WO2016113830A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2016113830A1
WO2016113830A1 PCT/JP2015/050574 JP2015050574W WO2016113830A1 WO 2016113830 A1 WO2016113830 A1 WO 2016113830A1 JP 2015050574 W JP2015050574 W JP 2015050574W WO 2016113830 A1 WO2016113830 A1 WO 2016113830A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
refrigerant
unit
medium flow
Prior art date
Application number
PCT/JP2015/050574
Other languages
French (fr)
Japanese (ja)
Inventor
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/050574 priority Critical patent/WO2016113830A1/en
Priority to JP2016569138A priority patent/JP6429901B2/en
Priority to GB1710186.6A priority patent/GB2548522B/en
Publication of WO2016113830A1 publication Critical patent/WO2016113830A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/08Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with separate supply and return lines for hot and cold heat-exchange fluids i.e. so-called "4-conduit" system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02743Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • an air conditioner such as a multi air conditioning system for buildings
  • a refrigerant such as water is circulated from an outdoor unit to a relay unit
  • a heat medium such as water is circulated from the relay unit to the indoor unit.
  • An air conditioning apparatus has been proposed that reduces the conveyance power of the heat medium while circulating the air (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can cope with an increase in the number of indoor units connected at a low cost.
  • An air conditioner according to the present invention is a refrigerant in which a refrigerant, a heat source side refrigerant circulates by connecting refrigerant side flow paths of a compressor, a heat source side heat exchanger, a first expansion device, and a plurality of heat exchangers between heat mediums with a refrigerant pipe.
  • a heat medium circulation circuit in which a heat medium circulates by connecting a circulation circuit, a heat medium side flow path of a plurality of heat exchangers between heat mediums, a plurality of heat medium conveying devices, and a plurality of use side heat exchangers with a heat medium pipe And a flow path of the heat medium provided to correspond to each of the plurality of use side heat exchangers in the heat medium circulation circuit, and to connect the use side heat exchanger to any of the plurality of heat exchangers between heat mediums
  • a first heat medium flow switching means that switches between, and a relay unit that includes a plurality of heat exchangers between heat media, and to which a plurality of use side heat exchangers are connected via the plurality of first heat medium flow switching means
  • connection port for connecting the branch unit of the second through a connection pipe, connected to the connection part through which the heat medium of the heat medium circulation circuit passes, and one or a plurality of additional use side heat exchangers, and connected via the connection part.
  • a branch section for branching the heat medium flowing into the branch unit and circulating it to one or a plurality of additional use side heat exchangers, and one or a plurality of additional use side heat exchangers.
  • each of the plurality of additional use side heat exchangers is provided with second heat medium flow switching means for connecting to any of the plurality of heat exchangers related to heat medium.
  • FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner 100 according to an embodiment of the present invention.
  • an air conditioner 100 according to the present embodiment includes an outdoor unit (heat source unit) 1, a plurality of indoor units 3, and an intervening unit 1 between the outdoor unit 1 and the indoor unit 3. And a relay unit 2 as a base.
  • each indoor unit 3 can select a cooling operation or a heating operation.
  • the operation modes executed by the air conditioning apparatus 100 include the following four operation modes.
  • the relay unit 2 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 4 through which the heat source side refrigerant flows, and constitute a refrigerant circulation circuit A that is a refrigeration cycle for circulating the heat source side refrigerant.
  • the relay unit 2 and the indoor unit 3 are connected by a heat medium pipe 5 through which the heat medium flows, and constitute a heat medium circulation circuit B that circulates the heat medium.
  • each component such as a switching apparatus connected to each of the refrigerant circuit A and the heat medium circuit B, will be described below again.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 3 via the relay unit 2.
  • the air conditioner 100 is characterized in that it is possible to increase the number of indoor units 3 connected, and the relay unit 2 is connected to the heat medium branching circuit B in the heat medium circulation circuit B.
  • a branch unit 60 that increases the number of units connected to the indoor units 3 and is connected is connected.
  • the relay unit 2 includes a connection port 2 a (see FIG. 2 described later) for connecting the branch unit 60, and the branch unit 60 is connected to the connection port 2 a via a connection pipe 70.
  • the outdoor unit 1, the relay unit 2, and the indoor unit 3 will be described, and the branch unit 60 will be described later.
  • the outdoor unit 1 is normally disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 3 via the relay unit 2. .
  • the relay unit 2 transmits the heat or cold generated by the outdoor unit 1 to the indoor unit 3.
  • the relay unit 2 is configured as a separate housing from the outdoor unit 1 and the indoor unit 3 so as to be installed at a position different from the outdoor space 6 and the indoor space 7.
  • the relay unit 2 is connected to the outdoor unit 1 through the refrigerant pipe 4 and is connected to the indoor unit 3 through the heat medium pipe 5.
  • the indoor unit 3 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the indoor unit 3 is a ceiling-embedded type, but is not limited thereto.
  • the heat source side refrigerant is conveyed from the outdoor unit 1 to the relay unit 2 through the refrigerant pipe 4.
  • the conveyed heat source side refrigerant exchanges heat with the heat medium in the heat exchanger related to heat medium 25 (see FIG. 2) described later in the relay unit 2 to heat or cool the heat medium. That is, the heat medium is heated or cooled by the heat exchanger related to heat medium to become hot water or cold water.
  • Hot water or cold water produced by the relay unit 2 is conveyed to the indoor unit 3 via the heat medium pipe 5 by a pump 31 (see FIG. 2) described later, and the indoor unit 3 performs heating operation on the indoor space 7. Or it is used for cooling operation.
  • heat source side refrigerant for example, a single refrigerant such as R-22 and R-134a, a pseudo azeotropic refrigerant mixture such as R-410A and R-404A, and a non-azeotropic refrigerant mixture such as R-407C can be used.
  • a heat source side refrigerant for example, a refrigerant containing a double bond in a chemical formula and having a relatively low global warming potential such as CF 3 or CF ⁇ CH 2 and a mixture thereof can be used.
  • natural refrigerants such as CO 2 or propane can be used as the heat source side refrigerant.
  • the heat medium for example, water, brine (antifreeze), a mixture of water and antifreeze, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. That is, the air conditioning apparatus 100 contributes to the improvement of the safety
  • the air conditioning apparatus 100 according to the present embodiment will be described assuming that water is employed as the heat medium.
  • an air conditioner 100 includes an outdoor unit 1 and a relay unit 2 connected using two refrigerant pipes 4, and the relay unit 2 and each indoor unit 3 are connected to each other.
  • Two heat medium pipes 5 are used for connection.
  • the construction is performed by connecting each unit (the outdoor unit 1, the relay unit 2, and the indoor unit 3) using two pipes (the refrigerant pipe 4 and the heat medium pipe 5). It has become easy.
  • the relay unit 2 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • a space 8 such as the back of the ceiling
  • the relay unit 2 can also be installed in a common space where there is an elevator or the like.
  • FIG. 1 shows an example in which the indoor unit 3 is a ceiling cassette type, but the present invention is not limited to this, and the indoor unit 3 is not directly limited to the indoor space 7 such as a ceiling embedded type or a ceiling suspended type.
  • any type of air can be used as long as heating air or cooling air can be blown out by a duct or the like.
  • FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. May be installed. Also, when the water-cooled outdoor unit 1 is used, the outdoor unit 1 may be installed inside the building 9. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the relay unit 2 may be installed in the vicinity of the outdoor unit 1. However, when the relay unit 2 is installed in the vicinity of the outdoor unit 1 in this way, it is preferable to pay attention to the length of the heat medium pipe 5 that connects the relay unit 2 to the indoor unit 3. This is because if the distance from the relay unit 2 to the indoor unit 3 is increased, the heat transfer power of the heat medium is increased correspondingly, and the energy saving effect is reduced.
  • the number of connected outdoor units 1, relay units 2, and indoor units 3 is not limited to the number illustrated in FIG. 1, and the number may be determined according to the building 9 in which the air conditioner 100 is installed. That's fine.
  • the plurality of relay units 2 When a plurality of relay units 2 are connected to one outdoor unit, the plurality of relay units 2 can be installed in a common space in a building such as a building or in a space such as a ceiling. By doing so, the air-conditioning load can be covered by the heat exchangers 25a and 25b (see FIG. 2) described later in each relay unit 2. Further, the indoor unit 3 can be installed at a distance or height within the allowable transport range of the pumps 31a and 31b (see FIG. 2) in each relay unit 2, and the whole unit such as a building can be installed. Placement is possible.
  • FIG. 2 is a diagram illustrating an example of circuit configurations of the outdoor unit 1 and the relay unit 2 in the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 4 via the heat exchangers 25 a and 25 b provided in the relay unit 2.
  • the relay unit 2 and the indoor unit 3 are connected by the heat medium piping 5 via the heat exchangers 25a and 25b.
  • the heat exchangers 25 a and 25 b exchange heat between the heat source side refrigerant supplied via the refrigerant pipe 4 and the heat medium supplied via the heat medium pipe 5.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and mounted via a refrigerant pipe 4.
  • the outdoor unit 1 is provided with a first connection pipe 4a, a second connection pipe 4b, and check valves 13a to 13d.
  • the air conditioner 100 can be connected from the outdoor unit 1 to the relay unit 2 regardless of the heating operation mode or the cooling operation mode.
  • the flow of the heat source side refrigerant to be introduced can be set in a certain direction.
  • the compressor 10 sucks the refrigerant, compresses the refrigerant to a high temperature and high pressure state, and conveys the refrigerant to the refrigerant circuit A.
  • the compressor 10 has a discharge side connected to the first refrigerant flow switching device 11 and a suction side connected to an accumulator 19.
  • the compressor 10 may be composed of, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 includes a discharge side of the compressor 10, a check valve 13d, a heat source side heat exchanger 12, and an accumulator in the heating only operation mode and the heating main operation mode of the mixed heating and cooling operation mode. 19 is connected to the suction side.
  • the first refrigerant flow switching device 11 connects the discharge side of the compressor 10 and the heat source side heat exchanger 12 in the cooling operation mode and the cooling main operation mode of the mixed heating and cooling operation mode, and performs a check.
  • the valve 13c and the suction side of the accumulator 19 are connected.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, and functions as a condenser (or radiator) during cooling operation.
  • the heat source side heat exchanger 12 exchanges heat between an air fluid supplied from a blower such as a fan (not shown) and the heat source side refrigerant, and evaporates or condenses the heat source side refrigerant. It is.
  • One side of the heat source side heat exchanger 12 is connected to the check valve 13b and the other side is connected to the suction side of the accumulator 19 in the heating operation mode.
  • one of the heat source side heat exchangers 12 is connected to the discharge side of the compressor 10 and the other is connected to the check valve 13a.
  • the heat source side heat exchanger 12 may be configured by, for example, a plate fin and tube heat exchanger that can exchange heat between the refrigerant flowing through the refrigerant pipe and the air passing through the fins.
  • the accumulator 19 stores surplus refrigerant due to a difference in required refrigerant amount between the heating operation mode and the cooling operation mode, and surplus refrigerant with respect to a transient operation change (for example, a change in the number of operating indoor units 3). is there.
  • the accumulator 19 has a suction side connected to the heat source side heat exchanger 12 and a discharge side connected to the suction side of the compressor 10 in the heating operation mode.
  • the accumulator 19 is connected to the check valve 13c on the suction side and connected to the suction side of the compressor 10 in the cooling operation mode.
  • the check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 2, and flows the heat source side refrigerant only in a predetermined direction (direction from the outdoor unit 1 to the relay unit 2). It is acceptable.
  • the check valve 13c is provided in the refrigerant pipe 4 between the relay unit 2 and the first refrigerant flow switching device 11, and the heat source side refrigerant is only in a predetermined direction (direction from the relay unit 2 to the outdoor unit 1). It allows flow.
  • the check valve 13b is provided in the second connection pipe 4b and circulates the heat source side refrigerant returned from the relay unit 2 during the heating operation to the suction side of the compressor 10.
  • the check valve 13d is provided in the first connection pipe 4a, and causes the heat source side refrigerant discharged from the compressor 10 to flow through the relay unit 2 during the heating operation.
  • the first connection pipe 4 a includes a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 c and a refrigerant pipe 4 between the check valve 13 a and the relay unit 2.
  • the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13c and the relay unit 2, a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a, Are connected.
  • FIG. 2 shows an example in which the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided.
  • the present invention is not limited to this, and these are not necessarily provided.
  • the indoor unit 3 includes use side heat exchangers 35a to 35d (also simply referred to as use side heat exchangers 35).
  • the use side heat exchanger 35 includes heat medium flow rate adjusting devices 34 a to 34 d (also simply referred to as a heat medium flow rate adjusting device 34) via the heat medium pipe 5 and the second heat heat pipe 35 via the heat medium pipe 5.
  • the medium flow switching devices 33a to 33d (also simply referred to as the second heat medium flow switching device 33) are connected.
  • the use side heat exchanger 35 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
  • FIG. 2 shows an example in which four indoor units 3 a to 3 d are connected to the relay unit 2 via the heat medium pipe 5.
  • the use side heat exchanger 35 also includes a use side heat exchanger 35a, a use side heat exchanger 35b, a use side heat exchanger 35c, and a use side heat exchanger 35d from the upper side of the drawing. To do.
  • the number of indoor units 3 connected is not limited to four.
  • the relay unit 2 includes two heat medium heat exchangers 25a and 25b (sometimes simply referred to as the heat medium heat exchanger 25) and two first expansion devices 26a and 26b (only the first expansion device 26). 2), two opening / closing devices 27, 29, and two second refrigerant flow switching devices 28a, 28b (sometimes simply referred to as second refrigerant flow switching device 28). ing.
  • the relay unit 2 further includes two heat medium transfer devices, pumps 31a and 31b (sometimes simply referred to as pump 31), and four first heat medium flow switching devices 32a to 32d (simply referred to as first heat medium).
  • the first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device 34 constitute the first heat medium flow switching means of the present invention.
  • the first heat medium flow switching devices 32a to 32d, the second heat medium flow switching devices 33a to 33d, and the heat medium flow control devices 34a to 34d are integrated flow channel switching that unifies the functions of these switching devices. It is also possible to replace it with a device.
  • the integrated flow path switching device includes, for example, the functions of the first heat medium flow path switching devices 32a to 32d, the second heat medium flow path switching devices 33a to 33d, and the heat medium flow rate adjustment devices 34a to 34d. It is good also as a structure which has a block (integrated) structure like patent document 2 or patent document 3 provided with these.
  • the heat exchanger related to heat medium 25 functions as a condenser (heat radiator) or an evaporator, performs heat exchange between the heat source side refrigerant and the heat medium, and generates heat generated by the outdoor unit 1 or stored in the heat source side refrigerant. It transfers heat to the heat medium. That is, during the heating operation, the heat exchanger related to heat medium 25 functions as a condenser (heat radiator) and transmits the heat of the heat source side refrigerant to the heat medium. Further, during the cooling operation, the heat exchanger related to heat medium 25 functions as an evaporator and transmits the cold heat of the heat source side refrigerant to the heat medium.
  • the heat exchanger related to heat medium 25a is provided between the first expansion device 26a and the second refrigerant flow switching device 28a in the refrigerant circuit A, and serves to cool the heat medium in the air-conditioning mixed operation mode. It is.
  • the heat exchanger related to heat medium 25b is provided between the first expansion device 26b and the second refrigerant flow switching device 28b in the refrigerant circulation circuit A, and heats the heat medium in the air-conditioning mixed operation mode. It is something to offer.
  • the first expansion device 26 functions as a pressure reducing valve or an expansion valve, and expands the heat source side refrigerant by reducing the pressure.
  • the first expansion device 26a is provided on the upstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation (see FIG. 8 described later).
  • the first expansion device 26b is provided on the upstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant during the cooling operation (see FIG. 8 described later).
  • the first throttling device 26 may be constituted by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the opening / closing device 27 and the opening / closing device 29 are constituted by, for example, electromagnetic valves that can be opened and closed by energization, and open and close the flow path in which they are provided. That is, the opening / closing device 27 and the opening / closing device 29 are controlled to open / close according to the operation mode, and switch the flow path of the heat source side refrigerant.
  • the opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant (the refrigerant pipe 4 positioned at the lowest level in the drawing among the refrigerant pipes 4 connecting the outdoor unit 1 and the relay unit 2).
  • the opening / closing device 29 is provided in a pipe (bypass pipe 20) connecting the refrigerant pipe 4 on the inlet side of the heat source side refrigerant and the refrigerant pipe 4 on the outlet side.
  • the opening / closing device 27 and the opening / closing device 29 may be any devices that can open and close the flow path in which they are provided, and may be devices that control the opening of an electronic expansion valve, for example.
  • the second refrigerant flow switching device 28 is constituted by a four-way valve, for example, and switches the flow of the heat source side refrigerant so that the heat exchanger related to heat medium 25 functions as a condenser or an evaporator according to the operation mode. is there.
  • the second refrigerant flow switching device 28a is provided on the downstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation (see FIG. 8 described later).
  • the second refrigerant flow switching device 28b is provided on the downstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling operation mode (see FIG. 8 described later).
  • the pump 31 circulates the heat medium flowing through the heat medium pipe 5 to the heat medium circuit B.
  • the pump 31 a is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 25 a and the second heat medium flow switching device 33.
  • the pump 31 b is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 25 b and the second heat medium flow switching device 33.
  • the pump 31 may be constituted by a capacity-controllable pump, for example, and the flow rate thereof may be adjusted according to the load in the indoor unit 3.
  • the first heat medium flow switching device 32 switches the connection between the outlet side of the heat medium flow path of the use side heat exchanger 35 and the inlet side of the heat medium flow path of the heat exchanger related to heat medium 25. .
  • the number of first heat medium flow switching devices 32 is set according to the number of indoor units 3 installed (here, four).
  • the first heat medium flow switching device 32 connects the outlet side of the heat medium flow path of the use side heat exchanger 35 to the inlet side of the heat medium flow path of the heat medium heat exchanger 25a or the heat between heat medium. It switches to the inlet side of the heat medium flow path of the exchanger 25b.
  • one of the three sides is in the heat exchanger 25a, one of the three is in the heat exchanger 25b, and one of the three is in the heat medium flow rate.
  • Each is connected to the adjustment device 34 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 35.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the first heat medium flow switching device 32 may be constituted by a three-way valve, for example.
  • the second heat medium flow switching device 33 connects the connection side on the inlet side of the heat medium flow path of the use side heat exchanger 35 to the outlet side of the heat medium flow path of the heat medium heat exchanger 25a or the heat between heat medium. It switches to the exit side of the heat medium flow path of the exchanger 25b.
  • the second heat medium flow switching device 33 is provided in a number (four in this case) corresponding to the number of indoor units 3 installed.
  • one of the three heat transfer medium heat exchangers 25a, one of the three heat transfer medium heat exchangers 25b, and one of the three heat transfer side heats. Each is connected to the exchanger 35 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 35.
  • the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow switching are performed from the upper side of the drawing. Illustrated as device 33d.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the second heat medium flow switching device 33 may be constituted by a three-way valve, for example.
  • the heat medium flow control device 34 is configured by a two-way valve or the like that can control the opening area, and controls the flow rate of the heat medium flowing through the heat medium pipe 5.
  • the number of the heat medium flow control devices 34 is set according to the number of indoor units 3 installed (four in this case).
  • One of the heat medium flow control devices 34 is connected to the use side heat exchanger 35 and the other is connected to the first heat medium flow switching device 32, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 35. Is provided.
  • the heat medium flow control device 34 adjusts the amount of the heat medium flowing into the indoor unit 3 according to the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out, so that the optimum heat according to the indoor load is adjusted.
  • the medium amount can be provided to the indoor unit 3.
  • the heat medium flow rate adjustment device 34a, the heat medium flow rate adjustment device 34b, the heat medium flow rate adjustment device 34c, and the heat medium flow rate adjustment device 34d are illustrated from the upper side of the drawing.
  • the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35.
  • the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 and between the second heat medium flow switching device 33 and the use side heat exchanger 35. Good.
  • the indoor unit 3 does not require a load such as the stop mode and the thermo OFF, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 34.
  • the heat medium flow control device 34 may be omitted. Is possible.
  • the first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device 34 are integrated (blocked), and the flow switch function, the flow control function, An integrated flow path switching device to which a flow path closing function is added can be substituted for the first heat medium flow path switching device 32, the second heat medium flow path switching device 33, and the heat medium flow rate adjustment device.
  • the relay unit 2 is provided with two temperature sensors 40a and 40b (sometimes simply referred to as the temperature sensor 40).
  • the temperature sensor 40 detects the temperature of the heat medium flowing out from the intermediate heat exchanger 25, that is, the temperature of the heat medium at the outlet of the intermediate heat exchanger 25.
  • the temperature sensor 40a is provided in the heat medium pipe 5 on the heat medium suction side of the pump 31a.
  • the temperature sensor 40b is provided in the heat medium pipe 5 on the heat medium suction side of the pump 31b.
  • the temperature sensor 40 may be composed of, for example, a thermistor.
  • the information (temperature information) detected by the temperature sensor 40 is sent to the control device 50 that performs overall control of the operation of the air conditioner 100.
  • the information (temperature information) detected by the temperature sensor 40 includes the driving frequency of the compressor 10, the rotational speed of the blower (not shown), the switching of the first refrigerant flow switching device 11, the driving frequency of the pump 31, and the second This is used for control such as switching of the refrigerant flow switching device 28, switching of the flow path of the heat medium, and adjustment of the heat medium flow rate of the indoor unit 3.
  • the state in which the control apparatus 50 is mounted in the relay unit 2 is shown as an example, the present invention is not limited to this, and the outdoor unit 1 or the indoor unit 3 or each unit is communicatably mounted. You may do it.
  • control device 50 is constituted by a microcomputer or the like, and based on detection results from various detection means and instructions from the remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first The switching of the one refrigerant flow switching device 11, the driving of the pump 31, the opening of the first expansion device 26, and the opening of the second expansion device 26c are controlled.
  • the control device 50 switches the second refrigerant flow switching device 28, the first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device. 34, the drive of the heat medium passage opening and closing device 37, the opening and closing of the opening and closing devices 27 and 29, and the opening and closing of the heat medium passage opening and closing device 36 are controlled.
  • the control device 50 performs control so that the indoor space maintains the set temperature.
  • heat to the use side heat exchanger 35 provided in the indoor unit 3 is controlled.
  • the medium supply is stopped (Thermo OFF).
  • the control device 50 only stops the supply of the heat medium to the use side heat exchanger 35 provided in the indoor unit 3 if there is an instruction from the user.
  • the operation of the fan attached to the use side heat exchanger 35 is also stopped (stop mode).
  • the control device 50 executes the thermo-OFF to adjust the temperature of the indoor space when the indoor space reaches the set temperature, and executes the stop mode when receiving an operation stop instruction from the user.
  • the heat medium pipe 5 through which the heat medium flows has one connected to the heat exchanger related to heat medium 25a and one connected to the heat exchanger related to heat medium 25b.
  • the heat medium pipe 5 is branched (here, four branches each) according to the number of indoor units 3 connected to the relay unit 2.
  • the one connected to the heat exchanger related to heat medium 25 a and the one connected to the heat exchanger related to heat medium 25 b include the first heat medium flow switching device 32, Two heat medium flow switching devices 33 are connected.
  • the heat medium from the heat exchanger related to heat medium 25a flows into the use-side heat exchanger 35, or the heat medium Whether the heat medium from the intermediate heat exchanger 25b flows into the use side heat exchanger 35 is determined.
  • the number of connected indoor units 3 can be increased by connecting to the relay unit 2.
  • the branch unit 60 will be described.
  • FIG. 3 is a diagram illustrating an example of a heat medium circuit configuration of the branch unit 60 of FIG.
  • the branch unit 60 includes a connection portion 61 for connection to the relay unit 2, and the branch unit 60 and the relay unit 2 are connected to each other by a connection pipe 70 through the connection portion 61.
  • the branch unit 60 includes a branch unit 62 that branches the heat medium of the heat medium circuit B that has flowed in from the relay unit 2 via the connection unit 61.
  • the branch part 62 has a plurality of branch ports. Since the number of branches is four here, the branch unit 62 includes four branch ports.
  • the use side heat exchangers (additional use side heat exchangers) 35a to 35d of the indoor unit 3 to be added are connected to the respective branch ports, and the heat exchangers 25a and 25b between the heat mediums of the relay unit 2 are connected to the branch ports.
  • a heat medium circulates between the use side heat exchangers 35a to 35d.
  • the branch unit 60 includes a connection pipe 70 and four first heat medium flow switching devices 32e to 32h (similarly to the first heat medium flow switching device 32 in the relay unit 2). 32) and four second heat medium flow switching devices 33e to 33h (similarly to the second heat medium flow switching device 33 in the relay unit 2), And four heat medium flow control devices 34e to 34h (simply referred to as the heat medium flow control device 34 as well as the heat medium flow control device 34 in the relay unit 2). ing.
  • the first heat medium flow switching devices 32e to 32h, the second heat medium flow switching devices 33e to 33h, and the heat medium flow control devices 34e to 34h are integrated flow channel switching that unifies the functions of these switching devices. It is also possible to replace it with a device.
  • the integrated flow path switching device includes, for example, the functions of the first heat medium flow path switching devices 32a to 32d, the second heat medium flow path switching devices 33a to 33d, and the heat medium flow rate adjustment devices 34a to 34d. It is good also as a structure which has a block structure like patent document 2 provided with.
  • the first heat medium flow switching devices 32e to 32h, the second heat medium flow switching devices 33e to 33h, and the heat medium flow control devices 34e to 34h constitute the second heat medium flow switching means of the present invention.
  • the first heat medium flow switching device 32 of the branch unit 60 is connected to the relay unit 2 by two pipes by a connection pipe 70, and the outlet of the heat medium flow path of the use side heat exchanger 35 in the relay unit 2. The connection between the side and the inlet side of the heat medium flow path of the heat exchanger related to heat medium 25 is switched.
  • the first heat medium flow switching device 32 is provided with a number (four in this case) corresponding to the number of indoor units 3 connected to the branch unit.
  • the first heat medium flow switching device 32 In the first heat medium flow switching device 32, one of the three sides is connected to the heat exchanger 25a in the relay unit 2 through the connection pipe 70, and one of the three directions is a heat medium in the relay unit 2 through the connection pipe 70. One of the three sides is connected to the intermediate heat exchanger 25b to the heat medium flow control device 34 in the branch unit 60, respectively.
  • the first heat medium flow switching device 32 is provided on the outlet side of the heat medium flow path of the use side heat exchanger 35 connected to the branch unit 60.
  • the first heat medium flow switching device 32e, the first heat medium flow switching device 32f, and the first heat medium flow switching device 32g are arranged from the upper side of the drawing.
  • the first heat medium flow switching device 32h is illustrated.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the first heat medium flow switching device 32 may be constituted by a three-way valve, for example.
  • the second heat medium flow switching device 33 in the branch unit 60 is connected to the relay unit 2 by two pipes by the connection pipe 70, and the heat medium flow path of the heat exchanger 25 between the heat medium in the relay unit 2 is connected.
  • the connection between the outlet side and the inlet side of the heat medium flow path of the use side heat exchanger 35 is switched.
  • the number of second heat medium flow switching devices 33 in the branch unit 60 is set according to the number of indoor units 3 connected to the branch unit 60 (four in this case).
  • one of the three sides is connected to the heat exchanger 25a in the relay unit 2 through the connection pipe 70, and one of the three sides is connected to the heat medium in the relay unit 2 through the connection pipe 70.
  • One of the three sides is connected to the intermediate heat exchanger 25 b and to the use side heat exchanger 35 connected to the branch unit 60.
  • the second heat medium flow switching device 33 is provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 connected to the branch unit 60.
  • the second heat medium flow switching device 33e, the second heat medium flow switching device 33f, and the second heat medium flow switching device 33g are arranged from the upper side of the drawing.
  • the second heat medium flow switching device 33h is illustrated.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the second heat medium flow switching device 33 may be constituted by a three-way valve, for example.
  • the heat medium flow control device 34 in the branch unit 60 is configured by a two-way valve or the like that can control the opening area, and controls the flow rate when the heat medium conveyed from the relay unit 2 flows through the connection pipe 70. is there.
  • the number of heat medium flow control devices 34 in the branch unit 60 is set according to the number of indoor units 3 connected to the branch unit (four in this case).
  • One of the heat medium flow control devices 34 in the branch unit 60 is connected to the use side heat exchanger 35 connected to the branch unit 60, and the other is connected to the first heat medium flow switching device 32 connected to the branch unit 60. It is connected.
  • the heat medium flow control device 34 is provided on the outlet side of the heat medium flow path of the use side heat exchanger 35 connected to the branch unit 60.
  • the heat medium flow control device 34 adjusts the amount of the heat medium flowing into the indoor unit 3 based on the temperature of the heat medium flowing into the indoor unit 3 connected to the branch unit 60 and the temperature of the heat medium flowing out. Thus, it is possible to provide the indoor unit 3 with the optimum amount of heat medium according to the indoor load.
  • the heat medium flow rate adjustment device 34e In correspondence with the indoor unit 3 connected to the branch unit 60, the heat medium flow rate adjustment device 34e, the heat medium flow rate adjustment device 34f, the heat medium flow rate adjustment device 34g, and the heat medium flow rate adjustment device 34h are illustrated from the upper side of the drawing. ing. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 and between the second heat medium flow switching device 33 and the use side heat exchanger 35. Good. Furthermore, when the indoor unit 3 does not require a load such as the stop mode and the thermo OFF, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 34.
  • the heat medium flow control device 34 may be omitted. Is possible.
  • the first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device 34 are integrated (blocked), and the flow switch function, the flow control function, An integrated flow path switching device to which a flow path closing function is added can be substituted for the first heat medium flow path switching device 32, the second heat medium flow path switching device 33, and the heat medium flow rate adjustment device.
  • FIG. 4 is a diagram illustrating a circuit configuration of the air-conditioning apparatus 100 of FIG.
  • the connection pipe 70 through which the heat medium flows is connected to the relay unit 2 and connected to the heat exchanger related to heat medium 25a in the relay unit 2 and to the heat exchanger related to heat medium 25b. It has what is done.
  • the connection pipe 70 is branched (here, four branches each) according to the number of indoor units 3 connected to the branch unit 60. Of the connection pipes 70, the one connected to the heat exchanger related to heat medium 25 a in the relay unit 2 and the one connected to the heat exchanger related to heat medium 25 b are connected to the first heat medium flow path in the branch unit 60.
  • the switching device 32 and the second heat medium flow switching device 33 in the branch unit 60 are connected.
  • the heat medium from the intermediate heat exchanger 25a in the relay unit 2 is used. Whether to flow into the side heat exchanger 35 or to flow the heat medium from the heat exchanger related to heat medium 25b in the relay unit 2 into the use side heat exchanger 35 is determined.
  • FIG. 5 is a diagram illustrating another example of the refrigerant circuit in the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • FIG. 5 shows a configuration in which the connection pipe 70 is connected across the two relay units 2.
  • the branch unit 60 in FIG. 5 further includes another connection portion 63 in addition to the connection portion 61 of the branch unit 60 in FIG. 4, and the two relay units 2 and connection pipes are connected via the connection portions 61 and 63. 70 is connected.
  • the connection pipe 70 can be connected to each of the two relay units 2 to the heat exchanger related to heat medium 25a in the relay unit 2 or to the heat exchanger related to heat medium 25b. Yes.
  • the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 27, the switching device 29, and the second refrigerant flow switching device 28.
  • the refrigerant flow path, the first expansion device 26, and the accumulator 19 of the heat exchanger related to heat medium 25 are connected by the refrigerant pipe 4 to constitute the refrigerant circuit A.
  • the switching device 33 is connected by the heat medium pipe 5 to constitute the heat medium circuit B. That is, a plurality of use side heat exchangers 35 are connected in parallel to each of the heat exchangers 25 between heat media, and the heat medium circulation circuit B is made into a plurality of systems.
  • the outdoor unit 1 and the relay unit 2 are connected via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b provided in the relay unit 2.
  • the relay unit 2 and the indoor unit 3 are connected to each other via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b. That is, in the air conditioner 100, the heat source side refrigerant that circulates through the refrigerant circulation circuit A and the heat medium that circulates through the heat medium circulation circuit B in the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b generate heat. It is supposed to be replaced. By using such a configuration, the air conditioner 100 can realize an optimal cooling operation or heating operation according to the indoor load.
  • the operation modes executed by the air conditioner 100 include a heating only operation mode, a cooling only operation mode, a cooling main operation mode, and a heating main operation mode as described above.
  • Each of these operation modes includes switching of the first refrigerant flow switching device 11, the second refrigerant flow switching device 28, the first heat medium flow switching device 32, and the second heat medium flow switching device 33, and an opening / closing device. 27 and opening / closing of the opening / closing device 29 can be executed in combination.
  • FIG. 6 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the heating only operation in the air conditioning apparatus 100 shown in FIG.
  • the piping represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by a solid line arrow
  • the flow direction of the heat medium is indicated by a dotted line arrow.
  • four indoor units 3a to 3d connected to the relay unit 2 are connected to the heat exchanger related to heat medium 25b to constitute a heat medium circulation circuit B, and are connected to the branch unit 60.
  • An example in which the four indoor units 3e to 3h are connected to the heat exchanger related to heat medium 25b to form another heat medium circuit B will be described.
  • the first refrigerant flow switching device 11 relays the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. Switching to unit 2 is made.
  • the four first heat medium flow switching devices 32a to 32d and the four second heat medium flow switching are performed so that the four indoor units 3a to 3d are connected to the heat exchanger related to heat medium 25b.
  • Each of the devices 33a to 33d is switched.
  • the four heat medium flow control devices 34a to 34d are controlled so as to have a heat medium flow rate necessary to cover the air conditioning load required in the room where the indoor units 3a to 3d are installed.
  • the opening / closing device 27 is closed and the opening / closing device 29 is open.
  • the second refrigerant flow switching device 28 is switched to the heating operation side.
  • the pump 31 sets the flow rate instruction value according to the air conditioning load of the indoor units 3 a to 3 d connected to the relay unit 2 and the air conditioning load of the indoor units 3 e to 3 h connected to the branch unit 60. Based on the action.
  • the four first heat medium flow switching devices 32e to 32h and the four second heat medium flow paths are connected so that the four indoor units 3e to 3h are connected to the heat exchanger related to heat medium 25a.
  • Each of the switching devices 33e to 33h is switched.
  • the four heat medium flow control devices 34e to 34h are controlled so as to have a flow rate necessary to cover the air conditioning load required in the room in which the indoor units 3e to 3h are installed.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the first connection pipe 4a.
  • the high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant flowing into the relay unit 2 passes through the second refrigerant flow switching devices 28a and 28b, then passes through the heat exchangers 25a and 25b, and passes through the first expansion devices 26a and 26b.
  • the refrigerant that has passed through the opening / closing device 29 is conveyed to the outdoor unit 1 and exchanges heat with the outside air in the heat source side heat exchanger 12 to become a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the first expansion devices 26a and 26b is controlled so that the subcooling (supercooling degree) of the outlet refrigerant of the heat exchangers 25a and 25b is constant.
  • This subcool (degree of supercooling) is a value obtained by converting the pressure of the heat source side refrigerant flowing between the heat exchangers 25a, 25b and the first expansion devices 26a, 26b into a saturation temperature, and heat exchange between heat media. This is obtained as a difference from the temperature on the outlet side of the containers 25a and 25b.
  • the heat medium pressurized by the driving of the pump 31a and the pump 31b is sent to the use side heat exchangers 35a to 35h, exchanges heat with room air, and then flows out from the use side heat exchangers 35a to 35h. It flows into the flow rate adjusting devices 34a to 34h. At this time, the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow control devices 34a to 34h, and the use side heat exchangers 35a to 35h and the heat medium flow rate are controlled. It passes through the adjusting devices 34a to 34h.
  • the heat medium flowing out from the heat medium flow control devices 34a to 34h flows through the first heat medium flow switching devices 32a to 32d.
  • the path is switched, passes through the heat medium pipe 5, and flows into and passes through the heat exchanger related to heat medium 25b.
  • the heat medium that has passed through the intermediate heat exchanger 25b is sucked into the pump 31b again, and then passes through the second heat medium flow switching devices 33a to 33d and is sent to the use side heat exchangers 35a to 35d. It is.
  • the heat medium flowing out from the heat medium flow control devices 34a to 34h the heat medium flowing out from the heat medium flow control devices 34e to 34h in the branch unit 60 is flown by the first heat medium flow switching devices 32e to 32h.
  • the path is switched, passes through the connecting pipe 70, and flows into and passes through the heat exchanger related to heat medium 25a.
  • the heat medium that has passed through the heat exchanger related to heat medium 25a is sucked into the pump 31a again, and then passes through the second heat medium flow switching devices 33e to 33h and is sent to the use side heat exchangers 35e to 35h. It is.
  • the heat medium circulates between each of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b and the use side heat exchangers 35a to 35h.
  • the heat medium exchanges heat with room air in the use side heat exchangers 35e to 35h functioning as condensers, so that the room where the indoor units 3e to 3h are installed is heated.
  • the total heating capacity required for the indoor unit 3 connected to the heat exchanger related to heat medium 25a and the total heating capacity required for the indoor unit 3 connected to the heat exchanger related to heat medium 25b are all indoor units. 3 is determined so as to be divided into approximately half of the total heating capacity required.
  • the heating capacity of each indoor unit 3 can be determined by the control device 50, and if the first heat medium flow switching devices 32a to 32h and the second heat medium flow switching devices 33a to 33h are switched according to the heating capacity. Good.
  • FIG. 7 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the heating only operation in the air conditioning apparatus 100 shown in FIG.
  • the flow of the heat source side refrigerant in the refrigerant circuit A is as described with reference to FIG.
  • the upper relay unit 2 in FIG. 7 is referred to as a relay unit 2A
  • the lower relay unit 2 is referred to as a relay unit 2B.
  • connection mode of the indoor units 3e to 3h connected to the branch unit 60 to the relay unit 2 is conceivable as the connection mode of the indoor units 3e to 3h connected to the branch unit 60 to the relay unit 2.
  • the flow of the heat medium will be described with reference to FIG. It is the same as the flow.
  • the heat medium is controlled to a flow rate required to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 34e to 34h, and the use side heat exchangers 35e to 35h and the heat medium flow rate adjustment are controlled. Passes through devices 34e-34h.
  • connection destination of the branch unit 60 can be switched to the relay unit 2A or the relay unit 2B. Therefore, for example, when the relay unit 2A cannot be used during maintenance, the operation can be continued by setting the connection destination of the branch unit 60 to the relay unit 2B.
  • the indoor units 3e to 3g connected to the branch unit 60 are connected to the intermediate heat exchanger 25a of the relay unit 2A, and the indoor unit 3h connected to the branch unit 60 is connected to the relay unit 2B.
  • a case where the heat exchanger is connected to the intermediate heat exchanger 25b will be described as an example.
  • the indoor units 3a to 3d connected to the relay unit 2A are connected to the heat exchanger related to heat medium 25b of the relay unit 2A, and the indoor units 3a to 3d connected to the relay unit 2B are connected to the heat of the relay unit 2B. It is assumed that the medium-to-medium heat exchanger 25b is connected.
  • the first heat medium flow switching devices 32e to 32g and the second heat medium flow switching devices 33e to 33g are switched to the heat exchanger related to heat medium 25a.
  • on-off valves 71a to 71d are provided between the relay unit 2A and the branch unit 60, and the relay unit 2B and the branch unit 60 are connected to each other.
  • the on / off valves 72a to 72d are provided between them. Then, among the on-off valves 71a to 71d provided on the relay unit 2A side, the on-off valve 71b and the on-off valve 71d provided in the pipe directly communicating with the heat exchanger related to heat medium 25a are set to “open”. .
  • a heat medium circulation circuit B is configured in which the heat medium circulates between the heat exchangers between heat medium 25a of the relay unit 2A and the use side heat exchangers 35e to 35g.
  • the heat medium having a flow rate necessary to cover the air conditioning load required in the room is circulated by the action of the heat medium flow control devices 34e to 34g to heat the room.
  • the first heat medium flow switching device 32h and the second heat medium flow switching device 33h are switched to the heat exchanger related to heat medium 25b. Further, among the on-off valves 72a to 72d provided on the relay unit 2B side, the on-off valve 72a and the on-off valve 72c provided in the pipe directly communicating with the heat exchanger related to heat medium 25b are set to “open”. On the other hand, among the on-off valves 72a to 72d, the on-off valve 72b and the on-off valve 72d provided in the pipe directly communicating with the heat exchanger related to heat medium 25a are closed.
  • the heat medium circulation circuit B in which the heat medium circulates between the heat exchanger 25b between the heat medium of the relay unit 2B and the use side heat exchanger 35h is configured.
  • the heat medium circulation circuit B the heat medium having a flow rate necessary to cover the air conditioning load required in the room is circulated by the action of the heat medium flow control device 34h to heat the room.
  • the open / close valves 71a to 71d and the open / close valves 72a to 72d may be electromagnetic open / close valves or manually open / close valves that can be manually opened / closed.
  • the indoor units 3e to 3h in the branch unit 60 are connected across the two relay units 2A and 2B and the heat medium is divided into the relay units 2A and 2B, the following is performed.
  • the effect is obtained. That is, in the case of a configuration that is not connected across the two, the conveyance power source in the branch unit is limited to the pump 31 of one relay unit 2, but by connecting across the two relay units 2, Both of the pumps 31 provided in the two relay units 2 can be used as the conveyance power source.
  • the pump 31 on the relay unit 2B side can also be used to The shortage can be compensated and efficient air conditioning can be realized.
  • the indoor unit 3 connected to the intermediate heat exchanger 25b of the relay unit 2A and the indoor unit 3 connected to the intermediate heat exchanger 25b of the relay unit 2B coexist.
  • a valve is provided so that the refrigerant from the relay unit 2A to the branch unit 60 and the refrigerant from the relay unit 2B to the branch unit 60 do not collide in one connection pipe 70. .
  • FIG. 8 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the cooling only operation of the air-conditioning apparatus 100 shown in FIG. Moreover, in FIG. 8, the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a dotted line arrow.
  • the four indoor units 3a to 3d connected to the relay unit 2 are connected to the heat exchanger related to heat medium 25b to form the heat medium circuit B, and are connected to the branch unit 60.
  • An example in which the four indoor units 3e to 3h are connected to the heat exchanger related to heat medium 25b to form the heat medium circuit B will be described.
  • the first refrigerant flow switching device 11 switches the heat source side refrigerant discharged from the compressor 10 to flow into the heat source side heat exchanger 12. It is done.
  • the first heat medium flow switching devices 32a to 32d and the four second heat medium flow switching devices 33a are connected so that the four indoor units 3a to 3d are connected to the heat exchanger related to heat medium 25b.
  • Each of .about.33d is switched.
  • the four heat medium flow control devices 34a to 34d are controlled so as to have a heat medium flow rate necessary to cover the air conditioning load required in the room where the indoor units 3a to 3d are installed.
  • the opening / closing device 27 is closed and the opening / closing device 29 is open.
  • the second refrigerant flow switching device 28 is switched to the cooling operation side.
  • the first heat medium flow switching devices 32e to 32h and the four second heat medium flow switching devices are connected so that the four indoor units 3e to 3h are connected to the heat exchanger related to heat medium 25a.
  • Each of 33e to 33h is switched.
  • the four heat medium flow control devices 34e to 34h are controlled so as to have a flow rate necessary to cover the air conditioning load required in the room in which the indoor units 3e to 3h are installed.
  • the pump 31 sets the flow rate instruction value according to the air conditioning load of the indoor units 3 a to 3 d connected to the relay unit 2 and the air conditioning load of the indoor units 3 e to 3 h connected to the branch unit 60. Based on the action.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11, performs heat exchange with the outside air, and performs high-temperature and high-pressure liquid or two-phase. Becomes a refrigerant.
  • the high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a.
  • the high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure liquid or two-phase refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27 and then passes through the first expansion devices 26a and 26b, and then becomes a low-temperature and low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant exchanges heat with the heat medium in the heat exchangers 25a and 25b, then becomes a low-temperature and low-pressure gas refrigerant, and then flows out from the relay unit 2 and into the outdoor unit 1. .
  • the refrigerant flowing into the outdoor unit 1 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the first expansion devices 26a and 26b is controlled so that the superheat (superheat degree) of the outlet refrigerant of the heat exchangers 25a and 25b becomes constant.
  • the superheat (degree of superheat) includes a value obtained by converting the pressure of the heat-source-side refrigerant flowing between the heat exchangers 25a and 25b and the first expansion devices 26a and 26b into a saturation temperature, and a heat exchanger between the heat exchangers.
  • the outlets 25a and 25b are obtained as a difference from the sum temperature.
  • the flow of the heat medium in the heat medium circuit B is the same as the flow of the heat medium described in FIG. That is, the air conditioning load required indoors between the heat exchangers between heat exchangers (here, evaporators) 25b and the use side heat exchangers 35a to 35d by the action of the heat medium flow control devices 34a to 34d. A heat medium with a flow rate necessary to cover the heat is circulated. Then, the heat medium exchanges heat with room air in the use side heat exchangers 35a to 35d, thereby cooling the room in which the indoor units 3a to 3d are respectively installed.
  • a heat medium with a flow rate necessary to cover the heat is circulated.
  • the heat medium exchanges heat with indoor air in the use side heat exchangers 35e to 35h, whereby the room in which the indoor units 3e to 3h are respectively installed is cooled.
  • FIG. 9 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the cooling only operation in the air conditioning apparatus 110 shown in FIG.
  • the flow of the heat source side refrigerant in the refrigerant circuit A in this configuration is as described in FIG.
  • the flow of the heat medium in the heat medium circuit B is as described in FIG. That is, there is a flow of the above (1) and (2).
  • the heat medium circulation circuit B the heat medium having a flow rate necessary to cover the air conditioning load required indoors is circulated by the action of the heat medium flow control devices 34a to 34h. Then, the heat medium exchanges heat with room air in the use side heat exchangers 35a to 35h, thereby cooling the room in which the indoor units 3a to 3h are respectively installed.
  • FIG. 10 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the heating main operation in the mixed operation in the air conditioning apparatus shown in FIG.
  • the piping represented with the thick line has shown the piping through which a heat source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid arrows
  • the flow direction of the heat medium is indicated by dotted arrows.
  • the heating main operation mode will be described by taking as an example a case where the indoor unit 3a is in the heating operation mode and the indoor unit 3e is in the cooling operation mode.
  • the other indoor units 3b to 3d and 3f to 3h are not subjected to a load due to the operation stop (there is no need to cool and heat the room, including a state where the thermo is off), and the use side heat exchanger 35b to It is assumed that the heat medium does not flow through 35d and 35f to 35h.
  • the first refrigerant is such that the heat source side refrigerant discharged from the compressor 10 flows into the relay unit 2 without passing through the heat source side heat exchanger 12.
  • the flow path switching device 11 is switched.
  • the opening / closing device 27 is closed and the opening / closing device 29 is closed.
  • the heat medium flow control device 34a is an opening that can flow a flow rate necessary to cover an air conditioning load (here, a heating load) required in the room where the indoor unit 3a is installed.
  • the heating medium flow control devices 34b to 34d are closed each time.
  • the heat medium flow control device 34e is an opening that can flow a flow rate necessary to cover an air conditioning load (here, a cooling load) required in the room in which the indoor unit 3a is installed.
  • the heating medium flow rate adjusting devices 34f to 34h are closed each time.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the first connection pipe 4a.
  • the high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant flowing into the relay unit 2 passes through the second refrigerant flow switching device 28b and then passes through the heat exchanger related to heat medium 25b that functions as a condenser.
  • the refrigerant after passing through the heat exchanger related to heat medium 25b passes through the first expansion device 26b, then passes through the first expansion device 26a, and passes through the heat exchanger related to heat medium 25a functioning as an evaporator.
  • the refrigerant that has passed through the heat exchanger related to heat medium 25a passes through the second refrigerant flow switching device 28a and is then transported to the outdoor unit 1.
  • the refrigerant transported to the outdoor unit 1 exchanges heat with the outside air in the heat source side heat exchanger 12 to become a low-temperature and low-pressure gas refrigerant, and then the first refrigerant flow switching device 11 and the accumulator 19 are turned on. Then, it is sucked into the compressor 10 again.
  • the opening degree of the first expansion device 26b is controlled so that the subcooling (supercooling degree) of the outlet refrigerant of the heat exchanger related to heat medium 25b becomes constant.
  • This subcool degree of subcooling
  • This subcool is obtained by converting the pressure of the heat source side refrigerant flowing between the heat exchanger related to heat medium 25b and the first expansion device 26b into a saturation temperature, and the outlet of the heat exchanger related to heat medium 25b. It is obtained as a difference from the temperature on the side.
  • the opening degree of the first expansion device 26a is controlled so that the superheat (superheat degree) of the refrigerant at the outlet of the heat exchanger related to heat medium 25 becomes constant.
  • This superheat degree of superheat is the value obtained by converting the pressure of the heat source side refrigerant flowing between the first expansion device 26a and the heat exchanger related to heat medium 25a into the saturation temperature, and the outlet side of the heat exchanger related to heat medium 25a. It is obtained as a difference from the temperature.
  • the heat medium pressurized by the drive of the pump 31b is sent to the use side heat exchanger 35a, exchanges heat with room air, heats the room, and then flows out of the use side heat exchanger 35a.
  • the heat medium flowing out from the use side heat exchanger 35a passes through the heat medium flow control device 34a, and then flows into and passes through the heat exchanger related to heat medium 25b.
  • the heat medium that has passed through the heat exchanger related to heat medium 25b is sucked into the pump 31b again, and then passes through the second heat medium flow switching device 33a and is sent into the use-side heat exchanger 35a.
  • the heat medium pressurized by the driving of the pump 31a is sent to the use side heat exchanger 35e, exchanges heat with room air, cools the room, and then flows out from the use side heat exchanger 35e.
  • the heat medium that has passed through the heat medium flow control device 34e passes through the heat medium flow control device 34e, and then flows into and passes through the heat exchanger related to heat medium 25a.
  • the heat medium that has passed through the heat exchanger related to heat medium 25a is again sucked into the pump 31a, and then passes through the second heat medium flow switching device 33e and is sent to the use-side heat exchanger 35e.
  • FIG. 11 is a diagram (part 1) illustrating the flow of the heat-source-side refrigerant and the flow of the heat medium during the heating-main operation in the mixed operation in the air-conditioning apparatus 100 illustrated in FIG.
  • the flow of the heat source side refrigerant in the refrigerant circuit A in this configuration is as described in FIG.
  • the flow of the heat medium in the heat medium circuit B is as described in FIG. That is, there is a flow of the above (1) and (2).
  • the indoor units 3a to 3d connected to the relay unit 2A, the indoor unit 3h connected to the branch unit 60, and the indoor units 3a to 3d connected to the relay unit 2B are the heating operation mode.
  • the flow of the heat medium is the same as the flow (2) described above with reference to FIG.
  • the heat medium circulates between the heat exchanger related to heat medium (here, the condenser) 25b of the relay unit 2A and the indoor units 3a to 3d connected to the relay unit 2A, thereby heating the room.
  • the heat medium circulates between the heat exchangers between heat medium (here, the evaporator) 25a of the relay unit 2A and the indoor units 3e to 3g connected to the branch unit 60, thereby cooling the room.
  • heat is generated between the heat exchanger (in this case, the condenser) 25b of the relay unit 2B and the indoor unit 3h connected to the branch unit 60 and the indoor units 3a to 3d connected to the relay unit 2B.
  • the medium circulates and heats the room.
  • the point that the heat medium flow control device 34 is controlled to have the heat medium flow rate necessary to cover the air conditioning load required indoors is the same as described above.
  • the above heat medium flow is an example.
  • the indoor units 3a to 3d connected to the relay units 2A and 2B have condensers in the relay units 2A and 2B to which they are connected depending on whether they operate in the heating operation mode or the cooling operation mode. As long as it is selectively connected to either the heat exchanger related to heat medium 25b that functions as the heat exchanger 25b or the heat exchanger related to heat medium 25a that functions as the evaporator. The same applies to each of the indoor units 3e to 3h connected to the branch unit 60, and functions as a condenser in the two relay units 2 depending on whether the operation is performed in the heating operation mode or the cooling operation mode.
  • connection pipe 70 One of the two heat exchangers 25b between the heat exchangers 25b and one of the two heat exchangers 25a between the heat exchangers 25a functioning as an evaporator in the two relay units 2 are connected via a connection pipe 70. Can be selectively connected.
  • the relay unit 2B is driven so that the flow of the heat source side refrigerant in the refrigerant circuit A in the relay unit 2B is the flow described in FIG. 10, and the connection destinations of the indoor units 3e to 3h are connected to the relay unit. It is only necessary to switch from 2A to the heat exchanger related to heat medium 25a functioning as an evaporator in the relay unit 2B.
  • FIG. 12 is a diagram (part 2) illustrating the flow of the heat-source-side refrigerant and the flow of the heat medium during the heating-main operation in the mixed operation in the air-conditioning apparatus 100 illustrated in FIG.
  • One of the two outdoor units 1A and 1B installed, a relay unit 2B connected to the outdoor unit 1 (here, 1B), and indoor units 3a to 3d connected to the relay unit 2B The heating main operation mode when all are stopped will be described.
  • a part of the indoor units 3a to 3d connected to the relay unit 2A and the indoor units 3e to 3h connected to the branch unit 60 (in this case, the indoor units 3a to 3d connected to the relay unit 2A) Is a heating operation mode, and the rest (in this case, the indoor units 3e to 3h connected to the branch unit 60) is in the cooling operation mode.
  • tube represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by a solid line arrow
  • the flow direction of the heat medium is indicated by a dotted line arrow.
  • the flow of the heat source side refrigerant in the refrigerant circulation circuit A is the same as the flow in the [mixed operation mode (heating main operation mode)] described in FIG.
  • the flow of the heat medium in the heat medium circuit B is the same as the flow described in FIG. That is, the heat medium circulates between the heat exchanger (in this case, the condenser) 25b of the relay unit 2A and the indoor units 3a to 3d connected to the relay unit 2A. Then, the heat medium exchanges heat with the room air in the use side heat exchangers 35a to 35d, thereby heating the room where the indoor units 3a to 3d are respectively installed. Further, the heat medium circulates between the heat medium heat exchanger (here, the evaporator) 25a of the relay unit 2A and the indoor units 3e to 3h connected to the branch unit 60.
  • the heat medium heat exchanger here, the condenser
  • the heat medium exchanges heat with indoor air in the use side heat exchangers 35e to 35h, whereby the room in which the indoor units 3e to 3h are respectively installed is cooled.
  • the heat medium flow rate adjusting devices 34a to 34h are controlled so as to have a heat medium flow rate necessary to cover the air conditioning load required indoors.
  • Each of the indoor units 3a to 3d connected to the relay unit 2A operates as a condenser in the relay unit 2A to which the indoor units 3a to 3d operate in the heating operation mode or the cooling operation mode. It may be selectively connected to either the intermediate heat exchanger 25b or the intermediate heat exchanger 25 functioning as an evaporator. The same applies to each of the indoor units 3e to 3h connected to the branch unit 60, and heat that functions as a condenser in the relay unit 2A depending on whether the operation is performed in the heating operation mode or the cooling operation mode.
  • the medium heat exchanger 25b and the heat medium heat exchanger 25 functioning as an evaporator may be selectively connected via the connection pipe 70.
  • the outdoor unit 1 can be added by connecting the branch unit 60 to the connection port 2 a for connecting the branch unit provided in the relay unit 2. Since the branch unit 60 is simply configured with a switching device and does not have a heat exchanger or the like, a minimum necessary system configuration can be realized when the indoor unit 3 is added. As a result, it is possible to improve the convenience, workability, and economy of the system.
  • the total air-conditioning capacity of all the indoor units 3 in operation is allocated, for example, approximately half by half. It is possible to appropriately select the connection destination as the heat exchanger related to heat medium 25a or the heat exchanger related to heat medium 25b. Therefore, it is possible to suppress the inconvenience that shortage occurs due to the transfer power required for the two pumps 31a and 31b being biased to either one.
  • the pumps 31a and 31b are used for cooling or heating only. For this reason, the connection destination of each indoor unit 3 cannot be distributed according to the air conditioning capacity.
  • the branch unit 60 is connected across a plurality of relay units 2, the pumps 31a and 31b of the plurality of relay units 2 can be used as conveyance power. Therefore, efficient air conditioning can be realized by using the pumps 31a and 31b of each relay unit 2.
  • an opening / closing valve is provided to the connection pipe 70 connected to each relay unit 2 to perform the opening / closing operation.
  • the connection pipe 70 What is necessary is just to close the provided on-off valve and to prevent the inflow of the heat medium.
  • the air conditioner 100 is further provided to the first heat medium flow switching device 32, the second heat medium flow switching device 33, the heat medium flow control device 34, and the connection pipe 70 in the branch unit 60.
  • a temperature sensor and a control device for performing operation control on the on-off valve may be further provided.
  • the second refrigerant flow switching device 28 has been described as an example of a four-way valve. However, the second refrigerant flow switching device 28 is not limited thereto, and a plurality of two-way flow switching valves or three-way flow switching valves are used. The refrigerant may flow in the same manner as when a four-way valve is used.
  • the heat medium flow control device 34 is built in the relay unit 2
  • the heat medium flow control device 34 may be built in the indoor unit 3, or may not be built in the relay unit 2 and the indoor unit 3, but may be installed outside the casing of these units.
  • the heat source side heat exchanger 12 and the use side heat exchanger 35 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but it is not limited thereto.
  • the use-side heat exchanger 35 a panel heater using radiation can be used.
  • the heat source side heat exchanger 12 a water-cooled type that moves heat by water or antifreeze can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 35 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.
  • each of the use side heat exchanger 35 and the heat medium flow control device 34 connected to the relay unit 2 is four, the number is not limited to four, and the use side heat exchange is not limited to four.
  • One set or more may be used as the set of the vessel 35 and the heat medium flow control device 34. The same applies to the use side heat exchanger 35 and the heat medium flow control device 34 connected to the branch unit 60.
  • the branch unit 60 straddles the two relay units 2 has been described, but the number of the relay units 2 is not limited to two and may be more than one.
  • the branch unit 60 is configured to include the same number of connection portions 61 as the number of relay units 2 to be connected. Then, the heat medium from each relay unit 2 may be appropriately switched and circulated to the use side heat exchanger 35 connected to the branch unit 60.

Abstract

An air-conditioning device is equipped with a branching unit 60 for addition of usage-side heat exchangers. The branching unit 60 is equipped with: a connecting section 61, which is connected via connecting conduits 70 to a connection port 2a used for branching unit connection in a relay unit 2, and through which a heat medium in a heat medium circulation circuit B passes; a branching section 62, which is connected to one or more additional usage-side heat exchangers 35e-35h, and which branches the heat medium flowing into the branching unit 60 via the connecting section 61, and circulates the heat medium to the one or more additional usage-side heat exchangers 35e-35h; and second heat medium flow path switching means (first heat medium flow path switching devices 32e-32h, second heat medium flow path switching devices 33e-33h, and heat medium flow path switching devices 34e-34h), which are provided in correspondence with the one or more additional usage-side heat exchangers 35e-35h, and which connect the one or more additional usage-side heat exchangers 35e-35h to one of multiple inter-heat-medium heat exchangers 25a, 25b.

Description

空気調和装置Air conditioner
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。 The present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
 従来より、ビル用マルチエアコンなどの空気調和装置において、室外ユニットから中継ユニットまで冷媒を循環させ、中継ユニットから室内ユニットまで水等の熱媒体を循環させることにより、室内ユニットに水等の熱媒体を循環させながら、熱媒体の搬送動力を低減させる空気調和装置が提案されている(たとえば、特許文献1参照)。 Conventionally, in an air conditioner such as a multi air conditioning system for buildings, a refrigerant such as water is circulated from an outdoor unit to a relay unit, and a heat medium such as water is circulated from the relay unit to the indoor unit. An air conditioning apparatus has been proposed that reduces the conveyance power of the heat medium while circulating the air (see, for example, Patent Document 1).
国際公開第10/049998号International Publication No. 10/049998 国際公開第2014/128961号International Publication No. 2014/128961 国際公開第2014/128962号International Publication No. 2014/128962
 上記特許文献1に記載の技術では、1台の中継ユニットの筐体から取り出すことができる分岐口数、すなわち、接続することができる室内ユニットの台数は固定であり、中継ユニットに接続する室内ユニットを増設に対応可能な構成となっていない。このため、1台の中継ユニットで接続可能な台数を超えて室内ユニットを増設する場合、その増設台数に応じて中継ユニットおよび室外ユニットのセット一式を新たに追加導入する必要があり、コスト高となるという問題があった。 In the technique described in Patent Document 1, the number of branch ports that can be taken out from the casing of one relay unit, that is, the number of indoor units that can be connected is fixed, and the indoor units connected to the relay unit are It is not configured to support expansion. For this reason, when adding indoor units beyond the number of units that can be connected by one relay unit, it is necessary to introduce a new set of relay units and outdoor units according to the number of additional units. There was a problem of becoming.
 本発明は、上記のような課題を解決するためになされたもので、室内ユニットの接続台数の増設に低コストで対応することが可能な空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can cope with an increase in the number of indoor units connected at a low cost.
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、第1絞り装置および複数の熱媒体間熱交換器の冷媒側流路を冷媒配管で接続して熱源側冷媒が循環する冷媒循環回路と、複数の熱媒体間熱交換器の熱媒体側流路、複数の熱媒体搬送装置、複数の利用側熱交換器を熱媒体配管で接続して熱媒体が循環する熱媒体循環回路と、熱媒体循環回路において複数の利用側熱交換器のそれぞれに対応して設けられ、利用側熱交換器を複数の熱媒体間熱交換器のいずれかに接続するように熱媒体の流路を切り替える第1熱媒体流路切替手段と、複数の熱媒体間熱交換器を備え、複数の第1熱媒体流路切替手段を介して複数の利用側熱交換器が接続される中継ユニットと、利用側熱交換器増設用の分岐ユニットとを備え、分岐ユニットは、中継ユニットの分岐ユニット接続用の接続口に接続配管を介して接続され、熱媒体循環回路の熱媒体が通過する接続部と、1または複数の増設利用側熱交換器と接続され、接続部を介して分岐ユニット内に流入した熱媒体を分岐して1または複数の増設利用側熱交換器に循環させる分岐部と、1または複数の増設利用側熱交換器のそれぞれに対応して設けられ、1または複数の増設利用側熱交換器のそれぞれを、複数の熱媒体間熱交換器のいずれかに接続する第2熱媒体流路切替手段とを備えたものである。 An air conditioner according to the present invention is a refrigerant in which a refrigerant, a heat source side refrigerant circulates by connecting refrigerant side flow paths of a compressor, a heat source side heat exchanger, a first expansion device, and a plurality of heat exchangers between heat mediums with a refrigerant pipe. A heat medium circulation circuit in which a heat medium circulates by connecting a circulation circuit, a heat medium side flow path of a plurality of heat exchangers between heat mediums, a plurality of heat medium conveying devices, and a plurality of use side heat exchangers with a heat medium pipe And a flow path of the heat medium provided to correspond to each of the plurality of use side heat exchangers in the heat medium circulation circuit, and to connect the use side heat exchanger to any of the plurality of heat exchangers between heat mediums A first heat medium flow switching means that switches between, and a relay unit that includes a plurality of heat exchangers between heat media, and to which a plurality of use side heat exchangers are connected via the plurality of first heat medium flow switching means A branch unit for adding a heat exchanger on the use side. Connected to the connection port for connecting the branch unit of the second through a connection pipe, connected to the connection part through which the heat medium of the heat medium circulation circuit passes, and one or a plurality of additional use side heat exchangers, and connected via the connection part. A branch section for branching the heat medium flowing into the branch unit and circulating it to one or a plurality of additional use side heat exchangers, and one or a plurality of additional use side heat exchangers. Alternatively, each of the plurality of additional use side heat exchangers is provided with second heat medium flow switching means for connecting to any of the plurality of heat exchangers related to heat medium.
 本発明によれば、室内ユニットの接続台数の増設に低コストで対応することが可能な空気調和装置を得ることができる。 According to the present invention, it is possible to obtain an air conditioner that can cope with an increase in the number of connected indoor units at a low cost.
本発明の実施の形態に係る空気調和装置100の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus 100 which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置100における、室外ユニット1および中継ユニット2の回路構成の一例を示す図である。It is a figure which shows an example of the circuit structure of the outdoor unit 1 and the relay unit 2 in the air conditioning apparatus 100 which concerns on embodiment of this invention. 図1の分岐ユニット60の熱媒体循環回路構成の一例を示した図である。It is the figure which showed an example of the heat-medium circulation circuit structure of the branch unit 60 of FIG. 図1の空気調和装置100の回路構成を示す図である。It is a figure which shows the circuit structure of the air conditioning apparatus 100 of FIG. 本発明の実施の形態に係る空気調和装置100における冷媒回路の他の一例を示す図である。It is a figure which shows another example of the refrigerant circuit in the air conditioning apparatus 100 which concerns on embodiment of this invention. 図4に示す空気調和装置100における全暖房運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。It is a figure which shows the flow of the heat-source side refrigerant | coolant at the time of the heating only operation in the air conditioning apparatus 100 shown in FIG. 4, and the flow of a heat medium. 図5に示す空気調和装置100における全暖房運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。It is a figure which shows the flow of the heat-source side refrigerant | coolant at the time of the heating only operation in the air conditioning apparatus 100 shown in FIG. 5, and the flow of a heat medium. 図4に示す空気調和装置100の全冷房運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。It is a figure which shows the flow of the heat source side refrigerant | coolant at the time of the cooling only operation | movement of the air conditioning apparatus 100 shown in FIG. 4, and the flow of a heat medium. 図5に示す空気調和装置110における全冷房運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。It is a figure which shows the flow of the heat source side refrigerant | coolant at the time of the cooling only operation in the air conditioning apparatus 110 shown in FIG. 5, and the flow of a heat medium. 図4に示す空気調和装置における混在運転のうち、暖房主体運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。It is a figure which shows the flow of the heat-source side refrigerant | coolant at the time of heating main operation, and the flow of a heat medium among the mixed operation in the air conditioning apparatus shown in FIG. 図5に示す空気調和装置100における混在運転のうち、暖房主体運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図(その1)である。It is the figure (the 1) which shows the flow of the heat-source side refrigerant | coolant at the time of heating main operation | movement, and the flow of a heat medium among the mixed operation in the air conditioning apparatus 100 shown in FIG. 図5に示す空気調和装置100における混在運転のうち、暖房主体運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図(その2)である。It is the figure (the 2) which shows the flow of the heat-source side refrigerant | coolant at the time of heating main operation | movement, and the flow of a heat medium among the mixed operation in the air conditioning apparatus 100 shown in FIG.
 以下、図面に基づいて本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施の形態.
 図1は、本発明の実施の形態に係る空気調和装置100の設置例を示す概略図である。
 図1に示すように、本実施の形態に係る空気調和装置100は、室外ユニット(熱源機)1と、複数台の室内ユニット3と、室外ユニット1と室内ユニット3との間に介在する1台の中継ユニット2とを有している。そして、空気調和装置100は、各室内ユニット3が冷房運転または暖房運転を選択できるものである。また、空気調和装置100で実行する運転モードには、以下の4つの運転モードがある。
Embodiment.
FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner 100 according to an embodiment of the present invention.
As shown in FIG. 1, an air conditioner 100 according to the present embodiment includes an outdoor unit (heat source unit) 1, a plurality of indoor units 3, and an intervening unit 1 between the outdoor unit 1 and the indoor unit 3. And a relay unit 2 as a base. In the air conditioner 100, each indoor unit 3 can select a cooling operation or a heating operation. In addition, the operation modes executed by the air conditioning apparatus 100 include the following four operation modes.
(a)動作している室内ユニット3の全てが冷房運転を実行する全冷房運転モード
(b)動作している室内ユニット3の全てが暖房運転を実行する全暖房運転モード
(c)冷房運転と暖房運転を実行する室内ユニット3が混在する冷暖房混在運転モードであって、冷房負荷の方が大きい冷房主体運転モード
(d)冷房運転と暖房運転を実行する室内ユニット3が混在する冷暖房混在運転モードであって、暖房負荷の方が大きい暖房主体運転モード
(A) All-cooling operation mode in which all the operating indoor units 3 perform the cooling operation (b) All-heating operation mode in which all the operating indoor units 3 perform the heating operation (c) The cooling operation The cooling / heating mixed operation mode in which the indoor units 3 that perform the heating operation are mixed, and the cooling main operation mode in which the cooling load is larger (d) the cooling / heating mixed operation mode in which the indoor units 3 that perform the cooling operation and the heating operation are mixed The heating-dominated operation mode with a larger heating load
 中継ユニット2は、熱源側冷媒と熱媒体とで熱交換を行うものである。室外ユニット1と中継ユニット2とは、熱源側冷媒が流れる冷媒配管4で接続され、熱源側冷媒を循環させる冷凍サイクルである冷媒循環回路Aを構成している。中継ユニット2と室内ユニット3とは、熱媒体が流れる熱媒体配管5で接続され、熱媒体を循環させる熱媒体循環回路Bを構成している。なお、冷媒循環回路Aおよび熱媒体循環回路Bのそれぞれに接続される切替装置等の各構成部品については以下で改めて説明する。そして、室外ユニット1で生成された冷熱あるいは温熱は、中継ユニット2を介して室内ユニット3に配送されるようになっている。 The relay unit 2 performs heat exchange between the heat source side refrigerant and the heat medium. The outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 4 through which the heat source side refrigerant flows, and constitute a refrigerant circulation circuit A that is a refrigeration cycle for circulating the heat source side refrigerant. The relay unit 2 and the indoor unit 3 are connected by a heat medium pipe 5 through which the heat medium flows, and constitute a heat medium circulation circuit B that circulates the heat medium. In addition, each component, such as a switching apparatus connected to each of the refrigerant circuit A and the heat medium circuit B, will be described below again. The cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 3 via the relay unit 2.
 また、本実施の形態の空気調和装置100は、室内ユニット3の接続台数を増設することが可能なことを特徴の一つとしており、中継ユニット2に、熱媒体循環回路Bにおける熱媒体の分岐数を増やして室内ユニット3の接続台数の増設を可能とする分岐ユニット60が接続されている。中継ユニット2は、分岐ユニット60を接続するための接続口2a(後述の図2参照)を備えており、この接続口2aに接続配管70を介して分岐ユニット60が接続されている。 In addition, the air conditioner 100 according to the present embodiment is characterized in that it is possible to increase the number of indoor units 3 connected, and the relay unit 2 is connected to the heat medium branching circuit B in the heat medium circulation circuit B. A branch unit 60 that increases the number of units connected to the indoor units 3 and is connected is connected. The relay unit 2 includes a connection port 2 a (see FIG. 2 described later) for connecting the branch unit 60, and the branch unit 60 is connected to the connection port 2 a via a connection pipe 70.
 以下ではまず、室外ユニット1、中継ユニット2および室内ユニット3について説明し、分岐ユニット60については改めて後述する。 Hereinafter, first, the outdoor unit 1, the relay unit 2, and the indoor unit 3 will be described, and the branch unit 60 will be described later.
 室外ユニット1は、通常、ビルなどの建物9の外の空間(たとえば、屋上など)である室外空間6に配置され、中継ユニット2を介して室内ユニット3に冷熱または温熱を供給するものである。 The outdoor unit 1 is normally disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 3 via the relay unit 2. .
 中継ユニット2は、室外ユニット1で生成される温熱または冷熱を、室内ユニット3に伝達するものである。この中継ユニット2は、室外ユニット1および室内ユニット3とは別筐体として、室外空間6および室内空間7とは別の位置に設置できるように構成されている。また、中継ユニット2は、冷媒配管4を介して室外ユニット1に接続され、また、熱媒体配管5を介して室内ユニット3に接続されている。 The relay unit 2 transmits the heat or cold generated by the outdoor unit 1 to the indoor unit 3. The relay unit 2 is configured as a separate housing from the outdoor unit 1 and the indoor unit 3 so as to be installed at a position different from the outdoor space 6 and the indoor space 7. The relay unit 2 is connected to the outdoor unit 1 through the refrigerant pipe 4 and is connected to the indoor unit 3 through the heat medium pipe 5.
 室内ユニット3は、建物9の内部の空間(たとえば、居室など)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。図1では、室内ユニット3が天井埋込型であるものを図示しているが、これに限定されるものではない。 The indoor unit 3 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied. In FIG. 1, the indoor unit 3 is a ceiling-embedded type, but is not limited thereto.
 熱源側冷媒は、室外ユニット1から中継ユニット2に冷媒配管4を通して搬送される。搬送された熱源側冷媒は、中継ユニット2内の後述の熱媒体間熱交換器25(図2参照)にて熱媒体と熱交換を行い、熱媒体を加熱または冷却する。つまり、熱媒体は、熱媒体間熱交換器で加熱または冷却されて温水または冷水となる。中継ユニット2にて作られた温水または冷水は、後述のポンプ31(図2参照)にて、熱媒体配管5を介して室内ユニット3へ搬送され、室内ユニット3にて室内空間7に対する暖房運転または冷房運転に供される。 The heat source side refrigerant is conveyed from the outdoor unit 1 to the relay unit 2 through the refrigerant pipe 4. The conveyed heat source side refrigerant exchanges heat with the heat medium in the heat exchanger related to heat medium 25 (see FIG. 2) described later in the relay unit 2 to heat or cool the heat medium. That is, the heat medium is heated or cooled by the heat exchanger related to heat medium to become hot water or cold water. Hot water or cold water produced by the relay unit 2 is conveyed to the indoor unit 3 via the heat medium pipe 5 by a pump 31 (see FIG. 2) described later, and the indoor unit 3 performs heating operation on the indoor space 7. Or it is used for cooling operation.
 熱源側冷媒としては、たとえばR-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒を用いることができる。熱源側冷媒として他にたとえば、化学式内に二重結合を含む、CF3 、CF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒、およびその混合物を用いることができる。熱源側冷媒としてはさらに、COまたはプロパンなどの自然冷媒を用いることができる。 As the heat source side refrigerant, for example, a single refrigerant such as R-22 and R-134a, a pseudo azeotropic refrigerant mixture such as R-410A and R-404A, and a non-azeotropic refrigerant mixture such as R-407C can be used. . As the heat source side refrigerant, for example, a refrigerant containing a double bond in a chemical formula and having a relatively low global warming potential such as CF 3 or CF═CH 2 and a mixture thereof can be used. Furthermore, natural refrigerants such as CO 2 or propane can be used as the heat source side refrigerant.
 一方、熱媒体としては、たとえば水、ブライン(不凍液)、水と不凍液の混合液、水と防食効果が高い添加剤との混合液などを用いることができる。つまり、空気調和装置100は、熱媒体としてこれらを採用することで、室内空間7への熱媒体の漏洩に対する安全性の向上に寄与することになる。なお、本実施の形態に係る空気調和装置100は、熱媒体として水が採用されているものとして説明する。 On the other hand, as the heat medium, for example, water, brine (antifreeze), a mixture of water and antifreeze, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. That is, the air conditioning apparatus 100 contributes to the improvement of the safety | security with respect to the leakage of the heat medium to the indoor space 7 by employ | adopting these as a heat medium. In addition, the air conditioning apparatus 100 according to the present embodiment will be described assuming that water is employed as the heat medium.
 図1に示すように、本実施の形態に係る空気調和装置100は、室外ユニット1と中継ユニット2とが2本の冷媒配管4を用いて接続され、中継ユニット2と各室内ユニット3とが2本の熱媒体配管5を用いて接続されている。このように、空気調和装置100では、2本の配管(冷媒配管4、熱媒体配管5)を用いて各ユニット(室外ユニット1、中継ユニット2および室内ユニット3)を接続することにより、施工が容易となっている。 As shown in FIG. 1, an air conditioner 100 according to the present embodiment includes an outdoor unit 1 and a relay unit 2 connected using two refrigerant pipes 4, and the relay unit 2 and each indoor unit 3 are connected to each other. Two heat medium pipes 5 are used for connection. As described above, in the air conditioner 100, the construction is performed by connecting each unit (the outdoor unit 1, the relay unit 2, and the indoor unit 3) using two pipes (the refrigerant pipe 4 and the heat medium pipe 5). It has become easy.
 なお、図1においては、中継ユニット2が、建物9の内部ではあるが室内空間7とは別の空間である天井裏などの空間(以下、単に空間8と称する)に設置されている状態を例に示している。中継ユニット2は、その他、エレベーターなどがある共用空間などに設置することも可能である。また、図1においては、室内ユニット3が天井カセット型である場合を例に示してあるが、これに限定されるものではなく、天井埋込型や天井吊下式など、室内空間7に直接またはダクトなどにより、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。 In FIG. 1, the relay unit 2 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7. An example is shown. The relay unit 2 can also be installed in a common space where there is an elevator or the like. Further, FIG. 1 shows an example in which the indoor unit 3 is a ceiling cassette type, but the present invention is not limited to this, and the indoor unit 3 is not directly limited to the indoor space 7 such as a ceiling embedded type or a ceiling suspended type. Alternatively, any type of air can be used as long as heating air or cooling air can be blown out by a duct or the like.
 図1においては、室外ユニット1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外ユニット1は、換気口付の機械室などの囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよい。また、水冷式の室外ユニット1を用いる場合にも室外ユニット1を建物9の内部に設置するようにしてもよい。このような場所に室外ユニット1を設置するとしても、特段の問題が発生することはない。 FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this. For example, the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. May be installed. Also, when the water-cooled outdoor unit 1 is used, the outdoor unit 1 may be installed inside the building 9. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
 また、中継ユニット2は、室外ユニット1の近傍に設置してもよい。ただし、このように中継ユニット2を室外ユニット1の近傍に設置する場合には、中継ユニット2から室内ユニット3までを接続する熱媒体配管5の長さについて留意するとよい。これは、中継ユニット2から室内ユニット3までの距離が長くなると、その分熱媒体の搬送動力が大きくなり、省エネルギー化の効果は薄れるためである。 Further, the relay unit 2 may be installed in the vicinity of the outdoor unit 1. However, when the relay unit 2 is installed in the vicinity of the outdoor unit 1 in this way, it is preferable to pay attention to the length of the heat medium pipe 5 that connects the relay unit 2 to the indoor unit 3. This is because if the distance from the relay unit 2 to the indoor unit 3 is increased, the heat transfer power of the heat medium is increased correspondingly, and the energy saving effect is reduced.
 さらに、室外ユニット1、中継ユニット2および室内ユニット3の接続台数は、図1に図示される台数に限定されるものではなく、空気調和装置100が設置される建物9に応じて台数を決定すればよい。 Furthermore, the number of connected outdoor units 1, relay units 2, and indoor units 3 is not limited to the number illustrated in FIG. 1, and the number may be determined according to the building 9 in which the air conditioner 100 is installed. That's fine.
 室外ユニット1台に対して複数台の中継ユニット2を接続する場合、その複数台の中継ユニット2をビルなどの建物における共用スペースまたは天井裏などのスペースに点在して設置することができる。そうすることにより、各中継ユニット2内の後述の熱媒体間熱交換器25a、25b(図2参照)で空調負荷を賄うことができる。また、室内ユニット3を、各中継ユニット2内におけるポンプ31a、31b(図2参照)の搬送許容範囲内の距離または高さに設置することが可能であり、ビルなどの建物全体へ対しての配置が可能となる。 When a plurality of relay units 2 are connected to one outdoor unit, the plurality of relay units 2 can be installed in a common space in a building such as a building or in a space such as a ceiling. By doing so, the air-conditioning load can be covered by the heat exchangers 25a and 25b (see FIG. 2) described later in each relay unit 2. Further, the indoor unit 3 can be installed at a distance or height within the allowable transport range of the pumps 31a and 31b (see FIG. 2) in each relay unit 2, and the whole unit such as a building can be installed. Placement is possible.
 図2は、本発明の実施の形態に係る空気調和装置100における、室外ユニット1および中継ユニット2の回路構成の一例を示す図である。
 図2に示すように、室外ユニット1と中継ユニット2とが、中継ユニット2に備えられている熱媒体間熱交換器25a、25bを介して冷媒配管4で接続されている。また、中継ユニット2と室内ユニット3とが、熱媒体間熱交換器25a、25bを介して熱媒体配管5で接続されている。つまり、熱媒体間熱交換器25a、25bは、冷媒配管4を介して供給される熱源側冷媒と、熱媒体配管5を介して供給される熱媒体とを熱交換させるものである。
FIG. 2 is a diagram illustrating an example of circuit configurations of the outdoor unit 1 and the relay unit 2 in the air-conditioning apparatus 100 according to the embodiment of the present invention.
As shown in FIG. 2, the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 4 via the heat exchangers 25 a and 25 b provided in the relay unit 2. Moreover, the relay unit 2 and the indoor unit 3 are connected by the heat medium piping 5 via the heat exchangers 25a and 25b. In other words, the heat exchangers 25 a and 25 b exchange heat between the heat source side refrigerant supplied via the refrigerant pipe 4 and the heat medium supplied via the heat medium pipe 5.
[室外ユニット1]
 室外ユニット1には、圧縮機10と、四方弁などの第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で接続されて搭載されている。また、室外ユニット1には、第1接続配管4a、第2接続配管4b、および逆止弁13a~13dが設けられている。第1接続配管4a、第2接続配管4b、および逆止弁13a~13dが設けられることで、空気調和装置100は、暖房運転モードや冷房運転モードに関わらず、室外ユニット1から中継ユニット2に流入させる熱源側冷媒の流れを一定方向にすることができるようになっている。
[Outdoor unit 1]
In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and mounted via a refrigerant pipe 4. The outdoor unit 1 is provided with a first connection pipe 4a, a second connection pipe 4b, and check valves 13a to 13d. By providing the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d, the air conditioner 100 can be connected from the outdoor unit 1 to the relay unit 2 regardless of the heating operation mode or the cooling operation mode. The flow of the heat source side refrigerant to be introduced can be set in a certain direction.
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして冷媒循環回路Aに搬送するものである。この圧縮機10は、吐出側が第1冷媒流路切替装置11に接続され、吸入側がアキュムレーター19に接続されている。圧縮機10は、たとえば容量制御可能なインバータ圧縮機などで構成するとよい。 The compressor 10 sucks the refrigerant, compresses the refrigerant to a high temperature and high pressure state, and conveys the refrigerant to the refrigerant circuit A. The compressor 10 has a discharge side connected to the first refrigerant flow switching device 11 and a suction side connected to an accumulator 19. The compressor 10 may be composed of, for example, an inverter compressor capable of capacity control.
 第1冷媒流路切替装置11は、全暖房運転モード時および冷暖房混在運転モードの暖房主体運転モード時において、圧縮機10の吐出側と逆止弁13d、および熱源側熱交換器12とアキュムレーター19の吸入側を接続するようにするものである。また、第1冷媒流路切替装置11は、冷房運転モード時および冷暖房混在運転モードの冷房主体運転モード時において、圧縮機10の吐出側と熱源側熱交換器12とを接続するとともに、逆止弁13cとアキュムレーター19の吸入側とを接続するようにするものである。 The first refrigerant flow switching device 11 includes a discharge side of the compressor 10, a check valve 13d, a heat source side heat exchanger 12, and an accumulator in the heating only operation mode and the heating main operation mode of the mixed heating and cooling operation mode. 19 is connected to the suction side. In addition, the first refrigerant flow switching device 11 connects the discharge side of the compressor 10 and the heat source side heat exchanger 12 in the cooling operation mode and the cooling main operation mode of the mixed heating and cooling operation mode, and performs a check. The valve 13c and the suction side of the accumulator 19 are connected.
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能する。そして、熱源側熱交換器12は、図示省略のファンなどの送風機から供給される空気の流体と熱源側冷媒との間で熱交換を行い、その熱源側冷媒を蒸発ガス化または凝縮液化するものである。この熱源側熱交換器12は、暖房運転モード時において、一方が逆止弁13bに接続され、他方がアキュムレーター19の吸入側に接続される。また、熱源側熱交換器12は、冷房運転モード時において、一方が圧縮機10の吐出側に接続され、他方が逆止弁13aに接続される。熱源側熱交換器12は、たとえば冷媒配管を流れる冷媒とフィンを通過する空気との間で熱交換ができるようなプレートフィンアンドチューブ型熱交換器で構成するとよい。 The heat source side heat exchanger 12 functions as an evaporator during heating operation, and functions as a condenser (or radiator) during cooling operation. The heat source side heat exchanger 12 exchanges heat between an air fluid supplied from a blower such as a fan (not shown) and the heat source side refrigerant, and evaporates or condenses the heat source side refrigerant. It is. One side of the heat source side heat exchanger 12 is connected to the check valve 13b and the other side is connected to the suction side of the accumulator 19 in the heating operation mode. In the cooling operation mode, one of the heat source side heat exchangers 12 is connected to the discharge side of the compressor 10 and the other is connected to the check valve 13a. The heat source side heat exchanger 12 may be configured by, for example, a plate fin and tube heat exchanger that can exchange heat between the refrigerant flowing through the refrigerant pipe and the air passing through the fins.
 アキュムレーター19は、暖房運転モード時と冷房運転モード時との必要冷媒量の違いによる余剰冷媒、過渡的な運転の変化(たとえば、室内ユニット3の運転台数の変化)に対する余剰冷媒を蓄えるものである。このアキュムレーター19は、暖房運転モード時において、吸入側が熱源側熱交換器12に接続され、吐出側が圧縮機10の吸入側に接続される。また、アキュムレーター19は、冷房運転モード時において、吸入側が逆止弁13cに接続され、吐出側が圧縮機10の吸入側に接続される。 The accumulator 19 stores surplus refrigerant due to a difference in required refrigerant amount between the heating operation mode and the cooling operation mode, and surplus refrigerant with respect to a transient operation change (for example, a change in the number of operating indoor units 3). is there. The accumulator 19 has a suction side connected to the heat source side heat exchanger 12 and a discharge side connected to the suction side of the compressor 10 in the heating operation mode. The accumulator 19 is connected to the check valve 13c on the suction side and connected to the suction side of the compressor 10 in the cooling operation mode.
 逆止弁13aは、熱源側熱交換器12と中継ユニット2との間における冷媒配管4に設けられ、所定の方向(室外ユニット1から中継ユニット2への方向)のみに熱源側冷媒の流れを許容するものである。
 逆止弁13cは、中継ユニット2と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(中継ユニット2から室外ユニット1への方向)のみに熱源側冷媒の流れを許容するものである。
 逆止弁13bは、第2接続配管4bに設けられ、暖房運転時において中継ユニット2から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。
 逆止弁13dは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を中継ユニット2に流通させるものである。
The check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 2, and flows the heat source side refrigerant only in a predetermined direction (direction from the outdoor unit 1 to the relay unit 2). It is acceptable.
The check valve 13c is provided in the refrigerant pipe 4 between the relay unit 2 and the first refrigerant flow switching device 11, and the heat source side refrigerant is only in a predetermined direction (direction from the relay unit 2 to the outdoor unit 1). It allows flow.
The check valve 13b is provided in the second connection pipe 4b and circulates the heat source side refrigerant returned from the relay unit 2 during the heating operation to the suction side of the compressor 10.
The check valve 13d is provided in the first connection pipe 4a, and causes the heat source side refrigerant discharged from the compressor 10 to flow through the relay unit 2 during the heating operation.
 第1接続配管4aは、室外ユニット1内において、第1冷媒流路切替装置11と逆止弁13cとの間における冷媒配管4と、逆止弁13aと中継ユニット2との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外ユニット1内において、逆止弁13cと中継ユニット2との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図2では、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、および、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。 In the outdoor unit 1, the first connection pipe 4 a includes a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 c and a refrigerant pipe 4 between the check valve 13 a and the relay unit 2. Are connected to each other. In the outdoor unit 1, the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13c and the relay unit 2, a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a, Are connected. FIG. 2 shows an example in which the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided. However, the present invention is not limited to this, and these are not necessarily provided.
[室内ユニット3]
 室内ユニット3には、利用側熱交換器35a~35d(単に利用側熱交換器35とも称することもある)が備えられている。この利用側熱交換器35は、熱媒体配管5を介して熱媒体流量調整装置34a~34d(単に熱媒体流量調整装置34とも称することもある)と、熱媒体配管5を介して第2熱媒体流路切替装置33a~33d(単に、第2熱媒体流路切替装置33とも称することもある)に接続されている。この利用側熱交換器35は、図示省略のファンなどの送風機から供給される空気と熱媒体との間で熱交換を行い、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
[Indoor unit 3]
The indoor unit 3 includes use side heat exchangers 35a to 35d (also simply referred to as use side heat exchangers 35). The use side heat exchanger 35 includes heat medium flow rate adjusting devices 34 a to 34 d (also simply referred to as a heat medium flow rate adjusting device 34) via the heat medium pipe 5 and the second heat heat pipe 35 via the heat medium pipe 5. The medium flow switching devices 33a to 33d (also simply referred to as the second heat medium flow switching device 33) are connected. The use side heat exchanger 35 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
 図2においては、4台の室内ユニット3a~3dが、熱媒体配管5を介して中継ユニット2に接続されている場合の例を示している。また、室内ユニット3a~3dに応じて、利用側熱交換器35も、紙面上側から利用側熱交換器35a、利用側熱交換器35b、利用側熱交換器35c、利用側熱交換器35dとする。なお、室内ユニット3の接続台数は、4台に限定されるものではない。 FIG. 2 shows an example in which four indoor units 3 a to 3 d are connected to the relay unit 2 via the heat medium pipe 5. Further, in accordance with the indoor units 3a to 3d, the use side heat exchanger 35 also includes a use side heat exchanger 35a, a use side heat exchanger 35b, a use side heat exchanger 35c, and a use side heat exchanger 35d from the upper side of the drawing. To do. The number of indoor units 3 connected is not limited to four.
[中継ユニット2]
 中継ユニット2には、2つの熱媒体間熱交換器25a、25b(単に熱媒体間熱交換器25と称することもある)と、2つの第1絞り装置26a、26b(単に第1絞り装置26と称することもある)と、2つの開閉装置27、29と、2つの第2冷媒流路切替装置28a、28b(単に第2冷媒流路切替装置28と称することもある)と、が搭載されている。中継ユニット2にはさらに、2つの熱媒体搬送装置であるポンプ31a、31b(単にポンプ31と称することもある)と、4つの第1熱媒体流路切替装置32a~32d(単に第1熱媒体流路切替装置32と称することもある)と、4つの第2熱媒体流路切替装置33a~33d(単に第2熱媒体流路切替装置33と称することもある)と、4つの熱媒体流量調整装置34a~34d(単に熱媒体流量調整装置34と称することもある)と、が搭載されている。第1熱媒体流路切替装置32、第2熱媒体流路切替装置33および熱媒体流量調整装置34は本発明の第1熱媒体流路切替手段を構成している。
[Relay unit 2]
The relay unit 2 includes two heat medium heat exchangers 25a and 25b (sometimes simply referred to as the heat medium heat exchanger 25) and two first expansion devices 26a and 26b (only the first expansion device 26). 2), two opening / closing devices 27, 29, and two second refrigerant flow switching devices 28a, 28b (sometimes simply referred to as second refrigerant flow switching device 28). ing. The relay unit 2 further includes two heat medium transfer devices, pumps 31a and 31b (sometimes simply referred to as pump 31), and four first heat medium flow switching devices 32a to 32d (simply referred to as first heat medium). A flow switching device 32), four second heat medium flow switching devices 33a to 33d (also simply referred to as a second heat medium flow switching device 33), and four heat medium flow rates. Adjustment devices 34a to 34d (also simply referred to as a heat medium flow rate adjustment device 34) are mounted. The first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device 34 constitute the first heat medium flow switching means of the present invention.
 なお、第1熱媒体流路切替装置32a~32d、第2熱媒体流路切替装置33a~33dおよび熱媒体流量調整装置34a~34dは、これらの切替装置の機能を一元化した一体化流路切替装置に代えることも可能である。一体化流路切替装置は、具体的にはたとえば、第1熱媒体流路切替装置32a~32d、第2熱媒体流路切替装置33a~33dおよび熱媒体流量調整装置34a~34dのそれぞれの機能を備えた特許文献2または特許文献3のようなブロック(一体化)構造を有する構成としてもよい。 The first heat medium flow switching devices 32a to 32d, the second heat medium flow switching devices 33a to 33d, and the heat medium flow control devices 34a to 34d are integrated flow channel switching that unifies the functions of these switching devices. It is also possible to replace it with a device. Specifically, the integrated flow path switching device includes, for example, the functions of the first heat medium flow path switching devices 32a to 32d, the second heat medium flow path switching devices 33a to 33d, and the heat medium flow rate adjustment devices 34a to 34d. It is good also as a structure which has a block (integrated) structure like patent document 2 or patent document 3 provided with these.
 熱媒体間熱交換器25は、凝縮器(放熱器)または蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行い、室外ユニット1で生成され熱源側冷媒に貯えられた冷熱または温熱を熱媒体に伝達するものである。つまり、暖房運転をしている際には、熱媒体間熱交換器25は凝縮器(放熱器)として機能して熱源側冷媒の温熱を熱媒体に伝達する。また、冷房運転をしている際には、熱媒体間熱交換器25は蒸発器として機能して熱源側冷媒の冷熱を熱媒体に伝達するものである。 The heat exchanger related to heat medium 25 functions as a condenser (heat radiator) or an evaporator, performs heat exchange between the heat source side refrigerant and the heat medium, and generates heat generated by the outdoor unit 1 or stored in the heat source side refrigerant. It transfers heat to the heat medium. That is, during the heating operation, the heat exchanger related to heat medium 25 functions as a condenser (heat radiator) and transmits the heat of the heat source side refrigerant to the heat medium. Further, during the cooling operation, the heat exchanger related to heat medium 25 functions as an evaporator and transmits the cold heat of the heat source side refrigerant to the heat medium.
 熱媒体間熱交換器25aは、冷媒循環回路Aにおける第1絞り装置26aと第2冷媒流路切替装置28aとの間に設けられており、冷暖房混在運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器25bは、冷媒循環回路Aにおける第1絞り装置26bと第2冷媒流路切替装置28bとの間に設けられており、冷暖房混在運転モード時において熱媒体の加熱に供するものである。 The heat exchanger related to heat medium 25a is provided between the first expansion device 26a and the second refrigerant flow switching device 28a in the refrigerant circuit A, and serves to cool the heat medium in the air-conditioning mixed operation mode. It is. The heat exchanger related to heat medium 25b is provided between the first expansion device 26b and the second refrigerant flow switching device 28b in the refrigerant circulation circuit A, and heats the heat medium in the air-conditioning mixed operation mode. It is something to offer.
 第1絞り装置26は、減圧弁または膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。第1絞り装置26aは、冷房運転時の熱源側冷媒の流れ(後述の図8参照)において熱媒体間熱交換器25aの上流側に設けられている。第1絞り装置26bは、冷房運転時の熱源側冷媒の流れ(後述の図8参照)において熱媒体間熱交換器25bの上流側に設けられている。第1絞り装置26は、開度が可変に制御可能なもの、たとえば電子式膨張弁などで構成するとよい。 The first expansion device 26 functions as a pressure reducing valve or an expansion valve, and expands the heat source side refrigerant by reducing the pressure. The first expansion device 26a is provided on the upstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation (see FIG. 8 described later). The first expansion device 26b is provided on the upstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant during the cooling operation (see FIG. 8 described later). The first throttling device 26 may be constituted by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
 開閉装置27および開閉装置29は、たとえば通電により開閉動作が可能な電磁弁などで構成され、それらが設けられている流路を開閉するものである。つまり、開閉装置27および開閉装置29は、運転モードに応じて開閉が制御され、熱源側冷媒の流路を切り替えている。 The opening / closing device 27 and the opening / closing device 29 are constituted by, for example, electromagnetic valves that can be opened and closed by energization, and open and close the flow path in which they are provided. That is, the opening / closing device 27 and the opening / closing device 29 are controlled to open / close according to the operation mode, and switch the flow path of the heat source side refrigerant.
 開閉装置27は、熱源側冷媒の入口側における冷媒配管4(室外ユニット1と中継ユニット2とを接続している冷媒配管4のうち紙面最下段に位置する冷媒配管4)に設けられている。開閉装置29は、熱源側冷媒の入口側の冷媒配管4と出口側の冷媒配管4とを接続した配管(バイパス管20)に設けられている。なお、開閉装置27および開閉装置29は、それらが設けられている流路を開閉可能なものであればよく、たとえば電子式膨張弁などの開度を制御するものでもよい。 The opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant (the refrigerant pipe 4 positioned at the lowest level in the drawing among the refrigerant pipes 4 connecting the outdoor unit 1 and the relay unit 2). The opening / closing device 29 is provided in a pipe (bypass pipe 20) connecting the refrigerant pipe 4 on the inlet side of the heat source side refrigerant and the refrigerant pipe 4 on the outlet side. Note that the opening / closing device 27 and the opening / closing device 29 may be any devices that can open and close the flow path in which they are provided, and may be devices that control the opening of an electronic expansion valve, for example.
 第2冷媒流路切替装置28は、たとえば四方弁などで構成され、運転モードに応じて熱媒体間熱交換器25が凝縮器または蒸発器として機能するよう、熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置28aは、冷房運転時の熱源側冷媒の流れ(後述の図8参照)において熱媒体間熱交換器25aの下流側に設けられている。第2冷媒流路切替装置28bは、冷房運転モード時の熱源側冷媒の流れ(後述の図8参照)において熱媒体間熱交換器25bの下流側に設けられている。 The second refrigerant flow switching device 28 is constituted by a four-way valve, for example, and switches the flow of the heat source side refrigerant so that the heat exchanger related to heat medium 25 functions as a condenser or an evaporator according to the operation mode. is there. The second refrigerant flow switching device 28a is provided on the downstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation (see FIG. 8 described later). The second refrigerant flow switching device 28b is provided on the downstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling operation mode (see FIG. 8 described later).
 ポンプ31は、熱媒体配管5を流れる熱媒体を熱媒体循環回路Bに循環させるものである。ポンプ31aは、熱媒体間熱交換器25aと第2熱媒体流路切替装置33との間における熱媒体配管5に設けられている。ポンプ31bは、熱媒体間熱交換器25bと第2熱媒体流路切替装置33との間における熱媒体配管5に設けられている。ポンプ31は、たとえば容量制御可能なポンプなどで構成し、室内ユニット3における負荷の大きさによってその流量を調整できるようにしておくとよい。 The pump 31 circulates the heat medium flowing through the heat medium pipe 5 to the heat medium circuit B. The pump 31 a is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 25 a and the second heat medium flow switching device 33. The pump 31 b is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 25 b and the second heat medium flow switching device 33. The pump 31 may be constituted by a capacity-controllable pump, for example, and the flow rate thereof may be adjusted according to the load in the indoor unit 3.
 第1熱媒体流路切替装置32は、利用側熱交換器35の熱媒体流路の出口側と、熱媒体間熱交換器25の熱媒体流路の入口側との接続を切り替えるものである。第1熱媒体流路切替装置32は、室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。 The first heat medium flow switching device 32 switches the connection between the outlet side of the heat medium flow path of the use side heat exchanger 35 and the inlet side of the heat medium flow path of the heat exchanger related to heat medium 25. . The number of first heat medium flow switching devices 32 is set according to the number of indoor units 3 installed (here, four).
 第1熱媒体流路切替装置32は、利用側熱交換器35の熱媒体流路の出口側の接続先を、熱媒体間熱交換器25aの熱媒体流路の入口側または熱媒体間熱交換器25bの熱媒体流路の入口側に切り替えるものである。第1熱媒体流路切替装置32は、三方のうちの一つが熱媒体間熱交換器25aに、三方のうちの一つが熱媒体間熱交換器25bに、三方のうちの一つが熱媒体流量調整装置34に、それぞれ接続され、利用側熱交換器35の熱媒体流路の出口側に設けられている。なお、室内ユニット3に対応させて、紙面上側から第1熱媒体流路切替装置32a、第1熱媒体流路切替装置32b、第1熱媒体流路切替装置32c、第1熱媒体流路切替装置32dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。この第1熱媒体流路切替装置32は、たとえば三方弁などで構成するとよい。 The first heat medium flow switching device 32 connects the outlet side of the heat medium flow path of the use side heat exchanger 35 to the inlet side of the heat medium flow path of the heat medium heat exchanger 25a or the heat between heat medium. It switches to the inlet side of the heat medium flow path of the exchanger 25b. In the first heat medium flow switching device 32, one of the three sides is in the heat exchanger 25a, one of the three is in the heat exchanger 25b, and one of the three is in the heat medium flow rate. Each is connected to the adjustment device 34 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 35. The first heat medium flow switching device 32a, the first heat medium flow switching device 32b, the first heat medium flow switching device 32c, and the first heat medium flow switching corresponding to the indoor unit 3 from the upper side of the drawing. Illustrated as device 32d. The switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other. The first heat medium flow switching device 32 may be constituted by a three-way valve, for example.
 第2熱媒体流路切替装置33は、利用側熱交換器35の熱媒体流路の入口側の接続先を、熱媒体間熱交換器25aの熱媒体流路の出口側または熱媒体間熱交換器25bの熱媒体流路の出口側に切り替えるものである。第2熱媒体流路切替装置33は、室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置33は、三方のうちの一つが熱媒体間熱交換器25aに、三方のうちの一つが熱媒体間熱交換器25bに、三方のうちの一つが利用側熱交換器35に、それぞれ接続され、利用側熱交換器35の熱媒体流路の入口側に設けられている。なお、室内ユニット3に対応させて、紙面上側から第2熱媒体流路切替装置33a、第2熱媒体流路切替装置33b、第2熱媒体流路切替装置33c、第2熱媒体流路切替装置33dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。この第2熱媒体流路切替装置33は、たとえば三方弁などで構成するとよい。 The second heat medium flow switching device 33 connects the connection side on the inlet side of the heat medium flow path of the use side heat exchanger 35 to the outlet side of the heat medium flow path of the heat medium heat exchanger 25a or the heat between heat medium. It switches to the exit side of the heat medium flow path of the exchanger 25b. The second heat medium flow switching device 33 is provided in a number (four in this case) corresponding to the number of indoor units 3 installed. In the second heat medium flow switching device 33, one of the three heat transfer medium heat exchangers 25a, one of the three heat transfer medium heat exchangers 25b, and one of the three heat transfer side heats. Each is connected to the exchanger 35 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 35. In correspondence with the indoor unit 3, the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium flow switching are performed from the upper side of the drawing. Illustrated as device 33d. The switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other. The second heat medium flow switching device 33 may be constituted by a three-way valve, for example.
 熱媒体流量調整装置34は、開口面積を制御できる二方弁などで構成されており、熱媒体配管5に流れる熱媒体の流量を制御するものである。熱媒体流量調整装置34は、室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置34は、一方が利用側熱交換器35に、他方が第1熱媒体流路切替装置32に、それぞれ接続され、利用側熱交換器35の熱媒体流路の出口側に設けられている。すなわち、熱媒体流量調整装置34は、室内ユニット3へ流入する熱媒体の温度および流出する熱媒体の温度により室内ユニット3へ流入する熱媒体の量を調整し、室内負荷に応じた最適な熱媒体量を室内ユニット3に提供可能とするものである。 The heat medium flow control device 34 is configured by a two-way valve or the like that can control the opening area, and controls the flow rate of the heat medium flowing through the heat medium pipe 5. The number of the heat medium flow control devices 34 is set according to the number of indoor units 3 installed (four in this case). One of the heat medium flow control devices 34 is connected to the use side heat exchanger 35 and the other is connected to the first heat medium flow switching device 32, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 35. Is provided. In other words, the heat medium flow control device 34 adjusts the amount of the heat medium flowing into the indoor unit 3 according to the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out, so that the optimum heat according to the indoor load is adjusted. The medium amount can be provided to the indoor unit 3.
 なお、室内ユニット3に対応させて、紙面上側から熱媒体流量調整装置34a、熱媒体流量調整装置34b、熱媒体流量調整装置34c、熱媒体流量調整装置34dとして図示している。また、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側に設けてもよい。また、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側であって、第2熱媒体流路切替装置33と利用側熱交換器35との間に設けてもよい。さらに、室内ユニット3において、停止モードおよびサーモOFFなどの負荷を必要としていないときは、熱媒体流量調整装置34を全閉にすることにより、室内ユニット3への熱媒体供給を止めることができる。 It should be noted that, corresponding to the indoor unit 3, the heat medium flow rate adjustment device 34a, the heat medium flow rate adjustment device 34b, the heat medium flow rate adjustment device 34c, and the heat medium flow rate adjustment device 34d are illustrated from the upper side of the drawing. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 and between the second heat medium flow switching device 33 and the use side heat exchanger 35. Good. Furthermore, when the indoor unit 3 does not require a load such as the stop mode and the thermo OFF, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 34.
 なお、第1熱媒体流路切替装置32または第2熱媒体流路切替装置33において、熱媒体流量調整装置34の機能を付加したものを用いれば、熱媒体流量調整装置34を省略することも可能である。 If the first heat medium flow switching device 32 or the second heat medium flow switching device 33 is added with the function of the heat medium flow control device 34, the heat medium flow control device 34 may be omitted. Is possible.
 また、前述の通り、第1熱媒体流路切替装置32、第2熱媒体流路切替装置33および熱媒体流量調整装置34を一体化(ブロック化)し、流路切替機能、流量調整機能、流路閉止機能を付加した一体化流路切替装置を第1熱媒体流路切替装置32、第2熱媒体流路切替装置33および熱媒体流量調整装置34に対して代用することもできる。 Further, as described above, the first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device 34 are integrated (blocked), and the flow switch function, the flow control function, An integrated flow path switching device to which a flow path closing function is added can be substituted for the first heat medium flow path switching device 32, the second heat medium flow path switching device 33, and the heat medium flow rate adjustment device.
 また、中継ユニット2には、2つの温度センサー40a、40b(単に温度センサー40と称することもある)が設けられている。温度センサー40は、熱媒体間熱交換器25から流出した熱媒体、つまり熱媒体間熱交換器25の出口における熱媒体の温度を検出するものである。温度センサー40aは、ポンプ31aの熱媒体吸入側における熱媒体配管5に設けられている。温度センサー40bは、ポンプ31bの熱媒体吸入側における熱媒体配管5に設けられている。温度センサー40は、たとえばサーミスターなどで構成するとよい。 Further, the relay unit 2 is provided with two temperature sensors 40a and 40b (sometimes simply referred to as the temperature sensor 40). The temperature sensor 40 detects the temperature of the heat medium flowing out from the intermediate heat exchanger 25, that is, the temperature of the heat medium at the outlet of the intermediate heat exchanger 25. The temperature sensor 40a is provided in the heat medium pipe 5 on the heat medium suction side of the pump 31a. The temperature sensor 40b is provided in the heat medium pipe 5 on the heat medium suction side of the pump 31b. The temperature sensor 40 may be composed of, for example, a thermistor.
 温度センサー40で検出された情報(温度情報)は、空気調和装置100の動作を統括制御する制御装置50に送られる。そして、温度センサー40で検出された情報(温度情報)は、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ31の駆動周波数、第2冷媒流路切替装置28の切り替え、熱媒体の流路の切替、室内ユニット3の熱媒体流量の調整などの制御に利用されることになる。なお、制御装置50が中継ユニット2内に搭載されている状態を例に示しているが、これに限定するものではなく、室外ユニット1または室内ユニット3、あるいは、各ユニットに通信可能に搭載するようにしてもよい。 The information (temperature information) detected by the temperature sensor 40 is sent to the control device 50 that performs overall control of the operation of the air conditioner 100. The information (temperature information) detected by the temperature sensor 40 includes the driving frequency of the compressor 10, the rotational speed of the blower (not shown), the switching of the first refrigerant flow switching device 11, the driving frequency of the pump 31, and the second This is used for control such as switching of the refrigerant flow switching device 28, switching of the flow path of the heat medium, and adjustment of the heat medium flow rate of the indoor unit 3. In addition, although the state in which the control apparatus 50 is mounted in the relay unit 2 is shown as an example, the present invention is not limited to this, and the outdoor unit 1 or the indoor unit 3 or each unit is communicatably mounted. You may do it.
 また、制御装置50は、マイコンなどで構成されており、各種検出手段での検出結果およびリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ31の駆動、第1絞り装置26の開度、第2絞り装置26cの開度を制御する。制御装置50はこれらの他にも、第2冷媒流路切替装置28の切り替え、第1熱媒体流路切替装置32の切り替え、第2熱媒体流路切替装置33の切り替え、熱媒体流量調整装置34の駆動、熱媒体流路開閉装置37の駆動、開閉装置27、29の開閉、および熱媒体流路開閉装置36の開閉などを制御する。 Further, the control device 50 is constituted by a microcomputer or the like, and based on detection results from various detection means and instructions from the remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first The switching of the one refrigerant flow switching device 11, the driving of the pump 31, the opening of the first expansion device 26, and the opening of the second expansion device 26c are controlled. In addition to these, the control device 50 switches the second refrigerant flow switching device 28, the first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device. 34, the drive of the heat medium passage opening and closing device 37, the opening and closing of the opening and closing devices 27 and 29, and the opening and closing of the heat medium passage opening and closing device 36 are controlled.
 制御装置50は、具体的には室内空間が設定温度を維持するように制御を行っており、室内空間が設定温度に達すると、室内ユニット3に設けられた利用側熱交換器35への熱媒体の供給を停止させる(サーモOFF)。また、制御装置50は、室内空間が設定温度に達していなくとも、ユーザーからの指示があれば、室内ユニット3に設けられた利用側熱交換器35への熱媒体の供給を停止させるだけでなく、利用側熱交換器35に付設されるファンの運転も停止させる(停止モード)。このように、制御装置50は、室内空間が設定温度に達するとサーモOFFを実行して室内空間の温度を調整し、また、ユーザーから運転停止の指示を受け取ると停止モードを実行する。 Specifically, the control device 50 performs control so that the indoor space maintains the set temperature. When the indoor space reaches the set temperature, heat to the use side heat exchanger 35 provided in the indoor unit 3 is controlled. The medium supply is stopped (Thermo OFF). Moreover, even if the indoor space has not reached the set temperature, the control device 50 only stops the supply of the heat medium to the use side heat exchanger 35 provided in the indoor unit 3 if there is an instruction from the user. The operation of the fan attached to the use side heat exchanger 35 is also stopped (stop mode). As described above, the control device 50 executes the thermo-OFF to adjust the temperature of the indoor space when the indoor space reaches the set temperature, and executes the stop mode when receiving an operation stop instruction from the user.
 熱媒体が流れる熱媒体配管5は、熱媒体間熱交換器25aに接続されるものと、熱媒体間熱交換器25bに接続されるものと、を有している。熱媒体配管5は、中継ユニット2に接続される室内ユニット3の台数に応じて分岐(ここでは、各4分岐)されている。そして、熱媒体配管5のうち熱媒体間熱交換器25aに接続されるものと、熱媒体間熱交換器25bに接続されるものとが、第1熱媒体流路切替装置32、および、第2熱媒体流路切替装置33で接続される。第1熱媒体流路切替装置32および第2熱媒体流路切替装置33を制御することで、熱媒体間熱交換器25aからの熱媒体を利用側熱交換器35に流入させるか、熱媒体間熱交換器25bからの熱媒体を利用側熱交換器35に流入させるかが決定されるようになっている。 The heat medium pipe 5 through which the heat medium flows has one connected to the heat exchanger related to heat medium 25a and one connected to the heat exchanger related to heat medium 25b. The heat medium pipe 5 is branched (here, four branches each) according to the number of indoor units 3 connected to the relay unit 2. Of the heat medium pipe 5, the one connected to the heat exchanger related to heat medium 25 a and the one connected to the heat exchanger related to heat medium 25 b include the first heat medium flow switching device 32, Two heat medium flow switching devices 33 are connected. By controlling the first heat medium flow switching device 32 and the second heat medium flow switching device 33, the heat medium from the heat exchanger related to heat medium 25a flows into the use-side heat exchanger 35, or the heat medium Whether the heat medium from the intermediate heat exchanger 25b flows into the use side heat exchanger 35 is determined.
 本実施の形態では、上述したように中継ユニット2に対してを接続して室内ユニット3の接続台数の増設が可能である。以下、分岐ユニット60について説明する。 In the present embodiment, as described above, the number of connected indoor units 3 can be increased by connecting to the relay unit 2. Hereinafter, the branch unit 60 will be described.
[分岐ユニット60]
 図3は、図1の分岐ユニット60の熱媒体循環回路構成の一例を示した図である。
 分岐ユニット60は、中継ユニット2との接続用の接続部61を備えており、この接続部61を介して分岐ユニット60と中継ユニット2とが接続配管70で接続されている。また、分岐ユニット60は、接続部61を介して中継ユニット2から流入した熱媒体循環回路Bの熱媒体を分岐する分岐部62を有している。分岐部62は複数の分岐口を有しており、ここでは増設数が4つであるため、4つの分岐口を備えている。そして、各分岐口のそれぞれに、増設される室内ユニット3の利用側熱交換器(増設利用側熱交換器)35a~35dが接続され、中継ユニット2の熱媒体間熱交換器25a、25bと利用側熱交換器35a~35dとの間で熱媒体が循環するようになっている。
[Branch unit 60]
FIG. 3 is a diagram illustrating an example of a heat medium circuit configuration of the branch unit 60 of FIG.
The branch unit 60 includes a connection portion 61 for connection to the relay unit 2, and the branch unit 60 and the relay unit 2 are connected to each other by a connection pipe 70 through the connection portion 61. In addition, the branch unit 60 includes a branch unit 62 that branches the heat medium of the heat medium circuit B that has flowed in from the relay unit 2 via the connection unit 61. The branch part 62 has a plurality of branch ports. Since the number of branches is four here, the branch unit 62 includes four branch ports. Then, the use side heat exchangers (additional use side heat exchangers) 35a to 35d of the indoor unit 3 to be added are connected to the respective branch ports, and the heat exchangers 25a and 25b between the heat mediums of the relay unit 2 are connected to the branch ports. A heat medium circulates between the use side heat exchangers 35a to 35d.
 分岐ユニット60には、接続配管70と、4つの第1熱媒体流路切替装置32e~32h(中継ユニット2での第1熱媒体流路切替装置32同様に単に第1熱媒体流路切替装置32と称することもある)と、4つの第2熱媒体流路切替装置33e~33h(中継ユニット2での第2熱媒体流路切替装置33同様に単に第2熱媒体流路切替装置33と称することもある)と、4つの熱媒体流量調整装置34e~34h(中継ユニット2での熱媒体流量調整装置34と同様に単に熱媒体流量調整装置34と称することもある)と、が搭載されている。 The branch unit 60 includes a connection pipe 70 and four first heat medium flow switching devices 32e to 32h (similarly to the first heat medium flow switching device 32 in the relay unit 2). 32) and four second heat medium flow switching devices 33e to 33h (similarly to the second heat medium flow switching device 33 in the relay unit 2), And four heat medium flow control devices 34e to 34h (simply referred to as the heat medium flow control device 34 as well as the heat medium flow control device 34 in the relay unit 2). ing.
 なお、第1熱媒体流路切替装置32e~32h、第2熱媒体流路切替装置33e~33hおよび熱媒体流量調整装置34e~34hは、これらの切替装置の機能を一元化した一体化流路切替装置に代えることも可能である。一体化流路切替装置は、具体的にはたとえば、第1熱媒体流路切替装置32a~32d、第2熱媒体流路切替装置33a~33dおよび熱媒体流量調整装置34a~34dのそれぞれの機能を備えた特許文献2のようなブロック構造を有する構成としてもよい。第1熱媒体流路切替装置32e~32h、第2熱媒体流路切替装置33e~33hおよび熱媒体流量調整装置34e~34hは本発明の第2熱媒体流路切替手段を構成している。 The first heat medium flow switching devices 32e to 32h, the second heat medium flow switching devices 33e to 33h, and the heat medium flow control devices 34e to 34h are integrated flow channel switching that unifies the functions of these switching devices. It is also possible to replace it with a device. Specifically, the integrated flow path switching device includes, for example, the functions of the first heat medium flow path switching devices 32a to 32d, the second heat medium flow path switching devices 33a to 33d, and the heat medium flow rate adjustment devices 34a to 34d. It is good also as a structure which has a block structure like patent document 2 provided with. The first heat medium flow switching devices 32e to 32h, the second heat medium flow switching devices 33e to 33h, and the heat medium flow control devices 34e to 34h constitute the second heat medium flow switching means of the present invention.
 分岐ユニット60の第1熱媒体流路切替装置32は、中継ユニット2に対して接続配管70によって2管で接続されており、中継ユニット2における利用側熱交換器35の熱媒体流路の出口側と、熱媒体間熱交換器25の熱媒体流路の入口側との接続を切り替えるものである。第1熱媒体流路切替装置32は、分岐ユニットに接続されている室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。 The first heat medium flow switching device 32 of the branch unit 60 is connected to the relay unit 2 by two pipes by a connection pipe 70, and the outlet of the heat medium flow path of the use side heat exchanger 35 in the relay unit 2. The connection between the side and the inlet side of the heat medium flow path of the heat exchanger related to heat medium 25 is switched. The first heat medium flow switching device 32 is provided with a number (four in this case) corresponding to the number of indoor units 3 connected to the branch unit.
 第1熱媒体流路切替装置32は、三方のうちの一つが接続配管70を通じて中継ユニット2における熱媒体間熱交換器25aに、三方のうちの一つが接続配管70を通じて中継ユニット2における熱媒体間熱交換器25bに、三方のうちの一つが分岐ユニット60における熱媒体流量調整装置34に、それぞれ接続されている。そして、第1熱媒体流路切替装置32は、分岐ユニット60に接続されている利用側熱交換器35の熱媒体流路の出口側に設けられている。なお、分岐ユニット60に接続されている室内ユニット3に対応させて、紙面上側から第1熱媒体流路切替装置32e、第1熱媒体流路切替装置32f、第1熱媒体流路切替装置32g、第1熱媒体流路切替装置32hとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。この第1熱媒体流路切替装置32は、たとえば三方弁などで構成するとよい。 In the first heat medium flow switching device 32, one of the three sides is connected to the heat exchanger 25a in the relay unit 2 through the connection pipe 70, and one of the three directions is a heat medium in the relay unit 2 through the connection pipe 70. One of the three sides is connected to the intermediate heat exchanger 25b to the heat medium flow control device 34 in the branch unit 60, respectively. The first heat medium flow switching device 32 is provided on the outlet side of the heat medium flow path of the use side heat exchanger 35 connected to the branch unit 60. In correspondence with the indoor unit 3 connected to the branch unit 60, the first heat medium flow switching device 32e, the first heat medium flow switching device 32f, and the first heat medium flow switching device 32g are arranged from the upper side of the drawing. The first heat medium flow switching device 32h is illustrated. The switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other. The first heat medium flow switching device 32 may be constituted by a three-way valve, for example.
 分岐ユニット60における第2熱媒体流路切替装置33は、中継ユニット2に対して接続配管70によって2管で接続されており、中継ユニット2における熱媒体間熱交換器25の熱媒体流路の出口側と、利用側熱交換器35の熱媒体流路の入口側との接続を切り替えるものである。分岐ユニット60における第2熱媒体流路切替装置33は、分岐ユニット60に接続されている室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。 The second heat medium flow switching device 33 in the branch unit 60 is connected to the relay unit 2 by two pipes by the connection pipe 70, and the heat medium flow path of the heat exchanger 25 between the heat medium in the relay unit 2 is connected. The connection between the outlet side and the inlet side of the heat medium flow path of the use side heat exchanger 35 is switched. The number of second heat medium flow switching devices 33 in the branch unit 60 is set according to the number of indoor units 3 connected to the branch unit 60 (four in this case).
 第2熱媒体流路切替装置33は、三方のうちの一つが接続配管70を通じて中継ユニット2における熱媒体間熱交換器25aに、三方のうちの一つが接続配管70を通じて中継ユニット2における熱媒体間熱交換器25bに、三方のうちの一つが分岐ユニット60に接続されている利用側熱交換器35に、それぞれ接続されている。そして、第2熱媒体流路切替装置33は、分岐ユニット60に接続されている利用側熱交換器35の熱媒体流路の入口側に設けられている。 In the second heat medium flow switching device 33, one of the three sides is connected to the heat exchanger 25a in the relay unit 2 through the connection pipe 70, and one of the three sides is connected to the heat medium in the relay unit 2 through the connection pipe 70. One of the three sides is connected to the intermediate heat exchanger 25 b and to the use side heat exchanger 35 connected to the branch unit 60. The second heat medium flow switching device 33 is provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 connected to the branch unit 60.
 なお、分岐ユニット60に接続されている室内ユニット3に対応させて、紙面上側から第2熱媒体流路切替装置33e、第2熱媒体流路切替装置33f、第2熱媒体流路切替装置33g、第2熱媒体流路切替装置33hとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。この第2熱媒体流路切替装置33は、たとえば三方弁などで構成するとよい。 In correspondence with the indoor unit 3 connected to the branch unit 60, the second heat medium flow switching device 33e, the second heat medium flow switching device 33f, and the second heat medium flow switching device 33g are arranged from the upper side of the drawing. The second heat medium flow switching device 33h is illustrated. The switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other. The second heat medium flow switching device 33 may be constituted by a three-way valve, for example.
 分岐ユニット60における熱媒体流量調整装置34は、開口面積を制御できる二方弁などで構成されており、中継ユニット2から搬送された熱媒体が接続配管70を通じて流れるときの流量を制御するものである。分岐ユニット60における熱媒体流量調整装置34は、分岐ユニットに接続されている室内ユニット3の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。分岐ユニット60における熱媒体流量調整装置34は、一方が分岐ユニット60に接続された利用側熱交換器35に、他方が分岐ユニット60に接続された第1熱媒体流路切替装置32に、それぞれ接続されている。そして、熱媒体流量調整装置34は、分岐ユニット60に接続された利用側熱交換器35の熱媒体流路の出口側に設けられている。 The heat medium flow control device 34 in the branch unit 60 is configured by a two-way valve or the like that can control the opening area, and controls the flow rate when the heat medium conveyed from the relay unit 2 flows through the connection pipe 70. is there. The number of heat medium flow control devices 34 in the branch unit 60 is set according to the number of indoor units 3 connected to the branch unit (four in this case). One of the heat medium flow control devices 34 in the branch unit 60 is connected to the use side heat exchanger 35 connected to the branch unit 60, and the other is connected to the first heat medium flow switching device 32 connected to the branch unit 60. It is connected. The heat medium flow control device 34 is provided on the outlet side of the heat medium flow path of the use side heat exchanger 35 connected to the branch unit 60.
 すなわち、熱媒体流量調整装置34は、分岐ユニット60に接続された室内ユニット3へ流入する熱媒体の温度および流出する熱媒体の温度に基づいて室内ユニット3へ流入する熱媒体の量を調整し、室内負荷に応じた最適な熱媒体量を室内ユニット3に提供可能とするものである。 That is, the heat medium flow control device 34 adjusts the amount of the heat medium flowing into the indoor unit 3 based on the temperature of the heat medium flowing into the indoor unit 3 connected to the branch unit 60 and the temperature of the heat medium flowing out. Thus, it is possible to provide the indoor unit 3 with the optimum amount of heat medium according to the indoor load.
 なお、分岐ユニット60に接続された室内ユニット3に対応させて、紙面上側から熱媒体流量調整装置34e、熱媒体流量調整装置34f、熱媒体流量調整装置34g、熱媒体流量調整装置34hとして図示している。また、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側に設けてもよい。また、熱媒体流量調整装置34を利用側熱交換器35の熱媒体流路の入口側であって、第2熱媒体流路切替装置33と利用側熱交換器35との間に設けてもよい。さらに、室内ユニット3において、停止モードおよびサーモOFFなどの負荷を必要としていないときは、熱媒体流量調整装置34を全閉にすることにより、室内ユニット3への熱媒体供給を止めることができる。 In correspondence with the indoor unit 3 connected to the branch unit 60, the heat medium flow rate adjustment device 34e, the heat medium flow rate adjustment device 34f, the heat medium flow rate adjustment device 34g, and the heat medium flow rate adjustment device 34h are illustrated from the upper side of the drawing. ing. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35. Further, the heat medium flow control device 34 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 35 and between the second heat medium flow switching device 33 and the use side heat exchanger 35. Good. Furthermore, when the indoor unit 3 does not require a load such as the stop mode and the thermo OFF, the heat medium supply to the indoor unit 3 can be stopped by fully closing the heat medium flow control device 34.
 なお、第1熱媒体流路切替装置32または第2熱媒体流路切替装置33において、熱媒体流量調整装置34の機能を付加したものを用いれば、熱媒体流量調整装置34を省略することも可能である。 If the first heat medium flow switching device 32 or the second heat medium flow switching device 33 is added with the function of the heat medium flow control device 34, the heat medium flow control device 34 may be omitted. Is possible.
 また、前述の通り、第1熱媒体流路切替装置32、第2熱媒体流路切替装置33および熱媒体流量調整装置34を一体化(ブロック化)し、流路切替機能、流量調整機能、流路閉止機能を付加した一体化流路切替装置を第1熱媒体流路切替装置32、第2熱媒体流路切替装置33および熱媒体流量調整装置34に対して代用することもできる。 Further, as described above, the first heat medium flow switching device 32, the second heat medium flow switching device 33, and the heat medium flow control device 34 are integrated (blocked), and the flow switch function, the flow control function, An integrated flow path switching device to which a flow path closing function is added can be substituted for the first heat medium flow path switching device 32, the second heat medium flow path switching device 33, and the heat medium flow rate adjustment device.
 図4は、図1の空気調和装置100の回路構成を示す図である。
 熱媒体が流れる接続配管70は、図4に示す通り、中継ユニット2に接続され、中継ユニット2内の熱媒体間熱交換器25aに接続されるものと、熱媒体間熱交換器25bに接続されるものと、を有している。接続配管70は、分岐ユニット60に接続される室内ユニット3の台数に応じて分岐(ここでは、各4分岐)されている。そして、接続配管70のうち中継ユニット2における熱媒体間熱交換器25aに接続されるものと、熱媒体間熱交換器25bに接続されるものとが、分岐ユニット60における第1熱媒体流路切替装置32、および、分岐ユニット60における第2熱媒体流路切替装置33で接続される。
FIG. 4 is a diagram illustrating a circuit configuration of the air-conditioning apparatus 100 of FIG.
As shown in FIG. 4, the connection pipe 70 through which the heat medium flows is connected to the relay unit 2 and connected to the heat exchanger related to heat medium 25a in the relay unit 2 and to the heat exchanger related to heat medium 25b. It has what is done. The connection pipe 70 is branched (here, four branches each) according to the number of indoor units 3 connected to the branch unit 60. Of the connection pipes 70, the one connected to the heat exchanger related to heat medium 25 a in the relay unit 2 and the one connected to the heat exchanger related to heat medium 25 b are connected to the first heat medium flow path in the branch unit 60. The switching device 32 and the second heat medium flow switching device 33 in the branch unit 60 are connected.
 分岐ユニット60における第1熱媒体流路切替装置32および分岐ユニット60における第2熱媒体流路切替装置33を制御することで、中継ユニット2における熱媒体間熱交換器25aからの熱媒体を利用側熱交換器35に流入させるか、中継ユニット2における熱媒体間熱交換器25bからの熱媒体を利用側熱交換器35に流入させるかが決定されるようになっている。 By controlling the first heat medium flow switching device 32 in the branch unit 60 and the second heat medium flow switching device 33 in the branch unit 60, the heat medium from the intermediate heat exchanger 25a in the relay unit 2 is used. Whether to flow into the side heat exchanger 35 or to flow the heat medium from the heat exchanger related to heat medium 25b in the relay unit 2 into the use side heat exchanger 35 is determined.
 図5は、本発明の実施の形態に係る空気調和装置100における冷媒回路の他の一例を示す図である。
 図5には、接続配管70を2つの中継ユニット2に跨がって接続した構成を示している。図5の分岐ユニット60は図4の分岐ユニット60の接続部61に加えてさらに、もう一つの接続部63を備えており、接続部61、63を介して、2つの中継ユニット2と接続配管70で接続されている。そして、接続配管70は、2つの中継ユニット2のそれぞれに対して中継ユニット2内の熱媒体間熱交換器25aに接続、または熱媒体間熱交換器25bに接続することができる構成となっている。
FIG. 5 is a diagram illustrating another example of the refrigerant circuit in the air-conditioning apparatus 100 according to the embodiment of the present invention.
FIG. 5 shows a configuration in which the connection pipe 70 is connected across the two relay units 2. The branch unit 60 in FIG. 5 further includes another connection portion 63 in addition to the connection portion 61 of the branch unit 60 in FIG. 4, and the two relay units 2 and connection pipes are connected via the connection portions 61 and 63. 70 is connected. The connection pipe 70 can be connected to each of the two relay units 2 to the heat exchanger related to heat medium 25a in the relay unit 2 or to the heat exchanger related to heat medium 25b. Yes.
 図4および図5に示した空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置27、開閉装置29、第2冷媒流路切替装置28、熱媒体間熱交換器25の冷媒流路、第1絞り装置26、および、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器25の熱媒体流路、ポンプ31、第1熱媒体流路切替装置32、熱媒体流量調整装置34、利用側熱交換器35、および、第2熱媒体流路切替装置33を、熱媒体配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器25のそれぞれに複数台の利用側熱交換器35が並列に接続され、熱媒体循環回路Bを複数系統としている。 In the air conditioning apparatus 100 shown in FIGS. 4 and 5, the compressor 10, the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 27, the switching device 29, and the second refrigerant flow switching device 28. The refrigerant flow path, the first expansion device 26, and the accumulator 19 of the heat exchanger related to heat medium 25 are connected by the refrigerant pipe 4 to constitute the refrigerant circuit A. Further, the heat medium flow path of the intermediate heat exchanger 25, the pump 31, the first heat medium flow switching device 32, the heat medium flow control device 34, the use side heat exchanger 35, and the second heat medium flow path. The switching device 33 is connected by the heat medium pipe 5 to constitute the heat medium circuit B. That is, a plurality of use side heat exchangers 35 are connected in parallel to each of the heat exchangers 25 between heat media, and the heat medium circulation circuit B is made into a plurality of systems.
 よって、空気調和装置100では、室外ユニット1と中継ユニット2とが、中継ユニット2に設けられている熱媒体間熱交換器25aおよび熱媒体間熱交換器25bを介して接続される。そして、中継ユニット2と室内ユニット3とが、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器25aおよび熱媒体間熱交換器25bで冷媒循環回路Aを循環する熱源側冷媒と、熱媒体循環回路Bを循環する熱媒体と、が熱交換するようになっている。このような構成を用いることで、空気調和装置100は、室内負荷に応じた最適な冷房運転または暖房運転を実現することができる。 Therefore, in the air conditioner 100, the outdoor unit 1 and the relay unit 2 are connected via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b provided in the relay unit 2. The relay unit 2 and the indoor unit 3 are connected to each other via the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b. That is, in the air conditioner 100, the heat source side refrigerant that circulates through the refrigerant circulation circuit A and the heat medium that circulates through the heat medium circulation circuit B in the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b generate heat. It is supposed to be replaced. By using such a configuration, the air conditioner 100 can realize an optimal cooling operation or heating operation according to the indoor load.
 空気調和装置100が実行する運転モードには、上述したように全暖房運転モード、全冷房運転モード、冷房主体運転モード、暖房主体運転モードがある。これらの各運転モードは、第1冷媒流路切替装置11、第2冷媒流路切替装置28、第1熱媒体流路切替装置32および第2熱媒体流路切替装置33の切り替えと、開閉装置27および開閉装置29の開閉とを組み合わせることで実行することができる。 The operation modes executed by the air conditioner 100 include a heating only operation mode, a cooling only operation mode, a cooling main operation mode, and a heating main operation mode as described above. Each of these operation modes includes switching of the first refrigerant flow switching device 11, the second refrigerant flow switching device 28, the first heat medium flow switching device 32, and the second heat medium flow switching device 33, and an opening / closing device. 27 and opening / closing of the opening / closing device 29 can be executed in combination.
 以下に、これらの各モードについて説明する。 The following describes each of these modes.
[暖房運転モード(全暖房運転モード)]
 図6は、図4に示す空気調和装置100における全暖房運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。なお、図6では、太線で表された配管が熱源側冷媒の流れる配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で示し、熱媒体の流れ方向を点線矢印で示している。ここでは、中継ユニット2に接続されている4つの室内ユニット3a~3dが、熱媒体間熱交換器25b側に接続されて一系統の熱媒体循環回路Bを構成し、分岐ユニット60に接続されている4つの室内ユニット3e~3hが熱媒体間熱交換器25b側に接続されてもう一系統の熱媒体循環回路Bを構成する場合を例に説明する。
[Heating operation mode (all heating operation mode)]
FIG. 6 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the heating only operation in the air conditioning apparatus 100 shown in FIG. In addition, in FIG. 6, the piping represented by the thick line has shown the piping through which the heat source side refrigerant | coolant flows. In FIG. 6, the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a dotted line arrow. Here, four indoor units 3a to 3d connected to the relay unit 2 are connected to the heat exchanger related to heat medium 25b to constitute a heat medium circulation circuit B, and are connected to the branch unit 60. An example in which the four indoor units 3e to 3h are connected to the heat exchanger related to heat medium 25b to form another heat medium circuit B will be described.
 暖房運転モード(全暖房運転モード)の場合、室外ユニット1では、第1冷媒流路切替装置11は、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに中継ユニット2へ流入させるように切り替えられる。 In the heating operation mode (all heating operation mode), in the outdoor unit 1, the first refrigerant flow switching device 11 relays the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. Switching to unit 2 is made.
 中継ユニット2では、4つの室内ユニット3a~3dが熱媒体間熱交換器25bに接続されるように、4つの第1熱媒体流路切替装置32a~32dおよび4つの第2熱媒体流路切替装置33a~33dのそれぞれが切り替えられる。4つの熱媒体流量調整装置34a~34dは、室内ユニット3a~3dがそれぞれ設置された室内にて必要とされる空調負荷を賄うのに必要な熱媒体流量となるように制御される。また、開閉装置27は閉、開閉装置29は開となっている。また、第2冷媒流路切替装置28は暖房運転側に切り替えられる。 In the relay unit 2, the four first heat medium flow switching devices 32a to 32d and the four second heat medium flow switching are performed so that the four indoor units 3a to 3d are connected to the heat exchanger related to heat medium 25b. Each of the devices 33a to 33d is switched. The four heat medium flow control devices 34a to 34d are controlled so as to have a heat medium flow rate necessary to cover the air conditioning load required in the room where the indoor units 3a to 3d are installed. The opening / closing device 27 is closed and the opening / closing device 29 is open. The second refrigerant flow switching device 28 is switched to the heating operation side.
 また、中継ユニット2では、ポンプ31は、中継ユニット2に接続された室内ユニット3a~3dの空調負荷、および分岐ユニット60に接続された室内ユニット3e~3hの空調負荷に応じた流量指示値に基づく動作を行う。 In the relay unit 2, the pump 31 sets the flow rate instruction value according to the air conditioning load of the indoor units 3 a to 3 d connected to the relay unit 2 and the air conditioning load of the indoor units 3 e to 3 h connected to the branch unit 60. Based on the action.
 また、分岐ユニット60では、4つの室内ユニット3e~3hが熱媒体間熱交換器25aに接続されるように4つの第1熱媒体流路切替装置32e~32hおよび4つの第2熱媒体流路切替装置33e~33hのそれぞれが切り替えられる。4つの熱媒体流量調整装置34e~34hは、室内ユニット3e~3hがそれぞれ設置された室内にて必要とされる空調負荷を賄うのに必要な流量となるように制御される。 In the branch unit 60, the four first heat medium flow switching devices 32e to 32h and the four second heat medium flow paths are connected so that the four indoor units 3e to 3h are connected to the heat exchanger related to heat medium 25a. Each of the switching devices 33e to 33h is switched. The four heat medium flow control devices 34e to 34h are controlled so as to have a flow rate necessary to cover the air conditioning load required in the room in which the indoor units 3e to 3h are installed.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。 First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11、および第1接続配管4aを介して室外ユニット1から流出する。室外ユニット1から流出した高温高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温高圧のガス冷媒は、第2冷媒流路切替装置28a、28bを通過したのち、熱媒体間熱交換器25a、25bを通過し、第1絞り装置26a、26bを通過し、開閉装置29を通過する。開閉装置29を通過後の冷媒は、室外ユニット1へと搬送され、熱源側熱交換器12にて外気との熱交換を行って低温低圧のガス冷媒となる。低温低圧のガス冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the first connection pipe 4a. The high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant flowing into the relay unit 2 passes through the second refrigerant flow switching devices 28a and 28b, then passes through the heat exchangers 25a and 25b, and passes through the first expansion devices 26a and 26b. And passes through the opening / closing device 29. The refrigerant that has passed through the opening / closing device 29 is conveyed to the outdoor unit 1 and exchanges heat with the outside air in the heat source side heat exchanger 12 to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第1絞り装置26a、26bは、熱媒体間熱交換器25a、25bの出口冷媒のサブクール(過冷却度)が一定になるように開度が制御される。このサブクール(過冷却度)は、熱媒体間熱交換器25a、25bと第1絞り装置26a、26bとの間を流れる熱源側冷媒の圧力を飽和温度に換算した値と、熱媒体間熱交換器25a、25bの出口側の温度との差として得られるものである。 At this time, the opening degree of the first expansion devices 26a and 26b is controlled so that the subcooling (supercooling degree) of the outlet refrigerant of the heat exchangers 25a and 25b is constant. This subcool (degree of supercooling) is a value obtained by converting the pressure of the heat source side refrigerant flowing between the heat exchangers 25a, 25b and the first expansion devices 26a, 26b into a saturation temperature, and heat exchange between heat media. This is obtained as a difference from the temperature on the outlet side of the containers 25a and 25b.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。 Next, the flow of the heat medium in the heat medium circuit B will be described.
 ポンプ31aおよびポンプ31bの駆動によって加圧された熱媒体は、利用側熱交換器35a~35hに送り込まれ、室内空気と熱交換した後、利用側熱交換器35a~35hから流出して熱媒体流量調整装置34a~34hに流入する。このとき、熱媒体は、熱媒体流量調整装置34a~34hの作用によって室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35a~35hおよび熱媒体流量調整装置34a~34hを通過するようになっている。 The heat medium pressurized by the driving of the pump 31a and the pump 31b is sent to the use side heat exchangers 35a to 35h, exchanges heat with room air, and then flows out from the use side heat exchangers 35a to 35h. It flows into the flow rate adjusting devices 34a to 34h. At this time, the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow control devices 34a to 34h, and the use side heat exchangers 35a to 35h and the heat medium flow rate are controlled. It passes through the adjusting devices 34a to 34h.
 そして、熱媒体流量調整装置34a~34hから流出した熱媒体のうち、中継ユニット2における熱媒体流量調整装置34a~34dから流出した熱媒体は、第1熱媒体流路切替装置32a~32dにより流路が切り替えられて熱媒体配管5を通り、熱媒体間熱交換器25bへ流入通過する。そして、熱媒体間熱交換器25bを通過した熱媒体は、再びポンプ31bへ吸い込まれた後、第2熱媒体流路切替装置33a~33dを通過して利用側熱交換器35a~35dに送り込まれる。 Of the heat medium flowing out from the heat medium flow control devices 34a to 34h, the heat medium flowing out from the heat medium flow control devices 34a to 34d in the relay unit 2 flows through the first heat medium flow switching devices 32a to 32d. The path is switched, passes through the heat medium pipe 5, and flows into and passes through the heat exchanger related to heat medium 25b. The heat medium that has passed through the intermediate heat exchanger 25b is sucked into the pump 31b again, and then passes through the second heat medium flow switching devices 33a to 33d and is sent to the use side heat exchangers 35a to 35d. It is.
 一方、熱媒体流量調整装置34a~34hから流出した熱媒体のうち、分岐ユニット60における熱媒体流量調整装置34e~34hから流出した熱媒体は、第1熱媒体流路切替装置32e~32hにより流路が切り替えられて接続配管70を通り、熱媒体間熱交換器25aへ流入通過する。そして、熱媒体間熱交換器25aを通過した熱媒体は、再びポンプ31aへ吸い込まれた後、第2熱媒体流路切替装置33e~33hを通過して利用側熱交換器35e~35hに送り込まれる。 On the other hand, of the heat medium flowing out from the heat medium flow control devices 34a to 34h, the heat medium flowing out from the heat medium flow control devices 34e to 34h in the branch unit 60 is flown by the first heat medium flow switching devices 32e to 32h. The path is switched, passes through the connecting pipe 70, and flows into and passes through the heat exchanger related to heat medium 25a. Then, the heat medium that has passed through the heat exchanger related to heat medium 25a is sucked into the pump 31a again, and then passes through the second heat medium flow switching devices 33e to 33h and is sent to the use side heat exchangers 35e to 35h. It is.
 以上のようにして熱媒体間熱交換器25aおよび熱媒体間熱交換器25bのそれぞれと利用側熱交換器35a~35hとの間を熱媒体が循環する。そして、凝縮器として機能する利用側熱交換器35e~35hにて熱媒体が室内空気と熱交換することで、室内ユニット3e~3hがそれぞれ設置された室内が暖房される。 As described above, the heat medium circulates between each of the heat exchanger related to heat medium 25a and the heat exchanger related to heat medium 25b and the use side heat exchangers 35a to 35h. The heat medium exchanges heat with room air in the use side heat exchangers 35e to 35h functioning as condensers, so that the room where the indoor units 3e to 3h are installed is heated.
 なお、動作している室内ユニット3a~3hのそれぞれを熱媒体間熱交換器25a、25bのうち、どちら側に接続して熱媒体循環回路Bを構成するかは、システムの考え方によって任意であるが、たとえば以下のようにして決定される。すなわち、熱媒体間熱交換器25aに接続した室内ユニット3で必要な合計の暖房容量と、熱媒体間熱交換器25bに接続した室内ユニット3で必要な合計の暖房容量とが、全室内ユニット3で必要な総暖房容量の略半分ずつに分けられるようにして決定される。各室内ユニット3の暖房容量は制御装置50にて判断することができ、暖房容量に応じて第1熱媒体流路切替装置32a~32hおよび第2熱媒体流路切替装置33a~33hを切り替えればよい。 Note that it is optional depending on the system concept which of the operating indoor units 3a to 3h is connected to which of the heat exchangers 25a and 25b to configure the heat medium circuit B. Is determined, for example, as follows. That is, the total heating capacity required for the indoor unit 3 connected to the heat exchanger related to heat medium 25a and the total heating capacity required for the indoor unit 3 connected to the heat exchanger related to heat medium 25b are all indoor units. 3 is determined so as to be divided into approximately half of the total heating capacity required. The heating capacity of each indoor unit 3 can be determined by the control device 50, and if the first heat medium flow switching devices 32a to 32h and the second heat medium flow switching devices 33a to 33h are switched according to the heating capacity. Good.
 次に、分岐ユニット60が接続配管70を通じて複数台の中継ユニット2に跨がって接続された構成における、全暖房運転モードについて説明する。 Next, the heating only operation mode in the configuration in which the branch unit 60 is connected across the plurality of relay units 2 through the connection pipe 70 will be described.
 図7は、図5に示す空気調和装置100における全暖房運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。なお、冷媒循環回路Aにおける熱源側冷媒の流れについては図6で説明した通りである。なお、以下では、説明の便宜上、2つの中継ユニット2を区別する必要のあるときは、図7の上側の中継ユニット2を中継ユニット2A、下側の中継ユニット2を中継ユニット2Bとする。 FIG. 7 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the heating only operation in the air conditioning apparatus 100 shown in FIG. The flow of the heat source side refrigerant in the refrigerant circuit A is as described with reference to FIG. In the following, for convenience of explanation, when it is necessary to distinguish between the two relay units 2, the upper relay unit 2 in FIG. 7 is referred to as a relay unit 2A, and the lower relay unit 2 is referred to as a relay unit 2B.
 図7の構成においては、分岐ユニット60に接続された室内ユニット3e~3hの中継ユニット2への接続形態として、以下の2種類の接続形態が考えられる。
(1)分岐ユニット60に接続された室内ユニット3e~3hが中継ユニット2Aまたは中継ユニット2Bのどちらか一方のみに接続される接続形態。
(2)分岐ユニット60に接続された室内ユニット3e~3hが中継ユニット2Aと中継ユニット2Bとに分けて接続される接続形態。
In the configuration of FIG. 7, the following two types of connection modes are conceivable as the connection mode of the indoor units 3e to 3h connected to the branch unit 60 to the relay unit 2.
(1) A connection configuration in which the indoor units 3e to 3h connected to the branch unit 60 are connected to only one of the relay unit 2A and the relay unit 2B.
(2) A connection configuration in which the indoor units 3e to 3h connected to the branch unit 60 are divided and connected to the relay unit 2A and the relay unit 2B.
 以下、それぞれの接続形態における熱媒体の流れについて説明する。なお、熱媒体循環回路Bにおける熱媒体の作用は上記と同様である。 Hereinafter, the flow of the heat medium in each connection form will be described. The operation of the heat medium in the heat medium circuit B is the same as described above.
(1)の場合
 ここでは、分岐ユニット60に接続された室内ユニット3e~3hの全てが中継ユニット2Aの熱媒体間熱交換器25aに接続されるとすると、熱媒体の流れは図6で説明した流れと同じである。また、熱媒体は、熱媒体流量調整装置34e~34hの作用によって室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35e~35hおよび熱媒体流量調整装置34e~34hを通過する。
In the case of (1) Here, assuming that all of the indoor units 3e to 3h connected to the branch unit 60 are connected to the heat exchanger related to heat medium 25a of the relay unit 2A, the flow of the heat medium will be described with reference to FIG. It is the same as the flow. Further, the heat medium is controlled to a flow rate required to cover the air conditioning load required indoors by the action of the heat medium flow rate adjusting devices 34e to 34h, and the use side heat exchangers 35e to 35h and the heat medium flow rate adjustment are controlled. Passes through devices 34e-34h.
 この接続形態においては、分岐ユニット60の接続先を中継ユニット2Aまたは中継ユニット2Bに切り替えて利用できる。よって、たとえば中継ユニット2Aがメンテナンス中で利用できない場合は、分岐ユニット60の接続先を中継ユニット2Bにすることで、運転を継続することができる。 In this connection mode, the connection destination of the branch unit 60 can be switched to the relay unit 2A or the relay unit 2B. Therefore, for example, when the relay unit 2A cannot be used during maintenance, the operation can be continued by setting the connection destination of the branch unit 60 to the relay unit 2B.
(2)の場合
 ここでは、分岐ユニット60に接続された室内ユニット3e~3gが中継ユニット2Aの熱媒体間熱交換器25aに接続され、分岐ユニット60に接続された室内ユニット3hが中継ユニット2Bの熱媒体間熱交換器25bに接続される場合を例に説明する。また、中継ユニット2Aに接続された室内ユニット3a~3dは、中継ユニット2Aの熱媒体間熱交換器25bに接続され、中継ユニット2Bに接続された室内ユニット3a~3dは、中継ユニット2Bの熱媒体間熱交換器25bに接続されるものとする。
In the case of (2), the indoor units 3e to 3g connected to the branch unit 60 are connected to the intermediate heat exchanger 25a of the relay unit 2A, and the indoor unit 3h connected to the branch unit 60 is connected to the relay unit 2B. A case where the heat exchanger is connected to the intermediate heat exchanger 25b will be described as an example. The indoor units 3a to 3d connected to the relay unit 2A are connected to the heat exchanger related to heat medium 25b of the relay unit 2A, and the indoor units 3a to 3d connected to the relay unit 2B are connected to the heat of the relay unit 2B. It is assumed that the medium-to-medium heat exchanger 25b is connected.
 中継ユニット2A、2Bのそれぞれに接続された室内ユニット3a~3dにおける熱媒体の流れは図6で説明した流れと同様であるため、ここでは分岐ユニット60における熱媒体の流れを中心に説明する。 Since the flow of the heat medium in the indoor units 3a to 3d connected to each of the relay units 2A and 2B is the same as the flow described in FIG. 6, the flow of the heat medium in the branch unit 60 will be mainly described here.
 分岐ユニット60において第1熱媒体流路切替装置32e~32gと、第2熱媒体流路切替装置33e~33gとを、熱媒体間熱交換器25a側に切り替える。また、(2)の場合には、図7中の拡大図に示すように、中継ユニット2Aと分岐ユニット60との間に開閉弁71a~71dを設けるとともに、中継ユニット2Bと分岐ユニット60との間に開閉弁72a~72dを設けた構成とする。そして、中継ユニット2A側に設けられた開閉弁71a~71dの中で、熱媒体間熱交換器25aと直接連通している配管に設けられた開閉弁71bおよび開閉弁71dを「開」とする。一方で開閉弁71a~71dの中で、熱媒体間熱交換器25bと直接連通している配管に設けられた開閉弁71aおよび開閉弁71cを「閉」とする。これにより、中継ユニット2Aの熱媒体間熱交換器25aと、利用側熱交換器35e~35gとの間を熱媒体が循環する熱媒体循環回路Bが構成される。この熱媒体循環回路Bでは、熱媒体流量調整装置34e~34gの作用によって室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体が循環し、室内を暖房する。 In the branch unit 60, the first heat medium flow switching devices 32e to 32g and the second heat medium flow switching devices 33e to 33g are switched to the heat exchanger related to heat medium 25a. In the case of (2), as shown in the enlarged view of FIG. 7, on-off valves 71a to 71d are provided between the relay unit 2A and the branch unit 60, and the relay unit 2B and the branch unit 60 are connected to each other. The on / off valves 72a to 72d are provided between them. Then, among the on-off valves 71a to 71d provided on the relay unit 2A side, the on-off valve 71b and the on-off valve 71d provided in the pipe directly communicating with the heat exchanger related to heat medium 25a are set to “open”. . On the other hand, among the on-off valves 71a to 71d, the on-off valve 71a and the on-off valve 71c provided in the pipe directly communicating with the heat exchanger related to heat medium 25b are set to “closed”. Thus, a heat medium circulation circuit B is configured in which the heat medium circulates between the heat exchangers between heat medium 25a of the relay unit 2A and the use side heat exchangers 35e to 35g. In the heat medium circulation circuit B, the heat medium having a flow rate necessary to cover the air conditioning load required in the room is circulated by the action of the heat medium flow control devices 34e to 34g to heat the room.
 また、分岐ユニット60において第1熱媒体流路切替装置32hと、第2熱媒体流路切替装置33hとを、熱媒体間熱交換器25b側に切り替える。さらに中継ユニット2B側に設けられた開閉弁72a~72dの中で、熱媒体間熱交換器25bと直接連通している配管に設けられた開閉弁72aおよび開閉弁72cを「開」とする。一方で開閉弁72a~72dの中で、熱媒体間熱交換器25aと直接連通している配管に設けられた開閉弁72bおよび開閉弁72dを「閉」とする。これにより、中継ユニット2Bの熱媒体間熱交換器25bと、利用側熱交換器35hとの間を熱媒体が循環する熱媒体循環回路Bが構成される。この熱媒体循環回路Bでは、熱媒体流量調整装置34hの作用によって室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体が循環し、室内を暖房する。 In the branch unit 60, the first heat medium flow switching device 32h and the second heat medium flow switching device 33h are switched to the heat exchanger related to heat medium 25b. Further, among the on-off valves 72a to 72d provided on the relay unit 2B side, the on-off valve 72a and the on-off valve 72c provided in the pipe directly communicating with the heat exchanger related to heat medium 25b are set to “open”. On the other hand, among the on-off valves 72a to 72d, the on-off valve 72b and the on-off valve 72d provided in the pipe directly communicating with the heat exchanger related to heat medium 25a are closed. Thereby, the heat medium circulation circuit B in which the heat medium circulates between the heat exchanger 25b between the heat medium of the relay unit 2B and the use side heat exchanger 35h is configured. In the heat medium circulation circuit B, the heat medium having a flow rate necessary to cover the air conditioning load required in the room is circulated by the action of the heat medium flow control device 34h to heat the room.
 なお、開閉弁71a~71dおよび開閉弁72a~72dは、電磁開閉式の電磁弁のようなものであっても、手動にて開閉できる手動開閉弁であってもよい。 The open / close valves 71a to 71d and the open / close valves 72a to 72d may be electromagnetic open / close valves or manually open / close valves that can be manually opened / closed.
 このように、分岐ユニット60における室内ユニット3e~3hを、2つの中継ユニット2A、2Bに跨がって接続し、中継ユニット2A、2Bのそれぞれに分けて熱媒体を流すようにした場合、以下の効果が得られる。すなわち、跨がって接続されていない構成の場合、分岐ユニットにおける搬送動力源は1つの中継ユニット2のポンプ31に限定されるが、2つの中継ユニット2に跨がって接続することで、2つの中継ユニット2にそれぞれ備えているポンプ31の両方を搬送動力源として利用することができる。よって、中継ユニット2Aに接続された室内ユニット3の空調負荷が大きく、中継ユニット2Aのポンプ31の搬送動力だけでは不足している場合に、中継ユニット2B側のポンプ31も利用することで、動力不足を補うことができ、効率的な空調を実現することができる。 In this way, when the indoor units 3e to 3h in the branch unit 60 are connected across the two relay units 2A and 2B and the heat medium is divided into the relay units 2A and 2B, the following is performed. The effect is obtained. That is, in the case of a configuration that is not connected across the two, the conveyance power source in the branch unit is limited to the pump 31 of one relay unit 2, but by connecting across the two relay units 2, Both of the pumps 31 provided in the two relay units 2 can be used as the conveyance power source. Therefore, when the air conditioning load of the indoor unit 3 connected to the relay unit 2A is large and the transport power of the pump 31 of the relay unit 2A is insufficient, the pump 31 on the relay unit 2B side can also be used to The shortage can be compensated and efficient air conditioning can be realized.
 なお、分岐ユニット60において、たとえば中継ユニット2Aの熱媒体間熱交換器25bに接続される室内ユニット3と中継ユニット2Bの熱媒体間熱交換器25bに接続される室内ユニット3とが混在する場合、中継ユニット2Aから分岐ユニット60に向かう冷媒と、中継ユニット2Bから分岐ユニット60に向かう冷媒とが一本の接続配管70内で衝突しないように、たとえば弁を設けるなどの対応を施すものとする。 In the branch unit 60, for example, the indoor unit 3 connected to the intermediate heat exchanger 25b of the relay unit 2A and the indoor unit 3 connected to the intermediate heat exchanger 25b of the relay unit 2B coexist. In addition, for example, a valve is provided so that the refrigerant from the relay unit 2A to the branch unit 60 and the refrigerant from the relay unit 2B to the branch unit 60 do not collide in one connection pipe 70. .
[冷房運転モード(全冷房運転モード)]
 図8は、図4に示す空気調和装置100の全冷房運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。また、図8では、熱源側冷媒の流れ方向を実線矢印で示し、熱媒体の流れ方向を点線矢印で示している。また、ここでは、中継ユニット2に接続されている4つの室内ユニット3a~3dが、熱媒体間熱交換器25b側に接続されて熱媒体循環回路Bを構成し、分岐ユニット60に接続されている4つの室内ユニット3e~3hが熱媒体間熱交換器25b側に接続されて熱媒体循環回路Bを構成する場合を例に説明する。
[Cooling operation mode (all cooling operation mode)]
FIG. 8 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the cooling only operation of the air-conditioning apparatus 100 shown in FIG. Moreover, in FIG. 8, the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a dotted line arrow. Here, the four indoor units 3a to 3d connected to the relay unit 2 are connected to the heat exchanger related to heat medium 25b to form the heat medium circuit B, and are connected to the branch unit 60. An example in which the four indoor units 3e to 3h are connected to the heat exchanger related to heat medium 25b to form the heat medium circuit B will be described.
 冷房運転モード(全冷房運転モード)の場合、室外ユニット1では、第1冷媒流路切替装置11は、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替えられる。 In the cooling operation mode (all cooling operation mode), in the outdoor unit 1, the first refrigerant flow switching device 11 switches the heat source side refrigerant discharged from the compressor 10 to flow into the heat source side heat exchanger 12. It is done.
 中継ユニット2では、4つの室内ユニット3a~3dが熱媒体間熱交換器25bに接続されるように、第1熱媒体流路切替装置32a~32dおよび4つの第2熱媒体流路切替装置33a~33dのそれぞれが切り替えられる。4つの熱媒体流量調整装置34a~34dは、室内ユニット3a~3dがそれぞれ設置された室内にて必要とされる空調負荷を賄うのに必要な熱媒体流量となるように制御される。また、開閉装置27は閉、開閉装置29は開となっている。また、第2冷媒流路切替装置28は冷房運転側に切り替えられる。 In the relay unit 2, the first heat medium flow switching devices 32a to 32d and the four second heat medium flow switching devices 33a are connected so that the four indoor units 3a to 3d are connected to the heat exchanger related to heat medium 25b. Each of .about.33d is switched. The four heat medium flow control devices 34a to 34d are controlled so as to have a heat medium flow rate necessary to cover the air conditioning load required in the room where the indoor units 3a to 3d are installed. The opening / closing device 27 is closed and the opening / closing device 29 is open. The second refrigerant flow switching device 28 is switched to the cooling operation side.
 また、分岐ユニット60では、4つの室内ユニット3e~3hが熱媒体間熱交換器25aに接続されるように第1熱媒体流路切替装置32e~32hおよび4つの第2熱媒体流路切替装置33e~33hのそれぞれが切り替えられる。4つの熱媒体流量調整装置34e~34hは、室内ユニット3e~3hがそれぞれ設置された室内にて必要とされる空調負荷を賄うのに必要な流量となるように制御される。 In the branch unit 60, the first heat medium flow switching devices 32e to 32h and the four second heat medium flow switching devices are connected so that the four indoor units 3e to 3h are connected to the heat exchanger related to heat medium 25a. Each of 33e to 33h is switched. The four heat medium flow control devices 34e to 34h are controlled so as to have a flow rate necessary to cover the air conditioning load required in the room in which the indoor units 3e to 3h are installed.
 また、中継ユニット2では、ポンプ31は、中継ユニット2に接続された室内ユニット3a~3dの空調負荷、および分岐ユニット60に接続された室内ユニット3e~3hの空調負荷に応じた流量指示値に基づく動作を行う。 In the relay unit 2, the pump 31 sets the flow rate instruction value according to the air conditioning load of the indoor units 3 a to 3 d connected to the relay unit 2 and the air conditioning load of the indoor units 3 e to 3 h connected to the branch unit 60. Based on the action.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。 First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入し、外気との熱交換を行い、高温高圧の液または二相冷媒となる。そして、熱源側熱交換器12から流出した高温高圧の液または二相冷媒は、逆止弁13aを介して室外ユニット1から流出する。室外ユニット1から流出した高温高圧の液または二相冷媒は、冷媒配管4を通って中継ユニット2に流入する。 The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11, performs heat exchange with the outside air, and performs high-temperature and high-pressure liquid or two-phase. Becomes a refrigerant. Then, the high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a. The high-temperature and high-pressure liquid or two-phase refrigerant that has flowed out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4.
 中継ユニット2に流入した高温高圧の液または二相冷媒は、開閉装置27を通過した後、第1絞り装置26a、26bを通過したのち低温低圧の二相冷媒となる。低温低圧の二相冷媒は、熱媒体間熱交換器25a、25bにて熱媒体と熱交換したのち、低温低圧のガス冷媒となり、その後、中継ユニット2から流出して室外ユニット1へと流入する。室外ユニット1へ流入した冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へと再度吸入される。 The high-temperature and high-pressure liquid or two-phase refrigerant that has flowed into the relay unit 2 passes through the opening / closing device 27 and then passes through the first expansion devices 26a and 26b, and then becomes a low-temperature and low-pressure two-phase refrigerant. The low-temperature and low-pressure two-phase refrigerant exchanges heat with the heat medium in the heat exchangers 25a and 25b, then becomes a low-temperature and low-pressure gas refrigerant, and then flows out from the relay unit 2 and into the outdoor unit 1. . The refrigerant flowing into the outdoor unit 1 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、第1絞り装置26a、26bは熱媒体間熱交換器25a、25bの出口冷媒のスーパーヒート(過熱度)が一定になるように開度が制御される。このスーパーヒート(過熱度)は、熱媒体間熱交換器25a、25bと第1絞り装置26a、26bとの間を流れる熱源側冷媒の圧力を飽和温度換算した値と、熱媒体間熱交換器25a、25bの出口が和の温度との差として得られるものである。 At this time, the opening degree of the first expansion devices 26a and 26b is controlled so that the superheat (superheat degree) of the outlet refrigerant of the heat exchangers 25a and 25b becomes constant. The superheat (degree of superheat) includes a value obtained by converting the pressure of the heat-source-side refrigerant flowing between the heat exchangers 25a and 25b and the first expansion devices 26a and 26b into a saturation temperature, and a heat exchanger between the heat exchangers. The outlets 25a and 25b are obtained as a difference from the sum temperature.
 熱媒体循環回路Bにおける熱媒体の流れは、図6で説明した熱媒体の流れと同じである。すなわち、熱媒体間熱交換器(ここでは、蒸発器)25bと利用側熱交換器35a~35dとの間を、熱媒体流量調整装置34a~34dの作用によって室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体が循環する。そして、利用側熱交換器35a~35dにて熱媒体が室内空気と熱交換することで、室内ユニット3a~3dがそれぞれ設置された室内が冷房される。また、熱媒体間熱交換器(ここでは、蒸発器)25aと利用側熱交換器35e~35hとの間を、熱媒体流量調整装置34e~34hの作用によって室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体が循環する。そして、利用側熱交換器35e~35hにて熱媒体が室内空気と熱交換することで、室内ユニット3e~3hがそれぞれ設置された室内が冷房される。 The flow of the heat medium in the heat medium circuit B is the same as the flow of the heat medium described in FIG. That is, the air conditioning load required indoors between the heat exchangers between heat exchangers (here, evaporators) 25b and the use side heat exchangers 35a to 35d by the action of the heat medium flow control devices 34a to 34d. A heat medium with a flow rate necessary to cover the heat is circulated. Then, the heat medium exchanges heat with room air in the use side heat exchangers 35a to 35d, thereby cooling the room in which the indoor units 3a to 3d are respectively installed. Also, an air conditioning load required indoors between the heat exchangers (here, evaporators) 25a and the use side heat exchangers 35e to 35h by the action of the heat medium flow control devices 34e to 34h. A heat medium with a flow rate necessary to cover the heat is circulated. Then, the heat medium exchanges heat with indoor air in the use side heat exchangers 35e to 35h, whereby the room in which the indoor units 3e to 3h are respectively installed is cooled.
 次に、分岐ユニット60が接続配管70を通じて複数台の中継ユニット2に跨がって接続された構成における、全冷房運転モードについて説明する。 Next, the cooling only operation mode in the configuration in which the branch unit 60 is connected across the plurality of relay units 2 through the connection pipe 70 will be described.
 図9は、図5に示す空気調和装置110における全冷房運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。
 この構成における冷媒循環回路Aの熱源側冷媒の流れは図8で説明した通りである。また、熱媒体循環回路Bにおける熱媒体の流れは、図7で説明した通りである。すなわち、上記(1)、(2)の流れがある。そして、熱媒体循環回路Bでは、熱媒体流量調整装置34a~34hの作用によって室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体が循環する。そして、利用側熱交換器35a~35hにて熱媒体が室内空気と熱交換することで、室内ユニット3a~3hがそれぞれ設置された室内が冷房される。
FIG. 9 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the cooling only operation in the air conditioning apparatus 110 shown in FIG.
The flow of the heat source side refrigerant in the refrigerant circuit A in this configuration is as described in FIG. Further, the flow of the heat medium in the heat medium circuit B is as described in FIG. That is, there is a flow of the above (1) and (2). In the heat medium circulation circuit B, the heat medium having a flow rate necessary to cover the air conditioning load required indoors is circulated by the action of the heat medium flow control devices 34a to 34h. Then, the heat medium exchanges heat with room air in the use side heat exchangers 35a to 35h, thereby cooling the room in which the indoor units 3a to 3h are respectively installed.
[混在運転モード(暖房主体運転モード)]
 図10は、図4に示す空気調和装置における混在運転のうち、暖房主体運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図である。なお、図10では、太線で表された配管が熱源側冷媒、熱媒体の流れる配管を示している。また、図10では、熱源側冷媒の流れ方向を実線矢印で示し、熱媒体の流れ方向を点線矢印で示している。この図10では、室内ユニット3aが暖房運転モードであり、室内ユニット3eが冷房運転モードである場合を例に暖房主体運転モードを説明する。そして、その他の室内ユニット3b~3d、3f~3hは、運転停止により負荷がかからず(室内を冷却、加熱する必要がない。サーモオフしている状態を含む)、利用側熱交換器35b~35d、35f~35hに熱媒体が流れないようにするものとする。
[Mixed operation mode (heating main operation mode)]
FIG. 10 is a diagram showing the flow of the heat source side refrigerant and the flow of the heat medium during the heating main operation in the mixed operation in the air conditioning apparatus shown in FIG. In addition, in FIG. 10, the piping represented with the thick line has shown the piping through which a heat source side refrigerant | coolant and a heat medium flow. In FIG. 10, the flow direction of the heat source side refrigerant is indicated by solid arrows, and the flow direction of the heat medium is indicated by dotted arrows. In FIG. 10, the heating main operation mode will be described by taking as an example a case where the indoor unit 3a is in the heating operation mode and the indoor unit 3e is in the cooling operation mode. The other indoor units 3b to 3d and 3f to 3h are not subjected to a load due to the operation stop (there is no need to cool and heat the room, including a state where the thermo is off), and the use side heat exchanger 35b to It is assumed that the heat medium does not flow through 35d and 35f to 35h.
 混在運転モード(暖房主体運転モード)の場合、室外ユニット1では、圧縮機10から吐出された熱源側冷媒が熱源側熱交換器12を経由せずに中継ユニット2へ流入するように第1冷媒流路切替装置11を切り替える。また、中継ユニット2では、開閉装置27は閉、開閉装置29は閉となっている。また、中継ユニット2では、熱媒体流量調整装置34aは室内ユニット3aが設置された室内にて必要とされる空調負荷(ここでは暖房負荷)を賄うのに必要な流量を流すことが可能な開度に開かれ、熱媒体流量調整装置34b~34dは閉止される。また、分岐ユニット60において、熱媒体流量調整装置34eは室内ユニット3aが設置された室内にて必要とされる空調負荷(ここでは冷房負荷)を賄うのに必要な流量を流すことが可能な開度に開かれ、熱媒体流量調整装置34f~34hは閉止される。 In the mixed operation mode (heating-main operation mode), in the outdoor unit 1, the first refrigerant is such that the heat source side refrigerant discharged from the compressor 10 flows into the relay unit 2 without passing through the heat source side heat exchanger 12. The flow path switching device 11 is switched. In the relay unit 2, the opening / closing device 27 is closed and the opening / closing device 29 is closed. Further, in the relay unit 2, the heat medium flow control device 34a is an opening that can flow a flow rate necessary to cover an air conditioning load (here, a heating load) required in the room where the indoor unit 3a is installed. The heating medium flow control devices 34b to 34d are closed each time. Further, in the branch unit 60, the heat medium flow control device 34e is an opening that can flow a flow rate necessary to cover an air conditioning load (here, a cooling load) required in the room in which the indoor unit 3a is installed. The heating medium flow rate adjusting devices 34f to 34h are closed each time.
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。 First, the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11、および第1接続配管4aを介して室外ユニット1から流出する。室外ユニット1から流出した高温高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温高圧のガス冷媒は、第2冷媒流路切替装置28bを通過したのち、凝縮器として機能する熱媒体間熱交換器25bを通過する。 The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11 and the first connection pipe 4a. The high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant flowing into the relay unit 2 passes through the second refrigerant flow switching device 28b and then passes through the heat exchanger related to heat medium 25b that functions as a condenser.
 熱媒体間熱交換器25bを通過後の冷媒は、第1絞り装置26bを通過した後、第1絞り装置26aを通過し、蒸発器として機能する熱媒体間熱交換器25aを通過する。熱媒体間熱交換器25aを通過した冷媒は、第2冷媒流路切替装置28aを通過したのち、室外ユニット1へと搬送される。室外ユニット1へと搬送された冷媒は、熱源側熱交換器12にて外気との熱交換を行って低温低圧のガス冷媒となった後、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant after passing through the heat exchanger related to heat medium 25b passes through the first expansion device 26b, then passes through the first expansion device 26a, and passes through the heat exchanger related to heat medium 25a functioning as an evaporator. The refrigerant that has passed through the heat exchanger related to heat medium 25a passes through the second refrigerant flow switching device 28a and is then transported to the outdoor unit 1. The refrigerant transported to the outdoor unit 1 exchanges heat with the outside air in the heat source side heat exchanger 12 to become a low-temperature and low-pressure gas refrigerant, and then the first refrigerant flow switching device 11 and the accumulator 19 are turned on. Then, it is sucked into the compressor 10 again.
 このとき、第1絞り装置26bは、熱媒体間熱交換器25bの出口冷媒のサブクール(過冷却度)が一定になるように開度が制御される。このサブクール(過冷却度)は、熱媒体間熱交換器25bと第1絞り装置26bとの間を流れる熱源側冷媒の圧力を飽和温度に換算した値と、熱媒体間熱交換器25bの出口側の温度との差として得られるものである。 At this time, the opening degree of the first expansion device 26b is controlled so that the subcooling (supercooling degree) of the outlet refrigerant of the heat exchanger related to heat medium 25b becomes constant. This subcool (degree of subcooling) is obtained by converting the pressure of the heat source side refrigerant flowing between the heat exchanger related to heat medium 25b and the first expansion device 26b into a saturation temperature, and the outlet of the heat exchanger related to heat medium 25b. It is obtained as a difference from the temperature on the side.
 また、第1絞り装置26aは、熱媒体間熱交換器25の出口冷媒のスーパーヒート(過熱度)が一定になるように開度が制御される。このスーパーヒート(過熱度)は、第1絞り装置26aと熱媒体間熱交換器25aとの間を流れる熱源側冷媒の圧力を飽和温度換算した値と、熱媒体間熱交換器25aの出口側の温度との差として得られるものである。 In addition, the opening degree of the first expansion device 26a is controlled so that the superheat (superheat degree) of the refrigerant at the outlet of the heat exchanger related to heat medium 25 becomes constant. This superheat (degree of superheat) is the value obtained by converting the pressure of the heat source side refrigerant flowing between the first expansion device 26a and the heat exchanger related to heat medium 25a into the saturation temperature, and the outlet side of the heat exchanger related to heat medium 25a. It is obtained as a difference from the temperature.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。 Next, the flow of the heat medium in the heat medium circuit B will be described.
 ポンプ31bの駆動によって加圧された熱媒体は、利用側熱交換器35aに送り込まれ、室内空気と熱交換して室内を暖房した後、利用側熱交換器35aから流出する。利用側熱交換器35aから流出した熱媒体は、熱媒体流量調整装置34aを通過した後、熱媒体間熱交換器25bへ流入通過する。そして、熱媒体間熱交換器25bを通過した熱媒体は、再びポンプ31bへ吸い込まれた後、第2熱媒体流路切替装置33aを通過して利用側熱交換器35aに送り込まれる。 The heat medium pressurized by the drive of the pump 31b is sent to the use side heat exchanger 35a, exchanges heat with room air, heats the room, and then flows out of the use side heat exchanger 35a. The heat medium flowing out from the use side heat exchanger 35a passes through the heat medium flow control device 34a, and then flows into and passes through the heat exchanger related to heat medium 25b. The heat medium that has passed through the heat exchanger related to heat medium 25b is sucked into the pump 31b again, and then passes through the second heat medium flow switching device 33a and is sent into the use-side heat exchanger 35a.
 一方、ポンプ31aの駆動によって加圧された熱媒体は、利用側熱交換器35eに送り込まれ、室内空気と熱交換して室内を冷房した後、利用側熱交換器35eから流出する。熱媒体流量調整装置34eを通過した熱媒体は、熱媒体流量調整装置34eを通過した後、熱媒体間熱交換器25aへ流入通過する。そして、熱媒体間熱交換器25aを通過した熱媒体は、再びポンプ31aへ吸い込まれた後、第2熱媒体流路切替装置33eを通過して利用側熱交換器35eに送り込まれる。 On the other hand, the heat medium pressurized by the driving of the pump 31a is sent to the use side heat exchanger 35e, exchanges heat with room air, cools the room, and then flows out from the use side heat exchanger 35e. The heat medium that has passed through the heat medium flow control device 34e passes through the heat medium flow control device 34e, and then flows into and passes through the heat exchanger related to heat medium 25a. The heat medium that has passed through the heat exchanger related to heat medium 25a is again sucked into the pump 31a, and then passes through the second heat medium flow switching device 33e and is sent to the use-side heat exchanger 35e.
 次に、分岐ユニット60が接続配管70を通じて複数台の中継ユニット2に跨がって接続された構成における、暖房主体運転モードについて説明する。 Next, the heating main operation mode in the configuration in which the branch unit 60 is connected across the plurality of relay units 2 through the connection pipe 70 will be described.
 図11は、図5に示す空気調和装置100における混在運転のうち、暖房主体運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図(その1)である。
 この構成における冷媒循環回路Aの熱源側冷媒の流れには図10で説明した通りである。また、熱媒体循環回路Bにおける熱媒体の流れは図7で説明した通りである。すなわち、上記(1)、(2)の流れがある。
FIG. 11 is a diagram (part 1) illustrating the flow of the heat-source-side refrigerant and the flow of the heat medium during the heating-main operation in the mixed operation in the air-conditioning apparatus 100 illustrated in FIG.
The flow of the heat source side refrigerant in the refrigerant circuit A in this configuration is as described in FIG. Further, the flow of the heat medium in the heat medium circuit B is as described in FIG. That is, there is a flow of the above (1) and (2).
 ここで、上記(2)の流れの一例として、中継ユニット2Aに接続された室内ユニット3a~3dと、分岐ユニット60に接続された室内ユニット3hと、中継ユニット2Bに接続された室内ユニット3a~3dが暖房運転モード、分岐ユニット60に接続された室内ユニット3e~3hが冷房運転モードである場合を例に、暖房主体運転モードを説明する。 Here, as an example of the flow of (2), the indoor units 3a to 3d connected to the relay unit 2A, the indoor unit 3h connected to the branch unit 60, and the indoor units 3a to 3d connected to the relay unit 2B. The heating main operation mode will be described by taking as an example the case where 3d is the heating operation mode and the indoor units 3e to 3h connected to the branch unit 60 are the cooling operation mode.
 この場合、熱媒体の流れは、図7で説明した上記(2)の流れと同様である。すなわち、中継ユニット2Aの熱媒体間熱交換器(ここでは、凝縮器)25bと、中継ユニット2Aに接続された室内ユニット3a~3dの間を熱媒体が循環し、室内を暖房する。また、中継ユニット2Aの熱媒体間熱交換器(ここでは、蒸発器)25aと分岐ユニット60に接続された室内ユニット3e~3gの間を熱媒体が循環し、室内を冷房する。また、中継ユニット2Bの熱媒体間熱交換器(ここでは、凝縮器)25bと、分岐ユニット60に接続された室内ユニット3hおよび中継ユニット2Bに接続された室内ユニット3a~3dとの間を熱媒体が循環し、室内を暖房する。なお、熱媒体流量調整装置34が室内にて必要とされる空調負荷を賄うのに必要な熱媒体流量となるように制御される点は上記と同様である。 In this case, the flow of the heat medium is the same as the flow (2) described above with reference to FIG. In other words, the heat medium circulates between the heat exchanger related to heat medium (here, the condenser) 25b of the relay unit 2A and the indoor units 3a to 3d connected to the relay unit 2A, thereby heating the room. Further, the heat medium circulates between the heat exchangers between heat medium (here, the evaporator) 25a of the relay unit 2A and the indoor units 3e to 3g connected to the branch unit 60, thereby cooling the room. Further, heat is generated between the heat exchanger (in this case, the condenser) 25b of the relay unit 2B and the indoor unit 3h connected to the branch unit 60 and the indoor units 3a to 3d connected to the relay unit 2B. The medium circulates and heats the room. The point that the heat medium flow control device 34 is controlled to have the heat medium flow rate necessary to cover the air conditioning load required indoors is the same as described above.
 なお、上記の熱媒体の流れは一例である。中継ユニット2A、2Bに接続された室内ユニット3a~3dは、暖房運転モードで運転するか、冷房運転モードで運転するかに応じて、それぞれ自己が接続された中継ユニット2A、2B内において凝縮器として機能する熱媒体間熱交換器25bと、蒸発器として機能する熱媒体間熱交換器25aとのどちらかに選択的に接続されればよい。また、分岐ユニット60に接続された室内ユニット3e~3hのそれぞれについても同様で、暖房運転モードで運転するか、冷房運転モードで運転するかに応じて、2つの中継ユニット2において凝縮器として機能する2つの熱媒体間熱交換器25bのうちの一方と、2つの中継ユニット2において蒸発器として機能する2つの熱媒体間熱交換器25aのうちの一方とのどちらかに接続配管70を介して選択的に接続されればよい。 The above heat medium flow is an example. The indoor units 3a to 3d connected to the relay units 2A and 2B have condensers in the relay units 2A and 2B to which they are connected depending on whether they operate in the heating operation mode or the cooling operation mode. As long as it is selectively connected to either the heat exchanger related to heat medium 25b that functions as the heat exchanger 25b or the heat exchanger related to heat medium 25a that functions as the evaporator. The same applies to each of the indoor units 3e to 3h connected to the branch unit 60, and functions as a condenser in the two relay units 2 depending on whether the operation is performed in the heating operation mode or the cooling operation mode. One of the two heat exchangers 25b between the heat exchangers 25b and one of the two heat exchangers 25a between the heat exchangers 25a functioning as an evaporator in the two relay units 2 are connected via a connection pipe 70. Can be selectively connected.
 ここで、全暖房運転から冷暖房混在運転への切り替えについて考える。具体的には例えば、室内ユニット3a~3hが中継ユニット2Aに接続されて暖房運転しており、中継ユニット2Bが運転停止している全暖房運転の状態から、冷暖房混在運転に切り替える場合について考える。事例としては例えば、室内ユニット3e~3hが設置された部屋を執務空間から例えばサーバールームなど、冷房が必要な部屋として利用することになった場合、また、室内ユニット3e~3hが設置された部屋の人数が多くなり、室内ユニット3e~3hの運転モードを暖房運転から冷房運転に切り替える場合等が該当する。 Here, consider switching from all-heating operation to mixed heating / cooling operation. Specifically, for example, consider a case where the indoor units 3a to 3h are connected to the relay unit 2A and are in a heating operation, and the relay unit 2B is switched from a fully heating operation state to a cooling / heating mixed operation. As an example, for example, when a room in which the indoor units 3e to 3h are installed is used as a room that requires cooling, such as a server room, from the office space, or a room in which the indoor units 3e to 3h are installed. The number of people increases and the operation mode of the indoor units 3e to 3h is switched from the heating operation to the cooling operation.
 このような場合、中継ユニット2Bを駆動して、中継ユニット2Bにおける冷媒循環回路Aの熱源側冷媒の流れを図10にて説明した流れとするとともに、室内ユニット3e~3hの接続先を中継ユニット2Aから中継ユニット2Bにおいて蒸発器として機能している熱媒体間熱交換器25aに切り替えればよい。 In such a case, the relay unit 2B is driven so that the flow of the heat source side refrigerant in the refrigerant circuit A in the relay unit 2B is the flow described in FIG. 10, and the connection destinations of the indoor units 3e to 3h are connected to the relay unit. It is only necessary to switch from 2A to the heat exchanger related to heat medium 25a functioning as an evaporator in the relay unit 2B.
[混在運転モード(暖房主体運転モード)その2]
 図12は、図5に示す空気調和装置100における混在運転のうち、暖房主体運転時の熱源側冷媒の流れおよび熱媒体の流れを示す図(その2)である。2台設置された室外ユニット1A、1Bのうちの一方と、この室外ユニット1(ここでは1Bとする)に接続された中継ユニット2Bと、この中継ユニット2Bに接続された室内ユニット3a~3dが全て停止している場合の暖房主体運転モードについて説明する。そして、中継ユニット2Aに接続された室内ユニット3a~3dと、分岐ユニット60に接続された室内ユニット3e~3hとのうち一部(ここでは、中継ユニット2Aに接続された室内ユニット3a~3d)が暖房運転モードであり、残り(ここでは、分岐ユニット60に接続された室内ユニット3e~3h)が冷房運転モードである場合を一例として説明する。
[Mixed operation mode (heating main operation mode) 2]
FIG. 12 is a diagram (part 2) illustrating the flow of the heat-source-side refrigerant and the flow of the heat medium during the heating-main operation in the mixed operation in the air-conditioning apparatus 100 illustrated in FIG. One of the two outdoor units 1A and 1B installed, a relay unit 2B connected to the outdoor unit 1 (here, 1B), and indoor units 3a to 3d connected to the relay unit 2B The heating main operation mode when all are stopped will be described. A part of the indoor units 3a to 3d connected to the relay unit 2A and the indoor units 3e to 3h connected to the branch unit 60 (in this case, the indoor units 3a to 3d connected to the relay unit 2A) Is a heating operation mode, and the rest (in this case, the indoor units 3e to 3h connected to the branch unit 60) is in the cooling operation mode.
 なお、図12では、太線で表された配管が熱源側冷媒の流れる配管を示している。また、図12では、熱源側冷媒の流れ方向を実線矢印で示し、熱媒体の流れ方向を点線矢印で示している。 In addition, in FIG. 12, the pipe | tube represented by the thick line has shown the piping through which the heat source side refrigerant | coolant flows. In FIG. 12, the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a dotted line arrow.
 冷媒循環回路Aにおける熱源側冷媒の流れについては、図10で説明した[混在運転モード(暖房主体運転モード)]での流れと同様である。 The flow of the heat source side refrigerant in the refrigerant circulation circuit A is the same as the flow in the [mixed operation mode (heating main operation mode)] described in FIG.
 熱媒体循環回路Bにおける熱媒体の流れは、図6で説明した流れと同様である。すなわち、中継ユニット2Aの熱媒体間熱交換器(ここでは、凝縮器)25bと中継ユニット2Aに接続された室内ユニット3a~3dとの間を、熱媒体が循環する。そして、利用側熱交換器35a~35dにて熱媒体が室内空気と熱交換することで、室内ユニット3a~3dがそれぞれ設置された室内が暖房される。また、中継ユニット2Aの熱媒体間熱交換器(ここでは蒸発器)25aと、分岐ユニット60に接続された室内ユニット3e~3hとの間を熱媒体が循環する。そして、利用側熱交換器35e~35hにて熱媒体が室内空気と熱交換することで、室内ユニット3e~3hがそれぞれ設置された室内が冷房される。なお、熱媒体流量調整装置34a~34hが室内にて必要とされる空調負荷を賄うのに必要な熱媒体流量となるように制御される点は上記と同様である。 The flow of the heat medium in the heat medium circuit B is the same as the flow described in FIG. That is, the heat medium circulates between the heat exchanger (in this case, the condenser) 25b of the relay unit 2A and the indoor units 3a to 3d connected to the relay unit 2A. Then, the heat medium exchanges heat with the room air in the use side heat exchangers 35a to 35d, thereby heating the room where the indoor units 3a to 3d are respectively installed. Further, the heat medium circulates between the heat medium heat exchanger (here, the evaporator) 25a of the relay unit 2A and the indoor units 3e to 3h connected to the branch unit 60. Then, the heat medium exchanges heat with indoor air in the use side heat exchangers 35e to 35h, whereby the room in which the indoor units 3e to 3h are respectively installed is cooled. It is to be noted that the heat medium flow rate adjusting devices 34a to 34h are controlled so as to have a heat medium flow rate necessary to cover the air conditioning load required indoors.
 なお、上記の熱媒体の流れは一例である。中継ユニット2Aに接続された室内ユニット3a~3dは、暖房運転モードで運転するか、冷房運転モードで運転するかに応じて、それぞれ自己が接続された中継ユニット2Aにおいて凝縮器として機能する熱媒体間熱交換器25bと、蒸発器として機能する熱媒体間熱交換器25とのどちらかに選択的に接続されればよい。また、分岐ユニット60に接続された室内ユニット3e~3hのそれぞれについても同様で、暖房運転モードで運転するか、冷房運転モードで運転するかに応じて、中継ユニット2Aにおいて凝縮器として機能する熱媒体間熱交換器25bと、蒸発器として機能する熱媒体間熱交換器25とのどちらかに接続配管70を介して選択的に接続されればよい。 The above heat medium flow is an example. Each of the indoor units 3a to 3d connected to the relay unit 2A operates as a condenser in the relay unit 2A to which the indoor units 3a to 3d operate in the heating operation mode or the cooling operation mode. It may be selectively connected to either the intermediate heat exchanger 25b or the intermediate heat exchanger 25 functioning as an evaporator. The same applies to each of the indoor units 3e to 3h connected to the branch unit 60, and heat that functions as a condenser in the relay unit 2A depending on whether the operation is performed in the heating operation mode or the cooling operation mode. The medium heat exchanger 25b and the heat medium heat exchanger 25 functioning as an evaporator may be selectively connected via the connection pipe 70.
[混在運転モード(冷房主体運転モード)]
 冷房主体運転モードにおける熱源側冷媒および熱媒体の流れは暖房主体運転モードと同様である。
[Mixed operation mode (cooling main operation mode)]
The flow of the heat source side refrigerant and the heat medium in the cooling main operation mode is the same as in the heating main operation mode.
 以上説明したように、本実施の形態によれば、中継ユニット2に設けた分岐ユニット接続用の接続口2aに分岐ユニット60を接続することで、室外ユニット1の増設が可能である。そして、分岐ユニット60は単に切替装置を備えた構成であり、熱交換器等を持たない構成であるため、室内ユニット3の増設にあたり、必要最小限のシステム構成を実現することができる。その結果、システムの利便性、工事性、経済性の向上を図ることができる。 As described above, according to the present embodiment, the outdoor unit 1 can be added by connecting the branch unit 60 to the connection port 2 a for connecting the branch unit provided in the relay unit 2. Since the branch unit 60 is simply configured with a switching device and does not have a heat exchanger or the like, a minimum necessary system configuration can be realized when the indoor unit 3 is added. As a result, it is possible to improve the convenience, workability, and economy of the system.
 また、全暖房運転モードまたは全冷房運転モードのような単一運転モードでは、上述したように、運転中の全室内ユニット3の総空調容量をたとえば略半分ずつ振り分けるように、各室内ユニット3の接続先を熱媒体間熱交換器25aまたは熱媒体間熱交換器25bに適宜選択することが可能である。よって、2台のポンプ31a、31bに求められる搬送動力がどちらか一方に偏ることで不足が生じるという不都合を抑制できる。 Further, in the single operation mode such as the heating only operation mode or the cooling only operation mode, as described above, the total air-conditioning capacity of all the indoor units 3 in operation is allocated, for example, approximately half by half. It is possible to appropriately select the connection destination as the heat exchanger related to heat medium 25a or the heat exchanger related to heat medium 25b. Therefore, it is possible to suppress the inconvenience that shortage occurs due to the transfer power required for the two pumps 31a and 31b being biased to either one.
 一方で、混在運転モードでは、ポンプ31a、31bは、冷房用または暖房用とそれ専用として用いられる。このため、各室内ユニット3の接続先を空調容量に応じて振り分けることはできない。しかし、分岐ユニット60を複数台の中継ユニット2に跨がって接続する構成とした場合には、複数台の中継ユニット2のポンプ31a、31bを搬送動力として利用することができる。よって、各中継ユニット2のポンプ31a、31bを利用することで、効率的な空調を実現することができる。 On the other hand, in the mixed operation mode, the pumps 31a and 31b are used for cooling or heating only. For this reason, the connection destination of each indoor unit 3 cannot be distributed according to the air conditioning capacity. However, when the branch unit 60 is connected across a plurality of relay units 2, the pumps 31a and 31b of the plurality of relay units 2 can be used as conveyance power. Therefore, efficient air conditioning can be realized by using the pumps 31a and 31b of each relay unit 2.
 なお、図5に示した2つの中継ユニット2に跨がって接続された分岐ユニット60において、それぞれの中継ユニット2に接続されている接続配管70に対して開閉弁を付与し、開閉操作を行うことで、中継ユニット2との間での熱媒体の流出入を制御することができる。これはたとえば、先に説明したような運転モードにおいて、分岐ユニット60に接続された室内ユニット3で必要としない熱媒体をその室内ユニット3に対して搬送する可能性がある場合、接続配管70に設けた開閉弁を閉じて熱媒体の流入を阻止すればよい。 In addition, in the branch unit 60 connected across the two relay units 2 shown in FIG. 5, an opening / closing valve is provided to the connection pipe 70 connected to each relay unit 2 to perform the opening / closing operation. By doing so, it is possible to control the flow of the heat medium to and from the relay unit 2. For example, in the operation mode as described above, if there is a possibility that a heat medium not required by the indoor unit 3 connected to the branch unit 60 may be transported to the indoor unit 3, the connection pipe 70 What is necessary is just to close the provided on-off valve and to prevent the inflow of the heat medium.
 また、空気調和装置100にはさらに、分岐ユニット60にある、第1熱媒体流路切替装置32、第2熱媒体流路切替装置33、熱媒体流量調整装置34、および接続配管70へ付与した開閉弁、に対しての動作制御を行うための温度センサーおよび制御装置をさらに備えることもできる。 Further, the air conditioner 100 is further provided to the first heat medium flow switching device 32, the second heat medium flow switching device 33, the heat medium flow control device 34, and the connection pipe 70 in the branch unit 60. A temperature sensor and a control device for performing operation control on the on-off valve may be further provided.
 なお、第2冷媒流路切替装置28は、四方弁である場合を例に説明を行ったが、それに限定されるものではなく、二方流路切替弁または三方流路切替弁を複数個用い、四方弁を用いた場合と同じように冷媒が流れるように構成してもよい。 The second refrigerant flow switching device 28 has been described as an example of a four-way valve. However, the second refrigerant flow switching device 28 is not limited thereto, and a plurality of two-way flow switching valves or three-way flow switching valves are used. The refrigerant may flow in the same manner as when a four-way valve is used.
 また、熱媒体間熱交換器25として、熱交換機能を有するものが複数個設置されていても、当然問題ない。また、第1絞り装置26として、絞り機能を有するものが複数個設置されていても、当然問題ない。 Moreover, even if a plurality of heat exchangers 25 having a heat exchanging function are installed as a heat exchanger 25 between heat media, there is no problem. Of course, there is no problem even if a plurality of first diaphragm devices 26 having a diaphragm function are installed.
 また、熱媒体流量調整装置34が、中継ユニット2に内蔵されている場合を例に説明したが、それに限定されるものではない。つまり、熱媒体流量調整装置34は、室内ユニット3に内蔵されていてもよいし、中継ユニット2および室内ユニット3に内蔵されておらず、これらユニットの筐体外に設置されていてもよい。 In addition, although the case where the heat medium flow control device 34 is built in the relay unit 2 has been described as an example, it is not limited thereto. That is, the heat medium flow control device 34 may be built in the indoor unit 3, or may not be built in the relay unit 2 and the indoor unit 3, but may be installed outside the casing of these units.
 上記では、空気調和装置100にアキュムレーター19が搭載された構成を例に説明したが、アキュムレーター19が搭載されていなくてもよい。また、一般的に、熱源側熱交換器12および利用側熱交換器35には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、それに限定されるものではない。たとえば、利用側熱交換器35としては放射を利用したパネルヒーターのようなものを用いることもできる。また、熱源側熱交換器12としては、水または不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12および利用側熱交換器35としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。 In the above, the configuration in which the accumulator 19 is mounted on the air conditioner 100 has been described as an example, but the accumulator 19 may not be mounted. In general, the heat source side heat exchanger 12 and the use side heat exchanger 35 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but it is not limited thereto. For example, as the use-side heat exchanger 35, a panel heater using radiation can be used. Moreover, as the heat source side heat exchanger 12, a water-cooled type that moves heat by water or antifreeze can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 35 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.
 また、中継ユニット2に接続されている利用側熱交換器35および熱媒体流量調整装置34のそれぞれの台数を4台としたが、台数は4台に限定されるものではなく、利用側熱交換器35と熱媒体流量調整装置34とを1組として1組以上であればよい。分岐ユニット60に接続されている利用側熱交換器35および熱媒体流量調整装置34についても同様である。 In addition, although the number of each of the use side heat exchanger 35 and the heat medium flow control device 34 connected to the relay unit 2 is four, the number is not limited to four, and the use side heat exchange is not limited to four. One set or more may be used as the set of the vessel 35 and the heat medium flow control device 34. The same applies to the use side heat exchanger 35 and the heat medium flow control device 34 connected to the branch unit 60.
 また、1つの中継ユニット2において熱媒体間熱交換器25が2つである場合を例に説明したが、それに限定されるものではなく、熱媒体を、1つの中継ユニット2で冷却および加熱の一方または両方できるように構成すれば、幾つ設置してもよい。さらに、ポンプ31aおよびポンプ31bは、それぞれ一つとは限らず、複数の小容量のポンプを並列に並べて接続してもよい。 Further, the case where there are two heat exchangers 25 between the heat mediums in one relay unit 2 has been described as an example, but the present invention is not limited thereto, and the heat medium is cooled and heated by one relay unit 2. Any number of installations may be provided as long as one or both can be configured. Furthermore, the number of pumps 31a and 31b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.
 また、分岐ユニット60が2つの中継ユニット2に跨がる構成について説明したが、中継ユニット2の台数は2つに限らず、さらに複数でもよい。この場合、分岐ユニット60は、接続される中継ユニット2の数と同数の接続部61を備えた構成とされる。そして各中継ユニット2からの熱媒体を適宜切り替えて分岐ユニット60に接続された利用側熱交換器35に循環する構成とすればよい。 In addition, the configuration in which the branch unit 60 straddles the two relay units 2 has been described, but the number of the relay units 2 is not limited to two and may be more than one. In this case, the branch unit 60 is configured to include the same number of connection portions 61 as the number of relay units 2 to be connected. Then, the heat medium from each relay unit 2 may be appropriately switched and circulated to the use side heat exchanger 35 connected to the branch unit 60.
 1 室外ユニット、1A 室外ユニット、1B 室外ユニット、2 中継ユニット、2A 中継ユニット、2B 中継ユニット、2a 接続口、3(3a~3h) 室内ユニット、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 熱媒体配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、15 熱媒体中空気放出装置、19 アキュムレーター、20 バイパス管、25(25a、25b) 熱媒体間熱交換器、26(26a、26b) 第1絞り装置、26c 第2絞り装置、27 開閉装置、28(28a、28b) 第2冷媒流路切替装置、29 開閉装置、31(31a、31b) ポンプ、32(32a~32h) 第1熱媒体流路切替装置、33(33a~33h) 第2熱媒体流路切替装置、34(34a~34h) 熱媒体流量調整装置、35(35a~35h) 利用側熱交換器、36 熱媒体流路開閉装置、37 熱媒体流路開閉装置、40(40a、40b) 温度センサー、50 制御装置、60 分岐ユニット、61 接続部、62 分岐部、63 接続部、70 接続配管、71a~71d 開閉弁、72a~72d 開閉弁、100 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。 1 outdoor unit, 1A outdoor unit, 1B outdoor unit, 2 relay unit, 2A relay unit, 2B relay unit, 2a connection port, 3 (3a-3h) indoor unit, 4 refrigerant piping, 4a first connection piping, 4b second Connection piping, 5 Heat medium piping, 6 Outdoor space, 7 Indoor space, 8 Space, 9 Building, 10 Compressor, 11 1st refrigerant flow switching device, 12 Heat source side heat exchanger, 13a Check valve, 13b Check Valve, 13c check valve, 13d check valve, 15 air release device in heat medium, 19 accumulator, 20 bypass pipe, 25 (25a, 25b) heat exchanger between heat medium, 26 (26a, 26b) first throttle Device, 26c second throttle device, 27 opening and closing device, 28 (28a, 28b) second refrigerant flow switching device, 29 opening and closing device, 31 ( 1a, 31b) pump, 32 (32a-32h) first heat medium flow switching device, 33 (33a-33h) second heat medium flow switching device, 34 (34a-34h) heat medium flow control device, 35 ( 35a to 35h) Use side heat exchanger, 36 Heat medium flow path opening / closing device, 37 Heat medium flow path opening / closing device, 40 (40a, 40b) Temperature sensor, 50 Control device, 60 Branch unit, 61 Connection part, 62 Branch part , 63 connection section, 70 connection piping, 71a-71d on-off valve, 72a-72d on-off valve, 100 air conditioner, A refrigerant circulation circuit, B heat medium circulation circuit.

Claims (5)

  1.  圧縮機、熱源側熱交換器、第1絞り装置および複数の熱媒体間熱交換器の冷媒側流路を冷媒配管で接続して熱源側冷媒が循環する冷媒循環回路と、
     前記複数の熱媒体間熱交換器の熱媒体側流路、複数の熱媒体搬送装置、複数の利用側熱交換器を熱媒体配管で接続して熱媒体が循環する熱媒体循環回路と、
     前記熱媒体循環回路において前記複数の利用側熱交換器のそれぞれに対応して設けられ、前記利用側熱交換器を前記複数の熱媒体間熱交換器のいずれかに接続するように熱媒体の流路を切り替える第1熱媒体流路切替手段と、
     前記複数の熱媒体間熱交換器を備え、複数の前記第1熱媒体流路切替手段を介して前記複数の利用側熱交換器が接続される中継ユニットと、
     利用側熱交換器増設用の分岐ユニットとを備え、
     前記分岐ユニットは、
     前記中継ユニットの分岐ユニット接続用の接続口に接続配管を介して接続され、前記熱媒体循環回路の熱媒体が通過する接続部と、
     1または複数の増設利用側熱交換器と接続され、前記接続部を介して前記分岐ユニット内に流入した熱媒体を分岐して前記1または複数の増設利用側熱交換器に循環させる分岐部と、
     前記1または複数の増設利用側熱交換器のそれぞれに対応して設けられ、前記1または複数の増設利用側熱交換器のそれぞれを、前記複数の熱媒体間熱交換器のいずれかに接続する第2熱媒体流路切替手段とを備えた空気調和装置。
    A refrigerant circulation circuit in which the refrigerant side flow paths of the compressor, the heat source side heat exchanger, the first expansion device, and the plurality of heat exchangers between the heat mediums are connected by refrigerant piping to circulate the heat source side refrigerant;
    A heat medium circulation circuit in which the heat medium circulates by connecting the heat medium side flow paths of the plurality of heat medium heat exchangers, the plurality of heat medium conveying devices, and the plurality of use side heat exchangers by heat medium piping;
    The heat medium circulation circuit is provided corresponding to each of the plurality of use side heat exchangers, and is connected to one of the plurality of heat exchangers between the heat mediums so as to connect the use side heat exchanger. First heat medium flow path switching means for switching the flow path;
    A relay unit that includes the plurality of heat exchangers between heat mediums, and to which the plurality of use side heat exchangers are connected via the plurality of first heat medium flow switching units;
    With a branch unit for use side heat exchanger expansion,
    The branch unit is
    A connection part connected to a connection port for connecting the branch unit of the relay unit via a connection pipe, and through which the heat medium of the heat medium circulation circuit passes,
    A branching unit connected to one or a plurality of additional use side heat exchangers, branching the heat medium flowing into the branching unit via the connection unit and circulating the heat medium to the one or more additional use side heat exchangers; ,
    Each of the one or more additional use side heat exchangers is provided corresponding to each of the one or more additional use side heat exchangers, and each of the one or more additional use side heat exchangers is connected to one of the plurality of heat exchangers between heat media. An air conditioner comprising second heat medium flow switching means.
  2.  前記第1熱媒体流路切替手段および前記第2熱媒体流路切替手段のそれぞれは、1または複数の熱媒体流路切替弁と、流量調整弁とを備えて構成される請求項1記載の空気調和装置。 The first heat medium flow switching means and the second heat medium flow switching means are each configured to include one or a plurality of heat medium flow switching valves and a flow rate adjustment valve. Air conditioner.
  3.  前記第1熱媒体流路切替手段および前記第2熱媒体流路切替手段のそれぞれは、複数の熱媒体流路切替弁と流量調整弁との機能を一体化した一体化切替手段で構成される請求項1記載の空気調和装置。 Each of the first heat medium flow switching means and the second heat medium flow switching means is constituted by an integrated switching means in which the functions of a plurality of heat medium flow switching valves and flow rate adjusting valves are integrated. The air conditioning apparatus according to claim 1.
  4.  前記中継ユニットを複数備え、前記分岐ユニットは複数の前記中継ユニットのそれぞれと接続される接続部を備えている請求項1~請求項3のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 3, further comprising a plurality of the relay units, wherein the branch unit includes a connection portion connected to each of the plurality of relay units.
  5.  前記冷媒循環回路はさらに、前記圧縮機から吐出された熱源側冷媒の流れを切り替えて冷房運転と暖房運転とを可能とする冷媒流路切替装置をさらに有する請求項1~請求項4のいずれか一項に記載の空気調和装置。 5. The refrigerant flow switching device according to claim 1, further comprising a refrigerant flow switching device that enables a cooling operation and a heating operation by switching a flow of the heat source side refrigerant discharged from the compressor. The air conditioning apparatus according to one item.
PCT/JP2015/050574 2015-01-13 2015-01-13 Air-conditioning device WO2016113830A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/050574 WO2016113830A1 (en) 2015-01-13 2015-01-13 Air-conditioning device
JP2016569138A JP6429901B2 (en) 2015-01-13 2015-01-13 Air conditioner
GB1710186.6A GB2548522B (en) 2015-01-13 2015-01-13 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050574 WO2016113830A1 (en) 2015-01-13 2015-01-13 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2016113830A1 true WO2016113830A1 (en) 2016-07-21

Family

ID=56405398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050574 WO2016113830A1 (en) 2015-01-13 2015-01-13 Air-conditioning device

Country Status (3)

Country Link
JP (1) JP6429901B2 (en)
GB (1) GB2548522B (en)
WO (1) WO2016113830A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108731127A (en) * 2018-06-06 2018-11-02 青岛海信日立空调系统有限公司 A kind of multitube multi-connected machine outdoor unit and its pipeline detection method and detection device
WO2020066015A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Air-conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114368A1 (en) * 2010-03-16 2011-09-22 三菱電機株式会社 Air conditioning device
WO2014024276A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Air conditioning device
WO2014045358A1 (en) * 2012-09-20 2014-03-27 三菱電機株式会社 Air conditioner device
WO2014097440A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Air-conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638249Y2 (en) * 1989-11-25 1994-10-05 ダイキン工業株式会社 Air conditioner pipe branching device
EP2615391B1 (en) * 2010-09-10 2017-10-25 Mitsubishi Electric Corporation Air-conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114368A1 (en) * 2010-03-16 2011-09-22 三菱電機株式会社 Air conditioning device
WO2014024276A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Air conditioning device
WO2014045358A1 (en) * 2012-09-20 2014-03-27 三菱電機株式会社 Air conditioner device
WO2014097440A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Air-conditioning device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108731127A (en) * 2018-06-06 2018-11-02 青岛海信日立空调系统有限公司 A kind of multitube multi-connected machine outdoor unit and its pipeline detection method and detection device
CN108731127B (en) * 2018-06-06 2020-09-04 青岛海信日立空调系统有限公司 Multi-pipe multi-connected outdoor unit and pipeline detection method and device thereof
WO2020066015A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Air-conditioner
JPWO2020066015A1 (en) * 2018-09-28 2021-08-30 三菱電機株式会社 Air conditioner
JP7034319B2 (en) 2018-09-28 2022-03-11 三菱電機株式会社 Air conditioner
US11802724B2 (en) 2018-09-28 2023-10-31 Mitsubishi Electric Corporation Air-conditioning apparatus with simultaneous heating and defrosting modes

Also Published As

Publication number Publication date
GB201710186D0 (en) 2017-08-09
JP6429901B2 (en) 2018-11-28
GB2548522B (en) 2020-09-16
JPWO2016113830A1 (en) 2017-07-06
GB2548522A (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6385436B2 (en) Air conditioner
JP6192706B2 (en) Air conditioner
JP6141454B2 (en) Air conditioner and control method of air conditioner
JP5752148B2 (en) Air conditioner
JP5452628B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
JP6095764B2 (en) Air conditioner
JP5236080B2 (en) Air conditioner
JP5595521B2 (en) Heat pump equipment
WO2013069351A1 (en) Air-conditioning apparatus
WO2012172731A1 (en) Air conditioner
JP6490232B2 (en) Air conditioner
JP5972397B2 (en) Air conditioner and design method thereof
JP2017190946A (en) Air conditioner
JP6429901B2 (en) Air conditioner
JP5985037B2 (en) Air conditioner
WO2015087421A1 (en) Air conditioner
JP6062030B2 (en) Air conditioner
WO2023007700A1 (en) Air conditioner
WO2022162864A1 (en) Air-conditioning device
JP5885753B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569138

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201710186

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150113

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877785

Country of ref document: EP

Kind code of ref document: A1