WO2021131437A1 - Refrigerant cycle device - Google Patents

Refrigerant cycle device Download PDF

Info

Publication number
WO2021131437A1
WO2021131437A1 PCT/JP2020/043190 JP2020043190W WO2021131437A1 WO 2021131437 A1 WO2021131437 A1 WO 2021131437A1 JP 2020043190 W JP2020043190 W JP 2020043190W WO 2021131437 A1 WO2021131437 A1 WO 2021131437A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expansion valve
joint
refrigeration cycle
unit
Prior art date
Application number
PCT/JP2020/043190
Other languages
French (fr)
Japanese (ja)
Inventor
憲彦 榎本
祐一 加見
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080086310.3A priority Critical patent/CN114793444B/en
Priority to DE112020006392.5T priority patent/DE112020006392T5/en
Publication of WO2021131437A1 publication Critical patent/WO2021131437A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus including a receiver and a plurality of evaporation units.
  • Patent Document 1 describes a refrigeration cycle device including a receiver, a front seat side expansion valve, a front seat side evaporator, a rear seat side expansion valve, and a rear seat side evaporator.
  • the receiver gas-liquid separates the refrigerant discharged from the condenser and stores excess refrigerant.
  • the front seat side expansion valve depressurizes the refrigerant discharged from the receiver.
  • the front seat side evaporator cools the air blown from the front seat side blower by evaporating the refrigerant discharged from the front seat side expansion valve.
  • the rear seat side expansion valve is arranged in parallel with the front seat side expansion valve with respect to the refrigerant flow from the compressor, and reduces the pressure of the refrigerant discharged from the receiver.
  • the rear seat side evaporator cools the air blown from the rear seat side blower by evaporating the refrigerant discharged from the rear seat side expansion valve.
  • the refrigerant discharged from the receiver is in a gas-liquid two-phase state due to pressure loss and heat damage from the atmosphere. Therefore, the gas-liquid two-phase state refrigerant flows into the front seat side expansion valve and the rear seat side expansion valve.
  • the front seat side expansion valve and the rear seat side expansion valve vibrate and noise is likely to be generated. If an expansion valve having a large throttle diameter is used as the front seat side expansion valve and the rear seat side expansion valve, it is possible to suppress the generation of vibration and sound.
  • the purpose of the present disclosure is to suppress the inflow of the gas-liquid two-phase refrigerant into the decompression section as much as possible.
  • the refrigeration cycle apparatus includes a compressor, a condensing unit, a branching unit, a first decompression unit, a receiver, a second decompression unit, a first evaporation unit, a third decompression unit, and the like. It includes a second evaporation unit.
  • the compressor compresses the refrigerant.
  • the condensing section condenses the refrigerant discharged from the compressor.
  • the branching portion branches the flow of the refrigerant flowing out from the condensing portion.
  • the first decompression section decompresses one of the refrigerants branched at the branch section.
  • the receiver separates the gas and liquid of the refrigerant decompressed by the first decompression unit.
  • the second decompression unit decompresses the liquid phase refrigerant flowing out of the receiver.
  • the first evaporation unit evaporates the refrigerant decompressed by the second decompression unit.
  • the third decompression section decompresses the other refrigerant branched at the branch section.
  • the second evaporation unit evaporates the refrigerant decompressed by the third decompression unit.
  • the refrigerant flowing into the third decompression section can be used as the supercooled liquid phase refrigerant by the decompression action of the first decompression section and the third decompression section. Therefore, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the third decompression section.
  • the refrigeration cycle device 10 is applied to a vehicle air conditioner mounted on an electric vehicle.
  • An electric vehicle is a vehicle that obtains driving force for traveling from an electric motor.
  • the vehicle air conditioner of the present embodiment is an air conditioner having an in-vehicle device cooling function for cooling an in-vehicle device such as a battery 30 while air-conditioning the interior of the vehicle, which is an air-conditioning target space, in an electric vehicle.
  • the refrigeration cycle device 10 cools or heats the air blown into the vehicle interior in the vehicle air conditioner.
  • the refrigeration cycle device 10 cools the battery 30. Therefore, the temperature control objects of the refrigeration cycle device 10 are air and the battery 30.
  • the refrigerating cycle device 10 is configured so that the refrigerant circuit can be switched in order to perform air conditioning in the vehicle interior and cooling of the battery 30.
  • the refrigeration cycle device 10 uses an HFO-based refrigerant (specifically, R1234yf) as the refrigerant.
  • the refrigeration cycle apparatus 10 constitutes a vapor compression type subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil (specifically, PAG oil) for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks in the refrigerant in the refrigeration cycle device 10, compresses it, and discharges it.
  • the compressor 11 is arranged in the drive unit room on the front side of the vehicle interior.
  • the drive device room forms a space in which at least a part of a drive device (for example, an electric motor) for outputting a driving force for traveling is arranged.
  • the compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism with a fixed discharge capacity by an electric motor.
  • the number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the control device 50.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11.
  • the indoor condenser 12 is arranged in the casing 41 of the indoor air conditioning unit 40.
  • the indoor condenser 12 is a condensing unit that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and air to dissipate heat and condense the high-pressure refrigerant.
  • the indoor condenser 12 is a heating unit that heats air using the high-pressure refrigerant discharged from the compressor 11 as a heat source.
  • the inlet side of the first joint 13a which is a three-way joint, is connected to the refrigerant outlet of the indoor condenser 12.
  • a three-way joint is a joint having three inlets and outlets that communicate with each other. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the refrigeration cycle device 10 includes a second joint 13b to a ninth joint 13i.
  • the second joint 13b, the third joint 13c, and the fifth joint 13e to the ninth joint 13i are three-way joints.
  • the basic configurations of the second joint 13b, the third joint 13c, and the fifth joint 13e to the ninth joint 13i are all the same as those of the first joint 13a.
  • first joint 13a to the third joint 13c and the fifth joint 13e to the ninth joint 13i when one of the three inflow outlets is used as the inflow port and two are used as the outflow port, one flow is used. It can function as a branch portion for branching the flow of the refrigerant flowing in from the inlet. When two of the three inflow ports are used as inflow ports and one is used as an outflow port, it can function as a merging section for merging the flows of the refrigerant flowing in from the two inflow ports.
  • first joint 13a, the third joint 13c, the sixth joint 13f, the seventh joint 13g, and the ninth joint 13i are operably connected as branch portions.
  • the second joint 13b, the fifth joint 13e, and the eighth joint 13h are operably connected as a confluence.
  • the fourth joint 13d is a four-sided joint.
  • a four-sided joint is a joint having four inflow ports that communicate with each other.
  • three of the four inflow ports are used as inflow ports and one is used as an outflow port, and the fourth joint 13d can function as a confluence portion for merging the flows of the refrigerant flowing in from the three inflow ports. it can.
  • the inlet side of the receiver 15 is connected to one outlet of the first joint 13a via the first on-off valve 14a, the first fixed throttle 23a, and the fifth joint 13e.
  • the inlet side of the heating expansion valve 16a is connected to the other outlet of the first joint 13a via the second on-off valve 14b and the second joint 13b.
  • the first on-off valve 14a is a solenoid valve that opens and closes the inlet-side passage 21a from one outlet of the first joint 13a to the inlet of the receiver 15.
  • the opening / closing operation of the first on-off valve 14a is controlled by the control voltage output from the control device 50.
  • the refrigeration cycle device 10 includes a third on-off valve 14c.
  • the basic configuration of the second on-off valve 14b, the third on-off valve 14c, and the fourth on-off valve 14d is the same as that of the first on-off valve 14a.
  • the first fixed throttle 23a is a first decompression unit that depressurizes the refrigerant flowing into the receiver 15.
  • the first fixed throttle 23a is arranged in a range from one outlet of the first joint 13a to the inlet of the receiver 15 in the inlet side passage 21a.
  • a first fixed throttle 23a an orifice, a capillary tube, or the like can be adopted.
  • one inflow port is connected to the outlet side of the first fixed throttle 23a in the inlet side passage 21a.
  • the outlet is connected to the inlet side of the receiver 15 in the inlet side passage 21a.
  • the receiver 15 is a liquid storage unit having a gas-liquid separation function. That is, the receiver 15 separates the gas and liquid of the refrigerant flowing out from the heat exchange unit that functions as a condenser that condenses the refrigerant in the refrigeration cycle device 10. Then, the receiver 15 causes a part of the separated liquid-phase refrigerant to flow out to the downstream side, and stores the remaining liquid-phase refrigerant as a surplus refrigerant in the cycle.
  • the second on-off valve 14b is a solenoid valve that opens and closes the outside air side passage 21c from the other outlet of the first joint 13a to the one inlet of the second joint 13b.
  • the refrigerant outlet side of the receiver 15 is connected to the other inflow port of the second joint 13b.
  • a sixth joint 13f and a first check valve 17a are arranged in the outlet side passage 21b that connects the refrigerant outlet of the receiver 15 and the other inflow port of the second joint 13b.
  • the inflow port is connected to the refrigerant outlet side of the receiver 15 in the outlet side passage 21b.
  • one outlet is connected to the inlet side of the first check valve 17a in the outlet side passage 21b.
  • the inlet side of the 7th joint 13g is connected to the other outlet of the 6th joint 13f.
  • the refrigerant inlet side of the outdoor heat exchanger 18 is connected to the outlet of the second joint 13b via a heating expansion valve 16a. Therefore, the first check valve 17a arranged in the outlet side passage 21b allows the refrigerant to flow from the outlet side of the receiver 15 to the heating expansion valve 16a side, and allows the refrigerant to flow from the heating expansion valve 16a side to the receiver 15. Refrigerant is prohibited from flowing to the outlet side.
  • the heating expansion valve 16a is a pressure reducing unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side at least when the refrigerant circuit is switched to the heating mode.
  • the heating expansion valve 16a is an electric variable throttle mechanism having a valve body configured so that the throttle opening can be changed and an electric actuator (specifically, a stepping motor) that displaces the valve body. That is, the heating expansion valve 16a is an electric expansion valve.
  • the operation of the heating expansion valve 16a is controlled by a control signal (specifically, a control pulse) output from the control device 50.
  • the expansion valve 16a for heating has a fully open function that functions as a simple refrigerant passage without exerting a flow rate adjusting action and a refrigerant depressurizing action by fully opening the valve opening, and a refrigerant by fully closing the valve opening. It has a fully closed function that blocks the passage.
  • the refrigeration cycle device 10 includes a first electric expansion valve 16b and a second electric expansion valve 16c.
  • the basic configuration of the first electric expansion valve 16b and the second electric expansion valve 16c is the same as that of the heating expansion valve 16a.
  • the outdoor heat exchanger 18 is a heat exchanger that exchanges heat between the refrigerant flowing out from the heating expansion valve 16a and the outside air blown from an outside air fan (not shown).
  • the outdoor heat exchanger 18 functions as a condensing unit that condenses the refrigerant or as an evaporation unit that evaporates the refrigerant, depending on the state of the refrigerant flowing out from the heating expansion valve 16a.
  • the outdoor heat exchanger 18 is arranged on the front side in the drive device room. Therefore, when the vehicle is traveling, the outdoor heat exchanger 18 can be exposed to the traveling wind.
  • the inlet side of the third joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 18.
  • the first inflow port side of the fourth joint 13d is connected to one outlet of the third joint 13c via a third on-off valve 14c and a third check valve 17c.
  • the inflow port side of the ninth joint 13i is connected to the other outflow port of the third joint 13c via the second check valve 17b.
  • the third on-off valve 14c is a solenoid valve that opens and closes the suction side passage 21d from one outlet of the third joint 13c to the first inflow port of the fourth joint 13d.
  • the suction port side of the compressor 11 is connected to the outlet of the fourth joint 13d.
  • the third check valve 17c allows the refrigerant to flow from one outlet side of the third joint 13c to the first inlet side of the fourth joint 13d, and allows the refrigerant to flow to the first inlet side of the fourth joint 13d. The refrigerant is prohibited from flowing to one of the outlets of the third joint 13c.
  • the second check valve 17b allows the refrigerant to flow from the refrigerant outlet side of the outdoor heat exchanger 18 to the inflow port side of the ninth joint 13i, and allows the refrigerant to flow from the inflow port side of the ninth joint 13i to the outdoor heat exchanger 18. Refrigerant flow to the refrigerant outlet side is prohibited.
  • the other inlet side of the fifth joint 13e is connected to one outlet of the ninth joint 13i via the second fixed throttle 23b.
  • the second fixed throttle 23b is a first decompression unit that depressurizes the refrigerant flowing into the receiver 15.
  • the second fixed drawing 23b is arranged in a range from one outlet of the ninth joint 13i to the other inlet of the fifth joint 13e.
  • a second fixed throttle 23b an orifice, a capillary tube, or the like can be adopted.
  • the inlet side of the 7th joint 13g is connected to the other outlet of the 6th joint 13f arranged in the outlet side passage 21b.
  • the inlet side of the first electric expansion valve 16b is connected to one outlet of the seventh joint 13g.
  • the inlet side of the second electric expansion valve 16c is connected to the other outlet of the seventh joint 13g.
  • the first electric expansion valve 16b is a second pressure reducing unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side at least when the refrigerant circuit is switched to the cooling mode. ..
  • the refrigerant inlet side of the indoor evaporator 19 is connected to the outlet of the first electric expansion valve 16b.
  • the indoor evaporator 19 is arranged in the casing 41 of the indoor air conditioning unit 40 shown in FIG.
  • the indoor evaporator 19 is a first evaporation unit that evaporates the low-pressure refrigerant decompressed by the first electric expansion valve 16b by exchanging heat with the air blown from the indoor blower 42.
  • the indoor evaporator 19 is an air cooling unit that cools air by evaporating a low-pressure refrigerant to exert an endothermic action.
  • One inflow port of the eighth joint 13h shown in FIG. 1 is connected to the refrigerant outlet of the indoor evaporator 19.
  • the suction port side of the compressor 11 is connected to the outlet of the 8th joint 13h via the 4th check valve 17d and the 4th joint 13d.
  • the outlet side of the fourth check valve 17d is connected to the second inflow port side of the fourth joint 13d.
  • the fourth check valve 17d allows the refrigerant to flow from the outlet side of the eighth joint 13h to the second inlet side of the fourth joint 13d, and allows the refrigerant to flow from the second inlet side of the fourth joint 13d to the second inlet side. The flow of the refrigerant to the outlet side of the 8 joint 13h is prohibited.
  • the second electric expansion valve 16c is a second decompression unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side when the battery 30 is cooled.
  • the refrigerant inlet side of the battery chiller 20 is connected to the outlet of the second electric expansion valve 16c.
  • a third inflow port of the fourth joint 13d is connected to the refrigerant outlet of the battery chiller 20.
  • the battery chiller 20 exchanges heat between the low-pressure refrigerant decompressed by the second electric expansion valve 16c and the cooling water of the battery cooling water circuit 31 (hereinafter referred to as battery cooling water) to exchange the low-pressure refrigerant. This is the first evaporating part to be evaporated.
  • the battery cooling water is cooled by the endothermic action of the refrigerant in the battery chiller 20.
  • the battery chiller 20 is a cooling evaporator that cools equipment mounted on a vehicle.
  • the battery cooling water circuit 31 is a heat medium circuit that circulates the battery cooling water.
  • the battery cooling water is a heat medium for cooling the battery 30.
  • a battery cooling water pump 32 and a battery cooling water passage 30a are arranged in the battery cooling water circuit 31.
  • the battery cooling water pump 32 is an electric pump that sucks and discharges the battery cooling water by the electric power supplied from the battery 30.
  • the battery 30 supplies electric power to an electric in-vehicle device such as an electric motor.
  • the battery 30 is an assembled battery formed by electrically connecting a plurality of battery cells in series or in parallel.
  • the battery cell is a rechargeable and dischargeable secondary battery (in this embodiment, a lithium ion battery).
  • the battery 30 has a structure in which a plurality of battery cells are stacked and arranged so as to have a substantially rectangular parallelepiped shape and housed in a special case.
  • the chemical reaction does not proceed easily at low temperatures, and the output tends to decrease.
  • the battery generates heat during operation (that is, during charging and discharging). Batteries tend to deteriorate at high temperatures. Therefore, it is desirable that the temperature of the battery is maintained within an appropriate temperature range (in this embodiment, 15 ° C. or higher and 55 ° C. or lower) in which the charge / discharge capacity of the battery can be fully utilized.
  • the battery cooling water passage 30a is formed in a special case for the battery 30.
  • the cooling water passage 30a cools the battery 30 with the battery cooling water cooled by the battery chiller 20. That is, the cooling water passage 30a is a battery cooling unit that cools the battery 30 by absorbing the heat of the battery 30 (that is, the waste heat of the battery 30) into the battery cooling water.
  • the refrigerant inlet side of the rear seat side evaporator 24 is connected to the other outlet of the ninth joint 13i via the fourth on-off valve 14d and the first mechanical expansion valve 16d.
  • the fourth on-off valve 14d is a solenoid valve that opens and closes a branch passage 21e from the other outlet of the ninth joint 13i to the other inlet of the eighth joint 13h.
  • the fourth on-off valve 14d is a shutoff portion that is branched by the ninth joint 13i and can block the flow of the refrigerant flowing through the first mechanical expansion valve 16d and the rear seat side evaporator 24.
  • the first mechanical expansion valve 16d reduces the pressure of the refrigerant flowing out from the other outlet of the ninth joint 13i at least when the refrigerant circuit is switched to the cooling mode for all seats, and reduces the flow rate of the refrigerant flowing out to the downstream side. This is the third decompression unit to be adjusted.
  • the first mechanical expansion valve 16d is arranged in the vicinity of the rear seat side evaporator 24.
  • the first mechanical expansion valve 16d a mechanical expansion valve (in other words, a temperature expansion valve) configured by a mechanical mechanism is adopted. More specifically, the first mechanical expansion valve 16d has a temperature sensitive portion having a deforming member (specifically, a diaphragm) that deforms according to the temperature and pressure of the outlet side refrigerant of the rear seat side evaporator 24. It has a valve body portion that is displaced according to the deformation of the deforming member to change the throttle opening degree.
  • a deforming member specifically, a diaphragm
  • the throttle opening degree is such that the superheat degree of the refrigerant on the outlet side of the rear seat side evaporator 24 approaches a predetermined standard superheat degree (5 ° C. in the present embodiment).
  • the mechanical mechanism means a mechanism that operates by a load due to fluid pressure, a load due to an elastic member, or the like without requiring the supply of electric power.
  • the rear seat side evaporator 24 is arranged in the casing 35 of the rear seat air conditioning unit 34.
  • the rear-seat side evaporator 24 is a second evaporation unit that evaporates the low-pressure refrigerant decompressed by the first mechanical expansion valve 16d by exchanging heat with the air blown from the rear-seat blower 36.
  • the rear seat side evaporator 24 is an air cooling unit that cools air by evaporating a low-pressure refrigerant to exert an endothermic action.
  • One inflow port of the eighth joint 13h shown in FIG. 1 is connected to the refrigerant outlet of the indoor evaporator 19.
  • the other inflow port of the eighth joint 13h is connected to the refrigerant outlet of the rear seat side evaporator 24.
  • the rear seat air conditioner unit 34 is a unit for blowing out appropriately temperature-controlled air to the rear seat side in the vehicle interior in the vehicle air conditioner.
  • the rear seat air conditioning unit 34 is arranged in the vicinity of the rear portion of the vehicle interior.
  • the rear seat air conditioning unit 34 is arranged in the trunk room on the rear side of the vehicle interior.
  • the casing 35 of the rear seat air conditioning unit 34 forms an air passage.
  • a rear seat blower 36, a rear seat side evaporator 24, and the like are arranged in the air passage formed in the casing 35.
  • the casing 35 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • a rear seat blower 36 is arranged on the upstream side of the air flow of the casing 35.
  • the rear seat blower 36 blows the air sucked from the suction port of the casing 35 toward the vehicle interior.
  • the rear seat blower 36 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the rotation speed (that is, the blowing capacity) of the rear seat blower 36 is controlled by the control voltage output from the control device 50.
  • a rear seat side evaporator 24 is arranged on the downstream side of the air flow of the rear seat blower 36.
  • An opening hole for blowing air toward the rear seats in the vehicle interior is formed in the most downstream portion of the air flow of the casing 35.
  • the first on-off valve 14a, the second on-off valve 14b, the third on-off valve 14c, and the fourth on-off valve 14d open and close the refrigerant passage to open and close the refrigerant circuit. You can switch. Therefore, the first on-off valve 14a, the second on-off valve 14b, the third on-off valve 14c, the fourth on-off valve 14d, and the like are included in the refrigerant circuit switching unit.
  • the first on-off valve 14a, the second on-off valve 14b, and the first joint 13a are the refrigerant circuit switching portions that guide the refrigerant discharged from the compressor 11 to either the receiver 15 side or the outdoor heat exchanger 18 side. It constitutes the first switching unit 22a. More specifically, the first switching unit 22a of the present embodiment guides the refrigerant flowing out of the indoor condenser 12 to one of the receiver 15 side and the second joint 13b side.
  • the second joint 13b forms a joint portion of a refrigerant circuit switching portion that guides at least one of the refrigerant flowing out from the first joint 13a and the refrigerant flowing out from the receiver 15 to the outdoor heat exchanger 18 side. More specifically, in the joint portion of the present embodiment, one of the refrigerant flowing out from the first joint 13a and the refrigerant flowing out from the receiver 15 is guided to the heating expansion valve 16a side.
  • the third on-off valve 14c and the third joint 13c are the second switching part 22b of the refrigerant circuit switching part that guides the refrigerant flowing out from the outdoor heat exchanger 18 to one of the suction port side and the ninth joint 13i side of the compressor 11. Consists of.
  • the fourth on-off valve 14d and the ninth joint 13i constitute a third switching portion of the refrigerant circuit switching portion that guides the refrigerant flowing out from the outdoor heat exchanger 18 to one of the receiver 15 side and the rear seat side evaporator 24 side. ing.
  • the indoor air conditioning unit 40 is a unit for blowing out appropriately temperature-controlled air to an appropriate location in the vehicle interior in a vehicle air-conditioning system.
  • the indoor air conditioning unit 40 blows air mainly to the front seat side of the vehicle interior.
  • the indoor air conditioning unit 40 is arranged inside the instrument panel (that is, the instrument panel) at the frontmost part of the vehicle interior.
  • the indoor air conditioning unit 40 has a casing 41 that forms an air passage.
  • An indoor blower 42, an indoor evaporator 19, an indoor condenser 12, and the like are arranged in an air passage formed in the casing 41.
  • the casing 41 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching device 43 is arranged on the most upstream side of the air flow of the casing 41.
  • the inside / outside air switching device 43 switches and introduces the inside air (vehicle interior air) and the outside air (vehicle interior outside air) into the casing 41.
  • the operation of the electric actuator for driving the inside / outside air switching device 43 is controlled by the control signal output from the control device 50.
  • An indoor blower 42 is arranged on the downstream side of the air flow of the inside / outside air switching device 43.
  • the indoor blower 42 blows the air sucked through the inside / outside air switching device 43 toward the vehicle interior.
  • the indoor blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the rotation speed (that is, the blowing capacity) of the indoor blower 42 is controlled by the control voltage output from the control device 50.
  • the indoor evaporator 19 and the indoor condenser 12 are arranged in this order with respect to the air flow. That is, the indoor evaporator 19 is arranged on the upstream side of the air flow with respect to the indoor condenser 12.
  • the indoor evaporator 19 is a front seat side evaporator that exchanges heat with air blown to the front seat side in the vehicle interior.
  • a bypass passage 45 is formed in the casing 41 to allow the air that has passed through the indoor evaporator 19 to bypass the indoor condenser 12 and flow to the downstream side.
  • the air mix door 44 is arranged on the downstream side of the air flow of the indoor evaporator 19 and on the upstream side of the air flow of the indoor condenser 12.
  • the air mix door 44 adjusts the ratio of the air volume after passing through the indoor evaporator 19 to the air volume passing through the indoor condenser 12 and the air volume passing through the bypass passage 45.
  • the operation of the electric actuator for driving the air mix door is controlled by a control signal output from the control device 50.
  • a mixing space 46 is provided for mixing the air heated by the indoor condenser 12 and the air not heated by the indoor condenser 12 through the bypass passage 45. Has been done.
  • An opening hole (not shown) for blowing out the air mixed in the mixing space 46 into the vehicle interior is arranged at the most downstream portion of the air flow of the casing 41.
  • air conditioning air The temperature of the air (hereinafter referred to as air conditioning air) can be adjusted.
  • the opening holes As the opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided.
  • the face opening hole is an opening hole for blowing air-conditioning air toward the upper body of the occupant in the vehicle interior.
  • the foot opening hole is an opening hole for blowing air-conditioning air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing air conditioning air toward the inner surface of the front window glass of the vehicle.
  • a blowout mode switching door (not shown) is arranged on the upstream side of these opening holes.
  • the blowout mode switching door switches the opening holes for blowing out the conditioned air by opening and closing each opening hole.
  • the operation of the electric actuator for driving the blowout mode switching door is controlled by the control signal output from the control device 50.
  • the control device 50 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
  • the control device 50 performs various calculations and processes based on the air conditioning control program stored in the ROM, and various control target devices 11, 14a to 14d, 16a to 16d, 37, 42, 43, connected to the output side. Controls the operation of 44 etc.
  • control sensor includes an inside air temperature sensor 51a, an outside air temperature sensor 51b, and an insolation amount sensor 51c.
  • the control sensor includes a high pressure pressure sensor 51d, an air conditioning air temperature sensor 51e, an evaporator temperature sensor 51f, an evaporator pressure sensor 51g, an outdoor unit temperature sensor 51h, an outdoor unit pressure sensor 51i, and a battery temperature sensor 51j.
  • the internal air temperature sensor 51a is an internal air temperature detection unit that detects the internal air temperature Tr, which is the temperature inside the vehicle.
  • the outside air temperature sensor 51b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle interior.
  • the solar radiation amount sensor 51c is a solar radiation amount detection unit that detects the solar radiation amount As emitted into the vehicle interior.
  • the high-pressure pressure sensor 51d is a high-pressure pressure detection unit that detects the high-pressure pressure Pd, which is the pressure of the high-pressure refrigerant discharged from the compressor 11.
  • the conditioned air temperature sensor 51e is an conditioned air temperature detecting unit that detects the blown air temperature TAV blown from the mixing space 46 into the vehicle interior.
  • the evaporator temperature sensor 51f is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (in other words, the evaporator temperature) Te in the indoor evaporator 19.
  • the evaporator temperature sensor 51f of the present embodiment specifically detects the temperature of the refrigerant on the outlet side of the indoor evaporator 19.
  • the evaporator pressure sensor 51g is an evaporator pressure detecting unit that detects the refrigerant evaporation pressure Pe in the indoor evaporator 19.
  • the evaporator pressure sensor 51g of the present embodiment specifically detects the pressure of the refrigerant on the outlet side of the indoor evaporator 19.
  • the outdoor unit temperature sensor 51h is an outdoor unit temperature detection unit that detects the outdoor unit refrigerant temperature T1, which is the temperature of the refrigerant flowing through the outdoor heat exchanger 18.
  • the outdoor unit temperature sensor 51h of the present embodiment specifically detects the temperature of the refrigerant on the outlet side of the outdoor heat exchanger 18.
  • the outdoor unit pressure sensor 51i is an outdoor unit temperature detection unit that detects the outdoor unit refrigerant pressure P1 which is the pressure of the refrigerant flowing through the outdoor heat exchanger 18.
  • the outdoor unit pressure sensor 51i of the present embodiment specifically detects the pressure of the refrigerant on the outlet side of the outdoor heat exchanger 18.
  • the battery temperature sensor 51j is a battery temperature detection unit that detects the battery temperature TB, which is the temperature of the battery 30.
  • the battery temperature sensor 51j has a plurality of temperature detection units, and detects temperatures at a plurality of locations of the battery 30. Therefore, the control device 50 can also detect the temperature difference of each part of the battery 30.
  • the battery temperature TB the average value of the detected values of a plurality of temperature sensors is adopted.
  • An operation panel 52 arranged near the instrument panel at the front of the vehicle interior is connected to the input side of the control device 50, and operation signals from various operation switches provided on the operation panel 52 are input.
  • the various operation switches provided on the operation panel 52 include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and a rear seat cooling switch.
  • the auto switch is an operation switch that sets or cancels the automatic control operation of the refrigeration cycle device 10.
  • the air conditioner switch is an operation switch that requires the indoor evaporator 19 to cool the air.
  • the air volume setting switch is an operation switch for manually setting the air volume of the indoor blower 42.
  • the temperature setting switch is an operation switch for setting the target temperature Tset in the vehicle interior.
  • the rear seat cooling switch is an operation switch that requires the rear seat side evaporator 24 to cool the air.
  • the control device 50 of the present embodiment is integrally composed of a control unit that controls various controlled devices connected to the output side of the control device 50. Therefore, a configuration (that is, hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device.
  • the configuration for controlling the operation of the first on-off valve 14a, the second on-off valve 14b, the third on-off valve 14c, and the fourth on-off valve 14d, which are the refrigerant circuit switching units, is the refrigerant circuit control unit 50a. Consists of.
  • the refrigerating cycle device 10 is configured so that the refrigerant circuit can be switched in order to perform air conditioning in the vehicle interior and cooling of the battery 30.
  • the refrigerating cycle device 10 can switch the refrigerant circuit in the heating mode, the refrigerant circuit in the cooling mode, and the refrigerant circuit in the dehumidifying / heating mode in order to perform air conditioning in the vehicle interior.
  • the heating mode is an operation mode in which the heated air is blown into the vehicle interior.
  • the cooling mode is an operation mode in which cooled air is blown into the vehicle interior.
  • the dehumidifying / heating mode is an operation mode in which the cooled and dehumidified air is reheated and blown out into the vehicle interior.
  • the switching of these operation modes is performed by executing the air conditioning control program stored in the control device 50 in advance.
  • the air conditioning control program is executed when the auto switch of the operation panel 52 is turned on (ON).
  • the operation mode is switched based on the detection signals of various control sensors and the operation signals of the operation panel. The operation of each operation mode will be described below.
  • (A) Heating mode In the heating mode, the control device 50 opens the first on-off valve 14a, closes the second on-off valve 14b, opens the third on-off valve 14c, and closes the fourth on-off valve 14d.
  • the control device 50 sets the heating expansion valve 16a in a throttled state for exerting a refrigerant depressurizing action, and sets the first electric expansion valve 16b in a fully closed state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the first fixed throttle 23a, the receiver 15, the heating expansion valve 16a, the outdoor heat exchanger 18, and the compressor. It is switched to the first circuit that circulates in the order of the 11 suction ports.
  • the control device 50 controls the operation of various controlled devices.
  • the control device 50 controls the discharge capacity so that the high pressure Pd detected by the high pressure sensor 51d approaches the target high pressure PDO.
  • the target high-pressure PDO is determined based on the target blowout temperature TAO with reference to the control map for the heating mode stored in advance in the control device 50.
  • the target blowout temperature TAO is calculated using the detection signals of various control sensors and the operation signals of the operation panel.
  • the control device 50 may adjust the rotation speed of the compressor 11 so that the deviation between the target blowout temperature TAO and the actual blowout temperature becomes small.
  • the control device 50 is throttled open so that the superheat degree SH1 of the outlet side refrigerant of the outdoor heat exchanger 18 approaches a predetermined target superheat degree KSH (5 ° C. in the present embodiment). Control the degree.
  • the degree of superheat SH1 is calculated from the outdoor unit refrigerant temperature T1 detected by the outdoor unit temperature sensor 51h and the outdoor unit refrigerant pressure P1 detected by the outdoor unit pressure sensor 51i.
  • the control device 50 controls the opening degree so that the blown air temperature TAV detected by the air conditioning air temperature sensor 51e approaches the target blown temperature TAO.
  • the opening degree of the air mix door 44 may be controlled so that the total amount of air that has passed through the indoor evaporator 19 flows into the indoor condenser 12.
  • the compressor 11 when the compressor 11 is operated, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the refrigerant that has flowed into the indoor condenser 12 dissipates heat to the air that has passed through the indoor evaporator 19 and condenses. This heats the air.
  • the refrigerant flowing out of the indoor condenser 12 flows into the first fixed throttle 23a via the first joint 13a and the inlet side passage 21a, and is reduced to an intermediate pressure.
  • the refrigerant decompressed by the first fixed throttle 23a flows into the receiver 15.
  • the refrigerant flowing into the receiver 15 is gas-liquid separated by the receiver 15.
  • a part of the liquid phase refrigerant separated by the receiver 15 flows into the heating expansion valve 16a through the outlet side passage 21b and the second joint 13b.
  • the residual liquid phase refrigerant separated by the receiver 15 is stored in the receiver 15 as a surplus refrigerant.
  • the refrigerant flowing into the heating expansion valve 16a is depressurized until it becomes a low-pressure refrigerant.
  • the throttle opening degree of the heating expansion valve 16a is controlled so that the superheat degree SH1 approaches the target superheat degree KSH.
  • the degree of superheat of the outlet-side refrigerant of the outdoor heat exchanger 18 is substantially controlled to approach the target degree of superheat KSH.
  • the low-pressure refrigerant decompressed by the heating expansion valve 16a flows into the outdoor heat exchanger 18.
  • the refrigerant flowing into the outdoor heat exchanger 18 exchanges heat with the outside air blown from the outside air fan, absorbs heat from the outside air, and evaporates.
  • the refrigerant flowing out of the outdoor heat exchanger 18 is sucked into the compressor 11 through the third joint 13c, the suction side passage 21d, and the fourth joint 13d, and is compressed again.
  • the interior of the vehicle can be heated by blowing out the air heated by the interior condenser 12 into the interior of the vehicle.
  • (B) Cooling mode In the cooling mode, the control device 50 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. When the rear seat cooling switch is not turned on (ON), the control device 50 closes the fourth on-off valve 14d, and when the rear seat cooling switch is turned on (ON), the control device 50 closes the fourth on-off valve 14d. open. The control device 50 sets the heating expansion valve 16a in the fully open state and the first electric expansion valve 16b in the throttle state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the heating expansion valve 16a, the outdoor heat exchanger 18, the second fixed throttle 23b, the receiver 15, the first. It is switched to the second circuit that circulates in the order of the electric expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11.
  • the fourth on-off valve 14d is open, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the heating expansion valve 16a, the outdoor heat exchanger 18, the first mechanical expansion valve 16d, and the rear seat side.
  • a circuit that circulates in the order of the evaporator 24 and the suction port of the compressor 11 is also configured.
  • the control device 50 controls the operation of various controlled devices. For example, for the compressor 11, the discharge capacity is controlled so that the evaporator temperature Te detected by the evaporator temperature sensor 51f approaches the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to the control map for the cooling mode stored in advance in the control device 50.
  • the target evaporator temperature TEO rises as the target blowout temperature TAO rises.
  • the target evaporator temperature TEO is determined to be a value within a range (specifically, 1 ° C. or higher) in which frost formation of the indoor evaporator 19 can be suppressed.
  • the control device 50 controls the throttle opening so that the superheat degree SH2 of the refrigerant on the outlet side of the indoor evaporator 19 approaches the target superheat degree KSH.
  • the degree of superheat SH2 is calculated from the evaporator temperature Te and the refrigerant evaporation pressure Pe detected by the evaporator pressure sensor 51g.
  • the opening degree of the air mix door 44 is controlled so that the total air volume of the air that has passed through the indoor evaporator 19 flows into the bypass passage 45.
  • the compressor 11 when the compressor 11 is operated, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12. In the cooling mode, the total air volume of the air that has passed through the indoor evaporator 19 flows into the bypass passage 45. Therefore, the refrigerant that has flowed into the indoor condenser 12 flows out of the indoor condenser 12 without exchanging heat with air.
  • the refrigerant flowing out of the indoor condenser 12 flows into the heating expansion valve 16a via the first joint 13a and the outside air side passage 21c.
  • the heating expansion valve 16a In the cooling mode, the heating expansion valve 16a is fully open. Therefore, the refrigerant that has flowed into the heating expansion valve 16a flows out of the heating expansion valve 16a without being depressurized. That is, in the cooling mode, the indoor condenser 12 and the heating expansion valve 16a are merely refrigerant passages.
  • the refrigerant flowing out of the heating expansion valve 16a flows into the outdoor heat exchanger 18.
  • the refrigerant flowing into the outdoor heat exchanger 18 exchanges heat with the outside air blown from the outside air fan, dissipates heat to the outside air, and condenses.
  • the refrigerant flowing out of the outdoor heat exchanger 18 flows into the second fixed throttle 23b via the third joint 13c and the ninth joint 13i and is depressurized to the intermediate pressure.
  • the refrigerant decompressed by the second fixed throttle 23b flows into the receiver 15 through the fifth joint 13e and the inlet side passage 21a.
  • the refrigerant flowing into the receiver 15 is gas-liquid separated by the receiver 15.
  • a part of the liquid phase refrigerant separated by the receiver 15 flows into the first electric expansion valve 16b through the outlet side passage 21b and the sixth joint 13f.
  • the residual liquid phase refrigerant separated by the receiver 15 is stored in the receiver 15 as a surplus refrigerant.
  • the refrigerant flowing into the first electric expansion valve 16b is depressurized until it becomes a low-pressure refrigerant.
  • the throttle opening degree of the first electric expansion valve 16b is controlled so that the superheat degree SH2 approaches the target superheat degree KSH.
  • the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 19 is substantially controlled to approach the target degree of superheat KSH.
  • the low-pressure refrigerant decompressed by the first electric expansion valve 16b flows into the indoor evaporator 19.
  • the refrigerant flowing into the indoor evaporator 19 exchanges heat with the air blown from the indoor blower 42, absorbs heat from the air, and evaporates. This cools the air.
  • the refrigerant flowing out of the indoor evaporator 19 is sucked into the compressor 11 via the eighth joint 13h and the fourth joint 13d and is compressed again.
  • the interior of the vehicle can be cooled by blowing out the air cooled by the indoor evaporator 19 into the interior of the vehicle.
  • the refrigerant flowing into the first mechanical expansion valve 16d is depressurized until it becomes a low-pressure refrigerant.
  • the first mechanical expansion valve 16d changes the throttle opening degree by a mechanical mechanism so that the superheat degree of the refrigerant on the outlet side of the rear seat side evaporator 24 approaches a predetermined reference superheat degree.
  • the low-pressure refrigerant decompressed by the first mechanical expansion valve 16d flows into the rear seat side evaporator 24.
  • the refrigerant flowing into the rear seat side evaporator 24 exchanges heat with the air blown from the rear seat blower 36, absorbs heat from the air, and evaporates. This cools the air.
  • the refrigerant flowing out of the rear seat side evaporator 24 is sucked into the compressor 11 via the eighth joint 13h and the fourth joint 13d and is compressed again.
  • the air cooled by the rear seat side evaporator 24 can be blown out to the rear seat side of the vehicle interior to cool the rear seat side of the vehicle interior.
  • (C) Dehumidifying and heating mode In the dehumidifying and heating mode, the control device 50 opens the first on-off valve 14a, closes the second on-off valve 14b, opens the third on-off valve 14c, and closes the fourth on-off valve 14d. The control device 50 puts the heating expansion valve 16a in the throttled state and puts the first electric expansion valve 16b in the throttled state.
  • the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the first fixed throttle 23a, and the receiver 15. Then, the receiver 15, the expansion valve for heating 16a, the outdoor heat exchanger 18, and the suction port of the compressor 11 circulate in this order, and the receiver 15, the first electric expansion valve 16b, the indoor evaporator 19, and the compressor 11 are sucked.
  • a third circuit that circulates in the order of the mouth is configured.
  • the refrigeration cycle device 10 in the dehumidification / heating mode is switched to a circuit in which the outdoor heat exchanger 18 and the indoor evaporator 19 are connected in parallel with respect to the flow of the refrigerant flowing out from the receiver 15.
  • control device 50 controls the operation of various controlled devices. For example, with respect to the compressor 11, the discharge capacity is controlled in the same manner as in the cooling mode.
  • the control device 50 controls the throttle opening so that the outdoor unit refrigerant temperature T1 detected by the outdoor unit temperature sensor 51h approaches the outdoor unit target temperature TO1.
  • the outdoor unit target temperature TO1 is determined based on the target outlet temperature TAO and the outside air temperature Tam with reference to the control map for the dehumidifying / heating mode stored in the control device 50 in advance. In this control map, the outdoor unit target temperature TO1 is determined to be lower than the outside air temperature Tam.
  • the throttle opening is controlled in the same manner as in the cooling mode.
  • the control device 50 controls the opening degree so that the blown air temperature TAV detected by the air conditioning air temperature sensor 51e approaches the target blown temperature TAO.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the refrigerant that has flowed into the indoor condenser 12 dissipates heat to the air that has passed through the indoor evaporator 19 and condenses. As a result, the cooled air is heated as it passes through the indoor evaporator 19.
  • the refrigerant flowing out of the indoor condenser 12 flows into the first fixed throttle 23a via the first joint 13a and the inlet side passage 21a, and is reduced to an intermediate pressure.
  • the refrigerant decompressed by the first fixed throttle 23a flows into the receiver 15.
  • the refrigerant flowing into the receiver 15 is gas-liquid separated by the receiver 15.
  • a part of the liquid phase refrigerant separated by the receiver 15 flows into the heating expansion valve 16a via the outlet side passage 21b and the second joint 13b. Another part of the liquid phase refrigerant separated by the receiver 15 flows into the first electric expansion valve 16b through the outlet side passage 21b and the sixth joint 13f.
  • the residual liquid phase refrigerant separated by the receiver 15 is stored in the receiver 15 as a surplus refrigerant.
  • the refrigerant flowing from the receiver 15 to the heating expansion valve 16a is depressurized until it becomes a low-pressure refrigerant.
  • the throttle opening degree of the heating expansion valve 16a is controlled so that the outdoor unit refrigerant temperature T1 is lower than the outside air temperature Tam.
  • the low-pressure refrigerant decompressed by the heating expansion valve 16a flows into the outdoor heat exchanger 18.
  • the refrigerant flowing into the outdoor heat exchanger 18 exchanges heat with the outside air blown from the outside air fan, absorbs heat from the outside air, and evaporates.
  • the refrigerant flowing out of the outdoor heat exchanger 18 flows into the fourth joint 13d via the third joint 13c and the suction side passage 21d.
  • the refrigerant flowing from the receiver 15 to the first electric expansion valve 16b is depressurized until it becomes a low-pressure refrigerant.
  • the throttle opening degree of the first electric expansion valve 16b is controlled so that the superheat degree SH2 approaches the target superheat degree KSH.
  • the low-pressure refrigerant decompressed by the first electric expansion valve 16b flows into the indoor evaporator 19.
  • the refrigerant flowing into the indoor evaporator 19 exchanges heat with the air blown from the indoor blower 42, absorbs heat from the air, and evaporates. This cools the air.
  • the refrigerant flowing out of the indoor evaporator 19 flows into the fourth joint 13d via the eighth joint 13h.
  • the refrigerant flowing out from the fourth joint 13d is sucked into the compressor 11 and compressed again.
  • the dehumidifying / heating of the vehicle interior can be performed by reheating the air cooled by the indoor evaporator 19 and dehumidified by the indoor condenser 12 and blowing it out into the vehicle interior.
  • the refrigerating cycle device 10 can realize comfortable air conditioning in the vehicle interior by switching the refrigerant circuit according to each operation mode.
  • the battery 30 can be cooled by executing the cooling mode.
  • the cooling mode can be executed in parallel with each operation mode for air conditioning as long as the refrigerating cycle device 10 is operating. That is, the battery 30 can be cooled at the same time as air-conditioning the interior of the vehicle.
  • the cooling mode is executed when the battery temperature TB detected by the battery temperature sensor 51j becomes equal to or higher than a predetermined reference battery temperature KTB. The operation of the cooling mode will be described below.
  • Cooling mode In the cooling mode, the control device 50 controls the device to be controlled in the same manner as each operation mode for air conditioning, and in addition, sets the second electric expansion valve 16c in a throttled state.
  • the refrigerant flowing out from the receiver 15 flows in the order of the second electric expansion valve 16c, the battery chiller 20, and the suction port of the compressor 11 regardless of the operation mode for air conditioning. Circuit is configured for.
  • the outdoor heat exchanger 18 and the battery chiller 20 are parallel to the flow of the refrigerant flowing out from the receiver 15. It can be switched to the circuit connected to.
  • the indoor evaporator 19 and the battery chiller 20 are connected in parallel to the flow of the refrigerant flowing out from the receiver 15. Can be switched to the circuit.
  • the refrigerating cycle device 10 When the cooling mode and the dehumidifying / heating mode are executed in parallel, the refrigerating cycle device 10 responds to the flow of the refrigerant flowing out from the receiver 15 by the outdoor heat exchanger 18, the indoor evaporator 19, and the battery chiller 20. Can be switched to a circuit in which and are connected in parallel.
  • control device 50 controls the operation of various controlled devices. For example, for the second electric expansion valve 16c, the control device 50 controls the throttle opening so that the battery temperature TB is maintained within an appropriate temperature range of the battery 30.
  • the refrigerant flowing out from the receiver 15 flows into the second electric expansion valve 16c via the sixth joint 13f and the seventh joint 13g.
  • the refrigerant flowing from the receiver 15 to the second electric expansion valve 16c is depressurized until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second electric expansion valve 16c flows into the battery chiller 20.
  • the refrigerant flowing into the battery chiller 20 absorbs the heat of the battery cooling water (that is, the waste heat of the battery 30) and evaporates. This cools the battery 30.
  • the refrigerant flowing out of the battery chiller 20 is sucked into the compressor 11 via the eighth joint 13h and the fourth joint 13d.
  • the battery 30 can be cooled while air-conditioning the interior of the vehicle by executing the cooling mode.
  • the refrigerant decompressed by the heating expansion valve 16a can be evaporated by the outdoor heat exchanger 18. it can.
  • the high-pressure liquid-phase refrigerant condensed by the indoor condenser 12 can be stored in the receiver 15 as a surplus refrigerant. Therefore, the outlet-side refrigerant of the outdoor heat exchanger 18 can have a degree of superheat.
  • the coefficient of performance of the cycle can be improved.
  • the accumulator is arranged in the refrigerant flow path from the refrigerant outlet side of the heat exchange unit that evaporates the refrigerant to the suction side of the compressor, and the liquid storage unit on the low pressure side that stores excess refrigerant in the cycle as a liquid phase refrigerant.
  • the amount of heat absorbed by the refrigerant in the heat exchange section that evaporates the refrigerant is defined by the enthalpy difference obtained by subtracting the enthalpy of the inlet side refrigerant from the enthalpy of the outlet side refrigerant of the heat exchange section that evaporates the refrigerant.
  • the refrigerant decompressed by the first electric expansion valve 16b is evaporated by the indoor evaporator 19. Can be done.
  • the high-pressure liquid-phase refrigerant condensed by the outdoor heat exchanger 18 can be stored in the receiver 15 as a surplus refrigerant. Therefore, the outlet-side refrigerant of the indoor evaporator 19 can have a degree of superheat.
  • the amount of heat absorbed by the refrigerant in the indoor evaporator 19 can be increased as compared with the refrigeration cycle device provided with an accumulator as the liquid storage unit. As a result, the cooling capacity of the air in the indoor evaporator 19 can be improved.
  • the coefficient of performance of the cycle can be improved.
  • the refrigerant decompressed by the first electric expansion valve 16b is evaporated by the indoor evaporator 19. Can be made to.
  • the refrigerant decompressed by the first electric expansion valve 16b can be evaporated by the indoor evaporator 19.
  • the high-pressure liquid-phase refrigerant condensed by the indoor condenser 12 can be stored in the receiver 15 as a surplus refrigerant. Therefore, both the outlet-side refrigerant of the outdoor heat exchanger 18 and the outlet-side refrigerant of the indoor evaporator 19 can have a degree of superheat.
  • the heat absorption amount of the refrigerant in the indoor evaporator 19 can be increased as compared with the refrigeration cycle device provided with an accumulator as the liquid storage unit. As a result, the cooling capacity of the air in the indoor evaporator 19 can be improved.
  • the coefficient of performance of the cycle can be improved. That is, according to the refrigeration cycle device 10 of the present embodiment, the coefficient of performance can be improved even if the refrigerant circuit is configured to be switchable.
  • the first switching portion 22a is composed of the first on-off valve 14a, the second on-off valve 14b, and the first joint 13a. Then, the first switching unit 22a of the present embodiment specifically guides the refrigerant flowing out of the indoor condenser 12 to one of the receiver 15 side and the second joint 13b side.
  • the second joint 13b constituting the joint portion of the present embodiment guides one of the refrigerant flowing out from the first joint 13a and the refrigerant flowing out from the receiver 15 to the heating expansion valve 16a side.
  • the second switching portion 22b is composed of the third on-off valve 14c, the third joint 13c, and the second check valve 17b. Then, the second switching unit 22b of the present embodiment specifically guides the refrigerant flowing out of the outdoor heat exchanger 18 to one of the suction port side and the receiver 15 side of the compressor 11.
  • the refrigeration cycle device 10 of the present embodiment includes the first fixed drawing 23a and the second fixed drawing 23b, the coefficient of performance can be further improved.
  • FIG. 4 is a Moriel diagram showing the state of the refrigerant in the refrigeration cycle device 10 in the heating mode.
  • the indoor condenser 12 serves as a heat exchange unit for condensing the refrigerant
  • the outdoor heat exchanger 18 serves as a heat exchange unit for evaporating the refrigerant.
  • FIG. 4 the change in the state of the refrigerant in the refrigerating cycle device 10 of the present embodiment including the first fixed throttle 23a is shown by a thick solid line.
  • the change in the state of the refrigerant in the refrigeration cycle apparatus of the comparative example not provided with the first fixed throttle 23a is shown by a thin broken line.
  • FIG. 8 the state of the refrigerant in the receiver 15 in the refrigeration cycle device 10 of the present embodiment is indicated by a point Lq.
  • FIG. 4 the state of the refrigerant in the receiver 15 in the refrigeration cycle apparatus of the comparative example is shown by a point Lqex.
  • the pressure of the refrigerant in the receiver 15 is the pressure of the high-pressure refrigerant in the heat exchange unit (indoor condenser 12 in the heating mode) that condenses the refrigerant. It will be lower than the pressure. Therefore, as shown in FIG. 4, the pressure of the refrigerant at the point Lq of the refrigeration cycle device 10 of the present embodiment is lower than the pressure of the refrigerant at the point Lqex of the refrigeration cycle device of the comparative example.
  • the enthalpy of the refrigerant at the point Lq of the refrigeration cycle apparatus 10 of the present embodiment is lower than the enthalpy of the refrigerant at the point Lqex of the refrigeration cycle apparatus of the comparative example. Therefore, in the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant on the outlet side of the heat exchange unit (indoor condenser 12 in the heating mode) that condenses the refrigerant becomes the supercooled liquid phase refrigerant SC1.
  • the enthalpy of the refrigerant flowing into the heat exchange unit (outdoor heat exchanger 18 in the heating mode) that evaporates the refrigerant can be lowered as compared with the refrigeration cycle device 10 of the comparative example. it can.
  • the coefficient of performance can be improved by increasing the amount of heat absorbed by the refrigerant in the heat exchange unit (outdoor heat exchanger 18 in the heating mode) that evaporates the refrigerant.
  • the outdoor heat exchanger 18 serves as a heat exchange unit for condensing the refrigerant.
  • the indoor evaporator 19 serves as a heat exchange unit for evaporating the refrigerant.
  • the refrigeration cycle device 10 of the present embodiment includes the second fixed throttle 23b, the pressure of the refrigerant in the receiver 15 is lower than the pressure of the high-pressure refrigerant in the outdoor heat exchanger 18 in the cooling mode. Therefore, in the cooling mode, the refrigerant on the outlet side of the outdoor heat exchanger 18 becomes the supercooled liquid phase refrigerant.
  • the enthalpy of the refrigerant flowing into the indoor evaporator 19 can be lowered as compared with the refrigeration cycle device 10 of the comparative example.
  • the amount of heat absorbed by the refrigerant in the indoor evaporator 19 can be increased, and the coefficient of performance can be improved.
  • the refrigerating cycle device 10 of the present embodiment includes the second fixed throttle 23b, the refrigerant on the outlet side of the outdoor heat exchanger 18 becomes the supercooled liquid phase refrigerant in the cooling mode.
  • the refrigerant on the outlet side of the outdoor heat exchanger 18 is branched to the rear seat side evaporator 24 side at the ninth joint 13i. Therefore, in the cooling mode, when the fourth on-off valve 14d is opened to cool the air in the rear seat side evaporator 24, the refrigerant flowing into the first mechanical expansion valve 16d becomes a liquid phase refrigerant. Therefore, it is possible to prevent the gas-liquid two-phase refrigerant from flowing into the first mechanical expansion valve 16d.
  • a mechanical expansion valve such as the first mechanical expansion valve 16d includes a structure that drives the valve body by sensing the temperature of the refrigerant at the outlet of the evaporator and changing the gas pressure sealed in the diaphragm. ing. Therefore, it is structurally difficult for the mechanical expansion valve to increase the maximum opening diameter as compared with the electric expansion valve, and the depth of the opening is deepened in order to secure the required decompression amount while keeping the opening diameter large. It is difficult to take a long time. Therefore, the characteristic that the depressurization of the refrigerant suddenly occurs is strong, and when the gas-liquid two-phase refrigerant flows into the mechanical expansion valve, vibration and noise are likely to occur.
  • the first mechanical expansion valve 16d is arranged together with the rear seat side evaporator 24 in the center of the vehicle interior or on the rear side of the rear seat. Therefore, the sound generated from the first mechanical expansion valve 16d tends to reverberate in the vehicle interior.
  • the rotation speed of the compressor 11 becomes equal to or less than the predetermined rotation speed. In this case, it is determined that the degree of supercooling of the refrigerant flowing into the first mechanical expansion valve 16d is equal to or less than a predetermined value, and the fourth on-off valve 14d is closed.
  • the degree of supercooling of the refrigerant flowing into the first mechanical expansion valve 16d becomes equal to or less than a predetermined value and the refrigerant flowing into the first mechanical expansion valve 16d may become a gas-liquid two-phase refrigerant
  • the liquid phase refrigerant flows or accumulates in the branch passage 21e in any of the cooling mode, the heating mode, and the dehumidifying heating mode. Therefore, since the difference in the required refrigerant amount for each operation mode can be suppressed to a small size, the operation in each operation mode can be stabilized, and the volume of the receiver 15 for absorbing the difference in the required refrigerant amount for each operation mode can be increased. It can be kept small.
  • the flow of the refrigerant flowing out of the outdoor heat exchanger 18 is branched to the first fixed throttle 23a side and the first mechanical expansion valve 16d side by the ninth joint 13i, and the first mechanical expansion valve 16d
  • the refrigerant decompressed in the above is evaporated by the rear seat side evaporator 24.
  • the refrigerant in the ninth joint 13i can be used as the supercooled liquid phase refrigerant by the depressurizing action of the first fixed throttle 23a and the first mechanical expansion valve 16d. Therefore, since the refrigerant flowing into the first mechanical expansion valve 16d can be used as the supercooling liquid phase refrigerant, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the first mechanical expansion valve 16d.
  • the flow of the refrigerant branched by the ninth joint 13i and flowing through the first mechanical expansion valve 16d and the rear seat side evaporator 24 can be blocked by the fourth on-off valve 14d. This makes it possible to switch between a state in which the rear seat side evaporator 24 is used and a state in which the rear seat side evaporator 24 is not used.
  • the fourth on-off valve 14d may be integrated with the first mechanical expansion valve 16d. As a result, the configuration can be simplified.
  • the control device 50 controls the fourth on-off valve 14d so as to shut off the flow of the refrigerant when the degree of supercooling of the refrigerant flowing into the first mechanical expansion valve 16d becomes a predetermined value or less.
  • the first machine It is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the expansion valve 16d.
  • the control device 50 sets the degree of supercooling to a predetermined value or less. Judge that it has become. Thereby, it can be easily determined whether or not the degree of supercooling of the refrigerant flowing into the first mechanical expansion valve 16d is equal to or less than a predetermined value.
  • the first mechanical expansion valve 16d is an expansion valve having a temperature-sensitive portion that deforms according to the temperature and pressure of the refrigerant and a mechanical mechanism that displaces according to the deformation of the temperature-sensitive portion to change the throttle opening. is there.
  • the liquid phase refrigerant flows into the first mechanical expansion valve 16d, it is possible to suppress the generation of vibration and sound when the refrigerant expands in the first mechanical expansion valve 16d. That is, even if an electric expansion valve is not used as a pressure reducing unit for reducing the pressure of the refrigerant flowing into the rear seat side evaporator 24, it is possible to suppress the generation of vibration and sound when the refrigerant expands.
  • the first electric expansion valve 16b and the second electric expansion valve 16c are expansion valves whose throttle opening degree can be changed regardless of the temperature and pressure of the refrigerant.
  • the first electric expansion valve 16b and the second electric expansion valve 16c can have a larger throttle diameter than the mechanical expansion valve, the first electric expansion valve 16b and Even if the gas-liquid two-phase refrigerant flows into the second electric expansion valve 16c, it is possible to suppress the generation of vibration and sound in the first electric expansion valve 16b and the second electric expansion valve 16c.
  • the control device 50 opens the fourth on-off valve 14d, and in the operation mode in which the battery cooling water is not cooled by the battery chiller 20. , The control device 50 closes the fourth on-off valve 14d.
  • the control device 50 closes the second electric expansion valve 16c, and when the rear seat cooling switch is turned on (ON), the control device 50 is the first. 2
  • the electric expansion valve 16c is in the throttled state.
  • the liquid phase refrigerant can flow into the first mechanical expansion valve 16d as much as possible. That is, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the first mechanical expansion valve 16d as much as possible.
  • the cooling mode can be executed in parallel with the cooling mode and the dehumidifying / heating mode among the operation modes for air conditioning. If it is necessary to execute the cooling mode in the heating mode, the operation mode for air conditioning may be forcibly switched to the dehumidifying heating mode.
  • the refrigerant flowing out of the receiver 15 flows into the battery chiller 20, but in the present embodiment, as shown in FIG. 6, the refrigerant flowing by bypassing the receiver 15 is the battery chiller. Inflow to 20.
  • the inlet side of the 10th joint 13j is connected to the other outlet of the 9th joint 13i.
  • the basic configuration of the tenth joint 13j is the same as that of the first joint 13a.
  • the refrigerant inlet side of the rear seat side evaporator 24 is connected to one outlet of the 10th joint 13j via a fourth on-off valve 14d and a first mechanical expansion valve 16d.
  • the other inflow port of the eighth joint 13h is connected to the refrigerant outlet of the rear seat side evaporator 24.
  • the refrigerant inlet side of the battery chiller 20 is connected to the other outlet of the 10th joint 13j via a fifth on-off valve 14e and a second mechanical expansion valve 16e.
  • a third inflow port of the fourth joint 13d is connected to the refrigerant outlet of the battery chiller 20.
  • the basic configuration of the fifth on-off valve 14e is the same as that of the first on-off valve 14a.
  • the fifth on-off valve 14e is a solenoid valve that opens and closes a branch passage 21f from the other outlet of the tenth joint 13j to the third inflow port of the fourth joint 13d.
  • the basic configuration of the second mechanical expansion valve 16e is the same as that of the first mechanical expansion valve 16d.
  • the temperature-sensitive portion of the second mechanical expansion valve 16e has a deforming member (specifically, a diaphragm) that deforms according to the temperature and pressure of the outlet-side refrigerant of the battery chiller 20.
  • the second mechanical expansion valve 16e is a third pressure reducing unit.
  • the control device 50 opens the fifth on-off valve 14e, and in the operation mode in which the battery cooling water is not cooled by the battery chiller 20. , The control device 50 closes the fifth on-off valve 14e. Thereby, the same operation as that of the first embodiment can be realized.
  • the liquid phase refrigerant can flow into the second mechanical expansion valve 16e as much as possible. That is, since it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the second mechanical expansion valve 16e as much as possible, it is possible to suppress the generation of vibration and sound in the second mechanical expansion valve 16e.
  • the refrigeration cycle device 10 includes a battery chiller 20, but in the present embodiment, as shown in FIG. 7, the refrigeration cycle device 10 is for waste heat recovery in addition to the battery chiller 20. It is equipped with a chiller 25.
  • the inflow port side of the 11th joint 13k is connected to one of the outflow ports of the first joint 13a via the first on-off valve 14a.
  • the basic configuration of the eleventh joint 13k is the same as that of the first joint 13a.
  • the first fixed throttle 23a is connected to one of the outlets of the 11th joint 13k.
  • the refrigerant inlet side of the waste heat recovery chiller 25 is connected to the other outlet of the 11th joint 13k via the sixth on-off valve 14f and the third mechanical expansion valve 16f.
  • One inflow port of the 12th joint 13l is connected to the refrigerant outlet of the waste heat recovery chiller 25.
  • the other inflow port of the 12th joint 13l is connected to the refrigerant outlet side of the battery chiller 20.
  • the outlet of the 12th joint 13l is connected to the other inlet of the 8th joint 13h.
  • the basic configuration of the sixth on-off valve 14f is the same as that of the first on-off valve 14a.
  • the sixth on-off valve 14f is a solenoid valve that opens and closes a branch passage 21g from the other outlet of the 11th joint 13k to the one inlet of the 12th joint 13l.
  • the basic configuration of the third mechanical expansion valve 16f is the same as that of the first mechanical expansion valve 16d.
  • the temperature-sensitive portion of the third mechanical expansion valve 16f has a deforming member (specifically, a diaphragm) that deforms according to the temperature and pressure of the outlet-side refrigerant of the waste heat recovery chiller 25.
  • the third mechanical expansion valve 16f is a third pressure reducing unit.
  • the waste heat recovery chiller 25 contains a low-pressure refrigerant decompressed by the third mechanical expansion valve 16f and cooling water of the waste heat recovery cooling water circuit 37 (hereinafter referred to as waste heat recovery cooling water). It is an evaporative part that exchanges heat to evaporate the low-pressure refrigerant.
  • the waste heat recovery cooling water is cooled by the endothermic action of the refrigerant in the waste heat recovery chiller 25.
  • the waste heat recovery chiller 25 is a cooling evaporator that cools the equipment mounted on the vehicle, and at the same time, is also an endothermic evaporator for heat pump type heating that uses the heat recovered by cooling the equipment as a heat absorption source. ..
  • the waste heat recovery cooling water circuit 37 is a heat medium circuit that circulates the waste heat recovery cooling water.
  • the waste heat recovery cooling water is a heat medium that absorbs and recovers the waste heat of the in-vehicle device 38 such as an inverter.
  • the in-vehicle device 38 is a device that generates heat as it operates.
  • a waste heat recovery cooling water pump 39 and a waste heat recovery cooling water passage 38a are arranged in the waste heat recovery cooling water circuit 37.
  • the waste heat recovery cooling water pump 39 is an electric pump that sucks and discharges the waste heat recovery cooling water by the electric power supplied from the battery 30.
  • the control device 50 opens the sixth on-off valve 14f.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the first fixed throttle 23a, the receiver 15, the heating expansion valve 16a, the outdoor heat exchanger 18, and the compressor.
  • the refrigerant is switched to the first circuit that circulates in the order of the suction port of 11, and the refrigerant discharged from the compressor 11 is the indoor condenser 12, the third mechanical expansion valve 16f, the waste heat recovery chiller 25, and the compressor 11.
  • a circuit that circulates in the order of the suction port is configured.
  • the waste heat of the in-vehicle device 38 can be absorbed by the waste heat recovery chiller 25 and used as a heat source for heating.
  • the control device 50 opens the sixth on-off valve 14f.
  • the refrigerant discharged from the compressor 11 circulates in the order of the indoor condenser 12, the third mechanical expansion valve 16f, the waste heat recovery chiller 25, and the suction port of the compressor 11. Is composed of As a result, the waste heat of the in-vehicle device 38 can be absorbed by the waste heat recovery chiller 25 and used as a heat source for heating.
  • the flow of the refrigerant flowing out of the indoor condenser 12 is branched to the first fixed throttle 23a side and the third mechanical expansion valve 16f side by the eleventh joint 13k, and becomes the third mechanical expansion valve 16f.
  • the reduced pressure refrigerant is evaporated in the waste heat recovery chiller 25.
  • the refrigerant in the eleventh joint 13k is supercooled by the depressurizing action of the first fixed throttle 23a and the third mechanical expansion valve 16f. It can be a liquid phase refrigerant. Therefore, since the refrigerant flowing into the third mechanical expansion valve 16f can be used as the supercooling liquid phase refrigerant, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the third mechanical expansion valve 16f. As a result, it is possible to suppress the generation of vibration and sound in the third mechanical expansion valve 16f.
  • the eleventh joint 13k is arranged on one outlet side of the first joint 13a and on the inlet side of the first fixed throttle 23a, but in the present embodiment, as shown in FIG.
  • the eleventh joint 13k is arranged on the refrigerant outlet side of the indoor condenser 12 and on the inflow port side of the first joint 13a.
  • the liquid phase refrigerant can flow into the third mechanical expansion valve 16f as much as possible.
  • the flow of the refrigerant flowing out of the indoor condenser 12 is branched to the first fixed throttle 23a side and the third mechanical expansion valve 16f side by the eleventh joint 13k, and the third mechanical expansion valve
  • the refrigerant decompressed at 16f is evaporated by the waste heat recovery chiller 25.
  • the refrigerant in the eleventh joint 13k can be used as the supercooled liquid phase refrigerant by the depressurizing action of the first fixed throttle 23a and the third mechanical expansion valve 16f. Therefore, since the refrigerant flowing into the third mechanical expansion valve 16f can be used as the supercooling liquid phase refrigerant, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the third mechanical expansion valve 16f. As a result, it is possible to suppress the generation of vibration and sound in the third mechanical expansion valve 16f.
  • the refrigeration cycle device 10 is applied to an air conditioner having an in-vehicle device cooling function, but the application of the refrigeration cycle device 10 is not limited to this.
  • the application is not limited to vehicles, and may be applied to stationary air conditioners and the like.
  • it may be applied to an air conditioner having a server temperature control function that cools a computer that functions as a server and air-conditions a room in which the server is housed.
  • an in-vehicle device that generates heat during operation such as a motor generator, a power control unit (so-called PCU), and a control device for an advanced driver assistance system (so-called ADAS), may be adopted.
  • a motor generator such as a motor generator, a power control unit (so-called PCU), and a control device for an advanced driver assistance system (so-called ADAS)
  • ADAS advanced driver assistance system
  • the refrigeration cycle device 10 may be applied to an air conditioner that does not have a cooling function, such as an in-vehicle device.
  • a cooling function such as an in-vehicle device.
  • the 7th joint 13g, the 2nd electric expansion valve 16c, and the 8th joint 13h may be abolished.
  • Each component device of the refrigeration cycle device 10 is not limited to the one disclosed in the above-described embodiment.
  • the indoor condenser 12 is used as a heating unit for heating air using a high-pressure refrigerant as a heat source
  • a high-temperature side water pump, a heat medium refrigerant heat exchanger, a heater core, or the like may be arranged in the high-temperature side heat medium circuit that circulates the high-temperature side heat medium to form a heating portion.
  • the heat medium refrigerant heat exchanger is a heat radiating unit that dissipates heat by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the high-temperature side heat medium.
  • the high-temperature side water pump is an electric pump that pumps the high-temperature side heat medium circulating in the high-temperature side heat medium circuit to the heat medium refrigerant heat exchanger.
  • the rotation speed (that is, the water pressure feeding capacity) of the high temperature side water pump is controlled by a control signal output from the control device 50.
  • the heater core is a heat exchange unit that heats the air by exchanging heat between the heat medium heated by the heat medium refrigerant heat exchanger and the air.
  • the battery 30 may be cooled by the air cooled by the low-pressure refrigerant of the refrigeration cycle device 10.
  • a direct cooling type battery cooling unit that exchanges heat between the low-pressure refrigerant of the refrigeration cycle device 10 and the battery 30 may be adopted.
  • a solution containing ethylene glycol, dimethylpolysiloxane, nanofluid, etc., an antifreeze solution, an aqueous liquid medium containing alcohol, etc. is adopted. can do.
  • a liquid medium containing oil or the like may be used.
  • a variable diaphragm may be provided instead of the first fixed diaphragm 23a and the second fixed diaphragm 23b.
  • the refrigeration cycle device 10 is used so that the degree of supercooling of the refrigerant in the indoor condenser 12 and the outdoor heat exchanger 18 is optimized. Since the opening degree can be adjusted according to the operating condition of the compressor 11, the compressor 11 can be operated with more power saving.
  • An evaporation pressure adjusting valve may be added between the refrigerant outlet of the indoor evaporator 19 and one inflow port of the eighth joint 13h to the refrigeration cycle apparatus 10 described in the above-described embodiment.
  • the evaporation pressure regulating valve is a pressure regulating valve that maintains the refrigerant pressure on the upstream side thereof at a predetermined reference pressure or higher. That is, an evaporation pressure adjusting valve for maintaining the refrigerant evaporation pressure in the indoor evaporator 19 at a reference pressure or higher may be added to the refrigeration cycle apparatus 10.
  • a mechanical variable throttle mechanism that increases the valve opening degree as the pressure of the refrigerant on the outlet side of the indoor evaporator 19 increases can be adopted. According to this, the refrigerant evaporation temperature in the indoor evaporator 19 can be maintained at a temperature higher than 0 ° C., and frost formation in the indoor evaporator 19 can be suppressed.
  • R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, R290 and the like may be adopted.
  • a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
  • the first mechanical expansion valve 16d may be operated in the same manner as the fourth on-off valve 14d. Specifically, instead of fully closing the fourth on-off valve 14d, the rear seat blower 36 may be stopped to substantially shut off the flow of the refrigerant in the rear seat side evaporator 24. That is, by stopping the rear seat blower 36, the temperature and pressure of the outlet side refrigerant of the rear seat side evaporator 24 may be increased, and the throttle opening degree of the first mechanical expansion valve 16d may be significantly reduced.
  • the air blown into the vehicle interior is directly heated by the indoor condenser 12 with the high-pressure refrigerant discharged from the compressor 11, but the air blown into the vehicle interior is heated from the compressor 11 via the high-temperature cooling water. It may be heated with the discharged high-pressure refrigerant.
  • a cooling water heater that heats the high-temperature cooling water while radiating and condensing the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the high-temperature cooling water, and cooling.
  • a heater core that exchanges heat with the high-temperature cooling water heated by the water heater and the air blown into the vehicle interior may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The present invention comprises: a compressor (11) for compressing a refrigerant; condensing units (12, 18) for condensing the refrigerant discharged from the compressor; branching parts (13i, 13j, 13k) for branching the flow of the refrigerant flowing out from a condenser; first decompressing units (23a, 23b) for decompressing one refrigerant branched by the branching parts; a receiver (15) for performing gas-liquid separation on the refrigerant decompressed by the first decompressing units; second decompressing units (16b, 16c) for decompressing the liquid-phase refrigerant flowing out from the receiver; first evaporating units (19, 20, 24) for evaporating the refrigerant decompressed by the first decompressing units; third decompressing units (16d, 16e, 16f) for decompressing the other refrigerant branched by the branching parts; and second evaporating units (24, 20, 25) for evaporating the refrigerant decompressed by the third decompressing units.

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年12月26日に出願された日本特許出願2019-235648号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2019-235648 filed on December 26, 2019, the contents of which are incorporated herein by reference.
 本開示は、レシーバと複数の蒸発部とを備える冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle apparatus including a receiver and a plurality of evaporation units.
 従来、特許文献1には、レシーバと前席側膨張弁と前席側蒸発器と後席側膨張弁と後席側蒸発器とを備える冷凍サイクル装置が記載されている。 Conventionally, Patent Document 1 describes a refrigeration cycle device including a receiver, a front seat side expansion valve, a front seat side evaporator, a rear seat side expansion valve, and a rear seat side evaporator.
 レシーバは、コンデンサから排出される冷媒を気液分離して余剰冷媒を貯える。前席側膨張弁は、レシーバから排出される冷媒を減圧する。前席側蒸発器は、前席側送風機から送風される空気を、前席側膨張弁から排出される冷媒の蒸発により冷却する。後席側膨張弁は、コンプレッサからの冷媒流れに対して前席側膨張弁と並列に配置されており、レシーバから排出される冷媒を減圧する。後席側蒸発器は、後席側送風機から送風される空気を、後席側膨張弁から排出される冷媒の蒸発により冷却する。 The receiver gas-liquid separates the refrigerant discharged from the condenser and stores excess refrigerant. The front seat side expansion valve depressurizes the refrigerant discharged from the receiver. The front seat side evaporator cools the air blown from the front seat side blower by evaporating the refrigerant discharged from the front seat side expansion valve. The rear seat side expansion valve is arranged in parallel with the front seat side expansion valve with respect to the refrigerant flow from the compressor, and reduces the pressure of the refrigerant discharged from the receiver. The rear seat side evaporator cools the air blown from the rear seat side blower by evaporating the refrigerant discharged from the rear seat side expansion valve.
特開2009-143404号公報JP-A-2009-143404
 上記従来技術では、レシーバから排出される冷媒は、圧力損失と雰囲気からの熱害とを受けて気液二相状態になる。そのため、前席側膨張弁および後席側膨張弁には気液二相状態の冷媒が流入する。 In the above-mentioned conventional technology, the refrigerant discharged from the receiver is in a gas-liquid two-phase state due to pressure loss and heat damage from the atmosphere. Therefore, the gas-liquid two-phase state refrigerant flows into the front seat side expansion valve and the rear seat side expansion valve.
 前席側膨張弁および後席側膨張弁で気液二相状態の冷媒が膨張すると前席側膨張弁および後席側膨張弁が振動して音が発生しやすくなる。前席側膨張弁および後席側膨張弁として、絞り径の大きな膨張弁を用いれば、振動や音の発生を抑制できる。 When the gas-liquid two-phase refrigerant expands in the front seat side expansion valve and the rear seat side expansion valve, the front seat side expansion valve and the rear seat side expansion valve vibrate and noise is likely to be generated. If an expansion valve having a large throttle diameter is used as the front seat side expansion valve and the rear seat side expansion valve, it is possible to suppress the generation of vibration and sound.
 しかしながら、絞り径の大きな膨張弁を用いた場合、絞り径の小さな膨張弁と比較して、膨張弁の体格が大型化したり、減圧量の高精度な制御が難しくなったりする。 However, when an expansion valve with a large throttle diameter is used, the physique of the expansion valve becomes larger than that of an expansion valve with a small throttle diameter, and it becomes difficult to control the decompression amount with high accuracy.
 本開示は、上記点に鑑みて、減圧部に気液二相状態の冷媒が流入することを極力抑制することを目的とする。 In view of the above points, the purpose of the present disclosure is to suppress the inflow of the gas-liquid two-phase refrigerant into the decompression section as much as possible.
 本開示の一態様による冷凍サイクル装置は、圧縮機と、凝縮部と、分岐部と、第1減圧部と、レシーバと、第2減圧部と、第1蒸発部と、第3減圧部と、第2蒸発部と、を備える。 The refrigeration cycle apparatus according to one aspect of the present disclosure includes a compressor, a condensing unit, a branching unit, a first decompression unit, a receiver, a second decompression unit, a first evaporation unit, a third decompression unit, and the like. It includes a second evaporation unit.
 圧縮機は冷媒を圧縮する。凝縮部は、圧縮機から吐出された冷媒を凝縮させる。分岐部は、凝縮部から流出した冷媒の流れを分岐する。第1減圧部は、分岐部にて分岐された一方の冷媒を減圧させる。レシーバは、第1減圧部にて減圧された冷媒の気液を分離する。第2減圧部は、レシーバから流出した液相冷媒を減圧させる。第1蒸発部は、第2減圧部にて減圧された冷媒を蒸発させる。第3減圧部は、分岐部にて分岐された他方の冷媒を減圧させる。第2蒸発部は、第3減圧部にて減圧された冷媒を蒸発させる。 The compressor compresses the refrigerant. The condensing section condenses the refrigerant discharged from the compressor. The branching portion branches the flow of the refrigerant flowing out from the condensing portion. The first decompression section decompresses one of the refrigerants branched at the branch section. The receiver separates the gas and liquid of the refrigerant decompressed by the first decompression unit. The second decompression unit decompresses the liquid phase refrigerant flowing out of the receiver. The first evaporation unit evaporates the refrigerant decompressed by the second decompression unit. The third decompression section decompresses the other refrigerant branched at the branch section. The second evaporation unit evaporates the refrigerant decompressed by the third decompression unit.
 これによると、第1減圧部および第3減圧部の減圧作用によって、第3減圧部へ流入する冷媒を過冷却液相冷媒とすることができる。したがって、第3減圧部に気液二相冷媒が流入することを抑制できる。 According to this, the refrigerant flowing into the third decompression section can be used as the supercooled liquid phase refrigerant by the decompression action of the first decompression section and the third decompression section. Therefore, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the third decompression section.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な既述により、より明確となる。
第1実施形態の冷凍サイクル装置の全体構成図である。 第1実施形態の室内空調ユニットの模式的な構成図である。 第1実施形態の冷凍サイクル装置の電気制御部を示すブロック図である。 第1実施形態の冷凍サイクル装置における冷媒の状態の変化を示すモリエル線図である。 第2実施形態の冷凍サイクル装置の全体構成図である。 第3実施形態の冷凍サイクル装置の全体構成図である。 第4実施形態の冷凍サイクル装置の全体構成図である。 第5実施形態の冷凍サイクル装置の全体構成図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the detailed description below with reference to the accompanying drawings.
It is an overall block diagram of the refrigeration cycle apparatus of 1st Embodiment. It is a schematic block diagram of the room air-conditioning unit of 1st Embodiment. It is a block diagram which shows the electric control part of the refrigeration cycle apparatus of 1st Embodiment. It is a Moriel diagram which shows the change of the state of the refrigerant in the refrigerating cycle apparatus of 1st Embodiment. It is an overall block diagram of the refrigeration cycle apparatus of 2nd Embodiment. It is an overall block diagram of the refrigeration cycle apparatus of 3rd Embodiment. It is an overall block diagram of the refrigeration cycle apparatus of 4th Embodiment. It is an overall block diagram of the refrigeration cycle apparatus of 5th Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, the same reference numerals may be given to the parts corresponding to the matters described in the preceding embodiments, and duplicate description may be omitted. When only a part of the configuration is described in each embodiment, the other embodiments described above can be applied to the other parts of the configuration. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the partial combination of the embodiments even if the combination is not specified if there is no particular problem in the combination. Is also possible.
 (第1実施形態)
 図1~図3を用いて、本開示に係る冷凍サイクル装置10の第1実施形態を説明する。冷凍サイクル装置10は、電気自動車に搭載された車両用空調装置に適用されている。電気自動車は、電動モータから走行用の駆動力を得る車両である。本実施形態の車両用空調装置は、電気自動車において、空調対象空間である車室内の空調を行うとともに、バッテリ30等の車載機器を冷却する車載機器冷却機能付きの空調装置である。
(First Embodiment)
A first embodiment of the refrigeration cycle apparatus 10 according to the present disclosure will be described with reference to FIGS. 1 to 3. The refrigeration cycle device 10 is applied to a vehicle air conditioner mounted on an electric vehicle. An electric vehicle is a vehicle that obtains driving force for traveling from an electric motor. The vehicle air conditioner of the present embodiment is an air conditioner having an in-vehicle device cooling function for cooling an in-vehicle device such as a battery 30 while air-conditioning the interior of the vehicle, which is an air-conditioning target space, in an electric vehicle.
 冷凍サイクル装置10は、車両用空調装置において、車室内へ送風される空気を冷却あるいは加熱する。冷凍サイクル装置10は、バッテリ30を冷却する。従って、冷凍サイクル装置10の温度調整対象物は、空気およびバッテリ30である。冷凍サイクル装置10は、車室内の空調およびバッテリ30の冷却を行うために、冷媒回路を切替可能に構成されている。 The refrigeration cycle device 10 cools or heats the air blown into the vehicle interior in the vehicle air conditioner. The refrigeration cycle device 10 cools the battery 30. Therefore, the temperature control objects of the refrigeration cycle device 10 are air and the battery 30. The refrigerating cycle device 10 is configured so that the refrigerant circuit can be switched in order to perform air conditioning in the vehicle interior and cooling of the battery 30.
 冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。冷凍サイクル装置10は、圧縮機11から吐出された高圧冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑するための冷凍機油(具体的には、PAGオイル)が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The refrigeration cycle device 10 uses an HFO-based refrigerant (specifically, R1234yf) as the refrigerant. The refrigeration cycle apparatus 10 constitutes a vapor compression type subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Refrigerant oil (specifically, PAG oil) for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 圧縮機11は、冷凍サイクル装置10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方側の駆動装置室内に配置されている。駆動装置室は、走行用の駆動力を出力するための駆動用装置(例えば、電動モータ)の少なくとも一部が配置される空間を形成している。 The compressor 11 sucks in the refrigerant in the refrigeration cycle device 10, compresses it, and discharges it. The compressor 11 is arranged in the drive unit room on the front side of the vehicle interior. The drive device room forms a space in which at least a part of a drive device (for example, an electric motor) for outputting a driving force for traveling is arranged.
 圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、制御装置50から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism with a fixed discharge capacity by an electric motor. The number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the control device 50.
 圧縮機11の吐出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、室内空調ユニット40のケーシング41内に配置されている。室内凝縮器12は、圧縮機11から吐出された高圧冷媒と、空気とを熱交換させて、高圧冷媒を放熱かつ凝縮させる凝縮部である。換言すると、室内凝縮器12は、圧縮機11から吐出された高圧冷媒を熱源として空気を加熱する加熱部である。 The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11. The indoor condenser 12 is arranged in the casing 41 of the indoor air conditioning unit 40. The indoor condenser 12 is a condensing unit that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and air to dissipate heat and condense the high-pressure refrigerant. In other words, the indoor condenser 12 is a heating unit that heats air using the high-pressure refrigerant discharged from the compressor 11 as a heat source.
 室内凝縮器12の冷媒出口には、三方継手である第1継手13aの流入口側が接続されている。三方継手は、互いに連通する3つの流入出口を有する継手である。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The inlet side of the first joint 13a, which is a three-way joint, is connected to the refrigerant outlet of the indoor condenser 12. A three-way joint is a joint having three inlets and outlets that communicate with each other. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 冷凍サイクル装置10は、第2継手13b~第9継手13iを備えている。第2継手13b、第3継手13c、第5継手13e~第9継手13iは三方継手である。第2継手13b、第3継手13c、第5継手13e~第9継手13iの基本的構成は、いずれも第1継手13aと同様である。 The refrigeration cycle device 10 includes a second joint 13b to a ninth joint 13i. The second joint 13b, the third joint 13c, and the fifth joint 13e to the ninth joint 13i are three-way joints. The basic configurations of the second joint 13b, the third joint 13c, and the fifth joint 13e to the ninth joint 13i are all the same as those of the first joint 13a.
 第1継手13a~第3継手13c、第5継手13e~第9継手13iは、3つの流入出口のうち1つが流入口として用いられ、2つが流出口として用いられた際には、1つの流入口から流入した冷媒の流れを分岐する分岐部として機能させることができる。3つの流入出口のうち2つが流入口として用いられ、1つが流出口として用いられた際には、2つの流入口から流入した冷媒の流れを合流させる合流部として機能させることができる。 In the first joint 13a to the third joint 13c and the fifth joint 13e to the ninth joint 13i, when one of the three inflow outlets is used as the inflow port and two are used as the outflow port, one flow is used. It can function as a branch portion for branching the flow of the refrigerant flowing in from the inlet. When two of the three inflow ports are used as inflow ports and one is used as an outflow port, it can function as a merging section for merging the flows of the refrigerant flowing in from the two inflow ports.
 本実施形態では、第1継手13a、第3継手13c、第6継手13f、第7継手13g、および第9継手13iが、分岐部として機能可能に接続されている。第2継手13b、第5継手13e、および第8継手13hが、合流部として機能可能に接続されている。 In the present embodiment, the first joint 13a, the third joint 13c, the sixth joint 13f, the seventh joint 13g, and the ninth joint 13i are operably connected as branch portions. The second joint 13b, the fifth joint 13e, and the eighth joint 13h are operably connected as a confluence.
 第4継手13dは、四方継手である。四方継手は、互いに連通する4つの流入出口を有する継手である。第4継手13dは、4つの流入出口のうち3つが流入口として用いられ、1つが流出口として用いられており、3つの流入口から流入した冷媒の流れを合流させる合流部として機能させることができる。 The fourth joint 13d is a four-sided joint. A four-sided joint is a joint having four inflow ports that communicate with each other. In the fourth joint 13d, three of the four inflow ports are used as inflow ports and one is used as an outflow port, and the fourth joint 13d can function as a confluence portion for merging the flows of the refrigerant flowing in from the three inflow ports. it can.
 第1継手13aの一方の流出口には、第1開閉弁14a、第1固定絞り23aおよび第5継手13eを介して、レシーバ15の入口側が接続されている。第1継手13aの他方の流出口には、第2開閉弁14bおよび第2継手13bを介して、暖房用膨張弁16aの入口側が接続されている。 The inlet side of the receiver 15 is connected to one outlet of the first joint 13a via the first on-off valve 14a, the first fixed throttle 23a, and the fifth joint 13e. The inlet side of the heating expansion valve 16a is connected to the other outlet of the first joint 13a via the second on-off valve 14b and the second joint 13b.
 第1開閉弁14aは、第1継手13aの一方の流出口からレシーバ15の入口へ至る入口側通路21aを開閉する電磁弁である。第1開閉弁14aは、制御装置50から出力される制御電圧によって、その開閉作動が制御される。冷凍サイクル装置10は、第3開閉弁14cを備えている。第2開閉弁14b、第3開閉弁14cおよび第4開閉弁14dの基本的構成は、第1開閉弁14aと同様である。 The first on-off valve 14a is a solenoid valve that opens and closes the inlet-side passage 21a from one outlet of the first joint 13a to the inlet of the receiver 15. The opening / closing operation of the first on-off valve 14a is controlled by the control voltage output from the control device 50. The refrigeration cycle device 10 includes a third on-off valve 14c. The basic configuration of the second on-off valve 14b, the third on-off valve 14c, and the fourth on-off valve 14d is the same as that of the first on-off valve 14a.
 第1固定絞り23aは、レシーバ15へ流入する冷媒を減圧させる第1減圧部である。第1固定絞り23aは、入口側通路21aのうち、第1継手13aの一方の流出口からレシーバ15の入口へ至る範囲に配置されている。このような第1固定絞り23aとしては、オリフィス、キャピラリチューブ等を採用することができる。 The first fixed throttle 23a is a first decompression unit that depressurizes the refrigerant flowing into the receiver 15. The first fixed throttle 23a is arranged in a range from one outlet of the first joint 13a to the inlet of the receiver 15 in the inlet side passage 21a. As such a first fixed throttle 23a, an orifice, a capillary tube, or the like can be adopted.
 第5継手13eは、入口側通路21aにおいて、一方の流入口が第1固定絞り23aの出口側に接続されている。第5継手13eは、入口側通路21aにおいて、流出口がレシーバ15の入口側に接続されている。 In the fifth joint 13e, one inflow port is connected to the outlet side of the first fixed throttle 23a in the inlet side passage 21a. In the fifth joint 13e, the outlet is connected to the inlet side of the receiver 15 in the inlet side passage 21a.
 レシーバ15は、気液分離機能を有する貯液部である。すなわち、レシーバ15は、冷凍サイクル装置10において冷媒を凝縮させる凝縮器として機能する熱交換部から流出した冷媒の気液を分離する。そして、レシーバ15は、分離された液相冷媒の一部を下流側に流出させ、残余の液相冷媒をサイクル内の余剰冷媒として蓄える。 The receiver 15 is a liquid storage unit having a gas-liquid separation function. That is, the receiver 15 separates the gas and liquid of the refrigerant flowing out from the heat exchange unit that functions as a condenser that condenses the refrigerant in the refrigeration cycle device 10. Then, the receiver 15 causes a part of the separated liquid-phase refrigerant to flow out to the downstream side, and stores the remaining liquid-phase refrigerant as a surplus refrigerant in the cycle.
 第2開閉弁14bは、第1継手13aの他方の流出口から第2継手13bの一方の流入口へ至る外気側通路21cを開閉する電磁弁である。第2継手13bの他方の流入口には、レシーバ15の冷媒出口側が接続されている。レシーバ15の冷媒出口と第2継手13bの他方の流入口とを接続する出口側通路21bには、第6継手13fおよび第1逆止弁17aが配置されている。 The second on-off valve 14b is a solenoid valve that opens and closes the outside air side passage 21c from the other outlet of the first joint 13a to the one inlet of the second joint 13b. The refrigerant outlet side of the receiver 15 is connected to the other inflow port of the second joint 13b. A sixth joint 13f and a first check valve 17a are arranged in the outlet side passage 21b that connects the refrigerant outlet of the receiver 15 and the other inflow port of the second joint 13b.
 第6継手13fは、出口側通路21bにおいて、流入口がレシーバ15の冷媒出口側に接続されている。第6継手13fは、出口側通路21bにおいて、一方の流出口が第1逆止弁17aの入口側に接続されている。第6継手13fの他方の流出口には、第7継手13gの流入口側が接続されている。 In the sixth joint 13f, the inflow port is connected to the refrigerant outlet side of the receiver 15 in the outlet side passage 21b. In the sixth joint 13f, one outlet is connected to the inlet side of the first check valve 17a in the outlet side passage 21b. The inlet side of the 7th joint 13g is connected to the other outlet of the 6th joint 13f.
 第2継手13bの流出口には、暖房用膨張弁16aを介して、室外熱交換器18の冷媒入口側が接続されている。このため、出口側通路21bに配置された第1逆止弁17aは、レシーバ15の出口側から暖房用膨張弁16a側へ冷媒が流れることを許容し、暖房用膨張弁16a側からレシーバ15の出口側へ冷媒が流れることを禁止している。 The refrigerant inlet side of the outdoor heat exchanger 18 is connected to the outlet of the second joint 13b via a heating expansion valve 16a. Therefore, the first check valve 17a arranged in the outlet side passage 21b allows the refrigerant to flow from the outlet side of the receiver 15 to the heating expansion valve 16a side, and allows the refrigerant to flow from the heating expansion valve 16a side to the receiver 15. Refrigerant is prohibited from flowing to the outlet side.
 暖房用膨張弁16aは、少なくとも暖房モードの冷媒回路に切り替えられた際に、レシーバ15から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する減圧部である。 The heating expansion valve 16a is a pressure reducing unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side at least when the refrigerant circuit is switched to the heating mode.
 暖房用膨張弁16aは、絞り開度を変更可能に構成された弁体、および弁体を変位させる電動アクチュエータ(具体的には、ステッピングモータ)を有する電動式の可変絞り機構である。すなわち、暖房用膨張弁16aは、電気式膨張弁である。暖房用膨張弁16aは、制御装置50から出力される制御信号(具体的には、制御パルス)によって、その作動が制御される。 The heating expansion valve 16a is an electric variable throttle mechanism having a valve body configured so that the throttle opening can be changed and an electric actuator (specifically, a stepping motor) that displaces the valve body. That is, the heating expansion valve 16a is an electric expansion valve. The operation of the heating expansion valve 16a is controlled by a control signal (specifically, a control pulse) output from the control device 50.
 暖房用膨張弁16aは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。 The expansion valve 16a for heating has a fully open function that functions as a simple refrigerant passage without exerting a flow rate adjusting action and a refrigerant depressurizing action by fully opening the valve opening, and a refrigerant by fully closing the valve opening. It has a fully closed function that blocks the passage.
 冷凍サイクル装置10は、第1電気式膨張弁16bおよび第2電気式膨張弁16cを備えている。第1電気式膨張弁16bおよび第2電気式膨張弁16cの基本的構成は、暖房用膨張弁16aと同様である。 The refrigeration cycle device 10 includes a first electric expansion valve 16b and a second electric expansion valve 16c. The basic configuration of the first electric expansion valve 16b and the second electric expansion valve 16c is the same as that of the heating expansion valve 16a.
 室外熱交換器18は、暖房用膨張弁16aから流出した冷媒と、図示しない外気ファンから送風された外気とを熱交換させる熱交換器である。室外熱交換器18は、暖房用膨張弁16aから流出した冷媒の状態により、冷媒を凝縮させる凝縮部として機能したり、冷媒を蒸発させる蒸発部として機能したりする。室外熱交換器18は、駆動装置室内の前方側に配置されている。このため、車両走行時には、室外熱交換器18に走行風を当てることができる。 The outdoor heat exchanger 18 is a heat exchanger that exchanges heat between the refrigerant flowing out from the heating expansion valve 16a and the outside air blown from an outside air fan (not shown). The outdoor heat exchanger 18 functions as a condensing unit that condenses the refrigerant or as an evaporation unit that evaporates the refrigerant, depending on the state of the refrigerant flowing out from the heating expansion valve 16a. The outdoor heat exchanger 18 is arranged on the front side in the drive device room. Therefore, when the vehicle is traveling, the outdoor heat exchanger 18 can be exposed to the traveling wind.
 室外熱交換器18の冷媒出口には、第3継手13cの流入口側が接続されている。第3継手13cの一方の流出口には、第3開閉弁14cおよび第3逆止弁17cを介して、第4継手13dの第1の流入口側が接続されている。第3継手13cの他方の流出口には、第2逆止弁17bを介して、第9継手13iの流入口側が接続されている。 The inlet side of the third joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 18. The first inflow port side of the fourth joint 13d is connected to one outlet of the third joint 13c via a third on-off valve 14c and a third check valve 17c. The inflow port side of the ninth joint 13i is connected to the other outflow port of the third joint 13c via the second check valve 17b.
 第3開閉弁14cは、第3継手13cの一方の流出口から第4継手13dの第1の流入口へ至る吸入側通路21dを開閉する電磁弁である。第4継手13dの流出口には、圧縮機11の吸入口側が接続されている。第3逆止弁17cは、第3継手13cの一方の流出口側から第4継手13dの第1の流入口側へ冷媒が流れることを許容し、第4継手13dの第1の流入口側から第3継手13cの一方の流出口へ冷媒が流れることを禁止している。第2逆止弁17bは、室外熱交換器18の冷媒出口側から第9継手13iの流入口側へ冷媒が流れることを許容し、第9継手13iの流入口側から室外熱交換器18の冷媒出口側へ冷媒が流れることを禁止している。 The third on-off valve 14c is a solenoid valve that opens and closes the suction side passage 21d from one outlet of the third joint 13c to the first inflow port of the fourth joint 13d. The suction port side of the compressor 11 is connected to the outlet of the fourth joint 13d. The third check valve 17c allows the refrigerant to flow from one outlet side of the third joint 13c to the first inlet side of the fourth joint 13d, and allows the refrigerant to flow to the first inlet side of the fourth joint 13d. The refrigerant is prohibited from flowing to one of the outlets of the third joint 13c. The second check valve 17b allows the refrigerant to flow from the refrigerant outlet side of the outdoor heat exchanger 18 to the inflow port side of the ninth joint 13i, and allows the refrigerant to flow from the inflow port side of the ninth joint 13i to the outdoor heat exchanger 18. Refrigerant flow to the refrigerant outlet side is prohibited.
 第9継手13iの一方の流出口には、第2固定絞り23bを介して、第5継手13eの他方の流入口側が接続されている。第2固定絞り23bは、レシーバ15へ流入する冷媒を減圧させる第1減圧部である。第2固定絞り23bは、第9継手13iの一方の流出口から第5継手13eの他方の流入口へ至る範囲に配置されている。このような第2固定絞り23bとしては、オリフィス、キャピラリチューブ等を採用することができる。 The other inlet side of the fifth joint 13e is connected to one outlet of the ninth joint 13i via the second fixed throttle 23b. The second fixed throttle 23b is a first decompression unit that depressurizes the refrigerant flowing into the receiver 15. The second fixed drawing 23b is arranged in a range from one outlet of the ninth joint 13i to the other inlet of the fifth joint 13e. As such a second fixed throttle 23b, an orifice, a capillary tube, or the like can be adopted.
 出口側通路21bに配置された第6継手13fの他方の流出口には、第7継手13gの流入口側が接続されている。第7継手13gの一方の流出口には、第1電気式膨張弁16bの入口側が接続されている。第7継手13gの他方の流出口には、第2電気式膨張弁16cの入口側が接続されている。 The inlet side of the 7th joint 13g is connected to the other outlet of the 6th joint 13f arranged in the outlet side passage 21b. The inlet side of the first electric expansion valve 16b is connected to one outlet of the seventh joint 13g. The inlet side of the second electric expansion valve 16c is connected to the other outlet of the seventh joint 13g.
 第1電気式膨張弁16bは、少なくとも冷房モードの冷媒回路に切り替えられた際に、レシーバ15から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する第2減圧部である。 The first electric expansion valve 16b is a second pressure reducing unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side at least when the refrigerant circuit is switched to the cooling mode. ..
 第1電気式膨張弁16bの出口には、室内蒸発器19の冷媒入口側が接続されている。室内蒸発器19は、図2に示す室内空調ユニット40のケーシング41内に配置されている。室内蒸発器19は、第1電気式膨張弁16bにて減圧された低圧冷媒を、室内送風機42から送風された空気と熱交換させて蒸発させる第1蒸発部である。室内蒸発器19は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって空気を冷却する空気冷却部である。室内蒸発器19の冷媒出口には、図1に示す第8継手13hの一方の流入口が接続されている。 The refrigerant inlet side of the indoor evaporator 19 is connected to the outlet of the first electric expansion valve 16b. The indoor evaporator 19 is arranged in the casing 41 of the indoor air conditioning unit 40 shown in FIG. The indoor evaporator 19 is a first evaporation unit that evaporates the low-pressure refrigerant decompressed by the first electric expansion valve 16b by exchanging heat with the air blown from the indoor blower 42. The indoor evaporator 19 is an air cooling unit that cools air by evaporating a low-pressure refrigerant to exert an endothermic action. One inflow port of the eighth joint 13h shown in FIG. 1 is connected to the refrigerant outlet of the indoor evaporator 19.
 第8継手13hの流出口には、第4逆止弁17dおよび第4継手13dを介して、圧縮機11の吸入口側が接続されている。第4逆止弁17dの出口側は、第4継手13dの第2の流入口側に接続されている。第4逆止弁17dは、第8継手13hの流出口側から第4継手13dの第2の流入口側へ冷媒が流れることを許容し、第4継手13dの第2の流入口側から第8継手13hの流出口側へ冷媒が流れることを禁止している。 The suction port side of the compressor 11 is connected to the outlet of the 8th joint 13h via the 4th check valve 17d and the 4th joint 13d. The outlet side of the fourth check valve 17d is connected to the second inflow port side of the fourth joint 13d. The fourth check valve 17d allows the refrigerant to flow from the outlet side of the eighth joint 13h to the second inlet side of the fourth joint 13d, and allows the refrigerant to flow from the second inlet side of the fourth joint 13d to the second inlet side. The flow of the refrigerant to the outlet side of the 8 joint 13h is prohibited.
 第2電気式膨張弁16cは、バッテリ30を冷却する際に、レシーバ15から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する第2減圧部である。第2電気式膨張弁16cの出口には、バッテリ用チラー20の冷媒入口側が接続されている。バッテリ用チラー20の冷媒出口には、第4継手13dの第3の流入口が接続されている。 The second electric expansion valve 16c is a second decompression unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side when the battery 30 is cooled. The refrigerant inlet side of the battery chiller 20 is connected to the outlet of the second electric expansion valve 16c. A third inflow port of the fourth joint 13d is connected to the refrigerant outlet of the battery chiller 20.
 バッテリ用チラー20は、第2電気式膨張弁16cにて減圧された低圧冷媒と、バッテリ冷却水回路31の冷却水(以下、バッテリ冷却水と言う。)とを熱交換させて、低圧冷媒を蒸発させる第1蒸発部である。バッテリ用チラー20における冷媒の吸熱作用によって、バッテリ冷却水が冷却される。バッテリ用チラー20は、車両に搭載された機器を冷却する冷却用蒸発器である。 The battery chiller 20 exchanges heat between the low-pressure refrigerant decompressed by the second electric expansion valve 16c and the cooling water of the battery cooling water circuit 31 (hereinafter referred to as battery cooling water) to exchange the low-pressure refrigerant. This is the first evaporating part to be evaporated. The battery cooling water is cooled by the endothermic action of the refrigerant in the battery chiller 20. The battery chiller 20 is a cooling evaporator that cools equipment mounted on a vehicle.
 バッテリ冷却水回路31は、バッテリ冷却水を循環させる熱媒体回路である。バッテリ冷却水は、バッテリ30を冷却する熱媒体である。バッテリ冷却水回路31にはバッテリ冷却水ポンプ32およびバッテリ冷却水通路30aが配置されている。バッテリ冷却水ポンプ32は、バッテリ30から供給された電力によってバッテリ冷却水を吸入して吐出する電動ポンプである。 The battery cooling water circuit 31 is a heat medium circuit that circulates the battery cooling water. The battery cooling water is a heat medium for cooling the battery 30. A battery cooling water pump 32 and a battery cooling water passage 30a are arranged in the battery cooling water circuit 31. The battery cooling water pump 32 is an electric pump that sucks and discharges the battery cooling water by the electric power supplied from the battery 30.
 バッテリ30は、電動モータ等の電動式の車載機器に電力を供給する。バッテリ30は、複数の電池セルを電気的に直列的あるいは並列的に接続することによって形成された組電池である。電池セルは、充放電可能な二次電池(本実施形態では、リチウムイオン電池)である。バッテリ30は、複数の電池セルが略直方体形状となるように積層配置して専用ケースに収容された構造になっている。 The battery 30 supplies electric power to an electric in-vehicle device such as an electric motor. The battery 30 is an assembled battery formed by electrically connecting a plurality of battery cells in series or in parallel. The battery cell is a rechargeable and dischargeable secondary battery (in this embodiment, a lithium ion battery). The battery 30 has a structure in which a plurality of battery cells are stacked and arranged so as to have a substantially rectangular parallelepiped shape and housed in a special case.
 この種のバッテリは、低温になると化学反応が進行しにくく出力が低下しやすい。バッテリは、作動時(すなわち、充放電時)に発熱する。バッテリは、高温になると劣化が進行しやすい。このため、バッテリの温度は、バッテリの充放電容量を充分に活用することのできる適切な温度範囲内(本実施形態では、15℃以上かつ55℃以下)に維持されていることが望ましい。 In this type of battery, the chemical reaction does not proceed easily at low temperatures, and the output tends to decrease. The battery generates heat during operation (that is, during charging and discharging). Batteries tend to deteriorate at high temperatures. Therefore, it is desirable that the temperature of the battery is maintained within an appropriate temperature range (in this embodiment, 15 ° C. or higher and 55 ° C. or lower) in which the charge / discharge capacity of the battery can be fully utilized.
 バッテリ冷却水通路30aは、バッテリ30の専用ケースに形成されている。冷却水通路30aは、バッテリ用チラー20にて冷却されたバッテリ冷却水によってバッテリ30を冷却する。つまり、冷却水通路30aは、バッテリ冷却水にバッテリ30の有する熱(すなわち、バッテリ30の廃熱)を吸熱させてバッテリ30を冷却するバッテリ冷却部である。 The battery cooling water passage 30a is formed in a special case for the battery 30. The cooling water passage 30a cools the battery 30 with the battery cooling water cooled by the battery chiller 20. That is, the cooling water passage 30a is a battery cooling unit that cools the battery 30 by absorbing the heat of the battery 30 (that is, the waste heat of the battery 30) into the battery cooling water.
 第9継手13iの他方の流出口には、第4開閉弁14dおよび第1機械式膨張弁16dを介して、後席側蒸発器24の冷媒入口側が接続されている。 The refrigerant inlet side of the rear seat side evaporator 24 is connected to the other outlet of the ninth joint 13i via the fourth on-off valve 14d and the first mechanical expansion valve 16d.
 第4開閉弁14dは、第9継手13iの他方の流出口から第8継手13hの他方の流入口へ至る分岐通路21eを開閉する電磁弁である。第4開閉弁14dは、第9継手13iで分岐されて第1機械式膨張弁16dおよび後席側蒸発器24を流れる冷媒の流れを遮断することのできる遮断部である。 The fourth on-off valve 14d is a solenoid valve that opens and closes a branch passage 21e from the other outlet of the ninth joint 13i to the other inlet of the eighth joint 13h. The fourth on-off valve 14d is a shutoff portion that is branched by the ninth joint 13i and can block the flow of the refrigerant flowing through the first mechanical expansion valve 16d and the rear seat side evaporator 24.
 第1機械式膨張弁16dは、少なくとも全席冷房モードの冷媒回路に切り替えられた際に、第9継手13iの他方の流出口から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する第3減圧部である。第1機械式膨張弁16dは、後席側蒸発器24の近傍に配置されている。 The first mechanical expansion valve 16d reduces the pressure of the refrigerant flowing out from the other outlet of the ninth joint 13i at least when the refrigerant circuit is switched to the cooling mode for all seats, and reduces the flow rate of the refrigerant flowing out to the downstream side. This is the third decompression unit to be adjusted. The first mechanical expansion valve 16d is arranged in the vicinity of the rear seat side evaporator 24.
 本実施形態では、第1機械式膨張弁16dとして、機械的機構で構成された機械式膨張弁(換言すれば、温度式膨張弁)を採用している。より具体的には、第1機械式膨張弁16dは、後席側蒸発器24の出口側冷媒の温度および圧力に応じて変形する変形部材(具体的には、ダイヤフラム)を有する感温部と、変形部材の変形に応じて変位して絞り開度を変化させる弁体部とを有している。 In the present embodiment, as the first mechanical expansion valve 16d, a mechanical expansion valve (in other words, a temperature expansion valve) configured by a mechanical mechanism is adopted. More specifically, the first mechanical expansion valve 16d has a temperature sensitive portion having a deforming member (specifically, a diaphragm) that deforms according to the temperature and pressure of the outlet side refrigerant of the rear seat side evaporator 24. It has a valve body portion that is displaced according to the deformation of the deforming member to change the throttle opening degree.
 これにより、第1機械式膨張弁16dでは、後席側蒸発器24の出口側の冷媒の過熱度が予め定めた基準過熱度(本実施形態では、5℃)に近づくように、絞り開度を変化させる。ここで、機械的機構とは、電力の供給を必要とすることなく、流体圧力による荷重や弾性部材による荷重等によって作動する機構を意味している。 As a result, in the first mechanical expansion valve 16d, the throttle opening degree is such that the superheat degree of the refrigerant on the outlet side of the rear seat side evaporator 24 approaches a predetermined standard superheat degree (5 ° C. in the present embodiment). To change. Here, the mechanical mechanism means a mechanism that operates by a load due to fluid pressure, a load due to an elastic member, or the like without requiring the supply of electric power.
 後席側蒸発器24は、後席空調ユニット34のケーシング35内に配置されている。後席側蒸発器24は、第1機械式膨張弁16dにて減圧された低圧冷媒を、後席送風機36から送風された空気と熱交換させて蒸発させる第2蒸発部である。後席側蒸発器24は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって空気を冷却する空気冷却部である。室内蒸発器19の冷媒出口には、図1に示す第8継手13hの一方の流入口が接続されている。後席側蒸発器24の冷媒出口には、第8継手13hの他方の流入口が接続されている。 The rear seat side evaporator 24 is arranged in the casing 35 of the rear seat air conditioning unit 34. The rear-seat side evaporator 24 is a second evaporation unit that evaporates the low-pressure refrigerant decompressed by the first mechanical expansion valve 16d by exchanging heat with the air blown from the rear-seat blower 36. The rear seat side evaporator 24 is an air cooling unit that cools air by evaporating a low-pressure refrigerant to exert an endothermic action. One inflow port of the eighth joint 13h shown in FIG. 1 is connected to the refrigerant outlet of the indoor evaporator 19. The other inflow port of the eighth joint 13h is connected to the refrigerant outlet of the rear seat side evaporator 24.
 後席空調ユニット34は、車両用空調装置において、適切に温度調整された空気を車室内後席側へ吹き出すためのユニットである。後席空調ユニット34は、車室内後部の近傍に配置されている。例えば、後席空調ユニット34は、車室後方側のトランクルームに配置されている。 The rear seat air conditioner unit 34 is a unit for blowing out appropriately temperature-controlled air to the rear seat side in the vehicle interior in the vehicle air conditioner. The rear seat air conditioning unit 34 is arranged in the vicinity of the rear portion of the vehicle interior. For example, the rear seat air conditioning unit 34 is arranged in the trunk room on the rear side of the vehicle interior.
 後席空調ユニット34のケーシング35は空気通路を形成している。ケーシング35内に形成された空気通路には、後席送風機36、後席側蒸発器24等が配置されている。ケーシング35は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて形成されている。 The casing 35 of the rear seat air conditioning unit 34 forms an air passage. A rear seat blower 36, a rear seat side evaporator 24, and the like are arranged in the air passage formed in the casing 35. The casing 35 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 ケーシング35の空気流れ上流側には、後席送風機36が配置されている。後席送風機36は、ケーシング35の吸入口から吸入された空気を車室内へ向けて送風する。後席送風機36は、遠心多翼ファンを電動モータにて駆動する電動送風機である。後席送風機36は、制御装置50から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 A rear seat blower 36 is arranged on the upstream side of the air flow of the casing 35. The rear seat blower 36 blows the air sucked from the suction port of the casing 35 toward the vehicle interior. The rear seat blower 36 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The rotation speed (that is, the blowing capacity) of the rear seat blower 36 is controlled by the control voltage output from the control device 50.
 後席送風機36の空気流れ下流側には、後席側蒸発器24が配置されている。ケーシング35の空気流れ最下流部には、空気を車室内後席側へ吹き出す開口穴が形成されている。 A rear seat side evaporator 24 is arranged on the downstream side of the air flow of the rear seat blower 36. An opening hole for blowing air toward the rear seats in the vehicle interior is formed in the most downstream portion of the air flow of the casing 35.
 以上の説明から明らかなように、冷凍サイクル装置10では、第1開閉弁14a、第2開閉弁14b、第3開閉弁14cおよび第4開閉弁14dが冷媒通路を開閉することによって、冷媒回路を切り替えることができる。従って、第1開閉弁14a、第2開閉弁14b、第3開閉弁14cおよび第4開閉弁14d等は、冷媒回路切替部に含まれる。 As is clear from the above description, in the refrigerating cycle device 10, the first on-off valve 14a, the second on-off valve 14b, the third on-off valve 14c, and the fourth on-off valve 14d open and close the refrigerant passage to open and close the refrigerant circuit. You can switch. Therefore, the first on-off valve 14a, the second on-off valve 14b, the third on-off valve 14c, the fourth on-off valve 14d, and the like are included in the refrigerant circuit switching unit.
 そして、第1開閉弁14a、第2開閉弁14b、および第1継手13aは、圧縮機11から吐出された冷媒を、レシーバ15側および室外熱交換器18側の一方へ導く冷媒回路切替部の第1切替部22aを構成している。より具体的には、本実施形態の第1切替部22aは、室内凝縮器12から流出した冷媒を、レシーバ15側および第2継手13b側の一方へ導いている。 The first on-off valve 14a, the second on-off valve 14b, and the first joint 13a are the refrigerant circuit switching portions that guide the refrigerant discharged from the compressor 11 to either the receiver 15 side or the outdoor heat exchanger 18 side. It constitutes the first switching unit 22a. More specifically, the first switching unit 22a of the present embodiment guides the refrigerant flowing out of the indoor condenser 12 to one of the receiver 15 side and the second joint 13b side.
 第2継手13bは、第1継手13aから流出した冷媒およびレシーバ15から流出した冷媒の少なくとも一方を、室外熱交換器18側へ導く冷媒回路切替部の継手部を形成している。より具体的には、本実施形態の継手部は、第1継手13aから流出した冷媒およびレシーバ15から流出した冷媒の一方を、暖房用膨張弁16a側へ導いている。 The second joint 13b forms a joint portion of a refrigerant circuit switching portion that guides at least one of the refrigerant flowing out from the first joint 13a and the refrigerant flowing out from the receiver 15 to the outdoor heat exchanger 18 side. More specifically, in the joint portion of the present embodiment, one of the refrigerant flowing out from the first joint 13a and the refrigerant flowing out from the receiver 15 is guided to the heating expansion valve 16a side.
 第3開閉弁14cおよび第3継手13cは、室外熱交換器18から流出した冷媒を、圧縮機11の吸入口側および第9継手13i側の一方へ導く冷媒回路切替部の第2切替部22bを構成している。 The third on-off valve 14c and the third joint 13c are the second switching part 22b of the refrigerant circuit switching part that guides the refrigerant flowing out from the outdoor heat exchanger 18 to one of the suction port side and the ninth joint 13i side of the compressor 11. Consists of.
 第4開閉弁14dおよび第9継手13iは、室外熱交換器18から流出した冷媒を、レシーバ15側および後席側蒸発器24側の一方へ導く冷媒回路切替部の第3切替部を構成している。 The fourth on-off valve 14d and the ninth joint 13i constitute a third switching portion of the refrigerant circuit switching portion that guides the refrigerant flowing out from the outdoor heat exchanger 18 to one of the receiver 15 side and the rear seat side evaporator 24 side. ing.
 次に、図2を用いて、室内空調ユニット40について説明する。室内空調ユニット40は、車両用空調装置において、適切に温度調整された空気を車室内の適切な箇所へ吹き出すためのユニットである。室内空調ユニット40は、空気を主に車室内前席側へ吹き出す。室内空調ユニット40は、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 40 will be described with reference to FIG. The indoor air-conditioning unit 40 is a unit for blowing out appropriately temperature-controlled air to an appropriate location in the vehicle interior in a vehicle air-conditioning system. The indoor air conditioning unit 40 blows air mainly to the front seat side of the vehicle interior. The indoor air conditioning unit 40 is arranged inside the instrument panel (that is, the instrument panel) at the frontmost part of the vehicle interior.
 室内空調ユニット40は、空気通路を形成するケーシング41を有している。ケーシング41内に形成された空気通路には、室内送風機42、室内蒸発器19、室内凝縮器12等が配置されている。ケーシング41は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて形成されている。 The indoor air conditioning unit 40 has a casing 41 that forms an air passage. An indoor blower 42, an indoor evaporator 19, an indoor condenser 12, and the like are arranged in an air passage formed in the casing 41. The casing 41 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 ケーシング41の空気流れ最上流側には、内外気切替装置43が配置されている。内外気切替装置43は、ケーシング41内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。内外気切替装置43の駆動用の電動アクチュエータは、制御装置50から出力される制御信号によって、その作動が制御される。 An inside / outside air switching device 43 is arranged on the most upstream side of the air flow of the casing 41. The inside / outside air switching device 43 switches and introduces the inside air (vehicle interior air) and the outside air (vehicle interior outside air) into the casing 41. The operation of the electric actuator for driving the inside / outside air switching device 43 is controlled by the control signal output from the control device 50.
 内外気切替装置43の空気流れ下流側には、室内送風機42が配置されている。室内送風機42は、内外気切替装置43を介して吸入した空気を車室内へ向けて送風する。室内送風機42は、遠心多翼ファンを電動モータにて駆動する電動送風機である。室内送風機42は、制御装置50から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 An indoor blower 42 is arranged on the downstream side of the air flow of the inside / outside air switching device 43. The indoor blower 42 blows the air sucked through the inside / outside air switching device 43 toward the vehicle interior. The indoor blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The rotation speed (that is, the blowing capacity) of the indoor blower 42 is controlled by the control voltage output from the control device 50.
 室内送風機42の空気流れ下流側には、室内蒸発器19と室内凝縮器12が、空気流れに対して、この順に配置されている。つまり、室内蒸発器19は、室内凝縮器12よりも、空気流れ上流側に配置されている。室内蒸発器19は、車室内前席側へ送風される空気を熱交換させる前席側蒸発器である。 On the downstream side of the air flow of the indoor blower 42, the indoor evaporator 19 and the indoor condenser 12 are arranged in this order with respect to the air flow. That is, the indoor evaporator 19 is arranged on the upstream side of the air flow with respect to the indoor condenser 12. The indoor evaporator 19 is a front seat side evaporator that exchanges heat with air blown to the front seat side in the vehicle interior.
 ケーシング41内には、室内蒸発器19を通過した空気を、室内凝縮器12を迂回させて下流側へ流すバイパス通路45が形成されている。 A bypass passage 45 is formed in the casing 41 to allow the air that has passed through the indoor evaporator 19 to bypass the indoor condenser 12 and flow to the downstream side.
 室内蒸発器19の空気流れ下流側であって、かつ室内凝縮器12の空気流れ上流側には、エアミックスドア44が配置されている。エアミックスドア44は、室内蒸発器19を通過後の空気のうち、室内凝縮器12を通過させる風量とバイパス通路45を通過させる風量との風量割合を調整する。エアミックスドア駆動用の電動アクチュエータは、制御装置50から出力される制御信号によって、その作動が制御される。 The air mix door 44 is arranged on the downstream side of the air flow of the indoor evaporator 19 and on the upstream side of the air flow of the indoor condenser 12. The air mix door 44 adjusts the ratio of the air volume after passing through the indoor evaporator 19 to the air volume passing through the indoor condenser 12 and the air volume passing through the bypass passage 45. The operation of the electric actuator for driving the air mix door is controlled by a control signal output from the control device 50.
 室内凝縮器12の空気流れ下流側には、室内凝縮器12にて加熱された空気とバイパス通路45を通過して室内凝縮器12にて加熱されていない空気とを混合させる混合空間46が設けられている。ケーシング41の空気流れ最下流部には、混合空間46にて混合された空気を、車室内へ吹き出す図示しない開口穴が配置されている。 On the downstream side of the air flow of the indoor condenser 12, a mixing space 46 is provided for mixing the air heated by the indoor condenser 12 and the air not heated by the indoor condenser 12 through the bypass passage 45. Has been done. An opening hole (not shown) for blowing out the air mixed in the mixing space 46 into the vehicle interior is arranged at the most downstream portion of the air flow of the casing 41.
 従って、エアミックスドア44が室内凝縮器12を通過させる風量とバイパス通路45を通過させる風量との風量割合を調整することによって、混合空間46にて混合されて各開口穴から車室内へ吹き出される空気(以下、空調風と言う。)の温度を調整することができる。 Therefore, by adjusting the air volume ratio between the air volume of the air mix door 44 passing through the indoor condenser 12 and the air volume passing through the bypass passage 45, the air is mixed in the mixing space 46 and blown out into the vehicle interior from each opening hole. The temperature of the air (hereinafter referred to as air conditioning air) can be adjusted.
 開口穴としては、フェイス開口穴、フット開口穴およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 As the opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided. The face opening hole is an opening hole for blowing air-conditioning air toward the upper body of the occupant in the vehicle interior. The foot opening hole is an opening hole for blowing air-conditioning air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing air conditioning air toward the inner surface of the front window glass of the vehicle.
 これらの開口穴の上流側には、図示しない吹出モード切替ドアが配置されている。吹出モード切替ドアは、各開口穴を開閉することによって、空調風を吹き出す開口穴を切り替える。吹出モード切替ドア駆動用の電動アクチュエータは、制御装置50から出力される制御信号によって、その作動が制御される。 A blowout mode switching door (not shown) is arranged on the upstream side of these opening holes. The blowout mode switching door switches the opening holes for blowing out the conditioned air by opening and closing each opening hole. The operation of the electric actuator for driving the blowout mode switching door is controlled by the control signal output from the control device 50.
 次に、図3を用いて、車両用空調装置の電気制御部の概要について説明する。制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置50は、ROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、14a~14d、16a~16d、37、42、43、44等の作動を制御する。 Next, the outline of the electric control unit of the vehicle air conditioner will be described with reference to FIG. The control device 50 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof. The control device 50 performs various calculations and processes based on the air conditioning control program stored in the ROM, and various control target devices 11, 14a to 14d, 16a to 16d, 37, 42, 43, connected to the output side. Controls the operation of 44 etc.
 制御装置50の入力側には、図3に示すように、各種の制御用センサが接続されている。制御用センサとしては、内気温センサ51a、外気温センサ51b、日射量センサ51cが含まれる。制御用センサとしては、高圧圧力センサ51d、空調風温度センサ51e、蒸発器温度センサ51f、蒸発器圧力センサ51g、室外器温度センサ51h、室外器圧力センサ51i、バッテリ温度センサ51jが含まれる。 As shown in FIG. 3, various control sensors are connected to the input side of the control device 50. The control sensor includes an inside air temperature sensor 51a, an outside air temperature sensor 51b, and an insolation amount sensor 51c. The control sensor includes a high pressure pressure sensor 51d, an air conditioning air temperature sensor 51e, an evaporator temperature sensor 51f, an evaporator pressure sensor 51g, an outdoor unit temperature sensor 51h, an outdoor unit pressure sensor 51i, and a battery temperature sensor 51j.
 内気温センサ51aは、車室内の温度である内気温Trを検出する内気温検出部である。外気温センサ51bは、車室外の温度である外気温Tamを検出する外気温検出部である。日射量センサ51cは、車室内へ照射される日射量Asを検出する日射量検出部である。 The internal air temperature sensor 51a is an internal air temperature detection unit that detects the internal air temperature Tr, which is the temperature inside the vehicle. The outside air temperature sensor 51b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle interior. The solar radiation amount sensor 51c is a solar radiation amount detection unit that detects the solar radiation amount As emitted into the vehicle interior.
 高圧圧力センサ51dは、圧縮機11から吐出された高圧冷媒の圧力である高圧圧力Pdを検出する高圧圧力検出部である。空調風温度センサ51eは、混合空間46から車室内へ吹き出される吹出空気温度TAVを検出する空調風温度検出部である。 The high-pressure pressure sensor 51d is a high-pressure pressure detection unit that detects the high-pressure pressure Pd, which is the pressure of the high-pressure refrigerant discharged from the compressor 11. The conditioned air temperature sensor 51e is an conditioned air temperature detecting unit that detects the blown air temperature TAV blown from the mixing space 46 into the vehicle interior.
 蒸発器温度センサ51fは、室内蒸発器19における冷媒蒸発温度(換言すれば、蒸発器温度)Teを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ51fは、具体的に、室内蒸発器19の出口側冷媒の温度を検出している。 The evaporator temperature sensor 51f is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (in other words, the evaporator temperature) Te in the indoor evaporator 19. The evaporator temperature sensor 51f of the present embodiment specifically detects the temperature of the refrigerant on the outlet side of the indoor evaporator 19.
 蒸発器圧力センサ51gは、室内蒸発器19における冷媒蒸発圧力Peを検出する蒸発器圧力検出部である。本実施形態の蒸発器圧力センサ51gは、具体的に、室内蒸発器19の出口側冷媒の圧力を検出している。 The evaporator pressure sensor 51g is an evaporator pressure detecting unit that detects the refrigerant evaporation pressure Pe in the indoor evaporator 19. The evaporator pressure sensor 51g of the present embodiment specifically detects the pressure of the refrigerant on the outlet side of the indoor evaporator 19.
 室外器温度センサ51hは、室外熱交換器18を流通する冷媒の温度である室外器冷媒温度T1を検出する室外器温度検出部である。本実施形態の室外器温度センサ51hは、具体的に、室外熱交換器18の出口側冷媒の温度を検出している。 The outdoor unit temperature sensor 51h is an outdoor unit temperature detection unit that detects the outdoor unit refrigerant temperature T1, which is the temperature of the refrigerant flowing through the outdoor heat exchanger 18. The outdoor unit temperature sensor 51h of the present embodiment specifically detects the temperature of the refrigerant on the outlet side of the outdoor heat exchanger 18.
 室外器圧力センサ51iは、室外熱交換器18を流通する冷媒の圧力である室外器冷媒圧力P1を検出する室外器温度検出部である。本実施形態の室外器圧力センサ51iは、具体的に、室外熱交換器18の出口側冷媒の圧力を検出している。 The outdoor unit pressure sensor 51i is an outdoor unit temperature detection unit that detects the outdoor unit refrigerant pressure P1 which is the pressure of the refrigerant flowing through the outdoor heat exchanger 18. The outdoor unit pressure sensor 51i of the present embodiment specifically detects the pressure of the refrigerant on the outlet side of the outdoor heat exchanger 18.
 バッテリ温度センサ51jは、バッテリ30の温度であるバッテリ温度TBを検出するバッテリ温度検出部である。バッテリ温度センサ51jは、複数の温度検出部を有し、バッテリ30の複数の箇所の温度を検出している。このため、制御装置50では、バッテリ30の各部の温度差を検出することもできる。バッテリ温度TBとしては、複数の温度センサの検出値の平均値を採用している。 The battery temperature sensor 51j is a battery temperature detection unit that detects the battery temperature TB, which is the temperature of the battery 30. The battery temperature sensor 51j has a plurality of temperature detection units, and detects temperatures at a plurality of locations of the battery 30. Therefore, the control device 50 can also detect the temperature difference of each part of the battery 30. As the battery temperature TB, the average value of the detected values of a plurality of temperature sensors is adopted.
 制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル52が接続され、この操作パネル52に設けられた各種操作スイッチからの操作信号が入力される。 An operation panel 52 arranged near the instrument panel at the front of the vehicle interior is connected to the input side of the control device 50, and operation signals from various operation switches provided on the operation panel 52 are input.
 操作パネル52に設けられた各種操作スイッチとしては、具体的に、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ、後席冷房スイッチ等がある。オートスイッチは、冷凍サイクル装置10の自動制御運転を設定あるいは解除する操作スイッチである。エアコンスイッチは、室内蒸発器19で空気の冷却を行うことを要求する操作スイッチである。風量設定スイッチは、室内送風機42の風量をマニュアル設定する操作スイッチである。温度設定スイッチは、車室内の目標温度Tsetを設定する操作スイッチである。後席冷房スイッチは、後席側蒸発器24で空気の冷却を行うことを要求する操作スイッチである。 Specific examples of the various operation switches provided on the operation panel 52 include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and a rear seat cooling switch. The auto switch is an operation switch that sets or cancels the automatic control operation of the refrigeration cycle device 10. The air conditioner switch is an operation switch that requires the indoor evaporator 19 to cool the air. The air volume setting switch is an operation switch for manually setting the air volume of the indoor blower 42. The temperature setting switch is an operation switch for setting the target temperature Tset in the vehicle interior. The rear seat cooling switch is an operation switch that requires the rear seat side evaporator 24 to cool the air.
 本実施形態の制御装置50は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されている。従って、それぞれの制御対象機器の作動を制御する構成(すなわち、ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 The control device 50 of the present embodiment is integrally composed of a control unit that controls various controlled devices connected to the output side of the control device 50. Therefore, a configuration (that is, hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device.
 例えば、制御装置50のうち、冷媒回路切替部である第1開閉弁14a、第2開閉弁14b、第3開閉弁14cおよび第4開閉弁14dの作動を制御する構成は、冷媒回路制御部50aを構成している。 For example, in the control device 50, the configuration for controlling the operation of the first on-off valve 14a, the second on-off valve 14b, the third on-off valve 14c, and the fourth on-off valve 14d, which are the refrigerant circuit switching units, is the refrigerant circuit control unit 50a. Consists of.
 次に、上記構成の本実施形態の車両用空調装置の作動について説明する。冷凍サイクル装置10は、車室内の空調およびバッテリ30の冷却を行うために、冷媒回路を切替可能に構成されている。 Next, the operation of the vehicle air conditioner of the present embodiment having the above configuration will be described. The refrigerating cycle device 10 is configured so that the refrigerant circuit can be switched in order to perform air conditioning in the vehicle interior and cooling of the battery 30.
 具体的には、冷凍サイクル装置10は、車室内の空調を行うために、暖房モードの冷媒回路、冷房モードの冷媒回路、除湿暖房モードの冷媒回路を切り替えることができる。暖房モードは、加熱された空気を車室内へ吹き出す運転モードである。冷房モードは、冷却された空気を車室内へ吹き出す運転モードである。除湿暖房モードは、冷却されて除湿された空気を再加熱して車室内へ吹き出す運転モードである。 Specifically, the refrigerating cycle device 10 can switch the refrigerant circuit in the heating mode, the refrigerant circuit in the cooling mode, and the refrigerant circuit in the dehumidifying / heating mode in order to perform air conditioning in the vehicle interior. The heating mode is an operation mode in which the heated air is blown into the vehicle interior. The cooling mode is an operation mode in which cooled air is blown into the vehicle interior. The dehumidifying / heating mode is an operation mode in which the cooled and dehumidified air is reheated and blown out into the vehicle interior.
 これらの運転モードの切り替えは、予め制御装置50に記憶されている空調制御プログラムが実行されることによって行われる。空調制御プログラムは、操作パネル52のオートスイッチが投入(ON)されると実行される。空調制御プログラムでは、各種制御用センサの検出信号および操作パネルの操作信号に基づいて、運転モードを切り替える。以下に各運転モードの作動について説明する。 The switching of these operation modes is performed by executing the air conditioning control program stored in the control device 50 in advance. The air conditioning control program is executed when the auto switch of the operation panel 52 is turned on (ON). In the air conditioning control program, the operation mode is switched based on the detection signals of various control sensors and the operation signals of the operation panel. The operation of each operation mode will be described below.
 (a)暖房モード
 暖房モードでは、制御装置50が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを開き、第4開閉弁14dを閉じる。制御装置50は、暖房用膨張弁16aを冷媒減圧作用を発揮する絞り状態として、第1電気式膨張弁16bを全閉状態とする。
(A) Heating mode In the heating mode, the control device 50 opens the first on-off valve 14a, closes the second on-off valve 14b, opens the third on-off valve 14c, and closes the fourth on-off valve 14d. The control device 50 sets the heating expansion valve 16a in a throttled state for exerting a refrigerant depressurizing action, and sets the first electric expansion valve 16b in a fully closed state.
 これにより、暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、第1固定絞り23a、レシーバ15、暖房用膨張弁16a、室外熱交換器18、圧縮機11の吸入口の順に循環する第1回路に切り替えられる。 As a result, in the refrigerating cycle device 10 in the heating mode, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the first fixed throttle 23a, the receiver 15, the heating expansion valve 16a, the outdoor heat exchanger 18, and the compressor. It is switched to the first circuit that circulates in the order of the 11 suction ports.
 この回路構成で、制御装置50は、各種制御対象機器の作動を制御する。例えば、圧縮機11については、制御装置50は、高圧圧力センサ51dによって検出された高圧圧力Pdが目標高圧PDOに近づくように吐出能力を制御する。目標高圧PDOは、目標吹出温度TAOに基づいて、予め制御装置50に記憶されている暖房モード用の制御マップを参照して決定される。目標吹出温度TAOは、各種制御用センサの検出信号および操作パネルの操作信号を用いて算定される。制御装置50は、目標吹出温度TAOと実際の吹出温度との偏差が小さくなるように圧縮機11の回転数を調整してもよい。 With this circuit configuration, the control device 50 controls the operation of various controlled devices. For example, for the compressor 11, the control device 50 controls the discharge capacity so that the high pressure Pd detected by the high pressure sensor 51d approaches the target high pressure PDO. The target high-pressure PDO is determined based on the target blowout temperature TAO with reference to the control map for the heating mode stored in advance in the control device 50. The target blowout temperature TAO is calculated using the detection signals of various control sensors and the operation signals of the operation panel. The control device 50 may adjust the rotation speed of the compressor 11 so that the deviation between the target blowout temperature TAO and the actual blowout temperature becomes small.
 暖房用膨張弁16aについては、制御装置50は、室外熱交換器18の出口側冷媒の過熱度SH1が、予め定めた目標過熱度KSH(本実施形態では、5℃)に近づくように絞り開度を制御する。過熱度SH1は、室外器温度センサ51hによって検出された室外器冷媒温度T1および室外器圧力センサ51iによって検出された室外器冷媒圧力P1から算定される。 Regarding the heating expansion valve 16a, the control device 50 is throttled open so that the superheat degree SH1 of the outlet side refrigerant of the outdoor heat exchanger 18 approaches a predetermined target superheat degree KSH (5 ° C. in the present embodiment). Control the degree. The degree of superheat SH1 is calculated from the outdoor unit refrigerant temperature T1 detected by the outdoor unit temperature sensor 51h and the outdoor unit refrigerant pressure P1 detected by the outdoor unit pressure sensor 51i.
 エアミックスドア44については、制御装置50は、空調風温度センサ51eによって検出された吹出空気温度TAVが目標吹出温度TAOに近づくように開度を制御する。暖房モードでは、室内蒸発器19を通過した空気の全風量を室内凝縮器12へ流入させるようにエアミックスドア44の開度を制御してもよい。 Regarding the air mix door 44, the control device 50 controls the opening degree so that the blown air temperature TAV detected by the air conditioning air temperature sensor 51e approaches the target blown temperature TAO. In the heating mode, the opening degree of the air mix door 44 may be controlled so that the total amount of air that has passed through the indoor evaporator 19 flows into the indoor condenser 12.
 冷凍サイクル装置10では、圧縮機11が作動すると、圧縮機11から吐出された高圧冷媒が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、室内蒸発器19を通過した空気に放熱して凝縮する。これにより、空気が加熱される。 In the refrigeration cycle device 10, when the compressor 11 is operated, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12. The refrigerant that has flowed into the indoor condenser 12 dissipates heat to the air that has passed through the indoor evaporator 19 and condenses. This heats the air.
 室内凝縮器12から流出した冷媒は、第1継手13aおよび入口側通路21aを介して第1固定絞り23aへ流入して中間圧まで減圧される。第1固定絞り23aで減圧された冷媒はレシーバ15へ流入する。レシーバ15へ流入した冷媒は、レシーバ15にて気液分離される。レシーバ15にて分離された一部の液相冷媒は、出口側通路21bおよび第2継手13bを介して暖房用膨張弁16aへ流入する。レシーバ15にて分離された残余の液相冷媒は、余剰冷媒としてレシーバ15に蓄えられる。 The refrigerant flowing out of the indoor condenser 12 flows into the first fixed throttle 23a via the first joint 13a and the inlet side passage 21a, and is reduced to an intermediate pressure. The refrigerant decompressed by the first fixed throttle 23a flows into the receiver 15. The refrigerant flowing into the receiver 15 is gas-liquid separated by the receiver 15. A part of the liquid phase refrigerant separated by the receiver 15 flows into the heating expansion valve 16a through the outlet side passage 21b and the second joint 13b. The residual liquid phase refrigerant separated by the receiver 15 is stored in the receiver 15 as a surplus refrigerant.
 暖房用膨張弁16aへ流入した冷媒は、低圧冷媒となるまで減圧される。この際、暖房用膨張弁16aの絞り開度は、過熱度SH1が目標過熱度KSHに近づくように制御される。暖房モードでは、実質的に、室外熱交換器18の出口側冷媒の過熱度が目標過熱度KSHに近づくように制御される。 The refrigerant flowing into the heating expansion valve 16a is depressurized until it becomes a low-pressure refrigerant. At this time, the throttle opening degree of the heating expansion valve 16a is controlled so that the superheat degree SH1 approaches the target superheat degree KSH. In the heating mode, the degree of superheat of the outlet-side refrigerant of the outdoor heat exchanger 18 is substantially controlled to approach the target degree of superheat KSH.
 暖房用膨張弁16aにて減圧された低圧冷媒は、室外熱交換器18へ流入する。室外熱交換器18へ流入した冷媒は、外気ファンから送風された外気と熱交換し、外気から吸熱して蒸発する。室外熱交換器18から流出した冷媒は、第3継手13c、吸入側通路21dおよび第4継手13dを介して圧縮機11へ吸入されて再び圧縮される。 The low-pressure refrigerant decompressed by the heating expansion valve 16a flows into the outdoor heat exchanger 18. The refrigerant flowing into the outdoor heat exchanger 18 exchanges heat with the outside air blown from the outside air fan, absorbs heat from the outside air, and evaporates. The refrigerant flowing out of the outdoor heat exchanger 18 is sucked into the compressor 11 through the third joint 13c, the suction side passage 21d, and the fourth joint 13d, and is compressed again.
 従って、暖房モードでは、室内凝縮器12にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 Therefore, in the heating mode, the interior of the vehicle can be heated by blowing out the air heated by the interior condenser 12 into the interior of the vehicle.
 (b)冷房モード
 冷房モードでは、制御装置50が、第1開閉弁14aを閉じ、第2開閉弁14bを開き、第3開閉弁14cを閉じる。後席冷房スイッチが投入(ON)されていない場合、制御装置50が第4開閉弁14dを閉じ、後席冷房スイッチが投入(ON)されている場合、制御装置50が第4開閉弁14dを開く。制御装置50は、暖房用膨張弁16aを全開状態とし、第1電気式膨張弁16bを絞り状態とする。
(B) Cooling mode In the cooling mode, the control device 50 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. When the rear seat cooling switch is not turned on (ON), the control device 50 closes the fourth on-off valve 14d, and when the rear seat cooling switch is turned on (ON), the control device 50 closes the fourth on-off valve 14d. open. The control device 50 sets the heating expansion valve 16a in the fully open state and the first electric expansion valve 16b in the throttle state.
 これにより、冷房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、暖房用膨張弁16a、室外熱交換器18、第2固定絞り23b、レシーバ15、第1電気式膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環する第2回路に切り替えられる。第4開閉弁14dが開かれている場合、圧縮機11から吐出された冷媒が、室内凝縮器12、暖房用膨張弁16a、室外熱交換器18、第1機械式膨張弁16d、後席側蒸発器24、圧縮機11の吸入口の順に循環する回路も構成される。 As a result, in the refrigerating cycle device 10 in the cooling mode, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the heating expansion valve 16a, the outdoor heat exchanger 18, the second fixed throttle 23b, the receiver 15, the first. It is switched to the second circuit that circulates in the order of the electric expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11. When the fourth on-off valve 14d is open, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the heating expansion valve 16a, the outdoor heat exchanger 18, the first mechanical expansion valve 16d, and the rear seat side. A circuit that circulates in the order of the evaporator 24 and the suction port of the compressor 11 is also configured.
 この回路構成で、制御装置50は、各種制御対象機器の作動を制御する。例えば、圧縮機11については、蒸発器温度センサ51fによって検出された蒸発器温度Teが目標蒸発器温度TEOに近づくように吐出能力を制御する。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め制御装置50に記憶されている冷房モード用の制御マップを参照して決定される。 With this circuit configuration, the control device 50 controls the operation of various controlled devices. For example, for the compressor 11, the discharge capacity is controlled so that the evaporator temperature Te detected by the evaporator temperature sensor 51f approaches the target evaporator temperature TEO. The target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to the control map for the cooling mode stored in advance in the control device 50.
 この制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発器温度TEOが上昇するように決定される。目標蒸発器温度TEOは、室内蒸発器19の着霜を抑制可能な範囲(具体的には、1℃以上)の値に決定される。 In this control map, it is determined that the target evaporator temperature TEO rises as the target blowout temperature TAO rises. The target evaporator temperature TEO is determined to be a value within a range (specifically, 1 ° C. or higher) in which frost formation of the indoor evaporator 19 can be suppressed.
 第1電気式膨張弁16bについては、制御装置50は、室内蒸発器19の出口側冷媒の過熱度SH2が、目標過熱度KSHに近づくように絞り開度を制御する。過熱度SH2は、蒸発器温度Teおよび蒸発器圧力センサ51gによって検出された冷媒蒸発圧力Peから算定される。エアミックスドア44については、室内蒸発器19を通過した空気の全風量をバイパス通路45へ流入させるようにエアミックスドア44の開度を制御する。 Regarding the first electric expansion valve 16b, the control device 50 controls the throttle opening so that the superheat degree SH2 of the refrigerant on the outlet side of the indoor evaporator 19 approaches the target superheat degree KSH. The degree of superheat SH2 is calculated from the evaporator temperature Te and the refrigerant evaporation pressure Pe detected by the evaporator pressure sensor 51g. Regarding the air mix door 44, the opening degree of the air mix door 44 is controlled so that the total air volume of the air that has passed through the indoor evaporator 19 flows into the bypass passage 45.
 冷凍サイクル装置10では、圧縮機11が作動すると、圧縮機11から吐出された高圧冷媒が室内凝縮器12へ流入する。冷房モードでは、室内蒸発器19を通過した空気の全風量がバイパス通路45へ流入する。このため、室内凝縮器12へ流入した冷媒は、空気と熱交換することなく室内凝縮器12から流出する。 In the refrigeration cycle device 10, when the compressor 11 is operated, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12. In the cooling mode, the total air volume of the air that has passed through the indoor evaporator 19 flows into the bypass passage 45. Therefore, the refrigerant that has flowed into the indoor condenser 12 flows out of the indoor condenser 12 without exchanging heat with air.
 室内凝縮器12から流出した冷媒は、第1継手13aおよび外気側通路21cを介して暖房用膨張弁16aへ流入する。冷房モードでは、暖房用膨張弁16aが全開状態となっている。このため、暖房用膨張弁16aへ流入した冷媒は、減圧されることなく暖房用膨張弁16aから流出する。つまり、冷房モードでは、室内凝縮器12および暖房用膨張弁16aは、単なる冷媒通路となる。 The refrigerant flowing out of the indoor condenser 12 flows into the heating expansion valve 16a via the first joint 13a and the outside air side passage 21c. In the cooling mode, the heating expansion valve 16a is fully open. Therefore, the refrigerant that has flowed into the heating expansion valve 16a flows out of the heating expansion valve 16a without being depressurized. That is, in the cooling mode, the indoor condenser 12 and the heating expansion valve 16a are merely refrigerant passages.
 暖房用膨張弁16aから流出した冷媒は、室外熱交換器18へ流入する。室外熱交換器18へ流入した冷媒は、外気ファンから送風された外気と熱交換し、外気へ放熱して凝縮する。 The refrigerant flowing out of the heating expansion valve 16a flows into the outdoor heat exchanger 18. The refrigerant flowing into the outdoor heat exchanger 18 exchanges heat with the outside air blown from the outside air fan, dissipates heat to the outside air, and condenses.
 室外熱交換器18から流出した冷媒は、第3継手13c、第9継手13iを介して第2固定絞り23bへ流入して中間圧まで減圧される。第2固定絞り23bで減圧された冷媒は、第5継手13eおよび入口側通路21aを介してレシーバ15へ流入する。レシーバ15へ流入した冷媒は、レシーバ15にて気液分離される。レシーバ15にて分離された一部の液相冷媒は、出口側通路21bおよび第6継手13fを介して第1電気式膨張弁16bへ流入する。レシーバ15にて分離された残余の液相冷媒は、余剰冷媒としてレシーバ15に蓄えられる。 The refrigerant flowing out of the outdoor heat exchanger 18 flows into the second fixed throttle 23b via the third joint 13c and the ninth joint 13i and is depressurized to the intermediate pressure. The refrigerant decompressed by the second fixed throttle 23b flows into the receiver 15 through the fifth joint 13e and the inlet side passage 21a. The refrigerant flowing into the receiver 15 is gas-liquid separated by the receiver 15. A part of the liquid phase refrigerant separated by the receiver 15 flows into the first electric expansion valve 16b through the outlet side passage 21b and the sixth joint 13f. The residual liquid phase refrigerant separated by the receiver 15 is stored in the receiver 15 as a surplus refrigerant.
 第1電気式膨張弁16bへ流入した冷媒は、低圧冷媒となるまで減圧される。この際、第1電気式膨張弁16bの絞り開度は、過熱度SH2が目標過熱度KSHに近づくように制御される。冷房モードでは、実質的に、室内蒸発器19の出口側冷媒の過熱度が目標過熱度KSHに近づくように制御される。 The refrigerant flowing into the first electric expansion valve 16b is depressurized until it becomes a low-pressure refrigerant. At this time, the throttle opening degree of the first electric expansion valve 16b is controlled so that the superheat degree SH2 approaches the target superheat degree KSH. In the cooling mode, the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 19 is substantially controlled to approach the target degree of superheat KSH.
 第1電気式膨張弁16bにて減圧された低圧冷媒は、室内蒸発器19へ流入する。室内蒸発器19へ流入した冷媒は、室内送風機42から送風された空気と熱交換し、空気から吸熱して蒸発する。これにより、空気が冷却される。室内蒸発器19から流出した冷媒は、第8継手13hおよび第4継手13dを介して圧縮機11へ吸入されて再び圧縮される。 The low-pressure refrigerant decompressed by the first electric expansion valve 16b flows into the indoor evaporator 19. The refrigerant flowing into the indoor evaporator 19 exchanges heat with the air blown from the indoor blower 42, absorbs heat from the air, and evaporates. This cools the air. The refrigerant flowing out of the indoor evaporator 19 is sucked into the compressor 11 via the eighth joint 13h and the fourth joint 13d and is compressed again.
 従って、冷房モードでは、室内蒸発器19にて冷却された空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 Therefore, in the cooling mode, the interior of the vehicle can be cooled by blowing out the air cooled by the indoor evaporator 19 into the interior of the vehicle.
 第4開閉弁14dが開かれている場合、室外熱交換器18から流出した冷媒は、第3継手13c、第9継手13iおよび分岐通路21eを介して第1機械式膨張弁16dへ流入する。 When the fourth on-off valve 14d is open, the refrigerant flowing out of the outdoor heat exchanger 18 flows into the first mechanical expansion valve 16d via the third joint 13c, the ninth joint 13i, and the branch passage 21e.
 第1機械式膨張弁16dへ流入した冷媒は、低圧冷媒となるまで減圧される。この際、第1機械式膨張弁16dは、後席側蒸発器24の出口側の冷媒の過熱度が予め定めた基準過熱度に近づくように、機械的機構によって絞り開度を変化させる。 The refrigerant flowing into the first mechanical expansion valve 16d is depressurized until it becomes a low-pressure refrigerant. At this time, the first mechanical expansion valve 16d changes the throttle opening degree by a mechanical mechanism so that the superheat degree of the refrigerant on the outlet side of the rear seat side evaporator 24 approaches a predetermined reference superheat degree.
 第1機械式膨張弁16dにて減圧された低圧冷媒は、後席側蒸発器24へ流入する。後席側蒸発器24へ流入した冷媒は、後席送風機36から送風された空気と熱交換し、空気から吸熱して蒸発する。これにより、空気が冷却される。後席側蒸発器24から流出した冷媒は、第8継手13hおよび第4継手13dを介して圧縮機11へ吸入されて再び圧縮される。 The low-pressure refrigerant decompressed by the first mechanical expansion valve 16d flows into the rear seat side evaporator 24. The refrigerant flowing into the rear seat side evaporator 24 exchanges heat with the air blown from the rear seat blower 36, absorbs heat from the air, and evaporates. This cools the air. The refrigerant flowing out of the rear seat side evaporator 24 is sucked into the compressor 11 via the eighth joint 13h and the fourth joint 13d and is compressed again.
 従って、第4開閉弁14dが開かれている場合、後席側蒸発器24にて冷却された空気を車室内後席側へ吹き出すことによって、車室内後席側の冷房を行うことができる。 Therefore, when the fourth on-off valve 14d is opened, the air cooled by the rear seat side evaporator 24 can be blown out to the rear seat side of the vehicle interior to cool the rear seat side of the vehicle interior.
 (c)除湿暖房モード
 除湿暖房モードでは、制御装置50が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを開き、第4開閉弁14dを閉じる。制御装置50は、暖房用膨張弁16aを絞り状態とし、第1電気式膨張弁16bを絞り状態とする。
(C) Dehumidifying and heating mode In the dehumidifying and heating mode, the control device 50 opens the first on-off valve 14a, closes the second on-off valve 14b, opens the third on-off valve 14c, and closes the fourth on-off valve 14d. The control device 50 puts the heating expansion valve 16a in the throttled state and puts the first electric expansion valve 16b in the throttled state.
 これにより、除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、第1固定絞り23a、レシーバ15の順に流れる。そして、レシーバ15、暖房用膨張弁16a、室外熱交換器18、圧縮機11の吸入口の順に循環するとともに、レシーバ15、第1電気式膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環する第3回路が構成される。 As a result, in the refrigerating cycle device 10 in the dehumidifying / heating mode, the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the first fixed throttle 23a, and the receiver 15. Then, the receiver 15, the expansion valve for heating 16a, the outdoor heat exchanger 18, and the suction port of the compressor 11 circulate in this order, and the receiver 15, the first electric expansion valve 16b, the indoor evaporator 19, and the compressor 11 are sucked. A third circuit that circulates in the order of the mouth is configured.
 すなわち、除湿暖房モードの冷凍サイクル装置10は、レシーバ15から流出した冷媒の流れに対して、室外熱交換器18と室内蒸発器19が並列的に接続される回路に切り替えられる。 That is, the refrigeration cycle device 10 in the dehumidification / heating mode is switched to a circuit in which the outdoor heat exchanger 18 and the indoor evaporator 19 are connected in parallel with respect to the flow of the refrigerant flowing out from the receiver 15.
 この回路構成で、制御装置50は、各種制御対象機器の作動を制御する。例えば、圧縮機11については、冷房モードと同様に吐出能力を制御する。 With this circuit configuration, the control device 50 controls the operation of various controlled devices. For example, with respect to the compressor 11, the discharge capacity is controlled in the same manner as in the cooling mode.
 暖房用膨張弁16aについては、制御装置50は、室外器温度センサ51hによって検出された室外器冷媒温度T1が、室外器目標温度TO1に近づくように絞り開度を制御する。室外器目標温度TO1は、目標吹出温度TAOおよび外気温Tamに基づいて、予め制御装置50に記憶されている除湿暖房モード用の制御マップを参照して決定される。この制御マップでは、室外器目標温度TO1が外気温Tamよりも低くなるように決定される。 Regarding the heating expansion valve 16a, the control device 50 controls the throttle opening so that the outdoor unit refrigerant temperature T1 detected by the outdoor unit temperature sensor 51h approaches the outdoor unit target temperature TO1. The outdoor unit target temperature TO1 is determined based on the target outlet temperature TAO and the outside air temperature Tam with reference to the control map for the dehumidifying / heating mode stored in the control device 50 in advance. In this control map, the outdoor unit target temperature TO1 is determined to be lower than the outside air temperature Tam.
 第1電気式膨張弁16bについては、冷房モードと同様に絞り開度を制御する。エアミックスドア44については、制御装置50は、空調風温度センサ51eによって検出された吹出空気温度TAVが目標吹出温度TAOに近づくように開度を制御する。 For the first electric expansion valve 16b, the throttle opening is controlled in the same manner as in the cooling mode. For the air mix door 44, the control device 50 controls the opening degree so that the blown air temperature TAV detected by the air conditioning air temperature sensor 51e approaches the target blown temperature TAO.
 冷凍サイクル装置10では、圧縮機11が作動すると、圧縮機11から吐出された高圧冷媒が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、室内蒸発器19を通過した空気に放熱して凝縮する。これにより、室内蒸発器19を通過する際に冷却された空気が加熱される。 In the refrigeration cycle device 10, when the compressor 11 is operated, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12. The refrigerant that has flowed into the indoor condenser 12 dissipates heat to the air that has passed through the indoor evaporator 19 and condenses. As a result, the cooled air is heated as it passes through the indoor evaporator 19.
 室内凝縮器12から流出した冷媒は、第1継手13aおよび入口側通路21aを介して第1固定絞り23aへ流入して中間圧まで減圧される。第1固定絞り23aで減圧された冷媒はレシーバ15へ流入する。レシーバ15へ流入した冷媒は、レシーバ15にて気液分離される。 The refrigerant flowing out of the indoor condenser 12 flows into the first fixed throttle 23a via the first joint 13a and the inlet side passage 21a, and is reduced to an intermediate pressure. The refrigerant decompressed by the first fixed throttle 23a flows into the receiver 15. The refrigerant flowing into the receiver 15 is gas-liquid separated by the receiver 15.
 レシーバ15にて分離された一部の液相冷媒は、出口側通路21bおよび第2継手13bを介して暖房用膨張弁16aへ流入する。レシーバ15にて分離された別の一部の液相冷媒は、出口側通路21bおよび第6継手13fを介して第1電気式膨張弁16bへ流入する。レシーバ15にて分離された残余の液相冷媒は、余剰冷媒としてレシーバ15に蓄えられる。 A part of the liquid phase refrigerant separated by the receiver 15 flows into the heating expansion valve 16a via the outlet side passage 21b and the second joint 13b. Another part of the liquid phase refrigerant separated by the receiver 15 flows into the first electric expansion valve 16b through the outlet side passage 21b and the sixth joint 13f. The residual liquid phase refrigerant separated by the receiver 15 is stored in the receiver 15 as a surplus refrigerant.
 レシーバ15から暖房用膨張弁16aへ流入した冷媒は、低圧冷媒となるまで減圧される。この際、暖房用膨張弁16aの絞り開度は、室外器冷媒温度T1が外気温Tamよりも低くなるように制御される。 The refrigerant flowing from the receiver 15 to the heating expansion valve 16a is depressurized until it becomes a low-pressure refrigerant. At this time, the throttle opening degree of the heating expansion valve 16a is controlled so that the outdoor unit refrigerant temperature T1 is lower than the outside air temperature Tam.
 暖房用膨張弁16aにて減圧された低圧冷媒は、室外熱交換器18へ流入する。室外熱交換器18へ流入した冷媒は、外気ファンから送風された外気と熱交換し、外気から吸熱して蒸発する。室外熱交換器18から流出した冷媒は、第3継手13cおよび吸入側通路21dを介して第4継手13dへ流入する。 The low-pressure refrigerant decompressed by the heating expansion valve 16a flows into the outdoor heat exchanger 18. The refrigerant flowing into the outdoor heat exchanger 18 exchanges heat with the outside air blown from the outside air fan, absorbs heat from the outside air, and evaporates. The refrigerant flowing out of the outdoor heat exchanger 18 flows into the fourth joint 13d via the third joint 13c and the suction side passage 21d.
 レシーバ15から第1電気式膨張弁16bへ流入した冷媒は、低圧冷媒となるまで減圧される。この際、第1電気式膨張弁16bの絞り開度は、過熱度SH2が目標過熱度KSHに近づくように制御される。 The refrigerant flowing from the receiver 15 to the first electric expansion valve 16b is depressurized until it becomes a low-pressure refrigerant. At this time, the throttle opening degree of the first electric expansion valve 16b is controlled so that the superheat degree SH2 approaches the target superheat degree KSH.
 第1電気式膨張弁16bにて減圧された低圧冷媒は、室内蒸発器19へ流入する。室内蒸発器19へ流入した冷媒は、室内送風機42から送風された空気と熱交換し、空気から吸熱して蒸発する。これにより、空気が冷却される。室内蒸発器19から流出した冷媒は、第8継手13hを介して第4継手13dへ流入する。 The low-pressure refrigerant decompressed by the first electric expansion valve 16b flows into the indoor evaporator 19. The refrigerant flowing into the indoor evaporator 19 exchanges heat with the air blown from the indoor blower 42, absorbs heat from the air, and evaporates. This cools the air. The refrigerant flowing out of the indoor evaporator 19 flows into the fourth joint 13d via the eighth joint 13h.
 第4継手13dでは、室外熱交換器18から流出した冷媒の流れと室内蒸発器19から流出した冷媒の流れが合流する。第4継手13dから流出した冷媒は、圧縮機11へ吸入されて再び圧縮される。 At the fourth joint 13d, the flow of the refrigerant flowing out from the outdoor heat exchanger 18 and the flow of the refrigerant flowing out from the indoor evaporator 19 merge. The refrigerant flowing out from the fourth joint 13d is sucked into the compressor 11 and compressed again.
 従って、除湿暖房モードでは、室内蒸発器19にて冷却されて除湿された空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 Therefore, in the dehumidifying / heating mode, the dehumidifying / heating of the vehicle interior can be performed by reheating the air cooled by the indoor evaporator 19 and dehumidified by the indoor condenser 12 and blowing it out into the vehicle interior.
 以上の如く、本実施形態の車両用空調装置では、冷凍サイクル装置10が各運転モードに応じて冷媒回路を切り替えることによって、車室内の快適な空調を実現することができる。本実施形態の車両用空調装置では、冷却モードを実行することによって、バッテリ30を冷却することができる。 As described above, in the vehicle air conditioner of the present embodiment, the refrigerating cycle device 10 can realize comfortable air conditioning in the vehicle interior by switching the refrigerant circuit according to each operation mode. In the vehicle air conditioner of the present embodiment, the battery 30 can be cooled by executing the cooling mode.
 冷却モードは、冷凍サイクル装置10の作動時であれば、空調用の各運転モードと並行して実行することができる。すなわち、車室内の空調を行うと同時に、バッテリ30の冷却を行うことができる。冷却モードは、バッテリ温度センサ51jによって検出されたバッテリ温度TBが、予め定めた基準バッテリ温度KTB以上となった際に実行される。以下、冷却モードの作動について説明する。 The cooling mode can be executed in parallel with each operation mode for air conditioning as long as the refrigerating cycle device 10 is operating. That is, the battery 30 can be cooled at the same time as air-conditioning the interior of the vehicle. The cooling mode is executed when the battery temperature TB detected by the battery temperature sensor 51j becomes equal to or higher than a predetermined reference battery temperature KTB. The operation of the cooling mode will be described below.
 (d)冷却モード
 冷却モードでは、制御装置50が、空調用の各運転モードと同様の制御対象機器を制御することに加えて、第2電気式膨張弁16cを絞り状態とする。
(D) Cooling mode In the cooling mode, the control device 50 controls the device to be controlled in the same manner as each operation mode for air conditioning, and in addition, sets the second electric expansion valve 16c in a throttled state.
 これにより、冷凍サイクル装置10では、空調用の運転モードによらず、レシーバ15から流出した冷媒が、第2電気式膨張弁16c、バッテリ用チラー20、圧縮機11の吸入口の順に流れるバッテリ冷却用の回路が構成される。 As a result, in the refrigeration cycle device 10, the refrigerant flowing out from the receiver 15 flows in the order of the second electric expansion valve 16c, the battery chiller 20, and the suction port of the compressor 11 regardless of the operation mode for air conditioning. Circuit is configured for.
 すなわち、冷却モードと暖房モードが並行して実行される際には、冷凍サイクル装置10は、レシーバ15から流出した冷媒の流れに対して、室外熱交換器18とバッテリ用チラー20とが並列的に接続される回路に切り替えられる。 That is, when the cooling mode and the heating mode are executed in parallel, in the refrigerating cycle device 10, the outdoor heat exchanger 18 and the battery chiller 20 are parallel to the flow of the refrigerant flowing out from the receiver 15. It can be switched to the circuit connected to.
 冷却モードと冷房モードが並行して実行される際には、冷凍サイクル装置10は、レシーバ15から流出した冷媒の流れに対して、室内蒸発器19とバッテリ用チラー20とが並列的に接続される回路に切り替えられる。 When the cooling mode and the cooling mode are executed in parallel, in the refrigerating cycle device 10, the indoor evaporator 19 and the battery chiller 20 are connected in parallel to the flow of the refrigerant flowing out from the receiver 15. Can be switched to the circuit.
 冷却モードと除湿暖房モードが並行して実行される際には、冷凍サイクル装置10は、レシーバ15から流出した冷媒の流れに対して、室外熱交換器18、室内蒸発器19およびバッテリ用チラー20とが並列的に接続される回路に切り替えられる。 When the cooling mode and the dehumidifying / heating mode are executed in parallel, the refrigerating cycle device 10 responds to the flow of the refrigerant flowing out from the receiver 15 by the outdoor heat exchanger 18, the indoor evaporator 19, and the battery chiller 20. Can be switched to a circuit in which and are connected in parallel.
 この回路構成で、制御装置50は、各種制御対象機器の作動を制御する。例えば、第2電気式膨張弁16cについては、制御装置50は、バッテリ温度TBがバッテリ30の適切な温度範囲内に維持されるように絞り開度を制御する。 With this circuit configuration, the control device 50 controls the operation of various controlled devices. For example, for the second electric expansion valve 16c, the control device 50 controls the throttle opening so that the battery temperature TB is maintained within an appropriate temperature range of the battery 30.
 冷凍サイクル装置10では、レシーバ15から流出した冷媒が、第6継手13fおよび第7継手13gを介して、第2電気式膨張弁16cへ流入する。レシーバ15から第2電気式膨張弁16cへ流入した冷媒は、低圧冷媒となるまで減圧される。 In the refrigeration cycle device 10, the refrigerant flowing out from the receiver 15 flows into the second electric expansion valve 16c via the sixth joint 13f and the seventh joint 13g. The refrigerant flowing from the receiver 15 to the second electric expansion valve 16c is depressurized until it becomes a low-pressure refrigerant.
 第2電気式膨張弁16cにて減圧された低圧冷媒は、バッテリ用チラー20へ流入する。バッテリ用チラー20へ流入した冷媒は、バッテリ冷却水の有する熱(すなわち、バッテリ30の廃熱)を吸熱して蒸発する。これにより、バッテリ30が冷却される。バッテリ用チラー20から流出した冷媒は、第8継手13hおよび第4継手13dを介して圧縮機11へ吸入される。 The low-pressure refrigerant decompressed by the second electric expansion valve 16c flows into the battery chiller 20. The refrigerant flowing into the battery chiller 20 absorbs the heat of the battery cooling water (that is, the waste heat of the battery 30) and evaporates. This cools the battery 30. The refrigerant flowing out of the battery chiller 20 is sucked into the compressor 11 via the eighth joint 13h and the fourth joint 13d.
 以上の如く、本実施形態の車両用空調装置では、冷却モードを実行することによって、車室内の空調を行いながら、バッテリ30を冷却することができる。 As described above, in the vehicle air conditioner of the present embodiment, the battery 30 can be cooled while air-conditioning the interior of the vehicle by executing the cooling mode.
 本実施形態の冷凍サイクル装置10では、暖房モードで説明したように、第1回路に切り替えた際に、暖房用膨張弁16aにて減圧させた冷媒を室外熱交換器18にて蒸発させることができる。この際、室内凝縮器12にて凝縮させた高圧の液相冷媒を余剰冷媒としてレシーバ15に蓄えることができる。従って、室外熱交換器18の出口側冷媒に過熱度を持たせることができる。 In the refrigeration cycle device 10 of the present embodiment, as described in the heating mode, when switching to the first circuit, the refrigerant decompressed by the heating expansion valve 16a can be evaporated by the outdoor heat exchanger 18. it can. At this time, the high-pressure liquid-phase refrigerant condensed by the indoor condenser 12 can be stored in the receiver 15 as a surplus refrigerant. Therefore, the outlet-side refrigerant of the outdoor heat exchanger 18 can have a degree of superheat.
 これによれば、貯液部としてアキュムレータを備える冷凍サイクル装置よりも、冷媒を蒸発させる熱交換部である室外熱交換器18における冷媒の吸熱量を増加させることができる。その結果、室内凝縮器12における冷媒の放熱量を増加させて、室内凝縮器12における空気の加熱能力を向上させることができる。 According to this, it is possible to increase the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 18, which is a heat exchange unit that evaporates the refrigerant, as compared with a refrigeration cycle device having an accumulator as a liquid storage unit. As a result, the amount of heat released from the refrigerant in the indoor condenser 12 can be increased, and the heating capacity of air in the indoor condenser 12 can be improved.
 従って、暖房モードの冷凍サイクル装置10では、サイクルの成績係数を向上させることができる。 Therefore, in the refrigeration cycle device 10 in the heating mode, the coefficient of performance of the cycle can be improved.
 ここで、アキュムレータは、冷媒を蒸発させる熱交換部の冷媒出口側から圧縮機の吸入側へ至る冷媒流路に配置されて、サイクル内の余剰冷媒を液相冷媒として蓄える低圧側の貯液部である。冷媒を蒸発させる熱交換部における冷媒の吸熱量は、冷媒を蒸発させる熱交換部の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算したエンタルピ差で定義される。 Here, the accumulator is arranged in the refrigerant flow path from the refrigerant outlet side of the heat exchange unit that evaporates the refrigerant to the suction side of the compressor, and the liquid storage unit on the low pressure side that stores excess refrigerant in the cycle as a liquid phase refrigerant. Is. The amount of heat absorbed by the refrigerant in the heat exchange section that evaporates the refrigerant is defined by the enthalpy difference obtained by subtracting the enthalpy of the inlet side refrigerant from the enthalpy of the outlet side refrigerant of the heat exchange section that evaporates the refrigerant.
 本実施形態の冷凍サイクル装置10では、冷房モードで説明したように、第2回路に切り替えた際に、第1電気式膨張弁16bにて減圧させた冷媒を室内蒸発器19にて蒸発させることができる。この際、室外熱交換器18にて凝縮させた高圧の液相冷媒を余剰冷媒としてレシーバ15に蓄えることができる。従って、室内蒸発器19の出口側冷媒に過熱度を持たせることができる。 In the refrigeration cycle apparatus 10 of the present embodiment, as described in the cooling mode, when the second circuit is switched, the refrigerant decompressed by the first electric expansion valve 16b is evaporated by the indoor evaporator 19. Can be done. At this time, the high-pressure liquid-phase refrigerant condensed by the outdoor heat exchanger 18 can be stored in the receiver 15 as a surplus refrigerant. Therefore, the outlet-side refrigerant of the indoor evaporator 19 can have a degree of superheat.
 これによれば、貯液部としてアキュムレータを備える冷凍サイクル装置よりも、室内蒸発器19における冷媒の吸熱量を増加させることができる。その結果、室内蒸発器19における空気の冷却能力を向上させることができる。 According to this, the amount of heat absorbed by the refrigerant in the indoor evaporator 19 can be increased as compared with the refrigeration cycle device provided with an accumulator as the liquid storage unit. As a result, the cooling capacity of the air in the indoor evaporator 19 can be improved.
 従って、冷房モードの冷凍サイクル装置10では、サイクルの成績係数を向上させることができる。 Therefore, in the refrigeration cycle device 10 in the cooling mode, the coefficient of performance of the cycle can be improved.
 本実施形態の冷凍サイクル装置10では、除湿暖房モードで説明したように、第3回路に切り替えた際には、第1電気式膨張弁16bにて減圧させた冷媒を室内蒸発器19にて蒸発させることができる。第1電気式膨張弁16bにて減圧させた冷媒を室内蒸発器19にて蒸発させることができる。この際、室内凝縮器12にて凝縮させた高圧の液相冷媒を余剰冷媒としてレシーバ15に蓄えることができる。従って、室外熱交換器18の出口側冷媒および室内蒸発器19の出口側冷媒の双方に過熱度を持たせることができる。 In the refrigeration cycle device 10 of the present embodiment, as described in the dehumidification / heating mode, when the circuit is switched to the third circuit, the refrigerant decompressed by the first electric expansion valve 16b is evaporated by the indoor evaporator 19. Can be made to. The refrigerant decompressed by the first electric expansion valve 16b can be evaporated by the indoor evaporator 19. At this time, the high-pressure liquid-phase refrigerant condensed by the indoor condenser 12 can be stored in the receiver 15 as a surplus refrigerant. Therefore, both the outlet-side refrigerant of the outdoor heat exchanger 18 and the outlet-side refrigerant of the indoor evaporator 19 can have a degree of superheat.
 これによれば、貯液部としてアキュムレータを備える冷凍サイクル装置よりも、冷媒を蒸発させる熱交換部である室外熱交換器18における冷媒の吸熱量を増加させることができる。その結果、室内凝縮器12における冷媒の放熱量を増加させて、室内凝縮器12における空気の加熱能力を向上させることができる。 According to this, it is possible to increase the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 18, which is a heat exchange unit that evaporates the refrigerant, as compared with a refrigeration cycle device having an accumulator as a liquid storage unit. As a result, the amount of heat released from the refrigerant in the indoor condenser 12 can be increased, and the heating capacity of air in the indoor condenser 12 can be improved.
 また、貯液部としてアキュムレータを備える冷凍サイクル装置よりも、室内蒸発器19における冷媒の吸熱量を増加させることができる。その結果、室内蒸発器19における空気の冷却能力を向上させることができる。 Further, the heat absorption amount of the refrigerant in the indoor evaporator 19 can be increased as compared with the refrigeration cycle device provided with an accumulator as the liquid storage unit. As a result, the cooling capacity of the air in the indoor evaporator 19 can be improved.
 従って、除湿暖房モードの冷凍サイクル装置10では、サイクルの成績係数を向上させることができる。つまり、本実施形態の冷凍サイクル装置10によれば、冷媒回路を切替可能に構成されていても、成績係数を向上させることができる。 Therefore, in the refrigeration cycle device 10 in the dehumidification / heating mode, the coefficient of performance of the cycle can be improved. That is, according to the refrigeration cycle device 10 of the present embodiment, the coefficient of performance can be improved even if the refrigerant circuit is configured to be switchable.
 本実施形態では、第1開閉弁14a、第2開閉弁14b、および第1継手13aによって第1切替部22aが構成されている。そして、本実施形態の第1切替部22aは、具体的に、室内凝縮器12から流出した冷媒を、レシーバ15側および第2継手13b側の一方へ導いている。 In the present embodiment, the first switching portion 22a is composed of the first on-off valve 14a, the second on-off valve 14b, and the first joint 13a. Then, the first switching unit 22a of the present embodiment specifically guides the refrigerant flowing out of the indoor condenser 12 to one of the receiver 15 side and the second joint 13b side.
 本実施形態の継手部を構成する第2継手13bは、具体的に、第1継手13aから流出した冷媒およびレシーバ15から流出した冷媒の一方を、暖房用膨張弁16a側へ導いている。 Specifically, the second joint 13b constituting the joint portion of the present embodiment guides one of the refrigerant flowing out from the first joint 13a and the refrigerant flowing out from the receiver 15 to the heating expansion valve 16a side.
 第3開閉弁14c、第3継手13c、および第2逆止弁17bによって第2切替部22bが構成されている。そして、本実施形態の第2切替部22bは、具体的に、室外熱交換器18から流出した冷媒を、圧縮機11の吸入口側およびレシーバ15側の一方へ導いている。 The second switching portion 22b is composed of the third on-off valve 14c, the third joint 13c, and the second check valve 17b. Then, the second switching unit 22b of the present embodiment specifically guides the refrigerant flowing out of the outdoor heat exchanger 18 to one of the suction port side and the receiver 15 side of the compressor 11.
 これによれば、冷媒回路を切り替えても、レシーバ15内の冷媒の流れ方向が変化しない冷凍サイクル装置を容易に実現することができる。従って、冷媒回路を切り替えても、レシーバ15の気液分離性能が変化しにくい。冷媒回路を切り替えても、共通するレシーバ15にサイクル内の余剰冷媒を蓄える冷凍サイクル装置を容易に実現することができる。従って、冷凍サイクル装置10全体としての大型化を抑制することができる。 According to this, it is possible to easily realize a refrigeration cycle device in which the flow direction of the refrigerant in the receiver 15 does not change even if the refrigerant circuit is switched. Therefore, even if the refrigerant circuit is switched, the gas-liquid separation performance of the receiver 15 is unlikely to change. Even if the refrigerant circuit is switched, it is possible to easily realize a refrigeration cycle device that stores excess refrigerant in the cycle in the common receiver 15. Therefore, it is possible to suppress the increase in size of the refrigeration cycle device 10 as a whole.
 本実施形態の冷凍サイクル装置10では、第1固定絞り23aおよび第2固定絞り23bを備えているので、より一層、成績係数を向上させることができる。 Since the refrigeration cycle device 10 of the present embodiment includes the first fixed drawing 23a and the second fixed drawing 23b, the coefficient of performance can be further improved.
 このことを図4を用いて説明する。図4は、暖房モード時の冷凍サイクル装置10における冷媒の状態を示すモリエル線図である。暖房モードでは、室内凝縮器12が、冷媒を凝縮させる熱交換部となり、室外熱交換器18が、冷媒を蒸発させる熱交換部となる。 This will be explained with reference to FIG. FIG. 4 is a Moriel diagram showing the state of the refrigerant in the refrigeration cycle device 10 in the heating mode. In the heating mode, the indoor condenser 12 serves as a heat exchange unit for condensing the refrigerant, and the outdoor heat exchanger 18 serves as a heat exchange unit for evaporating the refrigerant.
 図4では、第1固定絞り23aを備える本実施形態の冷凍サイクル装置10における冷媒の状態の変化を太実線で示している。第1固定絞り23aを備えていない比較例の冷凍サイクル装置における冷媒の状態の変化を細破線で示している。 In FIG. 4, the change in the state of the refrigerant in the refrigerating cycle device 10 of the present embodiment including the first fixed throttle 23a is shown by a thick solid line. The change in the state of the refrigerant in the refrigeration cycle apparatus of the comparative example not provided with the first fixed throttle 23a is shown by a thin broken line.
 図8では、本実施形態の冷凍サイクル装置10におけるレシーバ15内の冷媒の状態を点Lqで示している。図4では、比較例の冷凍サイクル装置におけるレシーバ15内の冷媒の状態を点Lqexで示している。 In FIG. 8, the state of the refrigerant in the receiver 15 in the refrigeration cycle device 10 of the present embodiment is indicated by a point Lq. In FIG. 4, the state of the refrigerant in the receiver 15 in the refrigeration cycle apparatus of the comparative example is shown by a point Lqex.
 本実施形態の冷凍サイクル装置10では、第1固定絞り23aを備えているので、レシーバ15内の冷媒の圧力が、冷媒を凝縮させる熱交換部(暖房モードでは室内凝縮器12)における高圧冷媒の圧力よりも低くなる。このため、図4に示すように、本実施形態の冷凍サイクル装置10の点Lqの冷媒の圧力は、比較例の冷凍サイクル装置の点Lqexの冷媒の圧力よりも低い圧力になる。 Since the refrigeration cycle device 10 of the present embodiment includes the first fixed throttle 23a, the pressure of the refrigerant in the receiver 15 is the pressure of the high-pressure refrigerant in the heat exchange unit (indoor condenser 12 in the heating mode) that condenses the refrigerant. It will be lower than the pressure. Therefore, as shown in FIG. 4, the pressure of the refrigerant at the point Lq of the refrigeration cycle device 10 of the present embodiment is lower than the pressure of the refrigerant at the point Lqex of the refrigeration cycle device of the comparative example.
 モリエル線図の飽和液線の傾きに沿って、本実施形態の冷凍サイクル装置10の点Lqの冷媒のエンタルピは、比較例の冷凍サイクル装置の点Lqexの冷媒のエンタルピよりも低い値となる。このため、本実施形態の冷凍サイクル装置10では、冷媒を凝縮させる熱交換部(暖房モードでは室内凝縮器12)の出口側の冷媒が過冷却液相冷媒SC1となる。 Along the slope of the saturated liquid line in the Moriel diagram, the enthalpy of the refrigerant at the point Lq of the refrigeration cycle apparatus 10 of the present embodiment is lower than the enthalpy of the refrigerant at the point Lqex of the refrigeration cycle apparatus of the comparative example. Therefore, in the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant on the outlet side of the heat exchange unit (indoor condenser 12 in the heating mode) that condenses the refrigerant becomes the supercooled liquid phase refrigerant SC1.
 従って、本実施形態の冷凍サイクル装置10では、比較例の冷凍サイクル装置10よりも、冷媒を蒸発させる熱交換部(暖房モードでは室外熱交換器18)へ流入する冷媒のエンタルピを低下させることができる。その結果、冷媒を蒸発させる熱交換部(暖房モードでは室外熱交換器18)における冷媒の吸熱量を増大させて、成績係数を向上させることができる。 Therefore, in the refrigeration cycle device 10 of the present embodiment, the enthalpy of the refrigerant flowing into the heat exchange unit (outdoor heat exchanger 18 in the heating mode) that evaporates the refrigerant can be lowered as compared with the refrigeration cycle device 10 of the comparative example. it can. As a result, the coefficient of performance can be improved by increasing the amount of heat absorbed by the refrigerant in the heat exchange unit (outdoor heat exchanger 18 in the heating mode) that evaporates the refrigerant.
 この効果は、他の運転モードでも得ることができる。例えば、冷房モードでは、室外熱交換器18が、冷媒を凝縮させる熱交換部となる。室内蒸発器19が、冷媒を蒸発させる熱交換部となる。 This effect can also be obtained in other operation modes. For example, in the cooling mode, the outdoor heat exchanger 18 serves as a heat exchange unit for condensing the refrigerant. The indoor evaporator 19 serves as a heat exchange unit for evaporating the refrigerant.
 本実施形態の冷凍サイクル装置10では、第2固定絞り23bを備えているので、冷房モードでは、レシーバ15内の冷媒の圧力が室外熱交換器18における高圧冷媒の圧力よりも低くなる。このため、冷房モードでは、室外熱交換器18の出口側の冷媒が過冷却液相冷媒となる。 Since the refrigeration cycle device 10 of the present embodiment includes the second fixed throttle 23b, the pressure of the refrigerant in the receiver 15 is lower than the pressure of the high-pressure refrigerant in the outdoor heat exchanger 18 in the cooling mode. Therefore, in the cooling mode, the refrigerant on the outlet side of the outdoor heat exchanger 18 becomes the supercooled liquid phase refrigerant.
 従って、冷房モードでは、比較例の冷凍サイクル装置10よりも室内蒸発器19へ流入する冷媒のエンタルピを低下させることができる。その結果、室内蒸発器19における冷媒の吸熱量を増大させて、成績係数を向上させることができる。 Therefore, in the cooling mode, the enthalpy of the refrigerant flowing into the indoor evaporator 19 can be lowered as compared with the refrigeration cycle device 10 of the comparative example. As a result, the amount of heat absorbed by the refrigerant in the indoor evaporator 19 can be increased, and the coefficient of performance can be improved.
 上述のように、本実施形態の冷凍サイクル装置10では、第2固定絞り23bを備えているので、冷房モードでは、室外熱交換器18の出口側の冷媒が過冷却液相冷媒となる。室外熱交換器18の出口側の冷媒は、第9継手13iにて後席側蒸発器24側に分岐される。そのため、冷房モードにおいて、後席側蒸発器24で空気を冷却するために第4開閉弁14dが開かれている場合、第1機械式膨張弁16dへ流入する冷媒は液相冷媒となる。したがって、第1機械式膨張弁16dに気液二相冷媒が流入することを抑制できる。 As described above, since the refrigerating cycle device 10 of the present embodiment includes the second fixed throttle 23b, the refrigerant on the outlet side of the outdoor heat exchanger 18 becomes the supercooled liquid phase refrigerant in the cooling mode. The refrigerant on the outlet side of the outdoor heat exchanger 18 is branched to the rear seat side evaporator 24 side at the ninth joint 13i. Therefore, in the cooling mode, when the fourth on-off valve 14d is opened to cool the air in the rear seat side evaporator 24, the refrigerant flowing into the first mechanical expansion valve 16d becomes a liquid phase refrigerant. Therefore, it is possible to prevent the gas-liquid two-phase refrigerant from flowing into the first mechanical expansion valve 16d.
 第1機械式膨張弁16dのような機械式膨張弁は、蒸発器出口の冷媒温度を感温し、ダイヤフラム内に封入するガス圧を変化させることで弁体を駆動する構造が内部に包含されている。そのため、機械式膨張弁は、構造的に、電気式膨張弁と比較して最大開口径を大きくすることが難しく、開口径を大きく取りつつ必要な減圧量を確保するために開口部の深さを長く取ることが難しい。そのため、冷媒の減圧が急激に生じる特性が強く、機械式膨張弁に気液二相冷媒が流入すると振動や音が発生しやすくなる。第1機械式膨張弁16dは、後席側蒸発器24とともに車室内中央または後部座席の後ろ側に配置される。そのため、第1機械式膨張弁16dから発生する音は車室内に響きやすい。 A mechanical expansion valve such as the first mechanical expansion valve 16d includes a structure that drives the valve body by sensing the temperature of the refrigerant at the outlet of the evaporator and changing the gas pressure sealed in the diaphragm. ing. Therefore, it is structurally difficult for the mechanical expansion valve to increase the maximum opening diameter as compared with the electric expansion valve, and the depth of the opening is deepened in order to secure the required decompression amount while keeping the opening diameter large. It is difficult to take a long time. Therefore, the characteristic that the depressurization of the refrigerant suddenly occurs is strong, and when the gas-liquid two-phase refrigerant flows into the mechanical expansion valve, vibration and noise are likely to occur. The first mechanical expansion valve 16d is arranged together with the rear seat side evaporator 24 in the center of the vehicle interior or on the rear side of the rear seat. Therefore, the sound generated from the first mechanical expansion valve 16d tends to reverberate in the vehicle interior.
 その点、本実施形態では、第1機械式膨張弁16dに気液二相冷媒が流入することを抑制できるので、第1機械式膨張弁16dにおいて振動や音が発生することを抑制できる。 In that respect, in the present embodiment, since it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the first mechanical expansion valve 16d, it is possible to suppress the generation of vibration and sound in the first mechanical expansion valve 16d.
 本実施形態では、制御装置50は、後席側蒸発器24で空気を冷却するために第4開閉弁14dが開かれている場合において、圧縮機11の回転数が所定回転数以下になった場合、第1機械式膨張弁16dへ流入する冷媒の過冷却度が所定値以下となったと判断して第4開閉弁14dを閉じる。 In the present embodiment, in the control device 50, when the fourth on-off valve 14d is opened to cool the air in the rear seat side evaporator 24, the rotation speed of the compressor 11 becomes equal to or less than the predetermined rotation speed. In this case, it is determined that the degree of supercooling of the refrigerant flowing into the first mechanical expansion valve 16d is equal to or less than a predetermined value, and the fourth on-off valve 14d is closed.
 これにより、第1機械式膨張弁16dへ流入する冷媒の過冷却度が所定値以下となって第1機械式膨張弁16dへ流入する冷媒が気液二相冷媒になるおそれがある場合、第1機械式膨張弁16dへの冷媒の流入が遮断されるので、第1機械式膨張弁16dに気液二相冷媒が流入することを抑制できる。第1機械式膨張弁16dへの冷媒の流入が遮断されても、第4開閉弁14dと合流部13hとの間に残存する冷媒が合流部13hから吸い出されることによって、しばらくの間は冷房性能を維持できる。 As a result, when the degree of supercooling of the refrigerant flowing into the first mechanical expansion valve 16d becomes equal to or less than a predetermined value and the refrigerant flowing into the first mechanical expansion valve 16d may become a gas-liquid two-phase refrigerant, the first Since the inflow of the refrigerant into the 1 mechanical expansion valve 16d is blocked, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the first mechanical expansion valve 16d. Even if the inflow of the refrigerant into the first mechanical expansion valve 16d is cut off, the refrigerant remaining between the fourth on-off valve 14d and the merging portion 13h is sucked out from the merging portion 13h, so that the air conditioner is cooled for a while. Performance can be maintained.
 本実施形態では、冷房モード、暖房モードおよび除湿暖房モードのいずれにおいても、分岐通路21eには、液相冷媒が流れる、または溜まることとなる。そのため、運転モード毎の要求冷媒量の差を小さく抑えることができるので、各運転モードでの作動を安定化できるとともに、運転モード毎の要求冷媒量の差を吸収するためのレシーバ15の容積を小さく抑えることができる。 In the present embodiment, the liquid phase refrigerant flows or accumulates in the branch passage 21e in any of the cooling mode, the heating mode, and the dehumidifying heating mode. Therefore, since the difference in the required refrigerant amount for each operation mode can be suppressed to a small size, the operation in each operation mode can be stabilized, and the volume of the receiver 15 for absorbing the difference in the required refrigerant amount for each operation mode can be increased. It can be kept small.
 本実施形態では、室外熱交換器18から流出した冷媒の流れを第9継手13iにて第1固定絞り23a側と第1機械式膨張弁16d側とに分岐させ、第1機械式膨張弁16dにて減圧された冷媒を後席側蒸発器24にて蒸発させる。 In the present embodiment, the flow of the refrigerant flowing out of the outdoor heat exchanger 18 is branched to the first fixed throttle 23a side and the first mechanical expansion valve 16d side by the ninth joint 13i, and the first mechanical expansion valve 16d The refrigerant decompressed in the above is evaporated by the rear seat side evaporator 24.
 これによると、図4を用いて説明したように、第1固定絞り23aおよび第1機械式膨張弁16dの減圧作用によって、第9継手13iにおける冷媒を過冷却液相冷媒とすることができる。したがって、第1機械式膨張弁16dへ流入する冷媒を過冷却液相冷媒とすることができるので、第1機械式膨張弁16dに気液二相冷媒が流入することを抑制できる。 According to this, as described with reference to FIG. 4, the refrigerant in the ninth joint 13i can be used as the supercooled liquid phase refrigerant by the depressurizing action of the first fixed throttle 23a and the first mechanical expansion valve 16d. Therefore, since the refrigerant flowing into the first mechanical expansion valve 16d can be used as the supercooling liquid phase refrigerant, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the first mechanical expansion valve 16d.
 本実施形態では、第9継手13iで分岐されて第1機械式膨張弁16dおよび後席側蒸発器24を流れる冷媒の流れを第4開閉弁14dにて遮断できる。これにより、後席側蒸発器24を使用する状態と使用しない状態とを切り替えることができる。 In the present embodiment, the flow of the refrigerant branched by the ninth joint 13i and flowing through the first mechanical expansion valve 16d and the rear seat side evaporator 24 can be blocked by the fourth on-off valve 14d. This makes it possible to switch between a state in which the rear seat side evaporator 24 is used and a state in which the rear seat side evaporator 24 is not used.
 第4開閉弁14dは、第1機械式膨張弁16dと一体化されていてもよい。これにより、構成を簡素化できる。 The fourth on-off valve 14d may be integrated with the first mechanical expansion valve 16d. As a result, the configuration can be simplified.
 制御装置50は、第1機械式膨張弁16dへ流入する冷媒の過冷却度が所定値以下となった場合、冷媒の流れを遮断するように第4開閉弁14dを制御する。 The control device 50 controls the fourth on-off valve 14d so as to shut off the flow of the refrigerant when the degree of supercooling of the refrigerant flowing into the first mechanical expansion valve 16d becomes a predetermined value or less.
 これにより、第1固定絞り23aおよび第1機械式膨張弁16dの減圧作用を利用しても第9継手13iにおける冷媒を過冷却液相冷媒とすることが困難となった場合に、第1機械式膨張弁16dに気液二相冷媒が流入することを抑制できる。 As a result, when it becomes difficult to use the refrigerant in the ninth joint 13i as the supercooled liquid phase refrigerant even by utilizing the depressurizing action of the first fixed throttle 23a and the first mechanical expansion valve 16d, the first machine It is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the expansion valve 16d.
 制御装置50は、圧縮機11の冷媒吐出能力が所定能力以下になった場合(換言すれば、圧縮機11の回転数が所定回転数以下になった場合)、過冷却度が所定値以下となったと判定する。これにより、第1機械式膨張弁16dへ流入する冷媒の過冷却度が所定値以下となったか否かを容易に判定できる。 When the refrigerant discharge capacity of the compressor 11 is equal to or less than a predetermined capacity (in other words, when the rotation speed of the compressor 11 is equal to or less than a predetermined rotation speed), the control device 50 sets the degree of supercooling to a predetermined value or less. Judge that it has become. Thereby, it can be easily determined whether or not the degree of supercooling of the refrigerant flowing into the first mechanical expansion valve 16d is equal to or less than a predetermined value.
 第1機械式膨張弁16dは、冷媒の温度および圧力に応じて変形する感温部と、感温部の変形に応じて変位して絞り開度を変化させる機械的機構とを有する膨張弁である。 The first mechanical expansion valve 16d is an expansion valve having a temperature-sensitive portion that deforms according to the temperature and pressure of the refrigerant and a mechanical mechanism that displaces according to the deformation of the temperature-sensitive portion to change the throttle opening. is there.
 上述のように、本実施形態では第1機械式膨張弁16dに液相冷媒が流入することから、第1機械式膨張弁16dで冷媒が膨張する際の振動や音の発生を抑制できる。すなわち、後席側蒸発器24に流入する冷媒を減圧する減圧部として電気式膨張弁を用いなくとも、冷媒が膨張する際の振動や音の発生を抑制できる。したがって、後席側蒸発器24に流入する冷媒を減圧する減圧部として電気式膨張弁を用いる場合と比較して、過熱度を検知するセンサ、電気式膨張弁へ電力を供給する電気ハーネス類、および制御装置50におけるセンサとの入出力ポートやソフトウェア等が不要となる。その結果、冷凍サイクル装置10全体の構成を簡素化できる。 As described above, in the present embodiment, since the liquid phase refrigerant flows into the first mechanical expansion valve 16d, it is possible to suppress the generation of vibration and sound when the refrigerant expands in the first mechanical expansion valve 16d. That is, even if an electric expansion valve is not used as a pressure reducing unit for reducing the pressure of the refrigerant flowing into the rear seat side evaporator 24, it is possible to suppress the generation of vibration and sound when the refrigerant expands. Therefore, as compared with the case where an electric expansion valve is used as a pressure reducing unit for reducing the pressure of the refrigerant flowing into the rear seat side evaporator 24, a sensor for detecting the degree of overheating, electric harnesses for supplying electric power to the electric expansion valve, and the like. In addition, the input / output port for the sensor in the control device 50, software, and the like are not required. As a result, the configuration of the entire refrigeration cycle apparatus 10 can be simplified.
 本実施形態では、第1電気式膨張弁16bおよび第2電気式膨張弁16cは、冷媒の温度および圧力とは無関係に絞り開度を変更可能な膨張弁である。 In the present embodiment, the first electric expansion valve 16b and the second electric expansion valve 16c are expansion valves whose throttle opening degree can be changed regardless of the temperature and pressure of the refrigerant.
 これによると、第1電気式膨張弁16bおよび第2電気式膨張弁16cは、機械式膨張弁と比較して絞り径を大きくすることが可能であることから、第1電気式膨張弁16bおよび第2電気式膨張弁16cに気液二相冷媒が流入しても、第1電気式膨張弁16bおよび第2電気式膨張弁16cでの振動や音の発生を抑制できる。 According to this, since the first electric expansion valve 16b and the second electric expansion valve 16c can have a larger throttle diameter than the mechanical expansion valve, the first electric expansion valve 16b and Even if the gas-liquid two-phase refrigerant flows into the second electric expansion valve 16c, it is possible to suppress the generation of vibration and sound in the first electric expansion valve 16b and the second electric expansion valve 16c.
 本実施形態では、第1機械式膨張弁16dで減圧された冷媒を後席側蒸発器24にて蒸発させる冷凍サイクル装置において、第1機械式膨張弁16dでの振動や音の発生を抑制できる。 In the present embodiment, in the refrigeration cycle device that evaporates the refrigerant decompressed by the first mechanical expansion valve 16d by the rear seat side evaporator 24, it is possible to suppress the generation of vibration and sound in the first mechanical expansion valve 16d. ..
 (第2実施形態)
 本実施形態では、図5に示すように、バッテリ用チラー20と後席側蒸発器24の配置を逆にしている。すなわち、分岐通路21eにおいて第1機械式膨張弁16dの出口側にバッテリ用チラー20が配置されており、第2電気式膨張弁16cの出口側に後席側蒸発器24が配置されている。
(Second Embodiment)
In this embodiment, as shown in FIG. 5, the arrangement of the battery chiller 20 and the rear seat side evaporator 24 is reversed. That is, in the branch passage 21e, the battery chiller 20 is arranged on the outlet side of the first mechanical expansion valve 16d, and the rear seat side evaporator 24 is arranged on the outlet side of the second electric expansion valve 16c.
 バッテリ用チラー20でバッテリ冷却水を冷却する運転モード(具体的には、冷却モード)では、制御装置50が第4開閉弁14dを開き、バッテリ用チラー20でバッテリ冷却水を冷却しない運転モードでは、制御装置50が第4開閉弁14dを閉じる。 In the operation mode in which the battery cooling water is cooled by the battery chiller 20 (specifically, the cooling mode), the control device 50 opens the fourth on-off valve 14d, and in the operation mode in which the battery cooling water is not cooled by the battery chiller 20. , The control device 50 closes the fourth on-off valve 14d.
 冷房モードにおいて後席冷房スイッチが投入(ON)されていない場合、制御装置50が第2電気式膨張弁16cを閉じ、後席冷房スイッチが投入(ON)されている場合、制御装置50が第2電気式膨張弁16cを絞り状態とする。これにより、上記第1実施形態と同様の作動を実現できる。 When the rear seat cooling switch is not turned on (ON) in the cooling mode, the control device 50 closes the second electric expansion valve 16c, and when the rear seat cooling switch is turned on (ON), the control device 50 is the first. 2 The electric expansion valve 16c is in the throttled state. Thereby, the same operation as that of the first embodiment can be realized.
 そして、上記第1実施形態と同様に、第1機械式膨張弁16dに液相冷媒を極力流入させることができる。すなわち、第1機械式膨張弁16dに気液二相状態の冷媒が流入することを極力抑制できる。 Then, as in the first embodiment, the liquid phase refrigerant can flow into the first mechanical expansion valve 16d as much as possible. That is, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the first mechanical expansion valve 16d as much as possible.
 冷却モードは、空調用の運転モードのうち冷房モードおよび除湿暖房モードと並行して実行することができる。暖房モード時に冷却モードを実行する必要がある場合は、空調用の運転モードを強制的に除湿暖房モードに切り替えればよい。 The cooling mode can be executed in parallel with the cooling mode and the dehumidifying / heating mode among the operation modes for air conditioning. If it is necessary to execute the cooling mode in the heating mode, the operation mode for air conditioning may be forcibly switched to the dehumidifying heating mode.
 本実施形態では、第1機械式膨張弁16dで減圧された冷媒をバッテリ用チラー20にて蒸発させる冷凍サイクル装置において、第1機械式膨張弁16dでの振動や音の発生を抑制できる。 In the present embodiment, in the refrigeration cycle device that evaporates the refrigerant decompressed by the first mechanical expansion valve 16d with the battery chiller 20, it is possible to suppress the generation of vibration and sound at the first mechanical expansion valve 16d.
 (第3実施形態)
 上記第1実施形態では、レシーバ15から流出した冷媒が、バッテリ用チラー20に流入するが、本実施形態では、図6に示すように、レシーバ15をバイパスして流れた冷媒が、バッテリ用チラー20に流入する。
(Third Embodiment)
In the first embodiment, the refrigerant flowing out of the receiver 15 flows into the battery chiller 20, but in the present embodiment, as shown in FIG. 6, the refrigerant flowing by bypassing the receiver 15 is the battery chiller. Inflow to 20.
 第9継手13iの他方の流出口には、第10継手13jの流入口側が接続されている。第10継手13jの基本的構成は、第1継手13aと同様である。 The inlet side of the 10th joint 13j is connected to the other outlet of the 9th joint 13i. The basic configuration of the tenth joint 13j is the same as that of the first joint 13a.
 第10継手13jの一方の流出口には、第4開閉弁14dおよび第1機械式膨張弁16dを介して、後席側蒸発器24の冷媒入口側が接続されている。後席側蒸発器24の冷媒出口には、第8継手13hの他方の流入口が接続されている。 The refrigerant inlet side of the rear seat side evaporator 24 is connected to one outlet of the 10th joint 13j via a fourth on-off valve 14d and a first mechanical expansion valve 16d. The other inflow port of the eighth joint 13h is connected to the refrigerant outlet of the rear seat side evaporator 24.
 第10継手13jの他方の流出口には、第5開閉弁14eおよび第2機械式膨張弁16eを介して、バッテリ用チラー20の冷媒入口側が接続されている。バッテリ用チラー20の冷媒出口には、第4継手13dの第3の流入口が接続されている。 The refrigerant inlet side of the battery chiller 20 is connected to the other outlet of the 10th joint 13j via a fifth on-off valve 14e and a second mechanical expansion valve 16e. A third inflow port of the fourth joint 13d is connected to the refrigerant outlet of the battery chiller 20.
 第5開閉弁14eの基本的構成は、第1開閉弁14aと同様である。第5開閉弁14eは、第10継手13jの他方の流出口から第4継手13dの第3の流入口へ至る分岐通路21fを開閉する電磁弁である。第2機械式膨張弁16eの基本的構成は、第1機械式膨張弁16dと同様である。第2機械式膨張弁16eの感温部は、バッテリ用チラー20の出口側冷媒の温度および圧力に応じて変形する変形部材(具体的には、ダイヤフラム)を有している。第2機械式膨張弁16eは第3減圧部である。 The basic configuration of the fifth on-off valve 14e is the same as that of the first on-off valve 14a. The fifth on-off valve 14e is a solenoid valve that opens and closes a branch passage 21f from the other outlet of the tenth joint 13j to the third inflow port of the fourth joint 13d. The basic configuration of the second mechanical expansion valve 16e is the same as that of the first mechanical expansion valve 16d. The temperature-sensitive portion of the second mechanical expansion valve 16e has a deforming member (specifically, a diaphragm) that deforms according to the temperature and pressure of the outlet-side refrigerant of the battery chiller 20. The second mechanical expansion valve 16e is a third pressure reducing unit.
 バッテリ用チラー20でバッテリ冷却水を冷却する運転モード(具体的には、冷却モード)では、制御装置50が第5開閉弁14eを開き、バッテリ用チラー20でバッテリ冷却水を冷却しない運転モードでは、制御装置50が第5開閉弁14eを閉じる。これにより、上記第1実施形態と同様の作動を実現できる。 In the operation mode in which the battery cooling water is cooled by the battery chiller 20 (specifically, the cooling mode), the control device 50 opens the fifth on-off valve 14e, and in the operation mode in which the battery cooling water is not cooled by the battery chiller 20. , The control device 50 closes the fifth on-off valve 14e. Thereby, the same operation as that of the first embodiment can be realized.
 そして、第2機械式膨張弁16eに液相冷媒を極力流入させることができる。すなわち、第2機械式膨張弁16eに気液二相状態の冷媒が流入することを極力抑制できるので、第2機械式膨張弁16eでの振動や音の発生を抑制できる。 Then, the liquid phase refrigerant can flow into the second mechanical expansion valve 16e as much as possible. That is, since it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the second mechanical expansion valve 16e as much as possible, it is possible to suppress the generation of vibration and sound in the second mechanical expansion valve 16e.
 (第4実施形態)
 上記第2実施形態では、冷凍サイクル装置10はバッテリ用チラー20を備えているが、本実施形態では、図7に示すように、冷凍サイクル装置10はバッテリ用チラー20に加えて廃熱回収用チラー25を備えている。
(Fourth Embodiment)
In the second embodiment, the refrigeration cycle device 10 includes a battery chiller 20, but in the present embodiment, as shown in FIG. 7, the refrigeration cycle device 10 is for waste heat recovery in addition to the battery chiller 20. It is equipped with a chiller 25.
 第1継手13aの一方の流出口には、第1開閉弁14aを介して、第11継手13kの流入口側が接続されている。第11継手13kの基本的構成は、第1継手13aと同様である。 The inflow port side of the 11th joint 13k is connected to one of the outflow ports of the first joint 13a via the first on-off valve 14a. The basic configuration of the eleventh joint 13k is the same as that of the first joint 13a.
 第11継手13kの一方の流出口には、第1固定絞り23aが接続されている。第11継手13kの他方の流出口には、第6開閉弁14fおよび第3機械式膨張弁16fを介して、廃熱回収用チラー25の冷媒入口側が接続されている。廃熱回収用チラー25の冷媒出口には、第12継手13lの一方の流入口が接続されている。第12継手13lの他方の流入口は、バッテリ用チラー20の冷媒出口側に接続されている。第12継手13lの流出口は、第8継手13hの他方の流入口に接続されている。 The first fixed throttle 23a is connected to one of the outlets of the 11th joint 13k. The refrigerant inlet side of the waste heat recovery chiller 25 is connected to the other outlet of the 11th joint 13k via the sixth on-off valve 14f and the third mechanical expansion valve 16f. One inflow port of the 12th joint 13l is connected to the refrigerant outlet of the waste heat recovery chiller 25. The other inflow port of the 12th joint 13l is connected to the refrigerant outlet side of the battery chiller 20. The outlet of the 12th joint 13l is connected to the other inlet of the 8th joint 13h.
 第6開閉弁14fの基本的構成は、第1開閉弁14aと同様である。第6開閉弁14fは、第11継手13kの他方の流出口から第12継手13lの一方の流入口へ至る分岐通路21gを開閉する電磁弁である。第3機械式膨張弁16fの基本的構成は、第1機械式膨張弁16dと同様である。第3機械式膨張弁16fの感温部は、廃熱回収用チラー25の出口側冷媒の温度および圧力に応じて変形する変形部材(具体的には、ダイヤフラム)を有している。第3機械式膨張弁16fは第3減圧部である。 The basic configuration of the sixth on-off valve 14f is the same as that of the first on-off valve 14a. The sixth on-off valve 14f is a solenoid valve that opens and closes a branch passage 21g from the other outlet of the 11th joint 13k to the one inlet of the 12th joint 13l. The basic configuration of the third mechanical expansion valve 16f is the same as that of the first mechanical expansion valve 16d. The temperature-sensitive portion of the third mechanical expansion valve 16f has a deforming member (specifically, a diaphragm) that deforms according to the temperature and pressure of the outlet-side refrigerant of the waste heat recovery chiller 25. The third mechanical expansion valve 16f is a third pressure reducing unit.
 廃熱回収用チラー25は、第3機械式膨張弁16fにて減圧された低圧冷媒と、廃熱回収用冷却水回路37の冷却水(以下、廃熱回収用冷却水と言う。)とを熱交換させて、低圧冷媒を蒸発させる蒸発部である。廃熱回収用チラー25における冷媒の吸熱作用によって、廃熱回収用冷却水が冷却される。廃熱回収用チラー25は、車両に搭載された機器を冷却する冷却用蒸発器であると同時に、機器の冷却により回収される温熱を吸熱源とするヒートポンプ式暖房用の吸熱用蒸発器でもある。 The waste heat recovery chiller 25 contains a low-pressure refrigerant decompressed by the third mechanical expansion valve 16f and cooling water of the waste heat recovery cooling water circuit 37 (hereinafter referred to as waste heat recovery cooling water). It is an evaporative part that exchanges heat to evaporate the low-pressure refrigerant. The waste heat recovery cooling water is cooled by the endothermic action of the refrigerant in the waste heat recovery chiller 25. The waste heat recovery chiller 25 is a cooling evaporator that cools the equipment mounted on the vehicle, and at the same time, is also an endothermic evaporator for heat pump type heating that uses the heat recovered by cooling the equipment as a heat absorption source. ..
 廃熱回収用冷却水回路37は、廃熱回収用冷却水を循環させる熱媒体回路である。廃熱回収用冷却水は、インバータ等の車載機器38の廃熱を吸熱して回収する熱媒体である。車載機器38は、作動に伴って発熱する機器である。 The waste heat recovery cooling water circuit 37 is a heat medium circuit that circulates the waste heat recovery cooling water. The waste heat recovery cooling water is a heat medium that absorbs and recovers the waste heat of the in-vehicle device 38 such as an inverter. The in-vehicle device 38 is a device that generates heat as it operates.
 廃熱回収用冷却水回路37には廃熱回収用冷却水ポンプ39および廃熱回収用冷却水通路38aが配置されている。廃熱回収用冷却水ポンプ39は、バッテリ30から供給された電力によって廃熱回収用冷却水を吸入して吐出する電動ポンプである。 A waste heat recovery cooling water pump 39 and a waste heat recovery cooling water passage 38a are arranged in the waste heat recovery cooling water circuit 37. The waste heat recovery cooling water pump 39 is an electric pump that sucks and discharges the waste heat recovery cooling water by the electric power supplied from the battery 30.
 暖房モードでは、制御装置50が第6開閉弁14fを開く。これにより、暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、第1固定絞り23a、レシーバ15、暖房用膨張弁16a、室外熱交換器18、圧縮機11の吸入口の順に循環する第1回路に切り替えられるとともに、圧縮機11から吐出された冷媒が、室内凝縮器12、第3機械式膨張弁16f、廃熱回収用チラー25、圧縮機11の吸入口の順に循環する回路が構成される。 In the heating mode, the control device 50 opens the sixth on-off valve 14f. As a result, in the refrigerating cycle device 10 in the heating mode, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the first fixed throttle 23a, the receiver 15, the heating expansion valve 16a, the outdoor heat exchanger 18, and the compressor. The refrigerant is switched to the first circuit that circulates in the order of the suction port of 11, and the refrigerant discharged from the compressor 11 is the indoor condenser 12, the third mechanical expansion valve 16f, the waste heat recovery chiller 25, and the compressor 11. A circuit that circulates in the order of the suction port is configured.
 これにより、車載機器38の廃熱を廃熱回収用チラー25で吸熱し、暖房の熱源として利用できる。 As a result, the waste heat of the in-vehicle device 38 can be absorbed by the waste heat recovery chiller 25 and used as a heat source for heating.
 除湿暖房モードでも、制御装置50が第6開閉弁14fを開く。これにより、暖房モードと同様に、圧縮機11から吐出された冷媒が、室内凝縮器12、第3機械式膨張弁16f、廃熱回収用チラー25、圧縮機11の吸入口の順に循環する回路が構成されるので、
 これにより、車載機器38の廃熱を廃熱回収用チラー25で吸熱し、暖房の熱源として利用できる。
Even in the dehumidifying / heating mode, the control device 50 opens the sixth on-off valve 14f. As a result, as in the heating mode, the refrigerant discharged from the compressor 11 circulates in the order of the indoor condenser 12, the third mechanical expansion valve 16f, the waste heat recovery chiller 25, and the suction port of the compressor 11. Is composed of
As a result, the waste heat of the in-vehicle device 38 can be absorbed by the waste heat recovery chiller 25 and used as a heat source for heating.
 本実施形態では、室内凝縮器12から流出した冷媒の流れを第11継手13kにて第1固定絞り23a側と第3機械式膨張弁16f側とに分岐させ、第3機械式膨張弁16fにて減圧された冷媒を廃熱回収用チラー25にて蒸発させる。 In the present embodiment, the flow of the refrigerant flowing out of the indoor condenser 12 is branched to the first fixed throttle 23a side and the third mechanical expansion valve 16f side by the eleventh joint 13k, and becomes the third mechanical expansion valve 16f. The reduced pressure refrigerant is evaporated in the waste heat recovery chiller 25.
 これによると、上記第1実施形態での図4を用いた説明と同様の理由により、第1固定絞り23aおよび第3機械式膨張弁16fの減圧作用によって、第11継手13kにおける冷媒を過冷却液相冷媒とすることができる。したがって、第3機械式膨張弁16fへ流入する冷媒を過冷却液相冷媒とすることができるので、第3機械式膨張弁16fに気液二相冷媒が流入することを抑制できる。その結果、第3機械式膨張弁16fでの振動や音の発生を抑制できる。 According to this, for the same reason as described with reference to FIG. 4 in the first embodiment, the refrigerant in the eleventh joint 13k is supercooled by the depressurizing action of the first fixed throttle 23a and the third mechanical expansion valve 16f. It can be a liquid phase refrigerant. Therefore, since the refrigerant flowing into the third mechanical expansion valve 16f can be used as the supercooling liquid phase refrigerant, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the third mechanical expansion valve 16f. As a result, it is possible to suppress the generation of vibration and sound in the third mechanical expansion valve 16f.
 (第5実施形態)
 上記第4実施形態では、第11継手13kは、第1継手13aの一方の流出口側かつ第1固定絞り23aの入口側に配置されているが、本実施形態では、図8に示すように、第11継手13kは、室内凝縮器12の冷媒出口側かつ第1継手13aの流入口側に配置されている。これにより、上記第4実施形態と同様の作動を実現できる。
(Fifth Embodiment)
In the fourth embodiment, the eleventh joint 13k is arranged on one outlet side of the first joint 13a and on the inlet side of the first fixed throttle 23a, but in the present embodiment, as shown in FIG. The eleventh joint 13k is arranged on the refrigerant outlet side of the indoor condenser 12 and on the inflow port side of the first joint 13a. As a result, the same operation as that of the fourth embodiment can be realized.
 そして、上記第4実施形態と同様に、第3機械式膨張弁16fに液相冷媒を極力流入させることができる。 Then, as in the fourth embodiment, the liquid phase refrigerant can flow into the third mechanical expansion valve 16f as much as possible.
 すなわち、本実施形態では、室内凝縮器12から流出した冷媒の流れを第11継手13kにて第1固定絞り23a側と第3機械式膨張弁16f側とに分岐させ、第3機械式膨張弁16fにて減圧された冷媒を廃熱回収用チラー25にて蒸発させる。 That is, in the present embodiment, the flow of the refrigerant flowing out of the indoor condenser 12 is branched to the first fixed throttle 23a side and the third mechanical expansion valve 16f side by the eleventh joint 13k, and the third mechanical expansion valve The refrigerant decompressed at 16f is evaporated by the waste heat recovery chiller 25.
 これによると、上記第4実施形態と同様に、第1固定絞り23aおよび第3機械式膨張弁16fの減圧作用によって、第11継手13kにおける冷媒を過冷却液相冷媒とすることができる。したがって、第3機械式膨張弁16fへ流入する冷媒を過冷却液相冷媒とすることができるので、第3機械式膨張弁16fに気液二相冷媒が流入することを抑制できる。その結果、第3機械式膨張弁16fでの振動や音の発生を抑制できる。 According to this, as in the fourth embodiment, the refrigerant in the eleventh joint 13k can be used as the supercooled liquid phase refrigerant by the depressurizing action of the first fixed throttle 23a and the third mechanical expansion valve 16f. Therefore, since the refrigerant flowing into the third mechanical expansion valve 16f can be used as the supercooling liquid phase refrigerant, it is possible to suppress the inflow of the gas-liquid two-phase refrigerant into the third mechanical expansion valve 16f. As a result, it is possible to suppress the generation of vibration and sound in the third mechanical expansion valve 16f.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、冷凍サイクル装置10を、車載機器冷却機能付きの空調装置に適用した例を説明したが、冷凍サイクル装置10の適用はこれに限定されない。車両用に限定されることなく、定置型の空調装置等に適用してもよい。例えば、サーバとして機能するコンピュータを冷却するとともに、サーバが収容される室内の空調を行うサーバ温度調整機能付きの空調装置等に適用してもよい。 In the above-described embodiment, an example in which the refrigeration cycle device 10 is applied to an air conditioner having an in-vehicle device cooling function has been described, but the application of the refrigeration cycle device 10 is not limited to this. The application is not limited to vehicles, and may be applied to stationary air conditioners and the like. For example, it may be applied to an air conditioner having a server temperature control function that cools a computer that functions as a server and air-conditions a room in which the server is housed.
 上述の実施形態では、車載機器としてバッテリ30を採用した例を説明したが、これに限定されない。例えば、モータジェネレータ、電力制御ユニット(いわゆる、PCU)、先進運転支援システム(いわゆる、ADAS)用の制御装置等のように作動時に発熱する車載機器を採用すればよい。 In the above-described embodiment, an example in which the battery 30 is adopted as the in-vehicle device has been described, but the present invention is not limited to this. For example, an in-vehicle device that generates heat during operation, such as a motor generator, a power control unit (so-called PCU), and a control device for an advanced driver assistance system (so-called ADAS), may be adopted.
 冷凍サイクル装置10を、車載機器等の冷却機能を有していない空調装置に適用してもよい。この場合は、第7継手13g、第2電気式膨張弁16c、第8継手13hを廃止すればよい。 The refrigeration cycle device 10 may be applied to an air conditioner that does not have a cooling function, such as an in-vehicle device. In this case, the 7th joint 13g, the 2nd electric expansion valve 16c, and the 8th joint 13h may be abolished.
 冷凍サイクル装置10の各構成機器は、上述の実施形態に開示されたものに限定されない。 Each component device of the refrigeration cycle device 10 is not limited to the one disclosed in the above-described embodiment.
 例えば、上述の実施形態では、高圧冷媒を熱源として空気を加熱する加熱部として室内凝縮器12を採用した例を説明したが、これに限定されない。例えば、高温側熱媒体を循環させる高温側熱媒体回路に、高温側水ポンプ、熱媒体冷媒熱交換器、ヒータコア等を配置して加熱部を形成してもよい。 For example, in the above-described embodiment, an example in which the indoor condenser 12 is used as a heating unit for heating air using a high-pressure refrigerant as a heat source has been described, but the present invention is not limited to this. For example, a high-temperature side water pump, a heat medium refrigerant heat exchanger, a heater core, or the like may be arranged in the high-temperature side heat medium circuit that circulates the high-temperature side heat medium to form a heating portion.
 熱媒体冷媒熱交換器は、圧縮機11から吐出された高圧冷媒と高温側熱媒体とを熱交換させて、高圧冷媒を放熱させる放熱部である。高温側水ポンプは、高温側熱媒体回路を循環する高温側熱媒体を熱媒体冷媒熱交換器へ圧送する電動ポンプである。高温側水ポンプは、制御装置50から出力される制御信号によって、回転数(すなわち、水圧送能力)が制御される。ヒータコアは、熱媒体冷媒熱交換器にて加熱された熱媒体と空気とを熱交換させて、空気を加熱する熱交換部である。 The heat medium refrigerant heat exchanger is a heat radiating unit that dissipates heat by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the high-temperature side heat medium. The high-temperature side water pump is an electric pump that pumps the high-temperature side heat medium circulating in the high-temperature side heat medium circuit to the heat medium refrigerant heat exchanger. The rotation speed (that is, the water pressure feeding capacity) of the high temperature side water pump is controlled by a control signal output from the control device 50. The heater core is a heat exchange unit that heats the air by exchanging heat between the heat medium heated by the heat medium refrigerant heat exchanger and the air.
 上述の実施形態では、バッテリ用チラー20で冷却されたバッテリ冷却水でバッテリ30を冷却する例を説明したが、冷凍サイクル装置10の低圧冷媒で冷却された空気でバッテリ30を冷却してもよい。冷凍サイクル装置10の低圧冷媒とバッテリ30とを熱交換させる直冷式のバッテリ冷却部を採用してもよい。 In the above-described embodiment, the example in which the battery 30 is cooled by the battery cooling water cooled by the battery chiller 20 has been described, but the battery 30 may be cooled by the air cooled by the low-pressure refrigerant of the refrigeration cycle device 10. .. A direct cooling type battery cooling unit that exchanges heat between the low-pressure refrigerant of the refrigeration cycle device 10 and the battery 30 may be adopted.
 バッテリ冷却水回路31の冷却水、および廃熱回収用冷却水回路37の冷却水としては、エチレングリコール、ジメチルポリシロキサン、ナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液媒体を採用することができる。バッテリ冷却水回路31の冷却水、および廃熱回収用冷却水回路37の冷却水の代わりに、オイル等を含む液媒体等を採用してもい。 As the cooling water of the battery cooling water circuit 31 and the cooling water of the waste heat recovery cooling water circuit 37, a solution containing ethylene glycol, dimethylpolysiloxane, nanofluid, etc., an antifreeze solution, an aqueous liquid medium containing alcohol, etc. is adopted. can do. Instead of the cooling water of the battery cooling water circuit 31 and the cooling water of the waste heat recovery cooling water circuit 37, a liquid medium containing oil or the like may be used.
 第1固定絞り23aおよび第2固定絞り23bの代わりに可変絞りが設けられていてもよい。例えば、可変絞りとして、電気的に開度を調整できる電気式膨張弁を用いることで、室内凝縮器12および室外熱交換器18での冷媒の過冷却度が最適になるように冷凍サイクル装置10の運転状況に合わせて開度調整することができるので、圧縮機11をより省電力で運転することが可能になる。 A variable diaphragm may be provided instead of the first fixed diaphragm 23a and the second fixed diaphragm 23b. For example, by using an electric expansion valve whose opening degree can be electrically adjusted as a variable throttle, the refrigeration cycle device 10 is used so that the degree of supercooling of the refrigerant in the indoor condenser 12 and the outdoor heat exchanger 18 is optimized. Since the opening degree can be adjusted according to the operating condition of the compressor 11, the compressor 11 can be operated with more power saving.
 上述の実施形態で説明した冷凍サイクル装置10に対して、室内蒸発器19の冷媒出口と第8継手13hの一方の流入口との間に蒸発圧力調整弁を追加してもよい。蒸発圧力調整弁は、その上流側の冷媒圧力を予め定めた基準圧力以上に維持する圧力調整弁である。つまり、冷凍サイクル装置10に対して、室内蒸発器19における冷媒蒸発圧力を、基準圧力以上に維持する蒸発圧力調整弁を追加してもよい。 An evaporation pressure adjusting valve may be added between the refrigerant outlet of the indoor evaporator 19 and one inflow port of the eighth joint 13h to the refrigeration cycle apparatus 10 described in the above-described embodiment. The evaporation pressure regulating valve is a pressure regulating valve that maintains the refrigerant pressure on the upstream side thereof at a predetermined reference pressure or higher. That is, an evaporation pressure adjusting valve for maintaining the refrigerant evaporation pressure in the indoor evaporator 19 at a reference pressure or higher may be added to the refrigeration cycle apparatus 10.
 このような蒸発圧力調整弁としては、室内蒸発器19の出口側冷媒の圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構を採用することができる。これによれば、室内蒸発器19における冷媒蒸発温度を0℃よりも高い温度に維持することができ、室内蒸発器19の着霜を抑制することができる。 As such an evaporation pressure adjusting valve, a mechanical variable throttle mechanism that increases the valve opening degree as the pressure of the refrigerant on the outlet side of the indoor evaporator 19 increases can be adopted. According to this, the refrigerant evaporation temperature in the indoor evaporator 19 can be maintained at a temperature higher than 0 ° C., and frost formation in the indoor evaporator 19 can be suppressed.
 上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、R290等を採用してもよい。または、これらのうち複数の冷媒を混合させた混合冷媒等を採用してもよい。 In the above-described embodiment, an example in which R1234yf is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, R290 and the like may be adopted. Alternatively, a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
 上述の第1実施形態において、第1機械式膨張弁16dに第4開閉弁14dと同様の作動をさせてもよい。具体的には、第4開閉弁14dを全閉する代わりに、後席送風機36を停止させることによって、後席側蒸発器24における冷媒の流れを実質的に遮断してもよい。すなわち、後席送風機36を停止させることによって、後席側蒸発器24の出口側冷媒の温度および圧力を上昇させて、第1機械式膨張弁16dの絞り開度を著しく減少させてもよい。 In the first embodiment described above, the first mechanical expansion valve 16d may be operated in the same manner as the fourth on-off valve 14d. Specifically, instead of fully closing the fourth on-off valve 14d, the rear seat blower 36 may be stopped to substantially shut off the flow of the refrigerant in the rear seat side evaporator 24. That is, by stopping the rear seat blower 36, the temperature and pressure of the outlet side refrigerant of the rear seat side evaporator 24 may be increased, and the throttle opening degree of the first mechanical expansion valve 16d may be significantly reduced.
 上記実施形態では、車室内へ吹き出す空気を室内凝縮器12にて圧縮機11から吐出された高圧冷媒で直接加熱するが、車室内へ吹き出す空気を、高温冷却水を介して、圧縮機11から吐出された高圧冷媒で加熱してもよい。 In the above embodiment, the air blown into the vehicle interior is directly heated by the indoor condenser 12 with the high-pressure refrigerant discharged from the compressor 11, but the air blown into the vehicle interior is heated from the compressor 11 via the high-temperature cooling water. It may be heated with the discharged high-pressure refrigerant.
 すなわち、室内凝縮器12の代わりに、圧縮機11から吐出された高圧冷媒と高温冷却水とを熱交換させて高圧冷媒を放熱かつ凝縮させるとともに高温冷却水を加熱する冷却水加熱器と、冷却水加熱器で加熱された高温冷却水と車室内へ吹き出す空気と熱交換させるヒータコアとを備えていてもよい。 That is, instead of the indoor condenser 12, a cooling water heater that heats the high-temperature cooling water while radiating and condensing the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the high-temperature cooling water, and cooling. A heater core that exchanges heat with the high-temperature cooling water heated by the water heater and the air blown into the vehicle interior may be provided.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (10)

  1.  冷媒を圧縮する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を凝縮させる凝縮部(12、18)と、
     前記凝縮部から流出した冷媒の流れを分岐する分岐部(13i、13j、13k)と、
     前記分岐部にて分岐された一方の冷媒を減圧させる第1減圧部(23a、23b)と、
     前記第1減圧部にて減圧された冷媒の気液を分離するレシーバ(15)と、
     前記レシーバから流出した液相冷媒を減圧させる第2減圧部(16b、16c)と、
     前記第2減圧部にて減圧された冷媒を蒸発させる第1蒸発部(19、20、24)と、
     前記分岐部にて分岐された他方の冷媒を減圧させる第3減圧部(16d、16e、16f)と、
     前記第3減圧部にて減圧された冷媒を蒸発させる第2蒸発部(24、20、25)と、を備える冷凍サイクル装置。
    A compressor (11) that compresses the refrigerant,
    Condensing parts (12, 18) that condense the refrigerant discharged from the compressor,
    Branching portions (13i, 13j, 13k) that branch the flow of the refrigerant flowing out of the condensing portion, and
    The first decompression section (23a, 23b) that decompresses one of the refrigerants branched at the branch section, and
    A receiver (15) that separates the gas and liquid of the refrigerant decompressed by the first decompression unit, and
    The second decompression section (16b, 16c) for depressurizing the liquid phase refrigerant flowing out of the receiver, and
    The first evaporation section (19, 20, 24) that evaporates the refrigerant decompressed by the second decompression section, and
    A third decompression unit (16d, 16e, 16f) that depressurizes the other refrigerant branched at the branch portion, and
    A refrigeration cycle apparatus including a second evaporation unit (24, 20, 25) for evaporating the refrigerant decompressed by the third decompression unit.
  2.  前記分岐部で分岐されて前記第3減圧部および前記第2蒸発部を流れる前記冷媒の流れを遮断することのできる遮断部(14d、14e、14f)を備える請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, further comprising a blocking section (14d, 14e, 14f) capable of blocking the flow of the refrigerant that is branched at the branching section and flows through the third decompression section and the second evaporation section. ..
  3.  前記遮断部は、前記第3減圧部と一体化されている請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the blocking unit is integrated with the third decompression unit.
  4.  前記第3減圧部へ流入する冷媒の過冷却度が所定値以下となった場合、冷媒の流れを遮断するように前記遮断部を制御する制御部(50)を備える請求項2または3に記載の冷凍サイクル装置。 The second or third aspect of the present invention, which comprises a control unit (50) that controls the blocking unit so as to block the flow of the refrigerant when the degree of supercooling of the refrigerant flowing into the third decompression unit becomes a predetermined value or less. Refrigerant cycle equipment.
  5.  前記制御部は、前記圧縮機の冷媒吐出能力が所定能力以下になった場合、前記過冷却度が所定値以下となったと判定する請求項4に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 4, wherein the control unit determines that the degree of supercooling is equal to or less than a predetermined value when the refrigerant discharge capacity of the compressor is equal to or less than a predetermined capacity.
  6.  前記第3減圧部は、冷媒の温度および圧力に応じて変形する感温部と、前記感温部の変形に応じて変位して絞り開度を変化させる機械的機構とを有する膨張弁である請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。 The third pressure reducing portion is an expansion valve having a temperature sensitive portion that deforms according to the temperature and pressure of the refrigerant and a mechanical mechanism that displaces according to the deformation of the temperature sensitive portion to change the throttle opening degree. The refrigeration cycle apparatus according to any one of claims 1 to 5.
  7.  前記第2減圧部は、冷媒の温度および圧力とは無関係に絞り開度を変更可能な膨張弁である請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle device according to any one of claims 1 to 5, wherein the second decompression unit is an expansion valve capable of changing the throttle opening degree regardless of the temperature and pressure of the refrigerant.
  8.  車両用空調装置に適用される冷凍サイクル装置であって、
     前記第1蒸発部は、前記第2減圧部にて減圧された冷媒と車室内前席側へ送風される空気とを熱交換させる前席側蒸発器(19)であり、
     前記第2蒸発部は、前記第3減圧部にて減圧された冷媒と車室内後席側へ送風される空気とを熱交換させる後席側蒸発器(24)である請求項1ないし7のいずれか1つに記載の冷凍サイクル装置。
    A refrigeration cycle device applied to vehicle air conditioners.
    The first evaporation unit is a front seat side evaporator (19) that exchanges heat between the refrigerant decompressed by the second decompression unit and the air blown to the front seat side in the vehicle interior.
    The second evaporation unit is a rear seat side evaporator (24) that exchanges heat between the refrigerant decompressed by the third decompression unit and the air blown to the rear seat side in the vehicle interior, according to claims 1 to 7. The refrigeration cycle apparatus according to any one.
  9.  車両に適用される冷凍サイクル装置であって、
     前記第1蒸発部は、前記第2減圧部にて減圧された冷媒と車室内前席側へ送風される空気とを熱交換させる前席側蒸発器(19)であり、
     前記第2蒸発部は、車両に搭載された機器を冷却する冷却用蒸発器(20、25)である請求項1ないし7のいずれか1つに記載の冷凍サイクル装置。
    Refrigeration cycle equipment applied to vehicles
    The first evaporation unit is a front seat side evaporator (19) that exchanges heat between the refrigerant decompressed by the second decompression unit and the air blown to the front seat side in the vehicle interior.
    The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the second evaporation unit is a cooling evaporator (20, 25) for cooling equipment mounted on a vehicle.
  10.  前記第3減圧部にて減圧された冷媒が前記レシーバを通ることなく前記第2蒸発部に流入する請求項1ないし9のいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein the refrigerant decompressed by the third decompression section flows into the second evaporation section without passing through the receiver.
PCT/JP2020/043190 2019-12-26 2020-11-19 Refrigerant cycle device WO2021131437A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080086310.3A CN114793444B (en) 2019-12-26 2020-11-19 Refrigeration cycle device
DE112020006392.5T DE112020006392T5 (en) 2019-12-26 2020-11-19 refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-235648 2019-12-26
JP2019235648A JP7380199B2 (en) 2019-12-26 2019-12-26 Refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
WO2021131437A1 true WO2021131437A1 (en) 2021-07-01

Family

ID=76575343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043190 WO2021131437A1 (en) 2019-12-26 2020-11-19 Refrigerant cycle device

Country Status (4)

Country Link
JP (1) JP7380199B2 (en)
CN (1) CN114793444B (en)
DE (1) DE112020006392T5 (en)
WO (1) WO2021131437A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199702A1 (en) * 2022-04-12 2023-10-19 株式会社デンソー Temperature regulating device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023037282A (en) * 2021-09-03 2023-03-15 株式会社デンソー On-vehicle temperature control device
JP2023138890A (en) * 2022-03-21 2023-10-03 株式会社デンソー Refrigeration cycle device
WO2024024443A1 (en) * 2022-07-26 2024-02-01 株式会社アイシン Manifold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183950A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Refrigeration apparatus and refrigerator
JP2009210137A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Refrigerating cycle unit
JP2011052884A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Refrigerating air conditioner
JP2014024413A (en) * 2012-07-25 2014-02-06 Denso Corp Air conditioner
WO2017068649A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Heat pump system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091071A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Multi-stage compression refrigerating machine
JP4968038B2 (en) 2007-12-14 2012-07-04 株式会社デンソー Air conditioner for vehicles
JP6277888B2 (en) * 2014-06-27 2018-02-14 株式会社デンソー Refrigeration cycle equipment
JP6547781B2 (en) * 2016-06-16 2019-07-24 株式会社デンソー Refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183950A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Refrigeration apparatus and refrigerator
JP2009210137A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Refrigerating cycle unit
JP2011052884A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Refrigerating air conditioner
JP2014024413A (en) * 2012-07-25 2014-02-06 Denso Corp Air conditioner
WO2017068649A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Heat pump system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199702A1 (en) * 2022-04-12 2023-10-19 株式会社デンソー Temperature regulating device

Also Published As

Publication number Publication date
JP2021105457A (en) 2021-07-26
JP7380199B2 (en) 2023-11-15
CN114793444A (en) 2022-07-26
DE112020006392T5 (en) 2022-10-06
CN114793444B (en) 2024-01-02

Similar Documents

Publication Publication Date Title
US20190111756A1 (en) Refrigeration cycle device
JP6794964B2 (en) Refrigeration cycle equipment
WO2021131437A1 (en) Refrigerant cycle device
WO2020203150A1 (en) Refrigeration cycle device
WO2014073151A1 (en) Refrigeration cycle device
WO2014013679A1 (en) Refrigeration cycle device
WO2014171107A1 (en) Refrigeration cycle device
KR102421890B1 (en) refrigeration cycle device
WO2020213537A1 (en) Refrigeration cycle device
JP2020176824A (en) Refrigeration cycle device
CN113423596B (en) Refrigeration cycle device
US20210190389A1 (en) Refrigeration cycle device
WO2022004159A1 (en) Refrigeration cycle device
WO2020050038A1 (en) Refrigeration cycle device
WO2019116781A1 (en) Heating device for vehicles
WO2020050039A1 (en) Refrigeration cycle device
WO2021095338A1 (en) Refrigeration cycle device
WO2022181110A1 (en) Air conditioning device
WO2022038950A1 (en) Refrigeration cycle device
WO2018003352A1 (en) Refrigeration cycle device
WO2023199912A1 (en) Heat pump cycle device
WO2024101061A1 (en) Heat pump cycle device
WO2023248868A1 (en) Heat pump cycle apparatus
WO2024070703A1 (en) Heat pump cycle device
WO2022004158A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908263

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20908263

Country of ref document: EP

Kind code of ref document: A1