JPH09119725A - Binary refrigerator - Google Patents

Binary refrigerator

Info

Publication number
JPH09119725A
JPH09119725A JP27816695A JP27816695A JPH09119725A JP H09119725 A JPH09119725 A JP H09119725A JP 27816695 A JP27816695 A JP 27816695A JP 27816695 A JP27816695 A JP 27816695A JP H09119725 A JPH09119725 A JP H09119725A
Authority
JP
Japan
Prior art keywords
temperature side
heat exchanger
high temperature
refrigerant
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27816695A
Other languages
Japanese (ja)
Inventor
Satoru Arai
哲 荒井
Tadao Tsuji
忠男 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP27816695A priority Critical patent/JPH09119725A/en
Publication of JPH09119725A publication Critical patent/JPH09119725A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To generate liquid of sufficiently high temperature with high efficiency by the binary operation of both low and high temperature side refirgerating circuits. SOLUTION: At the time of low outer atmoshere, the water of a liquid heat exchanger 6 is heated by the condensing operation of a high-temperature side refrigerant, and heated by the sensible heat of the discharge gas of a low- temperature side refrigerant by an auxiliary heat exchanger 7 by the binary operation, the compression ratio per one of compressors 1, 3 is reduced to enhance the efficiency, and hot water temperature is effectively enhanced by the low-temperature side discharge gas at about 100 deg.C. At the time of high atmosphere, in the case of a single stage operation at the high-temperature side, the evaporating capacity is supplemented by an auxiliary evaporator 9 to obtain the heating amount of water by the exchanger 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低温側冷凍回路と
高温側冷凍回路との2つの冷凍回路を備え、給湯を目的
とした温水機等に適用する二元冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dual refrigerating apparatus which is provided with two refrigerating circuits, a low temperature side refrigerating circuit and a high temperature side refrigerating circuit, and which is applied to a water heater or the like for the purpose of supplying hot water.

【0002】[0002]

【従来の技術】従来、この種の冷凍装置として、特開平
4−254156号公報に開示され、且つ図5に示すも
のがあり、このものは、次のa〜fの構成要素を備え
る。
2. Description of the Related Art Conventionally, as this type of refrigerating device, there is one disclosed in Japanese Patent Laid-Open No. 4-254156 and shown in FIG. 5, which is provided with the following components a to f.

【0003】a.低温側圧縮機LCをもつ低温側冷凍回
路L。
A. Low temperature side refrigeration circuit L having a low temperature side compressor LC.

【0004】b.高温側圧縮機HCをもつ高温側冷凍回
路H。
B. High temperature side refrigeration circuit H having a high temperature side compressor HC.

【0005】c.低温側冷凍回路Lの高圧冷媒と高温側
冷凍回路Hの低圧冷媒を潜熱交換させて、低温側冷凍回
路Lの高圧ガス冷媒を凝縮すると共に高温側冷凍回路H
の低圧液冷媒を蒸発させる冷媒熱交換器M。
C. The high pressure refrigerant of the low temperature side refrigeration circuit L and the low pressure refrigerant of the high temperature side refrigeration circuit H are latently heat-exchanged to condense the high pressure gas refrigerant of the low temperature side refrigeration circuit L and the high temperature side refrigeration circuit H.
Refrigerant heat exchanger M for evaporating the low-pressure liquid refrigerant of.

【0006】d.高温側圧縮機HCの吐出ガスを凝縮さ
せて高温液体たる温水を生成する液体熱交換器N。
D. A liquid heat exchanger N that condenses the discharge gas of the high temperature side compressor HC to generate hot water that is a high temperature liquid.

【0007】e.低温側冷凍回路Lにおける冷媒熱交換
器Mの通過後の気液混合冷媒を更に凝縮して、液体熱交
換器Nに供給前の生成対象液体を予熱する予熱熱交換器
K。
E. A preheat heat exchanger K that further condenses the gas-liquid mixed refrigerant that has passed through the refrigerant heat exchanger M in the low temperature side refrigeration circuit L and preheats the liquid to be produced before being supplied to the liquid heat exchanger N.

【0008】f.低温側冷凍回路Lに介装し、冷媒熱交
換器M及び予熱熱交換器Kで凝縮する冷媒の熱源を得る
熱源側熱交換器J。
F. A heat source side heat exchanger J, which is interposed in the low temperature side refrigeration circuit L and obtains a heat source of the refrigerant condensed in the refrigerant heat exchanger M and the preheat heat exchanger K.

【0009】尚、LVは低温側膨張機構、HVは高温側
膨張機構、Tは生成温水を溜める貯湯槽、Oは温水循環
ポンプ、Vは温調用流量制御弁である。
LV is a low temperature side expansion mechanism, HV is a high temperature side expansion mechanism, T is a hot water storage tank for storing generated hot water, O is a hot water circulation pump, and V is a temperature control flow control valve.

【0010】このものでは、低温側及び高温側の二元の
冷凍回路を用いることにより、低温側及び高温側各段の
それぞれの圧縮機LC,HCの圧縮比を小さくし、単段
圧縮機をもつ一元システムに比べ、高い効率で運転でき
るようにしている。
In this device, the dual refrigeration circuit on the low temperature side and the high temperature side is used to reduce the compression ratio of each of the compressors LC and HC on the low temperature side and the high temperature side. It is designed to operate with higher efficiency than the integrated system.

【0011】[0011]

【発明が解決しようとする課題】しかし、第1に、予熱
熱交換器Kでの低温側冷媒の凝縮温度は、最も一般的な
R22の場合でせいぜい30〜40℃程度の比較的低温
であり、生成対象液体たる水の入口温度がその凝縮温度
よりも低い冷水の状態である場合には、この冷水を予熱
できるが、水の温度が高くなり、凝縮温度を上回ると、
もはや予熱は行なえず、かえって水の温度を下げてしま
う弊害が生じる。
However, firstly, the condensation temperature of the low temperature side refrigerant in the preheat heat exchanger K is relatively low at about 30 to 40 ° C. in the most general case of R22. , If the inlet temperature of the water to be produced is cold water that is lower than its condensation temperature, this cold water can be preheated, but if the temperature of the water rises and exceeds the condensation temperature,
Preheating can no longer be performed, and the adverse effect of lowering the temperature of the water occurs.

【0012】第2に、高効率をねらい、二元運転を行な
えるようにしているが、圧縮比の増大で効率の低下が問
題となるのは、主に、熱源側熱交換器Jが配設される外
気の温度が低い場合である。熱源側熱交換器Jでの蒸発
圧力が下がり、凝縮圧力との差圧が拡大し、圧縮機で確
保すべき圧縮比が増大するからである。従って、外気温
度が高い条件下では、圧縮比はそれほど過大になること
はなく、敢えて低温側及び高温側双方の圧縮機LC,H
Cを併用する二元運転をする必要はなく、高温側圧縮機
HCのみの単段運転で足り、むしろ単段運転のほうが効
率が高いものとなる。
Secondly, although the dual operation is performed for the purpose of high efficiency, the decrease in efficiency due to the increase of the compression ratio becomes a problem mainly due to the heat source side heat exchanger J. This is the case when the temperature of the outside air provided is low. This is because the evaporation pressure in the heat source side heat exchanger J decreases, the differential pressure with the condensing pressure increases, and the compression ratio to be ensured in the compressor increases. Therefore, the compression ratio does not become too large under the condition that the outside air temperature is high, and the compressors LC and H on both the low temperature side and the high temperature side are daringly dared.
It is not necessary to carry out a dual operation in which C is also used, and a single stage operation of only the high temperature side compressor HC is sufficient, and rather a single stage operation is more efficient.

【0013】それにも拘らず、上記のものでは、両圧縮
機LC,HCを併用した二元運転のみしか行えず、高温
側圧縮機HCのみを単段運転して高圧側冷凍回路Hのみ
を作動させることはできない。高温側冷凍回路Hの液体
熱交換器Nで液体を加熱できるのは、冷媒熱交換器Mで
高温側の冷媒を蒸発させて熱源を取っているからであ
り、冷媒熱交換器Mで高温側冷媒を蒸発させるために
は、低温側冷凍回路Lを作動させ、冷媒熱交換器Mで低
温側冷媒を凝縮させ、低温側及び高温側の冷媒間で潜熱
交換させる必要があるからである。このため、必ず2台
の圧縮機LC,HCを併用運転することが温水生成のた
めの条件になり、高外気時には、高効率運転が保証され
ない問題がある。
Nevertheless, in the above-mentioned one, only the dual operation in which both the compressors LC and HC are used together can be performed, and only the high temperature side compressor HC is operated in a single stage to operate only the high pressure side refrigeration circuit H. I can't let you. The reason why the liquid heat exchanger N of the high temperature side refrigeration circuit H can heat the liquid is that the refrigerant heat exchanger M evaporates the high temperature side refrigerant to take the heat source. This is because in order to evaporate the refrigerant, it is necessary to operate the low temperature side refrigeration circuit L, condense the low temperature side refrigerant in the refrigerant heat exchanger M, and perform latent heat exchange between the low temperature side refrigerant and the high temperature side refrigerant. Therefore, it is always necessary to operate the two compressors LC and HC together to generate hot water, and there is a problem that high efficiency operation cannot be guaranteed when the outside air is high.

【0014】第3に、低温側冷凍回路Lに介装した熱源
側熱交換器Jは蒸発器として作用し、特に低外気時に、
そのフィンに付霜するから、冷媒流通方向を切換えて、
低温側圧縮機LCから吐出する吐出ガスを熱源側熱交換
器Jに導き、デフロスト運転を行うことがある。この場
合、予熱熱交換器Kは蒸発器として作用するから、温水
の温度低下が大きい問題があるし、又、この問題解消の
ために、高温側冷凍回路Hを併用作動させて液体熱交換
器Nでの加熱を確保することとした場合、高温側冷媒回
路Hにとって唯一の蒸発器となる冷媒熱交換器Mは、一
方で低温側冷凍回路Lの蒸発器でもあるから、高温側冷
媒の蒸発が阻害され、円滑な運転を持続できない問題が
ある。
Thirdly, the heat source side heat exchanger J interposed in the low temperature side refrigeration circuit L acts as an evaporator, and particularly when the outside air is low,
Since the frost is formed on the fins, the refrigerant flow direction is switched,
The discharge gas discharged from the low temperature side compressor LC may be guided to the heat source side heat exchanger J to perform defrost operation. In this case, since the preheat heat exchanger K acts as an evaporator, there is a problem that the temperature of the hot water is greatly lowered, and in order to solve this problem, the high temperature side refrigeration circuit H is operated in combination and the liquid heat exchanger is operated. When ensuring the heating at N, the refrigerant heat exchanger M, which is the only evaporator for the high temperature side refrigerant circuit H, is also the evaporator of the low temperature side refrigeration circuit L, so that the evaporation of the high temperature side refrigerant is performed. Is hindered, and there is a problem that smooth driving cannot be maintained.

【0015】本発明の主目的は、まず、上記第1の課題
を解決し、低温側及び高温側冷凍回路を併用する二元運
転により、高い効率で十分に高い温度の液体を生成する
ことができる二元冷凍装置を提供する点にある。
The main object of the present invention is to solve the first problem and to generate a liquid of sufficiently high temperature with high efficiency by a binary operation in which a low temperature side and a high temperature side refrigeration circuit are used in combination. The point is to provide a dual refrigeration system that can be used.

【0016】[0016]

【課題を解決するための手段】請求項1記載の発明は、
上記主目的を達成するため、図1に示すように、次のA
〜Fの構成要素を具備しているものとした。
According to the first aspect of the present invention,
In order to achieve the above main purpose, as shown in FIG.
It is assumed that each of the components has elements F to F.

【0017】A.低温側圧縮機1をもつ低温側冷凍回路
2。この低温側冷凍回路2に流す低温側冷媒の代表例に
は、R22等がある。
A. A low temperature side refrigeration circuit 2 having a low temperature side compressor 1. R22 and the like are typical examples of the low temperature side refrigerant that flows into the low temperature side refrigeration circuit 2.

【0018】B.高温側圧縮機3をもつ高温側冷凍回路
4。この高温側冷凍回路4に流す高温側冷媒の代表例に
は、HFC−134a等がある。
B. High temperature side refrigeration circuit 4 having a high temperature side compressor 3. A representative example of the high temperature side refrigerant flowing in the high temperature side refrigeration circuit 4 is HFC-134a or the like.

【0019】C.低温側冷凍回路2の高圧冷媒と高温側
冷凍回路4の低圧冷媒とを潜熱交換可能にした冷媒熱交
換器5。この冷媒熱交換器5は、冷媒同士を熱交換させ
るものであって、いわゆる、二重管式熱交換器、プレー
ト式熱交換器、シェルアンドチューブ式熱交換器等、多
様な形式の熱交換器を含む概念である。
C. A refrigerant heat exchanger 5 that enables latent heat exchange between the high-pressure refrigerant of the low-temperature side refrigeration circuit 2 and the low-pressure refrigerant of the high-temperature side refrigeration circuit 4. This refrigerant heat exchanger 5 is for exchanging heat between refrigerants, and is a so-called double-tube heat exchanger, plate heat exchanger, shell-and-tube heat exchanger, and other various types of heat exchangers. It is a concept that includes vessels.

【0020】D.高温側圧縮機3から吐出する吐出ガス
を凝縮させて高温液体を生成する液体熱交換器6。この
液体熱交換器6は、図1に示すように、別付の給湯タン
ク(図示せず)に入・出口管61,62で接続する容器
600の内部に冷媒配管60を配管する方式のものや、
給湯タンク内に直接配管を内装する方式のもの等があ
る。
D. A liquid heat exchanger 6 that condenses a discharge gas discharged from the high temperature side compressor 3 to generate a high temperature liquid. As shown in FIG. 1, this liquid heat exchanger 6 is of a type in which a refrigerant pipe 60 is installed inside a container 600 connected to inlet / outlet pipes 61 and 62 to a separate hot water supply tank (not shown). Or
There is a system in which piping is directly installed in the hot water tank.

【0021】E.低温側圧縮機1の吐出ガスと液体熱交
換器6の生成対象液体とを顕熱交換させる補助熱交換器
7。この補助熱交換器7は、図1に示すように、液体熱
交換器6の内部に配管する方式のものの他、外部に外付
けする方式のものをも含む概念である。
E. An auxiliary heat exchanger 7 for exchanging sensible heat between the discharge gas of the low temperature side compressor 1 and the liquid to be generated by the liquid heat exchanger 6. As shown in FIG. 1, the auxiliary heat exchanger 7 is a concept that includes not only the type of piping inside the liquid heat exchanger 6 but also the type of external attachment to the outside.

【0022】F.低温側冷凍回路2に介装する熱源側熱
交換器8。この熱源側熱交換器8は、図1に示すよう
に、ファン81を付設し、多数枚のフィン82と複数パ
スの冷媒配管80とを直交させたクロスフィンコイル
等、空気式のものが代表的なものである。
F. A heat source side heat exchanger 8 interposed in the low temperature side refrigeration circuit 2. As shown in FIG. 1, this heat source side heat exchanger 8 is typically a pneumatic type such as a cross fin coil in which a fan 81 is attached and a large number of fins 82 and a plurality of paths of the refrigerant pipe 80 are orthogonal to each other. It is a target.

【0023】請求項2記載の発明は、請求項1記載の発
明において、補助熱交換器7での生成対象液体の加熱を
効果的に行わせるため、補助熱交換器7を液体熱交換器
6の液体取出部側に配設している構成にした。
According to a second aspect of the present invention, in the first aspect of the present invention, the auxiliary heat exchanger 7 is replaced by the liquid heat exchanger 6 in order to effectively heat the liquid to be produced in the auxiliary heat exchanger 7. It is arranged such that it is arranged on the liquid take-out side.

【0024】請求項3記載の発明は上記第2の課題をも
解決するものであって、請求項1又は請求項2記載の発
明において、低温側及び高温側冷凍回路を併用する二元
運転のみならず、高温側のみの単段運転をも可能にする
ため、高温側冷凍回路4に補助蒸発器9を介装している
構成にした。この補助蒸発器9も、熱源側熱交換器8と
同様、多数枝のフィン82と複数パスの冷媒配管90と
を直交させたクロスフィンコイル等、主として空気式の
ものであるが、液冷式のものであってもよい。
The invention according to claim 3 also solves the above-mentioned second problem, and in the invention according to claim 1 or claim 2, only a dual operation in which a low temperature side and a high temperature side refrigeration circuit are used in combination. Of course, in order to enable single-stage operation only on the high temperature side, the high temperature side refrigeration circuit 4 has the auxiliary evaporator 9 interposed. Similar to the heat source side heat exchanger 8, the auxiliary evaporator 9 is also mainly of the air type, such as a cross fin coil in which the fins 82 having a large number of branches and the refrigerant pipes 90 having a plurality of paths are orthogonal to each other, but a liquid cooling type. It may be one.

【0025】請求項4記載の発明は、二元運転と単段運
転とを双方可能にした請求項3記載の発明において、外
気条件に応じて実際に高効率運転を行わせるため、低外
気時、低温側圧縮機1及び高温側圧縮機3を併用運転
し、高外気時、高温側圧縮機3を単段運転する外気温度
対応の運転制御手段101を備えている構成にした。
In the invention according to claim 4, in which the dual operation and the single-stage operation are both possible, in the invention according to claim 3, since highly efficient operation is actually performed in accordance with the outside air condition, at the time of low outside air The low temperature side compressor 1 and the high temperature side compressor 3 are operated together, and the operation control means 101 corresponding to the outside air temperature is provided to operate the high temperature side compressor 3 in a single stage when the outside air is high.

【0026】請求項5記載の発明は、請求項3又は請求
項4記載の発明において、夜間貯湯運転と昼間追焚運転
との間などで運転を切換え、それぞれに適合した運転を
行わせるため、切換指令の入力に応じて、低温側圧縮機
1及び高温側圧縮機3の併用運転と、高温側圧縮機3の
単段運転とを切換える運転切換手段102を備えている
構成にした。
According to a fifth aspect of the present invention, in the third or fourth aspect of the invention, the operation is switched between nighttime hot water storage operation and daytime additional heating operation, and the operation suitable for each is performed, The operation switching means 102 is provided for switching between the combined operation of the low temperature side compressor 1 and the high temperature side compressor 3 and the single-stage operation of the high temperature side compressor 3 in accordance with the input of the changeover command.

【0027】請求項6記載の発明は、上記第3の課題を
も解決するものであって、請求項3〜請求項5何れか一
記載の発明において、熱源側熱交換器8のデフロストを
簡易かつ良好に実施させるため、低温側冷凍回路2は、
冷媒熱交換器5と熱源側熱交換器8との間で冷媒を可逆
的に流す切換機構10を備え、熱源側熱交換器8のデフ
ロストを可能にしている構成にした。切換機構10は、
図1に示すように、四路切換弁で構成する他、複数の電
磁弁を用いて構成するようにしてもよい。
The invention according to claim 6 is also for solving the above-mentioned third problem, and in the invention according to any one of claims 3 to 5, the defrosting of the heat source side heat exchanger 8 is simplified. In addition, in order to perform well, the low temperature side refrigeration circuit 2
A switching mechanism 10 that reversibly flows the refrigerant between the refrigerant heat exchanger 5 and the heat source side heat exchanger 8 is provided so that the heat source side heat exchanger 8 can be defrosted. The switching mechanism 10 is
As shown in FIG. 1, in addition to the four-way switching valve, a plurality of solenoid valves may be used.

【0028】請求項7記載の発明は、請求項6記載の発
明において、熱源側熱交換器8のデフロスト時、生成対
象液体の温度低下を実際に抑制するため、熱源側熱交換
器8のデフロスト時、低温側圧縮器1及び高温側圧縮機
3を併用運転するデフロスト運転制御手段103を備え
ている構成にした。
According to a seventh aspect of the invention, in the sixth aspect of the invention, when the heat source side heat exchanger 8 is defrosted, the temperature drop of the liquid to be produced is actually suppressed, so that the heat source side heat exchanger 8 is defrosted. At this time, the defrost operation control means 103 for operating the low temperature side compressor 1 and the high temperature side compressor 3 together is provided.

【0029】請求項8記載の発明は、請求項3〜請求項
7何れか一記載の発明において、構成の簡易化を図るた
め、熱源側熱交換器8に補助蒸発器9を付設し、通過空
気を供用させている構成にした。
In the invention described in claim 8, in the invention described in any one of claims 3 to 7, in order to simplify the structure, an auxiliary evaporator 9 is attached to the heat source side heat exchanger 8 and the heat exchanger 8 passes through. It is configured to use air.

【0030】請求項9記載の発明は、請求項8記載の発
明において、熱源側熱交換器8に吐出ガスを投じるデフ
ロスト運転を行うにしても、そのデフロストの効果を一
層向上できるようにするため、図4に明示するように、
熱源側熱交換器8の冷媒配管80を、白抜き矢印で示す
通過空気の風上側に、補助蒸発器9の冷媒配管90を通
過空気の風下側にそれぞれ配設している構成にした。
According to a ninth aspect of the present invention, in order to further improve the effect of the defrosting operation even when performing the defrosting operation in which the discharge gas is injected into the heat source side heat exchanger 8 in the eighth aspect of the invention. , As clearly shown in FIG.
The refrigerant pipe 80 of the heat source side heat exchanger 8 is arranged on the upwind side of the passing air shown by the white arrow, and the refrigerant pipe 90 of the auxiliary evaporator 9 is arranged on the downwind side of the passing air.

【0031】請求項10記載の発明は、請求項1〜請求
項9何れか一記載の発明において、高温側圧縮機3の容
量が過大になることなく、出力を大きく確保するため、
低温側圧縮機1に、冷媒熱交換器5及び熱源側熱交換器
8を複数組並列に接続していると共に、各冷媒熱交換器
5に対応させて、高温側冷凍回路4を複数組に独立させ
て設けている構成にした。
According to a tenth aspect of the present invention, in the invention according to any one of the first to ninth aspects, a large output is secured without the capacity of the high temperature side compressor 3 becoming excessively large.
A plurality of sets of refrigerant heat exchangers 5 and heat source side heat exchangers 8 are connected in parallel to the low temperature side compressor 1, and a plurality of sets of high temperature side refrigeration circuits 4 are provided corresponding to each refrigerant heat exchanger 5. It is configured to be provided independently.

【0032】[0032]

【発明の作用効果】請求項1記載の発明では、低温側圧
縮機1及び高温側圧縮機3を併用運転する二元運転時、
低温側冷凍回路2では、実線矢印の通り、低温側圧縮機
1、補助熱交換器7、冷媒熱交換器5、熱源側熱交換器
8、低温側圧縮機1の順に低温側冷媒を流し、一方、高
温側冷凍回路4では、高温側圧縮機3、液体熱交換器
6、補助蒸発器9、冷媒熱交換器5、高温側圧縮器3の
順に高温側冷媒を流す。
In the invention described in claim 1, during the dual operation in which the low temperature side compressor 1 and the high temperature side compressor 3 are operated in combination,
In the low temperature side refrigeration circuit 2, as shown by the solid line arrow, the low temperature side compressor 1, the auxiliary heat exchanger 7, the refrigerant heat exchanger 5, the heat source side heat exchanger 8, and the low temperature side compressor 1 flow the low temperature side refrigerant in this order, On the other hand, in the high temperature side refrigeration circuit 4, the high temperature side refrigerant flows in the order of the high temperature side compressor 3, the liquid heat exchanger 6, the auxiliary evaporator 9, the refrigerant heat exchanger 5, and the high temperature side compressor 3.

【0033】図2に示すように、低温側圧縮機1から吐
出した低温側の吐出ガスxは、補助熱交換器7で生成対
象液体に顕熱を与えて、そのモリエル線図中yの状態に
なり、冷媒熱交換器5で凝縮してzの状態まで液化し、
熱源側熱交換器8でz’からwの状態に蒸発気化して、
低温側圧縮機1に戻る。一方、図3中点線で示すように
高温側圧縮機3から吐出した高温側の吐出ガスは、液体
熱交換器6でpからqの状態を経てrの状態に凝縮液化
し、補助蒸発器9及び冷媒熱交換器5でr’からsの状
態に蒸発気化して、高温側圧縮器3に戻る。この場合、
冷媒熱交換器5で高温側冷媒は、低温側冷媒の凝縮潜熱
を奪って蒸発する。こうして、低温側冷凍回路2と高温
側冷凍回路4との二元連携がなされ、液体熱交換器6で
の生成対象液体は、高温側冷媒の凝縮作用により加熱さ
れると共に、低温側冷媒の吐出ガスの保有する顕熱によ
り加熱される。このとき、低外気時で熱源側熱交換器8
の蒸発圧力が低くても、液体熱交換器6での凝縮圧力を
大きく確保でき、低温側及び高温側圧縮機1,3の各々
一台あたりの圧縮比は小さくできるため、高効率運転が
行える。又、図2に示すように、低温側の吐出ガスxの
温度は、R22の場合で100℃程度と高く、通常の生
成対象液体の取出し温度60〜70℃に比べて高く、液
体を効果的に加熱できる。更に、このように低温側の吐
出ガスの顕熱を利用する分だけ、高温側冷媒の凝縮温度
及び吐出ガス温度を下げることができる。HFC−13
4aの場合、図3に示すように吐出ガス温度で、単段運
転時(実線)の90℃に比べて、二元運転時(点線)は
78℃に低下できる。このため、高温側圧縮機3の圧縮
比を一層小さくでき、より一層効率の高い運転が行なえ
ると共に、信頼性を向上できるのである。
As shown in FIG. 2, the low-temperature side discharge gas x discharged from the low-temperature side compressor 1 gives sensible heat to the liquid to be produced by the auxiliary heat exchanger 7, and the state of y in the Mollier diagram. And condensed in the refrigerant heat exchanger 5 and liquefied to the state of z,
The heat source side heat exchanger 8 evaporates and vaporizes from z ′ to w,
Return to the low temperature side compressor 1. On the other hand, as shown by the dotted line in FIG. 3, the high temperature side discharge gas discharged from the high temperature side compressor 3 is condensed and liquefied in the liquid heat exchanger 6 from the state of p to the state of q and then to the state of r, and the auxiliary evaporator 9 And, the refrigerant heat exchanger 5 evaporates from r ′ to the state of s and returns to the high temperature side compressor 3. in this case,
In the refrigerant heat exchanger 5, the high temperature side refrigerant takes away the latent heat of condensation of the low temperature side refrigerant and evaporates. In this way, the low temperature side refrigeration circuit 2 and the high temperature side refrigeration circuit 4 are binaryly linked, the liquid to be generated in the liquid heat exchanger 6 is heated by the condensation action of the high temperature side refrigerant, and the low temperature side refrigerant is discharged. It is heated by the sensible heat of the gas. At this time, when the outside air is low, the heat source side heat exchanger 8
Even if the evaporating pressure is low, a large condensing pressure in the liquid heat exchanger 6 can be secured, and the compression ratio for each of the low temperature side and high temperature side compressors 1 and 3 can be reduced, so that highly efficient operation can be performed. . Further, as shown in FIG. 2, the temperature of the discharge gas x on the low temperature side is as high as about 100 ° C. in the case of R22, which is higher than the normal take-out temperature of the liquid to be produced 60 to 70 ° C. Can be heated to Furthermore, the condensation temperature of the high temperature side refrigerant and the discharge gas temperature can be lowered by the amount of utilizing the sensible heat of the low temperature side discharge gas. HFC-13
In the case of 4a, as shown in FIG. 3, the discharge gas temperature can be lowered to 78 ° C. during the dual operation (dotted line), compared with 90 ° C. during the single-stage operation (solid line). For this reason, the compression ratio of the high temperature side compressor 3 can be further reduced, more highly efficient operation can be performed, and reliability can be improved.

【0034】請求項2記載の発明では、二元運転時、補
助熱交換器7により液体熱交換器6の液体取出部側の生
成対象液体を加熱でき、生成対象液体の加熱を効果的に
行うことができ、取出す液体の温度を一層高くすること
ができる。
According to the second aspect of the invention, during the binary operation, the auxiliary heat exchanger 7 can heat the liquid to be produced on the liquid take-out side of the liquid heat exchanger 6, and the liquid to be produced can be effectively heated. It is possible to further increase the temperature of the liquid to be taken out.

【0035】請求項3記載の発明では、高温側圧縮機3
のみの単段運転も効率良く行なえるのであり、この単段
運転時には、高温側冷凍回路4のみにおいて、高温側圧
縮機3、液体熱交換器6、補助蒸発器9、冷媒熱交換器
5、高温側圧縮機3の順に高温側冷媒を流す。
In the invention according to claim 3, the high temperature side compressor 3
It is also possible to efficiently perform only the single-stage operation. During this single-stage operation, only the high temperature side refrigeration circuit 4 has the high temperature side compressor 3, the liquid heat exchanger 6, the auxiliary evaporator 9, the refrigerant heat exchanger 5, The high temperature side refrigerant is made to flow in order of the high temperature side compressor 3.

【0036】図3中実線で示すように、高温側圧縮機3
から吐出した吐出ガスは、液体熱交換器6でPからQの
状態を経てRの状態に凝縮液化し、補助蒸発器9及び冷
媒熱交換器5でR’からSの状態に蒸発気化して、高温
側圧縮機3に戻る。この場合、高温側冷媒は冷媒熱交換
器5で低温側冷媒の凝縮潜熱を利用することはできない
が、補助蒸発器9により蒸発作用を補うことができる。
こうして、高温側冷凍回路4のみの単段運転が行え、液
体熱交換器6での生成対象液体は、高温側冷媒の凝縮作
用により加熱される。このとき、高外気時には、低外気
時に比べて蒸発圧力が高く、凝縮圧力との差圧が過大で
はないから、高温側圧縮機3のみの単段運転のみで高効
率運転を発揮できる。
As shown by the solid line in FIG. 3, the high temperature side compressor 3
The discharged gas discharged from is condensed and liquefied in the state of R through the state of P to Q in the liquid heat exchanger 6, and is evaporated and vaporized in the state of R ′ to S in the auxiliary evaporator 9 and the refrigerant heat exchanger 5. , And returns to the high temperature side compressor 3. In this case, the high temperature side refrigerant cannot use the latent heat of condensation of the low temperature side refrigerant in the refrigerant heat exchanger 5, but the auxiliary evaporator 9 can supplement the evaporation action.
Thus, the single-stage operation of only the high temperature side refrigeration circuit 4 can be performed, and the liquid to be produced in the liquid heat exchanger 6 is heated by the condensing action of the high temperature side refrigerant. At this time, when the outside air is high, the evaporation pressure is higher than when the outside air is low, and the differential pressure from the condensation pressure is not too large. Therefore, high-efficiency operation can be achieved by only the single-stage operation of the high temperature side compressor 3.

【0037】請求項4記載の発明では、外気温度対応の
運転制御手段101により、低外気時、低温側圧縮機1
及び高温側圧縮機3を併用する二元運転を、高外気時、
高温側圧縮機3の単段運転をするから、外気条件に応じ
て実際に高効率運転を行わせることができる。
According to the fourth aspect of the present invention, the low temperature side compressor 1 is operated by the operation control means 101 corresponding to the outside air temperature when the outside air is low.
And dual operation using the high temperature side compressor 3 together,
Since the single-stage operation of the high temperature side compressor 3 is performed, it is possible to actually perform high efficiency operation according to the outside air condition.

【0038】請求項5記載の発明では、運転切換手段1
02により、切換指令の入力に応じて、低温側圧縮機1
及び高温側圧縮機3を併用する二元運転と、高温側圧縮
機3の単段運転とを切換えるから、夜間貯湯運転と昼間
追焚運転との間などで運転を切換え、それぞれに適合し
た運転を行わせることができる。
In the invention according to claim 5, the operation switching means 1
02, according to the input of the switching command, the low temperature side compressor 1
Also, since the dual operation in which the high temperature side compressor 3 is used in combination and the single stage operation of the high temperature side compressor 3 are switched, the operation is switched between the nighttime hot water storage operation and the daytime additional heating operation, etc. Can be done.

【0039】請求項6記載の発明では、切換機構10を
切換えることにより、低温側冷凍回路2での冷媒の流れ
を簡易に逆転させることができ、熱源側熱交換器8に吐
出ガスを供給して、該熱源側熱交換器8のデフロストを
簡易かつ良好に実施することができる。デフロスト運転
時には、図1に示すように低温側冷凍回路2において、
低温側圧縮機1、熱源側熱交換器8、冷媒熱交換器5、
補助熱交換器7、低温側圧縮機1の順に低温側冷媒を流
すのであり、低温側圧縮機1から吐出した吐出ガスは、
熱源側熱交換器8でwからz’の状態に凝縮液化し、冷
媒熱交換器5及び補助熱交換器7でzからxの状態に蒸
発気化して、低温側圧縮機1に戻る。このとき、補助熱
交換器7で、液体熱交換器6での生成対象液体の保有す
る顕熱を回収できるため、熱源側熱交換器8に供給する
吐出ガスの保有熱量を大きくでき、該熱源側熱交換器8
での着霜を効果的に除去することができる。又、補助熱
交換器7での顕熱回収により生成対象液体の温度低下を
招くことから、高温側冷凍回路4を併用して作動させて
液体熱交換器6での加熱を確保することとした場合に
も、高温側冷媒回路4にとって冷媒熱交換器5が唯一の
蒸発器となるのではなく、補助蒸発器9が蒸発作用を補
うため、高温側冷凍回路4での円滑な運転を持続でき
る。こうして、熱源側熱交換器8のデフロストにも好適
合ならしめることができ、そのデフロストを簡易かつ良
好に行なうことができるのである。
In the sixth aspect of the invention, the flow of the refrigerant in the low temperature side refrigeration circuit 2 can be easily reversed by switching the switching mechanism 10, and the discharge gas is supplied to the heat source side heat exchanger 8. Therefore, the defrosting of the heat source side heat exchanger 8 can be performed easily and satisfactorily. During the defrost operation, in the low temperature side refrigeration circuit 2 as shown in FIG.
Low temperature side compressor 1, heat source side heat exchanger 8, refrigerant heat exchanger 5,
The low temperature side refrigerant flows in the order of the auxiliary heat exchanger 7 and the low temperature side compressor 1, and the discharge gas discharged from the low temperature side compressor 1 is
The heat source side heat exchanger 8 condenses and liquefies from w to z ′ state, and the refrigerant heat exchanger 5 and the auxiliary heat exchanger 7 evaporate and vaporize from z to x state and return to the low temperature side compressor 1. At this time, the sensible heat of the liquid to be generated in the liquid heat exchanger 6 can be recovered by the auxiliary heat exchanger 7, so that the heat quantity of the discharge gas supplied to the heat source side heat exchanger 8 can be increased, and the heat source Side heat exchanger 8
It is possible to effectively remove the frost formation in the. Further, since the temperature of the liquid to be produced is lowered due to the recovery of sensible heat in the auxiliary heat exchanger 7, the high temperature side refrigeration circuit 4 is also operated to secure the heating in the liquid heat exchanger 6. In this case, the refrigerant heat exchanger 5 is not the only evaporator for the high temperature side refrigerant circuit 4, and the auxiliary evaporator 9 compensates for the evaporation action, so that the smooth operation in the high temperature side refrigeration circuit 4 can be maintained. . In this way, the heat source side heat exchanger 8 can be suitably adapted to the defrosting, and the defrosting can be performed easily and satisfactorily.

【0040】請求項7記載の発明では、デフロスト運転
制御手段103により、熱源側熱交換器8のデフロスト
時、低温側圧縮器1及び高温側圧縮機3を併用運転する
から、デフロストに伴う生成対象液体の温度低下を実際
に抑制することができる。
According to the seventh aspect of the invention, the defrost operation control means 103 simultaneously operates the low temperature side compressor 1 and the high temperature side compressor 3 when the heat source side heat exchanger 8 is defrosted. The temperature drop of the liquid can be actually suppressed.

【0041】請求項8記載の発明では、熱源側熱交換器
8に補助蒸発器9を付設し、通過空気を供用させている
から、各熱交換器8,9を独立状に設けてそれぞれにフ
ァンを設置する場合に比べて、構成の簡易化を図ること
ができる。
In the invention according to claim 8, since the auxiliary evaporator 9 is attached to the heat source side heat exchanger 8 and the passing air is used, the heat exchangers 8 and 9 are provided independently of each other. The configuration can be simplified as compared with the case where a fan is installed.

【0042】請求項9記載の発明では、熱源側熱交換器
8と補助蒸発器9との通過空気を供用化した場合に、着
霜の多いのは低温側冷媒が蒸発する熱源側熱交換器8側
であり、この熱源側熱交換器8の冷媒配管80を通過空
気の風上側に、補助蒸発器9の冷媒配管90を通過空気
の風下側にそれぞれ配設することにより、デフロスト
時、その着霜を効果的に除去できると共に、高温側冷凍
回路4を併用作動させて補助蒸発器9を作動させた場合
にも、この補助蒸発器9での冷却による悪影響を低減で
きる。こうして、熱源側熱交換器8に吐出ガスを投じる
デフロスト運転を行うようにした場合にも、そのデフロ
ストの効果を一層向上することができるのである。
According to the ninth aspect of the invention, when the passing air between the heat source side heat exchanger 8 and the auxiliary evaporator 9 is put into service, the frost is often generated on the heat source side heat exchanger where the low temperature side refrigerant evaporates. 8 side, the refrigerant pipe 80 of the heat source side heat exchanger 8 is arranged on the windward side of the passing air, and the refrigerant pipe 90 of the auxiliary evaporator 9 is arranged on the leeward side of the passing air. Frost can be effectively removed, and even when the auxiliary evaporator 9 is operated by operating the high temperature side refrigeration circuit 4 together, it is possible to reduce the adverse effect due to the cooling in the auxiliary evaporator 9. Thus, even when the defrost operation in which the discharge gas is thrown into the heat source side heat exchanger 8 is performed, the effect of the defrost can be further improved.

【0043】請求項10記載の発明では、低温側圧縮機
1に、冷媒熱交換器5及び熱源側熱交換器8を複数組並
列に接続し、各冷媒熱交換器5に対応させて、高温側冷
凍回路4を複数組に独立させて設けているから、一台あ
たりの高温側圧縮機3の容量が過大になることはなく、
複数台の高温側圧縮機3により液体熱交換器6での加熱
を行うことができる。このため、液体熱交換器6での取
出し出力を効果的に向上させることができる。
In the tenth aspect of the invention, a plurality of sets of refrigerant heat exchangers 5 and heat source side heat exchangers 8 are connected in parallel to the low temperature side compressor 1, and each of the refrigerant heat exchangers 5 corresponds to a high temperature. Since the plurality of side refrigeration circuits 4 are independently provided, the capacity of each high temperature side compressor 3 does not become excessive,
The liquid heat exchanger 6 can be heated by a plurality of high temperature side compressors 3. Therefore, the extraction output of the liquid heat exchanger 6 can be effectively improved.

【0044】[0044]

【発明の実施の形態】図1に示す二元冷凍装置は、低温
側圧縮機1をもち、R22を低温側冷媒に用いた低温側
冷凍回路2と、高温側圧縮機3をもち、HFC−134
aを高温側冷媒に用いた高温側冷凍回路4とを備え、こ
れらを、低温側冷凍回路2の高圧冷媒と高温側冷凍回路
4の低圧冷媒とを潜熱交換させる冷媒熱交換器5を介し
て連携したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The binary refrigeration system shown in FIG. 1 has a low temperature side compressor 1, a low temperature side refrigeration circuit 2 using R22 as a low temperature side refrigerant, and a high temperature side compressor 3, and an HFC-type compressor. 134
and a high temperature side refrigeration circuit 4 using a as a high temperature side refrigerant, and a high pressure side refrigerant of the low temperature side refrigeration circuit 2 and a low pressure side refrigerant of the high temperature side refrigeration circuit 4 through which they undergo latent heat exchange. It is a cooperation.

【0045】6は、高温側圧縮機3から吐出する吐出ガ
スを外付けの給湯タンクと循環ポンプを介して連結する
容器600の内部に配管した冷媒配管60に流して凝縮
させ、高温液体たる温水を生成する液体熱交換器、7
は、低温側圧縮機1の吐出ガスと液体熱交換器6の出口
側の温水とを顕熱交換させる補助熱交換器、8は、ファ
ン81を付設し、多数枚のフィン82と複数パスの冷媒
配管80とを直交させたクロスフィンコイルから成る熱
源側熱交換器、9は、熱源側熱交換器8とファン81及
びフィン82を供用し、且つ熱源側熱交換器8の冷媒配
管80の風下側に複数パスの冷媒配管90を配設した補
助蒸発器、10は、冷媒熱交換器5と熱源側熱交換器8
との間で冷媒を可逆的に流す四路切換弁から成る切換機
構である。又、21は低温側膨張機構、41は高温側膨
張機構、61は外付けの給湯タンクから容器600へ温
水を導く入口管、62は同出口管である。
Reference numeral 6 denotes a discharge gas discharged from the high temperature side compressor 3, which is made to flow through a refrigerant pipe 60 connected to an external hot water supply tank via a circulation pump to a refrigerant pipe 60 to be condensed, whereby hot water which is a high temperature liquid. Liquid heat exchanger for generating 7
Is an auxiliary heat exchanger for exchanging sensible heat between the discharge gas of the low temperature side compressor 1 and the hot water on the outlet side of the liquid heat exchanger 6, and 8 is equipped with a fan 81, and has a large number of fins 82 and a plurality of paths. The heat source side heat exchanger 9 composed of a cross fin coil orthogonal to the refrigerant pipe 80 serves the heat source side heat exchanger 8, the fan 81 and the fins 82, and the heat source side heat exchanger 8 has a refrigerant pipe 80. Auxiliary evaporators 10 each having a plurality of refrigerant pipes 90 arranged on the leeward side include a refrigerant heat exchanger 5 and a heat source side heat exchanger 8.
Is a switching mechanism composed of a four-way switching valve that causes the refrigerant to flow reversibly between and. Further, 21 is a low temperature side expansion mechanism, 41 is a high temperature side expansion mechanism, 61 is an inlet pipe for guiding hot water from an external hot water supply tank to the container 600, and 62 is the same outlet pipe.

【0046】一台の低温側圧縮機1には、冷媒熱交換器
5及び熱源側熱交換器8を2組並列に接続していると共
に、各冷媒熱交換器5に対応させて、高温側冷凍回路4
を2組に独立させて設けている。
Two sets of the refrigerant heat exchanger 5 and the heat source side heat exchanger 8 are connected in parallel to one low-temperature side compressor 1, and the high-temperature side compressor 5 is made to correspond to each refrigerant heat exchanger 5. Refrigeration circuit 4
Are independently provided in two sets.

【0047】各圧縮器1,3及び切換機構10は、コン
トローラ100からの指令により発停及び切換制御され
る。コントローラ100には、外気温度センサー201
から入力する外気温度が低い時、低温側圧縮機1及び高
温側圧縮機3を併用運転し、高い時、高温側圧縮機3を
単段運転する外気温度対応の運転制御手段101を設け
ている。又、夜間貯湯運転と昼間追焚運転との間などで
運転モードを切換えるモードセレクタ202からの切換
指令に応じて、昼間追焚運転時には低温側圧縮機1及び
高温側圧縮機3を併用運転し、夜間貯湯運転時には高温
側圧縮機3を単段運転する運転切換手段102を設けて
いる。更に、機構機構10を切換えて熱源側熱交換器8
をデフロストする時、温水の温度低下を抑制するため、
低温側圧縮器1及び高温側圧縮機3を併用運転するデフ
ロスト運転制御手段103を設けている。
The compressors 1 and 3 and the switching mechanism 10 are controlled to start and stop and switch according to a command from the controller 100. The controller 100 includes an outside air temperature sensor 201.
When the outside air temperature input from is low, the low temperature side compressor 1 and the high temperature side compressor 3 are operated together, and when the outside air temperature is high, the operation control means 101 corresponding to the outside air temperature is provided to operate the high temperature side compressor 3 in a single stage. . Further, the low temperature side compressor 1 and the high temperature side compressor 3 are operated together during the daytime additional heating operation in response to a switching command from the mode selector 202 that switches the operation mode between the nighttime hot water storage operation and the daytime additional heating operation. The operation switching means 102 for operating the high temperature side compressor 3 in a single stage during the hot water storage operation at night is provided. Further, the mechanism 10 is switched to change the heat source side heat exchanger 8
When defrosting, to prevent the temperature drop of hot water,
A defrost operation control means 103 for operating the low temperature side compressor 1 and the high temperature side compressor 3 together is provided.

【0048】こうして、以上の構成により、主に低外気
時を想定した二元給湯運転、主に高外気時を想定した高
温側単段運転、低温側冷凍回路2の逆サイクルによるデ
フロスト運転、又、低温側及び高温側の併用によるデフ
ロスト運転をそれぞれ可能にしているのである。
Thus, with the above configuration, the dual hot water supply operation mainly assuming low outside air, the high temperature side single stage operation mainly assuming high outside air, the defrost operation by the reverse cycle of the low temperature side refrigeration circuit 2, and It enables defrost operation by using both low temperature side and high temperature side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る二元冷凍装置の冷媒回路図。FIG. 1 is a refrigerant circuit diagram of a binary refrigeration system according to the present invention.

【図2】低温側冷凍回路のモリエル線図。FIG. 2 is a Mollier diagram of the low temperature side refrigeration circuit.

【図3】高温側冷凍回路のモリエル線図。FIG. 3 is a Mollier diagram of the high temperature side refrigeration circuit.

【図4】熱源側熱交換器及び補助蒸発器部分の要部側面
図。
FIG. 4 is a side view of essential parts of a heat source side heat exchanger and an auxiliary evaporator portion.

【図5】従来例の冷媒回路図。FIG. 5 is a refrigerant circuit diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1;低温側圧縮機、2;低温側冷凍回路、3;高温側圧
縮機、4;高温側冷凍回路、5;冷媒熱交換器、6;液
体熱交換器、7;補助熱交換器、8;熱源側熱交換器、
9;補助蒸発器、10;切換機構
1; low temperature side compressor, 2; low temperature side refrigeration circuit, 3; high temperature side compressor, 4; high temperature side refrigeration circuit, 5; refrigerant heat exchanger, 6; liquid heat exchanger, 7; auxiliary heat exchanger, 8 ; Heat source side heat exchanger,
9; auxiliary evaporator, 10; switching mechanism

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 次のA〜Fの構成要素を具備しているこ
とを特徴とする二元冷凍装置。 A.低温側圧縮機(1)をもつ低温側冷凍回路(2)。 B.高温側圧縮機(3)をもつ高温側冷凍回路(4)。 C.低温側冷凍回路(2)の高圧冷媒と高温側冷凍回路
(4)の低圧冷媒とを潜熱交換可能にした冷媒熱交換器
(5)。 D.高温側圧縮機(3)から吐出する吐出ガスを凝縮さ
せて高温液体を生成する液体熱交換器(6)。 E.低温側圧縮機(1)の吐出ガスと液体熱交換器
(6)の生成対象液体とを顕熱交換させる補助熱交換器
(7)。 F.低温側冷凍回路(2)に介装する熱源側熱交換器
(8)。
1. A dual refrigeration system comprising the following components A to F: A. A low temperature side refrigeration circuit (2) having a low temperature side compressor (1). B. High temperature side refrigeration circuit (4) with high temperature side compressor (3). C. A refrigerant heat exchanger (5) capable of performing latent heat exchange between the high-pressure refrigerant of the low-temperature side refrigeration circuit (2) and the low-pressure refrigerant of the high-temperature side refrigeration circuit (4). D. A liquid heat exchanger (6) that condenses the discharge gas discharged from the high temperature side compressor (3) to generate a high temperature liquid. E. FIG. An auxiliary heat exchanger (7) for exchanging sensible heat between the discharge gas of the low temperature side compressor (1) and the liquid to be produced by the liquid heat exchanger (6). F. A heat source side heat exchanger (8) interposed in the low temperature side refrigeration circuit (2).
【請求項2】 補助熱交換器(7)を液体熱交換器
(6)の液体取出部側に配設している請求項1記載の二
元冷凍装置。
2. The dual refrigeration system according to claim 1, wherein the auxiliary heat exchanger (7) is arranged on the liquid take-out side of the liquid heat exchanger (6).
【請求項3】 高温側冷凍回路(4)に補助蒸発器
(9)を介装している請求項1又は請求項2記載の二元
冷凍装置。
3. The dual refrigeration system according to claim 1, wherein an auxiliary evaporator (9) is provided in the high temperature side refrigeration circuit (4).
【請求項4】 低外気時、低温側圧縮機(1)及び高温
側圧縮機(3)を併用運転し、高外気時、高温側圧縮機
(3)を単段運転する外気温度対応の運転制御手段(1
01)を備えている請求項3記載の二元冷凍装置。
4. An operation corresponding to the outside air temperature, in which the low temperature side compressor (1) and the high temperature side compressor (3) are operated together when the outside air is low, and the high temperature side compressor (3) is operated in a single stage when the outside air is high. Control means (1
01) The dual refrigeration system according to claim 3 provided with.
【請求項5】 切換指令の入力に応じて、低温側圧縮機
(1)及び高温側圧縮機(3)の併用運転と、高温側圧
縮機(3)の単段運転とを切換える運転切換手段(10
2)を備えている請求項3又は請求項4記載の二元冷凍
装置。
5. An operation switching means for switching between a combined operation of the low temperature side compressor (1) and the high temperature side compressor (3) and a single stage operation of the high temperature side compressor (3) according to the input of a switching command. (10
The binary refrigeration system according to claim 3 or 4, further comprising 2).
【請求項6】 低温側冷凍回路(2)は、冷媒熱交換器
(5)と熱源側熱交換器(8)との間で冷媒を可逆的に
流す切換機構(10)を備え、熱源側熱交換器(8)の
デフロストを可能にしている請求項3〜請求項5何れか
一記載の二元冷凍装置。
6. The low temperature side refrigeration circuit (2) comprises a switching mechanism (10) for reversibly flowing the refrigerant between the refrigerant heat exchanger (5) and the heat source side heat exchanger (8), and the heat source side The dual refrigeration system according to any one of claims 3 to 5, which enables defrosting of the heat exchanger (8).
【請求項7】 熱源側熱交換器(8)のデフロスト時、
低温側圧縮器(1)及び高温側圧縮機(3)を併用運転
するデフロスト運転制御手段(103)を備えている請
求項6記載の二元冷凍装置。
7. The defrosting of the heat source side heat exchanger (8),
7. The dual refrigeration system according to claim 6, further comprising defrost operation control means (103) for operating the low temperature side compressor (1) and the high temperature side compressor (3) together.
【請求項8】 熱源側熱交換器(8)に補助蒸発器
(9)を付設し、通過空気を供用させている請求項3〜
請求項7何れか一記載の二元冷凍装置。
8. The heat source side heat exchanger (8) is further provided with an auxiliary evaporator (9) so that passing air can be used.
The binary refrigeration apparatus according to claim 7.
【請求項9】 熱源側熱交換器(8)の冷媒配管(8
0)を通過空気の風上側に、補助蒸発器(9)の冷媒配
管(90)を通過空気の風下側にそれぞれ配設している
請求項8記載の二元冷凍装置。
9. The refrigerant pipe (8) of the heat source side heat exchanger (8)
9. The dual refrigeration system according to claim 8, wherein 0) is arranged on the windward side of the passing air, and the refrigerant pipe (90) of the auxiliary evaporator (9) is arranged on the leeward side of the passing air.
【請求項10】 低温側圧縮機(1)に、冷媒熱交換器
(5)及び熱源側熱交換器(8)を複数組並列に接続し
ていると共に、各冷媒熱交換器(5)に対応させて、高
温側冷凍回路(4)を複数組に独立させて設けている請
求項1〜請求項9何れか一記載の二元冷凍装置。
10. A plurality of sets of refrigerant heat exchangers (5) and heat source side heat exchangers (8) are connected in parallel to the low temperature side compressor (1), and each refrigerant heat exchanger (5) is connected. Correspondingly, the high-temperature side refrigeration circuit (4) is independently provided in a plurality of sets, The binary refrigeration system according to any one of claims 1 to 9.
JP27816695A 1995-10-25 1995-10-25 Binary refrigerator Pending JPH09119725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27816695A JPH09119725A (en) 1995-10-25 1995-10-25 Binary refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27816695A JPH09119725A (en) 1995-10-25 1995-10-25 Binary refrigerator

Publications (1)

Publication Number Publication Date
JPH09119725A true JPH09119725A (en) 1997-05-06

Family

ID=17593516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27816695A Pending JPH09119725A (en) 1995-10-25 1995-10-25 Binary refrigerator

Country Status (1)

Country Link
JP (1) JPH09119725A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133186A (en) * 2009-12-25 2011-07-07 Fujitsu General Ltd Heat pump type water heater
JP2011149695A (en) * 2011-05-13 2011-08-04 Mitsubishi Electric Corp Heat pump device
JP2012052767A (en) * 2010-09-03 2012-03-15 Mitsubishi Electric Corp Heat pump device
JP2012127648A (en) * 2012-03-29 2012-07-05 Mitsubishi Electric Corp Heat pump apparatus
JP2012149883A (en) * 2012-03-29 2012-08-09 Mitsubishi Electric Corp Heat pump device
JP2014020733A (en) * 2012-07-23 2014-02-03 Hitachi Appliances Inc Two-cycle refrigerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133186A (en) * 2009-12-25 2011-07-07 Fujitsu General Ltd Heat pump type water heater
JP2012052767A (en) * 2010-09-03 2012-03-15 Mitsubishi Electric Corp Heat pump device
JP2011149695A (en) * 2011-05-13 2011-08-04 Mitsubishi Electric Corp Heat pump device
JP2012127648A (en) * 2012-03-29 2012-07-05 Mitsubishi Electric Corp Heat pump apparatus
JP2012149883A (en) * 2012-03-29 2012-08-09 Mitsubishi Electric Corp Heat pump device
JP2014020733A (en) * 2012-07-23 2014-02-03 Hitachi Appliances Inc Two-cycle refrigerator

Similar Documents

Publication Publication Date Title
US6679321B2 (en) Heat pump system
US5381671A (en) Air conditioning apparatus with improved ice storage therein
WO2000019157A1 (en) Two-refrigerant refrigerating device
JP2018132269A (en) Heat pump system
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
WO1997015789A1 (en) Air conditioner
JPH09119725A (en) Binary refrigerator
JP2006003023A (en) Refrigerating unit
JPH09119726A (en) Binary refrigerator
JP3723413B2 (en) Air conditioner
JP3304866B2 (en) Thermal storage type air conditioner
JPH06241582A (en) Heat accumulative type cooling device
JPH05133635A (en) Cold accumulation type air conditioning apparatus
JP3710093B2 (en) Defrost method and system
JP3164079B2 (en) Refrigeration equipment
JP3008925B2 (en) Refrigeration equipment
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
KR20110060126A (en) Hot and cool water, heating and cooling supply system
KR200240134Y1 (en) Heat pump mounting auxiliary heat exchanger
JPH0528440Y2 (en)
JPS592832B2 (en) Heat recovery air conditioner
JP2004218855A (en) Vapor compression type refrigerating machine
JP2000074524A (en) Engine driven heat pump system
JPH08142656A (en) Air conditioner for vehicle
JP2000035255A (en) Thermal storage type air conditioner