JP7038277B2 - Refrigeration cycle device and liquid heating device equipped with it - Google Patents

Refrigeration cycle device and liquid heating device equipped with it Download PDF

Info

Publication number
JP7038277B2
JP7038277B2 JP2018124064A JP2018124064A JP7038277B2 JP 7038277 B2 JP7038277 B2 JP 7038277B2 JP 2018124064 A JP2018124064 A JP 2018124064A JP 2018124064 A JP2018124064 A JP 2018124064A JP 7038277 B2 JP7038277 B2 JP 7038277B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
operation mode
compression
expansion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018124064A
Other languages
Japanese (ja)
Other versions
JP2020003156A (en
Inventor
俊二 森脇
由樹 山岡
常子 今川
繁男 青山
和人 中谷
和彦 町田
一貴 小石原
季セン 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018124064A priority Critical patent/JP7038277B2/en
Publication of JP2020003156A publication Critical patent/JP2020003156A/en
Application granted granted Critical
Publication of JP7038277B2 publication Critical patent/JP7038277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、冷凍サイクル装置およびそれを備えた液体加熱装置に関するものである。 The present invention relates to a refrigeration cycle device and a liquid heating device including the refrigeration cycle device.

従来、この種の冷凍サイクル装置として、二段圧縮機講を備え、利用側熱交換器の下流側から冷媒の一部を膨張させて、二段圧縮機講の圧縮途中に中間冷媒をバイパスする冷凍サイクル装置が開示されている(例えば、特許文献1参照)。 Conventionally, as this kind of refrigeration cycle device, a two-stage compressor is provided, a part of the refrigerant is expanded from the downstream side of the heat exchanger on the user side, and the intermediate refrigerant is bypassed during the compression of the two-stage compressor. A refrigeration cycle apparatus is disclosed (see, for example, Patent Document 1).

図4は、特許文献1に記載された従来の冷凍サイクル装置を示すものである。 FIG. 4 shows a conventional refrigeration cycle apparatus described in Patent Document 1.

図4に示すように、冷凍サイクル装置100は、冷媒を循環させる冷媒回路110と、後段側インジェクション管120とを備えている。冷媒回路110は、直列に接続された複数の圧縮回転要素を有する圧縮機構211、熱源側熱交換器112、膨張機構113a、113b、利用側熱交換器114が配管により環状に接続されるとともに、加熱運転と冷却運転を切り換えるための切替機構115で構成されている。 As shown in FIG. 4, the refrigerating cycle device 100 includes a refrigerant circuit 110 for circulating a refrigerant and a rear-stage side injection pipe 120. In the refrigerant circuit 110, a compression mechanism 211 having a plurality of compression rotation elements connected in series, a heat source side heat exchanger 112, expansion mechanisms 113a and 113b, and a user side heat exchanger 114 are connected in a ring shape by piping. It is composed of a switching mechanism 115 for switching between a heating operation and a cooling operation.

また、前段側の圧縮回転要素から吐出された冷媒を後段側の圧縮回転要素に吸入させるための中間冷媒管116に設けられ、前段側の圧縮回転要素から吐出されて後段側の圧縮回転要素に吸入される冷媒の冷却器として機能する中間冷却器117と、中間冷却器117をバイパスするように中間冷媒管116に接続されている中間冷却器バイパス管130が設けられている。 Further, it is provided in the intermediate refrigerant pipe 116 for sucking the refrigerant discharged from the compression rotation element on the front stage side into the compression rotation element on the rear stage side, and is discharged from the compression rotation element on the front stage side to the compression rotation element on the rear stage side. An intermediate cooler 117 that functions as a cooler for the sucked refrigerant and an intermediate cooler bypass pipe 130 that is connected to the intermediate refrigerant pipe 116 so as to bypass the intermediate cooler 117 are provided.

後段側インジェクション管120は、熱源側熱交換器112と利用側熱交換器114の間で冷媒回路110から分岐し、分岐した冷媒が圧縮機構211の後段側の圧縮回転要素に戻るように連通されている。また、インジェクション管120には、開度制御が可能な後段側インジェクション弁121が設けられている。 The rear injection tube 120 is branched from the refrigerant circuit 110 between the heat source side heat exchanger 112 and the utilization side heat exchanger 114, and the branched refrigerant is communicated so as to return to the compression rotation element on the rear side of the compression mechanism 211. ing. Further, the injection pipe 120 is provided with a rear-stage injection valve 121 capable of controlling the opening degree.

さらに、冷凍サイクル装置100は、切替機構115を冷却運転状態に切り換えることで熱源側熱交換器112の除霜を行う逆サイクル除霜運転を行う際に、熱源側熱交換器112、中間冷却器117及び後段側インジェクション管120に冷媒を流し、中間冷却器117の除霜が完了したことを検知した後に、中間冷却器バイパス管130を用いて、中間冷却器117に冷媒が流れないようにするとともに、後段側インジェクション弁121の開度が大きくなるように制御している。 Further, the refrigerating cycle device 100 defrosts the heat source side heat exchanger 112 by switching the switching mechanism 115 to the cooling operation state. When performing the reverse cycle defrosting operation, the heat source side heat exchanger 112 and the intercooler After flowing the refrigerant through the 117 and the injection pipe 120 on the rear stage side and detecting that the defrosting of the intercooler 117 is completed, the intermediate cooler bypass pipe 130 is used to prevent the refrigerant from flowing into the intercooler 117. At the same time, the opening degree of the injection valve 121 on the rear stage side is controlled to be large.

特開2009-133581号公報Japanese Unexamined Patent Publication No. 2009-133581

しかしながら、前記従来の冷凍サイクル装置においては、除霜能力による機器の性能低下は抑制できるが、熱源側熱交換器の除霜運転終了後の加熱運転開始時の運転制御については、一切開示していない。 However, in the conventional refrigeration cycle apparatus, although the deterioration of the performance of the equipment due to the defrosting ability can be suppressed, the operation control at the start of the heating operation after the defrosting operation of the heat source side heat exchanger is not disclosed at all. do not have.

本発明は、前記従来の課題を解決するもので、熱源側熱交換器の除霜運転実行終了後の利用側熱交換器における加熱運転の実行時においても、利用側熱交換器における加熱運転時の加熱能力の低下を抑制できる冷凍サイクル装置およびそれを備えた液体加熱装置を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and also during the heating operation of the user-side heat exchanger after the completion of the defrosting operation of the heat source-side heat exchanger, and during the heating operation of the user-side heat exchanger. It is an object of the present invention to provide a refrigerating cycle apparatus capable of suppressing a decrease in the heating capacity of the above and a liquid heating apparatus provided with the refrigerating cycle apparatus.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、制御装置と、を備え、前記圧縮回転要素から吐出された冷媒により、前記利用側熱交換器において前記利用側熱媒体を加熱する加熱運転モードと、前記圧縮回転要素から吐出された冷媒により、前記熱源側熱交換器の除霜を行う除霜運転モードと、有し、前記除霜運転モードの実行終了後に実行される前記加熱運転モードにおいて、前記加熱運転モードの実行開始時より少なくとも所定期間は、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなるそれぞれの所定開度に、前記制御装置は、前記第1膨張装置の開度と前記第2膨張装置の開度とを設定していることを特徴とするものである。 In order to solve the above-mentioned conventional problems, the refrigeration cycle apparatus of the present invention has a compression mechanism composed of a compression rotation element and a utilization side heat exchanger that heats a utilization side heat medium with a refrigerant discharged from the compression rotation element. From the main refrigerant circuit formed by sequentially connecting the intermediate heat exchanger, the first expansion device, and the heat source side heat exchanger with pipes, and from the pipe between the user side heat exchanger and the first expansion device. Controlled with a bypass refrigerant circuit that is branched, decompressed by the second expansion device, then heat exchanged with the refrigerant flowing through the main refrigerant circuit in the intermediate heat exchanger, and merged with the refrigerant in the middle of compression of the compression rotating element. A heating operation mode in which the user-side heat exchanger heats the user-side heat medium with the refrigerant discharged from the compression rotation element, and the heat source is provided with the refrigerant discharged from the compression rotation element. In the defrosting operation mode for defrosting the side heat exchanger and the heating operation mode which is executed after the execution of the defrosting operation mode is completed, at least for a predetermined period from the start of the execution of the heating operation mode. At each predetermined opening degree in which the flow rate of the refrigerant flowing through the first expansion device is smaller than the flow rate of the refrigerant flowing through the second expansion device, the control device determines the opening degree of the first expansion device and the opening degree of the second expansion device. It is characterized in that the opening degree is set.

これにより、第1膨張手段を流れる冷媒流量を少なくし、かつ、第2膨張手段を流れる冷媒流量を多くすることで、主冷媒回路における第1膨張手段による減圧量を減少させることができるため、熱源側熱交換器を流れる冷媒の圧力低下を抑制できるとともに、圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路の冷媒の圧力を上昇させて、圧縮回転要素の圧縮途中の冷媒に合流される冷媒の密度を増加させることができるため、利用側熱交換器を流れる冷媒流量を十分に確保することができる。 As a result, the amount of decompression by the first expansion means in the main refrigerant circuit can be reduced by reducing the flow rate of the refrigerant flowing through the first expansion means and increasing the flow rate of the refrigerant flowing through the second expansion means. It is possible to suppress a decrease in the pressure of the refrigerant flowing through the heat exchanger on the heat source side, and increase the pressure of the refrigerant in the bypass refrigerant circuit that joins the refrigerant in the middle of compression of the compression rotation element to join the refrigerant in the middle of compression of the compression rotation element. Since the density of the refrigerant to be used can be increased, it is possible to sufficiently secure the flow rate of the refrigerant flowing through the heat exchanger on the user side.

本発明によれば、熱源側熱交換器の除霜運転実行終了後の利用側熱交換器における加熱運転の実行時においても、利用側熱交換器における加熱運転時の加熱能力の低下を抑制できる冷凍サイクル装置およびそれを備えた液体加熱装置を提供できる。 According to the present invention, it is possible to suppress a decrease in the heating capacity of the user-side heat exchanger during the heating operation even during the heating operation of the user-side heat exchanger after the execution of the defrosting operation of the heat source-side heat exchanger is completed. A refrigerating cycle device and a liquid heating device including the refrigerating cycle device can be provided.

本発明の実施の形態1における液体加熱装置の構成図Configuration diagram of the liquid heating device according to the first embodiment of the present invention. 同冷凍サイクル装置の除霜運転モード実行後の加熱運転モード実行時のモリエル線図Moriel diagram when the heating operation mode is executed after the defrosting operation mode of the refrigeration cycle device is executed. 同冷凍サイクル装置の除霜運転モード実行後の加熱運転モード実行制御のフローチャートFlow chart of heating operation mode execution control after defrosting operation mode execution of the refrigeration cycle device 従来の冷凍サイクル装置の構成図Configuration diagram of conventional refrigeration cycle equipment

第1の発明は、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、制御装置と、を備え、前記圧縮回転要素から吐出された冷媒により、前記利用側熱交換器において前記利用側熱媒体を加熱する加熱運転モードと、前記圧縮回転要素から吐出された冷媒により、前記熱源側熱交換器の除霜を行う除霜運転モードと、有し、前記除霜運転モードの実行終了後に実行される前記加熱運転モードにおいて、前記加熱運転モードの実行開始時より少なくとも所定期間は、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなるそれぞれの所定開度に、前記制御装置は、前記第1膨張装置の開度と前記第2膨張装置の開度とを設定していることを特徴とする冷凍サイクル装置である。 The first invention is a compression mechanism composed of a compression rotation element, a utilization side heat exchanger that heats a utilization side heat medium by a refrigerant discharged from the compression rotation element, an intermediate heat exchanger, a first expansion device, and a heat source. After branching from the main refrigerant circuit formed by sequentially connecting the side heat exchangers with pipes and the pipes between the user side heat exchanger and the first expansion device, the pressure is reduced by the second expansion device. The intermediate heat exchanger comprises a bypass refrigerant circuit that exchanges heat with the refrigerant flowing through the main refrigerant circuit and joins the refrigerant in the process of being compressed in the compression rotating element, and a control device, and discharges from the compression rotating element. A heating operation mode in which the user-side heat exchanger is heated by the used refrigerant, and a defrosting operation in which the heat source-side heat exchanger is defrosted by the refrigerant discharged from the compression rotating element. In the heating operation mode, which has a mode and is executed after the execution of the defrosting operation mode is completed, the flow rate of the refrigerant flowing through the first expansion device is the same for at least a predetermined period from the start of the execution of the heating operation mode. The control device is characterized in that the opening degree of the first expansion device and the opening degree of the second expansion device are set at each predetermined opening degree smaller than the flow rate of the refrigerant flowing through the second expansion device. It is a refrigeration cycle device.

これにより、第1膨張手段を流れる冷媒流量を少なくすることで、蒸発器の冷媒流量が低下して、蒸発器出口の冷媒のエンタルピーが増大し、アキュムレーターを備えている場合には、アキュムレーターに滞留する冷媒の気化が促進される。 As a result, by reducing the flow rate of the refrigerant flowing through the first expansion means, the flow rate of the refrigerant in the evaporator decreases, the enthalpy of the refrigerant at the outlet of the evaporator increases, and if an accumulator is provided, the accumulator The vaporization of the refrigerant staying in the water is promoted.

さらに、第2膨張手段を流れる冷媒量を多くすることで、主冷媒回路における第1膨張手段による減圧量を減少させることができるため、熱源側熱交換器を流れる冷媒の圧力低下を抑制できるとともに、圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路の冷媒の圧力を上昇させて、圧縮回転要素の圧縮途中の冷媒に合流される冷媒の密度を増加させることができるため、利用側熱交換器を流れる冷媒流量を十分に確保することができる。 Further, by increasing the amount of the refrigerant flowing through the second expansion means, the amount of decompression by the first expansion means in the main refrigerant circuit can be reduced, so that the pressure drop of the refrigerant flowing through the heat source side heat exchanger can be suppressed. , The pressure of the refrigerant in the bypass refrigerant circuit that joins the refrigerant in the middle of compression of the compression rotation element can be increased to increase the density of the refrigerant that joins the refrigerant in the middle of compression of the compression rotation element. A sufficient flow rate of the refrigerant flowing through the heat exchanger can be secured.

したがって、着霜量が多い高湿度の外気温度条件下における除霜運転モード実行後の加熱運転モードにおいても、加熱能力を迅速に高めることでき、加熱運転の加熱能力の低下を抑制できる冷凍サイクル装置を提供できる。 Therefore, even in the heating operation mode after the defrosting operation mode is executed under the high humidity outside air temperature condition where the amount of frost formation is large, the heating capacity can be rapidly increased and the decrease in the heating capacity of the heating operation can be suppressed. Can be provided.

第2の発明は、特に、第1の発明において、前記主冷媒回路の低圧側の冷媒の温度、または、前記主冷媒回路の低圧側の冷媒の圧力、を検出する低圧側検出部を備え、前記制御装置は、前記加熱運転モードの実行開始時より、前記低圧側検出部の検出値が所定値以下の期間は、前記第1膨張装置の開度と前記第2膨張装置の開度とを、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなる開度に設定していることを特徴とするものである。 The second invention includes, in particular, in the first invention, a low pressure side detection unit that detects the temperature of the refrigerant on the low pressure side of the main refrigerant circuit or the pressure of the refrigerant on the low pressure side of the main refrigerant circuit. The control device determines the opening degree of the first expansion device and the opening degree of the second expansion device during a period in which the detection value of the low pressure side detection unit is equal to or less than a predetermined value from the start of execution of the heating operation mode. The refrigerant flow rate flowing through the first expansion device is set to be smaller than the refrigerant flow rate flowing through the second expansion device.

これにより、熱源側熱交換器において吸熱できる熱量が少ない場合に、バイパス冷媒回路を流れる冷媒流量は主冷媒回路を流れる冷媒流量より多くなり、かつ、バイパス冷媒回路を流れる冷媒は、熱源側熱交換器から圧縮機構へ吸入される主冷媒回路の冷媒よりも圧力が高いため冷媒密度も高くなり、バイパス冷媒回路を流れる冷媒の質量流量も増加するため、圧縮機構から吐出されて利用側熱交換器へ流入する全冷媒流量が増加するだけでなく、利用側熱交換器における加熱能力を高めることができる。 As a result, when the amount of heat that can be absorbed by the heat source side heat exchanger is small, the refrigerant flow rate flowing through the bypass refrigerant circuit becomes larger than the refrigerant flow rate flowing through the main refrigerant circuit, and the refrigerant flowing through the bypass refrigerant circuit exchanges heat on the heat source side. Since the pressure is higher than the refrigerant of the main refrigerant circuit sucked from the device to the compression mechanism, the refrigerant density is also high, and the mass flow rate of the refrigerant flowing through the bypass refrigerant circuit also increases, so the heat exchanger on the user side is discharged from the compression mechanism. Not only can the total flow rate of the refrigerant flowing into the refrigerator be increased, but also the heating capacity of the heat exchanger on the user side can be increased.

なお、アキュムレーターを備えている場合には、アキュムレーター内に滞留した液冷媒が蒸発し、主冷媒回路を循環すると、主冷媒回路の低圧側の圧力が上昇するので、主冷媒回路の低圧側の圧力が予め設定した所定値まで上昇した場合には、アキュムレーターの滞留液冷媒がなくなったことが判断でき、その場合には、通常の加熱運転モードにおける第1膨張装置の開度と第2膨張装置の開度に切り替えることができる。 When the accumulator is provided, the liquid refrigerant staying in the accumulator evaporates, and when the main refrigerant circuit circulates, the pressure on the low pressure side of the main refrigerant circuit rises, so that the low pressure side of the main refrigerant circuit When the pressure of the accumulator rises to a predetermined value set in advance, it can be determined that the accumulator's stagnant liquid refrigerant has run out. In that case, the opening degree of the first expansion device and the second expansion device in the normal heating operation mode. It is possible to switch to the opening of the inflator.

第3の発明は、特に、第1の発明において、前記熱源側熱交換器を通過する空気の温度を検出する温度サーミスタを備え、前記制御装置は、前記加熱運転モードの実行開始時より所定時間以内は、前記第1膨張装置の開度と前記第2膨張装置の開度とを、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなる開度に設定しているものである。 The third invention, in particular, in the first invention, includes a temperature thermista that detects the temperature of the air passing through the heat source side heat exchanger, and the control device has a predetermined time from the start of execution of the heating operation mode. Within, the opening degree of the first expansion device and the opening degree of the second expansion device are set to an opening degree at which the flow rate of the refrigerant flowing through the first expansion device is smaller than the flow rate of the refrigerant flowing through the second expansion device. It is what you are doing.

これにより、熱源側熱交換器において吸熱できる熱量が少ない場合に、バイパス冷媒回路を流れる冷媒流量は主冷媒回路を流れる冷媒流量より多くなり、かつ、バイパス冷媒回路を流れる冷媒は、熱源側熱交換器から圧縮機構へ吸入される主冷媒回路の冷媒よりも圧力が高いため冷媒密度も高くなり、バイパス冷媒回路を流れる冷媒の質量流量も増加するため、圧縮機構から吐出されて利用側熱交換器へ流入する全冷媒流量が増加するだけでなく、利用側熱交換器における加熱能力を高めることができる。 As a result, when the amount of heat that can be absorbed by the heat source side heat exchanger is small, the refrigerant flow rate flowing through the bypass refrigerant circuit becomes larger than the refrigerant flow rate flowing through the main refrigerant circuit, and the refrigerant flowing through the bypass refrigerant circuit exchanges heat on the heat source side. Since the pressure is higher than the refrigerant of the main refrigerant circuit sucked from the device to the compression mechanism, the refrigerant density is also high, and the mass flow rate of the refrigerant flowing through the bypass refrigerant circuit also increases, so the heat exchanger on the user side is discharged from the compression mechanism. Not only can the total flow rate of the refrigerant flowing into the refrigerator be increased, but also the heating capacity of the heat exchanger on the user side can be increased.

なお、アキュムレーターを備えている場合には、アキュムレーター内に滞留した液冷媒が蒸発し、主冷媒回路を循環すると、主冷媒回路の低圧側の圧力が上昇するので、加熱運転モードの実行開始時より予め設定した所定時間経過後には、アキュムレーターの滞留液冷媒がなくなったと推測でき、その場合には、通常の加熱運転モードにおける第1膨張装置の開度と第2膨張装置の開度に切り替えることができる。 If the accumulator is provided, the liquid refrigerant staying in the accumulator evaporates, and when the main refrigerant circuit circulates, the pressure on the low pressure side of the main refrigerant circuit rises, so the execution of the heating operation mode is started. It can be inferred that the accumulator's stagnant liquid refrigerant has run out after a predetermined time has elapsed, and in that case, the opening degree of the first expansion device and the opening degree of the second expansion device in the normal heating operation mode are set. You can switch.

第4の発明は、特に、第1~第3のいずれかの発明において、前記除霜運転モードにおいて、前記圧縮回転要素から吐出された冷媒は、前記利用側熱交換器、前記第1膨張装置、前記熱源側熱交換器の順に流れることを特徴とするのである。 In the fourth aspect of the invention, particularly in any one of the first to third inventions, in the defrosting operation mode, the refrigerant discharged from the compression rotation element is the heat exchanger on the utilization side and the first expansion device. It is characterized in that the heat flows in the order of the heat exchanger on the heat source side.

これにより、除霜運転モード実行中においても、利用側熱交換器に高温の吐出冷媒が流れるので、利用側熱交換器の温度低下が抑制され、除霜運転モードの実行終了後に実行される加熱運転モードにおいて、利用側熱交換器の温度上昇を促進でき、着霜量が多い高湿度の外気温度条件下における除霜運転モード実行後の加熱運転モードにおいても、加熱能力を早く高めることできる。 As a result, even during the execution of the defrosting operation mode, the high-temperature discharged refrigerant flows through the heat exchanger on the user side, so that the temperature drop of the heat exchanger on the user side is suppressed, and the heating executed after the execution of the defrosting operation mode is completed. In the operation mode, the temperature rise of the heat exchanger on the user side can be promoted, and the heating capacity can be quickly increased even in the heating operation mode after the defrosting operation mode is executed under the high humidity outside air temperature condition where the amount of defrosting is large.

第5の発明は、特に、第1~第4のいずれかの発明において、前記冷媒として、二酸化炭素を用いることを特徴とするものである。 The fifth invention is characterized in that carbon dioxide is used as the refrigerant in any one of the first to fourth inventions.

これにより、利用側熱交換器において、冷媒で利用側熱媒体を加熱したときの、利用側熱媒体の高温化を実現できる。 This makes it possible to raise the temperature of the user-side heat medium when the user-side heat medium is heated by the refrigerant in the user-side heat exchanger.

第6の発明は、第1~第5のいずれかの発明の冷凍サイクル装置と、搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路とを備えたことを特徴とする液体加熱装置である。 The sixth invention is a liquid heating apparatus comprising the refrigerating cycle apparatus of any one of the first to fifth inventions and a utilization side heat medium circuit for circulating the utilization side heat medium by a transfer apparatus. Is.

これにより、冷媒で利用側熱媒体を加熱したときの、利用側熱媒体の高温化を実現できる液体加熱装置を提供できる。 This makes it possible to provide a liquid heating device capable of realizing a high temperature of the user side heat medium when the user side heat medium is heated by the refrigerant.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は、本発明の第1の実施の形態における液体加熱装置の構成図を示すものである。液体加熱装置は、冷凍サイクル装置1と、利用側熱媒体回路5と、液体加熱装置の運転動作を制御する制御装置4とから構成されている
また、冷凍サイクル装置1は、主冷媒回路2、バイパス冷媒回路3とから構成されている。
(Embodiment 1)
FIG. 1 shows a block diagram of a liquid heating device according to the first embodiment of the present invention. The liquid heating device is composed of a refrigerating cycle device 1, a heat medium circuit 5 on the user side, and a control device 4 for controlling the operation of the liquid heating device. Further, the refrigerating cycle device 1 includes a main refrigerant circuit 2 and a control device 4. It is composed of a bypass refrigerant circuit 3.

主冷媒回路2は、圧縮機構21、放熱器(利用側熱交換器)22、冷却用熱交換器(中間熱交換器)26、主膨張弁(第1膨張装置)23、蒸発器(熱源側熱交換器)24が、配管16で順次接続されて形成され、冷媒として二酸化炭素(CO2)を用いている。 The main refrigerant circuit 2 includes a compression mechanism 21, a radiator (heat exchanger on the user side) 22, a heat exchanger for cooling (intermediate heat exchanger) 26, a main expansion valve (first expansion device) 23, and an evaporator (heat source side). The heat exchanger) 24 is formed by being sequentially connected by a pipe 16, and uses carbon dioxide (CO2) as a refrigerant.

なお、冷媒としては、二酸化炭素を用いるのが最適だが、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または、R32等の単一冷媒を用いることもできる。 Although carbon dioxide is optimally used as the refrigerant, for example, a non-azeotropic mixed refrigerant such as R407C, a pseudo-azeotropic mixed refrigerant such as R410A, or a single refrigerant such as R32 can also be used.

冷媒を圧縮する圧縮機構21は、低段側圧縮回転要素21aと高段側圧縮回転要素21bとで構成される。放熱器22は、高段側圧縮回転要素21bから吐出された冷媒により利用側熱媒体を加熱する。なお、圧縮機構21を構成する低段側圧縮回転要素21aと高段側圧縮回転要素21bとの容積比は一定で、駆動軸(図示せず)を共通化させ、1つの容器内に配置した1台の圧縮機で構成されている。 The compression mechanism 21 that compresses the refrigerant is composed of a low-stage side compression rotation element 21a and a high-stage side compression rotation element 21b. The radiator 22 heats the heat medium on the utilization side with the refrigerant discharged from the compression rotation element 21b on the high stage side. The volume ratio of the low-stage compression rotation element 21a and the high-stage compression rotation element 21b constituting the compression mechanism 21 is constant, and the drive shaft (not shown) is shared and arranged in one container. It consists of one compressor.

なお、本実施の形態では、圧縮回転要素が、低段側圧縮回転要素21aと高段側圧縮回転要素21bとで構成される圧縮機構21を用いて説明するが、単一の圧縮回転要素においても適用でき、単一の圧縮回転要素の場合には、バイパス冷媒回路3からの冷媒が合流する位置を圧縮回転要素の圧縮途中とし、バイパス冷媒回路3からの冷媒が合流する位置までの圧縮回転要素を低段側圧縮回転要素21aとし、バイパス冷媒回路3からの冷媒が合流する位置以降の圧縮回転要素を高段側圧縮回転要素21bとして適用することができる。 In the present embodiment, the compression rotation element will be described using the compression mechanism 21 composed of the low-stage side compression rotation element 21a and the high-stage side compression rotation element 21b, but in a single compression rotation element. Also applicable, in the case of a single compression rotation element, the position where the refrigerant from the bypass refrigerant circuit 3 merges is in the middle of compression of the compression rotation element, and the compression rotation to the position where the refrigerant from the bypass refrigerant circuit 3 merges. The element can be a low-stage compression rotation element 21a, and the compression rotation element after the position where the refrigerant from the bypass refrigerant circuit 3 joins can be applied as the high-stage compression rotation element 21b.

また、低段側圧縮回転要素21aと高段側圧縮回転要素21bとが、それぞれが独立した2台の圧縮機から構成されている圧縮機構21の構成でもよい。 Further, the compression mechanism 21 may be configured in which the low-stage compression rotation element 21a and the high-stage side compression rotation element 21b are each composed of two independent compressors.

バイパス冷媒回路3は、放熱器22から主膨張弁23までの間の配管16から分岐され、低段側圧縮回転要素21aと高段側圧縮回転要素21bとの間の配管16に接続されている。 The bypass refrigerant circuit 3 is branched from the pipe 16 between the radiator 22 and the main expansion valve 23, and is connected to the pipe 16 between the low-stage side compression rotation element 21a and the high-stage side compression rotation element 21b. ..

バイパス冷媒回路3には、バイパス膨張弁(第2膨張装置)31を設けられている。放熱器22を通過後の一部の高圧冷媒、又は、冷却用熱交換器26を通過後の一部の高圧冷媒は、バイパス膨張弁31により減圧されて中間圧冷媒となった後に、冷却用熱交換器26で主冷媒回路2を流れる高圧冷媒と熱交換され、低段側圧縮回転要素21aと高段側圧縮回転要素21bとの間の冷媒と合流される。 The bypass refrigerant circuit 3 is provided with a bypass expansion valve (second expansion device) 31. A part of the high-pressure refrigerant after passing through the radiator 22 or a part of the high-pressure refrigerant after passing through the cooling heat exchanger 26 is decompressed by the bypass expansion valve 31 to become an intermediate pressure refrigerant, and then for cooling. The heat exchanger 26 exchanges heat with the high-pressure refrigerant flowing through the main refrigerant circuit 2, and merges with the refrigerant between the low-stage side compression rotation element 21a and the high-stage side compression rotation element 21b.

また、蒸発器24の出口側と圧縮機構21の吸入側との間には、気液分離を行うアキュムレーター25が設けられている。また、主冷媒回路2には、主冷媒回路2において、圧縮機構21から吐出された高圧冷媒を放熱器22側に流すか、あるいは、蒸発器24側に流すかの流路を切り換えるための四方弁27が設けられている。 Further, an accumulator 25 for separating gas and liquid is provided between the outlet side of the evaporator 24 and the suction side of the compression mechanism 21. Further, in the main refrigerant circuit 2, there are four-way valves for switching the flow path of the high-pressure refrigerant discharged from the compression mechanism 21 to the radiator 22 side or the evaporator 24 side in the main refrigerant circuit 2. A valve 27 is provided.

利用側熱媒体回路5においては、放熱器22に、熱媒体戻り管53と熱媒体往き管54とが接続されている。熱媒体戻り管53には、搬送ポンプ(搬送装置)55が設けられている。この搬送ポンプ55が動作することにより、熱媒体戻り管53を通じて放熱器22に利用側熱媒体が供給され、放熱器22で加熱された利用側熱媒体が、熱媒体往き管54から、例えば、床暖房等の暖房機(図示せず)や貯湯タンク(図示せず)に供給される。 In the user-side heat medium circuit 5, the heat medium return pipe 53 and the heat medium forward pipe 54 are connected to the radiator 22. The heat medium return pipe 53 is provided with a transfer pump (conveyor device) 55. By operating the transfer pump 55, the user-side heat medium is supplied to the radiator 22 through the heat medium return tube 53, and the user-side heat medium heated by the radiator 22 is transferred from the heat medium forward tube 54, for example. It is supplied to heaters such as floor heaters (not shown) and hot water storage tanks (not shown).

これにより、暖房や給湯が行われる。その後、利用側熱媒体は、熱媒体戻り管53を介して再び放熱器22戻る構成となっている。なお、利用側熱媒体としては、水または不凍液が用いられている。 As a result, heating and hot water supply are performed. After that, the heat medium on the user side is configured to return to the radiator 22 again via the heat medium return tube 53. Water or antifreeze is used as the heat medium on the user side.

また、主冷媒回路2の主膨張弁23の下流側と圧縮機構21の吸入側とを接続する主冷媒回路2の低圧側の配管16には、低圧側検出部として、低圧側の蒸発圧力を検出する圧力センサー51が設けられている。 Further, the low pressure side piping 16 of the main refrigerant circuit 2 connecting the downstream side of the main expansion valve 23 of the main refrigerant circuit 2 and the suction side of the compression mechanism 21 is provided with the evaporation pressure on the low pressure side as the low pressure side detection unit. A pressure sensor 51 for detecting is provided.

なお、低圧側検出部としては、主冷媒回路2の主膨張弁23の下流側と圧縮機構21の吸入側とを接続を接続する主冷媒回路2の低圧側の配管16に設けられ、低圧側の気液二層状態の冷媒の蒸発温度を検出する蒸発温度サーミスタ(図示せず)を用いてもよい。 The low-pressure side detection unit is provided in the low-pressure side pipe 16 of the main refrigerant circuit 2 that connects the downstream side of the main expansion valve 23 of the main refrigerant circuit 2 and the suction side of the compression mechanism 21 to the low-pressure side. An evaporation temperature thermistor (not shown) that detects the evaporation temperature of the refrigerant in the gas-liquid two-layer state may be used.

また、蒸発器24の周辺には温度サーミスタ28が設けられており、ファン29が駆動することで、蒸発器24に熱を供給する空気の温度を、温度サーミスタ28を用いて検出している。 Further, a temperature thermistor 28 is provided around the evaporator 24, and the temperature of the air that supplies heat to the evaporator 24 is detected by using the temperature thermistor 28 by driving the fan 29.

また、本実施の形態における冷凍サイクル装置1においては、通常運転モードであり、搬送ポンプ55を動作させ、利用側熱媒体を利用側熱媒体回路5において放熱器22を介して循環させ、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒により、放熱器22で循環する利用側熱媒体を加熱する加熱運転モードと、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒により、蒸発器24の除霜を行う除霜運転モードとを有している。 Further, in the refrigerating cycle device 1 of the present embodiment, in the normal operation mode, the transfer pump 55 is operated, the heat medium on the user side is circulated in the heat medium circuit 5 on the user side via the radiator 22, and the compression mechanism is used. A heating operation mode in which the heat medium on the utilization side circulated in the radiator 22 is heated by the refrigerant discharged from the high-stage compression / rotation element 21b of the 21 and the refrigerant discharged from the high-stage compression / rotation element 21b of the compression mechanism 21. It has a defrosting operation mode for defrosting the evaporator 24.

除霜運転モードは、圧力センサー51の検出圧力、または、蒸発温度サーミスタの検出温度がそれぞれ第1所定値以下となった場合や、あるいは、温度サーミスタ28が検出する蒸発器24に熱を供給する空気の温度が第1所定値以下で、その状態で加熱運転モードの実行時間が、所定時間以上継続した場合には、蒸発器24が着霜していると判断し、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒の熱により、蒸発器24の着霜している霜を融解して除去するものである。 In the defrosting operation mode, when the detection pressure of the pressure sensor 51 or the detection temperature of the evaporation temperature thermista is equal to or less than the first predetermined value, or the heat is supplied to the evaporator 24 detected by the temperature thermista 28. If the temperature of the air is equal to or less than the first predetermined value and the execution time of the heating operation mode continues for a predetermined time or longer in that state, it is determined that the evaporator 24 is frosted, and the higher stage of the compression mechanism 21 is determined. The frost on the evaporator 24 is melted and removed by the heat of the refrigerant discharged from the side compression rotating element 21b.

図1において、通常の加熱運転モード実行時の冷媒の流れ方向を実線矢印で示している。以下、通常の加熱運転モード実行時における冷媒の状態変化について説明する。 In FIG. 1, a solid line arrow indicates the flow direction of the refrigerant when the normal heating operation mode is executed. Hereinafter, the change in the state of the refrigerant when the normal heating operation mode is executed will be described.

圧縮機構21から吐出された高圧冷媒は、四方弁27を介して放熱器22に流入し、放熱器22を通過する利用側熱媒体に放熱する。放熱器22から流出した高圧冷媒は、冷却用熱交換器26側とバイパス膨張弁31側とに分配される。冷却用熱交換器26に流入した高圧冷媒は、バイパス膨張弁31で減圧された中間圧冷媒によって冷却される。 The high-pressure refrigerant discharged from the compression mechanism 21 flows into the radiator 22 via the four-way valve 27 and dissipates heat to the heat medium on the user side passing through the radiator 22. The high-pressure refrigerant flowing out of the radiator 22 is distributed to the cooling heat exchanger 26 side and the bypass expansion valve 31 side. The high-pressure refrigerant flowing into the cooling heat exchanger 26 is cooled by the intermediate-pressure refrigerant decompressed by the bypass expansion valve 31.

主膨張弁23側に分配された高圧冷媒は、主膨張弁23によって減圧されて膨張した後に、蒸発器24に流入する。蒸発器24に流入した低圧冷媒は、蒸発器24において空気から吸熱する。 The high-pressure refrigerant distributed to the main expansion valve 23 side is decompressed by the main expansion valve 23 to expand, and then flows into the evaporator 24. The low-pressure refrigerant that has flowed into the evaporator 24 absorbs heat from the air in the evaporator 24.

一方、バイパス膨張弁31側に分配された高圧冷媒は、バイパス膨張弁31によって減圧されて膨張した後に、冷却用熱交換器26に流入する。冷却用熱交換器26に流入した中間圧冷媒は、放熱器22から流出した高圧冷媒によって加熱される。その後、冷却用熱交換器26から流出した中間圧冷媒は、圧縮機構21の低段側圧縮回転要素21aから吐出された中間圧冷媒と合流し、高段側圧縮回転要素21bに吸入される。 On the other hand, the high-pressure refrigerant distributed to the bypass expansion valve 31 side is decompressed by the bypass expansion valve 31 and expanded, and then flows into the cooling heat exchanger 26. The intermediate pressure refrigerant flowing into the cooling heat exchanger 26 is heated by the high pressure refrigerant flowing out from the radiator 22. After that, the intermediate pressure refrigerant flowing out of the cooling heat exchanger 26 merges with the intermediate pressure refrigerant discharged from the low stage side compression rotation element 21a of the compression mechanism 21, and is sucked into the high stage side compression rotation element 21b.

本実施の形態の冷凍サイクル装置1の構成は、加熱運転時に高圧冷媒の一部を、冷却用熱交換器26を経由してバイパスさせることにより、低段側圧縮回転要素21aの圧縮動力を低減させるとともに、圧縮機構21の高段側圧縮回転要素21bの吸込み冷媒のエンタルピーが低下することによる冷媒密度の増大で、放熱器22を流れる冷媒流量を増加させて、加熱能力または成績係数を向上させるためのものである。 The configuration of the refrigeration cycle device 1 of the present embodiment reduces the compression power of the low-stage compression rotary element 21a by bypassing a part of the high-pressure refrigerant via the cooling heat exchanger 26 during the heating operation. At the same time, the increase in the refrigerant density due to the decrease in the enthalpy of the suction refrigerant of the high-stage compression rotating element 21b of the compression mechanism 21 increases the flow rate of the refrigerant flowing through the radiator 22 to improve the heating capacity or the coefficient of performance. Is for.

しかし、このように加熱運転モードを実行させると、空気中の水分等が蒸発器24で氷結して着霜し、蒸発器24の伝熱性能低下による加熱能力低下や成績係数の低下が生じる。 However, when the heating operation mode is executed in this way, moisture and the like in the air freeze and frost in the evaporator 24, resulting in a decrease in the heating capacity and a decrease in the coefficient of performance due to a decrease in the heat transfer performance of the evaporator 24.

このため、圧力センサー51の検出圧力、または、蒸発温度サーミスタの検出温度がそれぞれ第1所定値以下となった場合や、あるいは、温度サーミスタ28が検出する蒸発器24に熱を供給する空気の温度が第1所定値以下で、その状態で加熱運転モードの実行時間が、所定時間以上継続した場合には、蒸発器24が着霜していると判断し、圧縮機構21の高段側圧縮回転要素21bから吐出された冷媒の熱により、蒸発器24の着霜している霜を融解して除去する除霜運転モードを実行する必要がある。 Therefore, when the detection pressure of the pressure sensor 51 or the detection temperature of the evaporation temperature thermista is equal to or less than the first predetermined value, or the temperature of the air supplying heat to the evaporator 24 detected by the temperature thermista 28. Is less than or equal to the first predetermined value, and if the execution time of the heating operation mode continues for a predetermined time or longer in that state, it is determined that the evaporator 24 is frosted, and the compression rotation on the higher stage side of the compression mechanism 21 is performed. It is necessary to execute the defrosting operation mode in which the frost on the evaporator 24 is melted and removed by the heat of the refrigerant discharged from the element 21b.

除霜運転モードの方式の代表的なものとしては、加熱運転モードの実行時に対して四方弁27が連通する流路を切り替えて、冷媒の循環方向を逆転させ、圧縮機構21から吐出された高温高圧の冷媒を蒸発器24に流入させて、その凝縮熱で蒸発器24の霜を融解するリバースサイクル除霜方式がある。 As a typical method of the defrosting operation mode, the flow path through which the four-way valve 27 communicates is switched with respect to the execution of the heating operation mode to reverse the circulation direction of the refrigerant, and the high temperature discharged from the compression mechanism 21. There is a reverse cycle defrosting method in which a high-pressure refrigerant is allowed to flow into the evaporator 24 and the frost of the evaporator 24 is melted by the heat of condensation thereof.

一方、四方弁27を切り替えずに、加熱運転モード時と四方弁27が連通する流路は同様とし、圧縮機構21から吐出された高温高圧の冷媒を放熱器22に流入させ、主膨張弁23へと流し、主膨張弁23の開度を大きくして、圧縮機構21から吐出された高温高圧のガス冷媒を減圧せずに、主膨張弁23を通過させ、その後、蒸発器24に流入させて、蒸発器24の霜を融解するホットガス除霜方式もある。 On the other hand, without switching the four-way valve 27, the flow path through which the four-way valve 27 communicates is the same as in the heating operation mode, and the high-temperature and high-pressure refrigerant discharged from the compression mechanism 21 flows into the radiator 22 to flow the main expansion valve 23. The opening degree of the main expansion valve 23 is increased, and the high-temperature and high-pressure gas refrigerant discharged from the compression mechanism 21 is passed through the main expansion valve 23 without being depressurized, and then flows into the evaporator 24. There is also a hot gas defrosting method that melts the frost of the evaporator 24.

本実施の形態においては、ホットガス除霜方式を用いて、除霜運転モードを実行するが、その場合の冷媒の状態変化について、図1を用いて説明する。 In the present embodiment, the defrosting operation mode is executed by using the hot gas defrosting method, and the change in the state of the refrigerant in that case will be described with reference to FIG.

図1に記載の破線矢印は、ホットガス除霜方式を用いて、除霜運転モードを実行した場合の冷媒の流れ方向を示している。 The broken line arrow shown in FIG. 1 indicates the flow direction of the refrigerant when the defrosting operation mode is executed by using the hot gas defrosting method.

圧縮機構21から吐出された高圧冷媒は四方弁27を介して放熱器22に流入し、放熱器22から流出した冷媒は、主膨張弁23を通過後、蒸発器24に流入し、堆積した霜に放熱して霜を融解する。蒸発器24で放熱し流出した気液二相冷媒は、アキュムレーター25に入り、ここで気液分離されて気相冷媒が、再び圧縮機構21に戻る。 The high-pressure refrigerant discharged from the compression mechanism 21 flows into the radiator 22 through the four-way valve 27, and the refrigerant flowing out from the radiator 22 flows into the evaporator 24 after passing through the main expansion valve 23 and accumulates frost. Dissipates heat to melt the frost. The gas-liquid two-phase refrigerant radiated and discharged by the evaporator 24 enters the accumulator 25, where the gas-liquid is separated and the gas-liquid refrigerant returns to the compression mechanism 21 again.

この場合、除霜運転モード実行中においても、放熱器22に高温の吐出冷媒が流れるので、放熱器22の温度低下が抑制されて、除霜運転モード実行後に開始される加熱運転モードにおける加熱能力の上昇が、逆サイクル除霜運転と比較して速くなる。 In this case, since the high-temperature discharged refrigerant flows through the radiator 22 even during the defrosting operation mode, the temperature drop of the radiator 22 is suppressed, and the heating capacity in the heating operation mode started after the defrosting operation mode is executed. Increases faster than in reverse cycle defrosting operation.

また、除霜効率を向上させるために、放熱器22を流れる利用側熱媒体の循環、すなわち、搬送ポンプ55の運転動作を停止したり、または、搬送ポンプ55の運転回転数を低下させ利用側熱媒体の放熱器22を流れる流量を少なくして、利用側熱媒体に放熱する熱量を低減したり、蒸発器24に流入する冷媒の温度低下を抑制するために、主膨張弁23の開度を大きく開けて減圧量を小さくしたりして運転している。 Further, in order to improve the defrosting efficiency, the circulation of the heat medium on the utilization side flowing through the radiator 22, that is, the operation of the transfer pump 55 is stopped, or the operating rotation speed of the transfer pump 55 is lowered to reduce the operation speed on the utilization side. The opening degree of the main expansion valve 23 is to reduce the flow rate of the heat medium through the radiator 22 to reduce the amount of heat radiated to the heat medium on the user side and to suppress the temperature drop of the refrigerant flowing into the evaporator 24. It is operated by opening it wide and reducing the amount of decompression.

このように除霜運転モードは、加熱運転モードを安定的に継続するためには必要不可欠ではあるが、一方で、除霜運転モード実行中においては、蒸発器24では冷媒を蒸発するための吸熱量がないため、蒸発器24で凝縮した液相の冷媒は、アキュムレーター25内に滞留してしまう。 As described above, the defrosting operation mode is indispensable for stably continuing the heating operation mode, but on the other hand, while the defrosting operation mode is being executed, the evaporator 24 absorbs the refrigerant to evaporate. Since there is no calorific value, the liquid phase refrigerant condensed by the evaporator 24 stays in the accumulator 25.

その結果、除霜運転モード実行終了後の加熱運転モードの実行開始時においては、圧縮機構21の吸入圧力が低下し、放熱器22を流れる冷媒流量が十分に確保されないため、加熱能力が低下してしまう。この加熱能力に伴って生じる利用側熱媒体の温度低下により、利用側熱媒体による暖房能力や成績係数が低下するなどの課題が生じる。 As a result, at the start of execution of the heating operation mode after the execution of the defrosting operation mode is completed, the suction pressure of the compression mechanism 21 is lowered, and the flow rate of the refrigerant flowing through the radiator 22 is not sufficiently secured, so that the heating capacity is lowered. Will end up. Due to the temperature decrease of the heat medium on the user side caused by this heating capacity, problems such as a decrease in the heating capacity and the coefficient of performance of the heat medium on the user side arise.

これらの課題を解決するためには、除霜運転モード実行終了後の加熱運転モードの実行開始時において、除霜運転モード実行中にアキュムレーター25に滞留した液相の冷媒を、短時間で蒸発させるとともに、いち早く放熱器22に流れる冷媒流量を十分に確保することが必要となる。 In order to solve these problems, at the start of execution of the heating operation mode after the execution of the defrosting operation mode, the liquid phase refrigerant accumulated in the accumulator 25 during the execution of the defrosting operation mode evaporates in a short time. At the same time, it is necessary to quickly secure a sufficient flow rate of the refrigerant flowing through the radiator 22.

そこで、本実施の形態では、制御装置4は、除霜運転モード実行終了後に、搬送ポンプ55が動作を開始する加熱運転モードの実行開始時において、主膨張弁23側を流れる冷媒流量がバイパス膨張弁31側を流れる冷媒流量より少なくなるように、主膨張弁23とバイパス膨張弁31の弁開度を調整している。 Therefore, in the present embodiment, in the control device 4, the flow rate of the refrigerant flowing on the main expansion valve 23 side expands by bypass at the start of the execution of the heating operation mode in which the transfer pump 55 starts the operation after the execution of the defrosting operation mode ends. The valve opening degrees of the main expansion valve 23 and the bypass expansion valve 31 are adjusted so as to be smaller than the flow rate of the refrigerant flowing on the valve 31 side.

これにより、蒸発器24の出口の冷媒状態は、図2に示すように、a点からa′点のようにエンタルピーが増加するので、アキュムレーター25内に高エンタルピーの冷媒が流入する。よって、アキュムレーター25内で冷媒が混合されることにより、滞留した液相冷媒の蒸発が促進され、短時間で滞留冷媒が減少する。 As a result, as shown in FIG. 2, the enthalpy of the refrigerant at the outlet of the evaporator 24 increases from point a to point a', so that the refrigerant having high enthalpy flows into the accumulator 25. Therefore, by mixing the refrigerant in the accumulator 25, the evaporation of the retained liquid phase refrigerant is promoted, and the retained refrigerant is reduced in a short time.

また、主膨張弁23側を流れる冷媒流量を減少させることにより、バイパス冷媒回路3に流れる冷媒流量が増加し、図2に示すようの、b点からb′点のように圧縮機構21の高段側圧縮回転要素21bの吸入圧力が上昇し、冷媒密度が増大する。よって、高段側圧縮回転要素21bから吐出される冷媒流量が増加するとともに、図2に示すように、c点からc′点のように吐出圧力が上昇するので、放熱器22を流れる利用側熱媒体との温度差が拡大する。 Further, by reducing the flow rate of the refrigerant flowing on the main expansion valve 23 side, the flow rate of the refrigerant flowing in the bypass refrigerant circuit 3 increases, and the height of the compression mechanism 21 increases from the point b to the point b'as shown in FIG. The suction pressure of the stage-side compression rotation element 21b increases, and the refrigerant density increases. Therefore, the flow rate of the refrigerant discharged from the compression rotation element 21b on the high stage side increases, and as shown in FIG. 2, the discharge pressure rises from the point c to the point c', so that the utilization side flowing through the radiator 22 The temperature difference with the heat medium increases.

このように、制御装置4が、主膨張弁23側を流れる冷媒流量とバイパス膨張弁31側を流れる冷媒流量との流量比率を適切に調整、すなわち、主膨張弁23の弁開度とバイパス膨張弁31の弁開度とを適切に調整することによって、蒸発器24出口の冷媒のエンタルピーが増加し、液冷媒の蒸発が促進されるとともに、高段側圧縮回転要素21bの吸入冷媒密度が増大することで、加熱能力が上昇するので、成績係数の低下が抑制された状態で、除霜運転モード実行終了後に実行される加熱運転モードにおける加熱能力をいち早く上昇させることができる。 In this way, the control device 4 appropriately adjusts the flow rate ratio between the flow rate of the refrigerant flowing on the main expansion valve 23 side and the flow rate of the refrigerant flowing on the bypass expansion valve 31 side, that is, the valve opening degree of the main expansion valve 23 and the bypass expansion. By appropriately adjusting the valve opening degree of the valve 31, the enthalpy of the refrigerant at the outlet of the evaporator 24 is increased, the evaporation of the liquid refrigerant is promoted, and the suction refrigerant density of the high-stage compression rotating element 21b is increased. By doing so, the heating capacity is increased, so that the heating capacity in the heating operation mode executed after the execution of the defrosting operation mode is completed can be quickly increased while the decrease in the coefficient of performance is suppressed.

以下、除霜運転モード実行終了後に実行される加熱運転モードにおける主膨張弁23およびバイパス膨張弁31の弁開度の動作について、図3に示すフローチャートに基づいて説明する。 Hereinafter, the operation of the valve opening degrees of the main expansion valve 23 and the bypass expansion valve 31 in the heating operation mode executed after the execution of the defrosting operation mode is completed will be described with reference to the flowchart shown in FIG.

まず、制御装置4は、除霜運転モードの実行により、蒸発器24に着霜している霜を融解し、その後、除霜運転モードの実行を終了する(ステップS1)。 First, the control device 4 melts the frost adhering to the evaporator 24 by executing the defrosting operation mode, and then ends the execution of the defrosting operation mode (step S1).

そして、引き継続き圧縮機構21が運転している状態で、主膨張弁23の弁開度とバイパス膨張弁31の弁開度を、それぞれ予め制御装置4に設定されているOmとObとなるように設定する(ステップS2)。 Then, while the pulling continuous compression mechanism 21 is operating, the valve opening degree of the main expansion valve 23 and the valve opening degree of the bypass expansion valve 31 are set to Om and Ob, which are set in advance in the control device 4, respectively. (Step S2).

なお、主膨張弁23の弁開度Omとバイパス膨張弁31の弁開度Obは、図1に示すように、主膨張弁23を流れる冷媒流量Gmが、バイパス膨張弁31を流れる冷媒流量Gbより少なくなる開度である(ステップS2)。 As shown in FIG. 1, the valve opening degree Om of the main expansion valve 23 and the valve opening degree Ob of the bypass expansion valve 31 are such that the refrigerant flow rate Gm flowing through the main expansion valve 23 is the refrigerant flow rate Gb flowing through the bypass expansion valve 31. The opening degree is smaller (step S2).

なお、除霜運転モード実行時には、圧縮機構21から吐出された高温高圧の冷媒を、主膨張弁23の弁開度を略最大の開度に、かつ、バイパス膨張弁31の弁開度を略最小の開度とし、圧縮機構21から吐出された高温高圧のガス冷媒を蒸発器24に流入させている。 When the defrosting operation mode is executed, the high-temperature and high-pressure refrigerant discharged from the compression mechanism 21 is used with the valve opening of the main expansion valve 23 at a substantially maximum opening and the valve opening of the bypass expansion valve 31 being abbreviated. With the minimum opening degree, the high-temperature and high-pressure gas refrigerant discharged from the compression mechanism 21 is allowed to flow into the evaporator 24.

したがって、ステップS2の搬送ポンプ55が動作を開始する加熱運転モードの実行開始時において、制御装置4は、主膨張弁23の弁開度は閉方向に動作させ、バイパス膨張弁31の弁開度は開方向に動作させることになる。 Therefore, at the start of the execution of the heating operation mode in which the transfer pump 55 in step S2 starts to operate, the control device 4 operates the valve opening of the main expansion valve 23 in the closing direction, and the valve opening of the bypass expansion valve 31. Will be operated in the open direction.

なお、主膨張弁23の弁開度とバイパス膨張弁31の弁開度を、それぞれ予め制御装置4に設定されているOmとObとなるように設定した直後に、搬送ポンプ55を動作させて、加熱運転モードの実行を開始してもよい。 Immediately after setting the valve opening of the main expansion valve 23 and the valve opening of the bypass expansion valve 31 to be Om and Ob, which are set in advance in the control device 4, the transfer pump 55 is operated. , The execution of the heating operation mode may be started.

次に、制御装置4は、低圧側検出部である圧力センサー51で、主冷媒回路2の低圧側圧力Psを検出する(ステップS3)。 Next, the control device 4 detects the low pressure side pressure Ps of the main refrigerant circuit 2 by the pressure sensor 51 which is the low pressure side detection unit (step S3).

そして、圧力センサー51で、主冷媒回路2の低圧側圧力Ps、すなわち、圧縮機構21の吸入圧力(低段側圧縮回転要素21aの吸入圧力)を検出し、その検出値が、予め設定された第2所定値(所定圧力Pst)以下か否かを監視しながら判断する(ステップS4)。 Then, the pressure sensor 51 detects the low pressure side pressure Ps of the main refrigerant circuit 2, that is, the suction pressure of the compression mechanism 21 (the suction pressure of the low stage side compression rotation element 21a), and the detected value is set in advance. It is determined while monitoring whether or not it is equal to or less than the second predetermined value (predetermined pressure Pst) (step S4).

ステップS4でYESの場合、すなわち、吸入圧力Psが第2所定値であるPst以下の場合には、主膨張弁23の弁開度とバイパス膨張弁31の弁開度を、それぞれ予め制御装置4に設定されているOmとObのままとする。 If YES in step S4, that is, if the suction pressure Ps is Pst or less, which is the second predetermined value, the valve opening of the main expansion valve 23 and the valve opening of the bypass expansion valve 31 are set in advance by the control device 4. Leave the Om and Ob set in.

すなわち、主膨張弁23を流れる冷媒流量Gmが、バイパス膨張弁31を流れる冷媒流量Gbより少なくなるようにする状態を継続する。 That is, the state in which the refrigerant flow rate Gm flowing through the main expansion valve 23 is smaller than the refrigerant flow rate Gb flowing through the bypass expansion valve 31 is continued.

一方、ステップS4でNOの場合、すなわち、吸入圧力Psが第2所定値であるPstより高い場合は、主膨張弁23の弁開度とバイパス膨張弁31の弁開度を、それぞれ予め制御装置4に設定されているOmとObとする制御を解除し、通常の加熱運転モードにおける主膨張弁23の弁開度とバイパス膨張弁31の弁開度の動作制御に移行し、加熱運転モードの実行を継続する。 On the other hand, when NO in step S4, that is, when the suction pressure Ps is higher than Pst, which is the second predetermined value, the valve opening of the main expansion valve 23 and the valve opening of the bypass expansion valve 31 are controlled in advance. The control of Om and Ob set in 4 is canceled, and the operation control of the valve opening of the main expansion valve 23 and the valve opening of the bypass expansion valve 31 in the normal heating operation mode is performed, and the heating operation mode is set. Continue execution.

なお、低圧側検出部としては、圧力センサー51の代わりに、主冷媒回路2の主膨張弁23の下流側と圧縮機構21の吸入側とを接続を接続する主冷媒回路2の低圧側の配管16に設けられ、低圧側の気液二層状態の冷媒の蒸発温度を検出する蒸発温度サーミスタ(図示せず)を用いてもよい。 As the low-pressure side detection unit, instead of the pressure sensor 51, the low-pressure side pipe of the main refrigerant circuit 2 that connects the downstream side of the main expansion valve 23 of the main refrigerant circuit 2 and the suction side of the compression mechanism 21. An evaporation temperature thermistor (not shown) provided in 16 and detecting the evaporation temperature of the refrigerant in the gas-liquid two-layer state on the low pressure side may be used.

この場合、圧力センサー51を用いた図3に示すフローチャートと同様に、蒸発温度サーミスタの検出値が第2所定値以下の期間は、主膨張弁23の弁開度とバイパス膨張弁31の弁開度とを、主膨張弁23を流れる冷媒流量が、バイパス膨張弁31を流れる冷媒流量より少なくなる開度に設定することとなる。 In this case, as in the flowchart shown in FIG. 3 using the pressure sensor 51, the valve opening of the main expansion valve 23 and the valve opening of the bypass expansion valve 31 are during the period when the detection value of the evaporation temperature thermistor is equal to or less than the second predetermined value. The degree is set to an opening degree at which the flow rate of the refrigerant flowing through the main expansion valve 23 is smaller than the flow rate of the refrigerant flowing through the bypass expansion valve 31.

また、蒸発器24の周辺には温度サーミスタ28が設けられており、ファン29が駆動することで、蒸発器24に熱を供給する空気の温度を、温度サーミスタ28を用いて検出している。 Further, a temperature thermistor 28 is provided around the evaporator 24, and the temperature of the air that supplies heat to the evaporator 24 is detected by using the temperature thermistor 28 by driving the fan 29.

そして、低圧側検出部の代わりにその温度サーミスタ28を用いて、制御装置4は、加熱運転モードの実行開始時より所定時間以内は、主膨張弁23の弁開度とバイパス膨張弁31の弁開度とを、主膨張弁23を流れる冷媒流量が、バイパス膨張弁31を流れる冷媒流量より少なくなる開度に設定するようにしてもよい。 Then, using the temperature thermistor 28 instead of the low pressure side detection unit, the control device 4 uses the valve opening of the main expansion valve 23 and the valve of the bypass expansion valve 31 within a predetermined time from the start of execution of the heating operation mode. The opening degree may be set to an opening degree in which the flow rate of the refrigerant flowing through the main expansion valve 23 is smaller than the flow rate of the refrigerant flowing through the bypass expansion valve 31.

この場合、加熱運転モードの実行開始時より所定時間を経過した後には、通常の加熱運転モードにおける主膨張弁23の弁開度とバイパス膨張弁31の弁開度の動作制御に移行し、加熱運転モードの実行を継続することとなる。 In this case, after a predetermined time has elapsed from the start of execution of the heating operation mode, the operation control of the valve opening of the main expansion valve 23 and the valve opening of the bypass expansion valve 31 in the normal heating operation mode is performed, and heating is performed. The execution of the operation mode will be continued.

なお、本実施の形態では、主膨張弁23の弁開度Omとバイパス膨張弁31の弁開度Obとを、制御装置4に予め設定しておく構成としたが、弁開度Omと弁開度Obは、実際に流量を検出して主冷媒流量Gm<バイパス冷媒流量Gbとなるように制御してもよい。 In the present embodiment, the valve opening degree Om of the main expansion valve 23 and the valve opening degree Ob of the bypass expansion valve 31 are set in advance in the control device 4, but the valve opening degree Om and the valve are configured. The opening degree Ob may be controlled so that the flow rate is actually detected and the main refrigerant flow rate Gm <bypass refrigerant flow rate Gb.

その場合の流量検出装置(図示せず)としては、例えば、主膨張弁23側の冷媒回路とバイパス路にそれぞれ流量計を設けてもよいし、各膨張弁の出入口の圧力差と開度の関数から、それぞれの冷媒流量を算出してもよい。 As a flow rate detecting device (not shown) in that case, for example, a flow meter may be provided in the refrigerant circuit on the main expansion valve 23 side and the bypass path, respectively, and the pressure difference and opening degree of the inlet / outlet of each expansion valve may be provided. The flow rate of each refrigerant may be calculated from the function.

なお、バイパス冷媒回路3は、必ずしも放熱器22と冷却用熱交換器26の間で主冷媒回路2から分岐している必要はなく、冷却用熱交換器26と主膨張弁23の間で主冷媒回路2から分岐していてもよい。 The bypass refrigerant circuit 3 does not necessarily have to branch from the main refrigerant circuit 2 between the radiator 22 and the cooling heat exchanger 26, and is mainly between the cooling heat exchanger 26 and the main expansion valve 23. It may be branched from the refrigerant circuit 2.

さらに、本実施の形態の主膨張弁23およびバイパス膨張弁31は、必ずしも膨張弁である必要はなく、膨張する冷媒から動力を回収する膨張機でもよい。この場合、例えば、膨張機と連結された発電機によって負荷を変化させることにより、膨張機の回転数を制御すればよい。 Further, the main expansion valve 23 and the bypass expansion valve 31 of the present embodiment do not necessarily have to be expansion valves, and may be an expansion machine that recovers power from the expanding refrigerant. In this case, for example, the rotation speed of the expander may be controlled by changing the load by a generator connected to the expander.

以上のように、本発明にかかる冷凍サイクル装置は、中間熱交換器を備えた主冷媒回路とバイパス冷媒回路からなり、熱源側熱交換器の除霜運転実行終了後の加熱運転の実行時においても、加熱運転の加熱能力の低下を抑制できるので、冷凍サイクル装置を用いた冷凍、空調、給湯、暖房機器等に有用である。 As described above, the refrigerating cycle apparatus according to the present invention comprises a main refrigerant circuit provided with an intermediate heat exchanger and a bypass refrigerant circuit, and at the time of executing the heating operation after the execution of the defrosting operation of the heat source side heat exchanger is completed. However, since it is possible to suppress a decrease in the heating capacity of the heating operation, it is useful for refrigeration, air conditioning, hot water supply, heating equipment, etc. using a refrigeration cycle device.

1 冷凍サイクル装置
2 主冷媒回路
3 バイパス冷媒回路
4 制御装置
5 利用側熱媒体回路
16 配管
21 圧縮機構
21a 低段側圧縮回転要素
21b 高段側圧縮回転要素
22 放熱器(利用側熱交換器)
23 主膨張弁(第1膨張装置)
24 蒸発器(熱源側熱交換器)
25 アキュムレーター
26 冷却用熱交換器(中間熱交換器)
28 温度サーミスタ
29 ファン
31 バイパス膨張弁(第2膨張装置)
51 圧力センサー(低圧側検出部)
53 熱媒体戻り管
54 熱媒体往き管
55 搬送ポンプ(搬送装置)
1 Refrigerant cycle device 2 Main refrigerant circuit 3 Bypass refrigerant circuit 4 Control device 5 User side heat medium circuit 16 Piping 21 Compression mechanism 21a Low stage compression rotation element 21b High stage side compression rotation element 22 Heat exchanger (use side heat exchanger)
23 Main expansion valve (first expansion device)
24 Evaporator (heat exchanger on the heat source side)
25 Accumulator 26 Cooling heat exchanger (intermediate heat exchanger)
28 Temperature thermistor 29 Fan 31 Bypass expansion valve (second expansion device)
51 Pressure sensor (low pressure side detector)
53 Heat medium return pipe 54 Heat medium forward pipe 55 Conveyance pump (conveyor device)

Claims (5)

圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、
前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、
制御装置と、
を備え、
前記圧縮回転要素から吐出された冷媒により、前記利用側熱交換器において前記利用側熱媒体を加熱する加熱運転モードと、
前記圧縮回転要素から吐出された冷媒により、前記熱源側熱交換器の除霜を行う除霜運転モードと、有し、
前記除霜運転モードの実行終了後に実行される前記加熱運転モードにおいて、
前記加熱運転モードの実行開始時より少なくとも所定期間は、
前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなるそれぞれの所定開度に、
前記制御装置は、前記第1膨張装置の開度と前記第2膨張装置の開度とを設定していることを特徴とする冷凍サイクル装置。
The compression mechanism composed of the compression rotation element, the utilization side heat exchanger that heats the utilization side heat medium by the refrigerant discharged from the compression rotation element, the intermediate heat exchanger, the first expansion device, and the heat source side heat exchanger are piped. The main refrigerant circuit formed by connecting sequentially with
After being branched from the pipe between the user-side heat exchanger and the first expansion device and decompressed by the second expansion device, the intermediate heat exchanger exchanges heat with the refrigerant flowing through the main refrigerant circuit. A bypass refrigerant circuit that joins the refrigerant in the process of compression of the compression rotating element,
With the control device
Equipped with
A heating operation mode in which the heat medium on the user side is heated by the refrigerant discharged from the compression rotation element in the heat exchanger on the user side.
It has a defrosting operation mode in which the heat exchanger on the heat source side is defrosted by the refrigerant discharged from the compression rotating element.
In the heating operation mode executed after the execution of the defrosting operation mode is completed,
For at least a predetermined period from the start of execution of the heating operation mode,
At each predetermined opening degree, the flow rate of the refrigerant flowing through the first expansion device is smaller than the flow rate of the refrigerant flowing through the second expansion device.
The control device is a refrigerating cycle device characterized in that the opening degree of the first expansion device and the opening degree of the second expansion device are set.
前記主冷媒回路の低圧側の冷媒の温度、または、前記主冷媒回路の低圧側の冷媒の圧力、を検出する低圧側検出部を備え、前記制御装置は、前記加熱運転モードの実行開始時より、前記低圧側検出部の検出値が所定値以下の期間は、前記第1膨張装置の開度と前記第2膨張装置の開度とを、前記第1膨張装置を流れる冷媒流量が、前記第2膨張装置を流れる冷媒流量より少なくなる開度に設定していることを特徴とする請求項1に記載の冷凍サイクル装置。 The control device includes a low pressure side detection unit that detects the temperature of the refrigerant on the low pressure side of the main refrigerant circuit or the pressure of the refrigerant on the low pressure side of the main refrigerant circuit, and the control device starts from the start of execution of the heating operation mode. During the period when the detection value of the low pressure side detection unit is equal to or less than a predetermined value, the opening degree of the first expansion device and the opening degree of the second expansion device are set, and the flow rate of the refrigerant flowing through the first expansion device is the first. 2. The refrigerating cycle device according to claim 1, wherein the opening degree is set to be smaller than the flow rate of the refrigerant flowing through the expansion device. 前記除霜運転モードにおいて、前記圧縮回転要素から吐出された冷媒は、前記利用側熱交換器、前記第1膨張装置、前記熱源側熱交換器の順に流れることを特徴とする請求項1または2に記載の冷凍サイクル装置。 Claim 1 or 2 characterized in that, in the defrosting operation mode, the refrigerant discharged from the compression rotation element flows in the order of the utilization side heat exchanger, the first expansion device, and the heat source side heat exchanger. The refrigeration cycle device described in. 前記冷媒として、二酸化炭素を用いることを特徴とする請求項1~のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 3 , wherein carbon dioxide is used as the refrigerant. 請求項1~のいずれか1項に記載の冷凍サイクル装置と、搬送装置によって前記利用側熱媒体を循環させる利用側熱媒体回路とを備えたことを特徴とする液体加熱装置。 A liquid heating device comprising the refrigerating cycle device according to any one of claims 1 to 4 and a user-side heat medium circuit for circulating the user-side heat medium by a transfer device.
JP2018124064A 2018-06-29 2018-06-29 Refrigeration cycle device and liquid heating device equipped with it Active JP7038277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018124064A JP7038277B2 (en) 2018-06-29 2018-06-29 Refrigeration cycle device and liquid heating device equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124064A JP7038277B2 (en) 2018-06-29 2018-06-29 Refrigeration cycle device and liquid heating device equipped with it

Publications (2)

Publication Number Publication Date
JP2020003156A JP2020003156A (en) 2020-01-09
JP7038277B2 true JP7038277B2 (en) 2022-03-18

Family

ID=69099318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124064A Active JP7038277B2 (en) 2018-06-29 2018-06-29 Refrigeration cycle device and liquid heating device equipped with it

Country Status (1)

Country Link
JP (1) JP7038277B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354050A1 (en) * 2021-06-07 2024-04-17 Mitsubishi Electric Corporation Refrigeration device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112753A (en) 2004-10-18 2006-04-27 Mitsubishi Electric Corp Refrigerating air conditioner
JP2008138921A (en) 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner
JP2009133581A (en) 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
JP2009186123A (en) 2008-02-08 2009-08-20 Mitsubishi Electric Corp Air conditioner
JP2011137602A (en) 2009-12-28 2011-07-14 Daikin Industries Ltd Heat pump unit and heating system
JP2014169854A (en) 2013-02-08 2014-09-18 Panasonic Corp Refrigeration cycle device and hot water generation device including the same
US20150267957A1 (en) 2014-03-20 2015-09-24 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104080B2 (en) * 1987-11-11 1995-11-13 三菱電機株式会社 Heat pump device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112753A (en) 2004-10-18 2006-04-27 Mitsubishi Electric Corp Refrigerating air conditioner
JP2008138921A (en) 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner
JP2009133581A (en) 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
JP2009186123A (en) 2008-02-08 2009-08-20 Mitsubishi Electric Corp Air conditioner
JP2011137602A (en) 2009-12-28 2011-07-14 Daikin Industries Ltd Heat pump unit and heating system
JP2014169854A (en) 2013-02-08 2014-09-18 Panasonic Corp Refrigeration cycle device and hot water generation device including the same
US20150267957A1 (en) 2014-03-20 2015-09-24 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner

Also Published As

Publication number Publication date
JP2020003156A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP5003440B2 (en) Refrigeration equipment
JP4812606B2 (en) Air conditioner
JP6580149B2 (en) Refrigeration cycle equipment
JP5003439B2 (en) Refrigeration equipment
WO2010070828A1 (en) Heat pump hot-water supply device and operation method therefor
JP5816789B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
US20080168781A1 (en) Refrigerating Machine
JP2008249236A (en) Air conditioner
WO2009131088A1 (en) Refrigeration device
WO2014080612A1 (en) Refrigeration cycle device and hot water-producing device provided therewith
JP2008096033A (en) Refrigerating device
EP3546850B1 (en) Refrigeration device
JP2009264605A (en) Refrigerating device
JP5274174B2 (en) Air conditioner
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP6257809B2 (en) Refrigeration cycle equipment
JP2015064169A (en) Hot water generation device
JPWO2017037891A1 (en) Refrigeration cycle equipment
JP5573370B2 (en) Refrigeration cycle apparatus and control method thereof
JP2017166709A (en) Refrigeration cycle device and hot water heating device including the same
JP7038277B2 (en) Refrigeration cycle device and liquid heating device equipped with it
JP7523667B2 (en) Heat source unit for refrigeration device and refrigeration device equipped with same
JP7133817B2 (en) Refrigeration cycle device and liquid heating device provided with the same
JP2020183850A (en) Refrigeration cycle device and liquid heating device including the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R151 Written notification of patent or utility model registration

Ref document number: 7038277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151