する絞り制御手段54とともに圧縮機2の入口側の過熱度制御が目標過熱度範囲に入るように制御している。
The bypass control means 52 controls the pressure difference between the inlet side pressure and the outlet side pressure of the
Further, the bypass control means 52 controls the superheat degree control on the inlet side of the
冬期の外気温度の低いときには、蒸発温度が低下して冷凍サイクルの膨張手段6の出口側より圧縮機2の入口側までの低サイド側冷媒経路T2内の圧力が低下する。そのため、冷凍サイクル中の冷媒量が一定であると高サイド側冷媒経路T1内のガス密度が高くなり高サイド側冷媒経路T1内の圧力が高くなるが、このとき、バイパス制御手段52が第1電磁弁32を開操作して、圧縮機2によって加圧され超臨界状態の冷媒を超臨界冷媒タンク30に回収することによって、高サイド側冷媒経路T1内の圧力の過上昇が防止されて冬期時の目標吐出圧力に制御される。
When the outside air temperature is low in winter, the evaporation temperature is lowered, and the pressure in the low-side refrigerant path T2 from the outlet side of the expansion means 6 of the refrigeration cycle to the inlet side of the
また、夏期の外気温度の高いときには、蒸発温度が上昇して冷凍サイクルの低サイド側冷媒経路T2内の圧力が上昇する。そのため、冷凍サイクル中の冷媒量が一定であると高サイド側冷媒経路T1内のガス密度が低くなり高サイド側冷媒経路T1内の圧力が低くなるが、このとき、バイパス制御手段52が第2電磁弁34を開操作して、超臨界冷媒タンク30内に回収されている超臨界状態の冷媒を膨張手段6の出口側に放出させて、高サイド側冷媒経路T1内の圧力の低下を防止して夏期時の目標吐出圧力に制御される。
Further, when the outside air temperature is high in summer, the evaporation temperature rises and the pressure in the low-side refrigerant path T2 of the refrigeration cycle rises. Therefore, if the amount of refrigerant in the refrigeration cycle is constant, the gas density in the high-side refrigerant path T1 becomes low and the pressure in the high-side refrigerant path T1 becomes low. By opening the
図2のフローチャートを参照して外気温度の変化に対するバイパス制御手段52の作動を説明する。
まず第1電磁弁32および第2電磁弁34を閉操作させる(S1)。次に外気温度センサ33または手動の切り換えスイッチ(図示せず)によって、冬期、夏期、中間期のいずれかの季節モードを設定する(S3)。
The operation of the bypass control means 52 with respect to changes in the outside air temperature will be described with reference to the flowchart of FIG.
First, the first
冬期モードの場合には、圧縮機2の吐出側の圧力Pdが冬期モード時の目標吐出圧力L以上か否かを判断し(S5)、目標吐出圧力L以上であれば、第1電磁弁32を開き(S7)、所定時間(1秒)経過させ(S9)、その後圧力Pdが目標吐出圧力L−Δl以下に低下したかを判断し(S11)、吐出圧力PdがL−Δl以下になるまで第1電磁弁32の開操作を繰り返す。このΔlは、一定の許容値を示す。そして、吐出圧力PdがL−Δl以下になると第1電磁弁32を閉じる(S13)。
In the winter mode, it is determined whether or not the pressure Pd on the discharge side of the
また、圧縮機2の吐出側の圧力Pdが冬期モード時の目標吐出圧力L以下か否かを判断し(S15)、目標圧力L以下であれば、第2電磁弁34を開き(S17)、所定時間(1秒)経過させ(S19)、その後圧力Pdが目標吐出圧力L+Δl以上に上がったかを判断し(S21)、吐出圧力PdがL+Δl以上になるまで第2電磁弁34の開操作を繰り返す。そして、吐出圧力PdがL+Δl以上になると第2電磁弁34を閉じる(S23)。
以上のように、圧縮機2の吐出側の圧力Pdを、第1電磁弁32、第2電磁弁34を制御して冬期の目標吐出圧力L±Δlの範囲内に保持することができる。
Further, it is determined whether or not the pressure Pd on the discharge side of the
As described above, the pressure Pd on the discharge side of the
同様に、中間期の場合において、圧縮機2の吐出側の圧力Pdを中間期の目標吐出圧力M±Δmの範囲内に保持でき、夏期の場合においても、圧縮機2の吐出側の圧力Pdを夏期の目標吐出圧力H±Δhの範囲内に保持することができる。
Similarly, in the intermediate period, the pressure Pd on the discharge side of the
その結果、低サイド側冷媒経路T2の圧力は季節(外気温度)によって変動するが、季節ごとに高サイド側冷媒経路T1内の圧力を目標吐出圧力値L±Δl、M±Δm、H±Δhの範囲内に保持することでき、目標吐出圧力値L、M、Hの設定値によって、低サイド側冷媒経路T2内の圧力と高サイド側冷媒経路T1内の圧力との差圧を、1年通じて一定の範囲内に設定することができる。 As a result, although the pressure in the low-side refrigerant path T2 varies depending on the season (outside air temperature), the pressure in the high-side refrigerant path T1 is changed to the target discharge pressure value L ± Δl, M ± Δm, H ± Δh for each season. The differential pressure between the pressure in the low-side refrigerant path T2 and the pressure in the high-side refrigerant path T1 is set to one year depending on the set values of the target discharge pressure values L, M, and H. And can be set within a certain range.
そして、以上のようにキャピラリーチューブ7a、7b、7c、7dの入口側圧力と出口側圧力との圧力差が季節によって大きく変動しないように定圧に保持されるため、キャピラリーチューブ7a、7b、7c、7dの本数の選択によって圧縮機2の入口側の吸入過熱度を安定制御できる。
なお、以上説明したように夏期時に最も多くの冷媒が冷凍サイクル内を流れ、冬期時に最も少ない量になるため、超臨界冷媒タンク30の容量は、この夏期時の最大冷媒状態を冬期時に回収できる容量に設定される必要があることは勿論である。
Since the pressure difference between the inlet side pressure and the outlet side pressure of the
As described above, since the largest amount of refrigerant flows in the refrigeration cycle during summer and the smallest amount during winter, the capacity of the supercritical refrigerant tank 30 can recover the maximum refrigerant state during summer during winter. Of course, it is necessary to set the capacity.
次に、絞り制御手段54について説明する。
絞り制御手段54は、蒸発器8の出口側から圧縮機2の吸入側までの温度Tcと圧力Pcを検知して、圧力Pcに対する飽和温度を求め、この飽和温度と検知温度Tcとの差から、圧縮機2の吸入側の過熱度を求める。そしてこの過熱度が目標過熱度範囲に入るように、4本のキャピラリーチューブ7a、7b、7c、7dの入口側の電磁弁10a、10b、10c、10dを制御して開放するキャピラリーチューブ7a、7b、7c、7dを選択する。
Next, the aperture control means 54 will be described.
The throttle control means 54 detects the temperature Tc and the pressure Pc from the outlet side of the
絞り制御手段54が、このようにキャピラリーチューブ7a、7b、7c、7dの選択によって過熱度の制御を行なっても、絞り制御手段54による制御が4本のキャピラリーチューブ7a、7b、7c、7dを選択的に開放するため、冷媒流量は4本を選択した場合と、1本を選択した場合との間をステップ的に変化することになる。
Even if the throttle control means 54 controls the degree of superheat by selecting the
従って、例えば、4本全て開放しても、圧縮機2の入口側の過熱度が目標過熱度範囲を超えて上がりすぎて下がらない場合がある。この場合には、バイパス制御手段52によって第2電磁弁34を開操作して圧縮機2の入口側の過熱度を下げて目標過熱度範囲に維持する。逆に、1本しか開放していないにもかかわらず、圧縮機2の入口側の過熱度が目標過熱度範囲を超えて下がりすぎて上がらない場合がある。この場合には、バイパス制御手段52によって第1電磁弁32を開操作して、圧縮機2の吐出冷媒の一部を超臨界冷媒タンク30に回収することによって、圧縮機2の入口側の過熱度を上昇させて目標過熱度範囲に維持する。
Therefore, for example, even if all four are opened, the superheat degree on the inlet side of the
このように、バイパス制御手段52により第1電磁弁32及び第2電磁弁34を開閉操作して圧縮機2の入口側の過熱度を目標過熱度範囲に維持することができるため、圧縮機吐出側の圧力と温度を変動なく維持でき、ガスクーラ4への流入温度を安定化させることができる。
In this way, the bypass control means 52 can open and close the
なお、本実施の形態のようにキャピラリーチューブ7a、7b、7c、7dを選択することで、冷媒流量を制御して過熱度を制御するため、可変絞り弁機構のような装置を設けずに絞り量の制御を安価に達成することができ、給湯装置全体を低コストで製造することができる。
As in this embodiment, by selecting the
次に、給湯装置1の運転モードについて説明する。
給湯装置1には、図3に示すような運転モード設定されており、モード切替えスイッチ100によって、運転パターンが起動時102から、給湯運転モード(ガスクーラ通水運転モード)104、デフロスト運転モード106、停止時108へと切り替え可能になっており、給湯運転モード104には給水を加熱して貯湯槽20に溜める貯湯モード110と、貯湯槽20からの給水を再加熱して再び貯湯槽20に溜める追焚きモード112とが切り替えられるようになっている。
Next, the operation mode of the hot
The operation mode as shown in FIG. 3 is set in the hot
(起動時)
起動時102には、給水ポンプ18が作動してガスクーラ4に加熱される水が供給され、蒸発器8が作動して送風ファン12が回転して、最後に圧縮機2が駆動されて、冷媒が冷凍サイクル内を循環し始め、ガスクーラ4および蒸発器8にそれぞれ熱負荷が作用する。また同時にキャピラリーチューブ7a、7b、7c、7dの電磁弁10a、10b、10c、10dが作動して選択されたキャピラリーチューブ7a、7b、7c、7dが開き、さらに、第1電磁弁32および第2電磁弁34がともに閉じられる。
(At startup)
At the start-up
起動時102には、後で説明する停止時108にバイパス制御手段52によって第1電磁弁32および第2電磁弁34がともに開操作されて冷媒バイパス経路T4を介して蒸発器側に通流させて高サイド側冷媒経路T1と低サイド側冷媒経路T2の両者間を均圧化されているため、停止後の起動時に圧縮機2の前後の圧力差が無い状態であり圧縮機2の起動が容易に行なわれる。
At the time of start-
また、起動時102に、低サイド側冷媒経路T2から高サイド側冷媒経路T1への急激な冷媒の移動によって、高サイド側冷媒経路T1内の圧力が上がりすぎて、異常圧力を検知して給湯装置を非常停止するための高圧遮断装置56を不必要に作動させないようにするために、バイパス制御手段52は、圧縮機2の吐出側の圧力Pdに基づいて第1電磁弁32を開いて短絡に超臨界冷媒タンク30へ冷媒の回収を行なうことで高サイド側冷媒経路T1内の圧力を目標圧力(非常停止用の高圧遮断装置56の作動圧力以下に設定された)以下に制御し、その後の給湯運転モード(ガスクーラ通水運転モード)104へとスムーズに移行できるようになっている。
Further, at the time of
ガスクーラ4の通水運転の通水温度は、(1)15℃前後の上水が供給される場合、(2)徐々に加温され貯湯槽水温が上昇し60℃前後の高温水が供給される場合、(3)追焚きのため起動時から60℃前後の高温水が供給される場合の三つの場合がある。
(1)の場合はガスクーラ4の圧力が超臨界圧力以下からの圧縮機2の起動であり、(2)の場合は圧縮機起動後通水温の上昇にしたがってガスクーラ圧力が上昇していくものでありいずれも圧縮機出口圧力の変化は急激なものではない。
(3)の場合は圧縮機2の起動前にガスクーラ4の圧力が超臨界圧力以上の高圧力下であり、そのような高圧力からの起動においては圧縮機2の出口の圧力は急激に上昇する。
The water temperature of the
In the case of (1), the
In the case of (3), the pressure of the
圧縮機2の出口部には許容圧力以下にもどすことができる安全装置として、安全弁(図示せず)と前記高圧遮断装置56が取り付けられており、(3)の場合において通水温度や外気温度によっては高圧遮断装置56が作動するようになっている。
A safety valve (not shown) and the high-pressure shut-off
起動時において圧縮機2の出口部の圧力が上がりすぎても第1電磁弁32を開き超超臨界冷媒タンク30へ圧縮機2の出口部冷媒を短絡に逃がすことにより給湯装置1の非常停止用の高圧遮断装置56を不必要に作動させることが防止され、ガスクーラ通水運転モードへの移行をスムーズに行なわせることができ、給湯装置1を安定して使用することができる。
Even if the pressure at the outlet of the
超臨界冷媒タンク30が加熱ヒータ38により冷媒の温度を臨界温度以上に保持されており液状態または湿り度の大きい飽和気液混相状態ではないことが急激に圧力上昇した圧縮機2の出口部冷媒を短絡に超臨界冷媒タンク30へ逃がすことにおいても大きな役割となっている。 The supercritical refrigerant tank 30 is maintained at a temperature higher than the critical temperature by the heater 38 and is not in a liquid state or a saturated gas-liquid mixed phase state with high wetness. Is also a major role in letting the short circuit escape to the supercritical refrigerant tank 30.
すなわち、超臨界冷媒タンク30の容積をVT、加熱されていない場合に存在する液の容積をVLとすると、圧縮機2の出口部冷媒を短絡に超臨界冷媒タンク30へ逃がす時の超臨界冷媒タンク30の容積は、次のとおりである。
(1)超臨界冷媒タンク30が加熱ヒータ38により冷媒の温度を臨界温度以上に保持されている場合 V1=VT
(2)超臨界冷媒タンク30が加熱されず液状態または湿り度の大きい飽和気液混相状態にある場合 V2=VT−VL
そのとき、V1>V2 であり、圧縮機出口部の急激な圧力上昇を回避しやすくしている。
That is, when the volume of the supercritical refrigerant tank 30 is VT and the volume of the liquid that is not heated is VL, the supercritical refrigerant when the outlet refrigerant of the
(1) When the supercritical refrigerant tank 30 is maintained at a temperature equal to or higher than the critical temperature by the heater 38 V1 = VT
(2) When the supercritical refrigerant tank 30 is not heated and is in a liquid state or a saturated gas-liquid mixed phase state with high wetness V2 = VT−VL
At that time, V1> V2, and it is easy to avoid a sudden pressure increase at the compressor outlet.
(給湯運転モード)
給湯運転モード(ガスクーラ通水運転モード)104内の貯湯モード110が選択されると、図1に示すように貯湯用給水管24が水入口14に接続されるように切り換えバルブ26が作動する。そして、貯湯用給水管24からの水が給水ポンプ18によってガスクーラ4に供給されて冷凍サイクルの冷媒と熱交換して加熱され、水出口16から配管28を通って貯湯槽20に溜まるように配管が接続される。
(Hot water operation mode)
When the hot
通常は、蒸発器8による冷媒蒸発温度は外気温度より10℃〜15℃低く、外気温度によって蒸発温度(低サイド側冷媒経路T2内の圧力)が略決まるので、圧縮機2に吸い込まれ循環される冷媒の密度が決まり冷媒循環量が決まる。
また、圧縮機2への吸入過熱度が適正であると、すなわち適度な過熱ガス状態の冷媒が圧縮機2に流入すると、その出力側では、変動の少ない安定した圧力Pdおよび温度Tdが決まる。そして、この吐出側の圧力Pdと温度Tdが決まると、ガスクーラ4での加熱能力がほぼ決まる。
Normally, the refrigerant evaporation temperature by the
Further, when the degree of superheated suction to the
このため、安定した給湯用の加熱能力を得るためには、圧縮機2の吸入側ガスの過熱度を適正な範囲に制御する必要がある。しかし、季節により外気温度が変動し低サイド側冷媒経路T2内の圧力が変動するため、安定したガスクーラ4による加熱能力を得るためには、季節を通じて適正な冷媒量を冷凍サイクル内に充填させて圧縮機2の吸入側ガスの過熱度を適正値に制御する必要がある。
このために既に説明したように、バイパス制御手段52および絞り制御手段54によって、季節を通じて適正な冷媒量を冷凍サイクル内に充填させて圧縮機2の吸入側ガスの過熱度を適正値に制御している。
For this reason, in order to obtain the stable heating capability for hot water supply, it is necessary to control the superheat degree of the suction side gas of the
For this reason, as already described, the bypass control means 52 and the throttle control means 54 control the degree of superheat of the suction side gas of the
例えば、圧縮機2の吸入側ガスの過熱度7℃〜12℃の範囲に制御し、さらに、高サイド側冷媒経路T1内の圧力Pdを、夏期には11.5〜12.5MPa、中間期には、10.5〜11.5MPa、冬期には、L=9.5〜10.5MPaの範囲に制御することで、圧縮機2の吐出側の温度Tdを115℃〜125℃の冷媒温度を達成することができる。
そして、ガスクーラ4に略120℃の冷媒を常に供給することが可能となるため、ガスクーラ4における冷媒と供給水との熱交換によって、水は加熱されて略90℃の湯とすることができる。なお、ガスクーラ4に供給する給水量を給水ポンプ18で調整することによって、加熱後の湯温度を制御することができる。
For example, the superheat degree of the suction side gas of the
And since it becomes possible to always supply about 120 degreeC refrigerant | coolant to the
給湯運転モード(ガスクーラ通水運転モード)104内の追焚きモード112が選択されると、図1に示すように追焚き用給水管22が水入口14に接続されるように切り換えバルブ26が作動する。そして、追焚き用給水管22からの水が給水ポンプ18によってガスクーラ4に供給されて冷凍サイクルの冷媒と熱交換して加熱され、水出口16から配管28を通って貯湯槽20に溜まるように接続される。
運転方法については、前記の貯湯モード110の説明と同様である。ただし、ガスクーラ4への給水温度が、既に貯湯槽20に溜まっている水であるため65℃程度と高く、給水ポンプ18の流量を制御して所望とする湯温度が得られるようにする必要がある。
When the reheating
The operation method is the same as that in the hot
(デフロスト運転モード)
デフロスト(除霜)運転モード106が選択されると、ガスクーラ4への給水を遮断し、さらに蒸発器8の送風ファン12を停止して奪熱負荷を停止状態にして、圧縮機2を駆動させるとともに、膨張手段6の経路に加えて第1電磁弁32および第2電磁弁34を共に開いて冷媒バイパス経路T4を開放して超臨界冷媒タンク30内の超臨界ガスを蒸発器8側に放出する。
(Defrost operation mode)
When the defrost (defrosting)
このため、第1電磁弁32および第2電磁弁34を開いて前記冷媒バイパス経路T4を開放して超臨界冷媒タンク30内の超臨界状態の冷媒を膨張手段6の出口側と蒸発器8の入口側との間に放出し、しかも、ガスクーラ4および蒸発器8の奪熱負荷を停止した状態にして前記圧縮機2を駆動させて、冷媒を冷凍サイクルの経路内を循環させるため、超臨界冷媒タンク30から放出された冷媒状態と圧縮機2の駆動で供給される冷媒状態は超臨界状態であり、給湯装置1の変動を小さく抑えることができ、放出された高温高圧の超臨界状態の冷媒が直近の蒸発器8に直ぐにいきわたり除霜(デフロスト)が行われ、短時間で除霜することができる。
For this reason, the first
(停止時)
停止時108には、圧縮機2の作動を停止するとともに膨張手段6を閉じ、同時に前記第1電磁弁32および第2電磁弁34をともに開操作し、その後ガスクーラ4への通水を遮断するとともに蒸発器8の送風ファン12を停止することによって、圧縮機2の吐出側の冷媒を冷媒バイパス経路T4を介して蒸発器8側に通流させて高サイド側冷媒経路T1と低サイド側冷媒経路T2の両者間を均圧化する。このため、停止後の起動時に圧縮機2の前後の圧力差が無い状態になっているため、圧縮機2の起動が容易に行なわれる。
(When stopped)
At the time of
次に、給湯装置1に代えて、流体加熱させる流体加熱装置120に適用した第2の実施形態について図4を参照して説明する。
図4に示すように、給湯装置1の給水の部分のみを、流体の供給に変えたものである。ガスクーラ4には、冷凍サイクル中の超臨界状態の冷媒と熱交換をして加熱される流体を通通するための給気経路T5が接続されている。この給気経路T5には流体入口122と流体出口124と流体供給ポンプ126(気体の場合には給気ブロワ126')が設けられている。なお、流体供給ポンプ126は給気経路T5内でなく流体加熱装置120の外部に設けられていてもよい。
Next, a second embodiment applied to a fluid heating device 120 that performs fluid heating instead of the hot
As shown in FIG. 4, only the water supply portion of the hot
また、流体加熱装置120の運転モードについては、給湯装置1の給湯運転モード(ガスクーラ通水運転モード)104の内に設定されている貯湯モード104、追焚きモード112のような運転モードの区別はなく、加熱運転モードだけがある。
その他の構成部品については、第1の実施形態と同一符号を付して説明は省略する。
As for the operation mode of the fluid heating device 120, the operation modes such as the hot water storage mode 104 and the reheating
Other components are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.
被加熱流体としてブラインを通流すれば、融雪などの用途に利用でき、また気体を通流することで気体乾燥機として利用することができる。
また、かかる第2の実施形態についても、給湯装置1に係る第1の実施形態と同様の作用効果を有し、冬期、夏期等の外気温度が変化する場合、起動時の場合等においても圧縮機吐出側の温度及び圧力を適正値に安定保持できガスクーラによる安定した加熱能力を得ることができ、さらに、装置が複雑にならず小型軽量化を達成できる流体加熱装置を得ることができる。
If brine is passed as the fluid to be heated, it can be used for snow melting or the like, and can be used as a gas dryer by flowing gas.
In addition, the second embodiment also has the same effect as the first embodiment related to the hot
本発明によれば、装置の大型複雑化を伴わずに安価で、且つ、季節の変動による外気温度の変化や冬期のデフロストに対応するとともに装置の起動時の圧縮機出口での急激な圧力上昇に対しても安定した加熱能力を発揮することができるので、給湯装置の運転方法、給湯装置、または流体加熱装置への適用に際して有益である。 According to the present invention, the apparatus is inexpensive without increasing the size of the apparatus, and can respond to a change in the outside air temperature due to seasonal fluctuations and a defrost in winter, and a sudden pressure rise at the compressor outlet at the start of the apparatus Therefore, it is possible to exert a stable heating capability, which is advantageous when applied to an operation method of a hot water supply apparatus, a hot water supply apparatus, or a fluid heating apparatus.
1 給湯装置
2 圧縮機
4 ガスクーラ
6 冷媒膨張弁(膨張手段)
8 蒸発器
7a、7b、7c、7d キャピラリーチューブ
10a、10b、10c、10d 電磁弁
30 超臨界冷媒タンク
32 第1電磁弁
34 第2電磁弁
38 加熱ヒータ
50 制御装置
52 バイパス制御手段
54 絞り制御手段
120 流体加熱装置
DESCRIPTION OF
8
Claims (10)
前記ガスクーラの上流側であって前記圧縮機の吐出側から前記膨張手段の出口側までを接続する冷媒バイパス経路を設けるとともに、該冷媒バイパス経路に加熱ヒータによりCO2冷媒の温度を32℃以上の臨界温度に保持された超臨界冷媒タンクを介装し、該超臨界冷媒タンクの入口側に第1の弁手段と出口側に第2の弁手段を設け、
圧縮機吐出側の圧力と蒸発器出口側から圧縮機吸入側までの圧力、温度とを検知して、前記ガスクーラに被昇温水を通水させるガスクーラ通水運転モード時に、前記超臨界冷媒タンク内のCO2冷媒とともに、前記圧縮機の吐出側から第2の弁手段入口側までの前記冷媒バイパス経路内のCO2冷媒を超臨界状態に維持するように前記第1及び第2の弁手段を開閉操作する制御装置を備えたことを特徴とするCO2冷媒を用いた給湯装置。 A compressor, gas cooler, expansion means, and evaporator are connected in series on the CO 2 refrigerant path, and the pressure in the high-side refrigerant path from the compressor discharge side to the expansion means inlet side is maintained in a supercritical state. A hot water supply apparatus using a CO 2 refrigerant that forms a refrigeration cycle that is heated to heat the water to be heated through the gas cooler and heat-exchanged with the CO 2 refrigerant in the supercritical state,
A refrigerant bypass path is provided upstream from the gas cooler and connecting the discharge side of the compressor to the outlet side of the expansion means, and the temperature of the CO 2 refrigerant is set to 32 ° C. or higher by a heater in the refrigerant bypass path. Interposing a supercritical refrigerant tank maintained at a critical temperature, and providing a first valve means on the inlet side and a second valve means on the outlet side of the supercritical refrigerant tank;
Detecting the pressure on the discharge side of the compressor and the pressure and temperature from the outlet side of the evaporator to the suction side of the compressor, and passing the water to be heated to the gas cooler in the water-cooled water operation mode, the supercritical refrigerant tank Together with the CO 2 refrigerant, the first and second valve means so as to maintain the CO 2 refrigerant in the refrigerant bypass path from the discharge side of the compressor to the inlet side of the second valve means in a supercritical state. A hot water supply apparatus using a CO 2 refrigerant, comprising a control device for opening and closing.
前記ガスクーラの上流側であって前記圧縮機の吐出側から前記膨張手段の出口側までを接続する冷媒バイパス経路を設けるとともに、該冷媒バイパス経路に加熱ヒータによりCO2冷媒の温度を32℃以上の臨界温度に保持された超臨界冷媒タンクを介装し、該超臨界冷媒タンクの入口側に第1の弁手段と出口側に第2の弁手段を設け、
圧縮機吐出側の圧力と蒸発器出口側から圧縮機吸入側までの圧力、温度とを検知して、前記ガスクーラに被昇温水を通水させるガスクーラ通水運転モード時に、前記超臨界冷媒タンク内のCO2冷媒とともに、前記圧縮機の吐出側から第2の弁手段入口側までの前記冷媒バイパス経路内のCO2冷媒を超臨界状態に維持するように前記第1及び第2の弁手段を開閉操作することを特徴とするCO2冷媒を用いた給湯装置の運転方法。 A compressor, gas cooler, expansion means, and evaporator are connected in series on the CO 2 refrigerant path, and the pressure in the high-side refrigerant path from the compressor discharge side to the expansion means inlet side is maintained in a supercritical state. In the operation method of the hot water supply apparatus, the refrigeration cycle is formed, and the temperature-controlled water is passed through the gas cooler to raise the temperature by heat exchange with the CO 2 refrigerant in the supercritical state.
A refrigerant bypass path is provided upstream from the gas cooler and connecting the discharge side of the compressor to the outlet side of the expansion means, and the temperature of the CO 2 refrigerant is set to 32 ° C. or higher by a heater in the refrigerant bypass path. Interposing a supercritical refrigerant tank maintained at a critical temperature, and providing a first valve means on the inlet side and a second valve means on the outlet side of the supercritical refrigerant tank;
Detects the pressure on the discharge side of the compressor and the pressure and temperature from the outlet side of the evaporator to the compressor suction side, and allows the water to be heated to flow through the gas cooler. Together with the CO 2 refrigerant, the first and second valve means so as to maintain the CO 2 refrigerant in the refrigerant bypass path from the discharge side of the compressor to the inlet side of the second valve means in a supercritical state. A method for operating a hot water supply apparatus using a CO 2 refrigerant, characterized by opening and closing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009165771A JP4862198B2 (en) | 2006-04-11 | 2009-07-14 | Hot water supply apparatus using CO2 refrigerant and its operating method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006108617 | 2006-04-11 | ||
JP2006108617 | 2006-04-11 | ||
JP2009165771A JP4862198B2 (en) | 2006-04-11 | 2009-07-14 | Hot water supply apparatus using CO2 refrigerant and its operating method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007103311A Division JP4431755B2 (en) | 2006-04-11 | 2007-04-10 | Operation method of water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009236483A true JP2009236483A (en) | 2009-10-15 |
JP4862198B2 JP4862198B2 (en) | 2012-01-25 |
Family
ID=41250638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009165771A Active JP4862198B2 (en) | 2006-04-11 | 2009-07-14 | Hot water supply apparatus using CO2 refrigerant and its operating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4862198B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015124982A (en) * | 2013-12-27 | 2015-07-06 | 株式会社前川製作所 | Heat pump drying device and heat pump drying device operation method |
JP2016161226A (en) * | 2015-03-03 | 2016-09-05 | 三菱重工業株式会社 | Refrigeration system, operation method of refrigeration system and design method of refrigeration system |
CN106164609A (en) * | 2013-09-13 | 2016-11-23 | 斯科茨曼制冰系统有限公司 | Ice making equipment |
WO2017175299A1 (en) * | 2016-04-05 | 2017-10-12 | 三菱電機株式会社 | Refrigeration cycle device |
WO2020052123A1 (en) * | 2018-09-11 | 2020-03-19 | 西安交通大学 | Precooler-based transcritical co2 heat pump system and water path two-way valve control method therefor |
JPWO2020174530A1 (en) * | 2019-02-25 | 2021-09-30 | Atsジャパン株式会社 | Refrigerant control system and cooling system |
WO2021192292A1 (en) * | 2020-03-27 | 2021-09-30 | 三菱電機株式会社 | Outdoor unit and refrigeration cycle device |
CN115711498A (en) * | 2022-11-25 | 2023-02-24 | 珠海格力电器股份有限公司 | Air conditioning unit and control method thereof |
WO2024202633A1 (en) * | 2023-03-31 | 2024-10-03 | 三菱重工サーマルシステムズ株式会社 | Control device, condensing unit, control method, and control program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001208436A (en) * | 2000-01-28 | 2001-08-03 | Mayekawa Mfg Co Ltd | Compression freezing device for common use in subcritical operation and supercritical operation |
JP2002310519A (en) * | 2001-04-11 | 2002-10-23 | Nishiyodo Kuchoki Kk | Heat pump water heater |
JP2003322421A (en) * | 2002-05-02 | 2003-11-14 | Chubu Electric Power Co Inc | High pressure side pressure control method in supercritical vapor compression circuit and circuit device |
JP2006153349A (en) * | 2004-11-29 | 2006-06-15 | Mitsubishi Electric Corp | Refrigeration and air conditioning device, and operation control method and refrigerant quantity control method for the same |
-
2009
- 2009-07-14 JP JP2009165771A patent/JP4862198B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001208436A (en) * | 2000-01-28 | 2001-08-03 | Mayekawa Mfg Co Ltd | Compression freezing device for common use in subcritical operation and supercritical operation |
JP2002310519A (en) * | 2001-04-11 | 2002-10-23 | Nishiyodo Kuchoki Kk | Heat pump water heater |
JP2003322421A (en) * | 2002-05-02 | 2003-11-14 | Chubu Electric Power Co Inc | High pressure side pressure control method in supercritical vapor compression circuit and circuit device |
JP2006153349A (en) * | 2004-11-29 | 2006-06-15 | Mitsubishi Electric Corp | Refrigeration and air conditioning device, and operation control method and refrigerant quantity control method for the same |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106164609A (en) * | 2013-09-13 | 2016-11-23 | 斯科茨曼制冰系统有限公司 | Ice making equipment |
CN106164609B (en) * | 2013-09-13 | 2019-05-17 | 斯科茨曼制冰系统有限公司 | Ice making equipment |
JP2015124982A (en) * | 2013-12-27 | 2015-07-06 | 株式会社前川製作所 | Heat pump drying device and heat pump drying device operation method |
JP2016161226A (en) * | 2015-03-03 | 2016-09-05 | 三菱重工業株式会社 | Refrigeration system, operation method of refrigeration system and design method of refrigeration system |
WO2017175299A1 (en) * | 2016-04-05 | 2017-10-12 | 三菱電機株式会社 | Refrigeration cycle device |
JPWO2017175299A1 (en) * | 2016-04-05 | 2018-10-25 | 三菱電機株式会社 | Refrigeration cycle equipment |
WO2020052123A1 (en) * | 2018-09-11 | 2020-03-19 | 西安交通大学 | Precooler-based transcritical co2 heat pump system and water path two-way valve control method therefor |
US11927379B2 (en) | 2018-09-11 | 2024-03-12 | Xi'an Jiaotong University | Precooler-based transcritical CO2 heat pump system and control method of waterway two-way valve thereof |
JPWO2020174530A1 (en) * | 2019-02-25 | 2021-09-30 | Atsジャパン株式会社 | Refrigerant control system and cooling system |
WO2021192292A1 (en) * | 2020-03-27 | 2021-09-30 | 三菱電機株式会社 | Outdoor unit and refrigeration cycle device |
JPWO2021192292A1 (en) * | 2020-03-27 | 2021-09-30 | ||
JP7282258B2 (en) | 2020-03-27 | 2023-05-26 | 三菱電機株式会社 | Outdoor unit and refrigeration cycle equipment |
CN115711498A (en) * | 2022-11-25 | 2023-02-24 | 珠海格力电器股份有限公司 | Air conditioning unit and control method thereof |
WO2024202633A1 (en) * | 2023-03-31 | 2024-10-03 | 三菱重工サーマルシステムズ株式会社 | Control device, condensing unit, control method, and control program |
Also Published As
Publication number | Publication date |
---|---|
JP4862198B2 (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4431755B2 (en) | Operation method of water heater | |
JP4862198B2 (en) | Hot water supply apparatus using CO2 refrigerant and its operating method | |
KR102016982B1 (en) | Feed water heating system | |
JP4770976B2 (en) | Container refrigeration equipment | |
JP5939764B2 (en) | Heat pump device and heat pump water heater | |
JP6095353B2 (en) | Refrigeration cycle equipment | |
JP2010144938A (en) | Heat pump water heater and method for operating the same | |
WO2014080612A1 (en) | Refrigeration cycle device and hot water-producing device provided therewith | |
JP2008096033A (en) | Refrigerating device | |
JP2010164257A (en) | Refrigerating cycle device and method of controlling the refrigerating cycle device | |
JPWO2013065233A1 (en) | Refrigeration cycle apparatus and air conditioner equipped with the same | |
WO2011064927A1 (en) | Refrigeration device for container | |
KR101754685B1 (en) | Heat pump type speed heating apparatus | |
JP4804528B2 (en) | Refrigeration cycle apparatus and control method for refrigeration cycle apparatus | |
JP2009139041A (en) | Air conditioner | |
WO2013084510A1 (en) | Refrigeration device for container | |
JP2008025915A (en) | Absorption refrigerator system | |
JP5781836B2 (en) | Method and apparatus for defrosting air refrigerant refrigeration system | |
JP5521924B2 (en) | Container refrigeration equipment | |
JP5233960B2 (en) | Refrigeration cycle apparatus and hot water heater using the same | |
JP2008134025A (en) | Heat pump type heating device | |
JP7038277B2 (en) | Refrigeration cycle device and liquid heating device equipped with it | |
JP3602116B2 (en) | Heat pump water heater | |
JP7025086B1 (en) | Heat pump device | |
JP7133817B2 (en) | Refrigeration cycle device and liquid heating device provided with the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110815 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111014 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111020 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4862198 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |