JP3300197B2 - Compression heat pump - Google Patents

Compression heat pump

Info

Publication number
JP3300197B2
JP3300197B2 JP11437795A JP11437795A JP3300197B2 JP 3300197 B2 JP3300197 B2 JP 3300197B2 JP 11437795 A JP11437795 A JP 11437795A JP 11437795 A JP11437795 A JP 11437795A JP 3300197 B2 JP3300197 B2 JP 3300197B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
source
refrigerant
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11437795A
Other languages
Japanese (ja)
Other versions
JPH08303884A (en
Inventor
靖夫 内川
薫 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11437795A priority Critical patent/JP3300197B2/en
Publication of JPH08303884A publication Critical patent/JPH08303884A/en
Application granted granted Critical
Publication of JP3300197B2 publication Critical patent/JP3300197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は圧縮式ヒートポンプに関
し、詳しくは、蒸発器として個別の採熱源により通流冷
媒を加熱する第1及び第2の採熱熱交換器を直列に接続
した二採熱源の圧縮式ヒートポンプ、及び、凝縮器とし
て個別の放熱源により通流冷媒を冷却する第1及び第2
の放熱熱交換器を直列に接続した二放熱源の圧縮式ヒー
トポンプ、及び、個別の採放熱源により通流冷媒を加熱
又は冷却する第1及び第2の熱源熱交換器を直列に接続
し、冷媒を圧縮機−出力熱交換器−膨張手段−第1及び
第2熱源熱交換器の直列組の順に循環させて、出力熱交
換器を凝縮器機能させ、かつ、第1及び第2熱源熱交換
器を採熱熱交換器として蒸発器機能させる採熱運転と、
冷媒を圧縮機−第1及び第2熱源熱交換器の直列組−膨
張手段−出力熱交換器の順に循環させて、出力熱交換器
を蒸発器機能させ、かつ、第1及び第2熱源熱交換器を
放熱熱交換器として凝縮器機能させる放熱運転とに、運
転状態を切り換える二採放熱源の圧縮式ヒートポンプに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression heat pump, and more particularly to a two-stage heat exchanger in which first and second heat collecting heat exchangers for heating a flowing refrigerant by separate heat collecting sources are connected in series as evaporators. First and second compression heat pumps as heat sources and first and second cooling units for cooling the flowing refrigerant by individual heat radiation sources as condensers.
Compression heat pump of the two heat radiation sources connected in series with the heat radiation heat exchangers, and the first and second heat source heat exchangers for heating or cooling the flowing refrigerant by individual heat radiation sources are connected in series, The refrigerant is circulated in the order of a compressor-output heat exchanger-expansion means-first and second heat source heat exchangers in order to make the output heat exchanger function as a condenser, and heat the first and second heat source heat exchangers. A heat collection operation that makes the exchanger function as an evaporator as a heat collection heat exchanger;
The refrigerant is circulated in the order of the compressor, the series combination of the first and second heat source heat exchangers, the expansion means, and the output heat exchanger, so that the output heat exchanger functions as an evaporator, and the first and second heat source heats are emitted. The present invention relates to a compression heat pump of a two-source heat radiation source for switching an operation state and a heat radiation operation in which an exchanger functions as a condenser as a heat radiation heat exchanger.

【0002】[0002]

【従来の技術】従来、この種の直列接続形式の圧縮式ヒ
ートポンプでは、図8に示すように、膨張手段4を通過
した蒸発対象冷媒を直列に通流(実線の矢印で示す流
れ)する第1及び第2の採熱熱交換器Ne1,Ne2、
及び、圧縮機3から吐出した凝縮対象冷媒を直列に通流
(破線の矢印で示す流れ)する第1及び第2の放熱熱交
換器Nc1,Nc2のいずれについても、これら熱交換
器の直列組(すなわち、Ne1とNe2との直列組、な
いし、Nc1とNc2との直列組)を単に冷媒の循環経
路中に介装接続する構造を採っており、第1及び第2の
採熱熱交換器Ne1,Ne2に対する冷媒直列通流の順
序、並びに、第1及び第2の放熱熱交換器Nc1,Nc
2に対する冷媒直列通流の順序は夫々、固定されてい
た。
2. Description of the Related Art Conventionally, in a compression heat pump of this type connected in series, as shown in FIG. 8, a refrigerant to be evaporated having passed through an expansion means 4 flows in series (flow indicated by a solid arrow). The first and second heat sampling heat exchangers Ne1, Ne2,
Also, for each of the first and second radiating heat exchangers Nc1 and Nc2 that flow the refrigerant to be condensed discharged from the compressor 3 in series (the flow indicated by the dashed arrow), these heat exchangers are connected in series. (That is, a series set of Ne1 and Ne2 or a series set of Nc1 and Nc2) is simply interposed and connected in the circulation path of the refrigerant, and the first and second heat extraction heat exchangers are used. The order of serial flow of the refrigerant to Ne1 and Ne2, and the first and second radiating heat exchangers Nc1 and Nc
The order of the serial refrigerant flow for each of the two was fixed.

【0003】なお、G1及びG2は第1及び第2採熱熱
交換器Ne1,Ne2の夫々に対する個別の採熱源、な
いし、第1及び第2放熱熱交換器Nc2,Nc1の夫々
に対する個別の放熱源を示す。
[0003] G1 and G2 are individual heat sources for the first and second heat exchangers Ne1 and Ne2, respectively, or individual heat sources for the first and second heat exchangers Nc2 and Nc1. Indicates a heat source.

【0004】また、四方弁等による冷媒循環方向の逆転
操作により、第1及び第2の熱源熱交換器を採熱熱交換
器Ne1,Ne2として蒸発器機能させる採熱運転と、
これら第1及び第2の熱源熱交換器を放熱熱交換器Nc
1,Nc2として凝縮器機能させる放熱運転とに運転モ
ードを切り換える形式(すなわち、上記の図8において
実線に示す流れと破線に示す流れとの切り換えを行う形
式)では、冷媒循環方向の逆転に伴い第1及び第2の熱
源熱交換器に対する冷媒直列通流の順序が採熱運転時と
放熱運転時とで逆転するが、採熱運転において第1及び
第2採熱熱交換器Ne1,Ne2に対する冷媒直列通流
の順序が固定され、また、放熱運転において第1及び第
2放熱熱交換器Nc1,Nc2に対する冷媒直列通流の
順序が固定されている点に変わりはない。
[0004] In addition, a heat recovery operation in which the first and second heat source heat exchangers function as evaporators Ne1 and Ne2 by performing a reversal operation of the refrigerant circulation direction by a four-way valve or the like,
These first and second heat source heat exchangers are connected to a heat radiation heat exchanger Nc.
In the type in which the operation mode is switched to the heat dissipation operation in which the condenser functions as 1, Nc2 (that is, the type in which the flow indicated by the solid line and the flow indicated by the broken line in FIG. 8 are switched) is accompanied by the reversal of the refrigerant circulation direction. The order of serial flow of the refrigerant to the first and second heat source heat exchangers is reversed between the heat collection operation and the heat dissipation operation, but in the heat collection operation, the order of the refrigerant flow to the first and second heat collection heat exchangers Ne1 and Ne2 is changed. There is no change in that the order of the refrigerant serial flow is fixed, and the order of the refrigerant serial flow to the first and second heat radiation heat exchangers Nc1 and Nc2 is fixed in the heat dissipation operation.

【0005】[0005]

【発明が解決しようとする課題】しかし、研究の結果、
上記の如く冷媒の直列通流順序が固定されている従来の
圧縮式ヒートポンプでは、第1及び第2採熱熱交換器N
e1,Ne2の夫々での使用採熱源G1,G2による冷
媒昇温効果(すなわち、蒸発過程を経て飽和蒸気となっ
た冷媒をさらに加熱により昇温する効果、略言すれば、
過熱度shの取得効果)について見た場合、直列通流に
おいて上流側に位置する採熱熱交換器Ne1での使用採
熱源G1による冷媒昇温効果と、下流側に位置する採熱
熱交換器Ne2での使用採熱源G2による冷媒昇温効果
との高低関係によって、ヒートポンプ運転における冷媒
の蒸発圧力pe,蒸発温度teが異なるものとなる。
However, as a result of the research,
In the conventional compression heat pump in which the order of the refrigerant flowing in series is fixed as described above, the first and second heat collecting heat exchangers N
e1 and Ne2, respectively, the effect of raising the temperature of the refrigerant by the heat sources G1 and G2 (that is, the effect of further raising the temperature of the refrigerant that has become saturated vapor through the evaporation process by heating, in short,
In terms of the effect of obtaining the degree of superheat sh), in the series flow, the refrigerant temperature increasing effect of the used heat collecting source G1 in the heat collecting heat exchanger Ne1 located on the upstream side and the heat collecting heat exchanger located on the downstream side. The evaporating pressure pe and the evaporating temperature te of the refrigerant in the heat pump operation are different depending on the level relationship between the used heat source G2 and the refrigerant temperature increasing effect of Ne2.

【0006】そして、いずれかの採熱源G1,G2が種
々の原因により状況変化(例えば、採熱源の温度変化や
流量変化等)する場合、これら採熱源の状況変化によ
り、上流側の採熱熱交換器Ne1での使用採熱源G1に
よる冷媒昇温効果と、下流側の採熱熱交換器Ne2での
使用採熱源G2による冷媒昇温効果との高低関係が変化
して、ヒートポンプ運転における蒸発圧力pe,蒸発温
度teが変化するといったことが生じ、このことで蒸発
圧力pe,蒸発温度teの低下による成績係数copの
低下を来す場合があることが判明した。
If any one of the heat sources G1 and G2 changes state due to various causes (for example, a temperature change or a flow rate change of the heat source), the heat change of the upstream side causes the heat change of the upstream side. The height relationship between the refrigerant temperature increasing effect of the used heat collecting source G1 in the exchanger Ne1 and the refrigerant temperature increasing effect of the used heat collecting source G2 in the downstream heat collecting heat exchanger Ne2 changes, and the evaporation pressure in the heat pump operation changes. It has been found that the pe and the evaporating temperature te change, which may cause a decrease in the coefficient of performance cop due to a decrease in the evaporating pressure pe and the evaporating temperature te.

【0007】また、放熱源についても同様に、第1及び
第2放熱熱交換器Nc1,Nc2の夫々での使用放熱源
G2,G1による冷媒降温効果(すなわち、凝縮過程を
経て飽和液となっている冷媒をさらに冷却により降温す
る効果、略言すれば、過冷却度scの取得効果)につい
て見た場合、直列通流において上流側に位置する放熱熱
交換器Nc1での使用放熱源G2による冷媒降温効果
と、下流側に位置する放熱熱交換器Nc2での使用放熱
源G1による冷媒降温効果との高低関係によって、ヒー
トポンプ運転における冷媒の凝縮圧力pc,凝縮温度t
cが異なるものとなる。
Similarly, with respect to the heat radiating source, the cooling temperature of the refrigerant by the heat radiating sources G2 and G1 used in each of the first and second heat radiating heat exchangers Nc1 and Nc2 (that is, the refrigerant becomes a saturated liquid through a condensation process). In view of the effect of lowering the temperature of the refrigerant by cooling, that is, the effect of obtaining the degree of supercooling sc), the refrigerant generated by the heat radiation source G2 used in the heat radiation heat exchanger Nc1 located on the upstream side in the serial flow. The condensation pressure pc and the condensation temperature t of the refrigerant in the heat pump operation depend on the height relationship between the temperature lowering effect and the refrigerant temperature lowering effect of the heat radiation source G1 used in the heat radiation heat exchanger Nc2 located on the downstream side.
c will be different.

【0008】そして、いずれかの放熱源G2,G1が種
々の原因により状況変化(例えば、放熱源の温度変化や
流量変化等)する場合、これら放熱源の状況変化によ
り、上流側の放熱熱交換器Nc1での使用放熱源G2に
よる冷媒降温効果と、下流側の放熱熱交換器Nc2での
使用放熱源G1による冷媒降温効果との高低関係が変化
して、ヒートポンプ運転における凝縮圧力pc,凝縮温
度tcが変化するといったことが生じ、このことで凝縮
圧力pc,凝縮温度tcの上昇による成績係数copの
低下を来す場合があることが判明した。
When any one of the heat sources G2 and G1 undergoes a situation change (for example, a temperature change or a flow rate change of the heat source) due to various causes, the heat radiation heat exchange on the upstream side is caused by the situation change of these heat sources. The relationship between the temperature drop of the refrigerant by the used heat source G2 in the heat exchanger Nc1 and the temperature drop of the refrigerant by the used heat source G1 in the downstream heat exchanger Nc2 changes, and the condensing pressure pc and the condensing temperature in the heat pump operation are changed. It has been found that tc changes, which may cause a decrease in the coefficient of performance cop due to an increase in the condensing pressure pc and the condensing temperature tc.

【0009】以上の実情に対し、本発明の目的は、各採
熱源や各放熱源の状況変化にかかわらず、その時々の状
況下で最大限の高成績係数運転を可能し、合わせ、これ
を達成するための改良構成を簡略なものにする点にあ
る。また、本発明の付随の目的は、一方の採熱源ないし
放熱源の状況悪化による成績係数の低下も合わせ防止す
る点にある。
[0009] In view of the above circumstances, an object of the present invention is to enable the maximum high coefficient of performance operation under the current situation regardless of the change in the situation of each heat collecting source and each heat radiating source. The object is to simplify the improved configuration to achieve the above. An additional object of the present invention is to prevent a decrease in the coefficient of performance due to the deterioration of the condition of one of the heat collection source and the heat radiation source.

【0010】[0010]

【課題を解決するための手段】〔第1特徴構成〕 本発明の第1特徴構成(請求項1に係る発明の特徴構
成)は、圧縮式ヒートポンプに係り、蒸発器として個別
の採熱源により通流冷媒を加熱する第1及び第2の採熱
熱交換器を直列に接続する構成において、膨張手段の出
口流路を前記第1及び第2採熱熱交換器の直列組におけ
る一端と他端とに択一的に接続する第1の流路切換手段
と、圧縮機の吸入流路を前記第1及び第2採熱熱交換器
の直列組における一端と他端とに択一的に接続する第2
の流路切換手段と、前記第1及び第2採熱熱交換器につ
いて、使用採熱源による冷媒昇温効果が他方よりも高い
状況にある高効果の採熱熱交換器と、使用採熱源による
冷媒昇温効果が他方よりも低い状況にある低効果の採熱
熱交換器とを判定する判定手段と、この判定手段の判定
結果に基づき、前記膨張手段を通過した蒸発対象冷媒
を、前記低効果の採熱熱交換器から前記高効果の採熱熱
交換器の順で通流するように、前記第1及び第2流路切
換手段を切り換え制御する制御手段を設け、 前記判定手
段は、前記低効果及び高効果の採熱熱交換器を判定する
とともに、これら採熱熱交換器の冷媒昇温効果の差が設
定差以上であるか否かを判定する構成とし、 前記制御手
段は、この判定結果に基づいて、両採熱熱交換器の冷媒
昇温効果の差が設定差以上であるとき、前記低効果の採
熱熱交換器に対する採熱源の供給を停止する構成として
あることにある。
Means for Solving the Problems [First characteristic configuration] A first characteristic configuration of the present invention (characteristic configuration of the first aspect of the present invention) relates to a compression heat pump, and is used as an evaporator through a separate heat source. In the configuration in which the first and second heat collecting heat exchangers for heating the flowing refrigerant are connected in series, the outlet flow path of the expansion means is connected to one end and the other end of the series set of the first and second heat collecting heat exchangers. A first flow path switching means which is alternatively connected to the first and second heat collecting heat exchangers, and a suction flow path of the compressor which is alternatively connected to one end and the other end of the series set of the first and second heat collecting heat exchangers. Second
Flow-switching means, the first and second heat-collecting heat exchangers, a high-efficiency heat-collecting heat exchanger in which the refrigerant temperature-raising effect by the used heat-collecting source is higher than the other, and Determining means for determining a low-effect heat-exchanger in which the refrigerant temperature raising effect is lower than the other; and, based on the determination result of the determining means, the evaporating refrigerant passing through the expansion means is subjected to the low-temperature heating. from adopting heat exchanger effects as flowing in the order of adoption heat exchanger of the high effect, only setting the control means for controlling switching the first and second channel switching means, said determination hand
Stage determines the low and high effect heat harvesting heat exchangers
At the same time, there is a difference
And determining configuration whether a constant differential above, the control hand
The stage determines the refrigerant of both heat exchangers based on the determination result.
When the difference in the heating effect is equal to or greater than the set difference, the low effect is taken.
As a configuration to stop the supply of heat source to the heat exchanger
There is to be.

【0011】〔第特徴構成〕 本発明の第特徴構成(請求項に係る発明の特徴構
成)は、圧縮式ヒートポンプに係り、凝縮器として個別
の放熱源により通流冷媒を冷却する第1及び第2の放熱
熱交換器を直列に接続する構成において、膨張手段の入
口流路を前記第1及び第2放熱熱交換器の直列組におけ
る一端と他端とに択一的に接続する第1の流路切換手段
と、圧縮機の吐出流路を前記第1及び第2放熱熱交換器
の直列組における一端と他端とに択一的に接続する第2
の流路切換手段と、前記第1及び第2放熱熱交換器につ
いて、使用放熱源による冷媒降温効果が他方よりも高い
状況にある高効果の放熱熱交換器と、使用放熱源による
冷媒降温効果が他方よりも低い状況にある低効果の放熱
熱交換器とを判定する判定手段と、この判定手段の判定
結果に基づき、前記圧縮機から吐出した凝縮対象冷媒
を、前記低効果の放熱熱交換器から前記高効果の放熱熱
交換器の順で通流するように、前記第1及び第2流路切
換手段を切り換え制御する制御手段を設け、 前記判定手
段は、前記低効果及び高効果の放熱熱交換器を判定する
とともに、これら放熱熱交換器の冷媒降温効果の差が設
定差以上であるか否かを判定する構成とし、 前記制御手
段は、この判定結果に基づいて、両放熱熱交換器の冷媒
降温効果の差が設定差以上であるとき、前記低効果の放
熱熱交換器に対する放熱源の供給を停止する構成として
あることにある。
[0011] Second characterizing feature] second characterizing feature of the present invention (wherein the configuration of the invention according to claim 2) relates to the compression type heat pump, the cooling of the flowing coolant by a separate radiating sources as a condenser In the configuration in which the first and second radiating heat exchangers are connected in series, the inlet flow path of the expansion means is alternatively connected to one end and the other end of the series combination of the first and second radiating heat exchangers. A first passage switching means, and a second passage for selectively connecting a discharge passage of the compressor to one end and the other end of the series combination of the first and second heat radiation heat exchangers.
And a high-efficiency heat-dissipating heat exchanger in which the used heat-dissipating heat source has a higher temperature-decreasing effect than the other heat-dissipating heat exchanger, and the first and second heat-dissipating heat exchangers. Means for determining a low-efficiency radiating heat exchanger in a state lower than the other, and based on the determination result of the determining means, the condensing target refrigerant discharged from the compressor is replaced with the low-effect radiating heat exchanger. from vessel to turn in flow of radiator heat exchanger of the high effect, only setting the control means for controlling switching the first and second channel switching means, said determination hand
Stage determines the low and high effect radiating heat exchanger
At the same time, there is a difference in the cooling effect of these heat exchangers.
And determining configuration whether a constant differential above, the control hand
Based on the result of this determination, the stage
When the difference in the temperature lowering effect is equal to or greater than the set difference,
As a configuration to stop the supply of heat radiation source to the heat heat exchanger
There is to be.

【0012】〔第特徴構成〕 本発明の第特徴構成(請求項に係る発明の特徴構
成)は、圧縮式ヒートポンプに係り、個別の採放熱源に
より通流冷媒を加熱又は冷却する第1及び第2の熱源熱
交換器を直列に接続し、冷媒を圧縮機、出力熱交換器、
膨張手段、前記第1及び第2熱源熱交換器の直列組の順
に循環させて、前記出力熱交換器を凝縮器機能させ、か
つ、前記第1及び第2熱源熱交換器を採熱熱交換器とし
て蒸発器機能させる採熱運転と、冷媒を前記圧縮機、前
記第1及び第2熱源熱交換器の直列組、前記膨張手段、
前記出力熱交換器の順に循環させて、前記出力熱交換器
を蒸発器機能させ、かつ、前記第1及び第2熱源熱交換
器を放熱熱交換器として凝縮器機能させる放熱運転と
に、運転状態を切り換える循環方向切換手段と、採熱運
転では前記膨張手段の出口流路となり、かつ、放熱運転
では前記膨張手段の入口流路となる流路を、前記第1及
び第2熱源熱交換器の直列組における一端と他端とに択
一的に接続する第1の流路切換手段と、採熱運転では前
記圧縮機の吸入流路となり、かつ、放熱運転では前記圧
縮機の吐出流路となる流路を、前記第1及び第2熱源熱
交換器の直列組における一端と他端とに択一的に接続す
る第2の流路切換手段と、採熱運転では、前記第1及び
第2熱源熱交換器について、使用採放熱源による冷媒昇
温効果が他方よりも高い状況で高効果の採熱熱交換器と
なる熱源熱交換器と、使用採放熱源による冷媒昇温効果
が他方よりも低い状況で低効果の採熱熱交換器となる熱
源熱交換器とを判定し、かつ、放熱運転では、前記第1
及び第2熱源熱交換器について、使用採放熱源による冷
媒降温効果が他方よりも高い状況で高効果の放熱熱交換
器となる熱源熱交換器と、使用採放熱源による冷媒降温
効果が他方よりも低い状況で低効果の放熱熱交換器とな
る熱源熱交換器とを判定する判定手段と、この判定手段
の判定結果に基づき、採熱運転では前記膨張手段を通過
した蒸発対象冷媒を、前記低効果の採熱熱交換器となる
熱源熱交換器から前記高効果の採熱熱交換器となる熱源
熱交換器の順に通流するように、かつ、放熱運転では前
記圧縮機から吐出した凝縮対象冷媒を、前記低効果の放
熱熱交換器となる熱源熱交換器から前記高効果の放熱熱
交換器となる熱源熱交換器の順に通流するように、採熱
運転及び放熱運転の夫々で前記第1及び第2流路切換手
段を切り換え制御する制御手段を設け、 前記判定手段
は、採熱運転では前記低効果及び高効果の採熱熱交換器
となる熱源熱交換器を判定するとともに、これら採熱熱
交換器としての熱源熱交換器の冷媒昇温効果の差が設定
差以上であるか否かを判定し、かつ、放熱運転では前記
低効果及び高効果の放熱熱交換器となる熱源熱交換器を
判定するとともに、これら放熱熱交換器としての熱源熱
交換器の冷媒降温効果の差が設定差以上であるか否かを
判定する構成とし、 前記制御手段は、この判定結果に基
づいて、採熱運転では両熱源熱交換器の冷媒昇温効果の
差が設定差以上であるとき、前記低効果の採熱熱交換器
となる熱源熱交換器への採放熱源の供給を停止し、か
つ、放熱運転では両熱源熱交換器の冷媒降温効果の差が
設定差以上であるとき、前記低効果の放熱熱交換器とな
る熱源熱交換器への採放熱源の供給を停止する構成とし
てあることにある。
[0012] Third, wherein Configuration of third characterizing feature of the present invention (wherein the configuration of the invention according to claim 3) relates to the compression type heat pump, the heating or cooling the flowing coolant by a separate Toho heat source The first and second heat source heat exchangers are connected in series, and the refrigerant is compressed by a compressor, an output heat exchanger,
The expansion means and the first and second heat source heat exchangers are circulated in this order to make the output heat exchanger function as a condenser, and the first and second heat source heat exchangers are used for heat exchange. Heating operation to function as an evaporator as a device, the compressor, a series set of the first and second heat source heat exchangers, the expansion means,
Circulating the output heat exchanger in order, causing the output heat exchanger to function as an evaporator, and causing the first and second heat source heat exchangers to function as condenser heat exchangers. The first and second heat source heat exchangers include a circulation direction switching means for switching a state, and a flow path serving as an outlet flow path of the expansion means in the heat collecting operation and serving as an inlet flow path of the expansion means in the heat radiation operation. A first flow path switching means which is alternatively connected to one end and the other end of the series set; a suction flow path of the compressor in a heat collecting operation; and a discharge flow path of the compressor in a heat dissipation operation. A second flow path switching means for selectively connecting a flow path to be connected to one end and the other end of the series combination of the first and second heat source heat exchangers; With respect to the second heat source heat exchanger, the effect of increasing the refrigerant temperature by the used heat radiation source is higher than that of the other. A heat source heat exchanger that becomes a high-efficiency heat-collecting heat exchanger in situations where the heat-source heat exchanger becomes a low-efficiency heat-collecting heat exchanger when the effect of the used heat-collecting and radiating source is lower than the other. And in the heat dissipation operation, the first
And the second heat source heat exchanger, the heat source heat exchanger to be a high-efficiency heat radiation heat exchanger in a situation where the refrigerant cooling effect by the used heat radiation source is higher than the other, and the refrigerant temperature cooling effect by the used heat radiation source is higher than the other. Determination means for determining a heat source heat exchanger to be a low-efficiency heat radiation heat exchanger in a low situation, and based on the determination result of the determination means, in the heat collecting operation, the refrigerant to be evaporated that has passed through the expansion means, Condensate discharged from the compressor so as to flow in order from the heat source heat exchanger that becomes the low-effect heat-exchange heat exchanger to the heat-source heat exchanger that becomes the high-effect heat-exchange heat exchanger, and in the heat dissipation operation. In each of the heat-collecting operation and the heat-dissipation operation, the target refrigerant flows in the order from the heat-source heat exchanger that becomes the low-effect heat-radiation heat exchanger to the heat-source heat exchanger that becomes the high-effect heat-radiation heat exchanger. Switching control of the first and second flow path switching means Setting a control means that only, the determination unit
Is the low- and high-effect heat-exchange heat exchanger
Heat source heat exchanger to be used
The difference in the temperature rise effect of the heat source heat exchanger as a heat exchanger is set.
It is determined whether or not the difference is greater than or equal to, and in the heat dissipation operation,
A heat source heat exchanger that becomes a low-effect and high-effect heat-radiating heat exchanger
The heat source heat as a heat exchanger
Check whether the difference in refrigerant cooling effect of the exchanger is equal to or greater than the set difference.
The control means is configured to make a determination based on the determination result.
Therefore, in the heat recovery operation, the effect of increasing the refrigerant temperature of both heat source heat exchangers is considered.
When the difference is greater than or equal to the set difference, the low-efficiency heat collecting heat exchanger
Supply of the heat radiation source to the heat source heat exchanger
On the other hand, in the heat dissipation operation, there is a difference in the refrigerant cooling effect of both heat source heat exchangers.
When the difference is equal to or larger than the set difference, the low-efficiency heat-radiating heat exchanger is used.
To stop the supply of the heat radiation source to the heat source heat exchanger.
It is in that.

【0013】[0013]

【作用】〔第1特徴構成の作用〕 つまり、上流側の採熱熱交換器での使用採熱源による冷
媒昇温効果と、下流側の採熱熱交換器での使用採熱源に
よる冷媒昇温効果との高低関係により、ヒートポンプ運
転における冷媒の蒸発圧力pe,蒸発温度teが異なる
ものとなることについて研究した結果、下流側の採熱熱
交換器での使用採熱源による冷媒昇温効果が上流側の採
熱熱交換器での使用採熱源による冷媒昇温効果よりも高
い場合に、この逆の場合に比べ、蒸発圧力pe,蒸発温
度teの高いヒートポンプ運転が可能となることが判明
した。
[Operation] [Operation of the first characteristic configuration] That is, the refrigerant temperature increasing effect by the heat collecting source used in the upstream heat collecting heat exchanger and the refrigerant temperature increasing by the used heat collecting source in the downstream heat collecting heat exchanger. As a result of studying that the evaporation pressure pe and the evaporation temperature te of the refrigerant in the heat pump operation are different due to the height relationship with the effect, the refrigerant temperature increase effect by the heat source used in the downstream heat extraction heat exchanger is increased. It has been found that when the refrigerant heat-up effect is higher than that of the heat-collecting source used in the heat-collecting heat exchanger on the side, a heat pump operation with a higher evaporation pressure pe and evaporation temperature te is possible as compared to the opposite case.

【0014】すなわち、膨張手段を通過した蒸発対象冷
媒を第1及び第2の採熱熱交換器に対し直列に通流する
形式では、下流側の採熱熱交換器において、一定の蒸発
圧力pe,蒸発温度teのもとで冷媒蒸発を進行させて
冷媒を飽和蒸気に到らせることと、これに続き蒸発温度
teから冷媒温度を上昇させて過熱度shを取得するこ
ととを行い、これに対し、上流側の採熱熱交換器では、
下流側の採熱熱交換器と等しい蒸発圧力pe,蒸発温度
teのもとで、ある程度の乾き度xまで冷媒を蒸発させ
ることのみを行う形態となることから、このような直列
通流形式のヒートポンプ運転において適当な過熱度sh
を取得する場合の蒸発圧力pe,蒸発温度teは、下流
側の採熱熱交換器での使用採熱源による冷媒昇温効果
(過熱度shの取得効果)によって異なるものとなる。
That is, in the type in which the refrigerant to be evaporated that has passed through the expansion means flows in series to the first and second heat-collecting heat exchangers, a constant evaporation pressure pe is obtained at the downstream heat-collecting heat exchanger. Performing the evaporation of the refrigerant under the evaporation temperature te to reach the saturated vapor of the refrigerant, and subsequently increasing the refrigerant temperature from the evaporation temperature te to obtain the degree of superheat sh. On the other hand, in the upstream heat sampling heat exchanger,
Since the refrigerant is only evaporated to a certain degree of dryness x under the same evaporation pressure pe and evaporation temperature te as that of the downstream heat sampling heat exchanger, such a serial flow type is used. Appropriate degree of superheat for heat pump operation
Is different depending on the refrigerant temperature increasing effect (effect of obtaining the degree of superheat sh) by the heat collecting source used in the downstream heat collecting heat exchanger.

【0015】そして、下流側の採熱熱交換器について見
れば、蒸発圧力pe,蒸発温度teを一定に維持する運
転において、下流側の採熱熱交換器での使用採熱源によ
る冷媒昇温効果を変化させた場合に、その冷媒昇温効果
が高いほど取得過熱度shが大きくなることからも理解
されるように、一定の過熱度shを得る場合では、下流
側の採熱熱交換器での使用採熱源による冷媒昇温効果が
高くて、この採熱熱交換器の出口での冷媒温度を高くし
得るほど(すなわち、蒸発温度teからの過熱度sh分
の冷媒温度上昇(顕熱熱交換)をより効率的に行えるほ
ど)、蒸発圧力pe,蒸発温度teは高いものでよく、
このことから、下流側の採熱熱交換器での使用採熱源に
よる冷媒昇温効果が上流側の採熱熱交換器での使用採熱
源による冷媒昇温効果よりも高い場合に、この逆の場合
に比べ蒸発圧力pe,蒸発温度teの高い運転が可能と
なる。
Regarding the downstream heat collecting heat exchanger, in the operation of maintaining the evaporation pressure pe and the evaporation temperature te constant, the refrigerant temperature increasing effect by the heat collecting source used in the downstream heat collecting heat exchanger. In the case where a constant degree of superheat sh is obtained, as is understood from the fact that the obtained superheat degree sh increases as the refrigerant temperature increasing effect increases, the downstream heat sampling heat exchanger The higher the refrigerant temperature raising effect of the heat collection source used, the higher the refrigerant temperature at the outlet of the heat collection heat exchanger (that is, the higher the refrigerant temperature by the degree of superheat sh from the evaporation temperature te (the sensible heat The more the exchange can be performed), the higher the evaporating pressure pe and the evaporating temperature te may be.
From this, when the refrigerant temperature increasing effect by the used heat source in the downstream heat collecting heat exchanger is higher than the refrigerant temperature increasing effect by the used heat collecting source in the upstream heat collecting heat exchanger, the reverse is true. Operation with a higher evaporation pressure pe and higher evaporation temperature te than in the case is possible.

【0016】このことに着目して、本発明の第1特徴構
成では、直列接続の第1及び第2採熱熱交換器につい
て、使用採熱源による冷媒昇温効果が他方よりも高い状
況にある高効果の採熱熱交換器と、使用採熱源による冷
媒昇温効果が他方よりも低い状況にある低効果の採熱熱
交換器とを、採熱源状況の検出等による適当な判定手法
をもって判定手段に判定させ、そして、この判定結果に
基づき、膨張手段を通過した蒸発対象冷媒を低効果の採
熱熱交換器から高効果の採熱熱交換器の順に通流させる
ように、制御手段により第1及び第2の流路切換手段を
制御して第1及び第2採熱熱交換器に対する冷媒通流順
序を変更することで、各採熱源の状況変化による各採熱
熱交換器での冷媒昇温効果の変化にかかわらず、その時
々の状況下で蒸発圧力pe,蒸発温度teの極力高い運
転、すなわち、成績係数copの極力高い運転を可能と
する。
Focusing on this, in the first characteristic configuration of the present invention, in the first and second heat collecting heat exchangers connected in series, the effect of the used heat collecting source on the temperature rise of the refrigerant is higher than the other. High-efficiency heat-exchanging heat exchangers and low-effect heat-exchanging heat exchangers in which the temperature rise effect of the used heat source is lower than the other are determined by an appropriate judgment method by detecting the heat source status. Means, and based on the result of the determination, the control means so that the refrigerant to be evaporated that has passed through the expansion means flows from the low-effect heat-exchange heat exchanger to the high-effect heat-exchange heat exchanger in order. By controlling the first and second flow path switching means to change the refrigerant flow order to the first and second heat collecting heat exchangers, the heat collecting heat exchanger in each heat collecting heat exchanger due to a change in the state of each heat collecting source. Regardless of the change in the refrigerant heating effect, the evaporation pressure pe, the highest possible operation of the evaporation temperature te, namely, to allow the highest possible operation of the coefficient of performance (cop).

【0017】一方、第1及び第2の流路切換手段による
上記の通流順序変更については、第1採熱熱交換器2A
が前記の高効果の採熱熱交換器である場合(図2(ロ)
における実線の矢印を参照)、第1流路切換手段K1
は、膨張手段4の出口流路reを第1及び第2採熱熱交
換器2A,2Bの直列組における第2採熱熱交換器2B
の側の端部に接続する切換状態とし、かつ、第2流路切
換手段K2は、圧縮機3の吸入流路rcを上記直列組2
A,2Bにおける第1採熱熱交換器2Aの側の端部に接
続する切換状態とし、これにより、膨張手段4を通過し
た蒸発対象冷媒を、低効果の採熱熱交換器である第2採
熱熱交換器2Bから高効果の採熱熱交換器である第1採
熱熱交換器2Aの順に通流させる。
On the other hand, the change of the flow order by the first and second flow path switching means is described in the first heat collecting heat exchanger 2A.
Is the above-mentioned high-efficiency heat exchanger (Fig. 2 (b)
, The first flow path switching means K1
Sets the outlet flow passage re of the expansion means 4 to the second heat extraction heat exchanger 2B in the series set of the first and second heat extraction heat exchangers 2A and 2B.
And the second flow path switching means K2 sets the suction flow path rc of the compressor 3 to
A, 2B, a switching state in which the refrigerant is connected to the end on the side of the first heat-exchanging heat exchanger 2A, whereby the refrigerant to be evaporated that has passed through the expansion means 4 is converted to the second heat-exchanging heat exchanger having a low effect. The heat is passed from the heat collecting heat exchanger 2B to the first heat collecting heat exchanger 2A, which is a highly effective heat collecting heat exchanger.

【0018】また逆に、第2採熱熱交換器2Bが前記の
高効果の採熱熱交換器である場合(図2(イ)における
実線の矢印を参照)、第1流路切換手段K1は、膨張手
段4の出口流路reを上記直列組2A,2Bにおける第
1採熱熱交換器2Aの側の端部に接続する切換状態と
し、かつ、第2流路切換手段K2は、圧縮機3の吸入流
路rcを上記直列組2A,2Bにおける第2採熱熱交換
器2Bの側の端部に接続する切換状態とし、これによ
り、膨張手段4を通過した蒸発対象冷媒を、低効果の採
熱熱交換器である第1採熱熱交換器2Aから高効果の採
熱熱交換器である第2採熱熱交換器2Bの順に通流させ
る。
Conversely, when the second heat-exchange heat exchanger 2B is the above-mentioned high-efficiency heat-exchange heat exchanger (see the solid line arrow in FIG. 2A), the first flow path switching means K1 Is in a switching state in which the outlet channel re of the expansion means 4 is connected to the end of the series combination 2A, 2B on the side of the first heat-exchanger 2A, and the second channel switching means K2 is In the switching state, the suction flow passage rc of the heat exchanger 3 is connected to the end of the series combination 2A, 2B on the side of the second heat sampling heat exchanger 2B, whereby the refrigerant to be evaporated passing through the expansion means 4 is reduced. The heat is passed from the first heat-exchanger heat exchanger 2A, which is an effective heat-exchanger heat exchanger, to the second heat-collector heat exchanger 2B, which is a higher-effect heat-exchanger heat exchanger.

【0019】そしてまた、上述の如く高効果の採熱熱交
換器を下流側に位置させることで蒸発圧力pe,蒸発温
度teの極力高い運転を可能とするにあたり、低効果の
採熱熱交換器での使用採熱源による冷媒昇温効果が高効
果の採熱熱交換器での使用採熱源による冷媒昇温効果に
比べ過度に小さいと、上流側に位置させる低効果の採熱
熱交換器では、冷媒に対する作用温度が上記の蒸発温度
teよりも低い状況(すなわち、使用採熱源が蒸発対象
冷媒に対し逆に冷却源として作用してしまう状況)とな
り、このことで成績係数copの低下を生じる。
Further , as described above, the high-efficiency heat-exchange heat exchanger can be operated at the highest evaporating pressure pe and the highest evaporating temperature te by locating the high-efficiency heat-exchange heat exchanger downstream. If the heat-up effect of the refrigerant by the heat source used in the heat exchanger is too small compared to the heat-up effect by the heat source used in the high-effect heat exchanger, The operating temperature for the refrigerant is lower than the above-mentioned evaporation temperature te (that is, the used heat collecting source acts as a cooling source for the refrigerant to be evaporated), which results in a decrease in the coefficient of performance cop. .

【0020】このことに着目して、本発明の第特徴構
成では、低効果及び高効果の採熱熱交換器の判定ととも
に、これら採熱熱交換器での使用採熱源による冷媒昇温
効果の差が設定差以上であるか否かを判定手段に判定さ
せ、そして、この判定結果に基づき、両採熱熱交換器の
冷媒昇温効果の差が設定差以上であるときには、制御手
段により低効果の採熱熱交換器への採熱源供給を停止し
て、実質的に高効果の採熱熱交換器のみを蒸発器機能さ
せる状態でヒートポンプ運転を行い、これにより、上記
の如く低効果の採熱熱交換器で使用採熱源が蒸発対象冷
媒に対し冷却源として作用するような状況を回避して、
このような状況の発生による成績係数copの低下を防
止する。
Focusing on this, in the first characteristic configuration of the present invention, it is possible to judge low- and high-efficiency heat-exchanger heat exchangers and to determine the effect of increasing the refrigerant temperature by the heat-collecting source used in these heat-exchanger heat exchangers. The determination means determines whether or not the difference is equal to or greater than the set difference, and based on the determination result, when the difference between the refrigerant temperature increasing effects of the two heat collecting heat exchangers is equal to or greater than the set difference, the control means The supply of the heat source to the low-efficiency heat-exchange heat exchanger is stopped, and the heat pump is operated in a state in which only the high-efficiency heat-exchange heat exchanger functions as an evaporator. Avoid the situation where the heat collecting source used in the heat collecting heat exchanger acts as a cooling source for the refrigerant to be evaporated,
A decrease in the coefficient of performance cop due to the occurrence of such a situation is prevented.

【0021】〔第特徴構成の作用〕 つまり、上流側の放熱熱交換器での使用放熱源による冷
媒降温効果と、下流側の放熱熱交換器での使用放熱源に
よる冷媒降温効果との高低関係により、ヒートポンプ運
転における冷媒の凝縮圧力pc,凝縮温度tcが異なる
ものとなることについて研究した結果、下流側の放熱熱
交換器での使用放熱源による冷媒降温効果が上流側の放
熱熱交換器での使用放熱源による冷媒降温効果よりも高
い場合に、この逆の場合に比べ、凝縮圧力pc,凝縮温
度tcの低い運転が可能となることが判明した。
[Operation of the second characteristic configuration] In other words, the degree of the temperature drop of the refrigerant by the heat radiation source used in the upstream heat radiation heat exchanger and the degree of the refrigerant temperature decrease by the heat radiation source used in the downstream heat radiation heat exchanger are high and low. As a result of studying that the condensing pressure pc and the condensing temperature tc of the refrigerant in the heat pump operation are different depending on the relationship, the refrigerant cooling effect by the radiating source used in the radiating heat exchanger on the downstream side is reduced by the radiating heat exchanger on the upstream side. It has been found that when the cooling temperature of the refrigerant is higher than the cooling effect of the heat radiation source used, the operation at a lower condensing pressure pc and lower condensing temperature tc is possible as compared to the opposite case.

【0022】すなわち、圧縮機から吐出した凝縮対象冷
媒を第1及び第2の放熱熱交換器に対し直列に通流する
形式では、下流側の放熱熱交換器において、一定の凝縮
圧力pc,凝縮温度tcのもとで冷媒凝縮を進行させて
冷媒を飽和液に到らせることと、これに続き凝縮温度t
eから冷媒温度を低下させて過冷却度scを取得するこ
ととを行い、これに対し、上流側の放熱熱交換器では、
下流側の放熱熱交換器と等しい凝縮圧力pc,凝縮温度
tcのもとで、ある程度の湿り度m(=1−乾き度x)
まで冷媒を凝縮させることのみを行う形態となることか
ら、このような直列通流形式のヒートポンプ運転におい
て適当な過冷却度scを取得する場合の凝縮圧力pc,
凝縮温度tcは、下流側の放熱熱交換器での使用放熱源
による冷媒降温効果(過冷却度scの取得効果)によっ
て異なるものとなる。
That is, in the type in which the refrigerant to be condensed discharged from the compressor flows in series to the first and second radiating heat exchangers, a constant condensing pressure pc and a constant condensing pressure are provided in the downstream radiating heat exchanger. The refrigerant condenses at the temperature tc to reach the saturated liquid, and the condensing temperature t
e to obtain the degree of supercooling sc by lowering the refrigerant temperature, whereas, on the other hand, in the heat radiation heat exchanger on the upstream side,
Under the same condensing pressure pc and condensing temperature tc as the heat radiation heat exchanger on the downstream side, a certain degree of wetness m (= 1−dryness x)
Since only the refrigerant is condensed up to this point, the condensing pressure pc, when obtaining an appropriate degree of supercooling sc in such a series flow heat pump operation,
The condensing temperature tc differs depending on the refrigerant temperature drop effect (effect of obtaining the degree of supercooling sc) by the heat radiation source used in the heat radiation heat exchanger on the downstream side.

【0023】そして、下流側の放熱熱交換器について見
れば、凝縮圧力pc,凝縮温度tcを一定に維持する運
転において、下流側の放熱熱交換器での使用放熱源によ
る冷媒降温効果を変化させた場合に、その冷媒降温効果
が高いほど取得過冷却度scが大きくなることからも理
解されるように、一定の過冷却度scを得る場合では、
下流側の放熱熱交換器での使用放熱源による冷媒降温効
果が高くて、この放熱熱交換器の出口での冷媒温度を低
くし得るほど(すなわち、凝縮温度tcからの過冷却度
sc分の冷媒温度低下(顕熱熱交換)をより効率的に行
えるほど)、凝縮圧力pc,凝縮温度tcは低いもので
よく、このことから、下流側の放熱熱交換器での使用放
熱源による冷媒降温効果が上流側の放熱熱交換器での使
用放熱源による冷媒降温効果よりも高い場合に、この逆
の場合に比べ凝縮圧力pc,凝縮温度tcの低い運転が
可能となる。
In the operation of maintaining the condensing pressure pc and the condensing temperature tc constant, the effect of the heat radiation source used in the downstream heat radiating heat exchanger changes the refrigerant temperature drop effect. In the case where the constant supercooling degree sc is obtained, as can be understood from the fact that the obtained supercooling degree sc increases as the refrigerant temperature drop effect increases,
As the cooling temperature of the refrigerant by the heat radiation source used in the heat radiation heat exchanger on the downstream side is high, the refrigerant temperature at the outlet of the heat radiation heat exchanger can be lowered (that is, the degree of supercooling sc from the condensation temperature tc). The more the refrigerant temperature can be reduced (sensible heat exchange) more efficiently, the lower the condensing pressure pc and the condensing temperature tc may be. Therefore, the refrigerant temperature is reduced by the heat radiation source used in the downstream heat radiation heat exchanger. When the effect is higher than the cooling-down effect of the refrigerant by the heat radiation source used in the heat radiation heat exchanger on the upstream side, the operation in which the condensing pressure pc and the condensing temperature tc are lower than in the opposite case becomes possible.

【0024】このことに着目して、本発明の第特徴構
成では、直列接続の第1及び第2放熱熱交換器につい
て、使用放熱源による冷媒降温効果が他方よりも高い状
況にある高効果の放熱熱交換器と、使用放熱源による冷
媒降温効果が他方よりも低い状況にある低効果の放熱熱
交換器とを、放熱源状況の検出等による適当な判定手法
をもって判定手段に判定させ、そして、この判定結果に
基づき、圧縮機から吐出した凝縮対象冷媒を低効果の放
熱熱交換器から高効果の放熱熱交換器の順に通流させる
ように、制御手段により第1及び第2の流路切換手段を
制御して第1及び第2放熱熱交換器に対する冷媒通流順
序を変更することで、各放熱源の状況変化による各放熱
熱交換器での冷媒降温効果の変化にかかわらず、その時
々の状況下で凝縮圧力pc,凝縮温度tcの極力低い運
転、すなわち、成績係数copの極力高い運転を可能と
する。
Focusing on this, in the second characteristic configuration of the present invention, the first and second radiating heat exchangers connected in series have a high cooling effect in which the radiating source used has a higher refrigerant cooling effect than the other. The heat radiating heat exchanger, and a low-efficiency heat radiating heat exchanger in which the refrigerant cooling effect by the used heat radiating source is lower than the other is determined by the determining means using an appropriate determination method such as detection of the heat radiating source status. Then, based on the determination result, the control means controls the first and second flows to flow the refrigerant to be condensed discharged from the compressor in order from the low-efficiency heat radiation heat exchanger to the high-effect heat radiation heat exchanger. By controlling the path switching means to change the refrigerant flow order to the first and second heat radiating heat exchangers, regardless of the change in the refrigerant cooling effect in each heat radiating heat exchanger due to a change in the state of each heat radiating source, Condensation pressure under certain circumstances pc, as low as possible the operation of the condensation temperature tc, i.e., to allow the highest possible operation of the coefficient of performance (cop).

【0025】一方、第1及び第2の流路切換手段による
上記の通流順序変更については、第1放熱熱交換器2A
が前記の高効果の放熱熱交換器である場合(図2(イ)
における破線の矢印を参照)、第1流路切換手段K1
は、膨張手段4の入口流路reを第1及び第2放熱熱交
換器2A,2Bの直列組における第1放熱熱交換器2A
の側の端部に接続する切換状態とし、かつ、第2流路切
換手段K2は、圧縮機3の吐出流路rcを上記直列組2
A,2Bにおける第2放熱熱交換器2Bの側の端部に接
続する切換状態とし、これにより、圧縮機3から吐出し
た凝縮対象冷媒を、低効果の放熱熱交換器である第2放
熱熱交換器2Bから高効果の放熱熱交換器である第1放
熱熱交換器2Aの順に通流させる。
On the other hand, the change of the flow order by the first and second flow path switching means is described in the first heat radiation heat exchanger 2A.
Is the above-mentioned high-efficiency heat-dissipating heat exchanger (Fig. 2 (a)
, The first flow path switching means K1
The first radiating heat exchanger 2A in the series set of the first and second radiating heat exchangers 2A and 2B is connected to the inlet passage re of the expansion means 4.
And the second flow path switching means K2 connects the discharge flow path rc of the compressor 3 to the series set 2
A, 2B, a switching state in which the refrigerant is condensed and connected to the end of the second heat radiation heat exchanger 2B on the side of the second heat radiation heat exchanger 2B. The heat is passed from the exchanger 2B to the first heat radiation heat exchanger 2A, which is a high-efficiency heat radiation heat exchanger, in that order.

【0026】また逆に、第2放熱熱交換器2Bが前記の
高効果の放熱熱交換器である場合(図2(ロ)における
破線の矢印を参照)、第1流路切換手段K1は、膨張手
段4の入口流路reを上記直列組2A,2Bにおける第
2放熱熱交換器2Bの側の端部に接続する切換状態と
し、かつ、第2流路切換手段K2は、圧縮機3の吐出流
路を上記直列組2A,2Bにおける第1放熱熱交換器2
Aの側の端部に接続する切換状態とし、これにより、圧
縮機3から吐出した凝縮対象冷媒を、低効果の放熱熱交
換器である第1放熱熱交換器2Aから高効果の放熱熱交
換器である第2放熱熱交換器2Bの順に通流させる。
Conversely, when the second heat radiation heat exchanger 2B is the above-mentioned high-efficiency heat radiation heat exchanger (see the broken arrow in FIG. 2B), the first flow path switching means K1 The inlet channel re of the expansion means 4 is switched to a state in which it is connected to the end of the series combination 2A, 2B on the side of the second radiating heat exchanger 2B, and the second channel switching means K2 is connected to the compressor 3. The first heat radiation heat exchanger 2 in the series combination 2A, 2B
A switching state is connected to the end on the side of A, whereby the refrigerant to be condensed discharged from the compressor 3 is exchanged with the high-efficiency heat radiation heat from the first heat-radiation heat exchanger 2A, which is a low-effect heat radiation heat exchanger. Flow through the second heat radiation heat exchanger 2B, which is a heat exchanger.

【0027】そしてまた、上述の如く高効果の放熱熱交
換器を下流側に位置させることで凝縮圧力pc,凝縮温
度tcの極力低い運転を可能とするにあたり、低効果の
放熱熱交換器での使用放熱源による冷媒降温効果が高効
果の放熱熱交換器での使用放熱源による冷媒降温効果に
比べ過度に小さいと、上流側に位置させる低効果の放熱
熱交換器では、冷媒に対する作用温度が上記の凝縮温度
tcよりも高い状況(すなわち、使用放熱源が凝縮対象
冷媒に対し逆に加熱源として作用してしまう状況)とな
り、このことで成績係数copの低下を生じる。
Further , as described above, by locating the high-efficiency radiating heat exchanger on the downstream side to enable the operation of the condensing pressure pc and the condensing temperature tc to be as low as possible, a low-efficiency radiating heat exchanger is required. If the cooling effect of the used heat radiation source is excessively small compared to the cooling effect of the heat radiation source used in the high-efficiency heat radiation heat exchanger, the low-effect heat radiation heat exchanger located on the upstream side will have an effect temperature on the refrigerant. A situation higher than the above-mentioned condensation temperature tc (that is, a situation in which the used heat radiation source acts as a heating source on the contrary to the refrigerant to be condensed) is caused, and this causes a decrease in the coefficient of performance cop.

【0028】このことに着目して、本発明の第特徴構
成では、低効果及び高効果の放熱熱交換器の判定ととも
に、これら放熱熱交換器での使用放熱源による冷媒降温
効果の差が設定差以上であるか否かを判定手段に判定さ
せ、そして、この判定結果に基づき、両放熱熱交換器の
冷媒降温効果の差が設定差以上であるときには、制御手
段により低効果の放熱熱交換器への放熱源供給を停止し
て、実質的に高効果の放熱熱交換器のみを凝縮器機能さ
せる状態でヒートポンプ運転を行い、これにより、上記
の如く低効果の放熱熱交換器で使用放熱源が凝縮対象冷
媒に対し加熱源として作用するような状況を回避して、
このような状況の発生による成績係数copの低下を防
止する。
Focusing on this, in the second characteristic configuration of the present invention, the difference between the cooling effect and the cooling effect of the heat radiating source used in these heat radiating heat exchangers is determined in addition to the judgment of the low and high effect radiating heat exchangers. The determining means determines whether or not the difference is equal to or greater than the set difference, and based on the determination result, when the difference between the refrigerant temperature lowering effects of both the heat radiating heat exchangers is equal to or greater than the set difference, the control means reduces the heat radiation heat of low effect. The heat pump operation is performed in a state where the heat radiation source supply to the heat exchanger is stopped and only the high-efficiency heat radiation heat exchanger is made to function as a condenser, thereby using the heat radiation heat exchanger with a low effect as described above. Avoid situations where the heat radiation source acts as a heating source for the refrigerant to be condensed,
A decrease in the coefficient of performance cop due to the occurrence of such a situation is prevented.

【0029】〔第特徴構成の作用〕 第特徴構成では、第1及び第2熱源熱交換器を採熱熱
交換器として蒸発器機能させて個別の採放熱源に対し採
熱作用させながら、出力熱交換器を凝縮器機能させて加
熱対象に対し加熱作用させる採熱運転と、逆に、これら
第1及び第2熱源熱交換器を放熱熱交換器として凝縮器
機能させて個別の採放熱源に対し放熱作用させながら、
出力熱交換器を蒸発器機能させて冷却対象に対し冷却作
用させる放熱運転とを、冷媒循環方向の切り換えにより
択一的に実施する。
[Operation of Third Characteristic Configuration] In the third characteristic configuration, the first and second heat source heat exchangers function as evaporators as heat-collecting heat exchangers to perform heat-collecting operations on individual heat-collecting / radiating sources. A heat collecting operation in which the output heat exchanger functions as a condenser to heat the object to be heated, and conversely, the first and second heat source heat exchangers function as condenser heat exchangers to individually collect heat. While applying heat radiation to the heat radiation source,
A radiating operation in which the output heat exchanger functions as an evaporator to perform a cooling operation on the object to be cooled is alternatively performed by switching the refrigerant circulation direction.

【0030】そして、第1及び第2熱源熱交換器を採熱
熱交換器とする採熱運転では、前述の第1特徴構成と同
様に、使用採放熱源による冷媒昇温効果が他方よりも高
い状況の高効果の採熱熱交換器となる熱源熱交換器と、
使用採放熱源による冷媒昇温効果が他方よりも低い状況
の低効果の採熱熱交換器となる熱源熱交換器を、採放熱
源状況の検出等による適当な判定手法をもって判定手段
に判定させ、この判定結果に基づき、膨張手段を通過し
た蒸発対象冷媒を低効果の採熱熱交換器となる熱源熱交
換器から高効果の採熱熱交換器となる熱源熱交換器の順
に通流させるように、制御手段により第1及び第2の流
路切換手段を制御して第1及び第2熱源熱交換器に対す
る冷媒通流順序を変更し、これにより、各採放熱源の状
況変化による各熱源熱交換器での冷媒昇温効果の変化に
かかわらず、その時々の状況下で蒸発圧力pe,蒸発温
度teの極力高い運転、すなわち、成績係数copの極
力高い運転を可能とする。
In the heat collecting operation in which the first and second heat source heat exchangers are used as the heat collecting heat exchangers, similarly to the first characteristic configuration, the refrigerant temperature increasing effect by the used heat collecting and radiating source is higher than that of the other. A heat source heat exchanger that is a high-efficiency heat-collecting heat exchanger in high situations,
The determination means determines the heat source heat exchanger to be a low-effect heat collection heat exchanger in a situation in which the refrigerant temperature increase effect by the used heat collection and release source is lower than the other, using an appropriate determination method by detecting the state of the collection and release heat source. Based on the result of this determination, the refrigerant to be evaporated that has passed through the expansion means is passed in order from the heat source heat exchanger serving as a low-efficiency heat collecting heat exchanger to the heat source heat exchanger serving as a high-effect heat collecting heat exchanger. As described above, the control means controls the first and second flow path switching means to change the refrigerant flow order to the first and second heat source heat exchangers. Irrespective of the change in the effect of increasing the temperature of the refrigerant in the heat source heat exchanger, an operation in which the evaporation pressure pe and the evaporation temperature te are as high as possible, that is, an operation in which the coefficient of performance cop is as high as possible, is possible.

【0031】また、この採熱運転での第1及び第2流路
切換手段による上記の通流順序変更についても前述の第
1特徴構成と同様、第1熱源熱交換器2Aが高効果の採
熱熱交換器である場合(図2(ロ)における実線の矢印
を参照)、第1流路切換手段K1は、膨張手段4の出口
流路となる流路reを第1及び第2熱源熱交換器2A,
2Bの直列組における第2熱源熱交換器2Bの側の端部
に、かつ、第2流路切換手段K2は、圧縮機3の吸入流
路となる流路rcを上記直列組2A,2Bにおける第1
熱源熱交換器2Aの側の端部に夫々接続する切換状態と
し、これにより、膨張手段4を通過した蒸発対象冷媒
を、低効果の採熱熱交換器である第2熱源熱交換器2B
から高効果の採熱熱交換器である第1熱源熱交換器2A
の順に通流させ、逆に、第2熱源熱交換器2Bが高効果
の採熱熱交換器である場合(図2(イ)における実線の
矢印を参照)、第1流路切換手段K1は、膨張手段4の
出口流路となる流路reを上記直列組2A,2Bにおけ
る第1熱源熱交換器2Aの側の端部に、かつ、第2流路
切換手段K2は、圧縮機3の吸入流路となる流路rcを
上記直列組2A,2Bにおける第2熱源熱交換器2Bの
側の端部に夫々接続する切換状態とし、これにより、膨
張手段4を通過した蒸発対象冷媒を、低効果の採熱熱交
換器である第1熱源熱交換器2Aから高効果の採熱熱交
換器である第2熱源熱交換器2Bの順に通流させる。
In addition, the first heat source heat exchanger 2A has a high effect for the above-mentioned change of the flow order by the first and second flow path switching means in the heat collecting operation, similarly to the first characteristic configuration. In the case of a heat heat exchanger (see the solid arrow in FIG. 2B), the first flow path switching means K1 sets the flow path re, which is the outlet flow path of the expansion means 4, to the first and second heat source heat sources. Exchanger 2A,
At the end on the side of the second heat source heat exchanger 2B in the series set of 2B, and the second flow path switching means K2, a flow path rc serving as a suction flow path of the compressor 3 is provided in the series set 2A, 2B. First
A switching state is established in which each of the refrigerants is connected to the end on the side of the heat source heat exchanger 2A, whereby the refrigerant to be evaporated that has passed through the expansion means 4 is transferred to the second heat source heat exchanger 2B, which is a low-efficiency heat collecting heat exchanger.
Heat source heat exchanger 2A, which is a highly effective heat collecting heat exchanger
When the second heat source heat exchanger 2B is a high-efficiency heat collecting heat exchanger (see the solid line arrow in FIG. 2A), the first flow path switching means K1 The flow path re, which is the outlet flow path of the expansion means 4, is provided at the end of the series combination 2A, 2B on the side of the first heat source heat exchanger 2A, and the second flow path switching means K2 is In the switching state, the flow path rc serving as the suction flow path is connected to the end of the series combination 2A, 2B on the side of the second heat source heat exchanger 2B, whereby the refrigerant to be evaporated that has passed through the expansion means 4 is The heat is passed from the first heat source heat exchanger 2A, which is a low-effect heat-exchanger, to the second heat-source heat exchanger 2B, which is a high-effect heat-exchanger.

【0032】一方、第1及び第2熱源熱交換器を放熱熱
交換器とする放熱運転では、前述の第特徴構成と同様
に、使用採放熱源による冷媒降温効果が他方よりも高い
状況の高効果の放熱熱交換器となる熱源熱交換器と、使
用採放熱源による冷媒降温効果が他方よりも低い状況の
低効果の放熱熱交換器となる熱源熱交換器を、採放熱源
状況の検出等による適当な判定手法をもって判定手段に
判定させ、この判定結果に基づき、圧縮機から吐出した
凝縮対象冷媒を低効果の放熱熱交換器となる熱源熱交換
器から高効果の放熱熱交換器となる熱源熱交換器の順に
通流させるように、制御手段により第1及び第2の流路
切換手段を制御して第1及び第2熱源熱交換器に対する
冷媒通流順序を変更し、これにより、各採放熱源の状況
変化による各熱源熱交換器での冷媒降温効果の変化にか
かわらず、その時々の状況下で凝縮圧力pc,凝縮温度
tcの極力低い運転、すなわち、成績係数copの極力
高い運転を可能とする。
On the other hand, in the heat dissipation operation in which the first and second heat source heat exchangers are used as heat dissipation heat exchangers, as in the case of the above-described second characteristic configuration, the cooling and cooling effect of the used heat dissipation source is higher than the other. The heat source heat exchanger, which is a high-efficiency heat-dissipating heat exchanger, and the heat-source heat exchanger, which is a low-effect heat-dissipating heat exchanger in which the cooling effect of the used heat sink is lower than the other, The determination means is determined by an appropriate determination method based on detection or the like, and based on the determination result, the refrigerant to be condensed discharged from the compressor is changed from the heat source heat exchanger which becomes a low-efficiency heat radiation heat exchanger to a high-effect heat radiation heat exchanger. The first and second flow path switching means are controlled by the control means to change the refrigerant flow order to the first and second heat source heat exchangers so that the heat source heat exchangers flow in order. Depending on each heat source Regardless of changes in the refrigerant temperature lowering effect in the exchanger, the occasional situation in the condensation pressure pc, the lowest possible operation of the condensation temperature tc, i.e., to allow the highest possible operation of the coefficient of performance (cop).

【0033】また、この放熱運転での第1及び第2の流
路切換手段による上記の通流順序変更についても前述の
特徴構成と同様、第1熱源熱交換器2Aが高効果の
放熱熱交換器である場合(図2(イ)における破線の矢
印を参照)、第1流路切換手段K1は、膨張手段4の入
口流路となる流路reを第1及び第2熱源熱交換器2
A,2Bの直列組における第1熱源熱交換器2Aの側の
端部に、かつ、第2流路切換手段K2は、圧縮機3の吐
出流路となる流路rcを上記直列組2A,2Bにおける
第2熱源熱交換器2Bの側の端部に夫々接続する切換状
態とし、これにより、圧縮機3から吐出した凝縮対象冷
媒を、低効果の放熱熱交換器である第2熱源熱交換器2
Bから高効果の放熱熱交換器である第1熱源熱交換器2
Aの順に通流させ、逆に、第2熱源熱交換器2Bが高効
果の放熱熱交換器である場合(図2(ロ)における破線
の矢印を参照)、第1流路切換手段K1は、膨張手段4
の入口流路となる流路reを上記直列組2A,2Bにお
ける第2熱源熱交換器2Bの側の端部に、かつ、第2流
路切換手段K2は、圧縮機3の吐出流路となる流路rc
を上記直列組2A,2Bにおける第1熱源熱交換器2A
の側の端部に夫々接続する切換状態とし、これにより、
圧縮機3から吐出した凝縮対象冷媒を、低効果の放熱熱
交換器である第1熱源熱交換器2Aから高効果の放熱熱
交換器である第2熱源熱交換器2Bの順に通流させる。
In the heat dissipation operation, the first heat source heat exchanger 2A provides a high-efficiency heat dissipation as in the above-described second characteristic configuration for changing the flow order by the first and second flow path switching means. In the case of a heat exchanger (see the dashed arrow in FIG. 2A), the first flow path switching means K1 sets the flow path re, which is the inlet flow path of the expansion means 4, to the first and second heat source heat exchange. Vessel 2
A, at the end on the side of the first heat source heat exchanger 2A in the series set of A and 2B, and the second flow path switching means K2 connects the flow path rc serving as the discharge flow path of the compressor 3 to the series set 2A, 2B is connected to the end of the second heat source heat exchanger 2B on the side of the second heat source heat exchanger 2B, whereby the refrigerant to be condensed discharged from the compressor 3 is changed to the second heat source heat exchange which is a low-efficiency heat radiation heat exchanger. Vessel 2
B. First heat source heat exchanger 2 which is a high-efficiency heat radiation heat exchanger
When the second heat source heat exchanger 2B is a high-efficiency heat radiation heat exchanger (see the broken arrow in FIG. 2B), the first flow path switching means K1 , Expansion means 4
At the end of the series combination 2A, 2B on the side of the second heat source heat exchanger 2B, and the second flow path switching means K2 is connected to the discharge flow path of the compressor 3. Channel rc
To the first heat source heat exchanger 2A in the series set 2A, 2B.
In a switching state in which each is connected to the end on the side of
The refrigerant to be condensed discharged from the compressor 3 is allowed to flow from the first heat source heat exchanger 2A, which is a low-efficiency heat radiation heat exchanger, to the second heat source heat exchanger 2B, which is a high-effect heat radiation heat exchanger.

【0034】そして、採熱運転を行う場合、前述の第
特徴構成と同様に、低効果及び高効果の採熱熱交換器と
なる熱源熱交換器の判定とともに、これら採熱熱交換器
としての熱源熱交換器での使用採放熱源による冷媒昇温
効果の差が設定差以上であるか否かを判定手段に判定さ
せ、そして、この判定結果に基づき、両熱源熱交換器の
冷媒昇温効果の差が設定差以上であるときには、制御手
段により、低効果の採熱熱交換器となる熱源熱交換器へ
の採放熱源供給を停止して、高効果の採熱熱交換器とな
る熱源熱交換器のみを蒸発器機能させる状態でヒートポ
ンプ運転を行い、これにより、低効果の採熱熱交換器と
なる熱源熱交換器で使用採放熱源が蒸発対象冷媒に対し
逆に冷却源として作用するような状況を回避し、このよ
うな状況の発生による成績係数copの低下を防止す
る。
When performing the heat collecting operation, the first
As with the characteristic configuration, the heat source heat exchangers that are low-effect and high-effect heat-exchanger heat exchangers are determined, and the refrigerant heat-up effect by the heat-extraction and heat-dissipation sources used in the heat-source heat exchangers as these heat-exchanger heat exchangers The determination means determines whether or not the difference is equal to or greater than the set difference, and, based on the determination result, when the difference in the refrigerant temperature increasing effect of both heat source heat exchangers is equal to or greater than the set difference, the control means The supply of the heat radiation source to the heat source heat exchanger, which is a low-effect heat exchanger, is stopped, and the heat pump operation is performed with only the heat source heat exchanger, which is the high-effect heat exchanger, functioning as an evaporator. By doing so, it is possible to avoid a situation in which the heat collecting and radiating source used in the heat source heat exchanger which is a low-efficiency heat collecting heat exchanger acts as a cooling source for the refrigerant to be evaporated. Prevents the coefficient of performance cop from decreasing.

【0035】また、放熱運転を行う場合には、前述の第
特徴構成と同様、低効果及び高効果の放熱熱交換器と
なる熱源熱交換器の判定とともに、これら放熱熱交換器
としての熱源熱交換器での使用採放熱源による冷媒降温
効果の差が設定差以上であるか否かを判定手段に判定さ
せ、そして、この判定結果に基づき、両熱源熱交換器の
冷媒降温効果の差が設定差以上であるときには、制御手
段により、低効果の放熱熱交換器となる熱源熱交換器へ
の採放熱源供給を停止して、高効果の放熱熱交換器とな
る熱源熱交換器のみを凝縮器機能させる状態でヒートポ
ンプ運転を行い、これにより、低効果の放熱熱交換器と
なる熱源熱交換器で使用採放熱源が凝縮対象冷媒に対し
逆に加熱源として作用するような状況を回避し、このよ
うな状況の発生による成績係数copの低下を防止す
る。
[0035] Also, in the case of performing the heat operation release the first of the aforementioned
As with the two- characteristic configuration, along with the determination of the heat source heat exchanger to be a low-effect and high-effect heat radiation heat exchanger, the difference in the refrigerant cooling effect by the sampling heat radiation source used in the heat source heat exchanger as the heat radiation heat exchanger is determined. The determination means determines whether or not the difference is equal to or greater than the set difference, and based on the determination result, when the difference in the refrigerant cooling effect between the two heat source heat exchangers is equal to or greater than the set difference, the control means causes the low-efficiency heat radiation. The supply of the heat radiation source to the heat source heat exchanger serving as the heat exchanger is stopped, and the heat pump is operated in a state where only the heat source heat exchanger serving as the high-efficiency heat radiation heat exchanger functions as a condenser. Use the heat source heat exchanger to be an effective heat radiation heat exchanger. Avoid the situation where the heat radiation source acts as a heating source for the refrigerant to be condensed, and reduce the coefficient of performance cop due to the occurrence of such a situation. To prevent.

【0036】[0036]

【発明の効果】〔第1特徴構成の効果〕 本発明の第1特徴構成によれば、各採熱源の状況変化に
かかわらず、その時々で最大限の高成績係数運転を行え
ることにより、省エネを効果的に達成でき、また、凝縮
器側で高い加熱能力を安定的に得ることができる。
[Effects of the first characteristic configuration] According to the first characteristic configuration of the present invention, the maximum high coefficient of performance operation can be performed at any time regardless of a change in the situation of each heat source, thereby saving energy. Can be effectively achieved, and a high heating capacity can be stably obtained on the condenser side.

【0037】しかも、この効果を得るための冷媒経路に
対する改良として、第1の採熱熱交換器と第2の採熱熱
交換器との接続については、両者を接続管により単に直
列接続するだけの従来と同様の簡単な接続形態を採り、
また、膨張手段の出口流路を第1及び第2採熱熱交換器
の直列組における一端と他端とに択一的に接続する第1
流路切換手段、及び、圧縮機の吸入流路を第1及び第2
採熱熱交換器の直列組における一端と他端とに択一的に
接続する第2流路切換手段については、夫々、双方向可
能な1個の三方弁や2個の二方弁を用いるだけ等のバル
ブ数の少ない簡単な流路切換構成で済ませ得るから、例
えば図9に示す如く合計で4個の三方弁Vaを用いる流
路切換構成や、図10に示す如く合計で6個の二方弁V
bを用いる流路切換構成を採用して、第1及び第2採熱
熱交換器2A,2Bに対する蒸発対象冷媒の通流順序を
変更可能にするに比べ、冷媒経路に対する改良が簡単で
装置製作を容易にし得るとともに装置コストを安価にし
得る。
In addition, as an improvement to the refrigerant path for obtaining this effect, the connection between the first heat-collecting heat exchanger and the second heat-collecting heat exchanger can be achieved by simply connecting them in series with a connecting pipe. Take the same simple connection form as before,
Further, a first connecting means for selectively connecting the outlet flow path of the expansion means to one end and the other end of the series combination of the first and second heat collecting heat exchangers.
Flow path switching means, and the first and second suction paths of the compressor.
As the second flow path switching means that is selectively connected to one end and the other end in the series set of the heat collecting heat exchangers, one three-way valve and two two-way valves that can be bidirectional are used, respectively. Only a simple passage switching configuration with a small number of valves, such as a single passage, can be used. For example, a passage switching configuration using a total of four three-way valves Va as shown in FIG. 9 or a total of six passages as shown in FIG. Two-way valve V
As compared with the case where the flow path switching configuration using the b is adopted and the flow order of the refrigerant to be evaporated to the first and second heat sampling heat exchangers 2A and 2B can be changed, the improvement of the refrigerant path is simple and the device is manufactured. Can be facilitated and the apparatus cost can be reduced.

【0038】そしてまた、本発明の第特徴構成によれ
ば、第1及び第2採熱熱交換器の冷媒昇温効果の差が過
度に大きくなることで生じる成績係数の低下を防止でき
ることにより、成績係数の向上を一層効果的に達成する
ことができる。
[0038] And also, according to the first characterizing feature of the present invention, to being able to prevent a decrease in coefficient of performance caused by difference of the refrigerant Atsushi Nobori effect of the first and second adopts heat exchanger becomes excessively large good is, the improvement of growth績係number can be more effectively achieved.

【0039】また、第1及び第2採熱熱交換器の冷媒昇
温効果の差が設定差以上であるときに低効果の採熱熱交
換器を機能停止させるにあたり、低効果の採熱熱交換器
に対する採熱源供給を停止して低効果の採熱熱交換器を
機能停止させる形態を採るから、例えば、蒸発対象冷媒
を低効果の採熱熱交換器に対し迂回させることにより低
効果の採熱熱交換器を機能停止させる形態に比べ、迂回
用の冷媒流路や迂回用の切換弁を不要にでき、これによ
っても冷媒経路構成を簡略化し得る。
Further, when the difference in the effect of raising the temperature of the refrigerant between the first and second heat-collecting heat exchangers is equal to or greater than the set difference, the low-effect heat-collecting heat exchanger is stopped. Since the heat source supply to the exchanger is stopped and the function of the low-efficiency heat-exchange heat exchanger is stopped, for example, by diverting the refrigerant to be evaporated to the low-effect heat-exchange heat exchanger, the low-efficiency heat-exchange heat exchanger is less effective. adopted compared with the form in which stall the heat exchanger, can the switching valve of the coolant channel and the bypass for bypassing unnecessary, to
However, the configuration of the refrigerant path can be simplified.

【0040】〔第特徴構成の効果〕 本発明の第特徴構成によれば、各放熱源の状況変化に
かかわらず、その時々で最大限の高成績係数運転を行え
ることにより、省エネを効果的に達成でき、また、蒸発
器側で高い冷却能力を安定的に得ることができる。
[Effects of Second Characteristic Configuration] According to the second characteristic configuration of the present invention, the maximum high coefficient of operation can be performed at any time regardless of a change in the situation of each heat radiation source, thereby saving energy. And a high cooling capacity can be stably obtained on the evaporator side.

【0041】しかも、この効果を得るための冷媒経路に
対する改良として、第1の放熱熱交換器と第2の放熱熱
交換器との接続については、両者を接続管により単に直
列接続するだけの従来と同様の簡単な接続形態を採り、
また、膨張手段の入口流路を第1及び第2放熱熱交換器
の直列組における一端と他端とに択一的に接続する第1
流路切換手段、及び、圧縮機の吐出流路を第1及び第2
放熱熱交換器の直列組における一端と他端とに択一的に
接続する第2流路切換手段については、夫々、双方向可
能な1個の三方弁や2個の二方弁を用いるだけ等のバル
ブ数の少ない簡単な流路切換構成で済ませ得るから、前
述の図9に示す如き4個の三方弁Vaを用いる流路切換
構成や、前述の図10に示す如き6個の二方弁Vbを用
いる流路切換構成を採用して、第1及び第2放熱熱交換
器2A,2Bに対する凝縮対象冷媒の通流順序を変更可
能にするに比べ、冷媒経路に対する改良が簡単で装置製
作を容易にし得るとともに装置コストを安価にし得る。
Further, as an improvement to the refrigerant path for obtaining this effect, the connection between the first heat radiation heat exchanger and the second heat radiation heat exchanger is the same as the conventional method in which both are simply connected in series by a connecting pipe. Take the same simple connection form as
Also, a first connecting means for selectively connecting the inlet flow path of the expansion means to one end and the other end of the series combination of the first and second radiating heat exchangers.
Flow path switching means, and the first and second discharge paths of the compressor.
As for the second flow path switching means which is selectively connected to one end and the other end in the series set of the heat radiating heat exchangers, only one three-way valve or two two-way valves capable of bidirectional use are used, respectively. And the like, a simple flow path switching configuration with a small number of valves can be used. Therefore, a flow path switching configuration using four three-way valves Va as shown in FIG. 9 described above, or a six-way switching configuration as shown in FIG. As compared with the case where the flow path switching configuration using the valve Vb is adopted and the flow order of the refrigerant to be condensed to the first and second radiating heat exchangers 2A and 2B can be changed, the improvement of the refrigerant path is simple and the device is manufactured. Can be facilitated and the apparatus cost can be reduced.

【0042】そしてまた、本発明の第特徴構成によれ
ば、第1及び第2放熱熱交換器の冷媒降温効果の差が過
度に大きくなることで生じる成績係数の低下を防止でき
ることにより、成績係数の向上を一層効果的に達成する
ことができる。
[0042] And also, according to the second characterizing feature of the present invention, Ri by the ability to prevent a decrease in coefficient of performance caused by difference of the refrigerant temperature decreasing effect of the first and second heat radiating heat exchanger is excessively large , it is possible to achieve improved growth績係number more effectively.

【0043】また、第1及び第2放熱熱交換器の冷媒降
温効果の差が設定差以上であるときに低効果の放熱熱交
換器を機能停止させるにあたり、低効果の放熱熱交換器
に対する放熱源供給を停止して低効果の放熱熱交換器を
機能停止させる形態を採るから、例えば、凝縮対象冷媒
を低効果の放熱熱交換器に対し迂回させることにより低
効果の放熱熱交換器を機能停止させる形態に比べ、迂回
用の冷媒流路や迂回用の切換弁を不要にでき、これによ
っても冷媒経路構成を簡略化し得る。
Further, when the difference between the refrigerant temperature lowering effects of the first and second heat radiating heat exchangers is equal to or larger than the set difference, the function of the low effect heat radiating heat exchanger is stopped. Since the heat source supply is stopped and the low-efficiency heat-dissipation heat exchanger is stopped, the low-efficiency heat-dissipation heat exchanger functions, for example, by diverting the refrigerant to be condensed to the low-effect heat-dissipation heat exchanger. Compared with the stop mode, the refrigerant flow path for bypass and the switching valve for bypass can be dispensed with.
However, the configuration of the refrigerant path can be simplified.

【0044】〔第特徴構成の効果〕 本発明の第特徴構成によれば、第1及び第2の熱源熱
交換器を採熱熱交換器とする採熱運転と、これら第1及
び第2の熱源熱交換器を放熱熱交換器とする放熱運転と
を択一的に切換実施するものにおいて、これら採熱運転
及び放熱運転の夫々で、各採放熱源の状況変化にかかわ
らず、その時々で最大限の高成績係数運転を行え、これ
により、省エネを効果的に達成でき、また、出力側で高
い冷却能力及び高い加熱能力を安定的に得ることができ
る。
[Effect of Third Characteristic Configuration] According to the third characteristic configuration of the present invention, the heat collecting operation using the first and second heat source heat exchangers as the heat collecting heat exchangers, In the one that switches between the heat-dissipation operation and the heat-dissipation operation using the heat-source heat exchanger as the heat-dissipation heat exchanger, the heat-dissipation operation and the heat-dissipation operation are performed regardless of the status change of each heat-dissipation and heat-dissipation source Occasionally, the maximum high coefficient of performance operation can be performed, whereby energy saving can be effectively achieved, and a high cooling capacity and a high heating capacity can be stably obtained on the output side.

【0045】そして、この効果を得るための冷媒経路に
対する改良として、冷媒循環方向の切り換えについては
四方弁を用いるなどの従来と同様の切換構成を採用する
だけで、また、第1の熱源熱交換器と第2の熱源熱交換
器との接続についても両者を接続管により単に直列接続
するだけの従来と同様の簡単な接続形態を採りながら、
前述の第1特徴構成や第3特徴構成と同様、第1及び第
2流路切換手段については、夫々、双方向可能な1個の
三方弁や2個の二方弁を用いるだけ等のバルブ数の少な
い簡単な流路切換構成で済ませることができ、これによ
り、前述の図9に示す如き4個の三方弁Vaを用いる流
路切換構成や、前述の図10に示す如き6個の二方弁V
bを用いる流路切換構成を採用して、採熱運転での第1
及び第2熱源熱交換器に対する蒸発対象冷媒の通流順序
変更、及び、放熱運転での第1及び第2熱源熱交換器に
対する凝縮対象冷媒の通流順序変更を可能にするに比
べ、冷媒経路に対する改良が簡単で、装置製作を容易に
し得るとともに装置コストを安価にし得る。
As an improvement to the refrigerant path for obtaining this effect, the refrigerant circulation direction is switched only by adopting the same switching configuration as in the prior art such as using a four-way valve. The connection between the heat exchanger and the second heat source heat exchanger also employs a simple connection form similar to the conventional one in which both are simply connected in series by a connection pipe.
As in the above-described first and third characteristic configurations, the first and second flow path switching means are valves that only use one three-way valve or two two-way valves that can be bidirectional, respectively. It is possible to use only a small number of simple flow path switching configurations, thereby providing a flow path switching configuration using four three-way valves Va as shown in FIG. 9 described above or a six-way switching configuration as shown in FIG. Way valve V
b), the first in the heat recovery operation is adopted.
And a change in the flow sequence of the refrigerant to be evaporated to the second heat source heat exchanger and a change in the flow sequence of the refrigerant to be condensed to the first and second heat source heat exchangers in the heat dissipation operation. Can be easily improved, the manufacturing of the device can be facilitated, and the cost of the device can be reduced.

【0046】そしてまた、本発明の第特徴構成によれ
ば、第1及び第2熱源熱交換器を採熱熱交換器とする採
熱運転で、これら第1及び第2熱源熱交換器の冷媒昇温
効果の差が過度に大きくなることにより生じる成績係数
の低下、並びに、第1及び第2熱源熱交換器を放熱熱交
換器とする放熱運転で、これら第1及び第2熱源熱交換
器の冷媒降温効果の差が過度に大きくなることにより生
じる成績係数の低下の夫々を防止できることにより、成
績係数の向上を一層効果的に達成することができる。
[0046] And also, according to the third characterizing feature of the present invention, in Tonetsu operation for the heat exchanger adopts the first and second heat source heat exchanger, the first and second heat source heat exchanger In the heat dissipation operation using the first and second heat source heat exchangers as heat dissipation heat exchangers, the first and second heat source heat exchanges are reduced in the coefficient of performance caused by an excessively large difference in the refrigerant temperature increasing effect. the difference of the refrigerant temperature lowering effect of vessel Ri by that it is possible to prevent the respective reduction in the coefficient of performance caused by excessively large, the improvement in growth <br/>績係number can be more effectively achieved.

【0047】また、採熱運転において第1及び第2熱源
熱交換器の冷媒昇温効果の差が設定差以上であるとき、
及び、放熱運転において第1及び第2熱源熱交換器の冷
媒降温効果の差が設定差以上であるとき、低効果の採熱
熱交換器ないし低効果の放熱熱交換器となる熱源熱交換
器を機能停止させるにあたり、前述の第特徴構成や第
特徴構成と同様、低効果の採熱熱交換器ないし低効果
の放熱熱交換器となる熱源熱交換器への採放熱源供給の
停止により、この熱源熱交換器を機能停止させる形態を
採るから、低効果の採熱熱交換器ないし低効果の放熱熱
交換器となる熱源熱交換器に対し蒸発対象冷媒や凝縮対
象冷媒を迂回させることで、この熱源熱交換器を機能停
止させるに比べ、迂回用の冷媒流路や迂回用の切換弁を
不要にでき、これによっても冷媒経路構成を簡略化し得
る。
Further, when the difference between the refrigerant temperature raising effects of the first and second heat source heat exchangers in the heat collecting operation is equal to or larger than the set difference,
And a heat-source heat exchanger that is a low-effect heat-collecting heat exchanger or a low-effect heat-radiation heat exchanger when the difference between the refrigerant cooling effects of the first and second heat-source heat exchangers is greater than or equal to a set difference in the heat-dissipation operation. In stopping the function, the first characteristic configuration and the second
As in the two- character configuration, a mode is adopted in which the function of the heat source heat exchanger is stopped by stopping the supply of the heat radiation source to the heat source heat exchanger serving as a low-effect heat-exchange heat exchanger or a low-effect heat-dissipation heat exchanger. Therefore, by diverting the refrigerant to be evaporated and the refrigerant to be condensed to the heat source heat exchanger, which is a low-effect heat-collecting heat exchanger or a low-effect heat-radiating heat exchanger, compared to shutting down the heat-source heat exchanger In addition, the detour refrigerant flow path and the detour switching valve can be dispensed with, so that the configuration of the refrigerant path can be simplified.

【0048】[0048]

【実施例】図1において、1は冷暖房対象域の加熱(暖
房)や冷却(冷房)、あるいは、物品の加熱や冷却など
に用いる出力熱交換器、2A,2Bは直列接続した第1
及び第2の熱源熱交換器であり、これら出力熱交換器1
及び熱源熱交換器2A,2Bは、圧縮機3及び膨張弁4
(あるいはキャピラリーチューブ)等とともに圧縮式ヒ
ートポンプを構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 denotes an output heat exchanger used for heating (heating) or cooling (cooling) of an area to be cooled or heated, or heating or cooling an article, and 2A and 2B are connected in series to a first heat exchanger.
And the second heat source heat exchanger, and these output heat exchangers 1
And the heat source heat exchangers 2A and 2B include a compressor 3 and an expansion valve 4.
(Or a capillary tube) to constitute a compression heat pump.

【0049】第1熱源熱交換器2Aは、ファン5により
供給される空気G1を採熱源又は放熱源とする空気・冷
媒熱交換器であり、この第1熱源熱交換器2Aで用いる
採放熱源の空気G1には、外気や、冷暖房対象域からの
排気、あるいは、太陽熱集熱器等の加熱手段を通過させ
た加熱空気や、散水冷却器等の冷却手段を通過させた冷
却空気などを適用できる。
The first heat source heat exchanger 2A is an air / refrigerant heat exchanger using the air G1 supplied by the fan 5 as a heat source or a heat radiating source. The heat collecting and radiating source used in the first heat source heat exchanger 2A is used. For the air G1, the outside air, exhaust air from the area to be cooled or heated, or heated air that has passed through a heating means such as a solar heat collector or cooling air that has passed through a cooling means such as a water spray cooler is applied. it can.

【0050】一方、第2熱源熱交換器2Bは、ポンプ6
により供給される水G2を採熱源又は放熱源とする水・
冷媒熱交換器であり、この第2熱源熱交換器2Bで用い
る採放熱源の水G2には、河川水、井水、海水、下水、
生活排水や工場排水、あるいは、太陽熱集熱器等の加熱
手段を通過させた加熱水や加熱ブライン、冷却塔等の冷
却手段を通過させた冷却水や冷却ブライン、あるいはま
た、蓄熱手段により温熱や冷熱を蓄熱した蓄熱水や蓄熱
ブラインなどを適用できる。
On the other hand, the second heat source heat exchanger 2B
Using the water G2 supplied by the heat source or heat radiation source
Water G2, which is a refrigerant heat exchanger and is a heat radiation source used in the second heat source heat exchanger 2B, includes river water, well water, seawater, sewage, and the like.
Domestic effluent, industrial effluent, or heating water or heating brine that has passed through heating means such as a solar heat collector, cooling water or cooling brine that has passed through cooling means such as a cooling tower, or heat storage means Heat storage water or heat storage brine that stores cold heat can be applied.

【0051】7は冷媒に対する循環方向切換手段として
の四方弁であり、この四方弁7の切り換え操作により、
冷媒を図中、実線の矢印で示す如く圧縮機3−出力熱交
換器1−膨張弁4−第1及び第2熱源熱交換器2A,2
Bの直列組の順に循環させる採熱運転と、冷媒を図中、
破線の矢印で示す如く圧縮機3−第1及び第2熱源熱交
換器2A,2Bの直列組−膨張弁4−出力熱交換器1の
順に循環させる放熱運転との切り換えを行う。
Reference numeral 7 denotes a four-way valve as means for switching the direction of circulation of the refrigerant.
The refrigerant is supplied to the compressor 3-output heat exchanger 1-expansion valve 4-first and second heat source heat exchangers 2A and 2A as indicated by solid arrows in the drawing.
In the drawing, the heat collection operation of circulating in the order of the series set of B, and the refrigerant,
As shown by the broken-line arrow, the operation is switched to the heat radiation operation in which the compressor 3-the series combination of the first and second heat source heat exchangers 2A and 2B-the expansion valve 4-the output heat exchanger 1 are circulated in this order.

【0052】つまり、採熱運転では、第1及び第2熱源
熱交換器2A,2Bを蒸発器機能させて各々の採放熱源
G1,G2に対し採熱熱交換器として採熱作用させなが
ら、出力熱交換器1を凝縮器機能させて加熱対象に対し
加熱作用させ、一方、放熱運転では、第1及び第2熱源
熱交換器2A,2Bを凝縮器機能させて各々の採放熱源
G1,G2に対し放熱熱交換器として放熱作用させなが
ら、出力熱交換器1を蒸発器機能させて冷却対象に対し
冷却作用させる。
That is, in the heat collecting operation, the first and second heat source heat exchangers 2A and 2B are made to function as evaporators, and the respective heat collecting and radiating sources G1 and G2 are made to function as heat collecting heat exchangers. The output heat exchanger 1 is made to function as a condenser to heat the object to be heated. On the other hand, in the heat radiation operation, the first and second heat source heat exchangers 2A and 2B are made to function as condensers, and the respective heat collection and radiation sources G1, The output heat exchanger 1 is caused to function as an evaporator while allowing the G2 to perform a heat radiation function as a heat radiation heat exchanger, thereby causing the cooling target to be cooled.

【0053】V1,V2は夫々、双方向可能な二方弁で
あり、これら二方弁V1,V2は、採熱運転において膨
張弁4の出口流路となり、かつ、放熱運転において膨張
弁4の入口流路となる流路reを、第1及び第2熱源熱
交換器2A,2Bの直列組における一端と他端とに択一
的に接続する第1の流路切換手段K1を構成する。
V1 and V2 are two-way valves capable of bidirectional operation. These two-way valves V1 and V2 serve as outlet passages of the expansion valve 4 in the heat collecting operation, and also serve as the outlet flow path of the expansion valve 4 in the heat radiation operation. A first flow path switching means K1 for selectively connecting the flow path re serving as the inlet flow path to one end and the other end of the series combination of the first and second heat source heat exchangers 2A and 2B is provided.

【0054】また、V3,V4も夫々、双方向可能な二
方弁であり、これら二方弁V3,V4は、採熱運転にお
いて圧縮機3の吸入流路となり、かつ、放熱運転におい
て圧縮機3の吐出流路となる流路rcを、第1及び第2
熱源熱交換器2A,2Bの直列組における一端と他端と
に択一的に接続する第2の流路切換手段K2を構成す
る。
V3 and V4 are also two-way valves capable of bidirectional operation. These two-way valves V3 and V4 serve as suction passages of the compressor 3 in the heat collecting operation, and also serve as the compressor in the heat radiation operation. The flow path rc serving as the discharge flow path of the third and the third flow path
A second flow path switching unit K2 is connected to one end and the other end of the series combination of the heat source heat exchangers 2A and 2B.

【0055】つまり、採熱運転では蒸発対象冷媒を採熱
熱交換器としての第1及び第2熱源熱交換器2A,2B
に対し直列に通流させるにあたり、これら4個の二方弁
V1〜V4の切り換え操作により、図2(イ)において
実線の矢印で示す如く、膨張弁4を通過した蒸発対象冷
媒を第1熱源熱交換器2Aから第2熱源熱交換器2Bの
順に通流させる通流形態と、図2(ロ)において実線の
矢印で示す如く、膨張弁4を通過した蒸発対象冷媒を逆
に第2熱源熱交換器2Bから第1熱源熱交換器2Aの順
に通流させる通流形態との切り換えを行う。
In other words, in the heat collecting operation, the refrigerant to be evaporated uses the first and second heat source heat exchangers 2A and 2B as heat collecting heat exchangers.
When the four-way valves V1 to V4 are switched in series, the refrigerant to be evaporated having passed through the expansion valve 4 is passed through the first heat source as shown by the solid arrow in FIG. The flow form in which heat flows from the heat exchanger 2A to the second heat source heat exchanger 2B in order, and the refrigerant to be evaporated that has passed through the expansion valve 4, as shown by the solid arrow in FIG. Switching is performed between the heat exchanger 2B and the first heat source heat exchanger 2A in order.

【0056】また、放熱運転では凝縮対象冷媒を放熱熱
交換器としての第1及び第2熱源熱交換器2A,2Bに
対し直列に通流させるにあたり、これら4個の二方弁V
1〜V4の切り換え操作により、図2(イ)において破
線の矢印で示す如く、圧縮機3から吐出した凝縮対象冷
媒を第2熱源熱交換器2Bから第1熱源熱交換器2Aの
順に通流させる通流形態と、図2(ロ)において破線の
矢印で示す如く、圧縮機3から吐出した凝縮対象冷媒を
逆に第1熱源熱交換器2Aから第2熱源熱交換器2Bの
順に通流させる通流形態との切り換えを行う。
In the heat radiation operation, when the refrigerant to be condensed flows in series to the first and second heat source heat exchangers 2A and 2B as the heat radiation heat exchangers, these four two-way valves V
By the switching operation of 1 to V4, the refrigerant to be condensed discharged from the compressor 3 flows from the second heat source heat exchanger 2B to the first heat source heat exchanger 2A in the order shown by the broken line arrow in FIG. 2B, the refrigerant to be condensed discharged from the compressor 3 flows in reverse order from the first heat source heat exchanger 2A to the second heat source heat exchanger 2B, as indicated by the dashed arrow in FIG. The flow mode is switched to the flow mode.

【0057】他方、8Pは冷媒の蒸発圧力に等しい蒸発
器出口圧力pe(すなわち、圧縮機3が吸入する低圧蒸
気冷媒の圧力)を検出する冷媒圧力検出器、8Tは冷媒
の蒸発温度teと過熱度shとの和に等しい蒸発器出口
温度te’(すなわち、圧縮機3が吸入する低圧蒸気冷
媒の温度)を検出する冷媒温度検出器、9Aは第1熱源
熱交換器2Aの使用採放熱源である空気G1の温度t1
を検出する空気側検出器、9Bは第2熱源熱交換器2B
の使用採放熱源である水G2の温度t2を検出する水側
検出器であり、10は各検出器8P,8T,9A,9B
の検出結果や、適当な検出手段により検出する出力熱交
換器1の熱負荷などに応じヒートポンプ運転を制御する
制御器である。
On the other hand, 8P is a refrigerant pressure detector for detecting the evaporator outlet pressure pe equal to the evaporation pressure of the refrigerant (that is, the pressure of the low-pressure vapor refrigerant sucked by the compressor 3), and 8T is the refrigerant evaporation temperature te and the overheating. The refrigerant temperature detector 9A detects the evaporator outlet temperature te '(that is, the temperature of the low-pressure vapor refrigerant sucked by the compressor 3), which is equal to the sum of the temperature sh and 9A is a heat radiation source used by the first heat source heat exchanger 2A. The temperature t1 of the air G1
9B is the second heat source heat exchanger 2B
Is a water-side detector for detecting the temperature t2 of water G2 as a heat radiation source. Reference numeral 10 denotes each detector 8P, 8T, 9A, 9B.
Is a controller that controls the operation of the heat pump in accordance with the detection result of the above-mentioned and the heat load of the output heat exchanger 1 detected by an appropriate detecting means.

【0058】この制御器10は基本制御として、運転モ
ード指令に応じ四方弁7の切り換え操作により採熱運転
と放熱運転との切り換えを行い、また、採熱運転と放熱
運転との夫々において出力熱交換器1の熱負荷に応じ圧
縮機3の出力を調整し、かつ、冷媒圧力検出器8Pによ
る検出圧力peと冷媒温度検出器8Tによる検出温度t
e’とから演算する過熱度shが目標過熱度になるよう
に、膨張弁4の絞り度を調整する。
As a basic control, the controller 10 switches between the heat collecting operation and the heat radiation operation by switching the four-way valve 7 in accordance with the operation mode command, and outputs the heat output in each of the heat collecting operation and the heat radiation operation. The output of the compressor 3 is adjusted according to the heat load of the exchanger 1, and the pressure pe detected by the refrigerant pressure detector 8P and the temperature t detected by the refrigerant temperature detector 8T
The degree of throttle of the expansion valve 4 is adjusted so that the degree of superheat sh calculated from e ′ becomes the target degree of superheat.

【0059】なお、過熱度shは、冷媒圧力検出器8P
による検出圧力pe(蒸発圧力)のもとでの飽和蒸気冷
媒の温度(蒸発温度te)と、冷媒温度検出器8Tによ
る検出温度te’(蒸発器出口温度)との差(sh=t
e’−te)として演算される。
The degree of superheat sh is determined by the refrigerant pressure detector 8P.
(Sh = t) between the temperature (evaporation temperature te) of the saturated vapor refrigerant under the detected pressure pe (evaporation pressure) and the temperature te ′ (evaporator outlet temperature) detected by the refrigerant temperature detector 8T.
e'-te).

【0060】また、制御器10は上記の基本制御ととも
に、採熱運転では次記の如き「採熱源状況による基本発
停」、「冷媒昇温効果の比較判定」、並びに、「冷媒通
流及び採熱源供給の切換」の各制御(図3のフローチャ
ート参照)を実行し、放熱運転では次記の如き「放熱源
状況による基本発停」、「冷媒降温効果の比較判定」、
及び、「冷媒通流及び放熱源供給の切換」の各制御(図
4のフローチャート参照)を実行する。
In addition to the above-described basic control, the controller 10 performs the following in the heat collection operation: “basic start / stop according to the state of the heat source”, “comparison and judgment of the effect of increasing the temperature of the refrigerant”, and “ Control (see the flowchart in FIG. 3) of the “switching of the heat source supply”, and in the heat dissipation operation, “basic start / stop according to the condition of the heat sink”, “comparison and determination of the refrigerant cooling effect”,
Then, each control (see the flowchart of FIG. 4) of “switching between refrigerant flow and heat radiation source supply” is executed.

【0061】(採熱運転) 「採熱源状況による基本発停」 設定された下限蒸発圧力,下限蒸発温度を実行の蒸発圧
力pe,蒸発温度teとした場合の第1熱源熱交換器2
Aでの空気採熱源G1による冷媒加熱能力HQ1と、こ
の空気採熱源G1の温度t1との相関について設定され
た演算論理R1を用いて、空気側検出器9Aの検出温度
t1から、下限蒸発圧力,下限蒸発温度を実行の蒸発圧
力pe,蒸発温度teとした場合の現状における第1熱
源熱交換器2Aでの空気採熱源G1による冷媒加熱能力
HQ1を演算する。
(Basic Heating Operation) "Basic Start / Stop by Heating Source Status" The first heat source heat exchanger 2 when the set lower limit evaporation pressure and lower limit evaporation temperature are set to the execution evaporation pressure pe and the evaporation temperature te.
Using the arithmetic logic R1 set for the correlation between the refrigerant heating capacity HQ1 of the air heat source G1 at A and the temperature t1 of the air heat source G1, the lower limit evaporation pressure is calculated from the detected temperature t1 of the air-side detector 9A. , The refrigerant heating capacity HQ1 of the air heat source G1 in the first heat source heat exchanger 2A in the current state when the lower limit evaporation temperature is the execution evaporation pressure pe and the evaporation temperature te is calculated.

【0062】また同様に、下限蒸発圧力,下限蒸発温度
を実行の蒸発圧力pe,蒸発温度teとした場合の第2
熱源熱交換器2Bでの水採熱源G2による冷媒加熱能力
HQ2と、この水採熱源G2の温度t2との相関につい
て設定された演算論理R2を用いて、水側検出器9Bの
検出温度t2から、下限蒸発圧力,下限蒸発温度を実行
の蒸発圧力pe,蒸発温度teとした場合の現状におけ
る第2熱源熱交換器2Bでの水採熱源G2による冷媒加
熱能力HQ2を演算する。
Similarly, the second case in which the lower limit evaporation pressure and the lower limit evaporation temperature are set to the actual evaporation pressure pe and the evaporation temperature te, respectively.
From the detected temperature t2 of the water-side detector 9B using the arithmetic logic R2 set for the correlation between the refrigerant heating capacity HQ2 of the water heat source G2 in the heat source heat exchanger 2B and the temperature t2 of the water heat source G2. Calculate the refrigerant heating capacity HQ2 of the water heat source G2 in the second heat source heat exchanger 2B in the current case where the lower limit evaporation pressure and the lower limit evaporation temperature are the executed evaporation pressure pe and the evaporation temperature te.

【0063】そして、演算した各採熱源G1,G2によ
る冷媒加熱能力HQ1,HQ2の和と、下限蒸発圧力,
下限蒸発温度を実行の蒸発圧力pe,蒸発温度teとし
た場合の第1及び第2熱源熱交換器2A,2Bの全体と
しての設定必要加熱能力HQQとを比較し、演算した冷
媒加熱能力HQ1,HQ2の和が上記の設定必要加熱能
力HQQ未満(HQ1+HQ2<HQQ)のときには、
圧縮機3を停止してヒートポンプ運転を停止する。ま
た、演算した冷媒加熱能力HQ1,HQ2の和が上記の
設定必要加熱能力HQQ以上(HQ1+HQ2≧HQ
Q)のときには、ヒートポンプ運転を実施継続する。
Then, the sum of the calculated refrigerant heating capacities HQ1 and HQ2 by the heat sources G1 and G2, the lower limit evaporation pressure,
The refrigerant heating capacity HQ1, which is calculated by comparing the set required heating capacity HQQ of the first and second heat source heat exchangers 2A and 2B as a whole when the lower limit evaporation temperature is the execution evaporation pressure pe and the evaporation temperature te. When the sum of HQ2 is less than the above set required heating capacity HQQ (HQ1 + HQ2 <HQQ),
The compressor 3 is stopped to stop the heat pump operation. In addition, the sum of the calculated refrigerant heating capacities HQ1 and HQ2 is equal to or greater than the above-described required heating capacity HQQ (HQ1 + HQ2 ≧ HQ).
In the case of Q), the heat pump operation is continuously performed.

【0064】「冷媒昇温効果の比較判定」 各熱源熱交換器2A,2Bでの使用採熱源G1,G2に
よる冷媒昇温効果HT1,HT2(すなわち、蒸発過程
を経て飽和蒸気となっている冷媒を加熱により昇温する
効果、換言すれば過熱度shの取得効果)の高低関係
と、各採熱源G1,G2の温度t1,t2との相関につ
いて設定された判定論理R3を用いて、空気側検出器9
Aの検出温度t1と水側検出器9Bの検出温度t2とか
ら、各熱源熱交換器2A,2Bでの使用採熱源G1,G
2による冷媒昇温効果HT1,HT2の高低関係を判定
する。
[Comparison of Refrigerant Temperature Elevation Effect] Refrigerant temperature increase effects HT1 and HT2 of the heat collection sources G1 and G2 used in each of the heat source heat exchangers 2A and 2B (that is, the refrigerant which has become saturated vapor through the evaporation process). Using the determination logic R3 set for the correlation between the effect of raising the temperature by heating, in other words, the effect of acquiring the superheat degree sh) and the temperatures t1 and t2 of the heat sources G1 and G2. Detector 9
From the detected temperature t1 of A and the detected temperature t2 of the water-side detector 9B, the heat collecting sources G1, G used in each heat source heat exchanger 2A, 2B.
2 is determined.

【0065】そして、この高低関係の判定において、使
用採熱源による冷媒昇温効果HTが他方よりも高い状況
の高効果の採熱熱交換器となる熱源熱交換器と、使用採
熱源による冷媒昇温効果HTが他方よりも低い状況の低
効果の採熱熱交換器となる熱源熱交換器とを判定すると
ともに、この高効果の採熱熱交換器となる熱源熱交換器
での冷媒昇温効果(すなわち、HT1>HT2の場合は
HT1,HT1≦HT2の場合はHT2)と設定された
下限冷媒昇温効果HTTとを比較し、高効果の採熱熱交
換器となる熱源熱交換器での冷媒昇温効果HT1ないし
HT2が下限冷媒昇温効果HTT未満(<HTT)のと
きには、圧縮機3を停止してヒートポンプ運転を停止す
る。
In the determination of the height relationship, the heat source heat exchanger that is a high-effect heat-exchanger in which the refrigerant temperature-raising effect HT by the used heat-collecting source is higher than the other, A heat source heat exchanger that is a low-effect heat-exchange heat exchanger in which the temperature effect HT is lower than the other is determined, and a refrigerant temperature rise in the heat-source heat exchanger that is the high-effect heat-exchange heat exchanger is determined. The effect (that is, HT1 if HT1> HT2, HT2 if HT1 ≦ HT2) is compared with the set lower limit refrigerant heating effect HTT, and the heat source heat exchanger which is a high-efficiency heat collecting heat exchanger is compared. When the refrigerant heating effect HT1 or HT2 is less than the lower limit refrigerant heating effect HTT (<HTT), the compressor 3 is stopped and the heat pump operation is stopped.

【0066】また、高効果の採熱熱交換器となる熱源熱
交換器での冷媒昇温効果HT1ないしHT2が下限冷媒
昇温効果HTT以上(≧HTT)のときには、高効果の
採熱熱交換器となる熱源熱交換器と低効果の採熱熱交換
器となる熱源熱交換器との冷媒昇温効果HTの差(すな
わち、HT1>HT2の場合はHT1−HT2,HT1
≦HT2の場合はHT2−HT1)が設定差ΔHT以上
であるか否かを判定する。
Further, when the refrigerant heating effect HT1 or HT2 in the heat source heat exchanger, which is a high-efficiency heat-exchanging heat exchanger, is greater than or equal to the lower-limit refrigerant heating effect HTT (≧ HTT), the high-efficiency heat-exchanging heat exchange Difference between the refrigerant heating effect HT of the heat source heat exchanger serving as a heat exchanger and the heat source heat exchanger serving as a low-efficiency heat collecting heat exchanger (that is, HT1-HT2, HT1 when HT1> HT2)
If ≦ HT2, it is determined whether or not HT2−HT1) is equal to or greater than the set difference ΔHT.

【0067】「冷媒通流及び採熱源供給の切換」 冷媒昇温効果HTについての上記判定の結果に応じて下
記a〜dの切換制御を実行する。 a.第1熱源熱交換器2Aが高効果の採熱熱交換器で第
2熱源熱交換器2Bが低効果の採熱熱交換器であり、か
つ、これら第1及び第2熱源熱交換器2A,2Bの冷媒
昇温効果HTの差が設定差ΔHT未満である場合(すな
わち、HT1>HT2、かつ、HT1−HT2<ΔH
T)には、二方弁V1〜V4の切り換えにより、第2熱
源熱交換器2Bから第1熱源熱交換器2Aの順で蒸発対
象冷媒を直列に通流する通流形態(すなわち、図2
(ロ)において実線の矢印で示す通流形態)を採るとと
もに、前記のファン5による第1熱源熱交換器2Aへの
空気採熱源G1の供給、及び、前記のポンプ6による第
2熱源熱交換器2Bへの水採熱源G2の供給の両方を継
続実施し、これにより、高効果の採熱熱交換器である第
1熱源熱交換器2Aを下流側に位置させた直列通流状態
において、これら第1及び第2熱源熱交換器2A,2B
の双方を蒸発器として実効機能させるヒートポンプ運転
を実施する。
"Switching of refrigerant flow and supply of heat source" The following switching control a to d is executed in accordance with the result of the above judgment on the refrigerant heating effect HT. a. The first heat source heat exchanger 2A is a high-effect heat collecting heat exchanger, the second heat source heat exchanger 2B is a low-effect heat collecting heat exchanger, and the first and second heat source heat exchangers 2A, 2A, When the difference between the refrigerant heating effects HT of 2B is smaller than the set difference ΔHT (that is, HT1> HT2 and HT1−HT2 <ΔH)
In T), the two-way valves V1 to V4 are switched so that the refrigerant to be evaporated flows in series in the order from the second heat source heat exchanger 2B to the first heat source heat exchanger 2A (that is, FIG.
(B), the air heat source G1 is supplied to the first heat source heat exchanger 2A by the fan 5 and the second heat source heat exchange is performed by the pump 6. In both cases, the supply of the water heat source G2 to the heat exchanger 2B is continuously performed, whereby the first heat source heat exchanger 2A, which is a high-efficiency heat collection heat exchanger, is located in the downstream side in a serial flow state. These first and second heat source heat exchangers 2A, 2B
The heat pump operation which makes both of them effectively function as an evaporator is performed.

【0068】なお、図5の(イ)は、この際のヒートポ
ンプ・サイクルを示す圧力p・比エンタルピh線図(モ
リエル線図)であり、Δxは各熱源熱交換器2A,2B
での乾き度xの変化量を示す。
FIG. 5A is a pressure p / specific enthalpy h diagram (Mollier diagram) showing the heat pump cycle at this time, and Δx is each heat source heat exchanger 2A, 2B.
Shows the amount of change in the dryness x at the time.

【0069】b.第1熱源熱交換器2Aが高効果の採熱
熱交換器で第2熱源熱交換器2Bが低効果の採熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒昇温効果HTの差が設定差ΔHT以上で
ある場合(すなわち、HT1>HT2、かつ、HT1−
HT2≧ΔHT)には、二方弁V1〜V4の切り換えに
より、上記aと同様、第2熱源熱交換器2Bから第1熱
源熱交換器2Aの順で蒸発対象冷媒を直列に通流する通
流形態(すなわち、図2(ロ)において実線の矢印で示
す通流形態)を採るが、ポンプ6による第2熱源熱交換
器2Bへの水採熱源G2の供給は停止して、ファン5に
よる第1熱源熱交換器2Aへの空気採熱源G1の供給の
みを継続実施し、これにより、高効果の採熱熱交換器で
ある第1熱源熱交換器2Aを下流側に位置させた直列通
流状態において、低効果の採熱熱交換器である上流側の
第2熱源熱交換器2Bの蒸発器機能は停止させ、高効果
の採熱熱交換器である下流側の第1熱源熱交換器2Aの
みを蒸発器として実効機能させるヒートポンプ運転を実
施する。
B. The first heat source heat exchanger 2A is a high-effect heat collecting heat exchanger, the second heat source heat exchanger 2B is a low-effect heat collecting heat exchanger, and the first and second heat source heat exchangers 2A are used.
When the difference between the refrigerant heating effects HT of A and 2B is equal to or larger than the set difference ΔHT (that is, HT1> HT2, and HT1-
HT2 ≧ ΔHT), by switching the two-way valves V1 to V4, the flow of the refrigerant to be evaporated flowing in series from the second heat source heat exchanger 2B to the first heat source heat exchanger 2A in the same manner as in the above a. Although a flow mode (that is, a flow mode indicated by a solid line arrow in FIG. 2B) is adopted, the supply of the water heat source G2 to the second heat source heat exchanger 2B by the pump 6 is stopped, and the fan 5 Only the supply of the air heat source G1 to the first heat source heat exchanger 2A is continuously performed, whereby the first heat source heat exchanger 2A, which is a high-efficiency heat collection heat exchanger, is connected in series with the downstream side. In the flowing state, the evaporator function of the upstream second heat source heat exchanger 2B, which is a low-effect heat-exchange heat exchanger, is stopped, and the downstream first heat-source heat exchange, which is a high-effect heat-exchange heat exchanger, A heat pump operation is performed in which only the vessel 2A functions effectively as an evaporator.

【0070】c.第2熱源熱交換器2Bが高効果の採熱
熱交換器で第1熱源熱交換器2Aが低効果の採熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒昇温効果HTの差が設定差ΔHT未満で
ある場合(すなわち、HT2≧HT1、かつ、HT2−
HT1<ΔHT)には、二方弁V1〜V4の切り換えに
より、第1熱源熱交換器2Aから第2熱源熱交換器2B
の順で蒸発対象冷媒を直列に通流する通流形態(すなわ
ち、図2(イ)において実線の矢印で示す通流形態)を
採るとともに、ファン5による第1熱源熱交換器2Aへ
の空気採熱源G1の供給、及び、ポンプ6による第2熱
源熱交換器2Bへの水採熱源G2の供給の両方を継続実
施し、これにより、高効果の採熱熱交換器である第2熱
源熱交換器2Bを下流側に位置させた直列通流状態にお
いて、これら第1及び第2熱源熱交換器2A,2Bの双
方を蒸発器として実効機能させるヒートポンプ運転を実
施する。
C. The second heat source heat exchanger 2B is a high-effect heat collecting heat exchanger, the first heat source heat exchanger 2A is a low-effect heat collecting heat exchanger, and the first and second heat source heat exchangers 2B are used.
When the difference between the refrigerant heating effects HT of A and 2B is smaller than the set difference ΔHT (that is, HT2 ≧ HT1 and HT2-
HT1 <ΔHT), by switching the two-way valves V1 to V4, the first heat source heat exchanger 2A to the second heat source heat exchanger 2B
2 (i.e., the flow indicated by the solid arrows in FIG. 2A), and the air from the fan 5 to the first heat source heat exchanger 2A. Both the supply of the heat source G1 and the supply of the water heat source G2 to the second heat source heat exchanger 2B by the pump 6 are continuously performed, whereby the second heat source heat, which is a high-efficiency heat source heat exchanger, is provided. In a serial flow state in which the exchanger 2B is located on the downstream side, a heat pump operation is performed in which both the first and second heat source heat exchangers 2A and 2B function effectively as evaporators.

【0071】なお、図5の(ロ)は、この際のヒートポ
ンプ・サイクルを示す圧力p・比エンタルピh線図(モ
リエル線図)である。
FIG. 5B is a pressure p / specific enthalpy h diagram (Mollier diagram) showing the heat pump cycle at this time.

【0072】d.第2熱源熱交換器2Bが高効果の採熱
熱交換器で第1熱源熱交換器2Aが低効果の採熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒昇温効果HTの差が設定差ΔHT以上で
ある場合(すなわち、HT2≧HT1、かつ、HT2−
HT1≧ΔHT)には、二方弁V1〜V4の切り換えに
より、上記cと同様、第1熱源熱交換器2Aから第2熱
源熱交換器2Bの順で蒸発対象冷媒を直列に通流する通
流形態(すなわち、図2(イ)において実線の矢印で示
す通流形態)を採るが、ファン5による第1熱源熱交換
器2Aへの空気採熱源G1の供給は停止して、ポンプ6
による第2熱源熱交換器2Bへの水採熱源G2の供給の
みを継続実施し、これにより、高効果の採熱熱交換器で
ある第2熱源熱交換器2Bを下流側に位置させた直列通
流状態において、低効果の採熱熱交換器である上流側の
第1熱源熱交換器2Aの蒸発器機能は停止させ、高効果
の採熱熱交換器である下流側の第2熱源熱交換器2Bの
みを蒸発器として実効機能させるヒートポンプ運転を実
施する。
D. The second heat source heat exchanger 2B is a high-effect heat collecting heat exchanger, the first heat source heat exchanger 2A is a low-effect heat collecting heat exchanger, and the first and second heat source heat exchangers 2B are used.
When the difference between the refrigerant heating effects HT of A and 2B is equal to or larger than the set difference ΔHT (that is, HT2 ≧ HT1, and HT2-
HT1 ≧ ΔHT), by switching the two-way valves V1 to V4, the refrigerant to be evaporated is passed in series from the first heat source heat exchanger 2A to the second heat source heat exchanger 2B in the same manner as in c above. Although a flow mode (that is, a flow mode indicated by a solid arrow in FIG. 2A) is adopted, the supply of the air heat source G1 to the first heat source heat exchanger 2A by the fan 5 is stopped, and the pump 6
, The supply of the water heat source G2 to the second heat source heat exchanger 2B is continuously performed, whereby the second heat source heat exchanger 2B, which is a high-efficiency heat collection heat exchanger, is positioned downstream. In the flowing state, the evaporator function of the upstream first heat source heat exchanger 2A, which is a low-effect heat sampling heat exchanger, is stopped, and the downstream second heat source heat, which is a high-effect heat sampling heat exchanger, is stopped. A heat pump operation is performed in which only the exchanger 2B functions effectively as an evaporator.

【0073】(放熱運転) 「放熱源状況による基本発停」 設定された上限凝縮圧力,上限凝縮温度を実行の凝縮圧
力pc,凝縮温度tcとした場合の第1熱源熱交換器2
Aでの空気放熱源G1による冷媒冷却能力LQ1と、こ
の空気放熱源G1の温度t1との相関について設定され
た演算論理R4を用いて、空気側検出器9Aの検出温度
t1から、上限凝縮圧力,上限凝縮温度を実行の凝縮圧
力pc,凝縮温度tcとした場合の現状における第1熱
源熱交換器2Aでの空気放熱源G1による冷媒冷却能力
LQ1を演算する。
(Heat-dissipation operation) "Basic start and stop by heat-dissipation source status" The first heat-source heat exchanger 2 when the set upper-limit condensation pressure and upper-limit condensation temperature are the condensing pressure pc and the condensation temperature tc, respectively.
Using the arithmetic logic R4 set for the correlation between the refrigerant cooling capacity LQ1 of the air radiating source G1 at A and the temperature t1 of the air radiating source G1, the upper limit condensation pressure is calculated from the detected temperature t1 of the air-side detector 9A. , The refrigerant cooling capacity LQ1 by the air heat radiation source G1 in the first heat source heat exchanger 2A at the present time when the upper limit condensation temperature is the execution condensation pressure pc and the condensation temperature tc.

【0074】また同様に、上限凝縮圧力,上限凝縮温度
を実行の凝縮圧力pc,凝縮温度tcとした場合の第2
熱源熱交換器2Bでの水放熱源G2による冷媒冷却能力
LQ2と、その水放熱源G2の温度t2との相関につい
て設定された演算論理R5を用いて、水側検出器9Bの
検出温度t2から、上限凝縮圧力,上限凝縮温度を実行
の凝縮圧力pc,凝縮温度tcとした場合の現状におけ
る第2熱源熱交換器2Bでの水放熱源G2による冷媒冷
却能力LQ2を演算する。
Similarly, when the upper limit condensing pressure and the upper limit condensing temperature are the actual condensing pressure pc and the condensing temperature tc, respectively,
From the detected temperature t2 of the water-side detector 9B using the arithmetic logic R5 set for the correlation between the refrigerant cooling capacity LQ2 of the water heat radiator G2 in the heat source heat exchanger 2B and the temperature t2 of the water radiator G2. The refrigerant cooling capacity LQ2 of the water heat radiation source G2 in the second heat source heat exchanger 2B at the present time when the upper limit condensing pressure and the upper limit condensing temperature are the actual condensing pressure pc and the condensing temperature tc is calculated.

【0075】そして、演算した各放熱源G1,G2によ
る冷媒冷却能力LQ1,LQ2の和と、上限凝縮圧力,
上限凝縮温度を実行の凝縮圧力pc,凝縮温度tcとし
た場合の第1及び第2熱源熱交換器2A,2Bの全体と
しての設定必要冷却能力LQQとを比較し、演算した冷
媒冷却能力LQ1,LQ2の和が上記の設定必要冷却能
力LQQ未満(LQ1+LQ2<LQQ)のときには、
圧縮機3を停止してヒートポンプ運転を停止する。ま
た、演算した冷媒冷却能力LQ1,LQ2の和が上記の
設定必要冷却能力LQQ以上(LQ1+LQ2≧LQ
Q)のときには、ヒートポンプ運転を実施継続する。
Then, the sum of the calculated refrigerant cooling capacities LQ1 and LQ2 by the heat radiation sources G1 and G2, the upper limit condensing pressure,
When the upper limit condensing temperature is the condensing pressure pc and the condensing temperature tc, the required cooling capacity LQQ of the first and second heat source heat exchangers 2A and 2B as a whole is compared, and the calculated refrigerant cooling capacity LQ1, When the sum of LQ2 is less than the required cooling capacity LQQ (LQ1 + LQ2 <LQQ),
The compressor 3 is stopped to stop the heat pump operation. In addition, the sum of the calculated refrigerant cooling capacities LQ1 and LQ2 is equal to or greater than the above-described required cooling capacity LQQ (LQ1 + LQ2 ≧ LQ
In the case of Q), the heat pump operation is continuously performed.

【0076】「冷媒降温効果の比較判定」 各熱源熱交換器2A,2Bでの使用放熱源G1,G2に
よる冷媒降温効果LT1,LT2(すなわち、凝縮過程
を経て飽和液となっている冷媒を冷却により降温する効
果、換言すれば過冷却度scの取得効果)の高低関係
と、各放熱源G1,G2の温度t1,t2との相関につ
いて設定された判定論理R6を用いて、空気側検出器9
Aの検出温度t1と水側検出器9Bの検出温度t2とか
ら、各熱源熱交換器2A,2Bでの使用放熱源G1,G
2による冷媒降温効果LT1,LT2の高低関係を判定
する。
[Comparison of Refrigerant Cooling Effect] Refrigerant cooling effects LT1 and LT2 due to the radiating sources G1 and G2 used in each of the heat source heat exchangers 2A and 2B (that is, cooling the refrigerant which has become a saturated liquid through the condensation process). Using the determination logic R6 set for the correlation between the level of the effect of lowering the temperature, in other words, the effect of obtaining the degree of supercooling sc) and the temperatures t1, t2 of the heat radiation sources G1, G2. 9
From the detected temperature t1 of A and the detected temperature t2 of the water side detector 9B, the heat radiation sources G1, G used in each heat source heat exchanger 2A, 2B.
2 is determined.

【0077】そして、この高低関係の判定において、使
用放熱源による冷媒降温効果LTが他方よりも高い状況
の高効果の放熱熱交換器となる熱源熱交換器と、使用放
熱源による冷媒降温効果LTが他方よりも低い状況の低
効果の放熱熱交換器となる熱源熱交換器とを判定すると
ともに、この高効果の放熱熱交換器となる熱源熱交換器
での冷媒降温効果(すなわち、LT1>LT2の場合は
LT1,LT1≦LT2の場合はLT2)と設定された
下限冷媒降温効果LTTとを比較し、高効果の放熱熱交
換器となる熱源熱交換器での冷媒降温効果LT1ないし
LT2が下限冷媒降温効果LTT未満(<LTT)のと
きには、圧縮機3を停止してヒートポンプ運転を停止す
る。
In the determination of the height relationship, the heat-source heat exchanger which is a high-efficiency heat-radiating heat exchanger in a situation where the refrigerant heat-radiating effect LT is higher than the other heat-radiating source; Is determined to be a heat-source heat exchanger that is a low-efficiency heat-radiating heat exchanger in a situation lower than that of the other, and the refrigerant cooling effect in the heat-source heat exchanger that is the high-effect heat-radiating heat exchanger (that is, LT1> LT2 for LT2, LT2 for LT1 ≦ LT2) and the set lower-limit refrigerant cooling effect LTT, and the refrigerant cooling effect LT1 or LT2 in the heat source heat exchanger which is a high-efficiency radiating heat exchanger is obtained. If the lower limit refrigerant cooling effect is less than the LTT (<LTT), the compressor 3 is stopped and the heat pump operation is stopped.

【0078】また、高効果の放熱熱交換器となる熱源熱
交換器での冷媒降温効果LT1ないしLT2が下限冷媒
降温効果LTT以上(≧LTT)のときには、高効果の
放熱熱交換器となる熱源熱交換器と低効果の放熱熱交換
器となる熱源熱交換器との冷媒降温効果LTの差(すな
わち、LT1>LT2の場合はLT1−LT2,LT1
≦LT2の場合はLT2−LT1)が設定差ΔLT以上
であるか否かを判定する。
Further, when the refrigerant cooling effect LT1 or LT2 in the heat source heat exchanger serving as a high-efficiency heat radiation heat exchanger is equal to or greater than the lower limit refrigerant cooling effect LTT (≧ LTT), the heat source serving as a high-efficiency heat radiation heat exchanger The difference in the refrigerant cooling effect LT between the heat exchanger and the heat source heat exchanger serving as the low-efficiency heat radiation heat exchanger (that is, LT1−LT2, LT1 when LT1> LT2)
If ≤ LT2, it is determined whether or not LT2-LT1) is equal to or larger than the set difference ΔLT.

【0079】「冷媒通流及び放熱源供給の切換」 冷媒降温効果LTについての上記判定の結果に応じて下
記e〜hの切換制御を実行する。 e.第1熱源熱交換器2Aが高効果の放熱熱交換器で第
2熱源熱交換器2Bが低効果の放熱熱交換器であり、か
つ、これら第1及び第2熱源熱交換器2A,2Bの冷媒
降温効果LTの差が設定差ΔLT未満である場合(すな
わち、LT1>LT2、かつ、LT1−LT2<ΔL
T)には、二方弁V1〜V4の切り換えにより、第2熱
源熱交換器2Bから第1熱源熱交換器2Aの順で凝縮対
象冷媒を直列に通流する通流形態(すなわち、図2
(イ)において破線の矢印で示す通流形態)を採るとと
もに、ファン5による第1熱源熱交換器2Aへの空気放
熱源G1の供給、及び、ポンプ6による第2熱源熱交換
器2Bへの水放熱源G2の供給の両方を継続実施し、こ
れにより、高効果の放熱熱交換器である第1熱源熱交換
器2Aを下流側に位置させた直列通流状態において、こ
れら第1及び第2熱源熱交換器2A,2Bの双方を凝縮
器として実効機能させるヒートポンプ運転を実施する。
[Switching of refrigerant flow and supply of heat radiating source] Switching control of the following e to h is executed in accordance with the result of the above judgment on the refrigerant cooling effect LT. e. The first heat source heat exchanger 2A is a high-effect heat radiation heat exchanger, the second heat source heat exchanger 2B is a low-effect heat radiation heat exchanger, and the first and second heat source heat exchangers 2A, 2B When the difference between the refrigerant cooling effects LT is smaller than the set difference ΔLT (that is, LT1> LT2 and LT1−LT2 <ΔL)
In T), the two-way valves V1 to V4 are switched so that the refrigerant to be condensed flows in series in the order from the second heat source heat exchanger 2B to the first heat source heat exchanger 2A (that is, FIG.
(A), the air radiating source G1 is supplied to the first heat source heat exchanger 2A by the fan 5 and the pump 6 is supplied to the second heat source heat exchanger 2B. Both of the supply of the water heat radiation source G2 are continuously performed, whereby the first heat source heat exchanger 2A, which is a high-efficiency heat radiation heat exchanger, is located in the downstream side, and the first and second water heat radiation sources G2 are connected in series. A heat pump operation is performed in which both the two heat source heat exchangers 2A and 2B function effectively as condensers.

【0080】なお、図6の(イ)は、この際のヒートポ
ンプ・サイクルを示す圧力p・比エンタルピh線図(モ
リエル線図)であり、Δmは各熱源熱交換器2A,2B
での湿り度m(=1−乾き度x)の変化量を示す。
FIG. 6A is a pressure p / specific enthalpy h diagram (Mollier diagram) showing the heat pump cycle at this time, and Δm represents each heat source heat exchanger 2A, 2B.
Shows the amount of change in the wetness m (= 1−dryness x) in FIG.

【0081】f.第1熱源熱交換器2Aが高効果の放熱
熱交換器で第2熱源熱交換器2Bが低効果の放熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒降温効果LTの差が設定差ΔLT以上で
ある場合(すなわち、LT1>LT2、かつ、LT1−
LT2≧ΔLT)には、二方弁V1〜V4の切り換えに
より、上記eと同様、第2熱源熱交換器2Bから第1熱
源熱交換器2Aの順で凝縮対象冷媒を直列に通流する通
流形態(すなわち、図2(イ)において破線の矢印で示
す通流形態)を採るが、ポンプ6による第2熱源熱交換
器2Bへの水放熱源G2の供給は停止して、ファン5に
よる第1熱源熱交換器2Aへの空気放熱源G1の供給の
みを継続実施し、これにより、高効果の放熱熱交換器で
ある第1熱源熱交換器2Aを下流側に位置させた直列通
流状態において、低効果の放熱熱交換器である上流側の
第2熱源熱交換器2Bの凝縮器機能は停止させ、高効果
の放熱熱交換器である下流側の第1熱源熱交換器2Aの
みを凝縮器として実効機能させるヒートポンプ運転を実
施する。
F. The first heat source heat exchanger 2A is a high-effect heat radiation heat exchanger, the second heat source heat exchanger 2B is a low-effect heat radiation heat exchanger, and the first and second heat source heat exchangers 2 are used.
When the difference between the refrigerant cooling effects LT of A and 2B is equal to or greater than the set difference ΔLT (that is, LT1> LT2 and LT1-
In LT2 ≧ ΔLT), by switching the two-way valves V1 to V4, as in the case of e, the refrigerant to be condensed flows in series in the order of the second heat source heat exchanger 2B to the first heat source heat exchanger 2A. Although the flow form (that is, the flow form shown by the broken arrow in FIG. 2A) is adopted, the supply of the water heat radiation source G2 to the second heat source heat exchanger 2B by the pump 6 is stopped, and the fan 5 Only the supply of the air heat radiation source G1 to the first heat source heat exchanger 2A is continuously performed, whereby the first heat source heat exchanger 2A, which is a high-efficiency heat radiation heat exchanger, is positioned on the downstream side. In the state, the condenser function of the upstream second heat source heat exchanger 2B, which is a low-effect heat radiation heat exchanger, is stopped, and only the downstream first heat source heat exchanger 2A, which is a high-effect heat radiation heat exchanger, is stopped. A heat pump operation is performed to effectively function as a condenser.

【0082】g.第2熱源熱交換器2Bが高効果の放熱
熱交換器で第1熱源熱交換器2Aが低効果の放熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒降温効果LTの差が設定差ΔLT未満で
ある場合(すなわち、LT2≧LT1、かつ、LT2−
LT1<ΔHT)には、二方弁V1〜V4の切り換えに
より、第1熱源熱交換器2Aから第2熱源熱交換器2B
の順で凝縮対象冷媒を直列に通流する通流形態(すなわ
ち、図2(ロ)において破線の矢印で示す通流形態)を
採るとともに、ファン5による第1熱源熱交換器2Aへ
の空気放熱源G1の供給、及び、ポンプ6による第2熱
源熱交換器2Bへの水放熱源G2の供給の両方を継続実
施し、これにより、高効果の放熱熱交換器である第2熱
源熱交換器2Bを下流側に位置させた直列通流状態にお
いて、これら第1及び第2熱源熱交換器2A,2Bの双
方を凝縮器として実効機能させるヒートポンプ運転を実
施する。
G. The second heat source heat exchanger 2B is a high-efficiency heat radiation heat exchanger, the first heat source heat exchanger 2A is a low-effect heat radiation heat exchanger, and the first and second heat source heat exchangers 2B are used.
When the difference between the refrigerant cooling effects LT of A and 2B is less than the set difference ΔLT (that is, LT2 ≧ LT1 and LT2-
LT1 <ΔHT), by switching the two-way valves V1 to V4, the first heat source heat exchanger 2A to the second heat source heat exchanger 2B
2 (ie, a flow mode indicated by a broken-line arrow in FIG. 2B), and air is supplied from the fan 5 to the first heat source heat exchanger 2A. Both the supply of the heat radiation source G1 and the supply of the water heat radiation source G2 to the second heat source heat exchanger 2B by the pump 6 are continuously performed, whereby the second heat source heat exchange which is a highly effective heat radiation heat exchanger is performed. In a serial flow state in which the heat exchanger 2B is positioned on the downstream side, a heat pump operation is performed in which both the first and second heat source heat exchangers 2A and 2B function effectively as condensers.

【0083】なお、図6の(ロ)は、この際のヒートポ
ンプ・サイクルを示す圧力p・比エンタルピh線図(モ
リエル線図)である。
FIG. 6B is a pressure p / specific enthalpy h diagram (Mollier diagram) showing the heat pump cycle at this time.

【0084】h.第2熱源熱交換器2Bが高効果の放熱
熱交換器で第1熱源熱交換器2Aが低効果の放熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒降温効果LTの差が設定差ΔLT以上で
ある場合(すなわち、LT2≧LT1、かつ、LT2−
LT1≧ΔLT)には、二方弁V1〜V4の切り換えに
より、上記gと同様、第1熱源熱交換器2Aから第2熱
源熱交換器2Bの順で凝縮対象冷媒を直列に通流する通
流形態(すなわち、図2(ロ)において破線の矢印で示
す通流形態)を採るが、ファン5による第1熱源熱交換
器2Aへの空気放熱源G1の供給は停止して、ポンプ6
による第2熱源熱交換器2Bへの水放熱源G2の供給の
みを継続実施し、これにより、高効果の放熱熱交換器で
ある第2熱源熱交換器2Bを下流側に位置させた直列通
流状態において、低効果の放熱熱交換器である上流側の
第1熱源熱交換器2Aの凝縮器機能は停止させ、高効果
の放熱熱交換器である下流側の第2熱源熱交換器2Bの
みを凝縮器として実効機能させるヒートポンプ運転を実
施する。
H. The second heat source heat exchanger 2B is a high-efficiency heat radiation heat exchanger, the first heat source heat exchanger 2A is a low-effect heat radiation heat exchanger, and the first and second heat source heat exchangers 2B are used.
When the difference between the refrigerant cooling effects LT of A and 2B is equal to or larger than the set difference ΔLT (that is, LT2 ≧ LT1 and LT2-
In the case of LT1 ≧ ΔLT), the two-way valves V1 to V4 are switched so that the refrigerant to be condensed flows in series in the order from the first heat source heat exchanger 2A to the second heat source heat exchanger 2B in the same manner as in the above g. Although a flow mode (that is, a flow mode indicated by a dashed arrow in FIG. 2B) is adopted, the supply of the air heat radiation source G1 to the first heat source heat exchanger 2A by the fan 5 is stopped, and the pump 6
Only the supply of the water heat radiating source G2 to the second heat source heat exchanger 2B by the above-described method, whereby the second heat source heat exchanger 2B, which is a high-efficiency heat radiating heat exchanger, is connected in series to the downstream side. In the flowing state, the condenser function of the upstream first heat source heat exchanger 2A, which is a low-efficiency heat radiation heat exchanger, is stopped, and the downstream second heat source heat exchanger 2B, which is a high-effect heat radiation heat exchanger, A heat pump operation is performed to make only the effective function as a condenser.

【0085】以上要するに、本実施例において制御器1
0は、個別の採放熱源G1,G2により通流冷媒を加熱
又は冷却する直列接続の第1及び第2熱源熱交換器2
A,2Bについて、「採熱運転」では、使用採放熱源に
よる冷媒昇温効果HTが他方よりも高い状況で高効果の
採熱熱交換器となる熱源熱交換器と、使用採放熱源によ
る冷媒昇温効果HTが他方よりも低い状況で低効果の採
熱熱交換器となる熱源熱交換器とを判定するとともに、
これら採熱熱交換器としての熱源熱交換器2A,2Bの
冷媒昇温効果HT1,HT2の差が設定差ΔHT以上で
あるか否かを判定し、一方、「放熱運転」では、使用採
放熱源による冷媒降温効果LTが他方よりも高い状況で
高効果の放熱熱交換器となる熱源熱交換器と、使用採放
熱源による冷媒降温効果LTが他方よりも低い状況で低
効果の放熱熱交換器となる熱源熱交換器とを判定すると
ともに、これら放熱熱交換器としての熱源熱交換器2
A,2Bの冷媒降温効果LT1,LT2の差が設定差Δ
LT以上であるか否かを判定する判定手段Xを構成す
る。
In summary, in this embodiment, the controller 1
0 is the first and second heat source heat exchangers 2 connected in series for heating or cooling the flowing refrigerant by the individual heat radiation sources G1 and G2.
Regarding A and 2B, in the “heat-collection operation”, the heat-source heat exchanger that becomes a high-effect heat-collection heat exchanger in a situation where the refrigerant temperature-raising effect HT by the used heat-collecting / radiating source is higher than the other is used. In the situation where the refrigerant temperature raising effect HT is lower than the other, the heat source heat exchanger which is a low-effect heat collecting heat exchanger is determined,
It is determined whether or not the difference between the refrigerant heating effects HT1 and HT2 of the heat source heat exchangers 2A and 2B as the heat collecting heat exchangers is equal to or larger than a set difference ΔHT. A heat source heat exchanger that becomes a high-efficiency heat radiation heat exchanger when the refrigerant temperature drop effect LT by the heat source is higher than the other, and a low effect heat radiation heat exchange when the refrigerant temperature drop effect LT that is used by the used heat radiation source is lower than the other. The heat source heat exchanger as the heat source heat exchanger is determined.
The difference between the refrigerant cooling effects LT1 and LT2 of A and 2B is the set difference Δ
The determination means X for determining whether or not the value is LT or more is configured.

【0086】また、制御器10は、上記判定手段Xを構
成するとともに、高成績係数copでの運転を目的とし
て、この判定手段Xの判定結果に基づき、「採熱運転」
では、膨張手段としての膨張弁4を通過した蒸発対象冷
媒を、低効果の採熱熱交換器となる熱源熱交換器から高
効果の採熱熱交換器となる熱源熱交換器の順に通流する
ように、かつ、「放熱運転」では、圧縮機3から吐出し
た凝縮対象冷媒を、低効果の放熱熱交換器となる熱源熱
交換器から高効果の放熱熱交換器となる熱源熱交換器の
順に通流するように、「採熱運転」及び「放熱運転」の
夫々で、第1及び第2流路切換手段K1,K2としての
二方弁V1〜V4を切り換え制御し、さらに、「採熱運
転」において採熱熱交換器としての両熱源熱交換器2
A,2Bの冷媒昇温効果HTの差が設定差ΔHT以上の
ときには、低効果の採熱熱交換器となる熱源熱交換器へ
の採放熱源の供給(すなわち、冷却源として作用してし
まう虞のある採熱源の供給)を停止し、かつ、「放熱運
転」において放熱熱交換器としての両熱源熱交換器2
A,2Bの冷媒降温効果LTの差が設定差ΔLT以上の
ときには、低効果の放熱熱交換器となる熱源熱交換器へ
の採放熱源の供給(すなわち、加熱源として作用してし
まう虞のある放熱源の供給)を停止する制御手段Yを構
成する。
The controller 10 constitutes the judgment means X and, based on the judgment result of this judgment means X, operates for the purpose of operating at a high coefficient of performance cop.
Then, the refrigerant to be evaporated that has passed through the expansion valve 4 as the expansion means flows from the heat source heat exchanger serving as a low-efficiency heat-collecting heat exchanger to the heat-source heat exchanger serving as a high-effect heat-collecting heat exchanger. In the “radiation operation”, the refrigerant to be condensed discharged from the compressor 3 is changed from the heat source heat exchanger serving as a low-efficiency heat exchanger to the heat source heat exchanger serving as a high-efficiency heat radiation heat exchanger. The two-way valves V1 to V4 as the first and second flow path switching means K1 and K2 are controlled to be switched in each of the “heating operation” and the “radiation operation” so that the flow is performed in the order of Heat source heat exchanger 2 as heat extraction heat exchanger in "Sampling operation"
When the difference between the refrigerant temperature raising effects HT of A and 2B is equal to or larger than the set difference ΔHT, the supply of the heat radiation source to the heat source heat exchanger serving as the low effect heat collecting heat exchanger (that is, acts as a cooling source). Supply of the heat source which may be stopped), and the two heat source heat exchangers 2 as heat radiation heat exchangers in the “radiation operation”
When the difference between the refrigerant cooling effects LT of A and 2B is equal to or larger than the set difference ΔLT, the supply of the heat radiation source to the heat source heat exchanger which is a low-effect heat radiation heat exchanger (that is, there is a possibility of acting as a heating source). Control means Y for stopping the supply of a certain heat radiation source) is configured.

【0087】なお、採熱運転における前記bの切り換え
制御において、低効果の採熱熱交換器である第2熱源熱
交換器2Bへの水採熱源G2の供給を停止した場合、停
滞した水採熱源G2が第2熱源熱交換器2Bの周りで凍
結する虞があることから、前記bの切り換え制御に伴い
第2熱源熱交換器2Bの周りから停滞した水採熱源G2
を排出する操作(いわゆる水抜き)を実施したり、ある
いは、水採熱源G1にブライン(不凍水溶液)を採用し
ておく等の凍結防止処置を講じるのが良い。
In the switching control of b in the heat collecting operation, when the supply of the water heat source G2 to the second heat source heat exchanger 2B, which is a low-effect heat collecting heat exchanger, is stopped, the stagnant water sampling is performed. Since the heat source G2 may freeze around the second heat source heat exchanger 2B, the water heat source G2 stagnant from around the second heat source heat exchanger 2B due to the switching control of b.
It is preferable to perform an operation of discharging water (so-called water drainage) or take an antifreezing measure such as adopting brine (antifreeze aqueous solution) for the water heat source G1.

【0088】〔別実施例〕 次に別実施例を列記する。前述の実施例における採熱運
転と放熱運転のうち、放熱運転は実施せず、図3のフロ
ーチャートに示す制御を伴う採熱運転のみを実施する装
置構成としてもよい。また、採熱運転は実施せず、図4
のフローチャートに示す制御を伴う放熱運転のみを実施
する装置構成としてもよい。
[Another Embodiment] Next, another embodiment will be described. Of the heat collecting operation and the heat radiation operation in the above-described embodiment, the heat radiation operation may not be performed, and only the heat collecting operation with the control shown in the flowchart of FIG. 3 may be performed. In addition, the heating operation was not performed, and FIG.
May be configured to execute only the heat dissipation operation accompanied by the control shown in the flowchart of FIG.

【0089】第1及び第2の採熱熱交換器2A,2Bで
使用する個別の採熱源G1,G2は、液体、気体、固体
のいずれであっても良く、さらに、これら採熱源は互い
に同種のもの、あるいは、異種のもの、いずれであって
も良い。また同様に、第1及び第2の放熱熱交換器2
A,2Bで使用する個別の放熱源G1,G2は、液体、
気体、固体のいずれであっても良く、さらに、これら放
熱源は互いに同種のもの、あるいは、異種のもの、いず
れであっても良い。
The individual heat collecting sources G1 and G2 used in the first and second heat collecting heat exchangers 2A and 2B may be any of a liquid, a gas and a solid. Or different types. Similarly, the first and second radiating heat exchangers 2
The individual heat radiation sources G1 and G2 used in A and 2B are liquid,
Any of a gas and a solid may be used, and these heat radiating sources may be of the same type or different types.

【0090】第1及び第2の流路切換手段K1,K2
を、前述の実施例で示す如く、それぞれ2個の双方向可
能な二方弁で構成するに代え、図7の(イ),(ロ)に
示す如く、それぞれ1個の双方向可能な三方弁V5,V
6で構成してもよい。
First and second flow path switching means K1, K2
Is constituted by two two-way valves each capable of two-way operation as shown in the above-described embodiment, but one three-way valve capable of two-way operation as shown in FIGS. Valve V5, V
6 may be used.

【0091】第1採熱熱交換器2Aでの使用採熱源G1
による冷媒昇温効果HT1と、第2採熱熱交換器2Bで
の使用採熱源G2による冷媒昇温効果HT2との高低関
係を、前述の実施例の如く、各採熱源G1,G2の検出
温度t1,t2に基づき判定する形態に代え、各採熱源
G1,G2の複数種の検出状態値(例えば温度tや湿度
r、あるいは、比エンタルピh等)に基づき判定した
り、あるいは、各採熱源G1,G2の一種ないし複数種
の検出状態値と各採熱源G1,G2の検出流量とに基づ
き判定する等の判定形態を採用してもよい。また同様
に、第1放熱熱交換器2Aでの使用放熱源G1による冷
媒降温効果LT1と、第2放熱熱交換器2Bでの使用放
熱源G2による冷媒降温効果LT2との高低関係を、前
述の実施例の如く、各放熱源G1,G2の検出温度t
1,t2に基づき判定する形態に代え、各放熱源G1,
G2の複数種の検出状態値(例えば温度tや湿度r、あ
るいは、比エンタルピh等)に基づき判定したり、ある
いは、各放熱源G1,G2の一種ないし複数種の検出状
態値と各放熱源G1,G2の検出流量とに基づき判定す
る等の判定形態を採用してもよい。
The heat collecting source G1 used in the first heat collecting heat exchanger 2A
Temperature relationship between the refrigerant temperature raising effect HT1 and the refrigerant temperature raising effect HT2 by the heat collecting source G2 used in the second heat collecting heat exchanger 2B, as in the above-described embodiment, the detected temperature of each of the heat collecting sources G1 and G2. Instead of making the determination based on t1 and t2, the determination may be made based on a plurality of types of detection state values (for example, temperature t and humidity r or specific enthalpy h) of each of the heat collection sources G1 and G2, or It is also possible to adopt a determination mode in which a determination is made based on one or more types of detection state values of G1 and G2 and the detected flow rates of the heat collecting sources G1 and G2. Similarly, the relationship between the temperature drop of the refrigerant LT1 caused by the used heat radiation source G1 in the first heat radiation heat exchanger 2A and the temperature drop effect of the refrigerant LT2 caused by the heat radiation source G2 used in the second heat radiation heat exchanger 2B is described above. As in the embodiment, the detected temperature t of each heat radiation source G1, G2
1, the heat radiation sources G1,
Judgment is made based on a plurality of detection state values of G2 (for example, temperature t, humidity r, or specific enthalpy h), or one or a plurality of detection state values of each heat radiation source G1, G2 and each heat radiation source A determination form such as a determination based on the detected flow rates of G1 and G2 may be adopted.

【0092】採熱運転において、図3のフローチャート
における〔HT1≧HTT?〕,〔HT2≧HTT?〕
の部分を省略した制御形態を採用してもよく、同様に、
放熱運転において、図4のフローチャートにおける〔L
T1≧LTT?〕,〔LT2≧LTT?〕の部分を省略
した制御形態を採用してもよい。
In the heat collecting operation, [HT1 ≧ HTT? ], [HT2 ≧ HTT? ]
May be adopted in a control form in which the part is omitted. Similarly,
In the heat dissipation operation, [L in the flowchart of FIG.
T1 ≧ LTT? ], [LT2 ≧ LTT? ] May be adopted.

【0093】前述の実施例においては、各放熱源G1,
G2の冷媒冷却能力LQ1,LQ2の和が第1及び第2
熱源熱交換器2A,2Bの全体としての設定必要冷却能
力LQQ以上であることを運転条件とすることにより、
適当な過冷却度scが確保されるようにしているが、放
熱源用のファン5やポンプ6の調整により過冷却度sc
を目標過冷却度に調整する制御や、あるいは、蒸発器出
口冷媒と凝縮器通過最終段階の冷媒との熱交換により過
冷却度を増大させる方式において、その熱交換量の調整
により過冷却度scを目標過冷却度に調整する制御を実
施するようにしてもよい。
In the above embodiment, each of the heat radiation sources G1,
The sum of the refrigerant cooling capacities LQ1 and LQ2 of G2 is the first and second.
By setting the operating condition to be equal to or higher than the required cooling capacity LQQ as a whole of the heat source heat exchangers 2A and 2B,
Although an appropriate supercooling degree sc is ensured, the supercooling degree sc is adjusted by adjusting the fan 5 and the pump 6 for the heat radiation source.
In the control that adjusts the supercooling degree to the target supercooling degree, or in the system in which the supercooling degree is increased by heat exchange between the evaporator outlet refrigerant and the refrigerant at the final stage of the condenser passage, the supercooling degree sc is adjusted by adjusting the heat exchange amount. May be controlled to adjust the temperature to the target degree of supercooling.

【0094】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】装置構成を示す図FIG. 1 is a diagram showing a device configuration.

【図2】冷媒通流の切換形態を示す図FIG. 2 is a diagram showing a mode of switching refrigerant flow.

【図3】採熱運転の制御フローチャートFIG. 3 is a control flowchart of a heat collection operation.

【図4】放熱運転の制御フローチャートFIG. 4 is a control flowchart of a heat dissipation operation.

【図5】運転サイクルを示すモリエル線図FIG. 5 is a Mollier diagram showing an operation cycle.

【図6】運転サイクルを示すモリエル線図FIG. 6 is a Mollier diagram showing an operation cycle.

【図7】別実施例の装置構成及び冷媒通流の切換形態を
示す図
FIG. 7 is a diagram showing a device configuration and a switching mode of refrigerant flow according to another embodiment.

【図8】従来の装置構成を示す図FIG. 8 is a diagram showing a conventional apparatus configuration.

【図9】流路切換構成の比較例を示す図FIG. 9 is a diagram showing a comparative example of a flow path switching configuration.

【図10】流路切換構成の他の比較例を示す図FIG. 10 is a diagram showing another comparative example of the flow path switching configuration.

【符号の説明】[Explanation of symbols]

G1,G2 採熱源,放熱源,採放熱源 2A,2B 採熱熱交換器,放熱熱交換
器,熱源熱交換器 1 出力熱交換器 3 圧縮機 4 膨張手段 7 循環方向切換手段 K1,K2 流路切換手段 re 膨張手段の出口流路ないし入
口流路 rc 圧縮機の吸入流路ないし吐出
流路 HT(HT1,HT2) 冷媒昇温効果 ΔHT 冷媒昇温効果の設定差 LT(LT1,LT2) 冷媒降温効果 ΔLT 冷媒降温効果の設定差 X 判定手段 Y 制御手段
G1, G2 heat collecting source, heat radiating source, heat collecting and radiating source 2A, 2B heat collecting heat exchanger, heat radiating heat exchanger, heat source heat exchanger 1 output heat exchanger 3 compressor 4 expansion means 7 circulation direction switching means K1, K2 flow Route switching means re Outlet flow path or inlet flow path of expansion means rc Suction flow path or discharge flow path of compressor HT (HT1, HT2) Refrigerant heating effect ΔHT Setting difference in refrigerant heating effect LT (LT1, LT2) Refrigerant Temperature drop effect ΔLT Setting difference of refrigerant temperature drop effect X determination means Y control means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 F25B 5/00 - 6/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F25B 1/00 F25B 5/00-6/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蒸発器として個別の採熱源(G1),
(G2)により通流冷媒を加熱する第1及び第2の採熱
熱交換器(2A),(2B)を直列に接続した圧縮式ヒ
ートポンプであって、 膨張手段(4)の出口流路(re)を前記第1及び第2
採熱熱交換器(2A),(2B)の直列組における一端
と他端とに択一的に接続する第1の流路切換手段(K
1)と、 圧縮機(3)の吸入流路(rc)を前記第1及び第2採
熱熱交換器(2A),(2B)の直列組における一端と
他端とに択一的に接続する第2の流路切換手段(K2)
と、 前記第1及び第2採熱熱交換器(2A),(2B)につ
いて、使用採熱源による冷媒昇温効果(HT)が他方よ
りも高い状況にある高効果の採熱熱交換器と、使用採熱
源による冷媒昇温効果(HT)が他方よりも低い状況に
ある低効果の採熱熱交換器とを判定する判定手段(X)
と、 この判定手段(X)の判定結果に基づき、前記膨張手段
(4)を通過した蒸発対象冷媒を、前記低効果の採熱熱
交換器から前記高効果の採熱熱交換器の順で通流するよ
うに、前記第1及び第2流路切換手段(K1),(K
2)を切り換え制御する制御手段(Y)を設け、 前記判定手段(X)は、前記低効果及び高効果の採熱熱
交換器を判定するとともに、これら採熱熱交換器(2
A),(2B)の冷媒昇温効果(HT1),(HT2)
の差が設定差(ΔHT)以上であるか否かを判定する構
成とし、 前記制御手段(Y)は、この判定結果に基づいて、両採
熱熱交換器(2A),(2B)の冷媒昇温効果(HT
1),(HT2)の差が設定差(ΔHT)以上であると
き、前記低効果の採熱熱交換器に対する採熱源の供給を
停止する構成としてある 圧縮式ヒートポンプ。
1. An individual heat source (G1) as an evaporator,
(G2) is a compression heat pump in which first and second heat collecting heat exchangers (2A) and (2B) for heating a flowing refrigerant are connected in series, and an outlet flow path of an expansion means (4) re) with the first and second
A first flow path switching unit (K) which is alternatively connected to one end and the other end of the series combination of the heat collecting heat exchangers (2A) and (2B).
1) and the suction passage (rc) of the compressor (3) is alternatively connected to one end and the other end of the series combination of the first and second heat sampling heat exchangers (2A) and (2B). Second flow path switching means (K2)
And a high-efficiency heat-exchange heat exchanger in which the first and second heat-exchange heat exchangers (2A) and (2B) are in a state where the refrigerant temperature-raising effect (HT) by the heat-collecting source used is higher than the other. Determining means (X) for determining a low-effect heat-exchanging heat exchanger in which the refrigerant temperature-raising effect (HT) by the used heat-collecting source is lower than that of the other.
Based on the determination result of the determination means (X), the refrigerant to be evaporated that has passed through the expansion means (4) is transferred in the order from the low-effect heat-exchange heat exchanger to the high-effect heat-exchange heat exchanger. The first and second flow path switching means (K1), (K
Setting control means (Y) for controlling switching of 2) only, said judging means (X) is adoption of the low efficiency and high effect heat heat
The heat exchanger (2)
A), (2B) Refrigerant heating effect (HT1), (HT2)
To determine whether the difference is equal to or greater than the set difference (ΔHT).
And the control means (Y) performs both sampling based on the determination result.
Refrigerant heating effect (HT) of the heat heat exchangers (2A) and (2B)
1) If the difference between (HT2) is greater than or equal to the set difference (ΔHT)
Supply of a heat collection source to the low-effect heat collection heat exchanger.
A compression heat pump that is configured to stop .
【請求項2】 凝縮器として個別の放熱源(G1),
(G2)により通流冷媒を冷却する第1及び第2の放熱
熱交換器(2A),(2B)を直列に接続した 圧縮式ヒ
ートポンプであって、 膨張手段(4)の入口流路(re)を前記第1及び第2
放熱熱交換器(2A),(2B)の直列組における一端
と他端とに択一的に接続する第1の流路切換手段(K
1)と、 圧縮機(3)の吐出流路(rc)を前記第1及び第2放
熱熱交換器(2A),(2B)の直列組における一端と
他端とに択一的に接続する第2の流路切換手段(K2)
と、 前記第1及び第2放熱熱交換器(2A),(2B)につ
いて、使用放熱源による冷媒降温効果(LT)が他方よ
りも高い状況にある高効果の放熱熱交換器と、使用放熱
源による冷媒降温効果(LT)が他方よりも低い状況に
ある低効果の放熱熱交換器とを判定する判定手段(X)
と、 この判定手段(X)の判定結果に基づき、前記圧縮機
(3)から吐出した凝縮対象冷媒を、前記低効果の放熱
熱交換器から前記高効果の放熱熱交換器の順で通流する
ように、前記第1及び第2流路切換手段(K1),(K
2)を切り換え制御する制御手段(Y)を設け、 前記判定手段(X)は、前記低効果及び高効果の放熱熱
交換器を判定するとともに、これら放熱熱交換器(2
A),(2B)の冷媒降温効果(LT1),(LT2)
の差が設定差(ΔLT)以上であるか否かを判定する構
成とし、 前記制御手段(Y)は、この判定結果に基づいて、両放
熱熱交換器(2A),(2B)の冷媒降温効果(LT
1),(LT2)の差が設定差(ΔLT)以上であると
き、前記低効果の放熱熱交換器に対する放熱源の供給を
停止する構成としてある 圧縮式ヒートポンプ。
2. An individual heat radiation source (G1) as a condenser,
First and second heat radiation for cooling the flowing refrigerant by (G2)
Compression type heat exchanger with heat exchangers (2A) and (2B) connected in series
A port pump (re) for the expansion means (4),
One end of a series combination of heat-radiating heat exchangers (2A) and (2B)
A first flow path switching means (K
1) and the first and second discharge passages (rc) of the compressor (3).
One end of the series set of the heat exchangers (2A) and (2B)
Second flow path switching means (K2) alternatively connected to the other end
And the first and second radiating heat exchangers (2A) and (2B).
And the cooling effect of the heat radiation source (LT) is lower than the other.
High-efficiency heat-exchanger with high heat dissipation and heat dissipation
Source cooling effect (LT) is lower than the other
Judging means (X) for judging a low-efficiency heat radiation heat exchanger
And the compressor based on the determination result of the determination means (X).
The refrigerant to be condensed discharged from (3) is dissipated by the low effect heat radiation.
Flow from the heat exchanger in the order of the high-efficiency heat radiation heat exchanger
As described above, the first and second flow path switching means (K1), (K1)
2) a control means (Y) for controlling the switching is provided, and the determination means (X) is provided with the low-effect and high-effect heat radiation
Heat exchanger (2)
A), (2B) Refrigerant cooling effect (LT1), (LT2)
To determine whether the difference is equal to or greater than the set difference (ΔLT).
The control means (Y) performs a double release based on the determination result.
Refrigerant cooling effect (LT) of heat heat exchangers (2A) and (2B)
1) If the difference between (LT2) is greater than or equal to the set difference (ΔLT)
Supply of a heat radiation source to the low-effect heat radiation heat exchanger.
A compression heat pump that is configured to stop .
【請求項3】 個別の採放熱源(G1),(G2)によ
り通流冷媒を加熱又は冷却する第1及び第2の熱源熱交
換器(2A),(2B)を直列に接続し、 冷媒を圧縮機(3)、出力熱交換器(1)、膨張手段
(4)、前記第1及び第2熱源熱交換器(2A),(2
B)の直列組の順に循環させて、前記出力熱交換器
(1)を凝縮器機能させ、かつ、前記第1及び第2熱源
熱交換器(2A),(2B)を採熱熱交換器として蒸発
器機能させる採熱運転と、冷媒を前記圧縮機(3)、前
記第1及び第2熱源熱交換器(2A),(2B)の直列
組、前記膨張手 段(4)、前記出力熱交換器(1)の順
に循環させて、前記出力熱交換器(1)を蒸発器機能さ
せ、かつ、前記第1及び第2熱源熱交換器(2A),
(2B)を放熱熱交換器として凝縮器機能させる放熱運
転とに、運転状態を切り換える循環方向切換手段(7)
と、 採熱運転では前記膨張手段(4)の出口流路となり、か
つ、放熱運転では前記膨張手段(4)の入口流路となる
流路(re)を、前記第1及び第2熱源熱交換器(2
A),(2B)の直列組における一端と他端とに択一的
に接続する第1の流路切換手段(K1)と、 採熱運転では前記圧縮機(3)の吸入流路となり、か
つ、放熱運転では前記圧縮機(3)の吐出流路となる流
路(rc)を、前記第1及び第2熱源熱交換器(2
A),(2B)の直列組における一端と他端とに択一的
に接続する第2の流路切換手段(K2)と、 採熱運転では、前記第1及び第2熱源熱交換器(2
A),(2B)について、使用採放熱源による冷媒昇温
効果(HT)が他方よりも高い状況で高効果の採熱熱交
換器となる熱源熱交換器と、使用採放熱源による冷媒昇
温効果(HT)が他方よりも低い状況で低効果の採熱熱
交換器となる熱源熱交換器とを判定し、かつ、放熱運転
では、前記第1及び第2熱源熱交換器(2A),(2
B)について、使用採放熱源による冷媒降温効果(L
T)が他方よりも高い状況で高効果の放熱熱交換器とな
る熱源熱交換器と、使用採放熱源による冷媒降温効果
(LT)が他方よりも低い状況で低効果の放熱熱交換器
となる熱源熱交換器とを判定する判定手段(X)と、 この判定手段(X)の判定結果に基づき、採熱運転では
前記膨張手段(4)を通過した蒸発対象冷媒を、前記低
効果の採熱熱交換器となる熱源熱交換器から前記高効果
の採熱熱交換器となる熱源熱交換器の順に通流するよう
に、かつ、放熱運転では前記圧縮機(3)から吐出した
凝縮対象冷媒を、前記低効果の放熱熱交換器となる熱源
熱交換器から前記高効果の放熱熱交換器となる熱源熱交
換器の順に通流するように、採熱運転及び放熱運転の夫
々で前記第1及び第2流路切換手段(K1),(K2)
を切り換え制御する制御手段(Y)を設け、 前記判定手段(X)は、採熱運転では前記低効果及び高
効果の採熱熱交換器と なる熱源熱交換器を判定するとと
もに、これら採熱熱交換器としての熱源熱交換器(2
A),(2B)の冷媒昇温効果(HT1),(HT2)
の差が設定差(ΔHT)以上であるか否かを判定し、か
つ、放熱運転では前記低効果及び高効果の放熱熱交換器
となる熱源熱交換器を判定するとともに、これら放熱熱
交換器としての熱源熱交換器(2A),(2B)の冷媒
降温効果(LT1),(LT2)の差が設定差(ΔL
T)以上であるか否かを判定する構成とし、 前記制御手段(Y)は、この判定結果に基づいて、採熱
運転では両熱源熱交換器(2A),(2B)の冷媒昇温
効果(HT1),(HT2)の差が設定差(ΔHT)以
上であるとき、前記低効果の採熱熱交換器となる熱源熱
交換器への採放熱源の供給を停止し、かつ、放熱運転で
は両熱源熱交換器(2A),(2B)の冷媒降温効果
(LT1),(LT2)の差が設定差(ΔLT)以上で
あるとき、前記低効果の放熱熱交換器となる熱源熱交換
器への採放熱源の供給を停止する構成としてある 圧縮式
ヒートポンプ。
3. The method according to claim 1 , wherein the heat radiation sources (G1) and (G2) are provided separately.
First and second heat source heat exchange for heating or cooling the flowing refrigerant
Exchangers (2A) and (2B) are connected in series, and the refrigerant is compressed (3), output heat exchanger (1), expansion means
(4) The first and second heat source heat exchangers (2A), (2)
B) the output heat exchanger by circulating
(1) to function as a condenser, and the first and second heat sources
Evaporates heat exchangers (2A) and (2B) as heat exchangers
Heating operation to make the compressor function, and the refrigerant (3)
The first and second heat source heat exchangers (2A) and (2B) are connected in series.
Set, the inflatable hand stage (4), the order of the output heat exchanger (1)
And the output heat exchanger (1) functions as an evaporator.
And the first and second heat source heat exchangers (2A),
(2B) as a heat-radiating heat exchanger
Circulating direction switching means (7) for switching the operating state
In the heat recovery operation, it becomes the outlet flow path of the expansion means (4).
In the heat-dissipation operation, it becomes the inlet flow path of the expansion means (4).
The flow path (re) is connected to the first and second heat source heat exchangers (2).
A) Alternative to one end and the other end in the series set of (2B)
And a first flow path switching means (K1) connected to the compressor, and a suction flow path of the compressor (3) in the heat collecting operation.
In the heat dissipation operation, the flow serving as the discharge passage of the compressor (3)
Channel (rc) through the first and second heat source heat exchangers (2
A) Alternative to one end and the other end in the series set of (2B)
A second flow path switching means (K2) connected to the first and second heat source heat exchangers (2
For A) and (2B), the temperature rise of the refrigerant by the used heat radiation source
High-efficiency heat exchange in situations where the effect (HT) is higher than the other
Heat exchanger as a heat exchanger
Low-efficiency heat harvesting in situations where the thermal effect (HT) is lower than the other
Determines the heat source heat exchanger to be the exchanger and performs the heat dissipation operation
Then, the first and second heat source heat exchangers (2A), (2
Regarding B), the cooling / cooling effect (L
T) is a high-efficiency heat-radiating heat exchanger in situations where it is higher than the other.
Cooling effect of the heat source heat exchanger and the heat radiation source used
Low heat radiation heat exchanger where (LT) is lower than the other
The determination unit (X) for determining the heat source heat exchanger to be used, and the determination result of the determination unit (X),
The refrigerant to be evaporated, which has passed through the expansion means (4),
From the heat source heat exchanger, which is the
Flow through the heat source heat exchanger in order
And in the heat dissipation operation, discharged from the compressor (3).
A heat source that turns the refrigerant to be condensed into the low-efficiency heat-radiating heat exchanger
Heat source heat exchange from heat exchanger to said high-efficiency radiating heat exchanger
Of the heat collection operation and the heat radiation operation so that the heat flows in the order of the heat exchanger.
The first and second flow path switching means (K1) and (K2)
Control means (Y) for switching control between the low effect and the high effect in the heat collecting operation.
When determining the heat source heat exchanger to be the effective heat collecting heat exchanger
Heat source heat exchangers (2)
A), (2B) Refrigerant heating effect (HT1), (HT2)
Is determined to be greater than or equal to a set difference (ΔHT).
In the heat dissipation operation, the low-effect and high-effect heat exchanger
The heat source heat exchanger that determines
Refrigerant of heat source heat exchangers (2A) and (2B) as heat exchangers
The difference between the temperature drop effects (LT1) and (LT2) is the set difference (ΔL
And determining configuration whether a T) or more, the control unit (Y), based on the determination result, Tonetsu
In operation, the temperature rise of the refrigerant in both heat source heat exchangers (2A) and (2B)
The difference between the effects (HT1) and (HT2) is smaller than the set difference (ΔHT).
When above, the heat source heat becomes the low-efficiency heat-collecting heat exchanger
Stop supplying the heat radiation source to the exchanger, and
Is the cooling effect of both heat source heat exchangers (2A) and (2B)
If the difference between (LT1) and (LT2) is greater than or equal to the set difference (ΔLT)
Sometimes, the heat source heat exchange becomes the low-efficiency heat radiation heat exchanger
A compression heat pump that is configured to stop the supply of the heat radiation source to the vessel .
JP11437795A 1995-05-12 1995-05-12 Compression heat pump Expired - Fee Related JP3300197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11437795A JP3300197B2 (en) 1995-05-12 1995-05-12 Compression heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11437795A JP3300197B2 (en) 1995-05-12 1995-05-12 Compression heat pump

Publications (2)

Publication Number Publication Date
JPH08303884A JPH08303884A (en) 1996-11-22
JP3300197B2 true JP3300197B2 (en) 2002-07-08

Family

ID=14636170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11437795A Expired - Fee Related JP3300197B2 (en) 1995-05-12 1995-05-12 Compression heat pump

Country Status (1)

Country Link
JP (1) JP3300197B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197035A (en) * 2009-01-28 2010-09-09 Omron Corp Heat exchanging system for drying and drying device
JP6528078B2 (en) * 2015-03-23 2019-06-12 パナソニックIpマネジメント株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH08303884A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
KR101343711B1 (en) Air conditioning/hot­water supply system and heat pump unit
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
KR101270615B1 (en) Co-generation and Control method of the same
JP5373964B2 (en) Air conditioning and hot water supply system
JP5455521B2 (en) Air conditioning and hot water supply system
JP2006283989A (en) Cooling/heating system
JP3997482B2 (en) Water source air conditioning system
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
KR20120045916A (en) Heat pump type speed heating apparatus
CA2745109A1 (en) Heat pump/air conditioning apparatus with sequential operation
KR20110084046A (en) A refrigerant system and the method of controlling for the same
US11674695B2 (en) Hot water supply apparatus
KR100502283B1 (en) Air conditioning system
CN101469911A (en) Air conditioner
JP3300197B2 (en) Compression heat pump
KR20110117974A (en) Heat pump type speed heating apparatus
JPH10185342A (en) Heat pump type air conditioner
CN210154138U (en) Expansion valve assembly, bidirectional throttling system and air conditioner
JP3300188B2 (en) Compression heat pump
JP3141756B2 (en) Absorption heat pump system
KR20110085393A (en) Air conditioner
JP2737543B2 (en) Heat pump water heater
JPH05340641A (en) Heat pump
KR100499076B1 (en) Heat pump system
JP3448897B2 (en) Heat pump type heating and cooling water heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees