WO2015087421A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2015087421A1
WO2015087421A1 PCT/JP2013/083304 JP2013083304W WO2015087421A1 WO 2015087421 A1 WO2015087421 A1 WO 2015087421A1 JP 2013083304 W JP2013083304 W JP 2013083304W WO 2015087421 A1 WO2015087421 A1 WO 2015087421A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
refrigerant
heat exchanger
source side
Prior art date
Application number
PCT/JP2013/083304
Other languages
French (fr)
Japanese (ja)
Inventor
嶋本 大祐
祐治 本村
浩二 西岡
森本 修
小野 達生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/083304 priority Critical patent/WO2015087421A1/en
Publication of WO2015087421A1 publication Critical patent/WO2015087421A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02743Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0291Control issues related to the pressure of the indoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi-air conditioner.
  • a conventional air conditioner has been proposed that has a plurality of indoor units, and each of the plurality of indoor units is configured to be able to select a heating operation or a cooling operation (for example, see Patent Document 1). .
  • the air conditioner described in Patent Document 1 is a cooling only mode in which all of the operating indoor units perform cooling operation, a heating mode in which all of the operating indoor units perform heating operation, and a heating load.
  • a cooling / heating simultaneous heating main mode as a larger cooling / heating simultaneous operation and a cooling / heating simultaneous cooling main mode as a cooling / heating simultaneous operation having a larger cooling load are provided.
  • JP 2006-78026 A (see, for example, FIGS. 1 and 2)
  • the air conditioner described in Patent Document 1 reduces the refrigerant flow rate by reducing the number of revolutions of the pump when the cooling load or the heating load is small.
  • the pump is composed of two units for cooling main and heating main. Because there is a limit to the lower limit value of the refrigerant flow rate that can be adjusted, the capacity flow rate of the indoor unit will not be sufficient due to the excessive refrigerant flow rate flowing to the indoor unit side, and it will be difficult to suppress damage to piping due to erosion. There was a problem of disappearing. In addition, there is a problem that pump input suppression is not sufficient when the cooling load or the heating load is small.
  • the present invention has been made in order to solve the above-described problems.
  • the capacity of the indoor unit indoor unit
  • damage to piping due to erosion is avoided, and the cooling load or heating load is small. It aims at providing the air conditioning apparatus which can implement
  • the air conditioner according to the present invention includes a compressor, a heat source side heat exchanger, a throttling device, and a heat source side refrigerant circulation circuit that circulates the heat source side refrigerant by connecting the heat source side refrigerant flow paths of the heat exchangers related to heat medium.
  • the refrigerant circulation circuit and the heat medium circulation circuit are cascade-connected so that the heat source side refrigerant and the heat medium exchange heat in the heat exchanger between heat mediums, and the pump is connected to the use side heat exchanger.
  • Each is provided with at least one unit.
  • the air conditioner of the present invention by arranging at least one pump for each indoor unit, the flow rate range of the heat medium flowing through the use side heat exchanger can be increased, so excessive flow velocity is suppressed. can do. Thereby, sufficient capacity adjustment of the indoor unit, avoidance of damage to the piping due to erosion, and sufficient pump input suppression when the cooling load or the heating load is small can be realized. Furthermore, an energy saving effect can be obtained by stopping unnecessary pumps.
  • FIG. 1 It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows an example of the refrigerant circuit structure in the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a refrigerant circuit figure which shows the flow of the refrigerant
  • FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the air conditioner 100 according to Embodiment 1 has a refrigeration cycle for circulating refrigerant, and each of the indoor units 3a to 3d can freely select a cooling mode or a heating mode as an operation mode.
  • a system indirect system
  • a heat source side refrigerant a refrigerant
  • the cold or warm heat stored in the heat source side refrigerant is transmitted to a refrigerant (hereinafter referred to as a heat medium) different from the heat source side refrigerant, and the air-conditioning target space is cooled or heated with the cold heat or heat stored in the heat medium.
  • a heat medium can be directly heat exchanged with another heat source such as outdoor air, room air, boiler exhaust heat, etc., and cold heat or heat can be stored in the heat medium.
  • an air conditioner 100 includes an outdoor unit (heat source unit) 1 and a plurality of indoor units (indoor units) 3a to 3d (hereinafter simply referred to as indoor units 3). And a single relay unit 2 interposed between the outdoor unit 1 and the indoor unit 3.
  • the relay unit 2 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 4 through which the heat source side refrigerant flows.
  • the relay unit 2 and the indoor unit 3 are connected by a heat medium pipe 5 through which the heat medium flows.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 3 via the relay unit 2.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space (for example, a rooftop) outside a building 9 such as a building, and supplies cold or hot energy to the indoor unit 3 via the relay unit 2. .
  • the indoor unit 3 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the relay unit 2 transmits the heat or cold generated by the outdoor unit 1 to the indoor unit 3.
  • the relay unit 2 is configured as a separate housing from the outdoor unit 1 and the indoor unit 3 so as to be installed at a position different from the outdoor space 6 and the indoor space 7.
  • the relay unit 2 is connected to the outdoor unit 1 through the refrigerant pipe 4 and is connected to the indoor unit 3 through the heat medium pipe 5.
  • the heat source side refrigerant is conveyed from the outdoor unit 1 to the relay unit 2 through the refrigerant pipe 4.
  • the conveyed heat source side refrigerant exchanges heat with the heat medium in a heat exchanger between heat mediums (described later) in the relay unit 2 to heat or cool the heat medium. That is, the heat medium is heated or cooled by the heat exchanger between heat mediums to become hot water or cold water.
  • the hot water or cold water produced by the relay unit 2 is conveyed to the indoor unit 3 via the heat medium pipe 5 by a heat medium conveying device (described later), and the indoor unit 3 performs heating operation or cooling for the indoor space 7. Used for driving.
  • the heat medium for example, water, antifreeze, a mixture of water and antifreeze, or a mixture of water and an additive having a high anticorrosive effect can be used.
  • the air conditioning apparatus 100 according to the first embodiment will be described assuming that water is employed as the heat medium.
  • the outdoor unit 1 and the relay unit 2 are connected to the relay unit 2 and each indoor unit 3 via two refrigerant pipes 4. Each is connected via a heat medium pipe 5.
  • each unit (the outdoor unit 1, the relay unit 2, and the indoor unit 3) is connected through the two pipes (the refrigerant pipe 4 and the heat medium pipe 5). It has become easy.
  • the relay unit 2 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7. As shown, it can be installed in other common spaces such as elevators.
  • the indoor unit 3 is a ceiling cassette type is shown as an example, it is not limited to this. In other words, any type may be used as long as heating air or cooling air can be blown into the indoor space 7 directly or via a duct, such as a ceiling-embedded type or a ceiling-suspended type.
  • the outdoor unit 1 may be installed in the outdoor space 6 as an example, it is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the relay unit 2 may be installed in the vicinity of the outdoor unit 1. However, when the relay unit 2 is installed in the vicinity of the outdoor unit 1 in this way, it is preferable to pay attention to the length of the heat medium pipe 5 that connects the relay unit 2 to the indoor unit 3. This is because if the distance from the relay unit 2 to the indoor unit 3 is increased, the heat transfer power of the heat medium is increased correspondingly, and the energy saving effect is reduced.
  • the number of connected outdoor units 1, relay units 2, and indoor units 3 is not limited to the number illustrated in FIG. 1, and the building 9 in which the air conditioner 100 according to Embodiment 1 is installed. The number of units may be determined according to.
  • the plurality of relay units 2 when connecting a plurality of relay units 2 to one outdoor unit 1, the plurality of relay units 2 are installed in a common space in a building 9 such as a building or a space such as a ceiling. can do. By doing so, an air-conditioning load can be covered with the heat exchanger between heat media in each relay unit 2.
  • the indoor unit 3 can be installed at a distance or height within the allowable transfer range of the heat medium transfer device in each relay unit 2, and can be arranged with respect to the entire building 9 such as a building. Become.
  • FIG. 2 is a diagram illustrating an example of a refrigerant circuit configuration in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the heat exchangers 25 a and 25 b provided in the outdoor unit 1 and the relay unit 2 are connected to each other via a refrigerant pipe 4.
  • the indoor unit 3 and the heat exchangers 25 a and 25 b are also connected via the heat medium pipe 5.
  • the heat exchangers 25 a and 25 b exchange heat between the heat source side refrigerant supplied via the refrigerant pipe 4 and the heat medium supplied via the heat medium pipe 5.
  • the air conditioner 100 includes a heat source side refrigerant circulation circuit A that is a refrigeration cycle for circulating the heat source side refrigerant, and a heat medium circulation circuit B that circulates the heat medium, and each indoor unit All of 3 can select a cooling operation and a heating operation.
  • the mode in which all the indoor units 3 in operation execute the heating operation is the heating only operation mode
  • the mode in which all the indoor units 3 in operation execute the cooling operation is the cooling only operation mode
  • the cooling operation is executed.
  • a mode in which the indoor unit 3 and the indoor unit 3 that performs the heating operation are mixed is referred to as an air-conditioning mixed operation mode.
  • the air-conditioning mixed operation mode includes a cooling main operation mode in which the cooling load is larger and a heating main operation mode in which the heating load is larger.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, and an accumulator 19 are connected and mounted via a refrigerant pipe 4.
  • the outdoor unit 1 is provided with a first connection pipe 4a, a second connection pipe 4b, and check valves 13a to 13d.
  • the air-conditioning apparatus 100 according to Embodiment 1 is in an operation mode such as a heating operation mode or a cooling operation mode. Regardless, the flow of the heat source side refrigerant flowing into the relay unit 2 from the outdoor unit 1 can be made to be in a certain direction.
  • the compressor 10 sucks in the heat source side refrigerant, compresses the heat source side refrigerant to be in a high temperature / high pressure state, and conveys the heat source side refrigerant to the heat source side refrigerant circulation circuit A. It is good to comprise.
  • the compressor 10 has a discharge side connected to the first refrigerant flow switching device 11 and a suction side connected to an accumulator 19.
  • the first refrigerant flow switching device 11 is configured by a four-way valve or the like, and switches the flow of the heat source side refrigerant.
  • the check valve 13d is provided in the refrigerant pipe 4 between the relay unit 2 and the first refrigerant flow switching device 11, and the heat source side refrigerant is only in a predetermined direction (direction from the relay unit 2 to the outdoor unit 1). It allows flow.
  • the check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 2, and flows the heat source side refrigerant only in a predetermined direction (direction from the outdoor unit 1 to the relay unit 2). It is acceptable.
  • the check valve 13b is provided in the first connection pipe 4a and causes the heat source side refrigerant discharged from the compressor 10 to flow through the relay unit 2 during the heating operation.
  • the check valve 13c is provided in the second connection pipe 4b, and causes the heat source side refrigerant returned from the relay unit 2 during the heating operation to flow to the suction side of the compressor 10.
  • the first connection pipe 4 a includes a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 d and a refrigerant pipe 4 between the check valve 13 a and the relay unit 2.
  • the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13d and the relay unit 2, a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a, Are connected.
  • FIG. 2 shows an example in which the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided.
  • the present invention is not limited to this, and these are not necessarily provided.
  • the indoor units 3a to 3d are equipped with use side heat exchangers 35a to 35d (hereinafter also simply referred to as use side heat exchangers 35), respectively.
  • the use side heat exchanger 35 includes heat medium flow control devices 34a to 34d (hereinafter also simply referred to as heat medium flow control devices 34) and pumps 31a to 31d (hereinafter simply referred to as heat medium flow control devices 34) via the heat medium pipe 5. Connected to the pump 31). Further, the use side heat exchanger 35 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and supplies heating air or cooling air to be supplied to the indoor space 7. Is to be generated.
  • a blower such as a fan (not shown)
  • Path switching device 32 four second heat medium flow switching devices 33a to 33d (hereinafter also simply referred to as second heat medium flow switching device 33), and four heat media.
  • Flow rate adjusting devices 34a to 34d (hereinafter , And may be simply referred to as the heat medium flow rate control device 34), it is mounted.
  • the heat exchanger related to heat medium 25a is provided between the expansion device 26a and the second refrigerant flow switching device 28a in the heat source side refrigerant circulation circuit A, and serves to cool the heat medium in the air-conditioning mixed operation mode. It is.
  • the heat exchanger related to heat medium 25b is provided between the expansion device 26b and the second refrigerant flow switching device 28b in the heat source side refrigerant circulation circuit A, and heats the heat medium in the air-conditioning mixed operation mode. It is something to offer.
  • the opening / closing device 27 and the opening / closing device 29 are configured by, for example, electromagnetic valves that can be opened and closed by energization, and open and close a flow path in which they are provided. That is, the opening / closing device 27 and the opening / closing device 29 are controlled to open / close according to the operation mode, and switch the flow path of the heat source side refrigerant.
  • the opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat-source-side refrigerant (the refrigerant pipe 4 located at the lowest level in the drawing among the refrigerant pipes 4 connecting the outdoor unit 1 and the relay unit 2).
  • the second refrigerant flow switching device 28 is constituted by a four-way valve or the like, and switches the flow of the heat source side refrigerant so that the heat exchanger related to heat medium 25 acts as a condenser or an evaporator according to the operation mode. .
  • the second refrigerant flow switching device 28a is provided on the downstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the second refrigerant flow switching device 28b is provided on the downstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the pump 31 circulates the heat medium flowing through the heat medium pipe 5 to the heat medium circuit B.
  • the number of pumps 31 is provided between each use-side heat exchanger 35 and the second heat medium flow switching device 33, and the number according to the number of indoor units 3 installed (four in the first embodiment). Is provided.
  • the pump 31 may be constituted by a capacity-controllable pump, for example, and the flow rate thereof may be adjusted according to the load in the indoor unit 3.
  • the pumps 31a to 31d are provided in the heat medium pipe 5 between the use side heat exchangers 35a to 35d and the second heat medium flow switching devices 33a to 33d. It may be provided in the heat medium pipe 5 between the heat exchangers 35a to 35d and the first heat medium flow switching devices 32a to 32d.
  • one pump is provided for each indoor unit 3.
  • the present invention is not limited to this, and at least one pump may be used.
  • the capacity of the pump 31 is not controllable, and the flow rate of the heat medium flowing through the heat medium pipe 5 is controlled by the heat medium flow control device 34.
  • the first heat medium flow switching device 32 switches the connection between the outlet side of the heat medium flow path of the use side heat exchanger 35 and the inlet side of the heat medium flow path of the heat exchanger related to heat medium 25. .
  • the number of the first heat medium flow switching devices 32 is set according to the number of indoor units 3 installed (four in the first embodiment). In the first heat medium flow switching device 32, one of the three sides is in the heat exchanger 25a, one of the three is in the heat exchanger 25b, and one of the three is in the heat medium flow rate. Each is connected to the adjusting device 34 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 35.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the first heat medium flow switching device 32 may be constituted by a three-way valve, for example.
  • the second heat medium flow switching device 33 switches the connection between the outlet side of the heat medium flow path of the inter-heat medium heat exchanger 25 and the inlet side of the heat medium flow path of the use side heat exchanger 35. .
  • the number of the second heat medium flow switching devices 33 is set according to the number of indoor units 3 installed (four in the first embodiment).
  • one of the three heat transfer medium heat exchangers 25a, one of the three heat transfer medium heat exchangers 25b, and one of the three heat transfer side heats. Each is connected to the exchanger 35 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 35.
  • This is illustrated as a switching device 33d.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the second heat medium flow switching device 33 may be constituted by a three-way valve, for example.
  • the heat medium flow control device 34 is configured by a two-way valve or the like that can control the opening area, and controls the flow rate of the heat medium flowing through the heat medium pipe 5.
  • the number of the heat medium flow control devices 34 is set according to the number of indoor units 3 installed (four in the first embodiment).
  • One of the heat medium flow control devices 34 is connected to the use side heat exchanger 35 and the other is connected to the first heat medium flow switching device 32, and is provided on the outlet side of the heat medium flow channel of the use side heat exchanger 35. It has been. That is, the heat medium flow control device 34 adjusts the amount of the heat medium flowing into the indoor unit 3 according to the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out of the indoor unit 3, and according to the indoor load. The optimum amount of heat medium can be provided to the indoor unit 3.
  • the heat medium flow rate adjustment device 34a, the heat medium flow rate adjustment device 34b, the heat medium flow rate adjustment device 34c, and the heat medium flow rate adjustment device 34d are illustrated from the lower side of the drawing.
  • the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35.
  • the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 and between the second heat medium flow switching device 33 and the use side heat exchanger 35. Good.
  • the indoor unit 3 does not require a load such as the stop mode or the thermo OFF, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 34.
  • the heat medium flow control device 34 may be omitted. Is possible.
  • the air conditioner 100 includes four heat source side refrigerant temperature detection means 36a to 36d (hereinafter also simply referred to as heat source side refrigerant temperature detection means 36), pressure detection means 37, and four first heat medium temperature detection means 43a. To 43d (hereinafter also simply referred to as first heat medium temperature detecting means 43) and four second heat medium temperature detecting means 44a and 44b (hereinafter also simply referred to as second heat medium temperature detecting means 44). There is).
  • the first heat medium temperature detecting means 43 and the second heat medium temperature detecting means 44 are connected to a control device 51 described later, and these detection results are used for various controls of the air conditioner 100. These can be composed of, for example, a thermistor.
  • the first heat medium temperature detecting means 43 is provided between the first heat medium flow switching device 32 and the heat medium flow control device 34 and detects the temperature of the heat medium flowing out from the use side heat exchanger 35. It is.
  • the number of first heat medium temperature detecting means 43 (four in the first embodiment) according to the number of indoor units 3 installed is provided.
  • the position where the first heat medium temperature detection means 43 is installed is not particularly limited, and may be within the indoor unit 3 or within the relay unit 2.
  • the indoor unit 3 Corresponding to the indoor unit 3, as the first heat medium temperature detecting means 43a, the first heat medium temperature detecting means 43b, the first heat medium temperature detecting means 43c, and the first heat medium temperature detecting means 43d from the lower side of the drawing. It is shown.
  • the second heat medium temperature detection means 44 is provided between the heat exchanger related to heat medium 25 and the second heat medium flow switching device 33, and detects the temperature of the heat medium flowing into the use side heat exchanger 35. It is to detect.
  • the number of the second heat medium temperature detecting means 44 (two in the first embodiment) according to the number of indoor units 3 installed may be provided.
  • the position where the second heat medium temperature detecting means 44 is installed is not particularly limited, and may be in the indoor unit 3 or in the relay unit 2. Further, corresponding to the indoor unit 3, the second heat medium temperature detecting means 44a and the second heat medium temperature detecting means 44b are illustrated from the lower side of the drawing.
  • the heat source side refrigerant temperature detecting means 36 is provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 25, and the temperature of the heat source side refrigerant flowing into the heat exchanger related to heat medium 25 or the heat between heat medium.
  • the temperature of the heat source side refrigerant that has flowed out of the exchanger 25 is detected, and it may be constituted by a thermistor or the like.
  • the heat source side refrigerant temperature detecting means 36a is provided between the heat exchanger related to heat medium 25a and the second refrigerant flow switching device 28a.
  • the heat source side refrigerant temperature detecting means 36b is provided between the heat exchanger related to heat medium 25a and the expansion device 26a.
  • the heat source side refrigerant temperature detecting means 36c is provided between the heat exchanger related to heat medium 25b and the second refrigerant flow switching device 28b.
  • the heat source side refrigerant temperature detecting means 36d is provided between the heat exchanger related to heat medium 25b and the expansion device 26b.
  • the pressure detection means 37 obtains pressure information for conversion into a saturation temperature used when controlling the opening degree of the expansion device 26, and is provided between the heat exchanger related to heat medium 25b and the expansion device 26b. It has been.
  • the control device 51 is configured by a microcomputer or the like, and the driving frequency of the compressor 10, the rotational speed (including ON / OFF) of the blower (not shown), the first refrigerant flow switching device 11 and the second refrigerant flow switching. Switching of the device 28, opening of the expansion device 26, driving of the pump 31, switching of the switching device 27 and switching device 29, switching of the first heat medium flow switching device 32 and the second heat medium flow switching device 33, heat The opening degree of the medium flow rate adjusting device 34 is controlled. Note that the drive frequency of the compressor 10, the rotational speed of the blower (not shown) (including ON / OFF), and switching of the first refrigerant flow switching device 11 are installed in the outdoor unit 1 and are separate from the control device 51. You may make it execute the outdoor unit control apparatus (illustration omitted) which is a body.
  • the air conditioner 100 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, an opening / closing device 27, an expansion device 26, a heat source side refrigerant flow path of a heat exchanger 25 between the heat medium,
  • the refrigerant flow switching device 28 and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the heat source side refrigerant circulation circuit A.
  • the switching device 32 is connected by the heat medium pipe 5 to constitute the heat medium circulation circuit B. That is, a plurality of use side heat exchangers 35 are connected in parallel to the heat exchangers 25a and 25b, respectively, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the relay unit 2 are connected via the heat exchangers 25a and 25b provided in the relay unit 2, and the relay unit 2 and the indoor unit 3 are Similarly, they are connected via heat exchangers 25a and 25b. That is, in the air conditioner 100, heat exchange is performed between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B in the heat exchangers 25a and 25b. It has become.
  • each operation mode which the air conditioning apparatus 100 performs is demonstrated.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 3 based on an instruction from each indoor unit 3. That is, the air conditioner 100 can perform the same operation for all of the indoor units 3 and can perform different operations for each of the indoor units 3.
  • the air conditioning apparatus 100 according to the first embodiment includes four operation modes of normal cooling operation, cooling only operation, cooling main operation, heating only operation, and heating main operation. Below, each operation mode is demonstrated with the flow of a heat-source side refrigerant
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11.
  • heat exchange with the outdoor air is performed by the heat source side heat exchanger 12 (heat is radiated to the outdoor air) to become a high-temperature / high-pressure liquid or a two-phase refrigerant.
  • the second refrigerant flow switching devices 28a and 28b are communicated with the low-pressure pipe.
  • the expansion device 26a has a constant superheat (degree of superheat) obtained as a difference between the temperature detected by the heat source side refrigerant temperature detecting means 36a and the temperature detected by the heat source side refrigerant temperature detecting means 36b. The opening degree is controlled.
  • the expansion device 26b has an opening degree so that the superheat obtained as the difference between the temperature detected by the heat source side refrigerant temperature detecting means 36c and the temperature detected by the heat source side refrigerant temperature detecting means 36d is constant. Is controlled.
  • the heat medium flows out from the use side heat exchangers 35a and 35b and flows into the heat medium flow control devices 34a and 34b.
  • the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 34a and 34b, and flows into the use side heat exchangers 35a and 35b. It is supposed to be.
  • the heat medium flowing out from the heat medium flow control devices 34a and 34b flows into the heat exchangers 25a and 25b through the first heat medium flow switching devices 32a and 32b, and passes through the indoor unit 3 to the indoor space 7.
  • the second heat medium flow switching devices 33a and 33b After passing through the second heat medium flow switching devices 33a and 33b, the amount of heat absorbed from the heat is transferred to the heat source side refrigerant side and then sucked into the pumps 31a and 31b again.
  • the first heat medium flow switching devices 32a and 32b and the second heat medium flow switching devices 33a and 33b are provided so that flow paths flowing through the heat exchangers 25a and 25b are ensured. It is controlled to an intermediate opening or an opening corresponding to the heat medium temperature at the outlet of the heat exchangers 25a and 25b.
  • the use side heat exchangers 35a and 35b are controlled by the heat medium flow control devices 34a and 34b based on the temperature difference between the inlet and the outlet.
  • the high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a.
  • the high-temperature / high-pressure liquid or two-phase refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature / high-pressure liquid or the two-phase refrigerant that has flowed into the relay unit 2 flows into the heat exchanger related to heat medium 25b that acts as a condenser through the second refrigerant flow switching device 28b.
  • the first refrigerant flow switching device 11 is connected to the relay unit without the heat source side refrigerant discharged from the compressor 10 passing through the heat source side heat exchanger 12. Switch to flow into 2.
  • the pumps 31a and 31b are driven, the heat medium flow control devices 34a and 34b are opened, and the heat between the heat exchangers 25a and 25b and the use side heat exchangers 35a and 35b are heated.
  • the medium is circulated.
  • the second refrigerant flow switching devices 28a and 28b are switched to the heating side, the opening / closing device 27 is closed, and the opening / closing device 29 is open.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, flows through the first connection pipe 4a, passes through the check valve 13b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the heat medium flows out from the use side heat exchangers 35a and 35b and flows into the heat medium flow control devices 34a and 34b.
  • the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 34a and 34b, and flows into the use side heat exchangers 35a and 35b. It is like that.
  • the heat medium flowing out from the heat medium flow control devices 34a and 34b flows into the heat exchangers 25a and 25b through the first heat medium flow switching devices 32a and 32b, and passes through the indoor unit 3 to the indoor space 7.
  • the amount of heat supplied to is received from the heat source side refrigerant side, and after being passed through the second heat medium flow switching devices 33a and 33b, is sucked into the pumps 31a and 31b again.
  • the first heat medium flow switching device is routed from the second heat medium flow switching devices 33a and 33b via the heat medium flow control devices 34a and 34b.
  • the heat medium flows in the direction to 32a and 32b.
  • the air conditioning load required in the indoor space 7 is such that the difference between the detection result of the first heat medium temperature detection means 43 and the detection result of the second heat medium temperature detection means 44 is kept at the target value. This can be provided by controlling the flow rate of the heat medium flowing into the indoor units 3a and 3b with the flow rate adjusting devices 34a and 34b.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow in the heating main operation mode of the air-conditioning mixed operation mode of the air-conditioning apparatus 100 illustrated in FIG. 2.
  • FIG. 6 illustrates the heating-main operation mode of the mixed heating / cooling operation mode when a heating load is generated in the use side heat exchangers 35b to 35d and a cooling load is generated in the use side heat exchanger 35a.
  • the piping represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the heat source side refrigerant discharged from the compressor 10 is relayed through the first refrigerant flow switching device 11 without passing through the heat source side heat exchanger 12.
  • Switch to unit 2 the pumps 31a to 31d are driven to open the heat medium flow control devices 34a to 34d, and between the heat exchanger related to heat medium 25a and the use side heat exchanger 35a where the cooling load is generated, The heat medium circulates between the heat exchanger 25b between the heat medium and the use side heat exchangers 35b to 35d where the heat load is generated.
  • the second refrigerant flow switching device 28a is switched to the cooling side, the second refrigerant flow switching device 28b is switched to the heating side, the expansion device 26a is fully opened, the opening / closing device 27 is closed, and the opening / closing device 29 is closed. ing.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, flows through the first connection pipe 4a, passes through the check valve 13b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 flows into the heat exchanger related to heat medium 25b that acts as a condenser via the second refrigerant flow switching device 28b.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat exchanger related to heat medium 25b condenses and liquefies while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes a liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 25b is expanded by the expansion device 26b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 25a acting as an evaporator via the expansion device 26a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 25b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pumps 31b to 31d. Further, the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 25a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 31a.
  • the heat medium that has been pressurized and flowed out by the pump 31a flows into the use side heat exchanger 35a in which a cold load is generated, and the heat medium that has been pressurized and discharged by the pumps 31b to 31d generates a heat load. It flows into the use side heat exchangers 35b to 35d.
  • the heat medium that has been used for the heating operation and has passed through the use side heat exchangers 35b to 35d and whose temperature has decreased passes through the heat medium flow control devices 34b to 34d and the first heat medium flow switching devices 32b to 32d, After flowing into the inter-medium heat exchanger 25b and passing through the second heat medium flow switching devices 33b to 33d, they are sucked into the pumps 31b to 31d again.
  • the first heat medium flow switching device 32 is switched and connected in the direction in which the heat exchanger related to heat medium 25b is connected.
  • the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a is connected.
  • the first heat medium flow switching is performed from the second heat medium flow switching device 33 via the heat medium flow control device 34 on both the heating side and the cooling side.
  • a heat medium flows in the direction to the device 32.
  • the air conditioning load required in the indoor space 7 is that between the first heat medium temperature detecting means 43 and the second heat medium temperature detecting means 44 corresponding to the heating use side heat exchanger 35 on the heating side.
  • the difference between the detection results is the difference between the detection results of the first heat medium temperature detection means 43 and the second heat medium temperature detection means 44 corresponding to the cooling use side heat exchanger 35 on the cooling side. It can be covered by controlling the flow rate of the heat medium flowing into the indoor unit 3 with the heat medium flow control device 34 so as to keep the value.
  • the pump 31 of the applicable indoor unit 3 is stopped.
  • FIG. FIG. 7 is a diagram illustrating another example (first example) of the refrigerant circuit configuration in the air-conditioning apparatus 100 according to Embodiment 2 of the present invention.
  • the second embodiment will be described, but those overlapping with the first embodiment will be omitted.
  • the capacity of the pumps 45a to 45d mounted on the relay unit 2 can be controlled, and the flow rate of the heat medium flowing through the heat medium pipe 5 can be controlled.
  • the heat medium flow control device 34 mounted in the first embodiment is not necessary and need not be installed. Therefore, the amount of the heat medium flowing into the indoor unit 3 can be adjusted by the capacity control of the pumps 45a to 45d, and the optimum heat medium amount corresponding to the indoor load can be provided to the indoor unit 3.
  • FIG. FIG. 8 is a diagram illustrating another example (second example) of the refrigerant circuit configuration in the air-conditioning apparatus 100 according to Embodiment 3 of the present invention.
  • a control device 51 is provided for each indoor unit 3 as shown in FIG.
  • the pump 31, the heat medium flow control device 34, the first heat medium temperature detection means 43, and the second heat medium temperature detection means 44 are also installed for each indoor unit 3.
  • the first heat medium temperature detecting means 43 is provided between the heat medium flow control device 34 and the use side heat exchanger 35
  • the second heat medium temperature detecting means 44 is the pump 31 and the use side heat exchanger. 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner comprises: a heat source side refrigerant circulation circuit (A) for circulating a heat source side refrigerant, wherein a compressor (10), a heat source side heat exchanger (12), a throttling device (26), and a heat source side refrigerant flow path from an inter-heat-media heat exchanger (25) are connected via a pipe; and a heat medium circulation circuit (B) for circulating a heat medium, wherein a pump (31), at least one utilization side heat exchanger (35), and a heat medium flow path from the inter-heat-media heat exchanger (25) are connected via a pipe. The heat source side refrigerant circulation circuit (A) and the heat medium circulation circuit (B) are connected in cascade, such that the heat source side refrigerant and the heat medium exchange heat at the inter-heat-media heat exchanger (25). At least one pump (31) is provided on each utilization side heat exchanger (35).

Description

空気調和装置Air conditioner
 本発明は、たとえばビル用マルチエアコンなどに適用される空気調和装置に関するものである。 The present invention relates to an air conditioner applied to, for example, a building multi-air conditioner.
 空気調和装置には、ビル用マルチエアコンなどのように、熱源機(室外機)が建物の外に配置され、室内機が建物の室内に配置されたものがある。このような空気調和装置の冷媒回路を循環する冷媒は、室内機の熱交換器に供給される空気に放熱又は吸熱して、当該空気を加温又は冷却する。そして、その加温又は冷却された空気が、空調対象空間に送り込まれて暖房又は冷房が行われるようになっている。
 このような空気調和装置に使用される熱源側冷媒としては、たとえばHFC(ハイドロフルオロカーボン)系冷媒が多く採用されている。また、二酸化炭素(CO2)等の自然冷媒を使うものも提案されている。
Some air conditioners include a heat source unit (outdoor unit) arranged outside a building and an indoor unit arranged inside a building, such as a building multi-air conditioner. The refrigerant circulating in the refrigerant circuit of such an air conditioner radiates or absorbs heat to the air supplied to the heat exchanger of the indoor unit, thereby heating or cooling the air. The heated or cooled air is sent into the air-conditioning target space for heating or cooling.
As a heat source side refrigerant used in such an air conditioner, for example, an HFC (hydrofluorocarbon) refrigerant is often used. In addition, one using a natural refrigerant such as carbon dioxide (CO2) has been proposed.
 従来の空気調和装置において、複数の室内機を有し、該複数の室内機のそれぞれが、暖房運転又は冷房運転を選択できるように構成したものが提案されている(たとえば、特許文献1参照)。
 特許文献1に記載の空気調和装置は、運転している室内機の全てが冷房運転を実施する全冷房モード、運転している室内機の全てが暖房運転を実施する全暖房モード、暖房負荷の方が大きい冷暖同時運転としての冷暖同時暖房主体モード、及び冷房負荷の方が大きい冷暖同時運転としての冷暖同時冷房主体モードを備えている。そして、四方弁を切り替えることで、全暖房モードと冷暖同時暖房主体モードとの切り替え、又は、全冷房モードと冷暖同時冷房主体モードとの切り替えを行っている。また、運転モードの切り替えを行う際に、冷房主体用と暖房主体用の2台のポンプが、冷房負荷又は暖房負荷に応じて各ポンプの回転数を調整し、冷媒流量を調整している。
A conventional air conditioner has been proposed that has a plurality of indoor units, and each of the plurality of indoor units is configured to be able to select a heating operation or a cooling operation (for example, see Patent Document 1). .
The air conditioner described in Patent Document 1 is a cooling only mode in which all of the operating indoor units perform cooling operation, a heating mode in which all of the operating indoor units perform heating operation, and a heating load. A cooling / heating simultaneous heating main mode as a larger cooling / heating simultaneous operation and a cooling / heating simultaneous cooling main mode as a cooling / heating simultaneous operation having a larger cooling load are provided. Then, by switching the four-way valve, switching between the full heating mode and the simultaneous heating / cooling main heating mode or switching between the full cooling mode and the simultaneous cooling / heating simultaneous cooling main mode is performed. Further, when the operation mode is switched, the two cooling main pumps and the heating main pumps adjust the rotation speed of each pump according to the cooling load or the heating load to adjust the refrigerant flow rate.
特開2006-78026号公報(たとえば、図1及び図2参照)JP 2006-78026 A (see, for example, FIGS. 1 and 2)
 特許文献1に記載の空気調和装置は、冷房負荷又は暖房負荷が小さい場合にポンプの回転数を小さくすることで冷媒流量を小さくするが、ポンプが冷房主体用と暖房主体用の2台であり、調整できる冷媒流量の下限値には限界があるため、室内機側に流れる冷媒流量が過多となることで室内機の能力調整が十分ではなくなり、エロージョンによる配管へのダメージを抑えることが容易ではなくなるという課題があった。また、冷房負荷又は暖房負荷が小さい場合のポンプ入力抑制が十分ではなくなるという課題があった。 The air conditioner described in Patent Document 1 reduces the refrigerant flow rate by reducing the number of revolutions of the pump when the cooling load or the heating load is small. However, the pump is composed of two units for cooling main and heating main. Because there is a limit to the lower limit value of the refrigerant flow rate that can be adjusted, the capacity flow rate of the indoor unit will not be sufficient due to the excessive refrigerant flow rate flowing to the indoor unit side, and it will be difficult to suppress damage to piping due to erosion. There was a problem of disappearing. In addition, there is a problem that pump input suppression is not sufficient when the cooling load or the heating load is small.
 本発明は、以上のような課題を解決するためになされたもので、室内ユニット(室内機)の十分な能力調整、エロージョンによる配管へのダメージの回避、及び冷房負荷又は暖房負荷が小さい場合の十分なポンプ入力抑制を実現可能とする空気調和装置を提供することを目的としている。 The present invention has been made in order to solve the above-described problems. When the capacity of the indoor unit (indoor unit) is sufficiently adjusted, damage to piping due to erosion is avoided, and the cooling load or heating load is small. It aims at providing the air conditioning apparatus which can implement | achieve sufficient pump input suppression.
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、絞り装置、及び、熱媒体間熱交換器の熱源側冷媒流路が配管接続され、熱源側冷媒を循環させる熱源側冷媒循環回路と、ポンプ、少なくとも1つの利用側熱交換器、及び、前記熱媒体間熱交換器の熱媒体流路が配管接続され、熱媒体を循環させる熱媒体循環回路と、を備え、前記熱源側冷媒循環回路と前記熱媒体循環回路とは、前記熱媒体間熱交換器で前記熱源側冷媒と前記熱媒体とが熱交換を行うようにカスケード接続され、前記ポンプが、前記利用側熱交換器のそれぞれに少なくとも1台備えられたものである。 The air conditioner according to the present invention includes a compressor, a heat source side heat exchanger, a throttling device, and a heat source side refrigerant circulation circuit that circulates the heat source side refrigerant by connecting the heat source side refrigerant flow paths of the heat exchangers related to heat medium. A circuit, a pump, at least one use side heat exchanger, and a heat medium circulation circuit in which a heat medium flow path of the heat exchanger between the heat mediums is piped and circulates the heat medium, and the heat source side The refrigerant circulation circuit and the heat medium circulation circuit are cascade-connected so that the heat source side refrigerant and the heat medium exchange heat in the heat exchanger between heat mediums, and the pump is connected to the use side heat exchanger. Each is provided with at least one unit.
 本発明に係る空気調和装置によれば、室内ユニット毎に少なくとも1台のポンプを配置することにより、利用側熱交換器を流れる熱媒体の流量範囲を大きくすることができるため、流速過多を抑制することができる。これにより、室内ユニットの十分な能力調整、エロージョンによる配管へのダメージの回避、冷房負荷又は暖房負荷が小さい場合の十分なポンプ入力抑制を実現可能とすることができる。さらには、不要なポンプを停止させることで、省エネルギー化の効果も得られる。 According to the air conditioner of the present invention, by arranging at least one pump for each indoor unit, the flow rate range of the heat medium flowing through the use side heat exchanger can be increased, so excessive flow velocity is suppressed. can do. Thereby, sufficient capacity adjustment of the indoor unit, avoidance of damage to the piping due to erosion, and sufficient pump input suppression when the cooling load or the heating load is small can be realized. Furthermore, an energy saving effect can be obtained by stopping unnecessary pumps.
本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置における冷媒回路構成の一例を示す図である。It is a figure which shows an example of the refrigerant circuit structure in the air conditioning apparatus which concerns on Embodiment 1 of this invention. 図2に示す空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the cooling only operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置の冷暖房混在運転モードの冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the air_conditioning | cooling main operation mode of the air-conditioning mixed operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the heating only operation mode of the air conditioning apparatus shown in FIG. 図2に示す空気調和装置の冷暖房混在運転モードの暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating main operation mode of the air-conditioning mixed operation mode of the air conditioning apparatus shown in FIG. 本発明の実施の形態2に係る空気調和装置における冷媒回路構成の別例(1例目)を示す図である。It is a figure which shows another example (1st example) of the refrigerant circuit structure in the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和装置における冷媒回路構成の別例(2例目)を示す図である。It is a figure which shows another example (2nd example) of the refrigerant circuit structure in the air conditioning apparatus which concerns on Embodiment 3 of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置100の設置例を示す概略図である。
 本実施の形態1に係る空気調和装置100は、冷媒を循環させる冷凍サイクルを有しており、各室内ユニット3a~3dが運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。また、冷媒(以下、熱源側冷媒と称する)を間接的に利用する方式(間接方式)を採用している。すなわち、熱源側冷媒に貯えた冷熱又は温熱を熱源側冷媒とは異なる冷媒(以下、熱媒体と称する)に伝達し、熱媒体に貯えた冷熱又は温熱で空調対象空間を冷房又は暖房する。また、熱媒体を室外空気、室内空気、ボイラー排熱などの別熱源と直接熱交換して、熱媒体に冷熱又は温熱を貯えることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.
Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
The air conditioner 100 according to Embodiment 1 has a refrigeration cycle for circulating refrigerant, and each of the indoor units 3a to 3d can freely select a cooling mode or a heating mode as an operation mode. Further, a system (indirect system) that indirectly uses a refrigerant (hereinafter referred to as a heat source side refrigerant) is employed. That is, the cold or warm heat stored in the heat source side refrigerant is transmitted to a refrigerant (hereinafter referred to as a heat medium) different from the heat source side refrigerant, and the air-conditioning target space is cooled or heated with the cold heat or heat stored in the heat medium. Further, the heat medium can be directly heat exchanged with another heat source such as outdoor air, room air, boiler exhaust heat, etc., and cold heat or heat can be stored in the heat medium.
 図1に示すように、本実施の形態1に係る空気調和装置100は、室外ユニット(熱源機)1と、複数台の室内ユニット(室内機)3a~3d(以下、単に室内ユニット3と称することもある)と、室外ユニット1と室内ユニット3との間に介在する1台の中継ユニット2と、を有している。中継ユニット2は、熱源側冷媒と熱媒体とで熱交換を行うものである。室外ユニット1と中継ユニット2とは、熱源側冷媒が流れる冷媒配管4で接続されている。中継ユニット2と室内ユニット3とは、熱媒体が流れる熱媒体配管5で接続されている。そして、室外ユニット1で生成された冷熱あるいは温熱は、中継ユニット2を介して室内ユニット3に配送されるようになっている。 As shown in FIG. 1, an air conditioner 100 according to Embodiment 1 includes an outdoor unit (heat source unit) 1 and a plurality of indoor units (indoor units) 3a to 3d (hereinafter simply referred to as indoor units 3). And a single relay unit 2 interposed between the outdoor unit 1 and the indoor unit 3. The relay unit 2 performs heat exchange between the heat source side refrigerant and the heat medium. The outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 4 through which the heat source side refrigerant flows. The relay unit 2 and the indoor unit 3 are connected by a heat medium pipe 5 through which the heat medium flows. The cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 3 via the relay unit 2.
 室外ユニット1は、通常、ビルなどの建物9の外の空間(たとえば、屋上など)である室外空間6に配置され、中継ユニット2を介して室内ユニット3に冷熱又は温熱を供給するものである。
 室内ユニット3は、建物9の内部の空間(たとえば、居室など)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。
 中継ユニット2は、室外ユニット1で生成される温熱又は冷熱を、室内ユニット3に伝達するものである。この中継ユニット2は、室外ユニット1及び室内ユニット3とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されている。また、中継ユニット2は、冷媒配管4を介して室外ユニット1に接続され、また、熱媒体配管5を介して室内ユニット3に接続されている。
The outdoor unit 1 is usually disposed in an outdoor space 6 that is a space (for example, a rooftop) outside a building 9 such as a building, and supplies cold or hot energy to the indoor unit 3 via the relay unit 2. .
The indoor unit 3 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
The relay unit 2 transmits the heat or cold generated by the outdoor unit 1 to the indoor unit 3. The relay unit 2 is configured as a separate housing from the outdoor unit 1 and the indoor unit 3 so as to be installed at a position different from the outdoor space 6 and the indoor space 7. The relay unit 2 is connected to the outdoor unit 1 through the refrigerant pipe 4 and is connected to the indoor unit 3 through the heat medium pipe 5.
 熱源側冷媒は、室外ユニット1から中継ユニット2に冷媒配管4を通して搬送される。搬送された熱源側冷媒は、中継ユニット2内の熱媒体間熱交換器(後述)にて熱媒体と熱交換を行い、熱媒体を加温又は冷却する。つまり、熱媒体は、熱媒体間熱交換器で加温又は冷却されて温水又は冷水となる。中継ユニット2にて作られた温水又は冷水は、熱媒体搬送装置(後述)にて、熱媒体配管5を介して室内ユニット3へ搬送され、室内ユニット3にて室内空間7に対する暖房運転又は冷房運転に利用される。 The heat source side refrigerant is conveyed from the outdoor unit 1 to the relay unit 2 through the refrigerant pipe 4. The conveyed heat source side refrigerant exchanges heat with the heat medium in a heat exchanger between heat mediums (described later) in the relay unit 2 to heat or cool the heat medium. That is, the heat medium is heated or cooled by the heat exchanger between heat mediums to become hot water or cold water. The hot water or cold water produced by the relay unit 2 is conveyed to the indoor unit 3 via the heat medium pipe 5 by a heat medium conveying device (described later), and the indoor unit 3 performs heating operation or cooling for the indoor space 7. Used for driving.
 熱源側冷媒としては、たとえばR-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒、化学式内に二重結合を含む、CF、CF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCOやプロパンなどの自然冷媒を用いることができる。そして、それら自然冷媒が採用された熱源側冷媒循環回路A及び熱媒体として水などが採用された熱媒体循環回路Bを有している(図2参照)。 Examples of the heat source side refrigerant include single refrigerants such as R-22 and R-134a, pseudo-azeotropic mixed refrigerants such as R-410A and R-404A, non-azeotropic mixed refrigerants such as R-407C, containing double bond, can be used natural refrigerant such as CF 3, CF = CH 2 refrigerant and mixtures thereof global warming potential is relatively small value, such as, or CO 2 and propane. And it has the heat source side refrigerant circuit A which employ | adopted these natural refrigerants, and the heat medium circuit B which employ | adopted water etc. as a heat medium (refer FIG. 2).
 一方、熱媒体としては、たとえば水、不凍液、水と不凍液との混合液、水と防食効果が高い添加剤との混合液などを用いることができる。なお、本実施の形態1に係る空気調和装置100は、熱媒体として水が採用されているものとして説明する。 On the other hand, as the heat medium, for example, water, antifreeze, a mixture of water and antifreeze, or a mixture of water and an additive having a high anticorrosive effect can be used. In addition, the air conditioning apparatus 100 according to the first embodiment will be described assuming that water is employed as the heat medium.
 図1に示すように、本実施の形態1に係る空気調和装置100は、室外ユニット1と中継ユニット2とが2本の冷媒配管4を介して、中継ユニット2と各室内ユニット3とが2本の熱媒体配管5を介して、それぞれ接続されている。このように、空気調和装置100では、2本の配管(冷媒配管4、熱媒体配管5)を介して各ユニット(室外ユニット1、中継ユニット2及び室内ユニット3)を接続することにより、施工が容易となっている。 As shown in FIG. 1, in the air conditioner 100 according to the first embodiment, the outdoor unit 1 and the relay unit 2 are connected to the relay unit 2 and each indoor unit 3 via two refrigerant pipes 4. Each is connected via a heat medium pipe 5. As described above, in the air conditioner 100, each unit (the outdoor unit 1, the relay unit 2, and the indoor unit 3) is connected through the two pipes (the refrigerant pipe 4 and the heat medium pipe 5). It has become easy.
 なお、図1において中継ユニット2が、建物9の内部ではあるが室内空間7とは別の空間である天井裏などの空間(以下、単に空間8と称する)に設置されている状態を例に示しているが、その他エレベーターなどがある共用空間などに設置することも可能である。また、室内ユニット3が天井カセット型である場合を例に示しているが、これに限定されるものではない。すなわち、天井埋込型や天井吊下式など、直接又はダクトを介して室内空間7に暖房用空気又は冷房用空気を吹き出せるようになっていれば、どんな種類のものでもよい。 In FIG. 1, the relay unit 2 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7. As shown, it can be installed in other common spaces such as elevators. Moreover, although the case where the indoor unit 3 is a ceiling cassette type is shown as an example, it is not limited to this. In other words, any type may be used as long as heating air or cooling air can be blown into the indoor space 7 directly or via a duct, such as a ceiling-embedded type or a ceiling-suspended type.
 また、室外ユニット1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外ユニット1は、換気口付の機械室などの囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外ユニット1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外ユニット1を設置するとしても、特段の問題が発生することはない。 Moreover, although the case where the outdoor unit 1 is installed in the outdoor space 6 is shown as an example, it is not limited to this. For example, the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
 また、中継ユニット2は、室外ユニット1の近傍に設置してもよい。ただし、このように中継ユニット2を室外ユニット1の近傍に設置する場合には、中継ユニット2から室内ユニット3までを接続する熱媒体配管5の長さについて留意するとよい。これは、中継ユニット2から室内ユニット3までの距離が長くなると、その分熱媒体の搬送動力が大きくなり、省エネルギー化の効果は薄れるためである。
 さらに、室外ユニット1、中継ユニット2及び室内ユニット3の接続台数は、図1に図示される台数に限定されるものではなく、本実施の形態1に係る空気調和装置100が設置される建物9に応じて台数を決定すればよい。
Further, the relay unit 2 may be installed in the vicinity of the outdoor unit 1. However, when the relay unit 2 is installed in the vicinity of the outdoor unit 1 in this way, it is preferable to pay attention to the length of the heat medium pipe 5 that connects the relay unit 2 to the indoor unit 3. This is because if the distance from the relay unit 2 to the indoor unit 3 is increased, the heat transfer power of the heat medium is increased correspondingly, and the energy saving effect is reduced.
Furthermore, the number of connected outdoor units 1, relay units 2, and indoor units 3 is not limited to the number illustrated in FIG. 1, and the building 9 in which the air conditioner 100 according to Embodiment 1 is installed. The number of units may be determined according to.
 また、1台の室外ユニット1に対して複数台の中継ユニット2を接続する場合、その複数台の中継ユニット2をビルなどの建物9における共用スペース又は天井裏などのスペースに点在して設置することができる。そうすることにより、各中継ユニット2内の熱媒体間熱交換器で空調負荷を賄うことができる。また、室内ユニット3を、各中継ユニット2内における熱媒体搬送装置の搬送許容範囲内の距離又は高さに設置することが可能であり、ビルなどの建物9全体に対しての配置が可能となる。 In addition, when connecting a plurality of relay units 2 to one outdoor unit 1, the plurality of relay units 2 are installed in a common space in a building 9 such as a building or a space such as a ceiling. can do. By doing so, an air-conditioning load can be covered with the heat exchanger between heat media in each relay unit 2. In addition, the indoor unit 3 can be installed at a distance or height within the allowable transfer range of the heat medium transfer device in each relay unit 2, and can be arranged with respect to the entire building 9 such as a building. Become.
 図2は、本発明の実施の形態1に係る空気調和装置100における冷媒回路構成の一例を示す図である。図2に示すように、室外ユニット1と中継ユニット2に備えられている熱媒体間熱交換器25a、25bとが、冷媒配管4を介してそれぞれ接続されている。また、室内ユニット3と熱媒体間熱交換器25a、25bとも、熱媒体配管5を介して接続されている。つまり、熱媒体間熱交換器25a、25bは、冷媒配管4を介して供給される熱源側冷媒と、熱媒体配管5を介して供給される熱媒体とを熱交換させるものである。 FIG. 2 is a diagram illustrating an example of a refrigerant circuit configuration in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 2, the heat exchangers 25 a and 25 b provided in the outdoor unit 1 and the relay unit 2 are connected to each other via a refrigerant pipe 4. The indoor unit 3 and the heat exchangers 25 a and 25 b are also connected via the heat medium pipe 5. In other words, the heat exchangers 25 a and 25 b exchange heat between the heat source side refrigerant supplied via the refrigerant pipe 4 and the heat medium supplied via the heat medium pipe 5.
 本実施の形態1に係る空気調和装置100は、熱源側冷媒を循環させる冷凍サイクルである熱源側冷媒循環回路A、及び熱媒体を循環させる熱媒体循環回路Bを有しており、各室内ユニット3の全てが冷房運転と暖房運転とを選択できるものである。
 ここで、運転中の室内ユニット3の全てが暖房運転を実行するモードを全暖房運転モード、運転中の室内ユニット3の全てが冷房運転を実行するモードを全冷房運転モード、冷房運転を実行する室内ユニット3と暖房運転を実行する室内ユニット3とが混在するモードを冷暖房混在運転モード、とそれぞれ呼ぶものとする。なお、冷暖房混在運転モードには、冷房負荷の方が大きい冷房主体運転モードと、暖房負荷の方が大きい暖房主体運転モードとがある。
The air conditioner 100 according to the first embodiment includes a heat source side refrigerant circulation circuit A that is a refrigeration cycle for circulating the heat source side refrigerant, and a heat medium circulation circuit B that circulates the heat medium, and each indoor unit All of 3 can select a cooling operation and a heating operation.
Here, the mode in which all the indoor units 3 in operation execute the heating operation is the heating only operation mode, the mode in which all the indoor units 3 in operation execute the cooling operation is the cooling only operation mode, and the cooling operation is executed. A mode in which the indoor unit 3 and the indoor unit 3 that performs the heating operation are mixed is referred to as an air-conditioning mixed operation mode. The air-conditioning mixed operation mode includes a cooling main operation mode in which the cooling load is larger and a heating main operation mode in which the heating load is larger.
[室外ユニット1]
 室外ユニット1には、圧縮機10と、第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で接続されて搭載されている。また、室外ユニット1には、第1接続配管4a、第2接続配管4b、及び逆止弁13a~13dが設けられている。第1接続配管4a、第2接続配管4b、及び逆止弁13a~13dが設けられることで、本実施の形態1に係る空気調和装置100は、暖房運転モードや冷房運転モードなどの運転モードに関わらず、室外ユニット1から中継ユニット2に流入させる熱源側冷媒の流れを一定方向にすることができるようになっている。
[Outdoor unit 1]
In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, and an accumulator 19 are connected and mounted via a refrigerant pipe 4. The outdoor unit 1 is provided with a first connection pipe 4a, a second connection pipe 4b, and check valves 13a to 13d. By providing the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d, the air-conditioning apparatus 100 according to Embodiment 1 is in an operation mode such as a heating operation mode or a cooling operation mode. Regardless, the flow of the heat source side refrigerant flowing into the relay unit 2 from the outdoor unit 1 can be made to be in a certain direction.
圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にして熱源側冷媒循環回路Aに搬送するものであり、たとえば、容量制御可能なインバータ圧縮機などで構成するとよい。この圧縮機10は、吐出側が第1冷媒流路切替装置11に接続され、吸引側がアキュムレーター19に接続されている。
 第1冷媒流路切替装置11は、四方弁などで構成され、熱源側冷媒の流れを切り替えるものである。具体的には、全暖房運転モード時及び冷暖房混在運転モードの暖房主体運転モード時においては圧縮機10の吐出側と逆止弁13d、及び熱源側熱交換器12とアキュムレーター19の吸引側、をそれぞれ接続するようにし、全冷房運転モード時及び冷暖房混在運転モードの冷房主体運転モード時においては、圧縮機10の吐出側と熱源側熱交換器12、及び逆止弁13cとアキュムレーター19の吸引側、をそれぞれ接続するようにする
The compressor 10 sucks in the heat source side refrigerant, compresses the heat source side refrigerant to be in a high temperature / high pressure state, and conveys the heat source side refrigerant to the heat source side refrigerant circulation circuit A. It is good to comprise. The compressor 10 has a discharge side connected to the first refrigerant flow switching device 11 and a suction side connected to an accumulator 19.
The first refrigerant flow switching device 11 is configured by a four-way valve or the like, and switches the flow of the heat source side refrigerant. Specifically, in the heating only operation mode and the heating main operation mode of the mixed heating and cooling operation mode, the discharge side of the compressor 10 and the check valve 13d, the suction side of the heat source side heat exchanger 12 and the accumulator 19, In the cooling only operation mode and the cooling / heating mixed operation mode, the discharge side of the compressor 10, the heat source side heat exchanger 12, the check valve 13c, and the accumulator 19 are connected. Connect the suction side to each other.
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(又は放熱器)として機能し、図示省略のファンなどの送風機から供給される空気の流体と熱源側冷媒との間で熱交換を行い、その熱源側冷媒を蒸発ガス化又は凝縮液化するものである。この熱源側熱交換器12は、暖房運転モード時において、一方が逆止弁13bに接続され、他方がアキュムレーター19の吸引側に接続される。また、熱源側熱交換器12は、冷房運転モード時において、一方が圧縮機10の吐出側に接続され、他方が逆止弁13aに接続される。熱源側熱交換器12は、たとえば冷媒配管を流れる冷媒とフィンを通過する空気との間で熱交換ができるようなプレートフィンアンドチューブ型熱交換器で構成するとよい。
 アキュムレーター19は、暖房運転モード時と冷房運転モード時での違いによる余剰冷媒、及び、過渡的な運転の変化(たとえば、室内ユニット3の運転台数の変化)に対する余剰冷媒を蓄えるものである。このアキュムレーター19は、暖房運転モード時では吸引側が熱源側熱交換器12に、吐出側が圧縮機10の吸引側にそれぞれ接続され、冷房運転モード時では吸引側が逆止弁13cに、吐出側が圧縮機10の吸引側にそれぞれ接続される。
The heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and includes a fluid of air supplied from a blower such as a fan (not shown), a heat source side refrigerant, and the like. The heat source side refrigerant is evaporated and condensed or liquefied. One side of the heat source side heat exchanger 12 is connected to the check valve 13 b and the other side is connected to the suction side of the accumulator 19 in the heating operation mode. In the cooling operation mode, one of the heat source side heat exchangers 12 is connected to the discharge side of the compressor 10 and the other is connected to the check valve 13a. The heat source side heat exchanger 12 may be configured by, for example, a plate fin and tube heat exchanger that can exchange heat between the refrigerant flowing through the refrigerant pipe and the air passing through the fins.
The accumulator 19 stores surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, and surplus refrigerant with respect to a transient change in operation (for example, change in the number of operating indoor units 3). In the accumulator 19, the suction side is connected to the heat source side heat exchanger 12 and the discharge side is connected to the suction side of the compressor 10 in the heating operation mode, and the suction side is compressed to the check valve 13c and the discharge side is compressed in the cooling operation mode. Each is connected to the suction side of the machine 10.
 逆止弁13dは、中継ユニット2と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(中継ユニット2から室外ユニット1への方向)のみに熱源側冷媒の流れを許容するものである。
 逆止弁13aは、熱源側熱交換器12と中継ユニット2との間における冷媒配管4に設けられ、所定の方向(室外ユニット1から中継ユニット2への方向)のみに熱源側冷媒の流れを許容するものである。
 逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を中継ユニット2に流通させるものである。
 逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において中継ユニット2から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。
The check valve 13d is provided in the refrigerant pipe 4 between the relay unit 2 and the first refrigerant flow switching device 11, and the heat source side refrigerant is only in a predetermined direction (direction from the relay unit 2 to the outdoor unit 1). It allows flow.
The check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 2, and flows the heat source side refrigerant only in a predetermined direction (direction from the outdoor unit 1 to the relay unit 2). It is acceptable.
The check valve 13b is provided in the first connection pipe 4a and causes the heat source side refrigerant discharged from the compressor 10 to flow through the relay unit 2 during the heating operation.
The check valve 13c is provided in the second connection pipe 4b, and causes the heat source side refrigerant returned from the relay unit 2 during the heating operation to flow to the suction side of the compressor 10.
 第1接続配管4aは、室外ユニット1内において、第1冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと中継ユニット2との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外ユニット1内において、逆止弁13dと中継ユニット2との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図2では、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。 In the outdoor unit 1, the first connection pipe 4 a includes a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 d and a refrigerant pipe 4 between the check valve 13 a and the relay unit 2. Are connected to each other. In the outdoor unit 1, the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13d and the relay unit 2, a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a, Are connected. FIG. 2 shows an example in which the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided. However, the present invention is not limited to this, and these are not necessarily provided.
[室内ユニット3]
 室内ユニット3a~3dには、利用側熱交換器35a~35d(以下、単に利用側熱交換器35と称することもある)がそれぞれ搭載されている。この利用側熱交換器35は、熱媒体配管5を介して熱媒体流量調整装置34a~34d(以下、単に熱媒体流量調整装置34と称することもある)、及びポンプ31a~31d(以下、単にポンプ31と称することもある)に接続されている。また、利用側熱交換器35は、図示省略のファンなどの送風機から供給される空気と熱媒体との間で熱交換を行い、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
[Indoor unit 3]
The indoor units 3a to 3d are equipped with use side heat exchangers 35a to 35d (hereinafter also simply referred to as use side heat exchangers 35), respectively. The use side heat exchanger 35 includes heat medium flow control devices 34a to 34d (hereinafter also simply referred to as heat medium flow control devices 34) and pumps 31a to 31d (hereinafter simply referred to as heat medium flow control devices 34) via the heat medium pipe 5. Connected to the pump 31). Further, the use side heat exchanger 35 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and supplies heating air or cooling air to be supplied to the indoor space 7. Is to be generated.
 図2においては、4台の室内ユニット3a~3dが、熱媒体配管5を介して中継ユニット2に接続されている場合の例を示している。また、室内ユニット3a~3dに応じて、利用側熱交換器35も、紙面下側から利用側熱交換器35a、利用側熱交換器35b、利用側熱交換器35c、利用側熱交換器35dとする。なお、実施の形態1では室内ユニット3の接続台数は4台であるが、それに限定されるものではない。 FIG. 2 shows an example in which four indoor units 3 a to 3 d are connected to the relay unit 2 via the heat medium pipe 5. Further, in accordance with the indoor units 3a to 3d, the use side heat exchanger 35 also uses the use side heat exchanger 35a, the use side heat exchanger 35b, the use side heat exchanger 35c, and the use side heat exchanger 35d from the lower side of the drawing. And In the first embodiment, the number of connected indoor units 3 is four, but is not limited thereto.
[中継ユニット2]
 中継ユニット2には、2つの熱媒体間熱交換器25a、25b(以下、単に熱媒体間熱交換器25と称することもある)と、2つの絞り装置26a、26b(以下、単に絞り装置26と称することもある)と、2つの開閉装置(開閉装置27、開閉装置29)と、2つの第2冷媒流路切替装置28a、28b(以下、単に第2冷媒流路切替装置28と称することもある)と、4つの(小型)ポンプ31a~31d(以下、単にポンプ31と称することもある)と、4つの第1熱媒体流路切替装置32a~32d(以下、単に第1熱媒体流路切替装置32と称することもある)と、4つの第2熱媒体流路切替装置33a~33d(以下、単に第2熱媒体流路切替装置33と称することもある)と、4つの熱媒体流量調整装置34a~34d(以下、単に熱媒体流量調整装置34と称することもある)と、が搭載されている。
[Relay unit 2]
The relay unit 2 includes two heat medium heat exchangers 25a and 25b (hereinafter also simply referred to as heat medium heat exchanger 25) and two expansion devices 26a and 26b (hereinafter simply referred to as the expansion device 26). ), Two switching devices (switching device 27, switching device 29), and two second refrigerant flow switching devices 28a and 28b (hereinafter simply referred to as second refrigerant flow switching device 28). 4) (small) pumps 31a to 31d (hereinafter sometimes simply referred to as pump 31) and four first heat medium flow switching devices 32a to 32d (hereinafter simply referred to as first heat medium flow). Path switching device 32), four second heat medium flow switching devices 33a to 33d (hereinafter also simply referred to as second heat medium flow switching device 33), and four heat media. Flow rate adjusting devices 34a to 34d (hereinafter , And may be simply referred to as the heat medium flow rate control device 34), it is mounted.
 熱媒体間熱交換器25は、凝縮器(放熱器)又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行い、室外ユニット1で生成され熱源側冷媒に蓄えられた冷熱又は温熱を熱媒体に伝達するものである。つまり、暖房運転をしている際には、凝縮器(放熱器)として機能して熱源側冷媒の温熱を熱媒体に伝達し、冷房運転をしている際には、蒸発器として機能して熱源側冷媒の冷熱を熱媒体に伝達するものである。
 熱媒体間熱交換器25aは、熱源側冷媒循環回路Aにおける絞り装置26aと第2冷媒流路切替装置28aとの間に設けられており、冷暖房混在運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器25bは、熱源側冷媒循環回路Aにおける絞り装置26bと第2冷媒流路切替装置28bとの間に設けられており、冷暖房混在運転モード時において熱媒体の加熱に供するものである。
The heat exchanger related to heat medium 25 functions as a condenser (heat radiator) or an evaporator, performs heat exchange between the heat source side refrigerant and the heat medium, and generates cold heat generated in the outdoor unit 1 and stored in the heat source side refrigerant or It transfers heat to the heat medium. In other words, during heating operation, it functions as a condenser (radiator) to transmit the heat of the heat source side refrigerant to the heat medium, and during cooling operation, it functions as an evaporator. The cold heat of the heat source side refrigerant is transmitted to the heat medium.
The heat exchanger related to heat medium 25a is provided between the expansion device 26a and the second refrigerant flow switching device 28a in the heat source side refrigerant circulation circuit A, and serves to cool the heat medium in the air-conditioning mixed operation mode. It is. The heat exchanger related to heat medium 25b is provided between the expansion device 26b and the second refrigerant flow switching device 28b in the heat source side refrigerant circulation circuit A, and heats the heat medium in the air-conditioning mixed operation mode. It is something to offer.
 絞り装置26は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置26aは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器25aの上流側に設けられている。絞り装置26bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器25bの上流側に設けられている。絞り装置26は、開度が可変に制御可能なもの、たとえば電子式膨張弁などで構成するとよい。 The expansion device 26 has a function as a pressure reducing valve or an expansion valve, and expands the heat source side refrigerant by reducing the pressure. The expansion device 26a is provided on the upstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant in the cooling only operation mode. The expansion device 26b is provided on the upstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling only operation mode. The expansion device 26 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
 開閉装置27及び開閉装置29は、たとえば通電により開閉動作が可能な電磁弁などで構成され、それらが設けられている流路を開閉するものである。つまり、開閉装置27及び開閉装置29は、運転モードに応じて開閉が制御され、熱源側冷媒の流路を切り替えている。
 開閉装置27は、熱源側冷媒の入口側における冷媒配管4(室外ユニット1と中継ユニット2とを接続している冷媒配管4のうち紙面最下段に位置する冷媒配管4)に設けられている。開閉装置29は、熱源側冷媒の入口側の冷媒配管4と出口側の冷媒配管4とを接続した配管に設けられている。なお、開閉装置27及び開閉装置29は、それらが設けられている流路を開閉が可能なものであればよく、たとえば電子式膨張弁などの開度を制御するものでもよい。
The opening / closing device 27 and the opening / closing device 29 are configured by, for example, electromagnetic valves that can be opened and closed by energization, and open and close a flow path in which they are provided. That is, the opening / closing device 27 and the opening / closing device 29 are controlled to open / close according to the operation mode, and switch the flow path of the heat source side refrigerant.
The opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat-source-side refrigerant (the refrigerant pipe 4 located at the lowest level in the drawing among the refrigerant pipes 4 connecting the outdoor unit 1 and the relay unit 2). The opening / closing device 29 is provided in a pipe connecting the refrigerant pipe 4 on the inlet side of the heat source side refrigerant and the refrigerant pipe 4 on the outlet side. The opening / closing device 27 and the opening / closing device 29 may be any devices that can open and close the flow path in which they are provided. For example, the opening / closing device such as an electronic expansion valve may be controlled.
 第2冷媒流路切替装置28は、四方弁などで構成され、運転モードに応じて熱媒体間熱交換器25が凝縮器又は蒸発器として作用するよう、熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置28aは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器25aの下流側に設けられている。第2冷媒流路切替装置28bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器25bの下流側に設けられている。 The second refrigerant flow switching device 28 is constituted by a four-way valve or the like, and switches the flow of the heat source side refrigerant so that the heat exchanger related to heat medium 25 acts as a condenser or an evaporator according to the operation mode. . The second refrigerant flow switching device 28a is provided on the downstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant in the cooling only operation mode. The second refrigerant flow switching device 28b is provided on the downstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling only operation mode.
 ポンプ31は、熱媒体配管5を流れる熱媒体を熱媒体循環回路Bに循環させるものである。ポンプ31は、各利用側熱交換器35と第2熱媒体流路切替装置33との間に設けられており、室内ユニット3の設置台数に応じた個数(本実施の形態1では4つ)が設けられている。ポンプ31は、たとえば容量制御可能なポンプなどで構成し、室内ユニット3における負荷の大きさによってその流量を調整できるようにしておくとよい。
 なお、図2では、各ポンプ31a~31dが、利用側熱交換器35a~35dと第2熱媒体流路切替装置33a~33dとの間における熱媒体配管5に設けられているが、利用側熱交換器35a~35dと第1熱媒体流路切替装置32a~32dとの間における熱媒体配管5に設けてもよい。また、本実施の形態1では室内ユニット3毎に1台のポンプが設けられているが、それに限定されるものではなく、少なくとも1台以上ならよい。
 また、本実施の形態1では、ポンプ31を容量制御可能なものではなく、熱媒体配管5に流れる熱媒体の流量は、熱媒体流量調整装置34で制御するものとする。
The pump 31 circulates the heat medium flowing through the heat medium pipe 5 to the heat medium circuit B. The number of pumps 31 is provided between each use-side heat exchanger 35 and the second heat medium flow switching device 33, and the number according to the number of indoor units 3 installed (four in the first embodiment). Is provided. The pump 31 may be constituted by a capacity-controllable pump, for example, and the flow rate thereof may be adjusted according to the load in the indoor unit 3.
In FIG. 2, the pumps 31a to 31d are provided in the heat medium pipe 5 between the use side heat exchangers 35a to 35d and the second heat medium flow switching devices 33a to 33d. It may be provided in the heat medium pipe 5 between the heat exchangers 35a to 35d and the first heat medium flow switching devices 32a to 32d. In the first embodiment, one pump is provided for each indoor unit 3. However, the present invention is not limited to this, and at least one pump may be used.
In the first embodiment, the capacity of the pump 31 is not controllable, and the flow rate of the heat medium flowing through the heat medium pipe 5 is controlled by the heat medium flow control device 34.
 第1熱媒体流路切替装置32は、利用側熱交換器35の熱媒体流路の出口側と、熱媒体間熱交換器25の熱媒体流路の入口側との接続を切り替えるものである。第1熱媒体流路切替装置32は、室内ユニット3の設置台数に応じた個数(本実施の形態1では4つ)が設けられるようになっている。第1熱媒体流路切替装置32は、三方のうちの一つが熱媒体間熱交換器25aに、三方のうちの一つが熱媒体間熱交換器25bに、三方のうちの一つが熱媒体流量調整装置34にそれぞれ接続され、利用側熱交換器35の熱媒体流路の出口側に設けられている。なお、室内ユニット3に対応させて、紙面下側から第1熱媒体流路切替装置32a、第1熱媒体流路切替装置32b、第1熱媒体流路切替装置32c、第1熱媒体流路切替装置32dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。この第1熱媒体流路切替装置32は、たとえば三方弁などで構成するとよい。 The first heat medium flow switching device 32 switches the connection between the outlet side of the heat medium flow path of the use side heat exchanger 35 and the inlet side of the heat medium flow path of the heat exchanger related to heat medium 25. . The number of the first heat medium flow switching devices 32 is set according to the number of indoor units 3 installed (four in the first embodiment). In the first heat medium flow switching device 32, one of the three sides is in the heat exchanger 25a, one of the three is in the heat exchanger 25b, and one of the three is in the heat medium flow rate. Each is connected to the adjusting device 34 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 35. In correspondence with the indoor unit 3, the first heat medium flow switching device 32a, the first heat medium flow switching device 32b, the first heat medium flow switching device 32c, and the first heat medium flow from the lower side of the drawing. This is illustrated as a switching device 32d. The switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other. The first heat medium flow switching device 32 may be constituted by a three-way valve, for example.
 第2熱媒体流路切替装置33は、熱媒体間熱交換器25の熱媒体流路の出口側と、利用側熱交換器35の熱媒体流路の入口側との接続を切り替えるものである。第2熱媒体流路切替装置33は、室内ユニット3の設置台数に応じた個数(本実施の形態1では4つ)が設けられるようになっている。第2熱媒体流路切替装置33は、三方のうちの一つが熱媒体間熱交換器25aに、三方のうちの一つが熱媒体間熱交換器25bに、三方のうちの一つが利用側熱交換器35にそれぞれ接続され、利用側熱交換器35の熱媒体流路の入口側に設けられている。なお、室内ユニット3に対応させて、紙面下側から第2熱媒体流路切替装置33a、第2熱媒体流路切替装置33b、第2熱媒体流路切替装置33c、第2熱媒体流路切替装置33dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。この第2熱媒体流路切替装置33は、たとえば三方弁などで構成するとよい。 The second heat medium flow switching device 33 switches the connection between the outlet side of the heat medium flow path of the inter-heat medium heat exchanger 25 and the inlet side of the heat medium flow path of the use side heat exchanger 35. . The number of the second heat medium flow switching devices 33 is set according to the number of indoor units 3 installed (four in the first embodiment). In the second heat medium flow switching device 33, one of the three heat transfer medium heat exchangers 25a, one of the three heat transfer medium heat exchangers 25b, and one of the three heat transfer side heats. Each is connected to the exchanger 35 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 35. In correspondence with the indoor unit 3, the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 33d. The switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other. The second heat medium flow switching device 33 may be constituted by a three-way valve, for example.
 熱媒体流量調整装置34は、開口面積を制御できる二方弁などで構成されており、熱媒体配管5に流れる熱媒体の流量を制御するものである。熱媒体流量調整装置34は、室内ユニット3の設置台数に応じた個数(本実施の形態1では4つ)が設けられるようになっている。熱媒体流量調整装置34は、一方が利用側熱交換器35に、他方が第1熱媒体流路切替装置32にそれぞれ接続され、利用側熱交換器35の熱媒体流路の出口側に設けられている。すなわち、熱媒体流量調整装置34は、室内ユニット3に流入する熱媒体の温度及び室内ユニット3から流出する熱媒体の温度により室内ユニット3に流入する熱媒体の量を調整し、室内負荷に応じた最適な熱媒体量を室内ユニット3に提供可能とするものである。 The heat medium flow control device 34 is configured by a two-way valve or the like that can control the opening area, and controls the flow rate of the heat medium flowing through the heat medium pipe 5. The number of the heat medium flow control devices 34 is set according to the number of indoor units 3 installed (four in the first embodiment). One of the heat medium flow control devices 34 is connected to the use side heat exchanger 35 and the other is connected to the first heat medium flow switching device 32, and is provided on the outlet side of the heat medium flow channel of the use side heat exchanger 35. It has been. That is, the heat medium flow control device 34 adjusts the amount of the heat medium flowing into the indoor unit 3 according to the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out of the indoor unit 3, and according to the indoor load. The optimum amount of heat medium can be provided to the indoor unit 3.
 なお、室内ユニット3に対応させて、紙面下側から熱媒体流量調整装置34a、熱媒体流量調整装置34b、熱媒体流量調整装置34c、熱媒体流量調整装置34dとして図示している。また、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側に設けてもよい。また、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側であって、第2熱媒体流路切替装置33と利用側熱交換器35との間に設けてもよい。さらに、室内ユニット3において、停止モードやサーモOFFなどの負荷を必要としていないときは、熱媒体流量調整装置34を全閉にすることにより、室内ユニット3への熱媒体供給を止めることができる。 In addition, corresponding to the indoor unit 3, the heat medium flow rate adjustment device 34a, the heat medium flow rate adjustment device 34b, the heat medium flow rate adjustment device 34c, and the heat medium flow rate adjustment device 34d are illustrated from the lower side of the drawing. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 and between the second heat medium flow switching device 33 and the use side heat exchanger 35. Good. Further, when the indoor unit 3 does not require a load such as the stop mode or the thermo OFF, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 34.
 なお、第1熱媒体流路切替装置32又は第2熱媒体流路切替装置33において、熱媒体流量調整装置34の機能を付加したものを用いれば、熱媒体流量調整装置34を省略することも可能である。 If the first heat medium flow switching device 32 or the second heat medium flow switching device 33 is added with the function of the heat medium flow control device 34, the heat medium flow control device 34 may be omitted. Is possible.
[各種検知手段]
 空気調和装置100は、4つの熱源側冷媒温度検知手段36a~36d(以下、単に熱源側冷媒温度検知手段36と称することもある)、圧力検知手段37、4つの第1熱媒体温度検知手段43a~43d(以下、単に第1熱媒体温度検知手段43と称することもある)、及び4つの第2熱媒体温度検知手段44a、44b(以下、単に第2熱媒体温度検知手段44と称することもある)を有している。
[Various detection means]
The air conditioner 100 includes four heat source side refrigerant temperature detection means 36a to 36d (hereinafter also simply referred to as heat source side refrigerant temperature detection means 36), pressure detection means 37, and four first heat medium temperature detection means 43a. To 43d (hereinafter also simply referred to as first heat medium temperature detecting means 43) and four second heat medium temperature detecting means 44a and 44b (hereinafter also simply referred to as second heat medium temperature detecting means 44). There is).
 第1熱媒体温度検知手段43及び第2熱媒体温度検知手段44は、後述する制御装置51に接続されており、これらの検知結果が本空気調和装置100の各種制御に用いられる。これらは、たとえばサーミスタなどで構成できる。
 第1熱媒体温度検知手段43は、第1熱媒体流路切替装置32と熱媒体流量調整装置34との間に設けられ、利用側熱交換器35から流出した熱媒体の温度を検知するものである。第1熱媒体温度検知手段43は、室内ユニット3の設置台数に応じた個数(本実施の形態1では4つ)が設けられている。なお、第1熱媒体温度検知手段43が設置される位置は特に限定されるものではなく、室内ユニット3内でもよいし、中継ユニット2内でもよい。また、室内ユニット3に対応させて、紙面下側から第1熱媒体温度検知手段43a、第1熱媒体温度検知手段43b、第1熱媒体温度検知手段43c、第1熱媒体温度検知手段43dとして図示している。
The first heat medium temperature detecting means 43 and the second heat medium temperature detecting means 44 are connected to a control device 51 described later, and these detection results are used for various controls of the air conditioner 100. These can be composed of, for example, a thermistor.
The first heat medium temperature detecting means 43 is provided between the first heat medium flow switching device 32 and the heat medium flow control device 34 and detects the temperature of the heat medium flowing out from the use side heat exchanger 35. It is. The number of first heat medium temperature detecting means 43 (four in the first embodiment) according to the number of indoor units 3 installed is provided. The position where the first heat medium temperature detection means 43 is installed is not particularly limited, and may be within the indoor unit 3 or within the relay unit 2. Corresponding to the indoor unit 3, as the first heat medium temperature detecting means 43a, the first heat medium temperature detecting means 43b, the first heat medium temperature detecting means 43c, and the first heat medium temperature detecting means 43d from the lower side of the drawing. It is shown.
 第2熱媒体温度検知手段44は、熱媒体間熱交換器25と第2熱媒体流路切替装置33との間に設けられており、利用側熱交換器35に流入する熱媒体の温度を検出するものである。第2熱媒体温度検知手段44は、室内ユニット3の設置台数に応じた個数(本実施の形態1では2つ)が設けられてもよい。なお、第2熱媒体温度検知手段44が設置される位置は、特に限定されるものではなく、室内ユニット3内でもよいし、中継ユニット2内でもよい。また、室内ユニット3に対応させて、紙面下側から第2熱媒体温度検知手段44a、第2熱媒体温度検知手段44bとして図示している。 The second heat medium temperature detection means 44 is provided between the heat exchanger related to heat medium 25 and the second heat medium flow switching device 33, and detects the temperature of the heat medium flowing into the use side heat exchanger 35. It is to detect. The number of the second heat medium temperature detecting means 44 (two in the first embodiment) according to the number of indoor units 3 installed may be provided. The position where the second heat medium temperature detecting means 44 is installed is not particularly limited, and may be in the indoor unit 3 or in the relay unit 2. Further, corresponding to the indoor unit 3, the second heat medium temperature detecting means 44a and the second heat medium temperature detecting means 44b are illustrated from the lower side of the drawing.
 熱源側冷媒温度検知手段36は、熱媒体間熱交換器25の熱源側冷媒の入口側又は出口側に設けられ、熱媒体間熱交換器25に流入する熱源側冷媒の温度又は熱媒体間熱交換器25から流出した熱源側冷媒の温度を検知するものであり、サーミスタなどで構成するとよい。熱源側冷媒温度検知手段36aは、熱媒体間熱交換器25aと第2冷媒流路切替装置28aとの間に設けられている。熱源側冷媒温度検知手段36bは、熱媒体間熱交換器25aと絞り装置26aとの間に設けられている。熱源側冷媒温度検知手段36cは、熱媒体間熱交換器25bと第2冷媒流路切替装置28bとの間に設けられている。熱源側冷媒温度検知手段36dは、熱媒体間熱交換器25bと絞り装置26bとの間に設けられている。
 圧力検知手段37は、絞り装置26の開度を制御する際に使用する飽和温度に換算するための圧力情報を得るものであり、熱媒体間熱交換器25bと絞り装置26bとの間に設けられている。
The heat source side refrigerant temperature detecting means 36 is provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 25, and the temperature of the heat source side refrigerant flowing into the heat exchanger related to heat medium 25 or the heat between heat medium. The temperature of the heat source side refrigerant that has flowed out of the exchanger 25 is detected, and it may be constituted by a thermistor or the like. The heat source side refrigerant temperature detecting means 36a is provided between the heat exchanger related to heat medium 25a and the second refrigerant flow switching device 28a. The heat source side refrigerant temperature detecting means 36b is provided between the heat exchanger related to heat medium 25a and the expansion device 26a. The heat source side refrigerant temperature detecting means 36c is provided between the heat exchanger related to heat medium 25b and the second refrigerant flow switching device 28b. The heat source side refrigerant temperature detecting means 36d is provided between the heat exchanger related to heat medium 25b and the expansion device 26b.
The pressure detection means 37 obtains pressure information for conversion into a saturation temperature used when controlling the opening degree of the expansion device 26, and is provided between the heat exchanger related to heat medium 25b and the expansion device 26b. It has been.
[制御装置51]
 制御装置51は、マイコンなどで構成されており、圧縮機10の駆動周波数、送風機(図示省略)の回転数(ON/OFF含む)、第1冷媒流路切替装置11及び第2冷媒流路切替装置28の切り替え、絞り装置26の開度、ポンプ31の駆動、開閉装置27及び開閉装置29の開閉、第1熱媒体流路切替装置32及び第2熱媒体流路切替装置33の切り替え、熱媒体流量調整装置34の開度などを制御するものである。なお、圧縮機10の駆動周波数、送風機(図示省略)の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替えについては、室外ユニット1に設置され、制御装置51とは別体である室外機制御装置(図示省略)に実行させてもよい。
[Control device 51]
The control device 51 is configured by a microcomputer or the like, and the driving frequency of the compressor 10, the rotational speed (including ON / OFF) of the blower (not shown), the first refrigerant flow switching device 11 and the second refrigerant flow switching. Switching of the device 28, opening of the expansion device 26, driving of the pump 31, switching of the switching device 27 and switching device 29, switching of the first heat medium flow switching device 32 and the second heat medium flow switching device 33, heat The opening degree of the medium flow rate adjusting device 34 is controlled. Note that the drive frequency of the compressor 10, the rotational speed of the blower (not shown) (including ON / OFF), and switching of the first refrigerant flow switching device 11 are installed in the outdoor unit 1 and are separate from the control device 51. You may make it execute the outdoor unit control apparatus (illustration omitted) which is a body.
[運転モードの説明]
 空気調和装置100は、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置27、絞り装置26、熱媒体間熱交換器25の熱源側冷媒流路、第2冷媒流路切替装置28、及び、アキュムレーター19を、冷媒配管4で接続して熱源側冷媒循環回路Aを構成している。
 また、熱媒体間熱交換器25の熱媒体流路、ポンプ31、第2熱媒体流路切替装置33、利用側熱交換器35、熱媒体流量調整装置34、及び、第1熱媒体流路切替装置32を、熱媒体配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器25a、25bに複数台の利用側熱交換器35がそれぞれ並列に接続され、熱媒体循環回路Bを複数系統としている。
[Description of operation mode]
The air conditioner 100 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, an opening / closing device 27, an expansion device 26, a heat source side refrigerant flow path of a heat exchanger 25 between the heat medium, The refrigerant flow switching device 28 and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the heat source side refrigerant circulation circuit A.
Further, the heat medium flow path of the intermediate heat exchanger 25, the pump 31, the second heat medium flow switching device 33, the use side heat exchanger 35, the heat medium flow control device 34, and the first heat medium flow path. The switching device 32 is connected by the heat medium pipe 5 to constitute the heat medium circulation circuit B. That is, a plurality of use side heat exchangers 35 are connected in parallel to the heat exchangers 25a and 25b, respectively, and the heat medium circulation circuit B has a plurality of systems.
 よって、空気調和装置100では、室外ユニット1と中継ユニット2とが、中継ユニット2に設けられている熱媒体間熱交換器25a、25bを介して接続され、中継ユニット2と室内ユニット3が、同じく熱媒体間熱交換器25a、25bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器25a、25bで熱源側冷媒循環回路Aを循環する熱源側冷媒と、熱媒体循環回路Bを循環する熱媒体と、が熱交換するようになっている。 Therefore, in the air conditioner 100, the outdoor unit 1 and the relay unit 2 are connected via the heat exchangers 25a and 25b provided in the relay unit 2, and the relay unit 2 and the indoor unit 3 are Similarly, they are connected via heat exchangers 25a and 25b. That is, in the air conditioner 100, heat exchange is performed between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B in the heat exchangers 25a and 25b. It has become.
 以下、空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内ユニット3からの指示に基づいて、その室内ユニット3で冷房運転又は暖房運転が可能になっている。つまり、空気調和装置100は、室内ユニット3の全部で同一運転ができるとともに、室内ユニット3のそれぞれで異なる運転ができるようにもなっている。
 本実施の形態1に係る空気調和装置100は、通常運転として、全冷房運転、冷房主体運転、全暖房運転、及び暖房主体運転の4つの運転モードを備えている。
 以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
Hereinafter, each operation mode which the air conditioning apparatus 100 performs is demonstrated. The air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 3 based on an instruction from each indoor unit 3. That is, the air conditioner 100 can perform the same operation for all of the indoor units 3 and can perform different operations for each of the indoor units 3.
The air conditioning apparatus 100 according to the first embodiment includes four operation modes of normal cooling operation, cooling only operation, cooling main operation, heating only operation, and heating main operation.
Below, each operation mode is demonstrated with the flow of a heat-source side refrigerant | coolant and a heat medium.
[全冷房運転モード]
 図3は、図2に示す空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図3では、利用側熱交換器35a、35bで冷熱負荷が発生している場合を例に、全冷房運転モードについて説明する。また、図3では熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図3に示す全冷房運転モードの場合、室外ユニット1では第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒が熱源側熱交換器12を経由して中継ユニット2に流入するように切り替える。
[Cooling operation mode]
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 illustrated in FIG. 2 is in the cooling only operation mode. In FIG. 3, the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchangers 35 a and 35 b. Moreover, in FIG. 3, the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
In the cooling only operation mode shown in FIG. 3, the outdoor unit 1 uses the first refrigerant flow switching device 11, and the heat source side refrigerant discharged from the compressor 10 passes through the heat source side heat exchanger 12 to the relay unit 2. Switch to inflow.
 中継ユニット2では、ポンプ31a、31bを駆動させ、熱媒体流量調整装置34a、34bを開放し、熱媒体流量調整装置34c、34dを閉止し、熱媒体間熱交換器25a、25bと利用側熱交換器35a、35bとの間を熱媒体が循環するようにしている。また、第2冷媒流路切替装置28a、28bは冷房側に切り替えられており、開閉装置27は開、開閉装置29は閉となっている。
 なお、以上の説明において、第2冷媒流路切替装置28が冷房側に切り替えられているとは、室外ユニット1から中継ユニット2に流入した熱源側冷媒が、熱媒体間熱交換器25から第2冷媒流路切替装置28に向かう方向に流れるように切り替えられていることを言う。
In the relay unit 2, the pumps 31a and 31b are driven, the heat medium flow control devices 34a and 34b are opened, the heat medium flow control devices 34c and 34d are closed, and the heat exchangers 25a and 25b and the heat on the use side are heated. A heat medium circulates between the exchangers 35a and 35b. The second refrigerant flow switching devices 28a and 28b are switched to the cooling side, the opening / closing device 27 is open, and the opening / closing device 29 is closed.
In the above description, the second refrigerant flow switching device 28 is switched to the cooling side means that the heat-source-side refrigerant that has flowed into the relay unit 2 from the outdoor unit 1 is transferred from the heat exchanger 25 between the heat exchangers. 2 It says that it has switched so that it may flow in the direction which goes to the refrigerant flow switching device 28.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気との熱交換を行い(室外空気に放熱し)、高温高圧の液又は二相冷媒となる。熱源側熱交換器12から流出した高温高圧の液又は二相冷媒は、逆止弁13aを通って室外ユニット1から流出する。室外ユニット1から流出した高温・高圧の液又は二相冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温・高圧の液又は二相冷媒は、開閉装置27を経由した後、絞り装置26a側と絞り装置26b側とに分岐される。その後、絞り装置26a、26bで膨張させられて、低温・低圧の二相冷媒となる。これらの二相冷媒は、蒸発器として作用する熱媒体間熱交換器25a、25bのそれぞれに流入する。
First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, heat exchange with the outdoor air is performed by the heat source side heat exchanger 12 (heat is radiated to the outdoor air) to become a high-temperature / high-pressure liquid or a two-phase refrigerant. The high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a. The high-temperature / high-pressure liquid or two-phase refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature / high-pressure liquid or two-phase refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27 and then branches to the expansion device 26a side and the expansion device 26b side. Thereafter, it is expanded by the expansion devices 26a and 26b to become a low-temperature and low-pressure two-phase refrigerant. These two-phase refrigerants flow into the heat exchangers 25a and 25b that function as evaporators.
 熱媒体間熱交換器25a、25bに流入した低温・低圧の二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱しながら蒸発気化し、低温・低圧のガス冷媒となる。熱媒体間熱交換器25a、25bから流出したガス冷媒は、第2冷媒流路切替装置28a、28bを通って中継ユニット2から流出し、冷媒配管4、逆止弁13d、第1冷媒流路切替装置11、及びアキュムレーター19を介して圧縮機10へ再度吸入される。 The low-temperature / low-pressure two-phase refrigerant flowing into the heat exchangers 25a, 25b evaporates while absorbing heat from the heat medium circulating in the heat medium circuit B, and becomes a low-temperature / low-pressure gas refrigerant. The gas refrigerant that has flowed out of the heat exchangers 25a and 25b flows out of the relay unit 2 through the second refrigerant flow switching devices 28a and 28b, and is connected to the refrigerant pipe 4, the check valve 13d, and the first refrigerant flow path. It is sucked again into the compressor 10 via the switching device 11 and the accumulator 19.
 このとき、第2冷媒流路切替装置28a、28bは低圧配管と連通されている。また、絞り装置26aは、熱源側冷媒温度検知手段36aで検知された温度と熱源側冷媒温度検知手段36bで検知された温度との差として得られるスーパーヒート(過熱度)が、一定になるように開度が制御される。同様に、絞り装置26bは、熱源側冷媒温度検知手段36cで検知された温度と熱源側冷媒温度検知手段36dで検知された温度との差として得られるスーパーヒートが、一定になるように開度が制御される。 At this time, the second refrigerant flow switching devices 28a and 28b are communicated with the low-pressure pipe. Further, the expansion device 26a has a constant superheat (degree of superheat) obtained as a difference between the temperature detected by the heat source side refrigerant temperature detecting means 36a and the temperature detected by the heat source side refrigerant temperature detecting means 36b. The opening degree is controlled. Similarly, the expansion device 26b has an opening degree so that the superheat obtained as the difference between the temperature detected by the heat source side refrigerant temperature detecting means 36c and the temperature detected by the heat source side refrigerant temperature detecting means 36d is constant. Is controlled.
 次に熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器25a、25bのそれぞれで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ31a、31bによってそれぞれ熱媒体配管5内を流動させられることになる。ポンプ31a、31bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置33a、33bを介して、利用側熱交換器35a、35bに流入する。そして、熱媒体が利用側熱交換器35a、35bで室内空気から吸熱することで、室内空間7の冷房を行う。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the cooling only operation mode, the cold heat of the heat source side refrigerant is transmitted to the heat medium in each of the heat exchangers 25a and 25b, and the cooled heat medium flows through the heat medium pipe 5 by the pumps 31a and 31b, respectively. Will be. The heat medium pressurized and discharged by the pumps 31a and 31b flows into the use side heat exchangers 35a and 35b via the second heat medium flow switching devices 33a and 33b. The heat medium absorbs heat from the indoor air in the use side heat exchangers 35a and 35b, thereby cooling the indoor space 7.
 それから熱媒体は、利用側熱交換器35a、35bから流出して熱媒体流量調整装置34a、34bに流入する。このとき、熱媒体流量調整装置34a、34bの作用によって、熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35a、35bに流入するようになっている。熱媒体流量調整装置34a、34bから流出した熱媒体は、第1熱媒体流路切替装置32a、32bを通って、熱媒体間熱交換器25a、25bに流入し、室内ユニット3を通じて室内空間7から吸熱した分の熱量を熱源側冷媒側へ渡し、第2熱媒体流路切替装置33a、33bを介した後、再びポンプ31a、31bへ吸い込まれる。 Then, the heat medium flows out from the use side heat exchangers 35a and 35b and flows into the heat medium flow control devices 34a and 34b. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 34a and 34b, and flows into the use side heat exchangers 35a and 35b. It is supposed to be. The heat medium flowing out from the heat medium flow control devices 34a and 34b flows into the heat exchangers 25a and 25b through the first heat medium flow switching devices 32a and 32b, and passes through the indoor unit 3 to the indoor space 7. After passing through the second heat medium flow switching devices 33a and 33b, the amount of heat absorbed from the heat is transferred to the heat source side refrigerant side and then sucked into the pumps 31a and 31b again.
 なお、利用側熱交換器35a、35bの熱媒体配管5内では、第2熱媒体流路切替装置33a、33bから熱媒体流量調整装置34a、34bを経由して第1熱媒体流路切替装置32a、32bへ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1熱媒体温度検知手段43の検出結果と第2熱媒体温度検知手段44の検出結果との差を目標値に保つように、熱媒体流量調整装置34a、34bで室内ユニット3a、3bに流入する熱媒体の流量を制御することにより、賄うことができる。 In the heat medium pipe 5 of the use side heat exchangers 35a and 35b, the first heat medium flow switching device is routed from the second heat medium flow switching devices 33a and 33b via the heat medium flow control devices 34a and 34b. The heat medium flows in the direction to 32a and 32b. The air conditioning load required in the indoor space 7 is such that the difference between the detection result of the first heat medium temperature detection means 43 and the detection result of the second heat medium temperature detection means 44 is kept at the target value. This can be provided by controlling the flow rate of the heat medium flowing into the indoor units 3a and 3b with the medium flow rate adjusting devices 34a and 34b.
 このとき、第1熱媒体流路切替装置32a、32b及び第2熱媒体流路切替装置33a、33bは、熱媒体間熱交換器25a、25bのそれぞれに流れる流路が確保されるように、中間的な開度、又は、熱媒体間熱交換器25a、25bの出口の熱媒体温度に応じた開度に制御されている。また、利用側熱交換器35a、35bは、その入口と出口の温度差で熱媒体流量調整装置34a、34bにより制御される。なお、室内ユニット3a、3bを停止する場合は、該当室内ユニット3a、3bのポンプ31a、31bは停止させる。 At this time, the first heat medium flow switching devices 32a and 32b and the second heat medium flow switching devices 33a and 33b are provided so that flow paths flowing through the heat exchangers 25a and 25b are ensured. It is controlled to an intermediate opening or an opening corresponding to the heat medium temperature at the outlet of the heat exchangers 25a and 25b. The use side heat exchangers 35a and 35b are controlled by the heat medium flow control devices 34a and 34b based on the temperature difference between the inlet and the outlet. When the indoor units 3a and 3b are stopped, the pumps 31a and 31b of the corresponding indoor units 3a and 3b are stopped.
 全冷房運転モードを実行する際、冷熱負荷のない利用側熱交換器35c、35d(サーモOFF、停止モードを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置34c、34dにより流路を閉じて、利用側熱交換器35c、35dへ熱媒体が流れないようにする。図5においては、利用側熱交換器35a、35bにおいて冷熱負荷があるため熱媒体を流しているが、冷熱負荷がなくなった場合には対応する熱媒体流量調整装置34a、34bを全閉すればよい。そして、再度、冷熱負荷の発生があった場合には、対応する熱媒体流量調整装置34a、34bを開放し、熱媒体を循環させればよい。 When the cooling only operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchangers 35c and 35d (including the thermo OFF and stop modes) without the cooling load, so that the heat medium flow control devices 34c and 34d The flow path is closed so that the heat medium does not flow to the use side heat exchangers 35c and 35d. In FIG. 5, since there is a cooling load in the use side heat exchangers 35 a and 35 b, the heating medium flows, but when the cooling load is lost, the corresponding heating medium flow rate adjustment devices 34 a and 34 b can be fully closed. Good. Then, when a cooling load is generated again, the corresponding heat medium flow control devices 34a and 34b may be opened to circulate the heat medium.
[冷房主体運転モード]
 図4は、図2に示す空気調和装置100の冷暖房混在運転モードの冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。なお、図4では、利用側熱交換器35dで温熱負荷が発生し、利用側熱交換器35a~35cで冷熱負荷が発生している場合の、冷暖房混在運転モードの冷房主体運転モードについて説明する。また、図4では、太線で表された配管が熱源側冷媒の循環する配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Cooling operation mode]
FIG. 4 is a refrigerant circuit diagram illustrating the refrigerant flow in the cooling main operation mode of the air-conditioning mixed operation mode of the air-conditioning apparatus 100 illustrated in FIG. 2. FIG. 4 illustrates the cooling main operation mode of the cooling / heating mixed operation mode in the case where a heating load is generated in the use side heat exchanger 35d and a cooling load is generated in the use side heat exchangers 35a to 35c. . Moreover, in FIG. 4, the piping represented by the thick line shows the piping through which the heat source side refrigerant circulates. In FIG. 4, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 図4に示す冷房主体運転モードの場合、室外ユニット1では第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒が熱源側熱交換器12を経由して中継ユニット2に流入するように切り替える。中継ユニット2では、ポンプ31a~31dを駆動させ、熱媒体流量調整装置34a~34dを開放し、熱媒体間熱交換器25aと冷熱負荷が発生している利用側熱交換器35a~35cとの間、及び、熱媒体間熱交換器25bと温熱負荷が発生している利用側熱交換器35dとの間を、それぞれ熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aは冷房側、第2冷媒流路切替装置28bは暖房側に切り替えられており、絞り装置26aは全開、開閉装置27は閉、開閉装置29は閉となっている。 In the cooling main operation mode shown in FIG. 4, the outdoor unit 1 causes the first refrigerant flow switching device 11 to pass through the heat source side refrigerant discharged from the compressor 10 to the relay unit 2 via the heat source side heat exchanger 12. Switch to inflow. In the relay unit 2, the pumps 31a to 31d are driven, the heat medium flow control devices 34a to 34d are opened, and the inter-heat medium heat exchanger 25a and the use side heat exchangers 35a to 35c generating the cooling load are connected. The heat medium circulates between the heat exchanger 25b between the heat medium and the heat exchanger 25b between the heat medium and the use side heat exchanger 35d where the heat load is generated. The second refrigerant flow switching device 28a is switched to the cooling side, the second refrigerant flow switching device 28b is switched to the heating side, the expansion device 26a is fully opened, the opening / closing device 27 is closed, and the opening / closing device 29 is closed. ing.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気との熱交換を行い(室外空気に放熱し)、高温高圧の液又は二相冷媒となる。熱源側熱交換器12から流出した高温高圧の液又は二相冷媒は、逆止弁13aを通って室外ユニット1から流出する。室外ユニット1から流出した高温・高圧の液又は二相冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温・高圧の液又は二相冷媒は、第2冷媒流路切替装置28bを通って凝縮器として作用する熱媒体間熱交換器25bに流入する。
First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, heat exchange with the outdoor air is performed by the heat source side heat exchanger 12 (heat is radiated to the outdoor air) to become a high-temperature / high-pressure liquid or a two-phase refrigerant. The high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a. The high-temperature / high-pressure liquid or two-phase refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature / high-pressure liquid or the two-phase refrigerant that has flowed into the relay unit 2 flows into the heat exchanger related to heat medium 25b that acts as a condenser through the second refrigerant flow switching device 28b.
 熱媒体間熱交換器25bに流入した液又は二相冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器25bから流出した液冷媒は、絞り装置26bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置26aを介して蒸発器として作用する熱媒体間熱交換器25aに流入する。熱媒体間熱交換器25aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで低圧のガス冷媒となり、熱媒体を冷却する。このガス冷媒は、熱媒体間熱交換器25aから流出し、第2冷媒流路切替装置28aを介して中継ユニット2から流出し、冷媒配管4を通って再び室外ユニット1に流入する。室外ユニット1に流入したガス冷媒は、逆止弁13d、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。 The liquid or the two-phase refrigerant that has flowed into the heat exchanger related to heat medium 25b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes a liquid refrigerant. The liquid refrigerant flowing out of the heat exchanger related to heat medium 25b is expanded by the expansion device 26b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 25a acting as an evaporator via the expansion device 26a. The low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 25a absorbs heat from the heat medium circulating in the heat medium circuit B to become a low-pressure gas refrigerant, and cools the heat medium. The gas refrigerant flows out of the heat exchanger related to heat medium 25a, flows out of the relay unit 2 through the second refrigerant flow switching device 28a, and flows into the outdoor unit 1 again through the refrigerant pipe 4. The gas refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19.
 このとき、第2冷媒流路切替装置28aは低圧配管と連通されており、一方、第2冷媒流路切替装置28bは高圧側配管と連通されている。また、絞り装置26bは、熱源側冷媒温度検知手段36aで検知された温度と、熱源側冷媒温度検知手段36bで検知された温度との差として得られるスーパーヒートが、一定になるように開度が制御される。また、絞り装置26aは全開、開閉装置27、29は閉となっている。なお、絞り装置26bは、圧力検知手段37で検知された圧力を飽和温度に換算した値と、熱源側冷媒温度検知手段36dで検知された温度との差として得られるサブクールが、一定になるように開度を制御してもよい。また、絞り装置26bを全開とし、絞り装置26aでスーパーヒート又はサブクールを制御するようにしてもよい。 At this time, the second refrigerant flow switching device 28a is in communication with the low pressure pipe, while the second refrigerant flow switching device 28b is in communication with the high pressure side piping. Further, the expansion device 26b has an opening degree so that a superheat obtained as a difference between the temperature detected by the heat source side refrigerant temperature detecting means 36a and the temperature detected by the heat source side refrigerant temperature detecting means 36b becomes constant. Is controlled. Further, the expansion device 26a is fully opened, and the opening / closing devices 27 and 29 are closed. In the expansion device 26b, a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure detection unit 37 into a saturation temperature and a temperature detected by the heat source side refrigerant temperature detection unit 36d is constant. The opening degree may be controlled. Alternatively, the expansion device 26b may be fully opened, and the superheat or subcool may be controlled by the expansion device 26a.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器25bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ31dによって熱媒体配管5内を流動させられることになる。また、熱媒体間熱交換器25aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ31a~31cによって熱媒体配管5内を流動させられることになる。ポンプ31a~31cで加圧されて流出した熱媒体は、冷熱負荷が発生している利用側熱交換器35a~35cに流入し、また、ポンプ31dで加圧されて流出した熱媒体は、温熱負荷が発生している利用側熱交換器35dに流入する。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the cooling main operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 25b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 31d. Further, the cold heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 25a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pumps 31a to 31c. The heat medium that has been pressurized and flowed out by the pumps 31a to 31c flows into the use side heat exchangers 35a to 35c in which a cold load is generated, and the heat medium that has been pressurized and flowed by the pump 31d is It flows into the use side heat exchanger 35d where the load is generated.
 このとき、第2熱媒体流路切替装置33は、接続されている室内ユニット3が暖房運転モードであるときは、熱媒体間熱交換器25bが接続されている方向に切替えられ、接続されている室内ユニット3が冷房運転モードであるときは、熱媒体間熱交換器25aが接続されている方向に切替えられる。すなわち、第2熱媒体流路切替装置33によって、室内ユニット3へ供給する熱媒体を暖房用又は冷房用に切り替えることを可能としている。 At this time, when the connected indoor unit 3 is in the heating operation mode, the second heat medium flow switching device 33 is switched and connected in the direction in which the heat exchanger related to heat medium 25b is connected. When the indoor unit 3 is in the cooling operation mode, the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a is connected. That is, the second heat medium flow switching device 33 can switch the heat medium supplied to the indoor unit 3 between heating and cooling.
 利用側熱交換器35では、熱媒体が室内空気から吸熱することによる室内空間7の冷房運転、又は熱媒体が室内空気に放熱することによる室内空間7の暖房運転を行う。このとき、熱媒体流量調整装置34の作用によって、熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35に流入するようになっている。 In the use side heat exchanger 35, the cooling operation of the indoor space 7 by the heat medium absorbing heat from the indoor air or the heating operation of the indoor space 7 by the heat medium radiating heat to the indoor air is performed. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow control device 34 and flows into the use side heat exchanger 35. ing.
 冷房運転に利用され、利用側熱交換器35a~35cを通過し温度が上昇した熱媒体は、熱媒体流量調整装置34a~34c及び第1熱媒体流路切替装置32a~32cを通って、熱媒体間熱交換器25a、第2熱媒体流路切替装置33a~33cに流入し、再びポンプ31a~31cへ吸い込まれる。暖房運転に利用され、利用側熱交換器35dを通過し温度が低下した熱媒体は、熱媒体流量調整装置34d及び第1熱媒体流路切替装置32dを通って、熱媒体間熱交換器25b、第2熱媒体流路切替装置33dに流入し、再びポンプ31dへ吸い込まれる。このとき、第1熱媒体流路切替装置32は、接続されている室内ユニット3が暖房運転モードであるときは、熱媒体間熱交換器25bが接続されている方向に切替えられ、接続されている室内ユニット3が冷房運転モードであるときは、熱媒体間熱交換器25aが接続されている方向に切替えられる。 The heat medium that has been used for the cooling operation and has passed through the use side heat exchangers 35a to 35c and whose temperature has risen passes through the heat medium flow control devices 34a to 34c and the first heat medium flow switching devices 32a to 32c, It flows into the inter-medium heat exchanger 25a and the second heat medium flow switching devices 33a to 33c, and is sucked into the pumps 31a to 31c again. The heat medium that has been used for the heating operation and has passed through the use-side heat exchanger 35d and whose temperature has decreased passes through the heat medium flow control device 34d and the first heat medium flow switching device 32d, and then the heat exchanger related to heat medium 25b. Then, it flows into the second heat medium flow switching device 33d and is sucked into the pump 31d again. At this time, when the connected indoor unit 3 is in the heating operation mode, the first heat medium flow switching device 32 is switched and connected in the direction in which the heat exchanger related to heat medium 25b is connected. When the indoor unit 3 is in the cooling operation mode, the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a is connected.
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置32及び第2熱媒体流路切替装置33の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器35へ導入される。これにより、暖房運転モードで利用された熱媒体を暖房用途として熱源側冷媒から熱を受け取っている熱媒体間熱交換器25bへ、冷房運転モードで利用された熱媒体を冷房用途として熱源側冷媒が熱を受け取っている熱媒体間熱交換器25aへと流入させ、再度それぞれが熱源側冷媒と熱交換を行った後、ポンプ31へと搬送される。 During this time, the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 32 and the second heat medium flow switching device 33, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 35. As a result, the heat medium used in the heating operation mode is used as the heating medium in the cooling operation mode, and the heat medium used in the cooling operation mode is used as the heat source refrigerant in the cooling operation mode. Is introduced into the heat exchanger related to heat medium 25a receiving the heat, and again exchanges heat with the heat source side refrigerant, and then is transferred to the pump 31.
 なお、利用側熱交換器35の熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置33から熱媒体流量調整装置34を経由して第1熱媒体流路切替装置32へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては暖房用の利用側熱交換器35に対応する第1熱媒体温度検知手段43と第2熱媒体温度検知手段44との検知結果の差を目標値として保つように、冷房側においても冷房用の利用側熱交換器35に対応する第1熱媒体温度検知手段43と第2熱媒体温度検知手段44との検知結果の差との差を目標値として保つように、熱媒体流量調整装置34で室内ユニット3に流入する熱媒体の流量を制御することにより、賄うことができる。
 なお、室内ユニット3を停止する場合は、該当室内ユニット3のポンプ31は停止させる。
In the heat medium pipe 5 of the use side heat exchanger 35, the first heat medium flow switching is performed from the second heat medium flow switching device 33 via the heat medium flow control device 34 on both the heating side and the cooling side. A heat medium flows in the direction to the device 32. In addition, the air conditioning load required in the indoor space 7 is that between the first heat medium temperature detecting means 43 and the second heat medium temperature detecting means 44 corresponding to the heating use side heat exchanger 35 on the heating side. The detection result of the first heat medium temperature detecting means 43 and the second heat medium temperature detecting means 44 corresponding to the cooling use side heat exchanger 35 is also maintained on the cooling side so as to keep the difference between the detection results as a target value. This can be covered by controlling the flow rate of the heat medium flowing into the indoor unit 3 with the heat medium flow control device 34 so as to keep the difference from the difference as a target value.
In addition, when stopping the indoor unit 3, the pump 31 of the applicable indoor unit 3 is stopped.
[全暖房運転モード]
 図5は、図2に示す空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図5では、利用側熱交換器35a、35bで温熱負荷が発生している場合を例に全暖房運転モードについて説明する。また、図5では、太線で表された配管が熱源側冷媒の流れる配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Heating operation mode]
FIG. 5 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 shown in FIG. 2 is in the heating only operation mode. In addition, in FIG. 5, the heating only operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchangers 35a and 35b. Further, in FIG. 5, a pipe indicated by a thick line indicates a pipe through which the heat source side refrigerant flows. Further, in FIG. 5, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 図5に示す全暖房運転モードの場合、室外ユニット1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒が熱源側熱交換器12を経由せずに中継ユニット2に流入するように切り替える。中継ユニット2では、ポンプ31a、31bを駆動させ、熱媒体流量調整装置34a、34bを開放し、熱媒体間熱交換器25a、25bのそれぞれと利用側熱交換器35a、35bとの間を熱媒体が循環するようにしている。また、第2冷媒流路切替装置28a、28bは暖房側に切り替えられており、開閉装置27は閉、開閉装置29は開となっている。
 なお、上述の説明において、第2冷媒流路切替装置28が暖房側に切り替えられているとは、室外ユニット1から中継ユニット2に流入した熱源側冷媒が、第2冷媒流路切替装置28から熱媒体間熱交換器25に向かう方向に流れるように切り替えられていることを言う。
In the heating only operation mode shown in FIG. 5, in the outdoor unit 1, the first refrigerant flow switching device 11 is connected to the relay unit without the heat source side refrigerant discharged from the compressor 10 passing through the heat source side heat exchanger 12. Switch to flow into 2. In the relay unit 2, the pumps 31a and 31b are driven, the heat medium flow control devices 34a and 34b are opened, and the heat between the heat exchangers 25a and 25b and the use side heat exchangers 35a and 35b are heated. The medium is circulated. The second refrigerant flow switching devices 28a and 28b are switched to the heating side, the opening / closing device 27 is closed, and the opening / closing device 29 is open.
In the above description, the fact that the second refrigerant flow switching device 28 is switched to the heating side means that the heat-source-side refrigerant that has flowed into the relay unit 2 from the outdoor unit 1 is transferred from the second refrigerant flow switching device 28. It says that it has switched so that it may flow in the direction which goes to the heat exchanger 25 between heat media.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを流れ、逆止弁13bを通過し、室外ユニット1から流出する。室外ユニット1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置28a側と第2冷媒流路切替装置28b側とに分岐される。そして、第2冷媒流路切替装置28a、28bを通って、熱媒体間熱交換器25a、25bのそれぞれに流入する。
First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, flows through the first connection pipe 4a, passes through the check valve 13b, and flows out of the outdoor unit 1. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant flowing into the relay unit 2 is branched into the second refrigerant flow switching device 28a side and the second refrigerant flow switching device 28b side. And it flows in each of the heat exchangers 25a and 25b between heat | fever media through 2nd refrigerant | coolant flow path switching device 28a, 28b.
 熱媒体間熱交換器25a、25bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器25a、25bから流出した液冷媒は、絞り装置26a、26bで膨張させられて、低温・低圧の二相冷媒となる。これらの二相冷媒は、合流した後、開閉装置29を通って、中継ユニット2から流出し、冷媒配管4を通って再び室外ユニット1に流入する。室外ユニット1に流入した熱源側冷媒は、第2接続配管4bを流れ、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。 The high-temperature and high-pressure gas refrigerant that has flowed into the heat exchangers 25a and 25b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes high-pressure liquid refrigerant. The liquid refrigerant flowing out of the heat exchangers 25a and 25b is expanded by the expansion devices 26a and 26b to become a low-temperature and low-pressure two-phase refrigerant. These two-phase refrigerants merge, flow out of the relay unit 2 through the opening / closing device 29, and flow into the outdoor unit 1 again through the refrigerant pipe 4. The heat-source-side refrigerant that has flowed into the outdoor unit 1 flows through the second connection pipe 4b, passes through the check valve 13c, and flows into the heat-source-side heat exchanger 12 that functions as an evaporator.
 そして、熱源側熱交換器12に流入した熱源側冷媒は、熱源側熱交換器12で室外空気と熱交換を行い(室外空気から吸熱し)、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。 The heat source side refrigerant flowing into the heat source side heat exchanger 12 exchanges heat with outdoor air (heat is absorbed from the outdoor air) in the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第2冷媒流路切替装置28a、28bは高圧配管と連通されている。また、絞り装置26aは、圧力検知手段37で検知された圧力を飽和温度に換算した値と、熱源側冷媒温度検知手段36bで検知された温度との差として得られるサブクール(過冷却度)が、一定になるように開度が制御される。同様に、絞り装置26bは、圧力検知手段37で検知された圧力を飽和温度に換算した値と、熱源側冷媒温度検知手段36dで検知された温度との差として得られるサブクールが、一定になるように開度が制御される。なお、熱媒体間熱交換器25の中間位置の温度が測定できる場合は、その中間位置での温度を圧力検知手段37の代わりに用いてもよく、圧力検知手段37を設置しなくて済むため安価にシステムを構成できる。 At this time, the second refrigerant flow switching devices 28a and 28b are in communication with the high-pressure pipe. Further, the expansion device 26a has a subcool (degree of supercooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure detection means 37 into a saturation temperature and a temperature detected by the heat source side refrigerant temperature detection means 36b. The opening degree is controlled to be constant. Similarly, in the expansion device 26b, a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure detection unit 37 into a saturation temperature and a temperature detected by the heat source side refrigerant temperature detection unit 36d becomes constant. Thus, the opening degree is controlled. When the temperature at the intermediate position of the heat exchanger related to heat medium 25 can be measured, the temperature at the intermediate position may be used instead of the pressure detecting means 37, and the pressure detecting means 37 need not be installed. A system can be configured at low cost.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器25a、25bのそれぞれで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体が第2熱媒体流路切替装置33a、33bを介した後、ポンプ31a、31bによって熱媒体配管5内を流動させられることになる。ポンプ31a、31bで加圧されて流出した熱媒体は、利用側熱交換器35a、35bに流入する。そして、熱媒体が利用側熱交換器35a、35bで室内空気に放熱することで、室内空間7の暖房を行う。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the heating only operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in each of the heat exchangers 25a and 25b, and the heated heat medium passes through the second heat medium flow switching devices 33a and 33b. Thereafter, the heat medium pipe 5 is caused to flow by the pumps 31a and 31b. The heat medium pressurized and discharged by the pumps 31a and 31b flows into the use side heat exchangers 35a and 35b. And the heat medium heats indoor space 7 by radiating heat | fever to indoor air with use side heat exchanger 35a, 35b.
 それから、熱媒体は、利用側熱交換器35a、35bから流出して熱媒体流量調整装置34a、34bに流入する。このとき、熱媒体流量調整装置34a、34bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35a、35bに流入するようになっている。熱媒体流量調整装置34a、34bから流出した熱媒体は、第1熱媒体流路切替装置32a、32bを通って、熱媒体間熱交換器25a、25bに流入し、室内ユニット3を通じて室内空間7へ供給した分の熱量を熱源側冷媒側から受け取り、第2熱媒体流路切替装置33a、33bを介した後、再びポンプ31a、31bへ吸い込まれる。 Then, the heat medium flows out from the use side heat exchangers 35a and 35b and flows into the heat medium flow control devices 34a and 34b. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 34a and 34b, and flows into the use side heat exchangers 35a and 35b. It is like that. The heat medium flowing out from the heat medium flow control devices 34a and 34b flows into the heat exchangers 25a and 25b through the first heat medium flow switching devices 32a and 32b, and passes through the indoor unit 3 to the indoor space 7. The amount of heat supplied to is received from the heat source side refrigerant side, and after being passed through the second heat medium flow switching devices 33a and 33b, is sucked into the pumps 31a and 31b again.
 なお、利用側熱交換器35a、35bの熱媒体配管5内では、第2熱媒体流路切替装置33a、33bから熱媒体流量調整装置34a、34bを経由して第1熱媒体流路切替装置32a、32bへ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1熱媒体温度検知手段43の検出結果と第2熱媒体温度検知手段44の検出結果との差を目標値に保つように熱媒体流量調整装置34a、34bで室内ユニット3a、3bに流入する熱媒体の流量を制御することにより、賄うことができる。 In the heat medium pipe 5 of the use side heat exchangers 35a and 35b, the first heat medium flow switching device is routed from the second heat medium flow switching devices 33a and 33b via the heat medium flow control devices 34a and 34b. The heat medium flows in the direction to 32a and 32b. The air conditioning load required in the indoor space 7 is such that the difference between the detection result of the first heat medium temperature detection means 43 and the detection result of the second heat medium temperature detection means 44 is kept at the target value. This can be provided by controlling the flow rate of the heat medium flowing into the indoor units 3a and 3b with the flow rate adjusting devices 34a and 34b.
 このとき、第1熱媒体流路切替装置32a、32b及び第2熱媒体流路切替装置33a、33bは、熱媒体間熱交換器25a、25bのそれぞれに流れる流路が確保されるように、中間的な開度、又は、熱媒体間熱交換器25a、25bの出口の熱媒体温度に応じた開度に制御されている。また、利用側熱交換器35a、35bは、その入口と出口の温度差で熱媒体流量調整装置34a、34bにより制御される。なお、室内ユニット3a、3bを停止する場合は、該当室内ユニットa、3bのポンプ31a、31bは停止させる。 At this time, the first heat medium flow switching devices 32a and 32b and the second heat medium flow switching devices 33a and 33b are provided so that flow paths flowing through the heat exchangers 25a and 25b are ensured. It is controlled to an intermediate opening or an opening corresponding to the heat medium temperature at the outlet of the heat exchangers 25a and 25b. The use side heat exchangers 35a and 35b are controlled by the heat medium flow control devices 34a and 34b based on the temperature difference between the inlet and the outlet. When the indoor units 3a and 3b are stopped, the pumps 31a and 31b of the corresponding indoor units a and 3b are stopped.
 全暖房運転モードを実行する際、熱負荷のない利用側熱交換器35c、35d(サーモOFF、停止モードを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置34c、34dにより流路を閉じて、利用側熱交換器35c、35dへ熱媒体が流れないようにする。図5においては、利用側熱交換器35a、35bにおいて熱負荷があるため熱媒体を流しているが、熱負荷がなくなった場合には対応する熱媒体流量調整装置34a、34bを全閉すればよい。そして、再度、熱負荷の発生があった場合には、対応する熱媒体流量調整装置34a、34bを開放し、熱媒体を循環させればよい。 When the heating only operation mode is executed, it is not necessary to flow the heat medium to the use side heat exchangers 35c and 35d (including the thermo OFF and stop modes) having no heat load. Therefore, the heat medium flow control devices 34c and 34d The flow path is closed so that the heat medium does not flow to the use side heat exchangers 35c and 35d. In FIG. 5, the heat medium is flowing because there is a heat load in the use side heat exchangers 35 a and 35 b, but when the heat load is lost, the corresponding heat medium flow control devices 34 a and 34 b are fully closed. Good. Then, when a heat load is generated again, the corresponding heat medium flow control devices 34a and 34b may be opened to circulate the heat medium.
[暖房主体運転モード]
 図6は、図2に示す空気調和装置100の冷暖房混在運転モードの暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。なお、図6では、利用側熱交換器35b~35dで温熱負荷が発生し、利用側熱交換器35aで冷熱負荷が発生している場合の、冷暖房混在運転モードの暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が熱源側冷媒の循環する配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
[Heating main operation mode]
FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow in the heating main operation mode of the air-conditioning mixed operation mode of the air-conditioning apparatus 100 illustrated in FIG. 2. FIG. 6 illustrates the heating-main operation mode of the mixed heating / cooling operation mode when a heating load is generated in the use side heat exchangers 35b to 35d and a cooling load is generated in the use side heat exchanger 35a. . In addition, in FIG. 6, the piping represented by the thick line has shown the piping through which the heat source side refrigerant | coolant circulates. In FIG. 6, the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
 図6に示す暖房主体運転モードの場合、室外ユニット1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒が、熱源側熱交換器12を経由せずに中継ユニット2に流入するように切り替える。中継ユニット2では、ポンプ31a~31dを駆動させ、熱媒体流量調整装置34a~34dを開放し、熱媒体間熱交換器25aと冷熱負荷が発生している利用側熱交換器35aとの間、及び、熱媒体間熱交換器25bと温熱負荷が発生している利用側熱交換器35b~35dとの間を、それぞれ熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aは冷房側、第2冷媒流路切替装置28bは暖房側に切り替えられており、絞り装置26aは全開、開閉装置27は閉、開閉装置29は閉となっている。 In the heating main operation mode shown in FIG. 6, in the outdoor unit 1, the heat source side refrigerant discharged from the compressor 10 is relayed through the first refrigerant flow switching device 11 without passing through the heat source side heat exchanger 12. Switch to unit 2. In the relay unit 2, the pumps 31a to 31d are driven to open the heat medium flow control devices 34a to 34d, and between the heat exchanger related to heat medium 25a and the use side heat exchanger 35a where the cooling load is generated, The heat medium circulates between the heat exchanger 25b between the heat medium and the use side heat exchangers 35b to 35d where the heat load is generated. The second refrigerant flow switching device 28a is switched to the cooling side, the second refrigerant flow switching device 28b is switched to the heating side, the expansion device 26a is fully opened, the opening / closing device 27 is closed, and the opening / closing device 29 is closed. ing.
 まず始めに、熱源側冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを流れ、逆止弁13bを通過し、室外ユニット1から流出する。室外ユニット1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置28bを介して、凝縮器として作用する熱媒体間熱交換器25bに流入する。
First, the flow of the heat source side refrigerant in the heat source side refrigerant circulation circuit A will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, flows through the first connection pipe 4a, passes through the check valve 13b, and flows out of the outdoor unit 1. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 flows into the heat exchanger related to heat medium 25b that acts as a condenser via the second refrigerant flow switching device 28b.
 熱媒体間熱交換器25bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器25bから流出した液冷媒は、絞り装置26bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置26aを介して蒸発器として作用する熱媒体間熱交換器25aに流入する。熱媒体間熱交換器25aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器25aから流出し、第2冷媒流路切替装置28aを介して中継ユニット2から流出し、冷媒配管4を通って再び室外ユニット1に流入する。 The high-temperature and high-pressure gas refrigerant that has flowed into the heat exchanger related to heat medium 25b condenses and liquefies while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes a liquid refrigerant. The liquid refrigerant flowing out of the heat exchanger related to heat medium 25b is expanded by the expansion device 26b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 25a acting as an evaporator via the expansion device 26a. The low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 25a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium. The low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 25a, flows out of the relay unit 2 through the second refrigerant flow switching device 28a, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
 室外ユニット1に流入した低温・低圧の二相冷媒は、第2接続配管4bを流れ、逆止弁13cを通過し、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した熱源側冷媒は、熱源側熱交換器12で室外空気と熱交換を行い(室外空気から吸熱し)、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。 The low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows through the second connection pipe 4b, passes through the check valve 13c, and flows into the heat source side heat exchanger 12 that acts as an evaporator. The heat-source-side refrigerant that has flowed into the heat-source-side heat exchanger 12 exchanges heat with outdoor air (heat is absorbed from the outdoor air) in the heat-source-side heat exchanger 12, and becomes a low-temperature / low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第2冷媒流路切替装置28aは低圧側配管と連通されており、一方、第2冷媒流路切替装置28bは高圧側配管と連通されている。また、絞り装置26bは、圧力検知手段37で検知された圧力を飽和温度に換算した値と、熱源側冷媒温度検知手段36bで検知された温度との差として得られるサブクールが、一定になるように開度が制御される。また、絞り装置26aは全開、開閉装置27、29は閉となっている。なお、絞り装置26bを全開とし、絞り装置26aでサブクールを制御するようにしてもよい。 At this time, the second refrigerant flow switching device 28a is in communication with the low pressure side piping, while the second refrigerant flow switching device 28b is in communication with the high pressure side piping. Further, the expansion device 26b has a constant subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure detection means 37 into a saturation temperature and a temperature detected by the heat source side refrigerant temperature detection means 36b. The opening degree is controlled. Further, the expansion device 26a is fully opened, and the opening / closing devices 27 and 29 are closed. Note that the expansion device 26b may be fully opened, and the subcooling may be controlled by the expansion device 26a.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器25bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ31b~31dによって熱媒体配管5内を流動させられることになる。また、熱媒体間熱交換器25aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ31aによって熱媒体配管5内を流動させられることになる。ポンプ31aで加圧されて流出した熱媒体は、冷熱負荷が発生している利用側熱交換器35aに流入し、ポンプ31b~31dで加圧されて流出した熱媒体は、温熱負荷が発生している利用側熱交換器35b~35dに流入する。
Next, the flow of the heat medium in the heat medium circuit B will be described.
In the heating main operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 25b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pumps 31b to 31d. Further, the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 25a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 31a. The heat medium that has been pressurized and flowed out by the pump 31a flows into the use side heat exchanger 35a in which a cold load is generated, and the heat medium that has been pressurized and discharged by the pumps 31b to 31d generates a heat load. It flows into the use side heat exchangers 35b to 35d.
 このとき、第2熱媒体流路切替装置33は、接続されている室内ユニット3が暖房運転モードであるときは、熱媒体間熱交換器25bが接続されている方向に切替えられ、接続されている室内ユニット3が冷房運転モードであるときは、熱媒体間熱交換器25aが接続されている方向に切替えられる。すなわち、第2熱媒体流路切替装置33によって、室内ユニット3へ供給する熱媒体を暖房用又は冷房用に切り替えることを可能としている。 At this time, when the connected indoor unit 3 is in the heating operation mode, the second heat medium flow switching device 33 is switched and connected in the direction in which the heat exchanger related to heat medium 25b is connected. When the indoor unit 3 is in the cooling operation mode, the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a is connected. That is, the second heat medium flow switching device 33 can switch the heat medium supplied to the indoor unit 3 between heating and cooling.
 利用側熱交換器35では、熱媒体が室内空気から吸熱することによる室内空間7の冷房運転、又は熱媒体が室内空気に放熱することによる室内空間7の暖房運転を行う。このとき、熱媒体流量調整装置34の作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35に流入するようになっている。 In the use side heat exchanger 35, the cooling operation of the indoor space 7 by the heat medium absorbing heat from the indoor air or the heating operation of the indoor space 7 by the heat medium radiating heat to the indoor air is performed. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow control device 34 and flows into the use side heat exchanger 35. Yes.
 冷房運転に利用され、利用側熱交換器35aを通過し温度が上昇した熱媒体は、熱媒体流量調整装置34a及び第1熱媒体流路切替装置32aを通って、熱媒体間熱交換器25aに流入し、第2熱媒体流路切替装置33aを通った後、再びポンプ31aへ吸い込まれる。暖房運転に利用され、利用側熱交換器35b~35dを通過し温度が低下した熱媒体は、熱媒体流量調整装置34b~34d及び第1熱媒体流路切替装置32b~32dを通って、熱媒体間熱交換器25bに流入し、第2熱媒体流路切替装置33b~33dを通った後、再びポンプ31b~31dへ吸い込まれる。このとき、第1熱媒体流路切替装置32は、接続されている室内ユニット3が暖房運転モードであるときは、熱媒体間熱交換器25bが接続されている方向に切替えられ、接続されている室内ユニット3が冷房運転モードであるときは、熱媒体間熱交換器25aが接続されている方向に切替えられる。 The heat medium that has been used for the cooling operation and has passed through the use-side heat exchanger 35a and whose temperature has increased passes through the heat medium flow control device 34a and the first heat medium flow switching device 32a, and the heat exchanger related to heat medium 25a. And after passing through the second heat medium flow switching device 33a, it is sucked into the pump 31a again. The heat medium that has been used for the heating operation and has passed through the use side heat exchangers 35b to 35d and whose temperature has decreased passes through the heat medium flow control devices 34b to 34d and the first heat medium flow switching devices 32b to 32d, After flowing into the inter-medium heat exchanger 25b and passing through the second heat medium flow switching devices 33b to 33d, they are sucked into the pumps 31b to 31d again. At this time, when the connected indoor unit 3 is in the heating operation mode, the first heat medium flow switching device 32 is switched and connected in the direction in which the heat exchanger related to heat medium 25b is connected. When the indoor unit 3 is in the cooling operation mode, the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a is connected.
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置32及び第2熱媒体流路切替装置33の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器35へ導入される。これにより、暖房運転モードで利用された熱媒体を暖房用途として熱源側冷媒から熱を受け取っている熱媒体間熱交換器25bへ、冷房運転モードで利用された熱媒体を冷房用途として熱源側冷媒が熱を受け取っている熱媒体間熱交換器25aへと流入させ、再度それぞれが冷媒と熱交換を行った後、ポンプ31へと搬送される。 During this time, the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 32 and the second heat medium flow switching device 33, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 35. As a result, the heat medium used in the heating operation mode is used as the heating medium in the cooling operation mode, and the heat medium used in the cooling operation mode is used as the heat source refrigerant in the cooling operation mode. Is introduced into the heat exchanger related to heat medium 25a receiving heat, and again exchanges heat with the refrigerant, and then is transferred to the pump 31.
 なお、利用側熱交換器35の熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置33から熱媒体流量調整装置34を経由して第1熱媒体流路切替装置32へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては暖房用の利用側熱交換器35に対応する第1熱媒体温度検知手段43と第2熱媒体温度検知手段44との検知結果の差を、冷房側においても冷房用の利用側熱交換器35に対応する第1熱媒体温度検知手段43と第2熱媒体温度検知手段44との検知結果の差との差を目標値として保つように、熱媒体流量調整装置34で室内ユニット3に流入する熱媒体の流量を制御することにより、賄うことができる。
 なお、室内ユニット3を停止する場合は、該当室内ユニット3のポンプ31は停止させる。
In the heat medium pipe 5 of the use side heat exchanger 35, the first heat medium flow switching is performed from the second heat medium flow switching device 33 via the heat medium flow control device 34 on both the heating side and the cooling side. A heat medium flows in the direction to the device 32. In addition, the air conditioning load required in the indoor space 7 is that between the first heat medium temperature detecting means 43 and the second heat medium temperature detecting means 44 corresponding to the heating use side heat exchanger 35 on the heating side. The difference between the detection results is the difference between the detection results of the first heat medium temperature detection means 43 and the second heat medium temperature detection means 44 corresponding to the cooling use side heat exchanger 35 on the cooling side. It can be covered by controlling the flow rate of the heat medium flowing into the indoor unit 3 with the heat medium flow control device 34 so as to keep the value.
In addition, when stopping the indoor unit 3, the pump 31 of the applicable indoor unit 3 is stopped.
 以上のように、室内ユニット3毎に少なくとも1台のポンプ31を配置することにより、利用側熱交換器35を流れる熱媒体の流量範囲を大きくすることができるため、流速過多を抑制することができる。これにより、室内ユニット3の十分な能力調整、エロージョンによる配管へのダメージの回避、冷房負荷又は暖房負荷が小さい場合の十分なポンプ31入力抑制を実現可能とすることができる。さらには、不要なポンプ31を停止させることで、省エネルギー化の効果も得られる。 As described above, by disposing at least one pump 31 for each indoor unit 3, the flow rate range of the heat medium flowing through the use-side heat exchanger 35 can be increased, so that excessive flow velocity can be suppressed. it can. Thereby, sufficient capacity adjustment of the indoor unit 3, avoidance of damage to the piping due to erosion, and sufficient pump 31 input suppression when the cooling load or the heating load is small can be realized. Furthermore, the effect of energy saving is also acquired by stopping the unnecessary pump 31. FIG.
 実施の形態2.
 図7は、本発明の実施の形態2に係る空気調和装置100における冷媒回路構成の別例(1例目)を示す図である。
 以下、本実施の形態2について説明するが、本実施の形態1と重複するものについては省略する。
 本実施の形態2では、中継ユニット2に搭載されているポンプ45a~45dが、容量制御可能となっており、熱媒体配管5に流れる熱媒体の流量を制御することができる。そのため、実施の形態1で搭載されていた熱媒体流量調整装置34が不要となり、設置する必要がなくなる。
 したがって、ポンプ45a~45dの容量制御により、室内ユニット3に流入する熱媒体の量を調整し、室内負荷に応じた最適な熱媒体量を室内ユニット3に提供することができる。
Embodiment 2. FIG.
FIG. 7 is a diagram illustrating another example (first example) of the refrigerant circuit configuration in the air-conditioning apparatus 100 according to Embodiment 2 of the present invention.
Hereinafter, the second embodiment will be described, but those overlapping with the first embodiment will be omitted.
In the second embodiment, the capacity of the pumps 45a to 45d mounted on the relay unit 2 can be controlled, and the flow rate of the heat medium flowing through the heat medium pipe 5 can be controlled. For this reason, the heat medium flow control device 34 mounted in the first embodiment is not necessary and need not be installed.
Therefore, the amount of the heat medium flowing into the indoor unit 3 can be adjusted by the capacity control of the pumps 45a to 45d, and the optimum heat medium amount corresponding to the indoor load can be provided to the indoor unit 3.
 実施の形態3.
 図8は、本発明の実施の形態3に係る空気調和装置100における冷媒回路構成の別例(2例目)を示す図である。
 以下、本実施の形態3について説明するが、本実施の形態1及び2と重複するものについては省略する。
 本実施の形態3では、制御装置51は、図8に示すように室内ユニット3毎にも設けられている。この場合、ポンプ31、熱媒体流量調整装置34、第1熱媒体温度検知手段43、及び第2熱媒体温度検知手段44も、室内ユニット3毎に設置される。
 また、第1熱媒体温度検知手段43は、熱媒体流量調整装置34と利用側熱交換器35との間に設けられ、第2熱媒体温度検知手段44は、ポンプ31と利用側熱交換器35との間に設けられている。
Embodiment 3 FIG.
FIG. 8 is a diagram illustrating another example (second example) of the refrigerant circuit configuration in the air-conditioning apparatus 100 according to Embodiment 3 of the present invention.
Hereinafter, the third embodiment will be described, but the description overlapping with the first and second embodiments will be omitted.
In the third embodiment, a control device 51 is provided for each indoor unit 3 as shown in FIG. In this case, the pump 31, the heat medium flow control device 34, the first heat medium temperature detection means 43, and the second heat medium temperature detection means 44 are also installed for each indoor unit 3.
The first heat medium temperature detecting means 43 is provided between the heat medium flow control device 34 and the use side heat exchanger 35, and the second heat medium temperature detecting means 44 is the pump 31 and the use side heat exchanger. 35.
 1 室外ユニット、2 中継ユニット、3 室内ユニット、3a~3d 室内ユニット、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 熱媒体配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a~13d 逆止弁、19 アキュムレーター、25 熱媒体間熱交換器、25a、25b 熱媒体間熱交換器、26 絞り装置、26a、26b 絞り装置、27 開閉装置、28 第2冷媒流路切替装置、28a、28b 第2冷媒流路切替装置、29 開閉装置、31 ポンプ、31a~31d ポンプ、32 第1熱媒体流路切替装置、32a~32d 第1熱媒体流路切替装置、33 第2熱媒体流路切替装置、33a~33d 第2熱媒体流路切替装置、34 熱媒体流量調整装置、34a~34d 熱媒体流量調整装置、35 利用側熱交換器、35a~35d 利用側熱交換器、36 熱源側冷媒温度検知手段、36a~36d 熱源側冷媒温度検知手段、37 圧力検知手段、43 第1熱媒体温度検知手段、43a~43d 第1熱媒体温度検知手段、44 第2熱媒体温度検知手段、44a~44d 第2熱媒体温度検知手段、45 ポンプ、45a~45d ポンプ、51 制御装置、100 空気調和装置、200 空気調和装置、300 空気調和装置、A 熱源側冷媒循環回路、B 熱媒体循環回路。 1 outdoor unit, 2 relay unit, 3 indoor unit, 3a-3d indoor unit, 4 refrigerant pipe, 4a first connection pipe, 4b second connection pipe, 5 heat medium pipe, 6 outdoor space, 7 indoor space, 8 space, 9 building, 10 compressor, 11 first refrigerant flow switching device, 12 heat source side heat exchanger, 13a-13d check valve, 19 accumulator, 25 heat exchanger between heat medium, 25a, 25b heat exchanger between heat medium 26, throttling device, 26a, 26b throttling device, 27 opening / closing device, 28 second refrigerant flow switching device, 28a, 28b second refrigerant flow switching device, 29 opening / closing device, 31 pump, 31a-31d pump, 32nd 1 heat medium flow switching device, 32a to 32d, first heat medium flow switching device, 33 second heat medium flow switching device, 33a to 33d first Heat medium flow switching device, 34 Heat medium flow rate adjustment device, 34a to 34d Heat medium flow rate adjustment device, 35 Usage side heat exchanger, 35a to 35d Usage side heat exchanger, 36 Heat source side refrigerant temperature detection means, 36a to 36d Heat source side refrigerant temperature detecting means, 37 pressure detecting means, 43 first heat medium temperature detecting means, 43a to 43d first heat medium temperature detecting means, 44 second heat medium temperature detecting means, 44a to 44d second heat medium temperature detecting Means, 45 pump, 45a-45d pump, 51 control device, 100 air conditioner, 200 air conditioner, 300 air conditioner, A heat source side refrigerant circulation circuit, B heat medium circulation circuit.

Claims (4)

  1.  圧縮機、熱源側熱交換器、絞り装置、及び、熱媒体間熱交換器の熱源側冷媒流路が配管接続され、熱源側冷媒を循環させる熱源側冷媒循環回路と、
     ポンプ、少なくとも1つの利用側熱交換器、及び、前記熱媒体間熱交換器の熱媒体流路が配管接続され、熱媒体を循環させる熱媒体循環回路と、を備え、
     前記熱源側冷媒循環回路と前記熱媒体循環回路とは、前記熱媒体間熱交換器で前記熱源側冷媒と前記熱媒体とが熱交換を行うようにカスケード接続され、
     前記ポンプが、前記利用側熱交換器のそれぞれに少なくとも1台備えられた
     ことを特徴とする空気調和装置。
    A heat source side refrigerant circulation circuit that circulates the heat source side refrigerant, wherein the compressor, the heat source side heat exchanger, the expansion device, and the heat source side refrigerant flow path of the heat exchangers between heat media are connected by piping;
    A pump, at least one usage-side heat exchanger, and a heat medium circulation circuit in which a heat medium flow path of the heat exchanger between the heat mediums is pipe-connected to circulate the heat medium,
    The heat source side refrigerant circulation circuit and the heat medium circulation circuit are cascade-connected so that the heat source side refrigerant and the heat medium exchange heat in the heat exchanger between heat mediums,
    The air conditioner characterized in that at least one pump is provided in each of the use side heat exchangers.
  2.  前記熱媒体循環回路は、前記熱媒体間熱交換器の熱媒体流路の出口側と前記利用側熱交換器の熱媒体流路の入口側との接続を切り替える熱媒体流路切替装置を、前記利用側熱交換器と同数備え、
     前記ポンプは、前記利用側熱交換器と前記熱媒体流路切替装置との間に配置されている
     ことを特徴とする請求項1に記載の空気調和装置。
    The heat medium circulation circuit includes a heat medium flow switching device that switches connection between an outlet side of the heat medium flow path of the heat exchanger between heat medium and an inlet side of the heat medium flow path of the use side heat exchanger, The same number as the use side heat exchanger,
    The air conditioner according to claim 1, wherein the pump is disposed between the use side heat exchanger and the heat medium flow switching device.
  3.  前記ポンプは、容量制御可能である
     ことを特徴とする請求項1又は2に記載の空気調和装置。
    The air conditioner according to claim 1 or 2, wherein the pump is capable of capacity control.
  4.  前記利用側熱交換器の熱媒体流路の入口側及び出口側に熱媒体温度検知手段をそれぞれ設け、
     前記利用側熱交換器に流入する前記熱媒体の流量は、前記熱媒体温度検知手段の検知結果に基づいて前記ポンプを制御して調整される
     ことを特徴とする請求項3に記載の空気調和装置。
    Heat medium temperature detection means are provided on the inlet side and the outlet side of the heat medium flow path of the utilization side heat exchanger,
    The air conditioning according to claim 3, wherein the flow rate of the heat medium flowing into the use side heat exchanger is adjusted by controlling the pump based on a detection result of the heat medium temperature detection means. apparatus.
PCT/JP2013/083304 2013-12-12 2013-12-12 Air conditioner WO2015087421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083304 WO2015087421A1 (en) 2013-12-12 2013-12-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083304 WO2015087421A1 (en) 2013-12-12 2013-12-12 Air conditioner

Publications (1)

Publication Number Publication Date
WO2015087421A1 true WO2015087421A1 (en) 2015-06-18

Family

ID=53370762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083304 WO2015087421A1 (en) 2013-12-12 2013-12-12 Air conditioner

Country Status (1)

Country Link
WO (1) WO2015087421A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193712A1 (en) * 2018-04-05 2019-10-10 三菱電機株式会社 Air conditioning device
JP2021046953A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner
US11060779B2 (en) * 2018-02-07 2021-07-13 Mitsubishi Electric Corporation Air-conditioning system and air-conditioning control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050001A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050001A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060779B2 (en) * 2018-02-07 2021-07-13 Mitsubishi Electric Corporation Air-conditioning system and air-conditioning control method
WO2019193712A1 (en) * 2018-04-05 2019-10-10 三菱電機株式会社 Air conditioning device
JPWO2019193712A1 (en) * 2018-04-05 2021-01-14 三菱電機株式会社 Air conditioner
JP7069298B2 (en) 2018-04-05 2022-05-17 三菱電機株式会社 Air conditioner
JP2021046953A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner
JP7360285B2 (en) 2019-09-17 2023-10-12 東芝キヤリア株式会社 air conditioner

Similar Documents

Publication Publication Date Title
JP6385436B2 (en) Air conditioner
JP5752148B2 (en) Air conditioner
JP5188629B2 (en) Air conditioner
JP6095764B2 (en) Air conditioner
JP6141454B2 (en) Air conditioner and control method of air conditioner
JP5452628B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
JP5236080B2 (en) Air conditioner
JP5855279B2 (en) Air conditioner
JP5595521B2 (en) Heat pump equipment
WO2012172605A1 (en) Air conditioner
JP5490245B2 (en) Air conditioner
JPWO2011030418A1 (en) Air conditioner
JP5972397B2 (en) Air conditioner and design method thereof
WO2015087421A1 (en) Air conditioner
JPWO2011052050A1 (en) Air conditioner
JP6062030B2 (en) Air conditioner
WO2016113830A1 (en) Air-conditioning device
WO2011030420A1 (en) Air conditioning device
WO2015079531A1 (en) Air conditioning apparatus
JPWO2012172731A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP