JP4236163B2 - Ammonia refrigeration system using working fluid composition composed of lubricating oil and ammonia refrigerant - Google Patents

Ammonia refrigeration system using working fluid composition composed of lubricating oil and ammonia refrigerant Download PDF

Info

Publication number
JP4236163B2
JP4236163B2 JP2003102840A JP2003102840A JP4236163B2 JP 4236163 B2 JP4236163 B2 JP 4236163B2 JP 2003102840 A JP2003102840 A JP 2003102840A JP 2003102840 A JP2003102840 A JP 2003102840A JP 4236163 B2 JP4236163 B2 JP 4236163B2
Authority
JP
Japan
Prior art keywords
oil separator
pressure
ammonia
refrigerant
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003102840A
Other languages
Japanese (ja)
Other versions
JP2004309013A (en
Inventor
孝幸 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2003102840A priority Critical patent/JP4236163B2/en
Publication of JP2004309013A publication Critical patent/JP2004309013A/en
Application granted granted Critical
Publication of JP4236163B2 publication Critical patent/JP4236163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、潤滑油とアンモニア冷媒とで構成される作動流体組成物を使用するアンモニア冷凍装置に関する。
【0002】
【従来の技術】
蒸気圧縮式冷凍装置の冷媒としては従来フロンが多用されてきたが、大気中に放出されたフロンは長期にわたってオゾン層を破壊し地球の温暖化に影響を与えるという環境問題を引起すことが明らかになり、近年ではこのような環境問題を引起さない冷媒として、古くから使用されてきたアンモニアが改めて見直されてきている。フロンは、一般に冷凍機の潤滑油として用いられているパラフィン系、ナフテン系等の鉱物油に対して概して相溶性があるが、アンモニアはこれらの潤滑油に対する相溶性はごく少ないため、アンモニア冷凍機では圧縮機出口に油分離器を設けて圧縮機より吐出されたアンモニアガスと潤滑油を分離している。しかしながら、油分離器を設けていてもミスト状化した潤滑油を完全には分離できず、また、圧縮機の吐出側は高温化しているため、潤滑油がアンモニア中にミスト状となって混入し該アンモニアに同伴して冷凍サイクル内に入り、サイクル内に入った潤滑油はアンモニアに対して非溶性で且つ比重が重いために前記サイクルの配管経路に溜まり易く、サイクル経路の各所に油溜まりや油抜き部を設けてこれらの潤滑油を回収して再度圧縮機に戻す必要があり、構成が煩雑化するのを免れなかった。
【0003】
その解決策として、アンモニアと相溶性の潤滑油とアンモニア冷媒とで構成される作動流体組成物を用いるアンモニア冷凍装置が開示されている(例えば、特許文献1)。該特許文献1に記載されているように、アンモニアと潤滑油の割合は基本的には潤滑性能を維持できる限りにおいて極力潤滑油を少なくするのが伝熱効率を上げる上で好ましいのであるが、圧縮機の種類や用途によって、圧縮機の潤滑性能を維持するために潤滑油の割合は3〜30wt%にされるとしている。圧縮機側では潤滑油の割合を多くし、圧縮機を出たところに油分離器を設けて潤滑油を分離し、以後圧縮機入口までの経路では潤滑油の割合が少なくなるように構成することもある。そして、分離された潤滑油は再び圧縮機に戻される(前記特許文献1の図3参照)。
【0004】
相溶油の2層分離領域は前記作動流体組成物の温度と潤滑油の割合によって決まり、前記特許文献1には−50℃或はそれ以下でも2層分離しない相溶油が開示されているが、一方高温においても2層分離する。図2は相溶油の1つであるPAG(ポリアルキレングリコール)の2層分離特性を一般的に示したもので、2層分離域が低温側と高温側にある。したがって、潤滑油の割合がある程度多い場合には、圧縮機の内部や圧縮機を出た後の油分離器内の温度が高いガス状の作動流体組成物中では2層分離した潤滑油が存在している。
【0005】
油分離器を用いる構成の場合には、冷凍機の運転停止中に油分離器の壁が外気により冷やされて該油分離器の内壁面に冷媒が凝縮し、該凝縮液が前記油分離器内の2層分離した潤滑油に過剰に溶けて潤滑油の粘度が低下し、油分離器の底部にはこの粘度が低下した潤滑油が溜まる。つぎに起動する際に、この粘度が低下した潤滑油が圧縮機に送られるので、圧縮機ロータ、軸受、シール等の潤滑が不十分となり、これらの損傷が惹起されることがある。
【0006】
【特許文献1】
特許第3241694号明細書
【0007】
【発明が解決しようとする課題】
従来は、この現象を避けるために、油分離器を保温材で覆い、停止中はヒータ等によって加熱するなどの対策が講じられている。しかし、この方法では保温材で覆うコストやヒータで加熱するための電気代が余分にかかる欠点がある。
【0008】
本発明は、かかる欠点を取り除くためになされたもので、冷凍機の運転停止後に油分離器が冷却しないように油分離器を保温材で覆って停止中はヒータ等で加熱する必要がない、潤滑油とアンモニア冷媒とで構成される作動流体組成物を使用するアンモニア冷凍装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、アンモニア冷媒と相溶性の潤滑油とアンモニア冷媒とで構成される作動流体組成物を使用して圧縮機、凝縮器、膨張器、蒸発器からなる冷凍サイクルを構成するとともに、前記冷凍サイクル経路の圧縮機の出口側に油分離器を備え、前記圧縮機入口側と、前記油分離器出口側の前記冷凍サイクル経路上に夫々逆止弁を備えたアンモニア冷凍装置であって
前記蒸発器と前記圧縮機入口を連結する前記経路の前記圧縮機入口側逆止弁の上流に前記油分離器から開閉弁を介して圧力逃がし経路が連結されるとともに、前記油分離器内の圧力を検出する圧力検出手段が設けられ、前記冷凍装置の運転停止の際に前記油分離器内の圧力が前もって定めた基準周囲温度或は測定周囲温度または油分離器表面温度に基づいて設定される前記冷媒の飽和蒸気圧力以下になるように前記開閉弁の開閉制御を行う制御装置が設けられていることを特徴とするアンモニア冷凍装置を提案する。
【0010】
冷凍装置の運転中は油分離器には圧縮機で圧縮された高圧、高温の冷媒ガスと冷媒と相溶性の潤滑油からなる作動流体組成物が常に供給されているので、前記油分離器の内壁面は該作動流体組成物の温度に近い温度になっている。そして、該作動流体組成物には2層分離した潤滑油が含まれている。一方、冷凍装置の運転を停止すると、油分離器への高圧高温の作動流体組成物の供給が停止されるので、油分離器は周囲温度により冷やされて油分離器の内壁面温度が低下し、内壁面温度がその圧力における冷媒蒸気の飽和温度よりも低くなると内壁面には冷媒が凝縮する。該冷媒の凝縮液は油分離器内の潤滑油に溶けて潤滑油の粘度低下をもたらすが、溶解量が過剰になると潤滑油の粘度も大きく低下する。
【0011】
該粘度が低下した潤滑油は油分離器の底部に溜まり、つぎに冷凍装置が起動される際に圧縮機に潤滑油として送られる。したがって、粘度が低下して潤滑性が低下した潤滑油の供給を受けた圧縮機のロータ、軸受け、シール等が潤滑不足のために損傷を起こすことがある。
【0012】
ところで、冷媒蒸気の飽和温度は圧力が低いほど低い。したがって、冷凍装置の運転停止時に油分離器内の圧力を下げれば、前記冷媒蒸気の飽和温度、即ち前記冷媒が凝縮する温度が下がる。凝縮温度が下がれば、運転停止時に油分離器が周囲から冷やされて内壁面に凝縮した前記冷媒液の過剰溶込みによる潤滑油の粘度低下を防止することができる。したがって、運転停止時に油分離器内の圧力を前もって定めた基準周囲温度或は測定周囲温度または油分離器表面温度に基づいて、油分離器内壁に前記冷媒が凝縮しない圧力に下げておけば、運転停止中に油分離器内の作動流体組成物の温度が下がっても油分離器内壁にアンモニア冷媒が凝縮することがなくなる。請求項1における前記冷媒の飽和蒸気圧力以下の圧力とはそのような圧力のことを言う。運転停止時に油分離器内の圧力を下げるのは、油分離器を蒸発器から圧縮機入口逆止弁への経路に圧力逃がし経路で連結し、該圧力逃がし経路に開閉弁を設け、制御装置によって油分離器内圧力が所定圧力以下になるように該開閉弁を制御することによって行われる。
【0013】
前記冷媒の飽和蒸気圧力は前もって定めた前記基準周囲温度或は測定周囲温度または油分離器表面温度における冷媒の飽和蒸気圧とするのがよい。周囲温度は季節や周囲環境によって異なるので、前記冷媒の飽和蒸気圧力は、予め基準周囲温度を定めその温度に於ける前記冷媒の飽和蒸気圧としてもよいし、或は測定周囲温度または油分離器表面温度に於ける前記冷媒の飽和蒸気圧としてもよい。前記冷媒の飽和蒸気圧は、前記制御装置に予めインプットされた基準温度に基づいて該制御装置で算出してもよいし、或は周囲温度検出器または油分離器表面温度検出器からの検出温度に基づいて前記制御装置で算出してもよい。また、前記制御装置には冷凍装置の停止を知らせる停止信号が送られ、該停止信号によって圧力制御動作を行うようにするのがよい。停止信号としては、例えば圧縮機の回転を検知して停止信号を発するか、あるいはその他運転停止によって状況が変る部位の状況変化を検知して停止信号を発するようにすればよい。
【0014】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される寸法、材質、形状、その相対位置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0015】
図1は本発明の冷媒過剰溶込み防止装置を備えた冷凍装置の概略構成を示す図である。同図において、1は圧縮機、2は油分離器、3は凝縮器、4は蒸発器、5は膨張弁である。圧縮機1で圧縮されたアンモニア冷媒と相溶油からなる作動流体組成物は油分離器2で2層分離した潤滑油が分離され、相溶した潤滑油を含むアンモニア冷媒は凝縮器3で凝縮され、膨張弁5で絞られて圧力が低下した気液混合状態となって蒸発器4に送られ、該蒸発器で蒸発して圧縮機1の入口に送られる。前記油分離器2の底部に溜まった潤滑油は調整弁13、潤滑油冷却器11、ポンプ12を介して圧縮機1に送られて圧縮機のロータ、軸受、シール等を潤滑する。調整弁13は潤滑油冷却器11を通る流量を調整して圧縮機1に供給される潤滑油の温度を調整する。なお、14は圧縮機上流に配設された逆止弁、15は油分離器下流に配設された逆止弁である。16は凝縮器3を冷却する冷却媒体の流れ、17は蒸発器4で冷熱を受ける媒体の流れを示す。以上は従来の冷凍装置と同じ構成である。
【0016】
6は前記油分離器2を前記蒸発器4と圧縮機1の入口とを連結する経路の圧縮機上流側に連結する圧力逃がし経路、7は該圧力逃がし経路6に介装された開閉弁、8は油分離器2内の圧力を検知する圧力検知器、81は周囲温度検出器、82は油分離器表面温度検出器である。制御装置9は、該検出温度に於ける前記冷媒の飽和蒸気圧を算出、或は予めインプットされた基準周囲温度に於ける前記冷媒の飽和蒸気圧を算出する。冷凍装置の運転が停止された際に前記制御装置9に停止を知らせる信号が送られ(信号発信器は不図示)、該停止信号を受けた制御装置9は、前記開閉弁7を開いて油分離器2内の圧力を前記圧力逃がし経路6を通して低圧側である蒸発器4と圧縮機1間の経路に逃がして油分離器2内の圧力を下げ、前記圧力検知器8によって検知された油分離器2内の圧力が前記算出飽和蒸気圧(所定圧力)或はそれよりも低い圧力まで低下したら前記開閉弁7を閉じるように開閉弁を制御する。これにより油分離器2内の圧力は冷凍機が停止中は所定圧力或はそれよりも低い圧力に維持される。
【0017】
周囲温度は季節、周囲の環境によって異なるので、予め前記制御装置に季節や周囲環境に応じて基準周囲温度をインプットしておき、その温度に於ける前記冷媒の飽和蒸気圧を求めて所定圧力としてもよいし、或は測定周囲温度または油分離器表面温度を制御装置にインプットしてその温度に於ける前記冷媒の飽和蒸気圧を求めて所定圧力としてもよい。油分離器内の温度は周囲温度または油分離器表面温度よりも低くなることはないので、所定圧力を上記のようにして求め、油分離器内の圧力を前記算出飽和蒸気圧(所定圧力)以下にすれば、油分離器内で前記冷媒が凝縮することはない。
【0018】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記述されるような効果を奏する。即ち、冷凍機の運転を停止した際に油分離器内の圧力を低圧側に逃がして所定の圧力以下まで低下させることによって、停止中の冷却によって油分離器内壁面に前記冷媒が凝縮するのを防止することができ、該内壁面に前記冷媒が凝縮した場合に該凝縮冷媒液が油分離器内の潤滑油に過剰に溶け込んで潤滑油の粘度が低下するのを防止することができる。これにより、冷凍機を再起動した際に粘度低下により潤滑性が低下したことによる圧縮機ロータ、軸受、及びシール等の損傷の発生を防止することができる。
【図面の簡単な説明】
【図1】 本発明の実施例に係わる冷凍機油への冷媒過剰溶込み防止装置を備えた冷凍装置の概略構成図である。
【図2】 アンモニア冷媒と相溶性の潤滑油の2層分離特性を一般的に示すグラフである。
【符合の説明】
1 圧縮機
2 油分離器
3 凝縮器
4 蒸発器
5 膨張弁
6 圧力逃がし経路
7 開閉弁
8 圧力検知器
9 制御装置
11 潤滑油冷却器
12 ポンプ
13 調整弁
14、15 逆止弁
81 周囲温度検出器
82 油分離器表面温度検出器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ammonia refrigeration apparatus using a working fluid composition composed of lubricating oil and ammonia refrigerant .
[0002]
[Prior art]
Conventionally, chlorofluorocarbon has been widely used as a refrigerant in the vapor compression refrigeration system, but it is clear that chlorofluorocarbon released into the atmosphere causes environmental problems that destroy the ozone layer over a long period of time and affect the global warming. In recent years, ammonia that has been used for a long time as a refrigerant that does not cause such environmental problems has been reviewed again. Fluorocarbons are generally compatible with paraffinic and naphthenic mineral oils that are generally used as lubricating oils for refrigerators, but ammonia is very incompatible with these lubricating oils, so ammonia refrigerators Then, an oil separator is provided at the compressor outlet to separate the ammonia gas discharged from the compressor from the lubricating oil. However, even if an oil separator is provided, the misted lubricating oil cannot be completely separated, and the discharge side of the compressor is heated to a high temperature, so that the lubricating oil is mixed in the ammonia as a mist. Then, the oil entering the refrigeration cycle is accompanied by the ammonia, and the lubricating oil entering the cycle is insoluble in ammonia and heavy in specific gravity, so it easily collects in the piping path of the cycle and accumulates in various places in the cycle path. In addition, it is necessary to provide an oil drainage part, collect these lubricating oils, and return them to the compressor again, which inevitably complicates the configuration.
[0003]
As a solution, an ammonia refrigeration apparatus using a working fluid composition composed of ammonia-compatible lubricating oil and ammonia refrigerant is disclosed (for example, Patent Document 1). As described in Patent Document 1, it is preferable to reduce the amount of lubricating oil as much as possible as long as the lubricating performance can be maintained. According to the type and application of the machine, the ratio of the lubricating oil is set to 3 to 30 wt% in order to maintain the lubricating performance of the compressor. On the compressor side, the ratio of the lubricating oil is increased, and an oil separator is provided at the exit from the compressor to separate the lubricating oil, and thereafter the ratio of the lubricating oil is reduced in the path to the compressor inlet. Sometimes. Then, the separated lubricating oil is returned to the compressor again (see FIG. 3 of Patent Document 1).
[0004]
The two-layer separation region of the compatible oil is determined by the temperature of the working fluid composition and the ratio of the lubricating oil. Patent Document 1 discloses a compatible oil that does not separate into two layers even at −50 ° C. or lower. However, two layers are separated even at high temperatures. FIG. 2 generally shows the two-layer separation characteristics of PAG (polyalkylene glycol), which is one of the compatible oils. The two-layer separation region is on the low temperature side and the high temperature side. Therefore, when the proportion of the lubricating oil is high to some extent, there is a lubricating oil separated into two layers in the gaseous working fluid composition having a high temperature inside the compressor and in the oil separator after leaving the compressor. is doing.
[0005]
In the case of a configuration using an oil separator, the wall of the oil separator is cooled by outside air while the operation of the refrigerator is stopped, and the refrigerant condenses on the inner wall surface of the oil separator, and the condensate becomes the oil separator. The oil is excessively dissolved in the lubricating oil separated into two layers, and the viscosity of the lubricating oil is lowered. The lubricating oil having the reduced viscosity is accumulated at the bottom of the oil separator. At the next start-up, the reduced viscosity lubricating oil is sent to the compressor, which may result in insufficient lubrication of the compressor rotor, bearings, seals, etc., which may cause damage.
[0006]
[Patent Document 1]
Japanese Patent No. 3241694 specification
[Problems to be solved by the invention]
Conventionally, in order to avoid this phenomenon, measures have been taken such as covering the oil separator with a heat insulating material and heating it with a heater or the like during stoppage. However, this method has a drawback in that the cost of covering with a heat insulating material and the electricity cost for heating with a heater are excessive.
[0008]
The present invention was made to eliminate such drawbacks, and it is not necessary to cover the oil separator with a heat insulating material so that the oil separator does not cool after stopping the operation of the refrigerator, and to heat with a heater or the like during the stop, An object of the present invention is to provide an ammonia refrigerating apparatus using a working fluid composition composed of lubricating oil and ammonia refrigerant .
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a refrigeration system comprising a compressor, a condenser, an expander and an evaporator using a working fluid composition composed of a lubricating oil compatible with an ammonia refrigerant and an ammonia refrigerant. And an oil separator on the outlet side of the compressor in the refrigeration cycle path, and check valves on the refrigeration cycle path on the compressor inlet side and the oil separator outlet side, respectively. An ammonia refrigeration system ,
Wherein upstream of the compressor inlet side check valve from the oil separator via an on-off valve with pressure relief path is connected in the path connecting the compressor inlet and the evaporator, in the oil separator Pressure detecting means for detecting pressure is provided, and the pressure in the oil separator is set based on a predetermined reference ambient temperature, measured ambient temperature, or oil separator surface temperature when the refrigeration apparatus is stopped. The present invention proposes an ammonia refrigerating apparatus , characterized in that a control device is provided for performing on-off control of the on-off valve so as to be equal to or lower than a saturated vapor pressure of the refrigerant .
[0010]
During operation of the refrigeration system, the oil separator is always supplied with a working fluid composition composed of high-pressure and high-temperature refrigerant gas compressed by the compressor and lubricating oil compatible with the refrigerant. The inner wall surface has a temperature close to that of the working fluid composition. The working fluid composition contains two layers of lubricating oil. On the other hand, when the operation of the refrigeration system is stopped, the supply of the high-pressure and high-temperature working fluid composition to the oil separator is stopped, so the oil separator is cooled by the ambient temperature and the inner wall surface temperature of the oil separator is lowered. When the inner wall surface temperature becomes lower than the saturation temperature of the refrigerant vapor at the pressure, the refrigerant condenses on the inner wall surface. The condensate of the refrigerant dissolves in the lubricating oil in the oil separator and causes a decrease in the viscosity of the lubricating oil. However, when the amount of dissolution becomes excessive, the viscosity of the lubricating oil also greatly decreases.
[0011]
The lubricating oil having the reduced viscosity is accumulated at the bottom of the oil separator, and is then sent to the compressor as lubricating oil when the refrigeration apparatus is started. Therefore, the rotor, bearings, seals, etc. of the compressor that has been supplied with the lubricating oil whose viscosity has been lowered and the lubricity has been lowered may be damaged due to insufficient lubrication.
[0012]
By the way, the saturation temperature of the refrigerant vapor is lower as the pressure is lower. Therefore, by lowering the pressure in the oil separator during the operation stop of the refrigerating apparatus, the saturation temperature of the refrigerant vapor, i.e. the temperature at which the refrigerant is condensed drops. If residual values decrease condensation temperature, it is possible to prevent a reduction viscosity of the lubricating oil due to excessive penetration of the refrigerant liquid oil separator is condensed on the inner wall surface is cooled from the periphery at the time of shutdown. Therefore, based on the previously determined standard ambient temperature or measured ambient temperature or the oil separator surface temperature the pressure in the oil separator during shutdown, if the refrigerant in the oil separator inner wall is reduced to a pressure which does not condense, Even when the temperature of the working fluid composition in the oil separator decreases during the operation stop, the ammonia refrigerant does not condense on the inner wall of the oil separator. The pressure equal to or lower than the saturated vapor pressure of the refrigerant in claim 1 refers to such a pressure. When the operation is stopped, the pressure in the oil separator is reduced by connecting the oil separator to the path from the evaporator to the compressor inlet check valve by a pressure relief path, and providing an open / close valve in the pressure relief path. By controlling the on-off valve so that the pressure in the oil separator becomes a predetermined pressure or less.
[0013]
The saturated vapor pressure of the refrigerant may be the saturated vapor pressure of the refrigerant at the predetermined reference ambient temperature, measured ambient temperature, or oil separator surface temperature. Since the ambient temperature varies depending on the season or the environment, the saturation vapor pressure of the refrigerant may be a saturated vapor pressure of at the coolant to the temperature set in advance a reference ambient temperature, or measuring the ambient temperature or the oil separator the surface temperature may be the saturated vapor pressure of at the refrigerant. Saturated vapor pressure of the refrigerant temperature detected from the advance based on the input is reference temperature may be calculated by the control device, or ambient temperature detector or the oil separator surface temperature detector to the control device It may be calculated by the control device based on the above. Further, it is preferable that a stop signal notifying the stop of the refrigeration apparatus is sent to the control device, and the pressure control operation is performed by the stop signal. For example, the stop signal may be generated by detecting the rotation of the compressor and issuing a stop signal, or by detecting a change in the situation of a part whose situation changes due to operation stop.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative positions, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified.
[0015]
FIG. 1 is a diagram showing a schematic configuration of a refrigeration apparatus provided with the refrigerant excessive penetration preventing apparatus of the present invention. In the figure, 1 is a compressor, 2 is an oil separator, 3 is a condenser, 4 is an evaporator, and 5 is an expansion valve. The working fluid composition composed of the ammonia refrigerant compressed by the compressor 1 and the compatible oil is separated from the lubricating oil separated into two layers by the oil separator 2, and the ammonia refrigerant containing the compatible lubricating oil is condensed by the condenser 3. Then, the gas-liquid mixed state in which the pressure is reduced by being throttled by the expansion valve 5 is sent to the evaporator 4, evaporated by the evaporator, and sent to the inlet of the compressor 1. Lubricating oil accumulated at the bottom of the oil separator 2 is sent to the compressor 1 via the regulating valve 13, the lubricating oil cooler 11, and the pump 12 to lubricate the compressor rotor, bearings, seals and the like. The adjusting valve 13 adjusts the flow rate of the lubricating oil cooler 11 to adjust the temperature of the lubricating oil supplied to the compressor 1. Reference numeral 14 is a check valve disposed upstream of the compressor, and 15 is a check valve disposed downstream of the oil separator. Reference numeral 16 denotes a flow of a cooling medium for cooling the condenser 3, and 17 denotes a flow of a medium that receives cold heat in the evaporator 4. The above is the same configuration as the conventional refrigeration apparatus.
[0016]
6 is a pressure relief path for connecting the oil separator 2 to the upstream side of the compressor in a path connecting the evaporator 4 and the inlet of the compressor 1, and 7 is an on-off valve interposed in the pressure relief path 6. 8 is a pressure detector for detecting the pressure in the oil separator 2, 81 is an ambient temperature detector, and 82 is an oil separator surface temperature detector. Controller 9 calculates the detection calculates the saturated vapor pressure of at the coolant temperature, or the saturated vapor pressure of at the refrigerant in advance input criteria ambient temperature. When the operation of the refrigeration system is stopped, a signal notifying the control device 9 is sent (signal transmitter is not shown), and the control device 9 that has received the stop signal opens the on-off valve 7 and oils. The pressure in the separator 2 is released through the pressure relief path 6 to the path between the evaporator 4 and the compressor 1 on the low pressure side, the pressure in the oil separator 2 is lowered, and the oil detected by the pressure detector 8 When the pressure in the separator 2 decreases to the calculated saturated vapor pressure (predetermined pressure) or a pressure lower than that, the on-off valve is controlled to close the on-off valve 7. As a result, the pressure in the oil separator 2 is maintained at a predetermined pressure or a lower pressure while the refrigerator is stopped.
[0017]
Ambient temperature season, because it depends on the surrounding environment, leave input a reference ambient temperature according to the season and the ambient environment in advance the control device, the saturated vapor pressure of at the coolant temperature as a predetermined pressure seek it may be, or the measurement ambient temperature or the oil separator surface temperature control device may be a predetermined pressure seek input to the saturated vapor pressure of at the coolant to the temperature. Since the temperature in the oil separator does not become lower than the ambient temperature or the oil separator surface temperature, the predetermined pressure is obtained as described above, and the pressure in the oil separator is calculated as the calculated saturated vapor pressure (predetermined pressure). if below, the refrigerant in the oil separator does not condense.
[0018]
【The invention's effect】
The present invention is implemented in the form described above, and has the effects described below. That is, by decreasing to below a predetermined pressure the pressure in the oil separator when stopping the operation of the refrigerator to escape to the low pressure side, the refrigerant to condense in the oil separator wall by cooling during stop When the refrigerant condenses on the inner wall surface, it is possible to prevent the condensed refrigerant liquid from being excessively dissolved in the lubricating oil in the oil separator and reducing the viscosity of the lubricating oil. Thereby, when restarting a refrigerator, generation | occurrence | production of damage to a compressor rotor, a bearing, a seal | sticker, etc. by the lubricity falling by viscosity reduction can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a refrigeration apparatus provided with an apparatus for preventing excessive refrigerant penetration into refrigeration oil according to an embodiment of the present invention.
FIG. 2 is a graph generally showing two-layer separation characteristics of a lubricating oil compatible with an ammonia refrigerant .
[Explanation of sign]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Oil separator 3 Condenser 4 Evaporator 5 Expansion valve 6 Pressure relief path 7 On-off valve 8 Pressure detector 9 Control device 11 Lubricating oil cooler 12 Pump 13 Adjustment valve 14, 15 Check valve 81 Ambient temperature detection 82 Oil separator surface temperature detector

Claims (3)

アンモニア冷媒と相溶性の潤滑油とアンモニア冷媒とで構成される作動流体組成物を使用して圧縮機、凝縮器、膨張器、蒸発器からなる冷凍サイクルを構成するとともに、前記冷凍サイクル経路の圧縮機の出口側に油分離器を備え、前記圧縮機入口側と、前記油分離器出口側の前記冷凍サイクル経路上に夫々逆止弁を備えたアンモニア冷凍装置であって
前記蒸発器と前記圧縮機入口を連結する前記経路の前記圧縮機入口側逆止弁の上流に前記油分離器から開閉弁を介して圧力逃がし経路が連結されるとともに、前記油分離器内の圧力を検出する圧力検出手段が設けられ、前記冷凍装置の運転停止の際に前記油分離器内の圧力が前もって定めた基準周囲温度或は測定周囲温度または油分離器表面温度に基づいて設定される前記冷媒の飽和蒸気圧力以下になるように前記開閉弁の開閉制御を行う制御装置が設けられていることを特徴とするアンモニア冷凍装置
A refrigeration cycle comprising a compressor, a condenser, an expander, and an evaporator is formed using a working fluid composition composed of an ammonia refrigerant, a compatible lubricating oil, and an ammonia refrigerant, and the refrigeration cycle path is compressed. An ammonia refrigeration apparatus provided with an oil separator on the outlet side of the machine, and provided with a check valve on each of the compressor inlet side and the refrigeration cycle path on the oil separator outlet side ,
A pressure relief path is connected to the upstream side of the check valve on the compressor inlet side of the path connecting the evaporator and the compressor inlet via an on-off valve from the oil separator, and in the oil separator Pressure detecting means for detecting pressure is provided, and the pressure in the oil separator is set based on a predetermined reference ambient temperature, measured ambient temperature, or oil separator surface temperature when the refrigeration apparatus is stopped. An ammonia refrigerating apparatus , comprising: a control device that performs opening / closing control of the on-off valve so that the pressure becomes equal to or lower than a saturated vapor pressure of the refrigerant .
周囲温度検知器または油分離器表面温度検知器を配設して検知温度を前記制御装置に送り、該制御装置で前記検知温度に於ける冷媒の飽和蒸気圧が算出されることを特徴とする請求項1記載のアンモニア冷凍装置Disposed ambient temperature sensor or the oil separator surface temperature sensor to send the detected temperature to the controller, the saturated vapor pressure of at coolant to the temperature detected by the control device is characterized in that it is calculated The ammonia refrigeration apparatus according to claim 1. 前記制御装置に冷凍装置停止の信号が送られ、該停止信号に基づいて前記制御装置が前記開閉弁を開閉制御して前記油分離器内圧力を前記冷媒の飽和蒸気圧力以下に制御することを特徴とする請求項1記載のアンモニア冷凍装置A refrigeration device stop signal is sent to the control device, and the control device controls opening and closing of the on- off valve based on the stop signal to control the oil separator internal pressure to be equal to or lower than the saturated vapor pressure of the refrigerant. The ammonia refrigerating apparatus according to claim 1, characterized in that:
JP2003102840A 2003-04-07 2003-04-07 Ammonia refrigeration system using working fluid composition composed of lubricating oil and ammonia refrigerant Expired - Fee Related JP4236163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102840A JP4236163B2 (en) 2003-04-07 2003-04-07 Ammonia refrigeration system using working fluid composition composed of lubricating oil and ammonia refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102840A JP4236163B2 (en) 2003-04-07 2003-04-07 Ammonia refrigeration system using working fluid composition composed of lubricating oil and ammonia refrigerant

Publications (2)

Publication Number Publication Date
JP2004309013A JP2004309013A (en) 2004-11-04
JP4236163B2 true JP4236163B2 (en) 2009-03-11

Family

ID=33466157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102840A Expired - Fee Related JP4236163B2 (en) 2003-04-07 2003-04-07 Ammonia refrigeration system using working fluid composition composed of lubricating oil and ammonia refrigerant

Country Status (1)

Country Link
JP (1) JP4236163B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5197255B2 (en) * 2008-09-08 2013-05-15 株式会社神戸製鋼所 Ammonia refrigeration equipment
JP5469835B2 (en) * 2008-09-08 2014-04-16 株式会社神戸製鋼所 Ammonia refrigeration equipment
JP2011099644A (en) * 2009-11-09 2011-05-19 Panasonic Corp Refrigerating cycle device

Also Published As

Publication number Publication date
JP2004309013A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
EP1075631B1 (en) Electronic controlled expansion valve
US7788937B2 (en) Refrigeration system
US11725859B2 (en) System and method for dynamically determining refrigerant film thickness and dynamically controlling refrigerant film thickness at rolling-element bearing of an oil free chiller
US20100011788A1 (en) Off-season start-ups to improve reliability of refrigerant system
JP7356225B2 (en) How to manage compressor start-up operations and transportation cooling systems
US10267548B2 (en) Oil management for heating ventilation and air conditioning system
US6116046A (en) Refrigeration chiller with assured start-up lubricant supply
JP4236163B2 (en) Ammonia refrigeration system using working fluid composition composed of lubricating oil and ammonia refrigerant
US6266964B1 (en) Use of electronic expansion valve to maintain minimum oil flow
JP2002181420A (en) Compression refrigerating apparatus
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
CN103175346B (en) Oil injection type split-compressor and heat pump
JPH0379959A (en) Refrigeration apparatus
JP2008014598A (en) Bleeder for compression type refrigerating machine
JP2018025166A (en) Air compression system
JP2009074523A (en) Oil level detecting method for oil sump, oil supply control method, gas compressor equipped with these methods, and air conditioner equipped with the gas compressor
JPH10246521A (en) Freezer, air conditioner and method for assembling refrigerant circuit
US20230398488A1 (en) Systems and methods for water removal in compressors
JP2004061056A (en) Oil level detecting method and device for compressor
JP2007147152A (en) Refrigerating cycle device and its operation method
JPH0854148A (en) Refrigerating device
CA2452533C (en) Electronic controlled expansion valve
JP3873317B2 (en) Refrigerant circulation system
CN118189466A (en) Annual refrigerating unit control method, condenser and refrigerating system
JPH03213959A (en) Oil recovery device in closed type turbo freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees