WO2015104822A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2015104822A1
WO2015104822A1 PCT/JP2014/050256 JP2014050256W WO2015104822A1 WO 2015104822 A1 WO2015104822 A1 WO 2015104822A1 JP 2014050256 W JP2014050256 W JP 2014050256W WO 2015104822 A1 WO2015104822 A1 WO 2015104822A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expander
compressor
shell
oil
Prior art date
Application number
PCT/JP2014/050256
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 央平
裕輔 島津
悟 梁池
大坪 祐介
進一 内野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/050256 priority Critical patent/WO2015104822A1/en
Priority to EP14877585.1A priority patent/EP3104101A4/en
Priority to JP2015556680A priority patent/JP6150906B2/en
Publication of WO2015104822A1 publication Critical patent/WO2015104822A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Definitions

  • the present invention relates to a refrigeration cycle apparatus including an expander that recovers expansion power of a refrigerant as electric power.
  • the refrigerant circuit has a compressor and an expander.
  • the compressor casing and the expander casing communicate with each other through a communication pipe, and the discharge pipe and the expander casing communicate with each other through a branch outflow pipe to equalize the pressure in both casings.
  • An oil amount adjusting valve is provided in an oil circulation pipe that connects the oil reservoirs of the compressor and the expander. It has been proposed that when the oil amount adjustment valve is opened, the oil sump in the compressor casing and the oil sump in the expander casing communicate with each other, and the refrigeration oil moves through the oil distribution pipe (for example, , See Patent Document 1).
  • the refrigerant circuit is provided with a compressor and an expander.
  • the compressor the refrigerant compressed by the compression mechanism is discharged into the internal space of the compressor casing.
  • the refrigeration oil accumulated at the bottom of the compressor casing is supplied to the compression mechanism. It has been proposed that the refrigerating machine oil accumulated at the bottom of the compressor casing is directly introduced into the expansion mechanism of the expander through the oil supply pipe (for example, see Patent Document 2).
  • the present invention has been made to solve the above-described problems, and can store refrigerating machine oil in the expander shell regardless of the pressure in the compressor shell, thereby depleting the refrigerating machine oil in the expander. It aims at obtaining the refrigerating-cycle apparatus which can be suppressed.
  • a refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a condenser, an expander, and an evaporator are connected by piping and the refrigerant circulates, and the expander includes an expander shell constituting an outer shell, An expansion unit that is disposed in the expander shell, expands the refrigerant that has flowed out of the condenser, generates a driving force, and flows the expanded refrigerant into the evaporator, and is disposed in the expander shell.
  • a generator that rotates by the driving force of the expansion unit, and the expander shell stores refrigerating machine oil contained in the refrigerant discharged from the compressor, and the refrigerating machine oil is stored in the expansion unit and It is supplied to at least one of the generators.
  • the refrigerating machine oil contained in the refrigerant discharged from the compressor is stored in the expander shell. For this reason, refrigeration oil can be stored in the expander shell regardless of the pressure in the compressor shell, and exhaustion of the refrigeration oil in the expander can be suppressed.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. It is a block diagram of the expander 3 of the refrigerating-cycle apparatus 100 which concerns on Embodiment 2 of this invention. It is a block diagram of the refrigerating cycle apparatus 100 which concerns on Embodiment 3 of this invention. It is a block diagram of the refrigerating-cycle apparatus 100 which concerns on Embodiment 4 of this invention. It is a figure which shows the other structural example of the refrigerating-cycle apparatus 100 which concerns on Embodiment 4 of this invention. It is a block diagram of the refrigerating cycle apparatus 100 which concerns on Embodiment 5 of this invention. It is a block diagram of the refrigerating cycle apparatus 100 which concerns on Embodiment 6 of this invention.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a load side heat exchanger 2, an expander 3, a heat source side heat exchanger 4, a first four-way valve 5, and a second four-way valve 6. Yes.
  • the compressor 1, the load side heat exchanger 2, the expander 3, and the heat source side heat exchanger 4 are connected by a pipe and constitute a refrigerant circuit in which the refrigerant circulates.
  • the compressor 1 is constituted by, for example, a hermetic compressor.
  • an outer shell is constituted by the compressor shell 15.
  • an electric motor unit 17 and a compression unit 18 are accommodated.
  • the compressor shell 15 stores refrigeration oil 50.
  • the refrigerating machine oil 50 is supplied to the electric motor unit 17 and the compression unit 18 and used for lubrication.
  • the compressor 1 sucks low-pressure refrigerant into the compressor shell 15 from the pipe 21 on the suction side.
  • the compression unit 18 is driven by the electric motor unit 17.
  • the low-pressure refrigerant sucked into the compressor shell 15 is compressed by the compression unit 18.
  • the high-pressure refrigerant compressed by the compression unit 18 is discharged to the discharge side pipe 10.
  • the pressure inside the compressor shell 15 is low. That is, the compressor shell 15 is a so-called low pressure shell.
  • the compression unit 18 directly sucks the low-pressure refrigerant from the pipe 21 on the suction side.
  • the high-pressure refrigerant compressed by the compression unit 18 is discharged into the compressor shell 15.
  • the refrigerant discharged into the compressor shell 15 may be discharged to the discharge side pipe 10.
  • the internal pressure of the compressor shell 15 may be high. That is, the compressor shell 15 may be a so-called high pressure shell.
  • the expander 3 includes an expander shell 34 that forms an outer shell.
  • An expander 31 and a generator 32 (motor) are accommodated in the expander shell 34.
  • the expansion part 31 and the generator 32 are connected by a rotating shaft 33.
  • the refrigerating machine oil 50 is stored in the expander shell 34.
  • the refrigerating machine oil 50 is supplied to at least one of the expansion unit 31 and the generator 32 and used for lubrication.
  • the expansion part 31 has an expansion part inlet 43 through which the refrigerant flows in and an expansion part outlet 44 through which the refrigerant flows out.
  • the expansion part inlet 43 is connected to the inflow pipe 35.
  • the expansion part outlet 44 is connected to the outflow pipe 36.
  • the inflow pipe 35 is connected to the condenser (the load side heat exchanger 2 or the heat source side heat exchanger 4) via the second four-way valve 6.
  • the outflow pipe 36 is connected to the evaporator (the load side heat exchanger 2 or the heat source side heat exchanger 4) via the second four-way valve 6.
  • the expansion part 31 expands the refrigerant that has flowed into the expansion part inlet 43 from the inflow pipe 35 and causes the expanded refrigerant to flow out from the expansion part outlet 44 to the outflow pipe 36. Further, the expansion unit 31 rotationally drives the rotary shaft 33 with expansion power when the refrigerant is expanded.
  • the generator 32 is connected to the inflating part 31 by the rotating shaft 33 and is rotated by the driving force of the inflating part 31 to generate electric power. Thereby, the expansion power of the expansion part 31 is collect
  • the expander shell 34 of the expander 3 is formed with an inlet portion 41 through which the refrigerant flows and an outlet portion 42 through which the refrigerant flows out.
  • the inlet 41 is connected to the discharge-side piping 10 of the compressor 1.
  • the refrigerant discharged from the compressor 1 flows into the expander shell 34.
  • the refrigerant that has flowed into the expander shell 34 is separated into the gas refrigerant and the refrigerating machine oil 50. Thereby, the refrigerating machine oil 50 contained in the refrigerant discharged from the compressor 1 is stored in the expander shell 34.
  • the outlet part 42 is connected to the gas pipe 11.
  • the gas pipe 11 is connected to the condenser (the load side heat exchanger 2 or the heat source side heat exchanger 4) via the first four-way valve 5.
  • the load side heat exchanger 2 is constituted by, for example, a fin-and-tube heat exchanger.
  • the load side heat exchanger 2 performs heat exchange between air as a load side medium and a refrigerant.
  • the load-side medium is not limited to air, and for example, water or antifreeze may be used as a heat source.
  • the heat source side heat exchanger 4 is configured by, for example, a fin-and-tube heat exchanger.
  • the heat source side heat exchanger 4 performs heat exchange between the outside air as the heat source side medium and the refrigerant.
  • the heat source side medium is not limited to the outside air (air), and for example, water or antifreeze liquid may be used as the heat source.
  • the first four-way valve 5 and the second four-way valve 6 are used for switching the flow of the refrigerant circuit.
  • the load-side heat exchanger 2 functions as a condenser (heat radiator)
  • the heat source-side heat exchanger 4 functions as an evaporator (heating operation)
  • the first four-way valve 5 exchanges heat with the gas pipe 11 and the heat source.
  • the load side heat exchanger 2 and the suction side piping 21 of the compressor 1 are connected.
  • the second four-way valve 6 connects the load side heat exchanger 2 and the inflow pipe 35 and connects the outflow pipe 36 and the heat source side heat exchanger 4.
  • the first four-way valve 5 includes a gas pipe 11 and a load side.
  • the heat exchanger 2 is connected, and the heat source side heat exchanger 4 and the suction side pipe 21 of the compressor 1 are connected.
  • the second four-way valve 6 connects the heat source side heat exchanger 4 and the inflow pipe 35, and connects the outflow pipe 36 and the load side heat exchanger 2. If the switching between the heating operation and the cooling operation is not performed, the first four-way valve 5 and the second four-way valve 6 may not be provided.
  • the control device 200 is configured by a microcomputer, for example, and includes a CPU, a RAM, a ROM, and the like, and a control program and the like are stored in the ROM.
  • the control device 200 receives detection values from various sensors that detect the pressure and temperature of the refrigerant in the refrigerant circuit, the temperatures of the load-side medium and the heat-source-side medium, and the like.
  • the control device 200 controls each component of the refrigeration cycle apparatus 100 based on the detection value from each sensor. Further, the control device 200 controls switching of the first four-way valve 5 and the second four-way valve 6.
  • the compressor 1 compresses the low-pressure refrigerant in the compressor shell 15 and discharges the high-temperature and high-pressure gas refrigerant to the discharge-side pipe 10.
  • the gas refrigerant discharged from the compressor 1 includes the refrigerating machine oil 50 in the compressor shell 15.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the piping 10 on the discharge side of the compressor 1 and flows into the expander shell 34 from the inlet 41 of the expander 3.
  • the gas refrigerant that has flowed into the expander shell 34 is separated in the expander shell 34 at least a part of the refrigerating machine oil 50 contained in the gas refrigerant, and the separated refrigerating machine oil 50 is stored in the expander shell 34. The Then, the gas refrigerant and the remaining refrigeration oil 50 contained in the gas refrigerant flow out from the outlet portion 42 to the gas pipe 11.
  • the gas refrigerant flowing out from the outlet 42 of the expander 3 to the gas pipe 11 passes through the first four-way valve 5 and acts as a condenser (a cooler in the case of a supercritical refrigerant such as CO 2 ). It is condensed by the heat exchanger 2 and becomes a liquid refrigerant and flows out from the load side heat exchanger 2. Thereafter, the liquid refrigerant that has flowed out of the load-side heat exchanger 2 passes through the second four-way valve 6 and flows into the expansion portion inlet 43 in the expander 3 through the inflow pipe 35.
  • a condenser a cooler in the case of a supercritical refrigerant such as CO 2
  • the liquid refrigerant that has flowed into the expansion section inlet 43 is expanded by the expansion section 31 and becomes a low-pressure two-phase refrigerant and flows out from the expansion section outlet 44 through the outflow pipe 36.
  • the generator 32 connected to the rotating shaft 33 is rotated by the driving force of the expansion part 31.
  • the low-pressure two-phase refrigerant that has flowed out of the expansion section 31 passes through the second four-way valve 6 and flows into the heat source side heat exchanger 4 that functions as an evaporator.
  • the low-pressure two-phase refrigerant that has flowed into the heat source side heat exchanger 4 exchanges heat with the heat source side medium (outside air), absorbs heat and evaporates, becomes a low pressure gas refrigerant, and flows out of the heat source side heat exchanger 4.
  • the low-pressure gas refrigerant flowing out from the heat source side heat exchanger 4 passes through the first four-way valve 5 and is sucked into the compressor 1 through the low-pressure side pipe 21 of the compressor 1.
  • the liquid refrigerant that has flowed out of the heat source side heat exchanger 4 passes through the second four-way valve 6 and the inflow pipe 35, is expanded by the expansion unit 31, and flows out as a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant that has flowed out of the expansion section 31 passes through the second four-way valve 6 and flows into the load-side heat exchanger 2 that functions as an evaporator.
  • the low-pressure two-phase refrigerant that has flowed into the load-side heat exchanger 2 exchanges heat with the load-side medium (air), absorbs heat and evaporates, becomes a low-pressure gas refrigerant, and flows out of the load-side heat exchanger 2.
  • the low-pressure gas refrigerant flowing out from the load-side heat exchanger 2 passes through the first four-way valve 5 and is sucked into the compressor 1 through the low-pressure side pipe 21 of the compressor 1.
  • the oil amount Go1 of the refrigerating machine oil 50 flowing into the expander shell 34 from the compressor 1 flows out from the expander shell 34 to the gas pipe 11 and the oil quantity Go2 of the refrigerating machine oil 50 stored in the expander shell 34. It is equal to the sum with the oil amount Go3 of the refrigerating machine oil 50 to be performed. That is, the oil amount Go3 of the refrigerating machine oil 50 contained in the gas refrigerant flowing out from the expander shell 34 is smaller than the oil quantity Go1 of the refrigerating machine oil 50 contained in the gas refrigerant discharged from the compressor 1.
  • the amount of the refrigerating machine oil 50 flowing into the condenser (the load-side heat exchanger 2 or the heat source-side heat exchanger 4) is also reduced, so that the pressure loss in the piping is reduced, and the oil in the condenser is reduced. It is possible to suppress a decrease in heat transfer performance due to accumulation.
  • the oil amount Go3 of the refrigerating machine oil 50 is substantially the same as the oil amount Go1.
  • the refrigerating machine oil 50 stored in the expander shell 34 is consumed by being supplied to the expansion unit 31 and the generator 32. For example, a part of the refrigerating machine oil 50 supplied to the expansion unit 31 is mixed into the refrigerant in the expansion unit 31 and flows into the compressor 1 through the refrigerant flow path. For this reason, the oil amount Go2 of the refrigerating machine oil 50 stored in the expander shell 34 may decrease.
  • the expander 3 is disposed in the expander shell 34 constituting the outer shell and the expander shell 34, and expands the refrigerant flowing out of the condenser to generate a driving force.
  • the expansion unit 31 allows the expanded refrigerant to flow into the evaporator, and the generator 32 is disposed in the expander shell 34 and is rotated by the driving force of the expansion unit 31. For this reason, the motive power at the time of expanding a refrigerant
  • the expander shell 34 stores the refrigerating machine oil 50 contained in the refrigerant discharged from the compressor 1, and the refrigerating machine oil 50 is supplied to at least one of the expansion unit 31 and the generator 32.
  • the expander shell 34 is formed with an inlet portion 41 into which the refrigerant discharged from the compressor 1 flows and an outlet portion 42 through which the refrigerant flowing in from the inlet portion 41 flows out to the condenser. For this reason, the refrigerating machine oil 50 stored in the expander shell 34 can be supplied to the expansion unit 31 and the power generator 32, and depletion of the refrigerating machine oil 50 in the expander shell 34 can be suppressed.
  • the refrigeration oil 50 contained in the refrigerant discharged from the compressor 1 can be separated in the expander shell 34. Accordingly, the amount of the refrigerating machine oil 50 flowing into the condenser (the load side heat exchanger 2 or the heat source side heat exchanger 4) can be reduced, the pressure loss in the high pressure side piping is reduced, and the inside of the condenser is reduced. It is possible to suppress a decrease in heat transfer performance due to oil accumulation in the tank.
  • the oil supply pipe as in the technique described in Patent Document 2 is not provided, the refrigerant dissolved in the refrigerating machine oil 50 does not foam, and poor lubrication can be suppressed. Even in a transitional state such as when the compressor 1 is started, the expansion unit 31 and the generator 32 can be lubricated by the refrigerating machine oil 50 stored in the expander shell 34.
  • the refrigerant discharged from the compressor 1 to the pipe 10 flows into the expander shell 34, gas refrigerant is supplied into the expander shell 34 regardless of the internal pressure (high pressure shell or low pressure shell) of the compressor shell 15.
  • the refrigerating machine oil 50 can be stored in the expander shell 34.
  • a generator 32 is disposed in the expander shell 34. Then, the gas refrigerant discharged from the compressor 1 to the pipe 10 passes through the expander shell 34 and flows into the condenser. For this reason, heat generated by the generator 32 (for example, heat due to copper loss in the windings and iron loss such as the stator) and the gas refrigerant can exchange heat, and the generator 32 can be cooled. Moreover, in the case of heating operation, the heating capacity can be improved by heating the gas refrigerant.
  • Embodiment 2 the difference from the first embodiment will be mainly described, and the same components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • FIG. 2 is a configuration diagram of the expander 3 of the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention.
  • the outlet portion 42 of the expander shell 34 is configured by an opening provided on the side surface of the expander shell 34.
  • the outlet portion 42 is provided at a position (Lm) higher than the oil level (Ln) when a preset required amount of refrigerating machine oil 50 is stored in the expander shell 34.
  • the required amount set in advance is the minimum amount of oil defined by the specifications of the expander 3 or the like.
  • piping which connects the inside and outside of the expander shell 34 may be provided, and the exit part 42 may be comprised by opening of the edge part of piping.
  • the outlet portion 42 is provided in a position (Lm) higher than the oil level (Ln) when the required amount of the refrigerating machine oil 50 stored in the expander shell 34 is stored. Yes.
  • the required amount of refrigerating machine oil 50 set in advance can be stored in the expander shell 34. Therefore, the minimum amount of oil required for the expander 3 can be ensured.
  • Embodiment 3 FIG. In this Embodiment 3, it demonstrates centering on difference with Embodiment 1, the same code
  • FIG. 3 is a configuration diagram of the refrigeration cycle apparatus 100 according to Embodiment 3 of the present invention.
  • the refrigeration cycle apparatus 100 according to the third embodiment includes a first pipe that branches the pipe 10 on the discharge side of the compressor 1 and joins the gas pipe 11 in addition to the configuration of the first embodiment.
  • a bypass pipe 12 is further provided. That is, the first bypass pipe 12 branches a flow path from the compressor 1 to the inlet 41 of the expander shell 34, and the condenser (load side heat exchanger 2 or heat source side) from the outlet 42 of the expander shell 34. Merge into the flow path leading to the heat exchanger 4).
  • the temperature of the refrigerant flowing through the expansion unit 31 is The temperature is lower than that of the gas refrigerant flowing into the expander shell 34. For this reason, the refrigerant in the expansion part 31 and the gas refrigerant flowing into the expander shell 34 exchange heat.
  • a part of the refrigerant discharged from the compressor 1 flows into the expander shell 34 from the pipe 10, and the other part flows into the gas pipe 11 from the first bypass pipe 12.
  • coolant flow rate which flows in in the expander shell 34 decreases. Therefore, the amount of heat exchange between the refrigerant in the expansion portion 31 and the gas refrigerant flowing into the expander shell 34 can be reduced. Therefore, it is possible to suppress an increase in the enthalpy of the refrigerant flowing into the evaporator and reduce the decrease in the refrigerating capacity.
  • coolant which flows in into a condenser can be suppressed, and the fall of a heating capability can also be reduced.
  • excessive supply of the refrigerating machine oil 50 into the expander shell 34 can be suppressed. Therefore, the oil level of the refrigerating machine oil 50 in the expander shell 34 can be prevented from reaching the generator 32. Further, the refrigerating machine oil 50 in the expander shell 34 is prevented from being taken out of the expander shell 34 abruptly, the increase in pressure loss in the high-pressure side piping in the refrigerant circuit is suppressed, and the heat exchanger performance is improved. Reduction can be suppressed.
  • the amount of the refrigerating machine oil 50 contained in the refrigerant flowing out from the expander shell 34 (the oil flow rate taken out) is from the compressor 1.
  • the amount of refrigerating machine oil 50 contained in the discharged refrigerant may be supplied to the expander 3.
  • the length and diameter of the pipe 10 or the gas pipe 11 are selected so that the flow rate of the refrigerant passing through the pipe 10 is smaller than the flow rate of the refrigerant passing through the first bypass pipe 12.
  • a flow rate adjustment valve or the like may be provided in the pipe 10 or the first bypass pipe 12 to adjust the flow rate of the refrigerant flowing into the expander shell 34.
  • the control device 200 increases the flow rate of the refrigerant flowing into the expander shell 34 and stores the refrigerating machine oil 50 stored.
  • the amount of oil may be increased.
  • the oil amount in the expander shell 34 may be provided with, for example, an oil amount meter, or the oil amount may be determined by measuring the shell temperature with a temperature sensor such as a thermistor.
  • Embodiment 4 FIG. In the fourth embodiment, the difference from the first embodiment will be mainly described, and the same components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • FIG. 4 is a configuration diagram of the refrigeration cycle apparatus 100 according to Embodiment 4 of the present invention.
  • the refrigeration cycle apparatus 100 according to the fourth embodiment adds the refrigerating machine oil 50 in the expander shell 34 to the pipe 21 on the suction side of the compressor 1 in addition to the configuration of the first embodiment.
  • An oil return pipe 51 is further provided.
  • the oil return pipe 51 connects the oil outlet 45 provided at the bottom of the expander shell 34 and the pipe 21 on the suction side of the compressor 1.
  • the oil return pipe 51 is provided with a pressure reducing means such as a capillary tube 53 and an opening / closing valve 54 for opening and closing the flow path.
  • the control device 200 controls the opening / closing of the opening / closing valve 54. For example, when the oil amount of the refrigerating machine oil 50 in the compressor shell 15 is less than a preset oil amount, the control device 200 opens the on-off valve 54 and compresses a part of the refrigerating machine oil 50 in the expander shell 34. Oil is returned into the machine shell 15.
  • the oil amount in the compressor shell 15 may be provided with, for example, an oil amount meter, or the oil amount may be determined by measuring the shell temperature with a temperature sensor such as a thermistor.
  • the pressure reducing means such as the capillary tube 53 and the opening / closing valve 54 for opening and closing the flow path are provided in parallel has been described.
  • a valve may be provided.
  • the on-off valve 54 may be omitted, and a small amount of the refrigerating machine oil 50 may always be returned.
  • the refrigerating machine oil 50 in the expander shell 34 can be returned to the compressor 1, so that the amount of refrigerating machine oil 50 contained in the refrigerant discharged from the compressor 1 (the amount of oil taken out) at the time of startup, for example.
  • the exhaust of the refrigerating machine oil 50 in the compressor shell 15 can be suppressed.
  • the configuration described in the third embodiment and the configuration described in the fourth embodiment may be combined.
  • the refrigerating machine oil 50 in the expander shell 34 flows into the suction-side pipe 21 of the compressor 1, and the compressor 1
  • the first bypass pipe 12 may be further provided that branches the flow path leading to the inlet 41 of the expander shell 34 and joins the flow path from the outlet 42 of the expander shell 34 to the condenser. Even in such a configuration, the same effect as described above can be obtained.
  • Embodiment 5 FIG. The fifth embodiment will be described with a focus on differences from the first embodiment, and the same components as those of the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • FIG. 6 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 5 of the present invention.
  • the refrigeration cycle apparatus 100 according to the fifth embodiment includes an oil separator 7 that separates the refrigeration oil 50 contained in the refrigerant discharged from the compressor 1 in addition to the configuration of the first embodiment. Is further provided.
  • the inlet 41 is connected to the oil separator 7 by the outflow pipe 13.
  • the discharge-side piping 10 of the compressor 1 is connected to the oil separator 7.
  • the gas pipe 11 is connected to the oil separator 7.
  • the refrigeration cycle apparatus 100 includes an oil return pipe 51 that allows the refrigeration oil 50 in the expander shell 34 to flow into the suction-side pipe 21 of the compressor 1.
  • the oil return pipe 51 connects the oil outlet 45 provided at the bottom of the expander shell 34 and the pipe 21 on the suction side of the compressor 1.
  • the oil return pipe 51 is provided with a pressure reducing means such as a capillary tube 53 and an opening / closing valve 54 for opening and closing the flow path.
  • a pressure reducing means such as a capillary tube 53 and an opening / closing valve 54 for opening and closing the flow path.
  • an expansion valve whose opening degree can be varied may be provided.
  • the on-off valve 54 may be omitted, and a small amount of the refrigerating machine oil 50 may always be returned.
  • all of the refrigerant discharged from the compressor 1 passes through the pipe 10 and flows into the oil separator 7.
  • the oil separator 7 In the oil separator 7, at least a part of the refrigerating machine oil 50 included in the refrigerant is separated.
  • the refrigerating machine oil 50 separated by the oil separator 7 flows into the expander shell 34 from the inlet 41 through the outflow pipe 13.
  • the gas refrigerant separated by the oil separator 7 passes through the gas pipe 11 and flows into the condenser (the load side heat exchanger 2 or the heat source side heat exchanger 4) via the first four-way valve 5.
  • the refrigerating machine oil 50 stored in the expander shell 34 is supplied to the electric motor unit 17 and the compression unit 18 through the rotating shaft 33 and used for lubrication and cooling. A part of the refrigerating machine oil 50 stored in the expander shell 34 passes through the oil return pipe 51 and is returned to the compressor 1 from the pipe 21 on the suction side of the compressor 1.
  • the refrigerating machine oil 50 separated by the oil separator 7 flows into the expander shell 34.
  • the refrigerant discharged from the compressor 1 flows into the expander shell 34.
  • heat exchange between the refrigerant in the expansion portion 31 and the gas refrigerant in the expander shell 34 is less likely to be performed.
  • the increase in the enthalpy of the refrigerant flowing into the evaporator from the expansion unit 31 can be suppressed, and the decrease in the refrigerating capacity can be reduced.
  • the refrigerant discharged from the compressor 1 flows into the condenser without passing through the expander shell 34. For this reason, the fall of the temperature of the refrigerant
  • the temperature rise inside the expander shell 34 can be suppressed.
  • the temperature rise of the generator 32 can also be suppressed and the efficiency fall of the generator 32 can be suppressed.
  • the pressure and temperature in the expander shell 34 can be adjusted by adjusting the pipe diameter and length of the outflow pipe 13 and the oil return pipe 51.
  • the pressure and temperature in the expander shell 34 can be adjusted by providing pressure reducing means in the outflow pipe 13 and the oil return pipe 51. Therefore, by adjusting the temperature in the expander shell 34 to be equal to or lower than the temperature of the refrigerant flowing into the inlet portion 41 of the expansion portion 31, the temperature rise of the refrigerant in the expansion portion 31 can be suppressed, and the refrigerant flowing into the evaporator The increase in enthalpy can be suppressed. Moreover, the temperature rise of the generator 32 can be suppressed by lowering the temperature in the expander shell 34, and the efficiency drop of the generator 32 can be suppressed.
  • Embodiment 6 FIG. The sixth embodiment will be described with a focus on differences from the first embodiment, and the same components as those of the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • FIG. 7 is a configuration diagram of the refrigeration cycle apparatus 100 according to Embodiment 6 of the present invention.
  • the refrigeration cycle apparatus 100 according to the sixth embodiment includes a second bypass pipe 37 that branches the inflow pipe 35 and joins the outflow pipe 36, and a second And a second expansion valve 38 provided in the bypass pipe 37 for expanding the refrigerant.
  • the second bypass pipe 37 branches the flow path (inflow pipe 35) from the condenser to the expansion section 31 and joins the flow path (outflow pipe 36) from the expansion section 31 to the evaporator.
  • the second expansion valve 38 is constituted by, for example, an electronically controlled expansion valve whose opening degree can be varied.
  • the control device 200 controls the opening degree of the second expansion valve 38 according to preset conditions.
  • An opening / closing valve for opening and closing the flow path of the second bypass pipe 37 may be provided, and the opening of the second expansion valve 38 may be fixed. In this case, the control device 200 controls the on-off valve.
  • the refrigerant does not flow through the second bypass pipe 37 through the inflow pipe 35.
  • the operation is the same as that in the first embodiment.
  • the second expansion valve 38 is opened, the refrigerant flowing through the inflow pipe 35 flows through the second bypass pipe 37.
  • the refrigerant flowing through the second bypass pipe 37 is decompressed by the second expansion valve 38.
  • an on-off valve or the like may be provided in the inflow pipe 35 or the outflow pipe 36 to completely stop the refrigerant flowing into the expansion portion 31.
  • the refrigerant decompressed by the second expansion valve 38 joins the outflow pipe 36, passes through the second four-way valve 6, and flows into the evaporator.
  • the control device 200 opens the second expansion valve 38, causes the refrigerant to flow through the second bypass pipe 37, and stops the driving of the expansion unit 31.
  • the preset condition is, for example, at least one of the following (1) to (3). (1) When the elapsed time since the start of the compressor 1 is equal to or less than a preset time (2) When the amount of the refrigerating machine oil 50 in the expander shell 34 is equal to or less than a preset amount (3) Expansion When the rotational speed of the unit 31 is greater than or equal to a preset upper limit value or less than a lower limit value
  • the driving of the inflating portion 31 can be stopped. Further, when the elapsed time since the start of the compressor 1 is equal to or less than a preset time, the expansion unit 31 is stopped until the discharge pressure of the compressor 1 is sufficiently increased by stopping the driving of the expansion unit 31. Driving can be prevented and liquid back to the compressor 1 can be suppressed. Further, when the refrigerating machine oil 50 in the expander shell 34 decreases and becomes equal to or less than a preset amount, the expansion unit 31 can be stopped to prevent the expander 3 from being damaged. Further, when the rotation speed of the expansion section 31 is equal to or higher than a preset upper limit value or lower limit value, the expansion section 31 is stopped without deviating from the desired range by stopping the driving of the expansion section 31. Can be driven.

Abstract

This refrigeration cycle device (100) is provided with the following: a compressor (1); a condenser; an expander (3); and a refrigerant circuit that is connected to an evaporator by a piping and in which a refrigerant circulates. The expander (3) includes the following: an expander shell (34) that constitutes an outer shell; an expansion part (31) that is disposed inside the expander shell (34), expands refrigerant which flowed out from the condenser to generate drive force, and causes the expanded refrigerant to flow into the evaporator; and a power generator (32) that is disposed inside the expander shell (34) and that is rotated by the drive force of the expansion part (31). The expander shell (34) retains a refrigeration oil (50) contained in the refrigerant discharged from the compressor (1), and the refrigeration oil (50) is supplied to the expansion part (31) and/or the power generator (32).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷媒の膨張動力を電力として回収する膨張機を備えた冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus including an expander that recovers expansion power of a refrigerant as electric power.
 従来の冷凍サイクル装置においては、冷媒回路は、圧縮機と膨張機を有している。圧縮機ケーシングと膨張機ケーシングが連絡管で連通すると共に、吐出管と膨張機ケーシングが分岐流出管で連通して両ケーシング内が均圧される。圧縮機および膨張機の油溜りを繋ぐ油流通管には、油量調節弁が設けられる。油量調節弁を開くと、圧縮機ケーシング内の油溜りと膨張機ケーシング内の油溜りとが互いに連通し、油流通管を通って冷凍機油が移動する、というものが提案されている(例えば、特許文献1参照)。 In the conventional refrigeration cycle apparatus, the refrigerant circuit has a compressor and an expander. The compressor casing and the expander casing communicate with each other through a communication pipe, and the discharge pipe and the expander casing communicate with each other through a branch outflow pipe to equalize the pressure in both casings. An oil amount adjusting valve is provided in an oil circulation pipe that connects the oil reservoirs of the compressor and the expander. It has been proposed that when the oil amount adjustment valve is opened, the oil sump in the compressor casing and the oil sump in the expander casing communicate with each other, and the refrigeration oil moves through the oil distribution pipe (for example, , See Patent Document 1).
 また、従来の冷凍サイクル装置においては、冷媒回路には、圧縮機と膨張機が設けられる。圧縮機では、圧縮機構で圧縮された冷媒が圧縮機ケーシングの内部空間へ吐出される。圧縮機では、圧縮機ケーシングの底に溜まった冷凍機油が圧縮機構へ供給される。圧縮機ケーシングの底に溜まった冷凍機油は、給油用配管を通じて膨張機の膨張機構へ直接に導入される、というものが提案されている(例えば、特許文献2参照)。 In the conventional refrigeration cycle apparatus, the refrigerant circuit is provided with a compressor and an expander. In the compressor, the refrigerant compressed by the compression mechanism is discharged into the internal space of the compressor casing. In the compressor, the refrigeration oil accumulated at the bottom of the compressor casing is supplied to the compression mechanism. It has been proposed that the refrigerating machine oil accumulated at the bottom of the compressor casing is directly introduced into the expansion mechanism of the expander through the oil supply pipe (for example, see Patent Document 2).
特開2007-285674号公報(要約)JP 2007-285684 A (summary) 特開2008-224053号公報(要約)JP 2008-224053 A (summary)
 特許文献1に記載の技術では、圧縮機シェル(圧縮機ケーシング)と膨張機シェル(膨張機ケーシング)とを配管で接続し、圧縮機シェル内のガス冷媒の一部を膨張機シェルへ流入させることで、圧縮機内の冷凍機油の一部を膨張機シェル内へ流入させている。
 このため、圧縮機シェル内の圧力と膨張機シェル内の圧力とが同じ圧力となる。よって、例えば、圧縮機シェル内が高圧で膨張機シェル内が低圧となる構成、もしくはその逆の構成のように、圧縮機シェル内の圧力と膨張機シェル内の圧力とが異なる構成には対応できない、という課題があった。
In the technique described in Patent Document 1, a compressor shell (compressor casing) and an expander shell (expander casing) are connected by piping, and a part of the gas refrigerant in the compressor shell is caused to flow into the expander shell. Thus, a part of the refrigerating machine oil in the compressor is caused to flow into the expander shell.
For this reason, the pressure in a compressor shell and the pressure in an expander shell become the same pressure. Therefore, for example, a configuration in which the pressure in the compressor shell is different from the pressure in the expander shell, such as a configuration in which the compressor shell has a high pressure and the expander shell has a low pressure, or vice versa. There was a problem that it was not possible.
 特許文献2に記載の技術では、圧縮機シェル(圧縮機ケーシング)の底に溜まった冷凍機油が、給油用配管を通じて膨張機内の膨張部(膨張機構)へ直接に導入させている。
 このため、圧縮機シェル内の冷凍機油が枯渇した場合、膨張機内へ油を供給できなくなる、という課題があった。
 また、冷凍機油が給油用配管を流通する際、冷凍機油に溶け込んだ冷媒が減圧されて発泡し、冷凍機油内に冷媒ガスが混入して潤滑性が悪化する、という課題があった。
In the technique described in Patent Document 2, the refrigerating machine oil accumulated at the bottom of the compressor shell (compressor casing) is directly introduced into the expansion section (expansion mechanism) in the expander through the oil supply pipe.
For this reason, when the refrigerating machine oil in the compressor shell is exhausted, there is a problem that the oil cannot be supplied into the expander.
Further, when the refrigeration oil circulates through the oil supply pipe, the refrigerant dissolved in the refrigeration oil is decompressed and foamed, and the refrigerant gas is mixed into the refrigeration oil, resulting in deterioration in lubricity.
 本発明は、上記のような課題を解決するためになされたもので、圧縮機シェル内の圧力によらず膨張機シェル内に冷凍機油を貯留することができ、膨張機における冷凍機油の枯渇を抑制することができる冷凍サイクル装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and can store refrigerating machine oil in the expander shell regardless of the pressure in the compressor shell, thereby depleting the refrigerating machine oil in the expander. It aims at obtaining the refrigerating-cycle apparatus which can be suppressed.
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、膨張機、及び蒸発器が配管で接続され、冷媒が循環する冷媒回路を備え、前記膨張機は、外郭を構成する膨張機シェルと、前記膨張機シェル内に配置され、前記凝縮器から流出した前記冷媒を膨張させ駆動力を発生し、膨張させた前記冷媒を前記蒸発器へ流入させる膨張部と、前記膨張機シェル内に配置され、前記膨張部の駆動力によって回転する発電機と、を有し、前記膨張機シェルは、前記圧縮機から吐出された前記冷媒に含まれる冷凍機油が貯留され、前記冷凍機油が前記膨張部及び前記発電機の少なくとも一方に供給されるものである。 A refrigeration cycle apparatus according to the present invention includes a refrigerant circuit in which a compressor, a condenser, an expander, and an evaporator are connected by piping and the refrigerant circulates, and the expander includes an expander shell constituting an outer shell, An expansion unit that is disposed in the expander shell, expands the refrigerant that has flowed out of the condenser, generates a driving force, and flows the expanded refrigerant into the evaporator, and is disposed in the expander shell. A generator that rotates by the driving force of the expansion unit, and the expander shell stores refrigerating machine oil contained in the refrigerant discharged from the compressor, and the refrigerating machine oil is stored in the expansion unit and It is supplied to at least one of the generators.
 本発明は、圧縮機から吐出された冷媒に含まれる冷凍機油が膨張機シェルに貯留される。このため、圧縮機シェル内の圧力によらず膨張機シェル内に冷凍機油を貯留することができ、膨張機における冷凍機油の枯渇を抑制することができる。 In the present invention, the refrigerating machine oil contained in the refrigerant discharged from the compressor is stored in the expander shell. For this reason, refrigeration oil can be stored in the expander shell regardless of the pressure in the compressor shell, and exhaustion of the refrigeration oil in the expander can be suppressed.
本発明の実施の形態1に係る冷凍サイクル装置100の構成図である。1 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る冷凍サイクル装置100の膨張機3の構成図である。It is a block diagram of the expander 3 of the refrigerating-cycle apparatus 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置100の構成図である。It is a block diagram of the refrigerating cycle apparatus 100 which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置100の構成図である。It is a block diagram of the refrigerating-cycle apparatus 100 which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置100の他の構成例を示す図である。It is a figure which shows the other structural example of the refrigerating-cycle apparatus 100 which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る冷凍サイクル装置100の構成図である。It is a block diagram of the refrigerating cycle apparatus 100 which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る冷凍サイクル装置100の構成図である。It is a block diagram of the refrigerating cycle apparatus 100 which concerns on Embodiment 6 of this invention.
実施の形態1.
<冷凍サイクル装置100の構成>
 図1は、本発明の実施の形態1に係る冷凍サイクル装置100の構成図である。
 図1に示すように、冷凍サイクル装置100は、圧縮機1、負荷側熱交換器2、膨張機3、熱源側熱交換器4、第1四方弁5、及び第2四方弁6を備えている。圧縮機1、負荷側熱交換器2、膨張機3、及び熱源側熱交換器4は配管で接続され、冷媒が循環する冷媒回路を構成する。
Embodiment 1 FIG.
<Configuration of refrigeration cycle apparatus 100>
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a compressor 1, a load side heat exchanger 2, an expander 3, a heat source side heat exchanger 4, a first four-way valve 5, and a second four-way valve 6. Yes. The compressor 1, the load side heat exchanger 2, the expander 3, and the heat source side heat exchanger 4 are connected by a pipe and constitute a refrigerant circuit in which the refrigerant circulates.
(圧縮機1)
 圧縮機1は、例えば全密閉式圧縮機により構成される。圧縮機1は、圧縮機シェル15により外殻が構成される。圧縮機シェル15内には、電動機部17と、圧縮部18とが収納されている。
 また、圧縮機シェル15には、冷凍機油50が貯留される。冷凍機油50は、電動機部17及び圧縮部18へ供給され、潤滑に利用される。
(Compressor 1)
The compressor 1 is constituted by, for example, a hermetic compressor. In the compressor 1, an outer shell is constituted by the compressor shell 15. In the compressor shell 15, an electric motor unit 17 and a compression unit 18 are accommodated.
The compressor shell 15 stores refrigeration oil 50. The refrigerating machine oil 50 is supplied to the electric motor unit 17 and the compression unit 18 and used for lubrication.
 圧縮機1は、吸入側の配管21から圧縮機シェル15内に、低圧の冷媒を吸入する。圧縮部18は、電動機部17によって駆動される。圧縮機シェル15内に吸入された低圧の冷媒は、圧縮部18で圧縮される。圧縮部18で圧縮された高圧の冷媒は、吐出側の配管10へ吐出される。
 このように、圧縮機シェル15の内部の圧力は低圧となっている。即ち、圧縮機シェル15は、いわゆる低圧シェルである。
The compressor 1 sucks low-pressure refrigerant into the compressor shell 15 from the pipe 21 on the suction side. The compression unit 18 is driven by the electric motor unit 17. The low-pressure refrigerant sucked into the compressor shell 15 is compressed by the compression unit 18. The high-pressure refrigerant compressed by the compression unit 18 is discharged to the discharge side pipe 10.
Thus, the pressure inside the compressor shell 15 is low. That is, the compressor shell 15 is a so-called low pressure shell.
 なお、本実施の形態1では圧縮機シェル15内の圧力が低圧である場合を説明するが、本発明はこれに限定されない。
 例えば、圧縮部18が、吸入側の配管21から低圧の冷媒を直接吸入する。圧縮部18で圧縮された高圧の冷媒が、圧縮機シェル15内に放出する。そして、圧縮機シェル15内に放出された冷媒が、吐出側の配管10へ吐出される構成でもよい。
 このように、圧縮機シェル15の内部の圧力が高圧となる構成でもよい。即ち、圧縮機シェル15が、いわゆる高圧シェルでもよい。
In the first embodiment, the case where the pressure in the compressor shell 15 is low will be described, but the present invention is not limited to this.
For example, the compression unit 18 directly sucks the low-pressure refrigerant from the pipe 21 on the suction side. The high-pressure refrigerant compressed by the compression unit 18 is discharged into the compressor shell 15. The refrigerant discharged into the compressor shell 15 may be discharged to the discharge side pipe 10.
As described above, the internal pressure of the compressor shell 15 may be high. That is, the compressor shell 15 may be a so-called high pressure shell.
(膨張機3)
 膨張機3は、膨張機シェル34により外殻が構成される。膨張機シェル34内には、膨張部31と、発電機32(モータ)とが収納されている。膨張部31と発電機32は、回転軸33によって連結されている。
 また、膨張機シェル34には、冷凍機油50が貯留される。冷凍機油50は、膨張部31及び発電機32の少なくとも一方へ供給され、潤滑に利用される。
(Expander 3)
The expander 3 includes an expander shell 34 that forms an outer shell. An expander 31 and a generator 32 (motor) are accommodated in the expander shell 34. The expansion part 31 and the generator 32 are connected by a rotating shaft 33.
In addition, the refrigerating machine oil 50 is stored in the expander shell 34. The refrigerating machine oil 50 is supplied to at least one of the expansion unit 31 and the generator 32 and used for lubrication.
 膨張部31は、冷媒が流入する膨張部入口43と、冷媒が流出する膨張部出口44とを有している。膨張部入口43は、流入配管35と接続される。膨張部出口44は、流出配管36と接続される。
 流入配管35は、第2四方弁6を介して、凝縮器(負荷側熱交換器2または熱源側熱交換器4)と接続される。
 流出配管36は、第2四方弁6を介して、蒸発器(負荷側熱交換器2または熱源側熱交換器4)と接続される。
The expansion part 31 has an expansion part inlet 43 through which the refrigerant flows in and an expansion part outlet 44 through which the refrigerant flows out. The expansion part inlet 43 is connected to the inflow pipe 35. The expansion part outlet 44 is connected to the outflow pipe 36.
The inflow pipe 35 is connected to the condenser (the load side heat exchanger 2 or the heat source side heat exchanger 4) via the second four-way valve 6.
The outflow pipe 36 is connected to the evaporator (the load side heat exchanger 2 or the heat source side heat exchanger 4) via the second four-way valve 6.
 膨張部31は、流入配管35から膨張部入口43へ流入した冷媒を膨張させて、膨張部出口44から流出配管36へ、膨張させた冷媒を流出させる。また、膨張部31は、冷媒を膨張させる際の膨張動力によって回転軸33を回転駆動する。
 発電機32は、回転軸33によって膨張部31と連結し、膨張部31の駆動力によって回転し、発電する。これにより、膨張部31の膨張動力が、電力として回収される。
The expansion part 31 expands the refrigerant that has flowed into the expansion part inlet 43 from the inflow pipe 35 and causes the expanded refrigerant to flow out from the expansion part outlet 44 to the outflow pipe 36. Further, the expansion unit 31 rotationally drives the rotary shaft 33 with expansion power when the refrigerant is expanded.
The generator 32 is connected to the inflating part 31 by the rotating shaft 33 and is rotated by the driving force of the inflating part 31 to generate electric power. Thereby, the expansion power of the expansion part 31 is collect | recovered as electric power.
 膨張機3の膨張機シェル34は、冷媒が流入する入口部41と、冷媒が流出する出口部42とが形成されている。
 入口部41は、圧縮機1の吐出側の配管10と接続されている。膨張機シェル34内には、圧縮機1から吐出された冷媒が流入する。膨張機シェル34内に流入した冷媒は、ガス冷媒と冷凍機油50とに分離される。これにより、膨張機シェル34内には、圧縮機1から吐出された冷媒に含まれる冷凍機油50が貯留される。
 出口部42は、ガス配管11と接続されている。ガス配管11は、第1四方弁5を介して、凝縮器(負荷側熱交換器2または熱源側熱交換器4)と接続される。
The expander shell 34 of the expander 3 is formed with an inlet portion 41 through which the refrigerant flows and an outlet portion 42 through which the refrigerant flows out.
The inlet 41 is connected to the discharge-side piping 10 of the compressor 1. The refrigerant discharged from the compressor 1 flows into the expander shell 34. The refrigerant that has flowed into the expander shell 34 is separated into the gas refrigerant and the refrigerating machine oil 50. Thereby, the refrigerating machine oil 50 contained in the refrigerant discharged from the compressor 1 is stored in the expander shell 34.
The outlet part 42 is connected to the gas pipe 11. The gas pipe 11 is connected to the condenser (the load side heat exchanger 2 or the heat source side heat exchanger 4) via the first four-way valve 5.
(負荷側熱交換器2)
 負荷側熱交換器2は、例えばフィンアンドチューブ型熱交換器で構成される。負荷側熱交換器2は、負荷側媒体としての空気と冷媒との熱交換を行う。なお、負荷側媒体は、空気に限らず、例えば水または不凍液等を熱源として利用できるようにしても良い。
(Load side heat exchanger 2)
The load side heat exchanger 2 is constituted by, for example, a fin-and-tube heat exchanger. The load side heat exchanger 2 performs heat exchange between air as a load side medium and a refrigerant. Note that the load-side medium is not limited to air, and for example, water or antifreeze may be used as a heat source.
(熱源側熱交換器4)
 熱源側熱交換器4は、例えばフィンアンドチューブ型熱交換器で構成される。熱源側熱交換器4は、熱源側媒体としての外気と冷媒との熱交換を行う。なお、熱源側媒体は、外気(空気)に限らず、例えば水または不凍液等を熱源として利用できるようにしても良い。
(Heat source side heat exchanger 4)
The heat source side heat exchanger 4 is configured by, for example, a fin-and-tube heat exchanger. The heat source side heat exchanger 4 performs heat exchange between the outside air as the heat source side medium and the refrigerant. The heat source side medium is not limited to the outside air (air), and for example, water or antifreeze liquid may be used as the heat source.
(第1四方弁5、第2四方弁6)
 第1四方弁5及び第2四方弁6は、冷媒回路の流れを切り替えるために用いられる。
 負荷側熱交換器2を凝縮器(放熱器)として機能させ、熱源側熱交換器4を蒸発器として機能させる場合(暖房運転)、第1四方弁5は、ガス配管11と熱源側熱交換器4とを接続し、負荷側熱交換器2と圧縮機1の吸入側の配管21とを接続する。また、第2四方弁6は、負荷側熱交換器2と流入配管35とを接続し、流出配管36と熱源側熱交換器4と接続する。
 一方、負荷側熱交換器2を蒸発器として機能させ、熱源側熱交換器4を凝縮器(放熱器)として機能させる場合(冷房運転)、第1四方弁5は、ガス配管11と負荷側熱交換器2とを接続し、熱源側熱交換器4と圧縮機1の吸入側の配管21とを接続する。
また、第2四方弁6は、熱源側熱交換器4と流入配管35とを接続し、流出配管36と負荷側熱交換器2と接続する。
 なお、暖房運転と冷房運転との切り替えを行わない場合には、第1四方弁5、第2四方弁6を設けなくてもよい。
(First four-way valve 5, second four-way valve 6)
The first four-way valve 5 and the second four-way valve 6 are used for switching the flow of the refrigerant circuit.
When the load-side heat exchanger 2 functions as a condenser (heat radiator) and the heat source-side heat exchanger 4 functions as an evaporator (heating operation), the first four-way valve 5 exchanges heat with the gas pipe 11 and the heat source. The load side heat exchanger 2 and the suction side piping 21 of the compressor 1 are connected. The second four-way valve 6 connects the load side heat exchanger 2 and the inflow pipe 35 and connects the outflow pipe 36 and the heat source side heat exchanger 4.
On the other hand, when the load-side heat exchanger 2 functions as an evaporator and the heat-source-side heat exchanger 4 functions as a condenser (heat radiator) (cooling operation), the first four-way valve 5 includes a gas pipe 11 and a load side. The heat exchanger 2 is connected, and the heat source side heat exchanger 4 and the suction side pipe 21 of the compressor 1 are connected.
The second four-way valve 6 connects the heat source side heat exchanger 4 and the inflow pipe 35, and connects the outflow pipe 36 and the load side heat exchanger 2.
If the switching between the heating operation and the cooling operation is not performed, the first four-way valve 5 and the second four-way valve 6 may not be provided.
(制御装置200)
 制御装置200は、例えばマイクロコンピュータで構成され、CPU、RAM及びROM等を備えており、ROMには制御プログラム等が記憶されている。制御装置200は、冷媒回路における冷媒の圧力及び温度等、並びに負荷側媒体及び熱源側媒体の温度等を検出する各種のセンサから検出値が入力される。制御装置200は、各センサからの検出値に基づいて、冷凍サイクル装置100の各構成部を制御する。また、制御装置200は第1四方弁5及び第2四方弁6の切り替えの制御を行う。
(Control device 200)
The control device 200 is configured by a microcomputer, for example, and includes a CPU, a RAM, a ROM, and the like, and a control program and the like are stored in the ROM. The control device 200 receives detection values from various sensors that detect the pressure and temperature of the refrigerant in the refrigerant circuit, the temperatures of the load-side medium and the heat-source-side medium, and the like. The control device 200 controls each component of the refrigeration cycle apparatus 100 based on the detection value from each sensor. Further, the control device 200 controls switching of the first four-way valve 5 and the second four-way valve 6.
 次に、本実施の形態の冷凍サイクル装置100における暖房運転及び冷房運転について説明する。 Next, the heating operation and the cooling operation in the refrigeration cycle apparatus 100 of the present embodiment will be described.
<暖房運転時の冷媒の動作>
 暖房運転時は、第1四方弁5及び第2四方弁6が、図1の点線で示される状態に切り替えられる。
 圧縮機1は、圧縮機シェル15内の低圧の冷媒を圧縮し、高温高圧のガス冷媒を吐出側の配管10へ吐出させる。圧縮機1から吐出されたガス冷媒には、圧縮機シェル15内の冷凍機油50が含まれている。
<Operation of refrigerant during heating operation>
During the heating operation, the first four-way valve 5 and the second four-way valve 6 are switched to the state shown by the dotted line in FIG.
The compressor 1 compresses the low-pressure refrigerant in the compressor shell 15 and discharges the high-temperature and high-pressure gas refrigerant to the discharge-side pipe 10. The gas refrigerant discharged from the compressor 1 includes the refrigerating machine oil 50 in the compressor shell 15.
 圧縮機1から吐出した高温高圧のガス冷媒は、圧縮機1の吐出側の配管10を流通し、膨張機3の入口部41から膨張機シェル34内に流入する。膨張機シェル34内に流入したガス冷媒は、膨張機シェル34内で、ガス冷媒に含まれる冷凍機油50の少なくとも一部が分離され、分離された冷凍機油50が膨張機シェル34内に貯留される。そして、ガス冷媒及びこのガス冷媒に含まれる残りの冷凍機油50が、出口部42からガス配管11へ流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the piping 10 on the discharge side of the compressor 1 and flows into the expander shell 34 from the inlet 41 of the expander 3. The gas refrigerant that has flowed into the expander shell 34 is separated in the expander shell 34 at least a part of the refrigerating machine oil 50 contained in the gas refrigerant, and the separated refrigerating machine oil 50 is stored in the expander shell 34. The Then, the gas refrigerant and the remaining refrigeration oil 50 contained in the gas refrigerant flow out from the outlet portion 42 to the gas pipe 11.
 このように、圧縮機1から吐出した高温高圧のガス冷媒の全てが、膨張機シェル34内に流入し、膨張機シェル34内で、ガス冷媒に含まれる冷凍機油50が分離されて膨張機シェル34内に貯留される。膨張機シェル34内に貯留された冷凍機油50は、回転軸33を介して、電動機部17及び圧縮部18へ供給され、潤滑に利用される。 In this way, all of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the expander shell 34, and the refrigerating machine oil 50 contained in the gas refrigerant is separated in the expander shell 34 to expand the expander shell. 34 is stored. The refrigerating machine oil 50 stored in the expander shell 34 is supplied to the electric motor unit 17 and the compression unit 18 via the rotary shaft 33 and used for lubrication.
 膨張機3の出口部42からガス配管11へ流出したガス冷媒は、第1四方弁5を通過して、凝縮器(COのような超臨界冷媒の場合は冷却器)として作用する負荷側熱交換器2で凝縮され、液冷媒となって負荷側熱交換器2から流出する。その後、負荷側熱交換器2を流出した液冷媒は、第2四方弁6を通過し、流入配管35を介して、膨張機3内の膨張部入口43へ流入する。膨張部入口43へ流入した液冷媒は、膨張部31で膨張され、低圧二相冷媒となって膨張部出口44から流出配管36から流出する。このとき、膨張部31の駆動力によって、回転軸33に連結された発電機32が回転する。 The gas refrigerant flowing out from the outlet 42 of the expander 3 to the gas pipe 11 passes through the first four-way valve 5 and acts as a condenser (a cooler in the case of a supercritical refrigerant such as CO 2 ). It is condensed by the heat exchanger 2 and becomes a liquid refrigerant and flows out from the load side heat exchanger 2. Thereafter, the liquid refrigerant that has flowed out of the load-side heat exchanger 2 passes through the second four-way valve 6 and flows into the expansion portion inlet 43 in the expander 3 through the inflow pipe 35. The liquid refrigerant that has flowed into the expansion section inlet 43 is expanded by the expansion section 31 and becomes a low-pressure two-phase refrigerant and flows out from the expansion section outlet 44 through the outflow pipe 36. At this time, the generator 32 connected to the rotating shaft 33 is rotated by the driving force of the expansion part 31.
 膨張部31から流出した低圧二相冷媒は、第2四方弁6を通過して、蒸発器として作用する熱源側熱交換器4へ流入する。熱源側熱交換器4へ流入した低圧二相冷媒は、熱源側媒体(外気)と熱交換して吸熱、蒸発し、低圧のガス冷媒となって、熱源側熱交換器4から流出する。熱源側熱交換器4から流出した低圧のガス冷媒は、第1四方弁5を通過し、圧縮機1の低圧側の配管21を介して、圧縮機1へ吸入される。 The low-pressure two-phase refrigerant that has flowed out of the expansion section 31 passes through the second four-way valve 6 and flows into the heat source side heat exchanger 4 that functions as an evaporator. The low-pressure two-phase refrigerant that has flowed into the heat source side heat exchanger 4 exchanges heat with the heat source side medium (outside air), absorbs heat and evaporates, becomes a low pressure gas refrigerant, and flows out of the heat source side heat exchanger 4. The low-pressure gas refrigerant flowing out from the heat source side heat exchanger 4 passes through the first four-way valve 5 and is sucked into the compressor 1 through the low-pressure side pipe 21 of the compressor 1.
<冷房運転時の冷媒の動作>
 上記暖房運転との相違点を中心に説明する。
 冷房運転時は、第1四方弁5及び第2四方弁6が、図1の実線で示される状態に切り替えられる。
 圧縮機1から吐出されたガス冷媒は、膨張機3の膨張機シェル34内を通過し、ガス配管11へ流出する。ガス配管11へ流出したガス冷媒は、第1四方弁5を通過して、凝縮器(COのような超臨界冷媒の場合は冷却器)として作用する熱源側熱交換器4で凝縮され、液冷媒となって熱源側熱交換器4から流出する。その後、熱源側熱交換器4を流出した液冷媒は、第2四方弁6及び流入配管35を通過し、膨張部31で膨張され、低圧二相冷媒となって流出する。
<Refrigerant operation during cooling operation>
The difference from the heating operation will be mainly described.
During the cooling operation, the first four-way valve 5 and the second four-way valve 6 are switched to the state shown by the solid line in FIG.
The gas refrigerant discharged from the compressor 1 passes through the expander shell 34 of the expander 3 and flows out to the gas pipe 11. The gas refrigerant flowing out to the gas pipe 11 passes through the first four-way valve 5 and is condensed in the heat source side heat exchanger 4 acting as a condenser (a cooler in the case of a supercritical refrigerant such as CO 2 ). It becomes liquid refrigerant and flows out of the heat source side heat exchanger 4. Thereafter, the liquid refrigerant that has flowed out of the heat source side heat exchanger 4 passes through the second four-way valve 6 and the inflow pipe 35, is expanded by the expansion unit 31, and flows out as a low-pressure two-phase refrigerant.
 膨張部31から流出した低圧二相冷媒は、第2四方弁6を通過して、蒸発器として作用する負荷側熱交換器2へ流入する。負荷側熱交換器2へ流入した低圧二相冷媒は、負荷側媒体(空気)と熱交換して吸熱、蒸発し、低圧のガス冷媒となって、負荷側熱交換器2から流出する。負荷側熱交換器2から流出した低圧のガス冷媒は、第1四方弁5を通過し、圧縮機1の低圧側の配管21を介して、圧縮機1へ吸入される。 The low-pressure two-phase refrigerant that has flowed out of the expansion section 31 passes through the second four-way valve 6 and flows into the load-side heat exchanger 2 that functions as an evaporator. The low-pressure two-phase refrigerant that has flowed into the load-side heat exchanger 2 exchanges heat with the load-side medium (air), absorbs heat and evaporates, becomes a low-pressure gas refrigerant, and flows out of the load-side heat exchanger 2. The low-pressure gas refrigerant flowing out from the load-side heat exchanger 2 passes through the first four-way valve 5 and is sucked into the compressor 1 through the low-pressure side pipe 21 of the compressor 1.
<膨張機シェル34に流入する冷凍機油50の油量と、流出する油量との関係>
 上述したように、膨張機シェル34内に流入したガス冷媒は、膨張機シェル34内で、ガス冷媒に含まれる冷凍機油50の少なくとも一部が分離され、分離された冷凍機油50が膨張機シェル34内に貯留される。そして、ガス冷媒及びこのガス冷媒に含まれる残りの冷凍機油50が、出口部42からガス配管11へ流出する。
 即ち、圧縮機1から膨張機シェル34へ流入する冷凍機油50の油量Go1は、膨張機シェル34内に貯留される冷凍機油50の油量Go2と、膨張機シェル34からガス配管11へ流出する冷凍機油50の油量Go3との和に等しい。
 つまり、圧縮機1から吐出するガス冷媒に含まれる冷凍機油50の油量Go1に対して、膨張機シェル34から流出するガス冷媒に含まれる冷凍機油50の油量Go3は少なくなる。
 これにより、凝縮器(負荷側熱交換器2または熱源側熱交換器4)へ流入する冷凍機油50の油量も減ることから、配管での圧力損失が低減し、凝縮器内での油の溜まりこみによる伝熱性能低下を抑制することができる。
<Relationship between the amount of refrigeration oil 50 flowing into the expander shell 34 and the amount of oil flowing out>
As described above, at least a part of the refrigerating machine oil 50 contained in the gas refrigerant is separated from the gas refrigerant flowing into the expander shell 34 in the expander shell 34, and the separated refrigerating machine oil 50 is used as the expander shell. 34 is stored. Then, the gas refrigerant and the remaining refrigeration oil 50 contained in the gas refrigerant flow out from the outlet portion 42 to the gas pipe 11.
That is, the oil amount Go1 of the refrigerating machine oil 50 flowing into the expander shell 34 from the compressor 1 flows out from the expander shell 34 to the gas pipe 11 and the oil quantity Go2 of the refrigerating machine oil 50 stored in the expander shell 34. It is equal to the sum with the oil amount Go3 of the refrigerating machine oil 50 to be performed.
That is, the oil amount Go3 of the refrigerating machine oil 50 contained in the gas refrigerant flowing out from the expander shell 34 is smaller than the oil quantity Go1 of the refrigerating machine oil 50 contained in the gas refrigerant discharged from the compressor 1.
As a result, the amount of the refrigerating machine oil 50 flowing into the condenser (the load-side heat exchanger 2 or the heat source-side heat exchanger 4) is also reduced, so that the pressure loss in the piping is reduced, and the oil in the condenser is reduced. It is possible to suppress a decrease in heat transfer performance due to accumulation.
 なお、膨張機シェル34内に貯留された冷凍機油50が増加し、冷凍機油50の油面が、膨張機シェル34の出口部42に到達すると、膨張機シェル34から流出するガス冷媒に含まれる冷凍機油50の油量Go3は、油量Go1とほぼ同じとなる。
 なお、膨張機シェル34内に貯留された冷凍機油50は、膨張部31及び発電機32へ供給されることで消費される。例えば、膨張部31へ供給された冷凍機油50の一部は、膨張部31内の冷媒に混入し、冷媒流路を経て圧縮機1内に流入する。このため、膨張機シェル34内に貯留された冷凍機油50の油量Go2は、減少する場合がある。
When the refrigerating machine oil 50 stored in the expander shell 34 increases and the oil level of the refrigerating machine oil 50 reaches the outlet 42 of the expander shell 34, it is included in the gas refrigerant flowing out from the expander shell 34. The oil amount Go3 of the refrigerating machine oil 50 is substantially the same as the oil amount Go1.
The refrigerating machine oil 50 stored in the expander shell 34 is consumed by being supplied to the expansion unit 31 and the generator 32. For example, a part of the refrigerating machine oil 50 supplied to the expansion unit 31 is mixed into the refrigerant in the expansion unit 31 and flows into the compressor 1 through the refrigerant flow path. For this reason, the oil amount Go2 of the refrigerating machine oil 50 stored in the expander shell 34 may decrease.
 以上のように本実施の形態1においては、膨張機3は、外郭を構成する膨張機シェル34と、膨張機シェル34内に配置され、凝縮器から流出した冷媒を膨張させ駆動力を発生し、膨張させた冷媒を蒸発器へ流入させる膨張部31と、膨張機シェル34内に配置され、膨張部31の駆動力によって回転する発電機32と、を有している。
 このため、冷媒を膨張する際の動力を電力として回収することができる。
As described above, in the first embodiment, the expander 3 is disposed in the expander shell 34 constituting the outer shell and the expander shell 34, and expands the refrigerant flowing out of the condenser to generate a driving force. The expansion unit 31 allows the expanded refrigerant to flow into the evaporator, and the generator 32 is disposed in the expander shell 34 and is rotated by the driving force of the expansion unit 31.
For this reason, the motive power at the time of expanding a refrigerant | coolant can be collect | recovered as electric power.
 また本実施の形態1においては、膨張機シェル34は、圧縮機1から吐出された冷媒に含まれる冷凍機油50が貯留され、冷凍機油50が膨張部31及び発電機32の少なくとも一方に供給される。また、膨張機シェル34は、圧縮機1から吐出された冷媒が流入する入口部41と、入口部41から流入した冷媒を凝縮器へ流出させる出口部42と、が形成されている。
 このため、膨張機シェル34内に貯留された冷凍機油50を膨張部31及び発電機32に供給でき、膨張機シェル34内における冷凍機油50の枯渇を抑制することができる。
 また、圧縮機1から吐出された冷媒に含まれる冷凍機油50を、膨張機シェル34内で分離することができる。よって、凝縮器(負荷側熱交換器2または熱源側熱交換器4)へ流入する冷凍機油50の油量を減少させることができ、高圧側の配管での圧力損失が低減し、凝縮器内での油の溜まりこみによる伝熱性能低下を抑制することができる。
 また、特許文献2に記載の技術のような給油管を設けないため、冷凍機油50内に溶け込んだ冷媒が発泡することがなく、潤滑不良を抑制することができる。また、圧縮機1の起動時など過渡的な状態であっても、膨張機シェル34内に貯留された冷凍機油50によって膨張部31及び発電機32を潤滑することができる。
In the first embodiment, the expander shell 34 stores the refrigerating machine oil 50 contained in the refrigerant discharged from the compressor 1, and the refrigerating machine oil 50 is supplied to at least one of the expansion unit 31 and the generator 32. The Further, the expander shell 34 is formed with an inlet portion 41 into which the refrigerant discharged from the compressor 1 flows and an outlet portion 42 through which the refrigerant flowing in from the inlet portion 41 flows out to the condenser.
For this reason, the refrigerating machine oil 50 stored in the expander shell 34 can be supplied to the expansion unit 31 and the power generator 32, and depletion of the refrigerating machine oil 50 in the expander shell 34 can be suppressed.
Further, the refrigeration oil 50 contained in the refrigerant discharged from the compressor 1 can be separated in the expander shell 34. Accordingly, the amount of the refrigerating machine oil 50 flowing into the condenser (the load side heat exchanger 2 or the heat source side heat exchanger 4) can be reduced, the pressure loss in the high pressure side piping is reduced, and the inside of the condenser is reduced. It is possible to suppress a decrease in heat transfer performance due to oil accumulation in the tank.
In addition, since the oil supply pipe as in the technique described in Patent Document 2 is not provided, the refrigerant dissolved in the refrigerating machine oil 50 does not foam, and poor lubrication can be suppressed. Even in a transitional state such as when the compressor 1 is started, the expansion unit 31 and the generator 32 can be lubricated by the refrigerating machine oil 50 stored in the expander shell 34.
 また、圧縮機1から配管10へ吐出された冷媒が、膨張機シェル34へ流入するので、圧縮機シェル15の内圧(高圧シェルまたは低圧シェル)によらず、膨張機シェル34内へガス冷媒を流入させることができ、膨張機シェル34内に冷凍機油50を貯留することができる。 Further, since the refrigerant discharged from the compressor 1 to the pipe 10 flows into the expander shell 34, gas refrigerant is supplied into the expander shell 34 regardless of the internal pressure (high pressure shell or low pressure shell) of the compressor shell 15. The refrigerating machine oil 50 can be stored in the expander shell 34.
 また、膨張機シェル34内に発電機32が配置される。そして、圧縮機1から配管10へ吐出されたガス冷媒が、膨張機シェル34内を通過し、凝縮器へ流入する。
 このため、発電機32によって発生した熱(例えば、巻線での銅損及びステータなどの鉄損による熱)とガス冷媒とが熱交換し、発電機32を冷却することができる。また、ガス冷媒が加熱されることで、暖房運転の場合には、加熱能力を向上することができる。
A generator 32 is disposed in the expander shell 34. Then, the gas refrigerant discharged from the compressor 1 to the pipe 10 passes through the expander shell 34 and flows into the condenser.
For this reason, heat generated by the generator 32 (for example, heat due to copper loss in the windings and iron loss such as the stator) and the gas refrigerant can exchange heat, and the generator 32 can be cooled. Moreover, in the case of heating operation, the heating capacity can be improved by heating the gas refrigerant.
実施の形態2.
 本実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
Embodiment 2. FIG.
In the second embodiment, the difference from the first embodiment will be mainly described, and the same components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 図2は、本発明の実施の形態2に係る冷凍サイクル装置100の膨張機3の構成図である。
 図2(a)に示すように、膨張機シェル34の出口部42は、膨張機シェル34の側面に設けられた開口によって構成されている。この出口部42は、当該膨張機シェル34内に、予め設定された必要量の冷凍機油50が貯留されたときの油面(Ln)よりも高い位置(Lm)に設けられている。ここで、予め設定された必要量は、膨張機3の仕様等によって規定される最低限必要な油の量である。
 なお、図2(b)に示すように、膨張機シェル34の内外を連通する配管を設けて、配管の端部の開口によって出口部42を構成しても良い。この場合においても、出口部42は、当該膨張機シェル34内に、予め設定された必要量の冷凍機油50が貯留されたときの油面(Ln)よりも高い位置(Lm)に設けられている。
FIG. 2 is a configuration diagram of the expander 3 of the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention.
As shown in FIG. 2A, the outlet portion 42 of the expander shell 34 is configured by an opening provided on the side surface of the expander shell 34. The outlet portion 42 is provided at a position (Lm) higher than the oil level (Ln) when a preset required amount of refrigerating machine oil 50 is stored in the expander shell 34. Here, the required amount set in advance is the minimum amount of oil defined by the specifications of the expander 3 or the like.
In addition, as shown in FIG.2 (b), piping which connects the inside and outside of the expander shell 34 may be provided, and the exit part 42 may be comprised by opening of the edge part of piping. Also in this case, the outlet portion 42 is provided in a position (Lm) higher than the oil level (Ln) when the required amount of the refrigerating machine oil 50 stored in the expander shell 34 is stored. Yes.
 以上の構成により、膨張機シェル34内に、予め設定された必要量の冷凍機油50を貯留することができる。よって、膨張機3が必要とする最低限の油量を確保することができる。 With the above configuration, the required amount of refrigerating machine oil 50 set in advance can be stored in the expander shell 34. Therefore, the minimum amount of oil required for the expander 3 can be ensured.
実施の形態3.
 本実施の形態3では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
Embodiment 3 FIG.
In this Embodiment 3, it demonstrates centering on difference with Embodiment 1, the same code | symbol is attached | subjected to the structure same as Embodiment 1, and description is abbreviate | omitted.
 図3は、本発明の実施の形態3に係る冷凍サイクル装置100の構成図である。
 図3に示すように、実施の形態3に係る冷凍サイクル装置100は、上記実施の形態1の構成に加え、圧縮機1の吐出側の配管10を分岐し、ガス配管11に合流させる第1バイパス配管12を、更に備えている。つまり、第1バイパス配管12は、圧縮機1から膨張機シェル34の入口部41へ至る流路を分岐し、膨張機シェル34の出口部42から凝縮器(負荷側熱交換器2または熱源側熱交換器4)へ至る流路に合流させる。
FIG. 3 is a configuration diagram of the refrigeration cycle apparatus 100 according to Embodiment 3 of the present invention.
As shown in FIG. 3, the refrigeration cycle apparatus 100 according to the third embodiment includes a first pipe that branches the pipe 10 on the discharge side of the compressor 1 and joins the gas pipe 11 in addition to the configuration of the first embodiment. A bypass pipe 12 is further provided. That is, the first bypass pipe 12 branches a flow path from the compressor 1 to the inlet 41 of the expander shell 34, and the condenser (load side heat exchanger 2 or heat source side) from the outlet 42 of the expander shell 34. Merge into the flow path leading to the heat exchanger 4).
 ここで、膨張機3内の膨張部31は、凝縮器(負荷側熱交換器2または熱源側熱交換器4)で液化された冷媒が流入するため、膨張部31を流通する冷媒の温度は、膨張機シェル34内に流入するガス冷媒に比べて温度が低い。このため、膨張部31内の冷媒と膨張機シェル34内に流入したガス冷媒とが熱交換する。 Here, since the refrigerant liquefied by the condenser (the load side heat exchanger 2 or the heat source side heat exchanger 4) flows into the expansion unit 31 in the expander 3, the temperature of the refrigerant flowing through the expansion unit 31 is The temperature is lower than that of the gas refrigerant flowing into the expander shell 34. For this reason, the refrigerant in the expansion part 31 and the gas refrigerant flowing into the expander shell 34 exchange heat.
 本実施の形態3においては、圧縮機1から吐出された冷媒の一部が配管10から膨張機シェル34内に流入し、他の一部が第1バイパス配管12からガス配管11へ流入する。
 このため、圧縮機1から吐出した冷媒の全てが膨張機シェル34内に流入する場合と比較して、膨張機シェル34内に流入する冷媒流量が少なくなる。よって、膨張部31内の冷媒と膨張機シェル34内に流入したガス冷媒との熱交換量を少なくすることができる。
 従って、蒸発器に流入する冷媒のエンタルピーの増加を抑制し、冷凍能力の低下を軽減することができる。また、凝縮器に流入する冷媒の温度の低下を抑制し、加熱能力の低下も軽減することができる。
 さらに、膨張機シェル34内への冷凍機油50の過剰な供給を抑制できる。よって、膨張機シェル34内の冷凍機油50の油面が発電機32まで到達することを抑制できる。また、膨張機シェル34内の冷凍機油50が、膨張機シェル34外へ急激に持ち出されることを抑制し、冷媒回路における高圧側の配管での圧力損失の増加を抑制し、熱交換器性能の低下を抑制できる。
In the third embodiment, a part of the refrigerant discharged from the compressor 1 flows into the expander shell 34 from the pipe 10, and the other part flows into the gas pipe 11 from the first bypass pipe 12.
For this reason, compared with the case where all the refrigerant | coolants discharged from the compressor 1 flow in in the expander shell 34, the refrigerant | coolant flow rate which flows in in the expander shell 34 decreases. Therefore, the amount of heat exchange between the refrigerant in the expansion portion 31 and the gas refrigerant flowing into the expander shell 34 can be reduced.
Therefore, it is possible to suppress an increase in the enthalpy of the refrigerant flowing into the evaporator and reduce the decrease in the refrigerating capacity. Moreover, the fall of the temperature of the refrigerant | coolant which flows in into a condenser can be suppressed, and the fall of a heating capability can also be reduced.
Furthermore, excessive supply of the refrigerating machine oil 50 into the expander shell 34 can be suppressed. Therefore, the oil level of the refrigerating machine oil 50 in the expander shell 34 can be prevented from reaching the generator 32. Further, the refrigerating machine oil 50 in the expander shell 34 is prevented from being taken out of the expander shell 34 abruptly, the increase in pressure loss in the high-pressure side piping in the refrigerant circuit is suppressed, and the heat exchanger performance is improved. Reduction can be suppressed.
 なお、上記構成において、膨張機3の大きさは圧縮機1に対して小さいため、膨張機シェル34から流出する冷媒に含まれる冷凍機油50の量(持ち出される油流量)は、圧縮機1から吐出された冷媒に含まれる冷凍機油50の量より少ない。つまり、圧縮機1から持ち出される油流量よりも少ない油量を、膨張機3へ供給すればよい。
 このため、第1バイパス配管12を通過する冷媒の流量よりも、配管10を通過する冷媒の流量が少なくなるように、配管10もしくはガス配管11の長さ及び径を選定する。
 このように、適正な冷媒流量及び油流量を膨張機3へ供給することにより、膨張部31での熱交換量を抑制できるとともに、膨張機シェル34内における冷凍機油50の枯渇を抑制することができる。
In the above configuration, since the size of the expander 3 is smaller than that of the compressor 1, the amount of the refrigerating machine oil 50 contained in the refrigerant flowing out from the expander shell 34 (the oil flow rate taken out) is from the compressor 1. Less than the amount of refrigerating machine oil 50 contained in the discharged refrigerant. That is, an oil amount smaller than the oil flow rate taken out from the compressor 1 may be supplied to the expander 3.
For this reason, the length and diameter of the pipe 10 or the gas pipe 11 are selected so that the flow rate of the refrigerant passing through the pipe 10 is smaller than the flow rate of the refrigerant passing through the first bypass pipe 12.
In this way, by supplying appropriate refrigerant flow rate and oil flow rate to the expander 3, it is possible to suppress the heat exchange amount in the expansion unit 31 and to suppress the exhaustion of the refrigerating machine oil 50 in the expander shell 34. it can.
 なお、配管10または第1バイパス配管12に流量調整弁等を設けて、膨張機シェル34内に流入する冷媒流量を調整するようにしても良い。例えば、制御装置200は、膨張機シェル34内の冷凍機油50の油量が予め設定した油量より少ない場合に、膨張機シェル34内に流入する冷媒流量を増加させ、貯留される冷凍機油50の油量を増加させるようにしても良い。
 なお、膨張機シェル34内の油量は、例えば油量計を設けても良いし、サーミスタ等の温度センサによってシェル温度を計測することで油量を判定しても良い。
Note that a flow rate adjustment valve or the like may be provided in the pipe 10 or the first bypass pipe 12 to adjust the flow rate of the refrigerant flowing into the expander shell 34. For example, when the amount of the refrigerating machine oil 50 in the expander shell 34 is smaller than a preset oil amount, the control device 200 increases the flow rate of the refrigerant flowing into the expander shell 34 and stores the refrigerating machine oil 50 stored. The amount of oil may be increased.
The oil amount in the expander shell 34 may be provided with, for example, an oil amount meter, or the oil amount may be determined by measuring the shell temperature with a temperature sensor such as a thermistor.
実施の形態4.
 本実施の形態4では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
Embodiment 4 FIG.
In the fourth embodiment, the difference from the first embodiment will be mainly described, and the same components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 図4は、本発明の実施の形態4に係る冷凍サイクル装置100の構成図である。
 図4に示すように、実施の形態4に係る冷凍サイクル装置100は、上記実施の形態1の構成に加え、膨張機シェル34内の冷凍機油50を、圧縮機1の吸入側の配管21に流入させる返油配管51を、更に備えている。
 返油配管51は、膨張機シェル34の底部に設けられた油出口45と、圧縮機1の吸入側の配管21とを接続する。また、返油配管51には、キャピラリーチューブ53などの減圧手段と、流路を開閉する開閉弁54とが並列に設けられている。
FIG. 4 is a configuration diagram of the refrigeration cycle apparatus 100 according to Embodiment 4 of the present invention.
As shown in FIG. 4, the refrigeration cycle apparatus 100 according to the fourth embodiment adds the refrigerating machine oil 50 in the expander shell 34 to the pipe 21 on the suction side of the compressor 1 in addition to the configuration of the first embodiment. An oil return pipe 51 is further provided.
The oil return pipe 51 connects the oil outlet 45 provided at the bottom of the expander shell 34 and the pipe 21 on the suction side of the compressor 1. The oil return pipe 51 is provided with a pressure reducing means such as a capillary tube 53 and an opening / closing valve 54 for opening and closing the flow path.
 制御装置200は、開閉弁54の開閉を制御する。制御装置200は、例えば、圧縮機シェル15内の冷凍機油50の油量が予め設定した油量より少ない場合に、開閉弁54を開き、膨張機シェル34内の冷凍機油50の一部を圧縮機シェル15内へ返油する。
 なお、圧縮機シェル15内の油量は、例えば油量計を設けても良いし、サーミスタ等の温度センサによってシェル温度を計測することで油量を判定しても良い。
The control device 200 controls the opening / closing of the opening / closing valve 54. For example, when the oil amount of the refrigerating machine oil 50 in the compressor shell 15 is less than a preset oil amount, the control device 200 opens the on-off valve 54 and compresses a part of the refrigerating machine oil 50 in the expander shell 34. Oil is returned into the machine shell 15.
The oil amount in the compressor shell 15 may be provided with, for example, an oil amount meter, or the oil amount may be determined by measuring the shell temperature with a temperature sensor such as a thermistor.
 なお、上記の説明では、キャピラリーチューブ53などの減圧手段と、流路を開閉する開閉弁54とが並列に設けられている場合を説明したが、これに代えて、開度を可変可能な膨張弁を設けても良い。また、開閉弁54を省略して、常時、少量の冷凍機油50を返油するようにしても良い。 In the above description, the case where the pressure reducing means such as the capillary tube 53 and the opening / closing valve 54 for opening and closing the flow path are provided in parallel has been described. A valve may be provided. Further, the on-off valve 54 may be omitted, and a small amount of the refrigerating machine oil 50 may always be returned.
 以上の構成により、膨張機シェル34内の冷凍機油50を圧縮機1へ戻せるので、例えば起動時など、圧縮機1から吐出される冷媒に含まれる冷凍機油50の量(持ち出される油量)が多い場合に、圧縮機シェル15内における冷凍機油50の枯渇を抑制することができる。 With the above configuration, the refrigerating machine oil 50 in the expander shell 34 can be returned to the compressor 1, so that the amount of refrigerating machine oil 50 contained in the refrigerant discharged from the compressor 1 (the amount of oil taken out) at the time of startup, for example. In many cases, the exhaust of the refrigerating machine oil 50 in the compressor shell 15 can be suppressed.
(変形例)
 なお、上記実施の形態3で説明した構成と、本実施の形態4で説明した構成とを組み合わせても良い。
 例えば図5に示すように、上記実施の形態1の構成に加え、膨張機シェル34内の冷凍機油50を圧縮機1の吸入側の配管21に流入させる返油配管51と、圧縮機1から膨張機シェル34の入口部41へ至る流路を分岐し、膨張機シェル34の出口部42から凝縮器へ至る流路に合流させる第1バイパス配管12と、を更に備える構成でも良い。このような構成においても、上述した効果と同様の効果を奏することができる。
(Modification)
Note that the configuration described in the third embodiment and the configuration described in the fourth embodiment may be combined.
For example, as shown in FIG. 5, in addition to the configuration of the first embodiment, the refrigerating machine oil 50 in the expander shell 34 flows into the suction-side pipe 21 of the compressor 1, and the compressor 1 The first bypass pipe 12 may be further provided that branches the flow path leading to the inlet 41 of the expander shell 34 and joins the flow path from the outlet 42 of the expander shell 34 to the condenser. Even in such a configuration, the same effect as described above can be obtained.
実施の形態5.
 本実施の形態5では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
Embodiment 5 FIG.
The fifth embodiment will be described with a focus on differences from the first embodiment, and the same components as those of the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 図6は、本発明の実施の形態5に係る冷凍サイクル装置100の構成図である。
 図6に示すように、実施の形態5に係る冷凍サイクル装置100は、上記実施の形態1の構成に加え、圧縮機1から吐出された冷媒に含まれる冷凍機油50を分離する油分離器7を、更に備えている。
 本実施の形態5における膨張機シェル34は、入口部41が流出管13によって油分離器7と接続されている。また、実施の形態5では、圧縮機1の吐出側の配管10は、油分離器7と接続されている。また、ガス配管11は、油分離器7と接続されている。
FIG. 6 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 5 of the present invention.
As shown in FIG. 6, the refrigeration cycle apparatus 100 according to the fifth embodiment includes an oil separator 7 that separates the refrigeration oil 50 contained in the refrigerant discharged from the compressor 1 in addition to the configuration of the first embodiment. Is further provided.
In the expander shell 34 in the fifth embodiment, the inlet 41 is connected to the oil separator 7 by the outflow pipe 13. In the fifth embodiment, the discharge-side piping 10 of the compressor 1 is connected to the oil separator 7. Further, the gas pipe 11 is connected to the oil separator 7.
 また、実施の形態5に係る冷凍サイクル装置100は、膨張機シェル34内の冷凍機油50を、圧縮機1の吸入側の配管21に流入させる返油配管51を備えている。
 返油配管51は、膨張機シェル34の底部に設けられた油出口45と、圧縮機1の吸入側の配管21とを接続する。また、返油配管51には、キャピラリーチューブ53などの減圧手段と、流路を開閉する開閉弁54とが並列に設けられている。
 なお、キャピラリーチューブ53及び開閉弁54に代えて、開度を可変可能な膨張弁を設けても良い。また、開閉弁54を省略して、常時、少量の冷凍機油50を返油するようにしても良い。
In addition, the refrigeration cycle apparatus 100 according to the fifth embodiment includes an oil return pipe 51 that allows the refrigeration oil 50 in the expander shell 34 to flow into the suction-side pipe 21 of the compressor 1.
The oil return pipe 51 connects the oil outlet 45 provided at the bottom of the expander shell 34 and the pipe 21 on the suction side of the compressor 1. The oil return pipe 51 is provided with a pressure reducing means such as a capillary tube 53 and an opening / closing valve 54 for opening and closing the flow path.
Instead of the capillary tube 53 and the on-off valve 54, an expansion valve whose opening degree can be varied may be provided. Further, the on-off valve 54 may be omitted, and a small amount of the refrigerating machine oil 50 may always be returned.
 本実施の形態5に係る冷凍サイクル装置100おいては、圧縮機1から吐出された冷媒の全てが、配管10を通過して油分離器7に流入する。油分離器7では、冷媒に含まれる冷凍機油50の少なくとも一部が分離される。油分離器7によって分離された冷凍機油50は、流出管13を介して入口部41から膨張機シェル34内に流入する。一方、油分離器7によって分離されたガス冷媒は、ガス配管11を通過し、第1四方弁5を介して凝縮器(負荷側熱交換器2または熱源側熱交換器4)へ流入する。 In the refrigeration cycle apparatus 100 according to the fifth embodiment, all of the refrigerant discharged from the compressor 1 passes through the pipe 10 and flows into the oil separator 7. In the oil separator 7, at least a part of the refrigerating machine oil 50 included in the refrigerant is separated. The refrigerating machine oil 50 separated by the oil separator 7 flows into the expander shell 34 from the inlet 41 through the outflow pipe 13. On the other hand, the gas refrigerant separated by the oil separator 7 passes through the gas pipe 11 and flows into the condenser (the load side heat exchanger 2 or the heat source side heat exchanger 4) via the first four-way valve 5.
 膨張機シェル34内に貯留された冷凍機油50は、回転軸33を介して、電動機部17及び圧縮部18へ供給され、潤滑及び冷却に利用される。また、膨張機シェル34内に貯留された冷凍機油50の一部は、返油配管51を通過して、圧縮機1の吸入側の配管21から圧縮機1へと返油される。 The refrigerating machine oil 50 stored in the expander shell 34 is supplied to the electric motor unit 17 and the compression unit 18 through the rotating shaft 33 and used for lubrication and cooling. A part of the refrigerating machine oil 50 stored in the expander shell 34 passes through the oil return pipe 51 and is returned to the compressor 1 from the pipe 21 on the suction side of the compressor 1.
 以上の構成により、油分離器7で分離した冷凍機油50が膨張機シェル34へ流入する。このため、圧縮機1から吐出された冷媒が膨張機シェル34内に流入する場合と比較して、膨張部31内の冷媒と膨張機シェル34内のガス冷媒との熱交換が行われにくくなり、膨張部31から蒸発器に流入する冷媒のエンタルピーの増加を抑制し、冷凍能力の低下を軽減することができる。
 また、圧縮機1から吐出された冷媒が、膨張機シェル34を通過せずに凝縮器に流入する。このため、凝縮器に流入する冷媒の温度の低下を抑制し、加熱能力の低下も軽減することができる。
With the above configuration, the refrigerating machine oil 50 separated by the oil separator 7 flows into the expander shell 34. For this reason, compared with the case where the refrigerant discharged from the compressor 1 flows into the expander shell 34, heat exchange between the refrigerant in the expansion portion 31 and the gas refrigerant in the expander shell 34 is less likely to be performed. The increase in the enthalpy of the refrigerant flowing into the evaporator from the expansion unit 31 can be suppressed, and the decrease in the refrigerating capacity can be reduced.
Further, the refrigerant discharged from the compressor 1 flows into the condenser without passing through the expander shell 34. For this reason, the fall of the temperature of the refrigerant | coolant which flows in into a condenser can be suppressed, and the fall of a heating capability can also be reduced.
 また、圧縮機1から吐出された高温の冷媒が膨張機シェル34内に流入しないので、膨張機シェル34内部の温度上昇を抑制することができる。これにより、発電機32の温度上昇も抑制でき、発電機32の効率低下を抑制することができる。 Further, since the high-temperature refrigerant discharged from the compressor 1 does not flow into the expander shell 34, the temperature rise inside the expander shell 34 can be suppressed. Thereby, the temperature rise of the generator 32 can also be suppressed and the efficiency fall of the generator 32 can be suppressed.
 なお、流出管13と返油配管51の配管径及び長さを調整することによって、膨張機シェル34内の圧力及び温度を調節することができる。または、流出管13と返油配管51に減圧手段を設けることで膨張機シェル34内の圧力及び温度を調節することができる。そこで、膨張機シェル34内の温度を、膨張部31の入口部41に流入する冷媒の温度以下に調整することで、膨張部31内の冷媒の温度上昇を抑制でき、蒸発器に流入する冷媒のエンタルピーの増加を抑制できる。また、膨張機シェル34内の温度を低下させることによって、発電機32の温度上昇を抑制することができ、発電機32の効率低下を抑制することができる。 The pressure and temperature in the expander shell 34 can be adjusted by adjusting the pipe diameter and length of the outflow pipe 13 and the oil return pipe 51. Alternatively, the pressure and temperature in the expander shell 34 can be adjusted by providing pressure reducing means in the outflow pipe 13 and the oil return pipe 51. Therefore, by adjusting the temperature in the expander shell 34 to be equal to or lower than the temperature of the refrigerant flowing into the inlet portion 41 of the expansion portion 31, the temperature rise of the refrigerant in the expansion portion 31 can be suppressed, and the refrigerant flowing into the evaporator The increase in enthalpy can be suppressed. Moreover, the temperature rise of the generator 32 can be suppressed by lowering the temperature in the expander shell 34, and the efficiency drop of the generator 32 can be suppressed.
実施の形態6.
 本実施の形態6では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
Embodiment 6 FIG.
The sixth embodiment will be described with a focus on differences from the first embodiment, and the same components as those of the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 図7は、本発明の実施の形態6に係る冷凍サイクル装置100の構成図である。
 図7に示すように、実施の形態6に係る冷凍サイクル装置100は、上記実施の形態1の構成に加え、流入配管35を分岐し流出配管36に合流させる第2バイパス配管37と、第2バイパス配管37に設けられ冷媒を膨張する第2膨張弁38と、を更に備えている。
 第2バイパス配管37は、凝縮器から膨張部31へ至る流路(流入配管35)を分岐し、膨張部31から蒸発器へ至る流路(流出配管36)に合流させる。
 第2膨張弁38は、例えば開度を可変可能な電子制御式膨張弁等により構成されている。制御装置200は、予め設定した条件に応じて、第2膨張弁38の開度を制御する。
 なお、第2バイパス配管37の流路を開閉する開閉弁を設け、第2膨張弁38の開度が固定の構成でも良い。この場合、制御装置200は、開閉弁を制御する。
FIG. 7 is a configuration diagram of the refrigeration cycle apparatus 100 according to Embodiment 6 of the present invention.
As shown in FIG. 7, in addition to the configuration of the first embodiment, the refrigeration cycle apparatus 100 according to the sixth embodiment includes a second bypass pipe 37 that branches the inflow pipe 35 and joins the outflow pipe 36, and a second And a second expansion valve 38 provided in the bypass pipe 37 for expanding the refrigerant.
The second bypass pipe 37 branches the flow path (inflow pipe 35) from the condenser to the expansion section 31 and joins the flow path (outflow pipe 36) from the expansion section 31 to the evaporator.
The second expansion valve 38 is constituted by, for example, an electronically controlled expansion valve whose opening degree can be varied. The control device 200 controls the opening degree of the second expansion valve 38 according to preset conditions.
An opening / closing valve for opening and closing the flow path of the second bypass pipe 37 may be provided, and the opening of the second expansion valve 38 may be fixed. In this case, the control device 200 controls the on-off valve.
 第2膨張弁38の開度が全閉の場合、流入配管35を冷媒は第2バイパス配管37を流通しない。この場合は上述した実施の形態1と同様の動作となる。
 一方、第2膨張弁38を開くと、流入配管35を流通する冷媒が第2バイパス配管37を流通する。第2バイパス配管37を流通する冷媒は、第2膨張弁38によって減圧される。このとき、膨張部31へ流れる冷媒流量が減少するため、膨張部31の駆動が停止する。なお、流入配管35または流出配管36に開閉弁等を設けて、膨張部31へ流入する冷媒を完全に停止しても良い。
 第2膨張弁38によって減圧された冷媒は、流出配管36に合流し、第2四方弁6を通過して蒸発器に流入する。
When the opening of the second expansion valve 38 is fully closed, the refrigerant does not flow through the second bypass pipe 37 through the inflow pipe 35. In this case, the operation is the same as that in the first embodiment.
On the other hand, when the second expansion valve 38 is opened, the refrigerant flowing through the inflow pipe 35 flows through the second bypass pipe 37. The refrigerant flowing through the second bypass pipe 37 is decompressed by the second expansion valve 38. At this time, since the flow rate of the refrigerant flowing to the expansion unit 31 decreases, the driving of the expansion unit 31 is stopped. In addition, an on-off valve or the like may be provided in the inflow pipe 35 or the outflow pipe 36 to completely stop the refrigerant flowing into the expansion portion 31.
The refrigerant decompressed by the second expansion valve 38 joins the outflow pipe 36, passes through the second four-way valve 6, and flows into the evaporator.
 次に、制御装置200による第2膨張弁38の制御について説明する。
 制御装置200は、予め設定した条件を満たす場合、第2膨張弁38を開き、第2バイパス配管37に冷媒を流通させ、膨張部31の駆動を停止させる。
 ここで、予め設定した条件は、例えば以下の(1)~(3)の少なくとも一つの場合である。
 (1)圧縮機1の起動からの経過時間が、予め設定した時間以下である場合
 (2)膨張機シェル34内の冷凍機油50の量が、予め設定した量以下である場合
 (3)膨張部31の回転数が、予め設定した上限値以上もしくは下限値以下である場合
Next, control of the second expansion valve 38 by the control device 200 will be described.
When the preset condition is satisfied, the control device 200 opens the second expansion valve 38, causes the refrigerant to flow through the second bypass pipe 37, and stops the driving of the expansion unit 31.
Here, the preset condition is, for example, at least one of the following (1) to (3).
(1) When the elapsed time since the start of the compressor 1 is equal to or less than a preset time (2) When the amount of the refrigerating machine oil 50 in the expander shell 34 is equal to or less than a preset amount (3) Expansion When the rotational speed of the unit 31 is greater than or equal to a preset upper limit value or less than a lower limit value
 以上の構成により、予め設定した条件を満たす場合には、膨張部31の駆動を停止させることができる。
 また、圧縮機1の起動からの経過時間が予め設定した時間以下である場合に、膨張部31の駆動を停止させことで、圧縮機1の吐出圧力が十分上昇するまでは、膨張部31が駆動することを防止でき、圧縮機1への液バック等を抑制することができる。
 また、膨張機シェル34内の冷凍機油50が減少し、予め設定した量以下となった場合に、膨張部31の駆動を停止させことで、膨張機3の破損を防止することができる。
 また、膨張部31の回転数が、予め設定した上限値以上もしくは下限値以下である場合に、膨張部31の駆動を停止させことで、回転数が所望の範囲を外れることなく膨張部31を駆動することができる。
With the above configuration, when the preset condition is satisfied, the driving of the inflating portion 31 can be stopped.
Further, when the elapsed time since the start of the compressor 1 is equal to or less than a preset time, the expansion unit 31 is stopped until the discharge pressure of the compressor 1 is sufficiently increased by stopping the driving of the expansion unit 31. Driving can be prevented and liquid back to the compressor 1 can be suppressed.
Further, when the refrigerating machine oil 50 in the expander shell 34 decreases and becomes equal to or less than a preset amount, the expansion unit 31 can be stopped to prevent the expander 3 from being damaged.
Further, when the rotation speed of the expansion section 31 is equal to or higher than a preset upper limit value or lower limit value, the expansion section 31 is stopped without deviating from the desired range by stopping the driving of the expansion section 31. Can be driven.
 なお、本実施の形態6の構成は、上述した実施の形態1~5の何れの構成にも適用することができる。 It should be noted that the configuration of the sixth embodiment can be applied to any of the configurations of the first to fifth embodiments described above.
 1 圧縮機、2 負荷側熱交換器、3 膨張機、4 熱源側熱交換器、5 第1四方弁、6 第2四方弁、7 油分離器、10 配管、11 ガス配管、12 第1バイパス配管、13 流出管、15 圧縮機シェル、17 電動機部、18 圧縮部、21 配管、31 膨張部、32 発電機、33 回転軸、34 膨張機シェル、35 流入配管、36 流出配管、37 第2バイパス配管、38 第2膨張弁、41 入口部、42 出口部、43 膨張部入口、44 膨張部出口、45 油出口、50 冷凍機油、51 返油配管、53 キャピラリーチューブ、54 開閉弁、100 冷凍サイクル装置、200 制御装置。 1 compressor, 2 load side heat exchanger, 3 expander, 4 heat source side heat exchanger, 5 1st 4 way valve, 6 2nd 4 way valve, 7 oil separator, 10 pipe, 11 gas pipe, 12 1st bypass Pipe, 13 Outflow pipe, 15 Compressor shell, 17 Motor part, 18 Compression part, 21 Pipe, 31 Expansion part, 32 Generator, 33 Rotating shaft, 34 Expander shell, 35 Inflow pipe, 36 Outflow pipe, 37 2nd Bypass piping, 38 second expansion valve, 41 inlet section, 42 outlet section, 43 expansion section inlet, 44 expansion section outlet, 45 oil outlet, 50 refrigerating machine oil, 51 oil return pipe, 53 capillary tube, 54 on-off valve, 100 freezing Cycle equipment, 200 control equipment.

Claims (9)

  1.  圧縮機、凝縮器、膨張機、及び蒸発器が配管で接続され、冷媒が循環する冷媒回路を備え、
     前記膨張機は、
     外郭を構成する膨張機シェルと、
     前記膨張機シェル内に配置され、前記凝縮器から流出した前記冷媒を膨張させ駆動力を発生し、膨張させた前記冷媒を前記蒸発器へ流入させる膨張部と、
     前記膨張機シェル内に配置され、前記膨張部の駆動力によって回転する発電機と、
     を有し、
     前記膨張機シェルは、
     前記圧縮機から吐出された前記冷媒に含まれる冷凍機油が貯留され、前記冷凍機油が前記膨張部及び前記発電機の少なくとも一方に供給される
    ことを特徴とする冷凍サイクル装置。
    A compressor, a condenser, an expander, and an evaporator are connected by piping, and a refrigerant circuit in which a refrigerant circulates is provided.
    The expander is
    An expander shell constituting the outer shell;
    An expansion unit that is disposed in the expander shell, expands the refrigerant that has flowed out of the condenser, generates a driving force, and flows the expanded refrigerant into the evaporator;
    A generator disposed in the expander shell and rotated by the driving force of the expansion section;
    Have
    The expander shell is
    A refrigeration cycle apparatus characterized in that refrigeration oil contained in the refrigerant discharged from the compressor is stored, and the refrigeration oil is supplied to at least one of the expansion section and the generator.
  2.  前記膨張機シェルは、
     前記圧縮機から吐出された前記冷媒が流入する入口部と、
     前記入口部から流入した前記冷媒を前記凝縮器へ流出させる出口部と、が形成された
    ことを特徴とする請求項1に記載の冷凍サイクル装置。
    The expander shell is
    An inlet part through which the refrigerant discharged from the compressor flows;
    The refrigeration cycle apparatus according to claim 1, further comprising: an outlet portion that allows the refrigerant flowing in from the inlet portion to flow out to the condenser.
  3.  前記膨張機シェルの前記出口部は、
     当該膨張機シェル内に、予め設定された必要量の前記冷凍機油が貯留されたときの油面よりも高い位置に設けられた
    ことを特徴とする請求項2に記載の冷凍サイクル装置。
    The outlet portion of the expander shell is
    The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus is provided at a position higher than an oil level when a required amount of the refrigeration oil set in advance is stored in the expander shell.
  4.  前記圧縮機から前記膨張機シェルの前記入口部へ至る流路を分岐し、前記膨張機シェルの前記出口部から前記凝縮器へ至る流路に合流させる第1バイパス配管を、更に備えた
    ことを特徴とする請求項2または3に記載の冷凍サイクル装置。
    A first bypass pipe for branching a flow path from the compressor to the inlet portion of the expander shell and joining the flow path from the outlet portion of the expander shell to the condenser; The refrigeration cycle apparatus according to claim 2 or 3, characterized in that:
  5.  前記膨張機シェルの前記入口部から流入する前記冷媒の流量が、
     前記第1バイパス配管を通過する前記冷媒の流量よりも少ない
    ことを特徴とする請求項4に記載の冷凍サイクル装置。
    The flow rate of the refrigerant flowing from the inlet portion of the expander shell is
    5. The refrigeration cycle apparatus according to claim 4, wherein the refrigeration cycle apparatus is less than a flow rate of the refrigerant passing through the first bypass pipe.
  6.  前記膨張機シェル内の前記冷凍機油を、前記圧縮機の吸入側の配管に流入させる返油配管を、更に備えた
    ことを特徴とする請求項2~5の何れか一項に記載の冷凍サイクル装置。
    The refrigeration cycle according to any one of claims 2 to 5, further comprising an oil return pipe that allows the refrigerating machine oil in the expander shell to flow into a suction side pipe of the compressor. apparatus.
  7.  前記圧縮機から吐出された前記冷媒に含まれる前記冷凍機油を分離する油分離器を、更に備え、
     前記膨張機シェルは、
     前記油分離器によって分離した前記冷凍機油が流入する入口部と、
     前記膨張機シェル内の前記冷凍機油を、前記圧縮機の吸入側の配管へ流出させる出口部と、が形成された
    ことを特徴とする請求項1に記載の冷凍サイクル装置。
    An oil separator for separating the refrigerating machine oil contained in the refrigerant discharged from the compressor;
    The expander shell is
    An inlet portion through which the refrigerating machine oil separated by the oil separator flows;
    The refrigeration cycle apparatus according to claim 1, wherein an outlet for allowing the refrigerating machine oil in the expander shell to flow out to a pipe on the suction side of the compressor is formed.
  8.  前記凝縮器から前記膨張部へ至る流路を分岐し、前記膨張部から前記蒸発器へ至る流路に合流させる第2バイパス配管と、
     前記第2バイパス配管に設けられ、前記冷媒を膨張する第2膨張弁と、を更に備え、
     予め設定した条件を満たす場合、前記第2バイパス配管に前記冷媒を流通させる
    ことを特徴とする請求項1~7の何れか一項に記載の冷凍サイクル装置。
    A second bypass pipe for branching the flow path from the condenser to the expansion section and joining the flow path from the expansion section to the evaporator;
    A second expansion valve that is provided in the second bypass pipe and expands the refrigerant;
    The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the refrigerant flows through the second bypass pipe when a preset condition is satisfied.
  9.  前記予め設定した条件は、
     前記圧縮機の起動からの経過時間が、予め設定した時間以下である場合、
     前記膨張機シェル内の前記冷凍機油の量が、予め設定した量以下である場合、
     及び、前記膨張部の回転数が、予め設定した上限値以上もしくは下限値以下である場合、の少なくとも一つである
    ことを特徴とする請求項8に記載の冷凍サイクル装置。
    The preset condition is:
    When the elapsed time from the start of the compressor is equal to or less than a preset time,
    When the amount of the refrigerating machine oil in the expander shell is equal to or less than a preset amount,
    9. The refrigeration cycle apparatus according to claim 8, wherein the number of rotations of the expansion section is at least one of a preset upper limit value or more and a lower limit value or less.
PCT/JP2014/050256 2014-01-09 2014-01-09 Refrigeration cycle device WO2015104822A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/050256 WO2015104822A1 (en) 2014-01-09 2014-01-09 Refrigeration cycle device
EP14877585.1A EP3104101A4 (en) 2014-01-09 2014-01-09 Refrigeration cycle device
JP2015556680A JP6150906B2 (en) 2014-01-09 2014-01-09 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050256 WO2015104822A1 (en) 2014-01-09 2014-01-09 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2015104822A1 true WO2015104822A1 (en) 2015-07-16

Family

ID=53523670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050256 WO2015104822A1 (en) 2014-01-09 2014-01-09 Refrigeration cycle device

Country Status (3)

Country Link
EP (1) EP3104101A4 (en)
JP (1) JP6150906B2 (en)
WO (1) WO2015104822A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105492A1 (en) 2016-12-06 2018-06-14 日本化薬株式会社 Method for producing 3-(pyridyl-2-amino)propionitrile and analogues thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900014685A1 (en) * 2019-08-12 2021-02-12 Carbon & Steel S R L IMPROVED AIR CONDITIONING AND AIR CONDITIONING OR REFRIGERATION SYSTEM

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279179A (en) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp Refrigerating air conditioning device
WO2007023599A1 (en) * 2005-08-26 2007-03-01 Mitsubishi Electric Corporation Refrigerating air conditioner
JP2007285674A (en) 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
JP2008224053A (en) 2007-03-08 2008-09-25 Daikin Ind Ltd Refrigerating device
JP2011214778A (en) * 2010-03-31 2011-10-27 Daikin Industries Ltd Refrigerating device
JP2012042110A (en) * 2010-08-18 2012-03-01 Panasonic Corp Refrigerating cycle device
WO2012029203A1 (en) * 2010-09-02 2012-03-08 三菱電機株式会社 Expander and refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967435B2 (en) * 2006-04-20 2012-07-04 ダイキン工業株式会社 Refrigeration equipment
JP5036593B2 (en) * 2008-02-27 2012-09-26 パナソニック株式会社 Refrigeration cycle equipment
JP2013139890A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279179A (en) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp Refrigerating air conditioning device
WO2007023599A1 (en) * 2005-08-26 2007-03-01 Mitsubishi Electric Corporation Refrigerating air conditioner
JP2007285674A (en) 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
JP2008224053A (en) 2007-03-08 2008-09-25 Daikin Ind Ltd Refrigerating device
JP2011214778A (en) * 2010-03-31 2011-10-27 Daikin Industries Ltd Refrigerating device
JP2012042110A (en) * 2010-08-18 2012-03-01 Panasonic Corp Refrigerating cycle device
WO2012029203A1 (en) * 2010-09-02 2012-03-08 三菱電機株式会社 Expander and refrigeration cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3104101A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105492A1 (en) 2016-12-06 2018-06-14 日本化薬株式会社 Method for producing 3-(pyridyl-2-amino)propionitrile and analogues thereof
KR20190088051A (en) 2016-12-06 2019-07-25 닛뽄 가야쿠 가부시키가이샤 Preparation of 3- (pyridyl-2-amino) propionitrile and its derivatives

Also Published As

Publication number Publication date
JPWO2015104822A1 (en) 2017-03-23
EP3104101A1 (en) 2016-12-14
JP6150906B2 (en) 2017-06-21
EP3104101A4 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP5169295B2 (en) Refrigeration equipment
JP4816220B2 (en) Refrigeration equipment
KR100990782B1 (en) Refrigeration device
CN106461278B (en) Method for operating a cooler
JPWO2011036741A1 (en) Refrigeration cycle equipment
JP2011133209A (en) Refrigerating apparatus
KR101220741B1 (en) Freezing device
JP5759076B2 (en) Refrigeration equipment
JP2010107181A (en) Refrigeration system
JP6150906B2 (en) Refrigeration cycle equipment
JP4665736B2 (en) Control method for refrigeration cycle apparatus and refrigeration cycle apparatus using the same
JP2013139890A (en) Refrigeration apparatus
JP2004150749A (en) Refrigerating cycle device
JP2009186028A (en) Turbo refrigerator
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
JP6150907B2 (en) Refrigeration cycle equipment
JP2004286322A (en) Refrigerant cycle device
JP2007315638A (en) Refrigeration cycle device
JP2011141078A (en) Refrigeration cycle apparatus
JP5176874B2 (en) Refrigeration equipment
JP2010091206A (en) Refrigerating device
JP2007232296A (en) Heat pump system
JP2013139904A (en) Refrigerating device
JP4720593B2 (en) Refrigeration equipment
JP2013139896A (en) Refrigeration apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014877585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014877585

Country of ref document: EP