WO2020050039A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2020050039A1
WO2020050039A1 PCT/JP2019/032751 JP2019032751W WO2020050039A1 WO 2020050039 A1 WO2020050039 A1 WO 2020050039A1 JP 2019032751 W JP2019032751 W JP 2019032751W WO 2020050039 A1 WO2020050039 A1 WO 2020050039A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling
refrigerant
heat medium
heating
Prior art date
Application number
PCT/JP2019/032751
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 多田
賢吾 杉村
寛幸 小林
祐一 加見
伊藤 誠司
加藤 吉毅
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020050039A1 publication Critical patent/WO2020050039A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • the present disclosure relates to a refrigeration cycle device applied to an air conditioner.
  • Patent Document 1 discloses a vapor compression refrigeration cycle device used for temperature control of a secondary battery which is a temperature control target.
  • the refrigeration cycle device of Patent Document 1 includes a battery heat exchanger for exchanging heat between the secondary battery and the refrigerant.
  • the high-pressure refrigerant discharged from the compressor flows into the battery heat exchanger to heat the secondary battery.
  • the refrigerant circuit is switched so as to reverse the flow direction of the refrigerant circulating in the cycle, and the low-pressure refrigerant flows into the battery heat exchanger to cool the secondary battery.
  • Patent Literature 2 discloses a refrigeration cycle device applied to an air conditioner, which can cool a secondary battery.
  • the refrigeration cycle device of Patent Literature 2 is a heating unit that heats blast air blown to a space to be air-conditioned using a high-pressure refrigerant discharged from a compressor as a heat source, an indoor evaporator that cools blast air by evaporating a low-pressure refrigerant, And a cooling unit for evaporating the low-pressure refrigerant to cool the battery.
  • the heating unit is connected to a water-refrigerant heat exchanger for exchanging heat between the high-pressure refrigerant and the high-temperature side heat medium, a heater core for exchanging heat between the high-temperature side heat medium and the blown air, and heating the blown air.
  • the high-temperature side heat medium circuit is configured.
  • the cooling unit includes a chiller for exchanging heat between the low-pressure refrigerant and the low-temperature side heat medium, and a low-temperature side to which a heat exchange unit for exchanging heat between the low-temperature side heat medium and the secondary battery and cooling the secondary battery is connected. It is composed of a heat medium circuit.
  • the chiller and the indoor evaporator are connected in parallel to the flow of the refrigerant.
  • the output of the secondary battery tends to decrease at low temperatures, and the deterioration easily progresses at high temperatures. For this reason, the temperature of the secondary battery needs to be maintained within an appropriate temperature range in which the charge / discharge capacity of the secondary battery can be sufficiently utilized.
  • the refrigeration cycle device of Patent Document 2 cannot warm up the secondary battery. Therefore, in the refrigeration cycle device of Patent Document 2, there is a possibility that the temperature of the secondary battery cannot be maintained within an appropriate temperature range.
  • the present disclosure provides a refrigeration cycle device that can achieve both appropriate temperature adjustment of blast air blown into a space to be air-conditioned and appropriate temperature adjustment of an object to be temperature adjusted.
  • the purpose is to do.
  • a refrigeration cycle device is a refrigeration cycle device applied to an air conditioner, and includes a compressor, a heating unit, a branch unit, a cooling decompression unit, an indoor evaporator, A cooling pressure reducing unit, a temperature adjusting unit, a second cooling pressure reducing unit, a heat absorbing unit, and a merging unit are provided.
  • the compressor compresses and discharges the refrigerant.
  • the heating unit heats the blown air blown to the air-conditioned space using the refrigerant discharged from the compressor as a heat source.
  • the branch unit branches the flow of the refrigerant flowing out of the heating unit.
  • the cooling decompression unit decompresses one of the refrigerants branched at the branching unit.
  • the indoor evaporator evaporates the refrigerant depressurized by the cooling decompression unit, and cools the air blown to the air-conditioned space.
  • the first cooling decompression section decompresses the other refrigerant branched at the branch section.
  • the temperature adjustment unit adjusts the temperature of the temperature adjustment target using the refrigerant flowing out of the first cooling decompression unit.
  • the second cooling decompression unit decompresses the refrigerant flowing out of the temperature adjustment unit.
  • the heat absorbing section cools the heat absorbing target by the refrigerant flowing out of the second cooling pressure reducing section.
  • the joining portion joins the flow of the refrigerant flowing out of the indoor evaporator and the flow of the refrigerant flowing out of the heat absorbing portion, and flows out to the suction port side of the compressor.
  • the cooling decompression unit In the heating temperature control mode, in which the heating unit heats the blown air and adjusts the temperature of the temperature adjustment target with the temperature adjustment unit, the cooling decompression unit is closed, and the first cooling decompression unit and the second cooling decompression unit are used. In a throttle state that exerts a refrigerant pressure reducing action. In the cooling temperature control mode in which the air blown by the indoor evaporator is cooled and the temperature of the temperature adjustment target is adjusted by the temperature adjustment unit, the cooling decompression unit, the first cooling decompression unit, and the second cooling decompression unit are operated. This is a refrigeration cycle device that is in a throttle state that exerts a refrigerant pressure reducing action.
  • the refrigerant depressurized by the cooling decompression unit can be evaporated by the indoor evaporator to cool the blown air. That is, cooling of the space to be air-conditioned can be performed.
  • the refrigerant discharged from the compressor is radiated by the heating unit to heat the blown air. That is, it is possible to heat the space to be air-conditioned.
  • the temperature of the refrigerant flowing into the temperature adjustment unit is changed by changing the throttle opening of the first cooling pressure reducing unit and the throttle opening of the second cooling pressure reducing unit. Can be changed. Then, cooling or heating of the temperature adjustment target can be performed. That is, appropriate temperature adjustment of the temperature adjustment target can be performed.
  • the refrigeration cycle device of one embodiment of the present disclosure it is possible to provide a refrigeration cycle device that can achieve both appropriate temperature adjustment of the blown air and appropriate temperature adjustment of the temperature adjustment target. .
  • FIG. 1 is an overall configuration diagram of a vehicle air conditioner according to a first embodiment. It is a block diagram which shows the electric control part of the vehicle air conditioner of 1st Embodiment.
  • FIG. 4 is a Mollier chart showing a change in the state of the refrigerant in a cooling mode of the refrigeration cycle device of the first embodiment.
  • FIG. 4 is a Mollier chart showing a change in a state of a refrigerant in a heating / cooling mode of the refrigeration cycle device of the first embodiment.
  • FIG. 4 is a Mollier chart showing a change in a state of a refrigerant in a heating and warming-up mode of the refrigeration cycle device of the first embodiment.
  • the refrigeration cycle device 10 is applied to a vehicle air conditioner 1 mounted on an electric vehicle that obtains a driving force for traveling from an electric motor.
  • the vehicle air conditioner 1 has a function of performing air conditioning of the vehicle interior, which is a space to be air-conditioned, and a function of adjusting the temperature of the battery 80.
  • the vehicle air conditioner 1 can also be called a vehicle air conditioner with a battery temperature adjustment function.
  • the battery 80 is a secondary battery that stores power supplied to on-vehicle devices such as an electric motor.
  • the battery 80 of the present embodiment is a lithium ion battery.
  • the battery 80 is a so-called assembled battery formed by stacking a plurality of battery cells 81 and electrically connecting these battery cells 81 in series or in parallel.
  • the temperature of the battery 80 is adjusted by the refrigeration cycle device 10 while adjusting the temperature of the blast air blown into the vehicle interior, which is the space to be air-conditioned. Therefore, in the refrigeration cycle device 10 of the present embodiment, the temperature adjustment target different from the blast air is the battery 80.
  • pre-air conditioning that starts air conditioning in the vehicle compartment before the occupant enters the vehicle can be performed. Have been.
  • the vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioning unit 30, a high-temperature side heat medium circuit 40, a temperature adjustment side heat medium circuit 50, a heat absorption side heat medium circuit 60, and the like. It has.
  • the refrigeration cycle device 10 is configured to be able to switch the refrigerant circuit according to the operation mode in order to adjust the temperature of the blown air and the temperature of the battery 80.
  • an HFO-based refrigerant (specifically, R1234yf) is employed as a refrigerant, and a vapor compression subcritical fluid in which the pressure of the refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Constructs a refrigeration cycle. Further, a refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Part of the refrigerating machine oil circulates through the cycle together with the refrigerant.
  • the compressor 11 sucks, compresses, and discharges the refrigerant in the refrigeration cycle device 10.
  • the compressor 11 is disposed in front of a vehicle compartment and is disposed in a drive device compartment in which a traveling electric motor and the like are accommodated.
  • the compressor 11 is an electric compressor in which a fixed displacement compression mechanism having a fixed discharge capacity is rotationally driven by an electric motor.
  • the rotation speed (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from a control device 70 described later.
  • the inlet of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the outlet of the compressor 11.
  • the water-refrigerant heat exchanger 12 has a refrigerant passage through which the high-pressure refrigerant discharged from the compressor 11 flows, and a water passage through which the high-temperature heat medium circulating in the high-temperature heat medium circuit 40 flows.
  • the water-refrigerant heat exchanger 12 is a heat exchange section that heat-exchanges the high-pressure refrigerant flowing through the refrigerant passage and the high-temperature heat medium flowing through the water passage to heat the high-temperature heat medium.
  • the outlet of the coolant passage of the water-refrigerant heat exchanger 12 is connected to the inlet of a first three-way joint 13a having three inflow ports that communicate with each other.
  • a three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • An inlet of the cooling expansion valve 14a is connected to one of the outlets of the first three-way joint 13a.
  • An inlet side of the first cooling expansion valve 14b is connected to the other outlet of the first three-way joint 13a.
  • the cooling expansion valve 14a depressurizes the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate (mass flow rate) of the refrigerant flowing downstream at least in the operation mode of cooling the blown air. This is a cooling decompression unit.
  • the cooling expansion valve 14a is configured to include a valve body configured to change the degree of opening of a throttle and an electric actuator (specifically, a stepping motor) that changes the degree of opening of the valve body. This is a variable aperture mechanism.
  • the operation of the cooling expansion valve 14a is controlled by a control signal (control pulse) output from the control device 70. Further, the refrigeration cycle device 10 includes a first cooling expansion valve 14b and a second cooling expansion valve 14c, as described later.
  • the basic configuration of the first cooling expansion valve 14b and the second cooling expansion valve 14c is the same as that of the cooling expansion valve 14a.
  • the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c function as mere refrigerant passages with little or no refrigerant depressurizing action and flow rate adjusting action by fully opening the valve opening. It has a fully open function. Further, the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c have a fully closed function of closing the refrigerant passage by fully closing the valve opening.
  • the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c can switch the refrigerant circuit. Therefore, the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c also have a function as a refrigerant circuit switching unit.
  • the refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the cooling expansion valve 14a.
  • the indoor evaporator 18 is arranged in an air-conditioning case 31 of an indoor air-conditioning unit 30 described later.
  • the indoor evaporator 18 blows air by exchanging heat between the low-pressure refrigerant depressurized by the cooling expansion valve 14a and the blast air blown from the blower 32 to evaporate the low-pressure refrigerant and exerting an endothermic effect on the low-pressure refrigerant.
  • This is a heat exchange unit that cools air.
  • One inlet side of the second three-way joint 13b is connected to the refrigerant outlet of the indoor evaporator 18.
  • the basic configuration of the second three-way joint 13b is the same as that of the first three-way joint 13a.
  • the first cooling expansion valve 14b is a first cooling pressure reducing unit that reduces the pressure of the refrigerant flowing out of the water-refrigerant heat exchanger 12 and adjusts the flow rate of the refrigerant flowing downstream.
  • the outlet of the first cooling expansion valve 14b is connected to the inlet side of the refrigerant passage of the first chiller 19a.
  • the first chiller 19a has a refrigerant passage through which the refrigerant flowing out of the first cooling expansion valve 14b flows, and a water passage through which the temperature adjustment side heat medium circulating through the temperature adjustment side heat medium circuit 50 flows.
  • the first chiller 19a is a heat exchange unit that exchanges heat between the refrigerant flowing through the refrigerant passage and the temperature adjustment-side heat medium flowing through the water passage to adjust the temperature of the temperature adjustment-side heat medium.
  • the first chiller 19a functions as a condensing unit that condenses the refrigerant.
  • the refrigerant functions as an evaporating unit for evaporating the refrigerant.
  • the outlet side of the refrigerant passage of the first chiller 19a is connected to the inlet side of the second cooling expansion valve 14c.
  • the second cooling expansion valve 14c is a second cooling pressure reducing unit that reduces the pressure of the refrigerant flowing out of the refrigerant passage of the first chiller 19a and adjusts the flow rate of the refrigerant flowing downstream.
  • the inlet of the refrigerant passage of the second chiller 19b is connected to the outlet of the second cooling expansion valve 14c.
  • the basic configuration of the second chiller 19b is the same as that of the first chiller 19a.
  • the second chiller 19b exchanges heat between the low-pressure refrigerant flowing through the refrigerant passage and the heat-absorbing heat medium flowing through the water passage to evaporate the low-pressure refrigerant, and causes the low-pressure refrigerant to exhibit an endothermic effect, thereby forming a heat-absorbing heat medium.
  • This is a heat exchange unit for cooling.
  • the other inlet side of the second three-way joint 13b is connected to the outlet of the refrigerant passage of the second chiller 19b.
  • the outlet side of the second three-way joint 13b is connected to the inlet side of the evaporation pressure regulating valve 20.
  • the evaporation pressure adjusting valve 20 has a function of maintaining the refrigerant evaporation pressure in the indoor evaporator 18 at or above a predetermined reference pressure in order to suppress frost formation on the indoor evaporator 18.
  • the evaporating pressure adjusting valve 20 is configured by a mechanical variable throttle mechanism that increases the valve opening as the pressure of the refrigerant on the outlet side of the indoor evaporator 18 increases.
  • the evaporation pressure regulating valve 20 maintains the refrigerant evaporation temperature in the indoor evaporator 18 at a frost formation suppression temperature (1 ° C. in the present embodiment) capable of suppressing frost formation on the indoor evaporator 18. . Further, the evaporating pressure regulating valve 20 is arranged downstream of the second three-way joint 13b in the refrigerant flow. For this reason, the evaporation pressure regulating valve 20 also maintains the refrigerant evaporation temperature in the second chiller 19b at a temperature equal to or higher than the frost formation suppression temperature.
  • the outlet of the evaporating pressure regulating valve 20 is connected to the inlet of the accumulator 21.
  • the accumulator 21 is a gas-liquid separator that separates the gas-liquid of the refrigerant flowing into the inside and stores the surplus liquid-phase refrigerant in the cycle.
  • the suction side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 21.
  • the first three-way joint 13a is a branch portion that branches the flow of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the second three-way joint 13 b is a junction where the flow of the refrigerant flowing out of the indoor evaporator 18 and the flow of the refrigerant flowing out of the second chiller 19 b are merged and flow out to the suction side of the compressor 11.
  • the high-temperature-side heat medium circuit 40 is a heat medium circulation circuit that circulates the high-temperature-side heat medium.
  • the high-temperature side heat medium ethylene glycol, dimethylpolysiloxane, a solution containing a nanofluid, or the like, an antifreeze, or the like can be used.
  • the high-temperature heat medium circuit 40 includes a water passage of the water-refrigerant heat exchanger 12, a high-temperature heat medium pump 41, a heater core 42, a high-temperature three-way valve 43, a high-temperature radiator 44, and the like.
  • the high-temperature heat medium pump 41 is a water pump for pumping the high-temperature heat medium to the inlet side of the water passage of the water-refrigerant heat exchanger 12.
  • the high-temperature side heat medium pump 41 is an electric pump whose rotation speed (that is, pumping capacity) is controlled by a control voltage output from the control device 70.
  • the outlet of the water passage of the water-refrigerant heat exchanger 12 is connected to the heat medium inlet side of the heater core 42.
  • the heater core 42 is a heat exchanger that heats the blown air by exchanging heat between the high-temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the blown air that has passed through the indoor evaporator 18.
  • the heater core 42 is arranged inside the air conditioning case 31 of the indoor air conditioning unit 30.
  • the heat medium outlet of the heater core 42 is connected to the inlet side of the high temperature side three-way valve 43.
  • the high temperature side three-way valve 43 is an electric three-way flow control valve having one inlet and two outlets and capable of continuously adjusting the passage area ratio of the two outlets. The operation of the high-temperature side three-way valve 43 is controlled by a control signal output from the control device 70.
  • the heat medium inlet side of the high-temperature radiator 44 is connected to one outlet of the high-temperature three-way valve 43.
  • the suction port side of the high-temperature side heat medium pump 41 is connected to the other outlet of the high-temperature side three-way valve 43. Accordingly, the high-temperature side three-way valve 43 determines the flow rate of the high-temperature side heat medium flowing out of the heater core 42 into the high-temperature side radiator 44 and the flow rate of the high-temperature side heat medium pump 41 bypassing the high-temperature side radiator 44 and sucking into the high-temperature side heat medium pump 41. Performs the function of adjusting the flow ratio.
  • the high-temperature radiator 44 is a heat exchanger that exchanges heat between the high-temperature heat medium flowing out of the heater core 42 and the outside air blown by an outside air fan (not shown), and radiates heat of the high-temperature heat medium to the outside air.
  • the high-temperature side radiator 44 is disposed on the front side in the drive device chamber. Therefore, when the vehicle is traveling, the traveling wind can be applied to the high-temperature side radiator 44.
  • the heat medium outlet of the high temperature radiator 44 is connected to the suction port side of the high temperature heat medium pump 41.
  • the control device 70 operates the high-temperature side heat medium pump 41, so that the refrigerant discharged from the compressor 11 in the water-refrigerant heat exchanger 12 and the high-temperature side heat medium are separated.
  • the high-temperature side heat medium can be heated by heat exchange.
  • the heater core 42 the high-temperature side heat medium heated in the water-refrigerant heat exchanger 12 and the blown air can be heat-exchanged to heat the blown air.
  • each component of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 40 constitutes a heating unit that heats the blown air using the refrigerant discharged from the compressor 11 as a heat source. I have.
  • the temperature adjustment-side heat medium circuit 50 is a heat medium circulation circuit that circulates the temperature adjustment-side heat medium.
  • the same fluid as the high-temperature-side heat medium can be used as the temperature-adjustment-side heat medium.
  • a water passage of the first chiller 19a, a temperature adjustment-side heat medium pump 51, a temperature adjustment heat exchange section 52, and the like are arranged.
  • the temperature adjustment-side heat medium pump 51 is a water pump that pumps the temperature adjustment-side heat medium to the inlet side of the water passage of the first chiller 19a.
  • the basic configuration of the temperature adjustment side heat medium pump 51 is the same as that of the high temperature side heat medium pump 41.
  • the inlet side of the temperature adjusting heat exchange unit 52 is connected to the outlet of the water passage of the first chiller 19a.
  • the temperature-adjusting heat exchanging section 52 has a plurality of heat medium passages formed by metal plates arranged to be in contact with a plurality of battery cells 81 forming the battery 80.
  • the heat exchange unit is a heat exchange unit that adjusts the temperature of the battery 80 by exchanging heat between the battery cell 81 and the temperature control heat medium flowing through the heat medium flow path.
  • a temperature-adjusting heat exchange unit 52 a unit in which a heat medium flow path is arranged between the battery cells 81 arranged in a stack may be adopted. Further, the temperature-adjusting heat exchange section 52 may be formed integrally with the battery 80.
  • the battery case may be formed integrally with the battery 80 by providing a heat medium flow path in a dedicated case for accommodating the stacked battery cells 81.
  • the outlet of the temperature control heat exchange unit 52 is connected to the suction port side of the temperature control-side heat medium pump 51.
  • the controller 70 operates the temperature-adjustment-side heat medium pump 51, so that the refrigerant flowing out of the first cooling expansion valve 14b in the first chiller 19a and the temperature adjustment-side heat Heat can be exchanged with the medium. Thereby, the temperature of the temperature adjustment-side heat medium can be adjusted. Further, in the temperature-adjusting heat exchanging section 52, the temperature of the battery 80 can be adjusted by exchanging heat between the temperature-adjusted heat medium whose temperature has been adjusted and the battery 80.
  • the respective components of the first chiller 19a and the temperature adjustment-side heat medium circuit 50 constitute a temperature adjustment unit that adjusts the temperature of the battery 80 by the refrigerant flowing out of the first cooling expansion valve 14b. ing.
  • the temperature adjustment-side heat medium is a temperature adjustment-side heat medium
  • the temperature adjustment-side heat medium circuit 50 is a temperature adjustment-side heat medium circuit that circulates the temperature adjustment-side heat medium.
  • the heat absorption side heat medium circuit 60 is a heat medium circulation circuit that circulates the heat absorption side heat medium.
  • the heat absorbing side heat medium the same fluid as the high temperature side heat medium can be adopted.
  • the heat absorption side heat medium circuit 60 includes a water passage of the second chiller 19 b, a heat absorption side heat medium pump 61, a cooling water passage formed in a vehicle-mounted device 82 that generates heat during operation, a heat absorption side three-way valve 63, a heat absorption side radiator 64, and the like. Is arranged.
  • the heat absorption side heat medium pump 61 is a water pump that pumps the heat absorption side heat medium to the inlet side of the water passage of the second chiller 19b.
  • the basic configuration of the temperature adjustment side heat medium pump 51 is the same as that of the high temperature side heat medium pump 41.
  • the outlet side of the water passage of the second chiller 19b is connected to the inlet side of the cooling water passage of the vehicle-mounted device 82.
  • the on-vehicle device 82 is a heat-absorbing target that causes the refrigerant of the refrigeration cycle device 10 to absorb heat generated during operation.
  • an electric motor that outputs driving force for traveling
  • an inverter that converts the frequency of electric power supplied to the electric motor
  • a charger that charges the battery 80 with electric power, and the like can be used. .
  • the inlet of the heat-absorbing three-way valve 63 is connected to the inlet of the cooling water passage of the vehicle-mounted device 82.
  • the basic configuration of the heat absorption side three-way valve 63 is the same as that of the high temperature side three-way valve 43.
  • the heat medium inlet side of the heat absorbing radiator 64 is connected to one outlet of the heat absorbing side three-way valve 63.
  • the other outlet of the three-way valve 63 on the heat absorption side is connected to the suction port side of the heat medium pump 61 on the heat absorption side.
  • the heat-absorbing side three-way valve 63 supplies the heat-absorbing-side heat medium pump 61 to the heat-absorbing-side heat medium pump 61 by bypassing the heat-absorbing-side radiator 64 and the flow rate of the heat-absorbing-side heat medium flowing out of the cooling water passage of the vehicle-mounted device 82. It has the function of adjusting the flow ratio with the flow to be sucked.
  • the heat-absorbing radiator 64 exchanges heat between the refrigerant flowing out of the cooling water passage of the on-vehicle equipment 82 and the outside air blown by an outside air fan (not shown), and radiates the heat of the temperature-adjusting heat medium to the outside air. It is.
  • the heat-absorbing radiator 64 is disposed on the front side in the drive device room. Therefore, during traveling of the vehicle, traveling wind can be applied to the heat absorbing radiator 64. Therefore, the heat-absorbing radiator 64 may be formed integrally with the high-temperature radiator 44.
  • the suction medium side of the heat absorption side heat medium pump 61 is connected to the heat medium outlet of the heat absorption side radiator 64.
  • the control device 70 operates the heat absorbing side heat medium pump 61, so that the refrigerant flowing out of the second cooling expansion valve 14c and the heat absorbing side heat medium in the second chiller 19b. Heat is exchanged, and the refrigerant is evaporated to cool the heat absorbing side heat medium. Further, by flowing the cooled heat absorbing side heat medium through the cooling water passage of the vehicle-mounted device 82, the vehicle-mounted device 82 can be cooled.
  • each component of the second chiller 19b and the heat absorbing side heat medium circuit 60 constitutes a heat absorbing portion that evaporates the refrigerant flowing out of the second cooling expansion valve 14c and cools the vehicle-mounted device 82. ing.
  • the indoor air conditioning unit 30 blows out the blast air whose temperature has been adjusted by the refrigeration cycle device 10 into the vehicle interior.
  • the indoor air-conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
  • the indoor air-conditioning unit 30 houses the blower 32, the indoor evaporator 18, the heater core 42, and the like in an air passage formed in an air-conditioning case 31 forming an outer shell.
  • the air-conditioning case 31 forms an air passage for blowing air blown into the vehicle interior.
  • the air-conditioning case 31 has a certain degree of elasticity and is formed of a resin (for example, polypropylene) having excellent strength.
  • An inside / outside air switching device 33 is disposed on the most upstream side of the airflow of the air conditioning case 31. The inside / outside air switching device 33 switches and introduces inside air (vehicle interior air) and outside air (vehicle outside air) into the air conditioning case 31.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, and the inside air introduction air volume and the outside air. Is to change the rate of introduction with the amount of air introduced.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The operation of the electric actuator is controlled by a control signal output from the control device 70.
  • a blower 32 is disposed downstream of the inside / outside air switching device 33 in the blown air flow.
  • the blower 32 blows the air taken in through the inside / outside air switching device 33 toward the vehicle interior.
  • the blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the rotation speed (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the control device 70.
  • the indoor evaporator 18 and the heater core 42 are arranged in this order with respect to the blown air flow. That is, the indoor evaporator 18 is arranged on the upstream side of the flow of the blown air from the heater core 42.
  • a cool air bypass passage 35 is provided in the air conditioning case 31 to allow the air blown after passing through the indoor evaporator 18 to bypass the heater core 42.
  • An air mix door 34 is arranged on the downstream side of the blown air flow of the indoor evaporator 18 in the air conditioning case 31 and on the upstream side of the blown air flow of the heater core 42.
  • the air mix door 34 adjusts a flow rate ratio of a flow rate of the blown air passing through the heater core 42 and a flow rate of the blown air passing through the cool air bypass passage 35 among the blown air after passing through the indoor evaporator 18. Department.
  • the air mix door 34 is driven by an electric actuator for the air mix door. The operation of the electric actuator is controlled by a control signal output from the control device 70.
  • the mixing space is disposed downstream of the air flow of the heater core 42 and the cool air bypass passage 35 in the air conditioning case 31.
  • the mixing space is a space for mixing the blast air heated by the heater core 42 and the blast air that has not passed through the cool air bypass passage 35 and is not heated.
  • an opening hole for blowing out the blast air mixed in the mixing space (that is, the conditioned air) into the vehicle interior, which is a space to be air-conditioned, is arranged downstream of the blast air flow of the air conditioning case 31.
  • the face opening hole is an opening hole for blowing out conditioned air toward the upper body of the occupant in the passenger compartment.
  • the foot opening hole is an opening hole for blowing out conditioned air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing out conditioned air toward the inner surface of the vehicle front window glass.
  • the face opening, the foot opening, and the defroster opening are respectively formed by a face opening, a foot opening, and a defroster opening provided in the vehicle cabin through ducts forming air passages. )It is connected to the.
  • the temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air flow ratio of the air flow passing through the heater core 42 and the air flow passing through the cool air bypass passage 35 by the air mixing door 34. Then, the temperature of the blown air (conditioned air) blown out from each outlet into the vehicle interior is adjusted.
  • Face doors, foot doors, and defroster doors are disposed on the upstream side of the airflow from the face opening, the foot opening, and the defroster opening.
  • the face door adjusts the opening area of the face opening hole.
  • the foot door adjusts the opening area of the foot opening hole.
  • the defroster door adjusts the opening area of the froster opening hole.
  • These face doors, foot doors and defroster doors constitute an outlet mode switching device for switching the outlet mode.
  • These doors are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction therewith. The operation of this electric actuator is also controlled by a control signal output from the control device 70.
  • Specific examples of the outlet mode switched by the outlet mode switching device include a face mode, a bi-level mode, and a foot mode.
  • the face mode is an outlet mode in which the face outlet is fully opened and air is blown from the face outlet toward the upper body of the passenger in the vehicle.
  • the bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened to blow air toward the upper body and feet of the occupant in the vehicle.
  • the foot mode is an outlet mode in which the foot outlet is fully opened, the defroster outlet is opened by a small opening, and air is mainly blown out from the foot outlet.
  • the defroster mode is an outlet mode in which the defroster outlet is fully opened and air is blown from the defroster outlet to the inner surface of the windshield.
  • the control device 70 includes a well-known microcomputer including a CPU, a ROM, a RAM, and the like, and its peripheral circuits. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and various control target devices 11, 14a to 14c, 32, 41, 43, 51, 61, 63 connected to the output side. And the like.
  • an internal air temperature sensor 71 On the input side of the control device 70, as shown in the block diagram of FIG. 2, an internal air temperature sensor 71, an external air temperature sensor 72, a solar radiation sensor 73, first to third refrigerant temperature sensors 74a to 74c, an evaporator temperature.
  • Sensor 74f first and second refrigerant pressure sensors 75a and 75b, high-temperature side heat medium temperature sensor 76a, temperature adjustment side heat medium temperature sensor 76b, heat absorption side heat medium temperature sensor 76c, battery temperature sensor 78, air conditioning air temperature sensor 79 Etc. are connected. Then, the detection signals of these sensor groups are input to the control device 70.
  • the internal air temperature sensor 71 is an internal air temperature detecting unit that detects the vehicle interior temperature (internal air temperature) Tr.
  • the outside air temperature sensor 72 is an outside air temperature detection unit that detects a vehicle outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 73 is a solar radiation amount detecting unit that detects the amount of solar radiation Ts emitted to the vehicle interior.
  • the first refrigerant temperature sensor 74a is a first refrigerant temperature detecting unit that detects the temperature T1 of the refrigerant discharged from the compressor 11.
  • the second refrigerant temperature sensor 74b is a second refrigerant temperature detector that detects the temperature T2 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the third refrigerant temperature sensor 74c is a third refrigerant temperature detector that detects the temperature T3 of the refrigerant flowing out of the refrigerant passage of the second chiller 19b.
  • the evaporator temperature sensor 74f is an evaporator temperature detector that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 18. Specifically, the evaporator temperature sensor 74f of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 18.
  • the first refrigerant pressure sensor 75a is a first refrigerant pressure detecting unit that detects the pressure P1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the second refrigerant pressure sensor 75b is a second refrigerant pressure detector that detects the pressure P2 of the refrigerant flowing out of the refrigerant passage of the second chiller 19b.
  • the high-temperature heat medium temperature sensor 76a detects a high-temperature heat medium temperature TWH that is the temperature of the high-temperature heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 and flowing into the heater core 42. It is a detection unit.
  • the temperature adjustment-side heat medium temperature sensor 76b detects the temperature adjustment-side heat medium temperature TWC1, which is the temperature of the temperature adjustment-side heat medium flowing out of the water passage of the first chiller 19a and flowing into the temperature adjustment heat exchange section 52. It is a temperature adjusting-side heat medium temperature detecting section.
  • the heat absorption side heat medium temperature sensor 76c detects the heat absorption side heat medium temperature TWC2 which is the temperature of the heat absorption side heat medium flowing out of the water passage of the second chiller 19b and flowing into the cooling water passage of the vehicle-mounted device 82. It is a medium temperature detecting unit.
  • the battery temperature sensor 78 is a battery temperature detection unit that detects the battery temperature TB that is the temperature of the battery 80.
  • the battery temperature sensor 78 of the present embodiment has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 80. Therefore, the control device 70 can also detect the temperature difference between the components of the battery 80. Further, as the battery temperature TB, an average value of detection values of a plurality of temperature sensors is employed.
  • the air-conditioning air temperature sensor 79 is an air-conditioning air temperature detecting unit that detects the temperature of the air blown from the mixing space into the vehicle compartment TAV.
  • An input panel of the control device 70 is connected to an operation panel 701 disposed near the instrument panel in the front of the vehicle compartment, and receives operation signals from various operation switches provided on the operation panel 701.
  • Various operation switches provided on the operation panel 701 include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, a blowout mode switching switch, and the like.
  • the auto switch is an operation unit for setting or canceling the automatic air-conditioning operation.
  • the air conditioner switch is an operation unit for requesting that the blown air be cooled by the indoor evaporator 18.
  • the air volume setting switch is an operation unit for manually setting the air volume of the blower 32.
  • the temperature setting switch is an operation unit for setting a set temperature Tset in the vehicle compartment.
  • the blowing mode changeover switch is an operation unit for manually setting the blowing mode.
  • the control device 70 is configured such that a control unit that controls various control target devices connected to the output side is integrally formed. Therefore, the configuration (hardware and software) that controls the operation of each control target device constitutes a control unit that controls the operation of each control target device.
  • the configuration that controls the refrigerant discharge capacity of the compressor 11 constitutes the compressor control unit 70a.
  • the configuration for controlling the operations of the cooling expansion valve 14a, the first cooling expansion valve 14b, the second cooling expansion valve 14c, and the like constitutes a pressure reducing unit control unit 70b.
  • the vehicle air conditioner 1 has a function of performing air conditioning of the vehicle interior and a function of adjusting the temperature of the battery 80. Therefore, in the refrigeration cycle apparatus 10, the refrigerant circuit is switched to switch between operation modes such as a cooling temperature control mode, a heating temperature control mode, a single cooling mode, a single warming mode, a single cooling mode, and a single heating mode.
  • operation modes such as a cooling temperature control mode, a heating temperature control mode, a single cooling mode, a single warming mode, a single cooling mode, and a single heating mode.
  • the cooling temperature control mode is an operation mode in which the blast air is cooled in order to perform cooling in the vehicle compartment and the temperature of the battery 80 is adjusted.
  • the cooling temperature control mode includes a cooling cooling mode for cooling the blast air and cooling the battery 80, and a cooling warming mode for cooling the blast air and heating the battery 80 to warm it up.
  • the heating temperature control mode is an operation mode in which the blast air is heated to heat the vehicle interior and the temperature of the battery 80 is adjusted.
  • the heating temperature control mode includes a heating / cooling mode in which the blast air is heated and the battery 80 is cooled, and a heating and warming mode in which the blast air is heated and the battery 80 is heated to warm up.
  • the single cooling mode is an operation mode in which the battery 80 is cooled without adjusting the temperature of the blown air.
  • the single warm-up mode is an operation mode in which the battery 80 is heated and warmed up without adjusting the temperature of the blown air.
  • the single cooling mode is an operation mode in which the blown air is cooled in order to perform cooling in the vehicle compartment without adjusting the temperature of the battery 80.
  • the single heating mode is an operation mode in which the blast air is heated in order to heat the vehicle interior without adjusting the temperature of the battery 80.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C (F1)
  • Tset is a set temperature in the vehicle cabin set by the temperature setting switch. Tr is a vehicle interior temperature detected by the inside air sensor. Tam is the vehicle outside temperature detected by the outside air sensor. Ts is the amount of solar radiation detected by the solar radiation sensor. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • the operation mode is switched based on the target outlet temperature TAO, the battery temperature TB detected by the battery temperature sensor 78, the operation signal of the operation panel 701, and the like.
  • the cooling temperature Operate in tuning mode.
  • the cooling temperature control mode when the battery temperature TB becomes equal to or higher than a predetermined reference upper limit temperature KTBH (40 ° C. in the present embodiment), the mode is switched to the cooling cooling mode.
  • a predetermined reference upper limit temperature KTBH 40 ° C. in the present embodiment
  • the mode is switched to the cooling cooling mode.
  • the mode is switched to the cooling / warm-up mode.
  • the heating temperature control mode is set. Driving at.
  • the heating temperature control mode when the battery temperature TB becomes equal to or higher than the reference upper limit temperature KTBH, the mode is switched to the heating / cooling mode.
  • the mode is switched to the heating warm-up mode.
  • the operation is performed in the single temperature control mode.
  • the single temperature control mode when the battery temperature TB becomes equal to or higher than the reference upper limit temperature KTBH, the mode is switched to the single cooling mode.
  • the mode is switched to the single warm-up mode.
  • the refrigeration cycle device 10 operates in the operation mode in which the temperature of the battery 80 can be adjusted (in the present embodiment, the cooling temperature adjustment mode, the heating temperature adjustment mode, the individual cooling mode). Mode, or a single warm-up mode).
  • the control device 70 sets the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c to the throttle state in which the refrigerant depressurizes. I do. Further, the control device 70 operates the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the cooling temperature control mode. Control.
  • the control device 70 controls the operation of the high-temperature side three-way valve 43 so that the high-temperature side heat medium flowing out of the heater core 42 flows out to the inlet side of the high-temperature side radiator 44.
  • the control device 70 controls the operation of the heat-absorbing three-way valve 63 so that the vehicle-mounted device 82 is cooled to an appropriate temperature. More specifically, the operation of the heat-absorbing three-way valve 63 is controlled such that the heat-absorbing-side heat medium temperature TWC2 detected by the heat-absorbing-side heat medium temperature sensor 76c approaches a predetermined reference heat-absorbing-side heat medium temperature KTWC2. .
  • the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the first three-way joint 13a, the cooling expansion valve 14a, the indoor evaporator 18, and the second three-way joint 13b a refrigeration cycle in which the refrigerant circulates in the order of the evaporation pressure adjusting valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
  • the refrigerant flows through the cooling expansion valve 14a and the indoor evaporator 18 in this order, as well as the first cooling expansion valve 14b, the first chiller 19a, and the second cooling expansion.
  • the path in which the refrigerant flows in the order of the valve 14c and the second chiller 19b is switched to a refrigerant circuit connected in parallel to the refrigerant flow.
  • the control device 70 appropriately controls the operation of each control target device. For example, for the compressor 11, the number of revolutions (that is, the refrigerant discharge capacity) is controlled such that the evaporator temperature Tefin detected by the evaporator temperature sensor 74f approaches the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target outlet temperature TAO with reference to a control map stored in the control device 70 in advance. In this control map, the target evaporator temperature TEO is determined to decrease as the target outlet temperature TAO decreases.
  • the expansion opening of the cooling expansion valve 14a is controlled so that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1.
  • the degree of supercooling SC1 is calculated from the temperature T2 detected by the second refrigerant temperature sensor 74b and the pressure P1 detected by the first refrigerant pressure sensor 75a.
  • the target degree of supercooling SCO1 is determined based on the outside temperature Tam with reference to a control map stored in the control device 70 in advance. In this control map, the target degree of supercooling SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • first cooling expansion valve 14b and the second cooling expansion valve 14c are provided with the throttle opening EX1 and the second cooling expansion valve EX1 of the first cooling expansion valve 14b such that the superheat degree SHC2 approaches the target superheat degree SHCO2.
  • the throttle opening EX2 of the expansion valve 14c is controlled.
  • the superheat degree SHC2 is the degree of superheat of the refrigerant flowing out of the refrigerant passage of the second chiller 19b.
  • the superheat degree SHC2 is calculated from the temperature T3 detected by the third refrigerant temperature sensor 74c and the pressure P2 detected by the second refrigerant pressure sensor 75b.
  • the control device 70 further adjusts the opening ratio EX1 / EX2 such that the temperature adjustment-side heat medium temperature TWC1 detected by the temperature adjustment-side heat medium temperature sensor 76b approaches the target temperature adjustment-side heat medium temperature TWCO1.
  • the opening ratio EX1 / EX2 is the ratio of the throttle opening EX1 of the first cooling expansion valve 14b to the throttle opening EX2 of the second cooling expansion valve 14c.
  • the target temperature adjustment-side heat medium temperature TWCO1 is determined based on the battery temperature TB with reference to a control map stored in the control device 70 in advance. In this control map, the target temperature adjustment-side heat medium temperature TWCO1 is determined to decrease as the battery temperature TB increases. Therefore, control device 70 decreases opening degree ratio EX1 / EX2 as battery temperature TB increases.
  • the target temperature adjustment-side heat medium temperature TWCO1 is determined to be lower than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a. Further, in the cooling / warm-up mode, the target temperature adjustment-side heat medium temperature TWCO1 is determined to be higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
  • the actuator for the air mix door is controlled so that the opening of the air mix door 34 is equal to the opening SW determined using the following equation F2.
  • SW ⁇ TAO- (Tefin + C2) ⁇ / ⁇ TWH- (Tefin + C2) ⁇ (F2)
  • TWH is the high-temperature-side heat medium temperature detected by the high-temperature-side heat medium temperature sensor 76a.
  • C2 is a control constant.
  • the state of the refrigerant changes as shown in the Mollier diagram of FIG. That is, the refrigerant (point a3 in FIG. 3) discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12, and exchanges heat with the high-temperature side heat medium flowing through the water passage to radiate heat. (Points a3 and b3 in FIG. 3). Thus, the high-temperature side heat medium flowing through the water passage of the water-refrigerant heat exchanger 12 is heated.
  • the high-temperature side heat medium heated in the water passage of the water-refrigerant heat exchanger 12 flows into the heater core 42.
  • the high-temperature side heat medium that has flowed into the heater core 42 exchanges heat with the blast air cooled by the indoor evaporator 18 and radiates heat.
  • the air blown into the vehicle compartment is heated, and the temperature of the blown air approaches the target blowing temperature TAO.
  • the high-temperature side heat medium flowing out of the heater core 42 flows into the high-temperature side radiator 44 via the high-temperature side three-way valve 43.
  • the high-temperature side heat medium that has flowed into the high-temperature side radiator 44 exchanges heat with the outside air and radiates heat.
  • the high-temperature-side heat medium radiated by the high-temperature-side radiator 44 is sucked into the high-temperature-side heat medium pump 41 and is again pressure-fed to the water passage of the water-refrigerant heat exchanger 12.
  • the flow of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 is branched at the first three-way joint 13a.
  • One of the refrigerants branched at the first three-way joint 13a flows into the cooling expansion valve 14a and is decompressed (points b3 and c3 in FIG. 3).
  • the refrigerant decompressed by the cooling expansion valve 14a flows into the indoor evaporator 18 and evaporates by exchanging heat with the air blown from the blower 32 (points c3 and d3 in FIG. 3). As a result, the blown air is cooled by the indoor evaporator 18.
  • the refrigerant flowing out of the indoor evaporator 18 flows into the second three-way joint 13b and joins with the refrigerant flowing out of the refrigerant passage of the second chiller 19b (points d3 and i3 in FIG. 3).
  • the other refrigerant branched at the first three-way joint 13a flows into the first cooling expansion valve 14b and is decompressed (points b3 and e3 in FIG. 3).
  • the saturation temperature of the refrigerant decompressed by the first cooling expansion valve 14b becomes lower than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
  • the refrigerant decompressed by the first cooling expansion valve 14b flows into the refrigerant passage of the first chiller 19a, exchanges heat with the temperature control side heat medium flowing through the water passage, and evaporates (FIG. 3). E3 point, f3 point). Thereby, the temperature control side heat medium flowing through the water passage of the first chiller 19a is cooled.
  • the temperature-adjusting-side heat medium circuit 50 the temperature-adjusting-side heat medium cooled in the water passage of the first chiller 19a flows into the temperature-adjusting heat exchanging section 52 and exchanges heat with the battery 80. Thereby, battery 80 is cooled, and the temperature of battery 80 is maintained within an appropriate temperature range.
  • the temperature-adjustment-side heat medium that has flowed out of the temperature-adjustment heat exchange unit 52 is sucked into the temperature-adjustment-side heat medium pump 51, and is again pressure-fed to the water passage of the first chiller 19a.
  • the heat absorbing side heat medium circuit 60 the heat absorbing side heat medium cooled in the water passage of the second chiller 19b flows through the cooling water passage of the vehicle mounted device 82, so that the vehicle mounted device 82 is cooled.
  • the heat-absorbing heat medium that has flowed out of the cooling water passage of the vehicle-mounted device 82 the heat-absorbing heat medium that has flowed into the heat-absorbing radiator 64 via the heat-absorbing three-way valve 63 exchanges heat with the outside air. Thereby, the waste heat of the vehicle-mounted device 82 is radiated to the outside air.
  • the refrigerant flowing out of the refrigerant passage of the second chiller 19b flows into the second three-way joint 13b and merges with the refrigerant flowing out of the indoor evaporator 18 (points d3, i3, h3, and i3 in FIG. 3). .
  • the refrigerant flowing out of the second three-way joint 13b flows into the accumulator 21 via the evaporation pressure adjusting valve 20.
  • the gas-phase refrigerant separated by the accumulator 21 is sucked into the compressor 11 and compressed again (points i3 and a3 in FIG. 3).
  • the refrigerating cycle of the formula is constituted.
  • the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12.
  • the blown air can be cooled by the indoor evaporator 18.
  • the first chiller 19a can cool the heat medium on the temperature adjustment side.
  • the heat absorption side heat medium can be cooled by the second chiller 19b.
  • a part of the blown air cooled by the indoor evaporator 18 can be reheated by the heater core 42 by adjusting the opening of the air mix door 34. Then, the inside of the vehicle compartment can be cooled by blowing out the blast air whose temperature has been adjusted so as to approach the target outlet temperature TAO by the heater core 42 into the vehicle compartment.
  • the heat absorbing side heat medium cooled by the second chiller 19b flows into the cooling water passage of the vehicle-mounted device 82, so that the vehicle-mounted device 82 can be cooled.
  • the battery 80 can be cooled by flowing the temperature-adjusting-side heat medium cooled by the first chiller 19a into the temperature-adjusting heat exchange unit 52.
  • the control device 70 adjusts the opening ratio EX1 / EX2 according to the battery temperature TB. Therefore, the temperature of the refrigerant flowing into the first chiller 19a can be appropriately changed, and the temperature of the battery 80 can be maintained within an appropriate temperature range.
  • control device 70 appropriately adjusts the cooling capacity exerted by the first chiller 19a and the cooling capacity exerted by the second chiller 19b by adjusting the opening degree ratio EX1 / EX2. Can be.
  • the cooling capacity that can be exhibited by the refrigeration cycle device 10 can be appropriately distributed to the first chiller 19a and the second chiller 19b.
  • the saturation temperature of the refrigerant depressurized by the first cooling expansion valve 14b is higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a. Get higher. Accordingly, the refrigerant decompressed by the first cooling expansion valve 14b flows into the refrigerant passage of the first chiller 19a, and exchanges heat with the temperature control side heat medium flowing through the water passage to radiate heat. Thereby, the temperature adjustment-side heat medium flowing through the water passage of the first chiller 19a is heated.
  • the temperature-adjusting-side heat medium circuit 50 the temperature-adjusting-side heat medium heated in the water passage of the first chiller 19a flows into the temperature-adjusting heat exchanging section 52 and exchanges heat with the battery 80. Thereby, battery 80 is heated, and the temperature of battery 80 is maintained within an appropriate temperature range. Other operations are the same as those in the cooling / cooling mode.
  • the refrigeration system in which the water-refrigerant heat exchanger 12 and the first chiller 19a function as a radiator and the indoor evaporator 18 and the second chiller 19b function as an evaporator.
  • a cycle is configured.
  • the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12. Further, the first chiller 19a can heat the heat medium on the temperature adjustment side. In addition, the blown air can be cooled by the indoor evaporator 18. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the vehicle interior can be cooled in the same manner as in the cooling / cooling mode. Further, similarly to the cooling mode, the on-vehicle device 82 can be cooled.
  • the battery 80 can be heated by causing the temperature-adjustment-side heat medium heated by the first chiller 19a to flow into the temperature-adjusting heat exchange unit 52.
  • the control device 70 adjusts the opening ratio EX1 / EX2 according to the battery temperature TB. Therefore, the temperature of the refrigerant flowing into the first chiller 19a can be appropriately changed, and the temperature of the battery 80 can be maintained within an appropriate temperature range.
  • cooling in the vehicle interior is performed when the outside temperature Tam is relatively high. For this reason, during execution of the cooling temperature adjustment mode, the battery temperature TB rarely falls below the reference lower limit temperature KTBL. For this reason, in the cooling temperature adjustment mode, the cooling cooling mode is often executed, and the opportunity to execute the cooling warm-up mode is small.
  • the control device 70 In the heating temperature control mode, the control device 70 fully closes the cooling expansion valve 14a and sets the first cooling expansion valve 14b and the second cooling expansion valve 14c to the throttle state. Further, the control device 70 operates the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the heating temperature adjustment mode. Control.
  • the control device 70 controls the operation of the high-temperature side three-way valve 43 such that the high-temperature side heat medium flowing out of the heater core 42 flows out to the suction port side of the high-temperature side heat medium pump 41. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the cooling temperature control mode.
  • control device 70 appropriately controls the operation of each control target device.
  • the rotation speed of the compressor 11 is controlled such that the high-temperature-side heat medium temperature TWH approaches the target high-temperature-side heat medium temperature TWHO.
  • the target high-temperature-side heat medium temperature TWHO is determined with reference to a control map stored in the control device 70 in advance, based on the target outlet temperature TAO. In this control map, it is determined that the target high-temperature-side heat medium temperature TWHO is increased with the increase of the target outlet temperature TAO so that the temperature of the blown air blown into the vehicle compartment approaches the target outlet temperature TAO.
  • first cooling expansion valve 14b and the second cooling expansion valve 14c have the throttle opening EX1 and the second opening degree EX1 of the first cooling expansion valve 14b such that the supercooling degree SC1 approaches the target supercooling degree SCO1.
  • the throttle opening EX2 of the cooling expansion valve 14c is controlled.
  • the supercooling degree SC1 is a degree of subcooling of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the target degree of supercooling SCO1 is determined in the same manner as in the cooling temperature control mode.
  • the control device 70 further adjusts the opening ratio EX1 / EX2 such that the temperature adjustment-side heat medium temperature TWC1 approaches the target temperature adjustment-side heat medium temperature TWCO1.
  • the target temperature adjustment-side heat medium temperature TWCO1 is determined in the same manner as in the cooling temperature control mode. Therefore, control device 70 decreases opening degree ratio EX1 / EX2 as battery temperature TB increases.
  • the target temperature adjustment-side heat medium temperature TWCO1 is determined to be lower than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
  • the target temperature adjustment-side heat medium temperature TWCO1 is determined to be higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
  • the actuator for the air mix door is controlled in the same way as in the cooling temperature control mode.
  • the opening degree SW of the air mix door 34 approaches 100%. Therefore, in the heating temperature control mode, the air mix door 34 is displaced such that substantially the entire flow rate of the blown air after passing through the indoor evaporator 18 passes through the heater core 42.
  • the state of the refrigerant changes as shown in the Mollier diagram of FIG.
  • the state of the refrigerant at a location equivalent to the cycle configuration with respect to the Mollier diagram of FIG. 3 described in the cooling temperature control mode is indicated by the same reference numeral (alphabet) as in FIG. Only the figure is changed to match the figure number. This is the same in the following Mollier diagram.
  • the refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12, and flows through the water passage, similarly to the cooling temperature control mode. Heat is exchanged with the high-temperature side heat medium and heat is released (points a4 and b4 in FIG. 4). Thus, the high-temperature side heat medium flowing through the water passage of the water-refrigerant heat exchanger 12 is heated.
  • the high-temperature side heat medium heated in the water passage of the water-refrigerant heat exchanger 12 exchanges heat with the blown air in the heater core 42 to radiate heat. .
  • the temperature of the blown air blown into the vehicle compartment approaches the target blowout temperature TAO.
  • the high-temperature-side heat medium flowing out of the heater core 42 is sucked into the high-temperature-side heat medium pump 41 through the high-temperature-side three-way valve 43 and is again pressure-fed to the water passage of the water-refrigerant heat exchanger 12.
  • the refrigerant decompressed by the first cooling expansion valve 14b flows into the refrigerant passage of the first chiller 19a, and exchanges heat with the temperature control side heat medium flowing through the water passage to evaporate (see FIG. 4). e4 point, f4 point). Thereby, the temperature control side heat medium flowing through the water passage of the first chiller 19a is cooled.
  • the battery 80 is cooled in the same manner as in the cooling mode.
  • a refrigeration cycle in which the water-refrigerant heat exchanger 12 functions as a radiator and the first chiller 19a and the second chiller 19b function as an evaporator is configured.
  • the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. Further, the first chiller 19a can cool the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the vehicle air conditioner 1 in the heating / cooling mode can heat the vehicle interior by blowing the blast air heated by the heater core 42 so as to approach the target blowing temperature TAO into the vehicle interior.
  • the heat absorbing side heat medium cooled by the second chiller 19b flows into the cooling water passage of the vehicle-mounted device 82, so that the vehicle-mounted device 82 can be cooled.
  • the battery 80 can be cooled by flowing the temperature-adjusting-side heat medium cooled by the first chiller 19a into the temperature-adjusting heat exchange unit 52.
  • the control device 70 adjusts the opening ratio EX1 / EX2 according to the battery temperature TB. Therefore, the temperature of the refrigerant flowing into the first chiller 19a can be appropriately changed, and the temperature of the battery 80 can be maintained within an appropriate temperature range.
  • the state of the refrigerant changes as shown in the Mollier diagram in FIG. That is, the refrigerant (point a5 in FIG. 5) discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12, and the high-temperature side heat medium flowing through the water passage similarly to the heating / cooling mode. And heat is released (points a5 and b5 in FIG. 5).
  • the refrigerant radiates heat also in the first chiller 19a, so that the amount of heat radiation of the refrigerant in the water-refrigerant heat exchanger 12 is smaller than in the heating / cooling mode.
  • the saturation temperature of the refrigerant depressurized by the first cooling expansion valve 14b becomes higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
  • the refrigerant decompressed by the first cooling expansion valve 14b flows into the refrigerant passage of the first chiller 19a, and exchanges heat with the temperature control side heat medium flowing through the water passage to radiate heat (see FIG. 4). e5 point, f5 point). Thereby, the temperature adjustment-side heat medium flowing through the water passage of the first chiller 19a is heated. In the temperature adjustment-side heat medium circuit 50, the battery 80 is heated in the same manner as in the cooling / warm-up mode.
  • the refrigerant flowing out of the refrigerant passage of the first chiller 19a flows into the second cooling expansion valve 14c and is decompressed (points f5 and g5 in FIG. 5).
  • the refrigerant decompressed by the second cooling expansion valve 14c flows into the refrigerant passage of the second chiller 19b, absorbs heat from the heat-absorbing heat medium flowing through the water passage, and evaporates (g5 point, i5 in FIG. 5). point). Thereby, the heat absorbing heat medium flowing through the water passage of the second chiller 19b is cooled.
  • the on-vehicle device 82 is cooled in the same manner as in the cooling temperature control mode.
  • a refrigeration cycle in which the water-refrigerant heat exchanger 12 and the first chiller 19a function as a radiator and the second chiller 19b functions as an evaporator is configured.
  • the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. Further, the first chiller 19a can heat the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the vehicle interior can be heated as in the heating / cooling mode. Further, similarly to the heating / cooling mode, the in-vehicle device 82 can be cooled.
  • the battery 80 can be heated by causing the temperature-adjustment-side heat medium heated by the first chiller 19a to flow into the temperature-adjusting heat exchange unit 52.
  • the control device 70 adjusts the opening ratio EX1 / EX2 according to the battery temperature TB. Therefore, similarly to the heating / cooling mode, the temperature of the refrigerant flowing into the first chiller 19a can be appropriately changed, and the temperature of the battery 80 can be maintained within an appropriate temperature range.
  • heating of the vehicle interior is performed when the outside temperature Tam is relatively low. Therefore, during execution of the heating temperature control mode, the battery temperature TB may become lower than or equal to the reference lower limit temperature KTBL. In addition, since the battery 80 generates its own heat during charging and discharging, the battery temperature TB may become higher than or equal to the reference upper limit temperature KTBH during the execution of the heating temperature adjustment mode. Therefore, in the heating temperature control mode, the heating / cooling mode and the heating / warm-up mode may be alternately switched.
  • the control device 70 fully closes the cooling expansion valve 14a, closes the first cooling expansion valve 14b, and fully opens the second cooling expansion valve 14c. Further, the control device 70 controls the operation of the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the single cooling mode. Control.
  • the control device 70 controls the operation of the high-temperature three-way valve 43 so that the high-temperature heat medium flowing out of the heater core 42 flows into the high-temperature radiator 44. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the cooling temperature control mode.
  • the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the first three-way joint 13a, the first cooling expansion valve 14b, the first chiller 19a, the (second A refrigeration cycle in which the refrigerant circulates in the order of the cooling expansion valve 14c), the second chiller 19b, the second three-way joint 13b, the evaporating pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is formed.
  • control device 70 appropriately controls the operation of each control target device. For example, the rotation speed of the compressor 11 is controlled so that the temperature adjustment-side heat medium temperature TWC1 approaches the target temperature adjustment-side heat medium temperature TWCO1.
  • the target temperature adjustment-side heat medium temperature TWCO1 is determined based on the battery temperature TB with reference to a control map for the single cooling mode stored in the control device 70 in advance. In this control map, the target temperature adjustment-side heat medium temperature TWCO1 is determined to decrease as the battery temperature TB increases. In the single cooling mode, the target temperature adjustment-side heat medium temperature TWCO1 is determined to be lower than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
  • the throttle opening of the first cooling expansion valve 14b is controlled such that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1.
  • the target degree of supercooling SCO1 is determined based on the outside temperature Tam with reference to a control map for the single cooling mode stored in the control device 70 in advance. In this control map, the target degree of supercooling SCO1 is determined so that the COP of the cycle approaches the maximum value.
  • the actuator for the air mix door is controlled so that the opening degree SW becomes 0%. That is, control is performed such that the cool air bypass passage 35 is fully opened and the air passage on the heater core 42 side is completely closed.
  • the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12. Further, the first chiller 19a can cool the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the air mixing door 34 completely closes the air passage on the heater core 42 side. For this reason, the high-temperature-side heat medium heated by the water-refrigerant heat exchanger 12 radiates heat to the outside air by the high-temperature radiator 44 without almost radiating heat to the blown air by the heater core 42. Therefore, the blown air is not heated by the heater core 42.
  • the vehicle air conditioner 1 in the single cooling mode allows the temperature-adjusting-side heat medium cooled by the first chiller 19a to flow into the temperature-adjusting heat exchange unit 52 without performing air conditioning in the vehicle interior.
  • the battery 80 can be cooled.
  • the heat absorbing side heat medium cooled by the second chiller 19b flows into the cooling water passage of the vehicle-mounted device 82, so that the vehicle-mounted device 82 can be cooled.
  • the control device 70 In the independent warm-up mode, the control device 70 fully closes the cooling expansion valve 14a, fully opens the first cooling expansion valve 14b, and closes the second cooling expansion valve 14c. I do. In addition, the control device 70 stops the high-temperature side heat medium pump 41 and performs the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump so as to exhibit a predetermined heat medium pumping ability for the single warm-up mode. The operation of 61 is controlled. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the cooling temperature control mode.
  • control device 70 appropriately controls the operation of each control target device. For example, the rotation speed of the compressor 11 is controlled so that the temperature adjustment-side heat medium temperature TWC1 approaches the target temperature adjustment-side heat medium temperature TWCO1.
  • the target temperature adjustment-side heat medium temperature TWCO1 is determined based on the battery temperature TB with reference to a control map for the single warm-up mode stored in the control device 70 in advance. In this control map, the target temperature adjustment-side heat medium temperature TWCO1 is determined to decrease as the battery temperature TB increases. In the single warm-up mode, the target temperature adjustment-side heat medium temperature TWCO1 is determined to be higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
  • the second cooling expansion valve 14c controls the throttle opening such that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1.
  • the target degree of supercooling SCO1 is determined based on the outside temperature Tam with reference to a control map for the single cooling mode stored in the control device 70 in advance. In this control map, the target degree of supercooling SCO1 is determined so that the COP of the cycle approaches the maximum value.
  • the actuator for the air mix door is controlled so that the opening degree SW becomes 0% as in the single cooling mode.
  • the first chiller 19a can heat the temperature adjustment-side heat medium. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the temperature-adjustment-side heat medium heated by the first chiller 19a flows into the temperature-adjustment heat exchange unit 52 without performing air conditioning in the vehicle interior.
  • the battery 80 can be heated.
  • the heat absorbing side heat medium cooled by the second chiller 19b flows into the cooling water passage of the vehicle-mounted device 82, so that the vehicle-mounted device 82 can be cooled.
  • the refrigeration cycle apparatus 10 of the present embodiment can perform pre-air conditioning.
  • the pre-air conditioning is performed by the occupant having the control device 70 store the set temperature Tset in the vehicle compartment, the pre-air conditioning start time, and the like using the operation panel 701 or a remote control terminal.
  • the pre-air-conditioning start time is a time at which the time when the occupant gets on board is approaching, and there is a high possibility that the vehicle will travel in the relatively near future.
  • the battery temperature TB at a time that is a predetermined time before (for example, 10 minutes before) the pre-air conditioning start time is equal to the reference lower limit temperature. If it is lower than KTBL, the operation is performed in the single warm-up mode.
  • the pre-air conditioning start time comes, switch from the single warm-up mode to the heating temperature control mode. Further, before switching from the single warm-up mode to the heating temperature control mode (for example, one minute before), the target temperature adjustment-side heat medium temperature TWCO1 is increased.
  • the pre-air conditioning when the pre-air conditioning is set and the operation in the single warm-up mode is performed, it is determined that the predetermined warm-up switching condition is satisfied. Then, when the warm-up switching condition is satisfied, before switching from the single warm-up mode to the heating temperature adjustment mode, the target temperature adjustment-side heat medium temperature TWCO1 is increased to increase the temperature of the temperature adjustment-side heat medium. It has become.
  • the control device 70 closes the cooling expansion valve 14a and fully closes the first cooling expansion valve 14b.
  • the control device 70 controls the operation of the high-temperature side heat medium pump 41 and the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump so as to exhibit a predetermined heat medium pumping capacity for the single cooling mode. 61 is stopped.
  • the control device 70 controls the operation of the high-temperature three-way valve 43 so that the high-temperature heat medium flowing out of the heater core 42 flows into the high-temperature radiator 44.
  • the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the first three-way joint 13a, the cooling expansion valve 14a, the indoor evaporator 18, and the second three-way joint 13b A refrigeration cycle in which the refrigerant circulates in the order of the evaporation pressure adjusting valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
  • control device 70 appropriately controls the operation of each device to be controlled, similarly to the cooling temperature control mode.
  • a refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a radiator and the indoor evaporator 18 functions as an evaporator. Therefore, the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. Further, the blown air can be cooled by the indoor evaporator 18.
  • the vehicle interior can be cooled similarly to the cooling temperature control mode without adjusting the temperature of the battery 80.
  • the control device 70 fully closes the cooling expansion valve 14a, fully opens the first cooling expansion valve 14b, and throttles the second cooling expansion valve 14c. Further, the control device 70 controls the operation of the high-temperature side heat medium pump 41 and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the single heating mode, and controls the temperature adjustment side heat medium pump. The pump 51 is stopped.
  • control device 70 controls the operation of the high-temperature side three-way valve 43 so that the high-temperature side heat medium flowing out of the heater core 42 flows out to the suction port side of the high-temperature side heat medium pump 41, similarly to the heating temperature control mode. I do. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the cooling temperature control mode.
  • a refrigeration cycle in which the refrigerant circulates in the order of the 2 cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure adjusting valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
  • control device 70 appropriately controls the operation of various control target devices as in the heating temperature control mode.
  • the water-refrigerant heat exchanger 12 functions as a radiator and the second chiller 19b functions as an evaporator is configured. Therefore, the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the vehicle interior can be heated as in the heating temperature adjustment mode without adjusting the temperature of the battery 80.
  • the battery 80 As a condition that the heating of the vehicle interior is required without adjusting the temperature of the battery 80, a case in which the battery 80 is rapidly charged in a state where the occupant gets in the vehicle at the extremely low outside temperature can be considered. During rapid charging of the battery 80, the amount of self-generated heat of the battery 80 increases, so that it is not necessary to warm up the battery 80 even at a low outside temperature. However, when driving the vehicle after the completion of the quick charge, the battery 80 needs to be warmed up.
  • the refrigeration cycle apparatus 10 of the present embodiment when the rapid charging of the battery 80 is started in a state where the heating of the vehicle interior is requested, the operation in the single heating mode is performed. Thereafter, when the quick charge is completed, the mode is switched from the single heating mode to the heating temperature control mode. Further, when the remaining charge amount of the battery 80 becomes larger than a predetermined reference remaining charge amount, that is, immediately before the completion of the quick charge, the temperature adjusting-side heat medium pump 51 is operated.
  • the refrigeration cycle device 10 of the present embodiment when rapid charging of the battery 80 is started in a state where heating of the vehicle interior is requested, it is determined that the predetermined heating switching condition is satisfied. Then, when the heating switching condition is satisfied, before switching from the single heating mode to the heating temperature adjustment mode, the target high-temperature-side heat medium temperature TWHO is increased to increase the temperature of the high-temperature side heat medium. I have.
  • the refrigeration cycle apparatus 10 of the present embodiment switches operation modes such as a cooling temperature control mode, a heating temperature control mode, a single cooling mode, a single warm-up mode, a single cooling mode, and a single heating mode to switch the inside of the vehicle compartment.
  • Air conditioning and temperature adjustment of the battery 80 can be performed.
  • the appropriate temperature adjustment of the blast air blown into the cabin, which is the air-conditioned space, and the appropriate temperature adjustment of the battery 80, which is a temperature adjustment target different from the blast air, Adjustment can be compatible.
  • the water-refrigerant heat exchanger 12 constituting the heating section functions as a radiator, and the indoor evaporator 18 and the second chiller 19b constituting the heat absorbing section are provided.
  • a vapor compression refrigeration cycle that functions as an evaporator can be configured. Therefore, in the indoor evaporator 18, the low-pressure refrigerant can be evaporated to cool the blown air. That is, cooling of the vehicle interior can be performed.
  • the refrigeration cycle apparatus 10 in the heating temperature control mode in which the water-refrigerant heat exchanger 12 constituting the heating section functions as a radiator and the second chiller 19b constituting the heat absorption section functions as an evaporator. Be composed. Therefore, the blower air can be heated by the heater core 42 using the high-temperature side heat medium heated by the high-pressure refrigerant as a heat source. That is, heating of the vehicle interior can be performed.
  • the temperature of the refrigerant flowing into the first chiller 19a constituting the temperature adjustment unit can be changed by changing the opening ratio EX1 / EX2.
  • This allows the first chiller 19a to cool or heat the battery 80 by changing the temperature of the temperature-adjusting heat medium that exchanges heat with the refrigerant. That is, appropriate temperature adjustment of the battery 80 can be performed.
  • the temperature of the battery 80 is adjusted by changing the opening ratio EX1 / EX2.
  • the cooling temperature control mode it is not necessary to reverse the flow direction of the refrigerant flowing into the indoor evaporator 18 or to stop the compressor 11 in order to adjust the temperature of the battery 80.
  • the heating temperature control mode it is not necessary to reverse the flow direction of the refrigerant flowing into the water-refrigerant heat exchanger 12 or to stop the compressor 11 in order to adjust the temperature of the battery 80. Therefore, it is possible to suppress the temperature fluctuation of the blown air.
  • the refrigeration cycle device 10 of the present embodiment it is possible to achieve both the appropriate temperature adjustment of the battery 80 and the suppression of the temperature fluctuation of the blown air accompanying the temperature adjustment of the battery 80.
  • the time chart of FIG. 6 shows changes in the blast air temperature TAV and the battery temperature TB in the heating temperature control mode.
  • the blast air temperature TAV is the temperature of the blast air detected by the conditioned air temperature sensor 79.
  • the battery temperature TB is lower than or equal to the reference lower limit temperature KTBL at the time of starting the heating of the vehicle interior. Therefore, in this example, the operation is started from the heating warm-up mode.
  • the opening degree ratio EX1 / EX2 is decreased as the battery temperature TB increases. Further, in the control map of the present embodiment, as shown in FIG. 6, the degree of decrease in the opening degree ratio EX1 / EX2 is changed according to the battery temperature TB, thereby suppressing a sharp rise in the battery temperature TB.
  • the mode is switched to the heating / cooling mode.
  • the opening ratio EX1 / EX2 is increased as the battery temperature TB decreases. Further, in the control map of the present embodiment, as shown in FIG. 6, the degree of increase of the opening ratio EX1 / EX2 is changed in accordance with the battery temperature TB to suppress a sharp drop in the battery temperature TB. When the battery temperature TB becomes equal to or lower than the reference lower limit temperature KTBL, the mode is switched to the heating warm-up mode.
  • the battery temperature TB can be maintained within an appropriate temperature range.
  • the battery temperature TB slightly increases immediately after switching from the heating warm-up mode to the heating cooling mode.
  • the reason is that the heat capacity of the temperature adjustment-side heat medium circulating in the temperature adjustment-side heat medium circuit 50 causes a response delay in the temperature decrease of the temperature adjustment-side heat medium.
  • the battery temperature TB slightly decreases immediately after switching from the heating / cooling mode to the heating / warm-up mode.
  • the high-temperature heat medium temperature TWH approaches the target high-temperature heat medium temperature TWHO independently of the control of increasing or decreasing the opening ratio EX1 / EX2.
  • the rotation speed of the compressor 11 is controlled.
  • the high-temperature side heat medium is used as a heat source when the blown air is heated by the heater core 42. Further, in the heating temperature control mode, the opening degree SW of the air mix door 34 approaches 100%. For this reason, controlling the rotation speed of the compressor 11 so that the high-temperature-side heat medium temperature TWH approaches the target high-temperature-side heat medium temperature TWHO requires that the blower air temperature TAV approach the target outlet temperature TAO. This means controlling the refrigerant discharge capacity.
  • the single cooling mode and the single warm-up mode can be performed. According to this, even when it is not necessary to perform air conditioning in the vehicle compartment, the temperature of the battery 80 can be appropriately adjusted by cooling or heating the battery 80.
  • the cooling expansion valve 14a is fully closed, the first cooling expansion valve 14b is in the throttled state, and the second cooling expansion valve 14c is fully open. That is, in the single cooling mode, it is possible to perform appropriate cooling of the battery 80 in a simple control mode in which the throttle opening of the first cooling expansion valve 14b is substantially controlled.
  • the cooling expansion valve 14a is fully closed, the first cooling expansion valve 14b is fully opened, and the second cooling expansion valve 14c is in a throttled state. That is, in the single heating mode, the battery 80 can be appropriately warmed up in a simple control mode in which the throttle opening of the second cooling expansion valve 14c is substantially controlled.
  • the temperature of the temperature-adjusting heat medium is increased before switching from the single warm-up mode to the heating temperature control mode. According to this, it is possible to increase the temperature of the temperature adjustment-side heat medium circulating in the temperature adjustment-side heat medium circuit 50 before switching to the heating temperature adjustment mode.
  • the heating capacity of the battery 80 is utilized by utilizing the heat stored in the temperature control side heat medium circulating in the temperature control side heat medium circuit 50. Can be suppressed. That is, when switching from the single warm-up mode to the heating temperature control mode, even if the heating capacity of the refrigeration cycle device 10 is used to heat the blown air, the heat stored in the temperature adjustment-side heat medium is The battery 80 can be warmed up by utilizing this.
  • the single cooling mode and the single heating mode can be performed. According to this, even when it is not necessary to adjust the temperature of the battery 80, it is possible to perform air conditioning in the vehicle compartment.
  • the temperature of the high-temperature side heat medium is increased before switching from the single heating mode to the heating temperature adjustment mode.
  • the heat stored in the high-temperature side heat medium circulating in the high-temperature side heat medium circuit 40 is used to reduce the heating capacity of the blown air. Can be suppressed. That is, even when the heating capacity of the refrigeration cycle device 10 is used to heat the battery 80 when the mode is switched from the independent heating mode to the heating temperature control mode, the heat stored in the high-temperature side heat medium is used. To warm up the blast air.
  • the refrigeration cycle apparatus 10a is different from the refrigeration cycle apparatus 10 described in the first embodiment in that third to sixth three-way joints 13c to 13f, a heating expansion valve 14d, a dehumidifying on-off valve 15a, a heating on-off valve 15b, An outdoor heat exchanger 16, a bypass passage 22a, a heating passage 22b, and the like are added.
  • the inlet of the third three-way joint 13c is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the basic configuration of the third to sixth three-way joints 13c to 13f is the same as that of the first three-way joint 13a.
  • An inlet of the heating expansion valve 14d is connected to one outlet of the third three-way joint 13c.
  • One inflow side of the fourth three-way joint 13d is connected to the other outlet of the third three-way joint 13c via a bypass passage 22a.
  • An on-off valve 15a for dehumidification is arranged in the bypass passage 22a.
  • the on-off valve 15a for dehumidification is an electromagnetic valve that opens and closes a refrigerant passage that connects the other outlet side of the third three-way joint 13c and one inlet side of the fourth three-way joint 13d. Further, the refrigeration cycle device 10a includes a heating on-off valve 15b, as described later. The basic configuration of the heating on-off valve 15b is the same as that of the dehumidifying on-off valve 15a.
  • the on-off valve 15a for dehumidification and the on-off valve 15b for heating can switch the refrigerant circuit of each operation mode by opening and closing the refrigerant passage. Therefore, the on-off valve 15a for dehumidification and the on-off valve 15b for heating, together with the expansion valve 14a for cooling, etc., are refrigerant circuit switching units that switch the refrigerant circuit of the cycle.
  • the operations of the dehumidifying on-off valve 15a and the heating on-off valve 15b are controlled by a control voltage output from the control device 70.
  • the heating expansion valve 14d is a heating decompression unit that depressurizes the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate of the refrigerant that flows out downstream.
  • the basic configuration of the heating expansion valve 14d is the same as that of the cooling expansion valve 14a and the like.
  • the refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet of the heating expansion valve 14d.
  • the outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out of the heating expansion valve 14d and the outside air blown by an outside air fan (not shown).
  • the outdoor heat exchanger 16 is arranged on the front side in the drive device room. For this reason, when the vehicle is traveling, traveling wind can be applied to the outdoor heat exchanger 16. Therefore, the outdoor heat exchanger 16 may be formed integrally with the high-temperature-side radiator 44, the heat-absorbing-side radiator 64, and the like.
  • the refrigerant outlet of the outdoor heat exchanger 16 is connected to the inlet side of the fifth three-way joint 13e.
  • One of the outlets of the fifth three-way joint 13e is connected to one of the inlets of the sixth three-way joint 13f via a heating passage 22b.
  • a heating opening / closing valve 15b that opens and closes the refrigerant passage is arranged in the heating passage 22b.
  • the other inflow port of the fourth three-way joint 13d is connected to the other outflow port of the fifth three-way joint 13e.
  • a check valve 17 is disposed in the refrigerant passage connecting the other outflow side of the fifth three-way joint 13e and the other inflow side of the fourth three-way joint 13d. The check valve 17 allows the refrigerant to flow from the fifth three-way joint 13e to the fourth three-way joint 13d, and inhibits the refrigerant from flowing from the fourth three-way joint 13d to the fifth three-way joint 13e. Fulfill.
  • the outlet of the first three-way joint 13a is connected to the outlet of the fourth three-way joint 13d.
  • the other inlet side of the sixth three-way joint 13f is connected to the outlet of the evaporation pressure regulating valve 20.
  • the inlet of the accumulator 21 is connected to the outlet of the sixth three-way joint 13f.
  • the bypass passage 22a allows the refrigerant flowing out of the water-refrigerant heat exchanger 12 constituting the heating section to bypass the outdoor heat exchanger 16 and to be the first three-way joint 13a serving as the branch section.
  • This is a refrigerant passage that leads to the upstream side of.
  • heating passage 22b bypasses the refrigerant flowing out of the outdoor heat exchanger 16 to the indoor evaporator 18, the first chiller 19a forming the temperature adjustment unit, and the second chiller 19b forming the heat absorption unit.
  • a fourth refrigerant temperature sensor 74d and a third refrigerant pressure sensor 75c are connected to the input side of the control device 70 of the present embodiment.
  • the fourth refrigerant temperature sensor 74d is a fourth refrigerant temperature detection unit that detects the temperature T4 of the refrigerant flowing out of the outdoor heat exchanger 16.
  • the third refrigerant pressure sensor 75c is a third pressure detector that detects the pressure P3 of the refrigerant flowing out of the outdoor heat exchanger 16.
  • Other configurations are the same as those of the refrigeration cycle device 10 described in the first embodiment.
  • the operation of the present embodiment in the above configuration will be described.
  • the operation is performed in the dehumidifying heating temperature control mode. be able to.
  • the dehumidifying and heating temperature control mode is an operation mode in which the cooling and reheating of the blown air and the temperature of the battery 80 are adjusted in order to perform dehumidifying and heating of the vehicle interior.
  • the dehumidification and heating temperature control mode includes a dehumidification and heating cooling mode for dehumidifying the blast air and adjusting the temperature, and cooling the battery 80, and a dehumidification and temperature adjustment for the blast air and heating and warming the battery 80.
  • each operation mode will be described.
  • the control device 70 sets the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c to the throttle state, and the heating expansion valve 14d. Is fully opened. In addition, the control device 70 stops the high-temperature side heat medium pump 41 and performs the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump so as to exhibit a predetermined heat medium pumping capacity for the cooling temperature control mode. The operation of 61 is controlled.
  • the control device 70 also closes the on-off valve 15a for dehumidification and the on-off valve 15b for heating. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 in the same manner as in the cooling temperature control mode of the first embodiment.
  • the discharge port of the compressor 11 (the water-refrigerant heat exchanger 12, the third three-way joint 13c, the expansion valve 14d for heating), the outdoor heat exchanger 16 (, Fifth three-way joint 13e, check valve 17, fourth three-way joint 13d), first three-way joint 13a, cooling expansion valve 14a, indoor evaporator 18, second three-way joint 13b, evaporating pressure regulating valve 20, accumulator 21,
  • a refrigeration cycle in which the refrigerant circulates in the order of the suction port of the compressor 11 is configured.
  • a path in which the refrigerant flows in the order of the cooling expansion valve 14a, the indoor evaporator 18, and the first cooling expansion is switched to a refrigerant circuit connected in parallel to the refrigerant flow.
  • control device 70 appropriately controls the operation of each device to be controlled, similarly to the cooling temperature adjustment mode of the first embodiment.
  • the throttle opening of the cooling expansion valve 14a is controlled such that the supercooling degree SC3 of the refrigerant flowing out of the outdoor heat exchanger 16 approaches the target supercooling degree SCO3.
  • the degree of supercooling SC3 is calculated from the temperature T4 detected by the fourth refrigerant temperature sensor 74d and the pressure P3 detected by the third refrigerant pressure sensor 75c.
  • the target degree of subcooling SCO3 is determined based on the outside temperature Tam with reference to a control map stored in the control device 70 in advance. In this control map, the target degree of supercooling SCO3 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • a refrigeration cycle in which the outdoor heat exchanger 16 functions as a radiator and the indoor evaporator 18, the first chiller 19a, and the second chiller 19b function as an evaporator is configured. You. Therefore, the air blown by the indoor evaporator 18 can be cooled. Further, the first chiller 19a can cool the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
  • a refrigeration cycle is configured in which the outdoor heat exchanger 16 and the first chiller 19a function as a radiator, and the indoor evaporator 18 and the second chiller 19b function as an evaporator. You. Therefore, the first chiller 19a can heat the temperature adjustment-side heat medium. In addition, the blown air can be cooled by the indoor evaporator 18. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 hardly radiates heat from the water-refrigerant heat exchanger 12. leak. Therefore, the blown air is not heated by the heater core 42.
  • control device 70 can maintain the temperature of battery 80 within an appropriate temperature range by adjusting opening ratio EX1 / EX2 according to battery temperature TB.
  • the control device 70 restricts the cooling expansion valve 14a, the first cooling expansion valve 14b, the second cooling expansion valve 14c, and the heating expansion valve 14d. State. In addition, the control device 70 controls the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the dehumidifying and heating temperature control mode. Control the operation.
  • the control device 70 opens the on-off valve 15a for dehumidification and the on-off valve 15b for heating.
  • the control device 70 controls the operation of the high-temperature three-way valve 43 and the heat-absorbing three-way valve 63 as in the heating temperature control mode of the first embodiment.
  • a refrigeration cycle in which the refrigerant circulates in the order of the second three-way joint 13b, the evaporating pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
  • the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the third three-way joint 13c, the bypass passage 22a, the fourth three-way joint 13d, the first three-way joint 13a, the first cooling expansion valve 14b, and the first chiller A refrigeration cycle in which the refrigerant circulates in the order of 19a, the second cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11.
  • the path through which the refrigerant flows in the order of the first cooling expansion valve 14b, the first chiller 19a, the second cooling expansion valve 14c, and the second chiller 19b is switched to a refrigerant circuit connected in parallel to the refrigerant flow.
  • control device 70 appropriately controls the operation of each device to be controlled, similarly to the cooling temperature adjustment mode of the first embodiment.
  • the compressor 11 is controlled in the same manner as in the heating temperature control mode of the first embodiment.
  • the throttle opening of the cooling expansion valve 14a and the heating expansion valve 14d is set such that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1.
  • the control device 70 increases the opening ratio EX3 / EX4 of the throttle opening EX3 of the cooling expansion valve 14a to the throttle opening EX4 of the heating expansion valve 14d as the target outlet temperature TAO increases.
  • first cooling expansion valve 14b and the second cooling expansion valve 14c are controlled in the same manner as in the heating temperature control mode of the first embodiment.
  • the actuator for the air mix door is controlled in the same manner as in the cooling temperature control mode of the first embodiment.
  • the water-refrigerant heat exchanger 12 functions as a radiator, and the outdoor heat exchanger 16, the indoor evaporator 18, the first chiller 19a, and the second chiller 19b are connected.
  • a refrigeration cycle that functions as an evaporator is configured.
  • the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12.
  • the blown air can be cooled.
  • the heat medium on the temperature adjustment side can be cooled.
  • the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the water-refrigerant heat exchanger 12 and the first chiller 19a function as a radiator
  • the outdoor heat exchanger 16 the indoor evaporator 18, and the second chiller 19b Is configured as a refrigeration cycle that functions as an evaporator.
  • the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12.
  • the blown air can be cooled.
  • the first chiller 19a can heat the heat medium on the temperature adjustment side.
  • the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the blast air cooled and dehumidified by the indoor evaporator 18 is reheated by the heater core 42 and blown out into the vehicle cabin, whereby Dehumidification heating can be performed.
  • the opening degree ratio EX3 / EX4 is increased, and the refrigerant evaporation pressure in the outdoor heat exchanger 16 can be reduced. Therefore, the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 from the outside air can be increased, and the amount of heat released by the refrigerant to the high-temperature heat medium in the water-refrigerant heat exchanger 12 can be increased. And the heating capability of the blower air in the heater core 42 can be improved.
  • the opening degree ratio EX1 / EX2 is adjusted according to the battery temperature TB, the temperature of the battery 80 can be maintained within an appropriate temperature range, similarly to the cooling temperature adjustment mode.
  • the control device 70 In the heating temperature control mode, the control device 70 fully closes the cooling expansion valve 14a and the heating expansion valve 14d, and closes the first cooling expansion valve 14b and the second cooling expansion valve 14c. The aperture state is set. Further, the control device 70 operates the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the heating temperature adjustment mode. Control.
  • the control device 70 opens the dehumidifying on-off valve 15a and closes the heating on-off valve 15b.
  • the control device 70 controls the operation of the high-temperature three-way valve 43 and the heat-absorbing three-way valve 63 as in the heating temperature control mode of the first embodiment.
  • a refrigeration cycle similar to that in the heating temperature adjustment mode in the first embodiment is configured.
  • Other operations are the same as in the heating temperature control mode of the first embodiment. Therefore, in the vehicle air conditioner 1 of the present embodiment, similarly to the heating temperature control mode of the first embodiment, heating of the vehicle interior, cooling of the in-vehicle device 82, and further, temperature adjustment of the battery 80 can be performed.
  • the controller 70 fully closes the cooling expansion valve 14a, closes the first cooling expansion valve 14b, fully opens the second cooling expansion valve 14c, and performs heating.
  • the expansion valve 14d is fully opened.
  • the control device 70 stops the high-temperature side heat medium pump 41 and controls the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the single cooling mode. Control the operation.
  • the control device 70 also closes the on-off valve 15a for dehumidification and the on-off valve 15b for heating.
  • the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the single cooling mode of the first embodiment.
  • control device 70 appropriately controls the operation of each device to be controlled, similarly to the single cooling mode of the first embodiment.
  • the throttle opening of the first cooling expansion valve 14b is controlled such that the supercooling degree SC3 of the refrigerant flowing out of the outdoor heat exchanger 16 approaches the target supercooling degree SCO3.
  • the refrigeration cycle apparatus 10a in the single cooling mode a refrigeration cycle in which the outdoor heat exchanger 16 functions as a radiator and the first chiller 19a and the second chiller 19b function as an evaporator is configured. Therefore, the first chiller 19a can cool the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
  • the battery 80 can be cooled without performing air conditioning in the vehicle compartment, as in the single cooling mode of the first embodiment.
  • the heat of the refrigerant discharged from the compressor 11 can be directly radiated to the outside air by the outdoor heat exchanger 16. Therefore, the heat exchange efficiency and the responsiveness are improved when the heat of the refrigerant discharged from the compressor 11 is indirectly radiated to the outside air by the high-temperature radiator 44 via the high-temperature heat medium. Can be.
  • the control device 70 fully closes the cooling expansion valve 14a and the heating expansion valve 14d, fully opens the first cooling expansion valve 14b, and expands the second cooling expansion.
  • the valve 14c is set in the throttled state. Further, the control device 70 stops the high-temperature side heat medium pump 41, and controls the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the single warm-up mode. Controls the operation of.
  • the control device 70 opens the dehumidifying on-off valve 15a and closes the heating on-off valve 15b. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the single warm-up mode of the first embodiment.
  • the discharge port of the compressor 11 (the water-refrigerant heat exchanger 12, the bypass passage 22a, the first three-way joint 13a, the first cooling expansion valve 14b)
  • a refrigeration cycle in which the refrigerant circulates in the order of the first chiller 19a, the second cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is configured. .
  • a refrigeration cycle similar to that in the single warm-up mode of the first embodiment is configured.
  • Other operations are the same as in the single warm-up mode of the first embodiment. Therefore, in the vehicle air conditioner 1 of the present embodiment, similarly to the single warm-up mode of the first embodiment, it is possible to maintain the temperature of the battery 80 within an appropriate temperature range without performing air conditioning of the vehicle interior. it can. Further, the in-vehicle device 82 can be cooled.
  • the control device 70 closes the cooling expansion valve 14a, fully closes the first cooling expansion valve 14b, and fully opens the heating expansion valve 14d. Further, the control device 70 stops the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61. Further, the control device 70 closes the on-off valve 15a for dehumidification and the on-off valve 15b for heating.
  • the discharge port of the compressor 11, the (water-refrigerant heat exchanger 12, the heating expansion valve 14d), the outdoor heat exchanger 16, the fifth three-way joint 13e, the first A refrigeration cycle in which the refrigerant circulates in the order of the three-way joint 13a, the cooling expansion valve 14a, the indoor evaporator 18, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
  • control device 70 appropriately controls the operation of each device to be controlled, similarly to the cooling temperature control mode.
  • the refrigeration cycle apparatus 10a in the single cooling mode a refrigeration cycle in which the outdoor heat exchanger 16 functions as a radiator and the indoor evaporator 18 functions as an evaporator is configured. Therefore, the air blown by the indoor evaporator 18 can be cooled. As a result, in the vehicle air conditioner 1 in the single cooling mode, the inside of the vehicle compartment can be cooled in the same manner as in the cooling temperature control mode without adjusting the temperature of the battery 80.
  • the heat of the refrigerant discharged from the compressor 11 can be directly radiated to the outside air by the outdoor heat exchanger 16.
  • the control device 70 In the single heating mode, in the single cooling mode, the control device 70 fully closes the cooling expansion valve 14a and the first cooling expansion valve 14b, and sets the heating expansion valve 14d to the throttled state. Further, the control device 70 controls the operation of the high-temperature side heat medium pump 41 and the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium so as to exhibit a predetermined heat medium pumping ability for the single heating mode. The pump 61 is stopped.
  • the control device 70 closes the dehumidifying on-off valve 15a and opens the heating on-off valve 15b. Further, the control device 70 controls the operation of the high-temperature side three-way valve 43 so that the high-temperature side heat medium flowing out of the heater core 42 flows out to the suction port side of the high-temperature side heat medium pump 41, similarly to the heating temperature control mode. I do.
  • control device 70 appropriately controls the operation of various control target devices as in the heating temperature control mode.
  • the throttle opening of the heating expansion valve 14d is controlled such that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1.
  • the water-refrigerant heat exchanger 12 functions as a radiator and the outdoor heat exchanger 16 functions as an evaporator is configured. Therefore, the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. As a result, in the vehicle air conditioner 1 in the single heating mode, the vehicle interior can be heated as in the cooling temperature adjustment mode without adjusting the temperature of the battery 80.
  • the refrigeration cycle apparatus 10a performs operation modes such as a cooling temperature control mode, a dehumidifying heating temperature control mode, a heating temperature control mode, a single cooling mode, a single warming mode, a single cooling mode, and a single heating mode.
  • operation modes such as a cooling temperature control mode, a dehumidifying heating temperature control mode, a heating temperature control mode, a single cooling mode, a single warming mode, a single cooling mode, and a single heating mode.
  • the same effects as those of the first embodiment can be obtained in the cooling temperature control mode, the dehumidifying heating temperature control mode, and the heating temperature control mode. That is, it is possible to achieve both appropriate temperature adjustment of the blast air blown into the vehicle cabin, which is the space to be air-conditioned, and appropriate temperature adjustment of the battery 80, which is a temperature adjustment target different from the blast air.
  • the temperature of the battery 80 is adjusted by changing the opening degree ratio EX1 / EX2. I have. Therefore, similarly to the first embodiment, it is possible to achieve both the appropriate temperature adjustment of the battery 80 and the suppression of the temperature fluctuation of the blown air due to the temperature adjustment of the battery 80.
  • the operation in the dehumidifying and heating temperature control mode can be performed. Therefore, in the vehicle air conditioner 1 of the present embodiment, more comfortable air conditioning in the vehicle interior can be realized.
  • the present invention may be applied to a vehicle air conditioner mounted on a hybrid vehicle that obtains driving force for vehicle traveling from both an engine and an electric motor.
  • the temperature adjustment target is not limited to the battery 80, but may be an in-vehicle device 82.
  • the application of the present disclosure is not limited to a vehicle, and may be applied to an air conditioner or the like having a server temperature adjustment function for performing indoor air conditioning while appropriately adjusting the temperature of a computer server.
  • the refrigeration cycle apparatuses 10 and 10a that can be switched to a plurality of operation modes have been described.
  • the switching of the operation mode is not limited to the one disclosed in the above-described embodiment.
  • the operation of the cooling temperature adjustment mode and the heating temperature adjustment mode is executable, the effect of achieving both the appropriate temperature adjustment of the blown air and the appropriate temperature adjustment of the temperature adjustment target can be achieved. Obtainable. Further, at least, if the operation in the heating temperature adjustment mode can be performed, realization of appropriate temperature adjustment of the temperature adjustment target and suppression of temperature fluctuation of the blown air due to performing the temperature adjustment of the temperature adjustment target. Can be obtained.
  • the control device 70 decreases the opening degree ratio EX1 / EX2 with an increase in the battery temperature TB, but is not limited thereto. . If the opening ratio EX1 / EX2 can be reduced with the rise in the temperature of the temperature adjustment target, the control device 70 sets the opening ratio EX1 / EX2 based on another parameter correlated with the temperature of the temperature adjustment target. EX2 may be changed.
  • the opening ratio EX1 / EX2 may be decreased with an increase in the temperature adjustment-side heat medium temperature TWC1. Further, a detector is provided for detecting the temperature of the temperature-adjusting-side heat medium immediately after flowing out of the temperature-adjusting heat exchanging unit 52. With the rise in the temperature detected by this detector, the opening ratio EX1 / EX2 is determined. You may make it decrease.
  • a heating temperature control mode using the outdoor heat exchanger 16 may be performed.
  • a series heating temperature control mode and a parallel heating temperature control mode may be performed.
  • the control device 70 In the in-series heating temperature control mode, the control device 70 fully closes the cooling expansion valve 14a, and sets the first cooling expansion valve 14b, the second cooling expansion valve 14c, and the heating expansion valve 14d in a throttled state. Further, the control device 70 controls the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the series heating temperature control mode. Control the operation.
  • the control device 70 also closes the dehumidifying on-off valve 15a and closes the heating on-off valve 15b.
  • the control device 70 controls the operation of the high-temperature three-way valve 43 and the heat-absorbing three-way valve 63 as in the heating temperature control mode of the first embodiment.
  • a refrigeration cycle in which the refrigerant circulates in the order of the suction port of the compressor 11 is configured. That is, a refrigeration cycle in which the outdoor heat exchanger 16, the first chiller 19a, and the second chiller 19b are connected in series is configured.
  • the cycle can be easily balanced with the cycle of the heating temperature control mode described in the second embodiment.
  • the outdoor heat exchanger 16 can function as a radiator. it can. Further, by reducing the throttle opening of the heating expansion valve 14d and lowering the temperature of the refrigerant flowing into the outdoor heat exchanger 16 below the outside air temperature Tam, the outdoor heat exchanger 16 can function as an evaporator. it can.
  • the control device 70 In the parallel heating temperature control mode, the control device 70 fully closes the cooling expansion valve 14a, and sets the first cooling expansion valve 14b, the second cooling expansion valve 14c, and the heating expansion valve 14d to a throttled state. Further, the control device 70 controls the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the series heating temperature control mode. Control the operation.
  • the control device 70 opens the dehumidifying on-off valve 15a and opens the heating on-off valve 15b.
  • the control device 70 controls the operation of the high-temperature three-way valve 43 and the heat-absorbing three-way valve 63 as in the heating temperature control mode of the first embodiment.
  • the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the third three-way joint 13c, the bypass passage 22a, the fourth three-way joint 13d, the first three-way joint 13a, the first cooling expansion valve 14b, and the first chiller A refrigeration cycle in which the refrigerant circulates in the order of 19a, the second cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11.
  • the path through which the refrigerant flows in the order of the heating expansion valve 14d and the outdoor heat exchanger 16, the first cooling expansion valve 14b, the first chiller 19a, and the second cooling expansion is switched to a refrigerant circuit connected in parallel to the refrigerant flow.
  • the controller 70 controls the operation of the heating expansion valve 14d so that the temperature of the refrigerant flowing into the outdoor heat exchanger 16 becomes lower than the outside temperature Tam.
  • the outdoor heat exchanger 16 allows the refrigerant to absorb heat from the outside air. Further, by reducing the throttle opening of the heating expansion valve 14d, the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 from the outside air can be increased.
  • the heating capability of the high-temperature side heat medium in the water-refrigerant heat exchanger 12 can be improved as compared with the serial heating temperature control mode.
  • the heating capacity of the blown air can be improved as compared with the series heating temperature control mode.
  • switching of each operation mode is not limited to the mode disclosed in each of the above embodiments.
  • a switch for switching may be provided on the operation panel 701, and each operation mode may be switched by the operation of the occupant.
  • the configurations of the refrigeration cycle devices 10 and 10a are not limited to those disclosed in the above embodiment.
  • the cooling expansion valve 14a, the first cooling expansion valve 14b, or the like a valve in which an electric expansion valve having no fully closed function and an on-off valve may be directly connected may be employed. Further, a plurality of cycle components may be integrated.
  • the present invention is not limited to this. If the opening ratio EX1 / EX2 can be appropriately changed, for example, an electric variable throttle mechanism is adopted for one of the first cooling expansion valve 14b and the second cooling expansion valve 14c, and the other is used for the other. Alternatively, a fixed throttle or a thermal expansion valve may be employed.
  • a variable throttle mechanism composed of a mechanical mechanism having a temperature sensing part and a valve body
  • the temperature sensing section has a deformable member (specifically, a diaphragm) that deforms according to the temperature and pressure of the refrigerant flowing out of the refrigerant passage of the second chiller 19b.
  • the valve body is displaced according to the deformation of the deformable member to change the throttle opening. Then, the throttle opening may be changed so that the superheat degree SHC2 of the refrigerant flowing out of the refrigerant passage of the second chiller 19b approaches the target superheat degree SHCO2.
  • the example has been described in which the accumulator 21 is employed as the surplus refrigerant storage unit that stores the surplus refrigerant of the cycle as a low-pressure liquid-phase refrigerant, but the surplus refrigerant storage unit is not limited to this.
  • a receiver that separates gas-liquid of the high-pressure refrigerant flowing into the inside and stores the excess refrigerant in the cycle as a high-pressure liquid-phase refrigerant may be adopted.
  • a receiver may be disposed on the outlet side of the refrigerant passage of the water-refrigerant heat exchanger 12. Further, both the accumulator 21 and the receiver may be employed.
  • R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • a mixed refrigerant obtained by mixing a plurality of types of these refrigerants may be employed.
  • a supercritical refrigeration cycle in which carbon dioxide is used as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
  • control mode of the refrigeration cycle devices 10 and 10a is not limited to those disclosed in the above-described embodiments.
  • the operation of the actuator for the air mix door may be controlled such that the blast air temperature TAV detected by the conditioned air temperature sensor 79 approaches the target outlet temperature TAO.
  • the heat value of the battery 80 may be detected from the internal current flowing through the battery 80 and the like.
  • the heating unit constituted by the components of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 40 is employed, but the heating unit is not limited to this.
  • an indoor condenser that directly exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air may be adopted, and the indoor condenser may be arranged in the air-conditioning case 31 like the heater core 42.
  • the refrigeration cycle devices 10 and 10a are applied to a vehicle air conditioner mounted on a hybrid vehicle or the like, the engine cooling water may flow into the high-temperature side heat medium circuit 40 and circulate. Good. According to this, the blown air can be heated by the heater core 42 using the waste heat of the engine as a heat source.
  • the temperature adjustment unit configured by the respective components of the first chiller 19a and the temperature adjustment-side heat medium circuit 50 is employed, but the temperature adjustment unit is not limited to this.
  • a temperature adjusting heat exchanging unit that directly exchanges heat between the battery 80 and the refrigerant flowing out of the first cooling expansion valve 14b may be employed.
  • a heat exchanger for exchanging heat between the refrigerant flowing out of the first cooling expansion valve 14b and the air for temperature adjustment, and the air for temperature adjustment adjusted by the heat exchanger to the battery A blower for adjusting the temperature blown to 80 may be employed.
  • the heat absorbing portion configured by the respective components of the second chiller 19b and the heat absorbing side heat medium circuit 60 is employed, but the heat absorbing portion is not limited to this.
  • a refrigerant passage formed in the vehicle-mounted device 82 may be adopted as the heat absorbing unit, and the refrigerant flowing out of the second cooling expansion valve 14c may be allowed to flow through this refrigerant passage.
  • the high-temperature side heat medium circuit 40, the temperature adjustment side heat medium circuit 50, and the heat absorption side heat medium circuit 60 described in the above-described embodiment are connected to each other via an on-off valve or the like, so that the high-temperature side heat medium, The heat medium and the heat absorption side heat medium may be mixed.
  • the high-temperature-side heat medium circuit 40 and the temperature-adjustment-side heat medium circuit 50 are connected, and the heat-absorbing-side heat medium that has absorbed waste heat of the vehicle-mounted device 82 flows into the high-temperature-side heat medium circuit 40 and is circulated. You may do so. According to this, the blown air can be heated by the heater core 42 using the waste heat of the vehicle-mounted device 82 as a heat source.
  • control aspects of the high-temperature side three-way valve 43 of the high-temperature side heat medium circuit 40 and the heat absorption side three-way valve 63 of the heat absorption side heat medium circuit 60 are not limited to those disclosed in the above-described embodiments.
  • the heat absorbing side three-way valve 63 may be operated so that the heat absorbing side heat medium flowing out of the cooling water passage of the vehicle-mounted device 82 flows into the heat absorbing side radiator 64.
  • the heat absorption side three-way valve 63 is configured to guide the heat absorption side heat medium flowing out of the cooling water passage of the vehicle-mounted device 82 to the suction side of the heat absorption side heat medium pump 61 by bypassing the heat absorption side radiator 64. May be activated.
  • the temperature adjustment target whose temperature is adjusted by the degree adjustment unit is the battery 80 and the heat absorption target that is cooled by the heat absorption unit is the vehicle-mounted device 82.
  • the object and the endothermic object are not limited to this.
  • the temperature adjustment target may be the vehicle-mounted device 82 and the heat absorption target may be the battery 80.
  • the opening ratio EX1 / EX2 may be appropriately adjusted.
  • the cooling capacity exhibited by the first chiller 19a and the cooling capacity exhibited by the second chiller 19b can be appropriately adjusted.
  • the cooling capacity that can be exhibited by the refrigeration cycle device 10 can be appropriately distributed to the first chiller 19a and the second chiller 19b.
  • the present invention is not limited to this. That is, the throttle opening may be changed in the direction in which the cooling expansion valve 14a closes.
  • an evaporation pressure adjusting unit is arranged between the indoor evaporator 18 and the second three-way joint 13b.
  • an evaporating pressure adjusting valve for maintaining the refrigerant evaporating pressure in the indoor evaporator 18 at or above a predetermined reference pressure can be employed.
  • the evaporation pressure adjusting valve is a mechanical variable throttle mechanism that increases the valve opening as the pressure of the refrigerant on the outlet side of the indoor evaporator 18 increases.
  • the throttle opening may be changed in the direction in which the cooling expansion valve 14a closes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Provided is a refrigeration cycle device applied to an air conditioning device, wherein the refrigeration cycle device is provided with: a compressor (11); a heating section (12, 40) for heating blown air; a decompression section (14a) for room cooling, which decompresses one refrigerant having been diverted at a branch section (13a); an indoor evaporator (18) for cooling the blown air; a first decompression section (14b) for cooling, which decompresses the other refrigerant having been diverted at the branch section; a temperature regulation section (19a, 50) for regulating the temperature of an object (80), the temperature of which is to be regulated; a second decompression section (14c) for cooling; and a heat absorption section (19b, 60) for cooling an object (82), the heat of which is to be absorbed. In a room heating/temperature regulation mode, the decompression section (14a) for room cooling is closed, and the first decompression section (14b) for cooling and the second decompression section (14c) for cooling are set to a throttled state. In a room cooling/temperature regulation mode, the decompression section (14a) for room cooling, the first decompression section (14b) for cooling, and the second decompression section (14c) for cooling are set to a throttled state in which the decompression sections (14a, 14b, 14c) perform a refrigerant decompression action.

Description

冷凍サイクル装置Refrigeration cycle device 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年9月6日に出願された日本特許出願番号2018-166946号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-166946 filed on Sep. 6, 2018, the contents of which are incorporated herein by reference.
 本開示は、空調装置に適用される冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device applied to an air conditioner.
 従来、特許文献1に、温度調整対象物である二次電池の温度調整に用いられる蒸気圧縮式の冷凍サイクル装置が開示されている。 Conventionally, Patent Document 1 discloses a vapor compression refrigeration cycle device used for temperature control of a secondary battery which is a temperature control target.
 特許文献1の冷凍サイクル装置は、二次電池と冷媒とを熱交換させる電池用熱交換器を備えている。そして、二次電池の暖機を行う際には、圧縮機から吐出された高圧冷媒を電池用熱交換器へ流入させて二次電池を加熱する。さらに、二次電池の冷却を行う際には、サイクルを循環する冷媒の流れ方向を逆転させるように冷媒回路を切り替え、低圧冷媒を電池用熱交換器へ流入させて二次電池を冷却する。 冷凍 The refrigeration cycle device of Patent Document 1 includes a battery heat exchanger for exchanging heat between the secondary battery and the refrigerant. When warming up the secondary battery, the high-pressure refrigerant discharged from the compressor flows into the battery heat exchanger to heat the secondary battery. Further, when cooling the secondary battery, the refrigerant circuit is switched so as to reverse the flow direction of the refrigerant circulating in the cycle, and the low-pressure refrigerant flows into the battery heat exchanger to cool the secondary battery.
 また、特許文献2には、空調装置に適用された冷凍サイクル装置であって、二次電池の冷却を行うことができるものが開示されている。特許文献2の冷凍サイクル装置は、圧縮機から吐出された高圧冷媒を熱源として空調対象空間へ送風される送風空気を加熱する加熱部、低圧冷媒を蒸発させて送風空気を冷却する室内蒸発器、および低圧冷媒を蒸発させて電池を冷却する冷却部を備えている。 Patent Literature 2 discloses a refrigeration cycle device applied to an air conditioner, which can cool a secondary battery. The refrigeration cycle device of Patent Literature 2 is a heating unit that heats blast air blown to a space to be air-conditioned using a high-pressure refrigerant discharged from a compressor as a heat source, an indoor evaporator that cools blast air by evaporating a low-pressure refrigerant, And a cooling unit for evaporating the low-pressure refrigerant to cool the battery.
 より詳細には、加熱部は、高圧冷媒と高温側熱媒体とを熱交換させる水-冷媒熱交換器、高温側熱媒体と送風空気とを熱交換させて送風空気を加熱するヒータコア等が接続された高温側熱媒体回路によって構成されている。また、冷却部は、低圧冷媒と低温側熱媒体とを熱交換させるチラー、低温側熱媒体と二次電池とを熱交換させて二次電池を冷却する熱交換部等が接続された低温側熱媒体回路によって構成されている。 More specifically, the heating unit is connected to a water-refrigerant heat exchanger for exchanging heat between the high-pressure refrigerant and the high-temperature side heat medium, a heater core for exchanging heat between the high-temperature side heat medium and the blown air, and heating the blown air. The high-temperature side heat medium circuit is configured. The cooling unit includes a chiller for exchanging heat between the low-pressure refrigerant and the low-temperature side heat medium, and a low-temperature side to which a heat exchange unit for exchanging heat between the low-temperature side heat medium and the secondary battery and cooling the secondary battery is connected. It is composed of a heat medium circuit.
 さらに、特許文献2の冷凍サイクル装置では、チラーと室内蒸発器が、冷媒の流れに対して並列的に接続されている。 Furthermore, in the refrigeration cycle device of Patent Document 2, the chiller and the indoor evaporator are connected in parallel to the flow of the refrigerant.
特開2014-203736号公報JP 2014-203736 A 特開2014-37180号公報JP 2014-37180 A
 ところで、二次電池は、低温になると出力が低下しやすく、高温になると劣化が進行しやすい。このため、二次電池の温度は、二次電池の充放電容量を充分に活用することのできる適切な温度範囲内に維持されている必要がある。ところが、特許文献2の冷凍サイクル装置では、二次電池の暖機を行うことができない。従って、特許文献2の冷凍サイクル装置では、二次電池の温度を適切な温度範囲内に維持できないおそれがある。 By the way, the output of the secondary battery tends to decrease at low temperatures, and the deterioration easily progresses at high temperatures. For this reason, the temperature of the secondary battery needs to be maintained within an appropriate temperature range in which the charge / discharge capacity of the secondary battery can be sufficiently utilized. However, the refrigeration cycle device of Patent Document 2 cannot warm up the secondary battery. Therefore, in the refrigeration cycle device of Patent Document 2, there is a possibility that the temperature of the secondary battery cannot be maintained within an appropriate temperature range.
 これに対して、特許文献2の冷凍サイクル装置において、特許文献1のように、冷媒回路を切り替えて、二次電池の冷却および暖機を行うことが考えられる。しかしながら、冷媒の流れ方向を逆転させるように冷媒回路を切り替えると、水-冷媒熱交換器やチラーへ流入させる冷媒の温度が急変してしまう。その結果、加熱部や冷却部の熱容量によって送風空気に温度変動が生じてしまい、空調対象空間の適切な空調を行うことができなくなってしまう。 On the other hand, in the refrigeration cycle device of Patent Literature 2, it is conceivable that the refrigerant circuit is switched to cool and warm up the secondary battery as in Patent Literature 1. However, when the refrigerant circuit is switched to reverse the flow direction of the refrigerant, the temperature of the refrigerant flowing into the water-refrigerant heat exchanger or the chiller changes abruptly. As a result, the temperature of the blown air fluctuates due to the heat capacity of the heating unit and the cooling unit, and it becomes impossible to perform appropriate air conditioning of the air-conditioned space.
 本開示は、上記点に鑑み、空調対象空間へ送風される送風空気の適切な温度調整の実現と、温度調整対象物の適切な温度調整の実現との両立を可能とする冷凍サイクル装置を提供することを目的とする。 In view of the above, the present disclosure provides a refrigeration cycle device that can achieve both appropriate temperature adjustment of blast air blown into a space to be air-conditioned and appropriate temperature adjustment of an object to be temperature adjusted. The purpose is to do.
 本開示の一つの態様の冷凍サイクル装置は、空調装置に適用される冷凍サイクル装置であって、圧縮機と、加熱部と、分岐部と、冷房用減圧部と、室内蒸発器と、第1冷却用減圧部と、温度調整部と、第2冷却用減圧部と、吸熱部と、合流部と、を備える。 A refrigeration cycle device according to one aspect of the present disclosure is a refrigeration cycle device applied to an air conditioner, and includes a compressor, a heating unit, a branch unit, a cooling decompression unit, an indoor evaporator, A cooling pressure reducing unit, a temperature adjusting unit, a second cooling pressure reducing unit, a heat absorbing unit, and a merging unit are provided.
 圧縮機は、冷媒を圧縮して吐出する。加熱部は、圧縮機から吐出された冷媒を熱源として空調対象空間へ送風される送風空気を加熱する。分岐部は、加熱部から流出した冷媒の流れを分岐する。冷房用減圧部は、分岐部にて分岐された一方の冷媒を減圧させる。室内蒸発器は、冷房用減圧部にて減圧された冷媒を蒸発させて、空調対象空間へ送風される送風空気を冷却する。第1冷却用減圧部は、分岐部にて分岐された他方の冷媒を減圧させる。温度調整部は、第1冷却用減圧部から流出した冷媒によって温度調整対象物の温度を調整する。第2冷却用減圧部は、温度調整部から流出した冷媒を減圧させる。吸熱部は、第2冷却用減圧部から流出した冷媒によって吸熱対象物を冷却する。合流部は、室内蒸発器から流出した冷媒の流れと吸熱部から流出した冷媒の流れとを合流させて、圧縮機の吸入口側へ流出させる。 The compressor compresses and discharges the refrigerant. The heating unit heats the blown air blown to the air-conditioned space using the refrigerant discharged from the compressor as a heat source. The branch unit branches the flow of the refrigerant flowing out of the heating unit. The cooling decompression unit decompresses one of the refrigerants branched at the branching unit. The indoor evaporator evaporates the refrigerant depressurized by the cooling decompression unit, and cools the air blown to the air-conditioned space. The first cooling decompression section decompresses the other refrigerant branched at the branch section. The temperature adjustment unit adjusts the temperature of the temperature adjustment target using the refrigerant flowing out of the first cooling decompression unit. The second cooling decompression unit decompresses the refrigerant flowing out of the temperature adjustment unit. The heat absorbing section cools the heat absorbing target by the refrigerant flowing out of the second cooling pressure reducing section. The joining portion joins the flow of the refrigerant flowing out of the indoor evaporator and the flow of the refrigerant flowing out of the heat absorbing portion, and flows out to the suction port side of the compressor.
 加熱部にて送風空気を加熱するとともに温度調整部にて温度調整対象物の温度を調整する暖房温調モードでは、冷房用減圧部を閉じ、第1冷却用減圧部および第2冷却用減圧部を冷媒減圧作用を発揮する絞り状態とする。室内蒸発器にて送風空気を冷却するとともに温度調整部にて温度調整対象物の温度を調整する冷房温調モードでは、冷房用減圧部、第1冷却用減圧部および第2冷却用減圧部を冷媒減圧作用を発揮する絞り状態とする冷凍サイクル装置である。 In the heating temperature control mode, in which the heating unit heats the blown air and adjusts the temperature of the temperature adjustment target with the temperature adjustment unit, the cooling decompression unit is closed, and the first cooling decompression unit and the second cooling decompression unit are used. In a throttle state that exerts a refrigerant pressure reducing action. In the cooling temperature control mode in which the air blown by the indoor evaporator is cooled and the temperature of the temperature adjustment target is adjusted by the temperature adjustment unit, the cooling decompression unit, the first cooling decompression unit, and the second cooling decompression unit are operated. This is a refrigeration cycle device that is in a throttle state that exerts a refrigerant pressure reducing action.
 これによれば、冷房温調モードでは、冷房用減圧部にて減圧された冷媒を室内蒸発器にて蒸発させて、送風空気を冷却することができる。すなわち、空調対象空間の冷房を行うことができる。また、暖房温調モードでは、圧縮機から吐出された冷媒を加熱部にて放熱させて、送風空気を加熱することができる。すなわち、空調対象空間の暖房を行うことができる。 According to this, in the cooling temperature control mode, the refrigerant depressurized by the cooling decompression unit can be evaporated by the indoor evaporator to cool the blown air. That is, cooling of the space to be air-conditioned can be performed. In the heating temperature control mode, the refrigerant discharged from the compressor is radiated by the heating unit to heat the blown air. That is, it is possible to heat the space to be air-conditioned.
 さらに、冷房温調モードおよび暖房温調モードでは、第1冷却用減圧部の絞り開度および第2冷却用減圧部の絞り開度を変化させることによって、温度調整部へ流入させる冷媒の温度を変化させることができる。そして、温度調整対象物の冷却あるいは加熱を行うことができる。すなわち、温度調整対象物の適切な温度調整を行うことができる。 Further, in the cooling temperature adjustment mode and the heating temperature adjustment mode, the temperature of the refrigerant flowing into the temperature adjustment unit is changed by changing the throttle opening of the first cooling pressure reducing unit and the throttle opening of the second cooling pressure reducing unit. Can be changed. Then, cooling or heating of the temperature adjustment target can be performed. That is, appropriate temperature adjustment of the temperature adjustment target can be performed.
 すなわち、本開示の一つの態様の冷凍サイクル装置によれば、送風空気の適切な温度調整と、温度調整対象物の適切な温度調整とを両立を可能とする冷凍サイクル装置を提供することができる。 That is, according to the refrigeration cycle device of one embodiment of the present disclosure, it is possible to provide a refrigeration cycle device that can achieve both appropriate temperature adjustment of the blown air and appropriate temperature adjustment of the temperature adjustment target. .
第1実施形態の車両用空調装置の全体構成図である。1 is an overall configuration diagram of a vehicle air conditioner according to a first embodiment. 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the vehicle air conditioner of 1st Embodiment. 第1実施形態の冷凍サイクル装置の冷房冷却モード時の冷媒の状態の変化を示すモリエル線図である。FIG. 4 is a Mollier chart showing a change in the state of the refrigerant in a cooling mode of the refrigeration cycle device of the first embodiment. 第1実施形態の冷凍サイクル装置の暖房冷却モード時の冷媒の状態の変化を示すモリエル線図である。FIG. 4 is a Mollier chart showing a change in a state of a refrigerant in a heating / cooling mode of the refrigeration cycle device of the first embodiment. 第1実施形態の冷凍サイクル装置の暖房暖機モード時の冷媒の状態の変化を示すモリエル線図である。FIG. 4 is a Mollier chart showing a change in a state of a refrigerant in a heating and warming-up mode of the refrigeration cycle device of the first embodiment. 暖房温調モード時のバッテリ温度および送風空気温度の変化を示すタイムチャートである。It is a time chart which shows the change of the battery temperature and the ventilation air temperature at the time of heating temperature control mode. 第2実施形態の車両用空調装置の全体構成図である。It is a whole block diagram of the air conditioner for vehicles of 2nd Embodiment. 第2実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the air conditioner for vehicles of 2nd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, portions corresponding to the items described in the preceding embodiment are denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each embodiment, the other embodiments described earlier can be applied to other parts of the configuration. Not only the combination of the parts that clearly indicate that a combination is possible in each embodiment, but also the embodiments may be partially combined without being specified unless there is any particular problem with the combination. Is also possible.
 (第1実施形態)
 図1~図6を用いて、本開示の第1実施形態を説明する。本実施形態では、本開示に係る冷凍サイクル装置10を、電動モータから走行用の駆動力を得る電気自動車に搭載された車両用空調装置1に適用している。車両用空調装置1は、空調対象空間である車室内の空調を行う機能、およびバッテリ80の温度を調整する機能を有している。このため、車両用空調装置1は、バッテリ温度調整機能付きの車両用空調装置と呼ぶこともできる。
(1st Embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. In the present embodiment, the refrigeration cycle device 10 according to the present disclosure is applied to a vehicle air conditioner 1 mounted on an electric vehicle that obtains a driving force for traveling from an electric motor. The vehicle air conditioner 1 has a function of performing air conditioning of the vehicle interior, which is a space to be air-conditioned, and a function of adjusting the temperature of the battery 80. For this reason, the vehicle air conditioner 1 can also be called a vehicle air conditioner with a battery temperature adjustment function.
 バッテリ80は、電動モータ等の車載機器へ供給される電力を蓄える二次電池である。本実施形態のバッテリ80は、リチウムイオン電池である。バッテリ80は、複数の電池セル81を積層配置し、これらの電池セル81を電気的に直列あるいは並列に接続することによって形成された、いわゆる組電池である。 The battery 80 is a secondary battery that stores power supplied to on-vehicle devices such as an electric motor. The battery 80 of the present embodiment is a lithium ion battery. The battery 80 is a so-called assembled battery formed by stacking a plurality of battery cells 81 and electrically connecting these battery cells 81 in series or in parallel.
 この種のバッテリ(すなわち、二次電池)は、低温になると出力が低下しやすく、高温になると劣化が進行しやすい。このため、バッテリの温度は、バッテリの充放電容量を充分に活用することができる適切な温度範囲内(本実施形態では、10℃以上、かつ、50℃以下)に維持されている必要がある。 出力 The output of this type of battery (that is, a secondary battery) tends to decrease at low temperatures, and tends to deteriorate at high temperatures. For this reason, the temperature of the battery needs to be maintained within an appropriate temperature range (in this embodiment, 10 ° C. or more and 50 ° C. or less) in which the charge / discharge capacity of the battery can be sufficiently utilized. .
 そこで、本実施形態の車両用空調装置1では、冷凍サイクル装置10によって、空調対象空間である車室内へ送風される送風空気の温度を調整するとともに、バッテリ80の温度を調整している。従って、本実施形態の冷凍サイクル装置10における、送風空気とは異なる温度調整対象物は、バッテリ80である。 Therefore, in the vehicle air conditioner 1 of the present embodiment, the temperature of the battery 80 is adjusted by the refrigeration cycle device 10 while adjusting the temperature of the blast air blown into the vehicle interior, which is the space to be air-conditioned. Therefore, in the refrigeration cycle device 10 of the present embodiment, the temperature adjustment target different from the blast air is the battery 80.
 さらに、車両用空調装置1では、乗員が車両に乗車している際に実行される通常の空調に加えて、乗員が車両に乗り込む前に車室内の空調を開始するプレ空調を実行可能に構成されている。 Furthermore, in the vehicle air conditioner 1, in addition to the normal air conditioning that is performed when the occupant is in the vehicle, pre-air conditioning that starts air conditioning in the vehicle compartment before the occupant enters the vehicle can be performed. Have been.
 車両用空調装置1は、図1の全体構成図に示すように、冷凍サイクル装置10、室内空調ユニット30、高温側熱媒体回路40、温度調整側熱媒体回路50、吸熱側熱媒体回路60等を備えている。 As shown in the overall configuration diagram of FIG. 1, the vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioning unit 30, a high-temperature side heat medium circuit 40, a temperature adjustment side heat medium circuit 50, a heat absorption side heat medium circuit 60, and the like. It has.
 まず、冷凍サイクル装置10について説明する。冷凍サイクル装置10は、送風空気の温度調整、およびバッテリ80の温度調整を行うために、運転モードに応じて冷媒回路を切替可能に構成されている。 First, the refrigeration cycle device 10 will be described. The refrigeration cycle device 10 is configured to be able to switch the refrigerant circuit according to the operation mode in order to adjust the temperature of the blown air and the temperature of the battery 80.
 冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用しており、圧縮機11から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 In the refrigeration cycle device 10, an HFO-based refrigerant (specifically, R1234yf) is employed as a refrigerant, and a vapor compression subcritical fluid in which the pressure of the refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Constructs a refrigeration cycle. Further, a refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Part of the refrigerating machine oil circulates through the cycle together with the refrigerant.
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方に配置されて走行用の電動モータ等が収容される駆動装置室内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する制御装置70から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 圧 縮 Among the components of the refrigeration cycle device 10, the compressor 11 sucks, compresses, and discharges the refrigerant in the refrigeration cycle device 10. The compressor 11 is disposed in front of a vehicle compartment and is disposed in a drive device compartment in which a traveling electric motor and the like are accommodated. The compressor 11 is an electric compressor in which a fixed displacement compression mechanism having a fixed discharge capacity is rotationally driven by an electric motor. The rotation speed (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from a control device 70 described later.
 圧縮機11の吐出口には、水-冷媒熱交換器12の冷媒通路の入口側が接続されている。水-冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒を流通させる冷媒通路と、高温側熱媒体回路40を循環する高温側熱媒体を流通させる水通路とを有している。水-冷媒熱交換器12は、冷媒通路を流通する高圧冷媒と、水通路を流通する高温側熱媒体とを熱交換させて、高温側熱媒体を加熱する熱交換部である。 The inlet of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the outlet of the compressor 11. The water-refrigerant heat exchanger 12 has a refrigerant passage through which the high-pressure refrigerant discharged from the compressor 11 flows, and a water passage through which the high-temperature heat medium circulating in the high-temperature heat medium circuit 40 flows. The water-refrigerant heat exchanger 12 is a heat exchange section that heat-exchanges the high-pressure refrigerant flowing through the refrigerant passage and the high-temperature heat medium flowing through the water passage to heat the high-temperature heat medium.
 水-冷媒熱交換器12の冷媒通路の出口には、互いに連通する3つの流入出口を有する第1三方継手13aの流入口側が接続されている。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The outlet of the coolant passage of the water-refrigerant heat exchanger 12 is connected to the inlet of a first three-way joint 13a having three inflow ports that communicate with each other. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 第1三方継手13aの一方の流出口には、冷房用膨張弁14aの入口側が接続されている。第1三方継手13aの他方の流出口には、第1冷却用膨張弁14bの入口側が接続されている。 入口 An inlet of the cooling expansion valve 14a is connected to one of the outlets of the first three-way joint 13a. An inlet side of the first cooling expansion valve 14b is connected to the other outlet of the first three-way joint 13a.
 冷房用膨張弁14aは、少なくとも送風空気を冷却する運転モード時に、水-冷媒熱交換器12の冷媒通路から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量(質量流量)を調整する冷房用減圧部である。冷房用膨張弁14aは、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータ(具体的には、ステッピングモータ)とを有して構成される電気式の可変絞り機構である。 The cooling expansion valve 14a depressurizes the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate (mass flow rate) of the refrigerant flowing downstream at least in the operation mode of cooling the blown air. This is a cooling decompression unit. The cooling expansion valve 14a is configured to include a valve body configured to change the degree of opening of a throttle and an electric actuator (specifically, a stepping motor) that changes the degree of opening of the valve body. This is a variable aperture mechanism.
 冷房用膨張弁14aは、制御装置70から出力される制御信号(制御パルス)によって、その作動が制御される。さらに、冷凍サイクル装置10は、後述するように、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cを備えている。第1冷却用膨張弁14bおよび第2冷却用膨張弁14cの基本的構成は、冷房用膨張弁14aと同様である。 The operation of the cooling expansion valve 14a is controlled by a control signal (control pulse) output from the control device 70. Further, the refrigeration cycle device 10 includes a first cooling expansion valve 14b and a second cooling expansion valve 14c, as described later. The basic configuration of the first cooling expansion valve 14b and the second cooling expansion valve 14c is the same as that of the cooling expansion valve 14a.
 冷房用膨張弁14a、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cは、弁開度を全開にすることで冷媒減圧作用および流量調整作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。さらに、冷房用膨張弁14a、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cは、弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。 The cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c function as mere refrigerant passages with little or no refrigerant depressurizing action and flow rate adjusting action by fully opening the valve opening. It has a fully open function. Further, the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c have a fully closed function of closing the refrigerant passage by fully closing the valve opening.
 そして、この全開機能および全閉機能によって、冷房用膨張弁14a、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cは、冷媒回路を切り替えることができる。従って、冷房用膨張弁14a、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cは、冷媒回路切替部としての機能も兼ね備えている。 Then, by the fully open function and the fully closed function, the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c can switch the refrigerant circuit. Therefore, the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c also have a function as a refrigerant circuit switching unit.
 冷房用膨張弁14aの出口には、室内蒸発器18の冷媒入口側が接続されている。室内蒸発器18は、後述する室内空調ユニット30の空調ケース31内に配置されている。室内蒸発器18は、冷房用膨張弁14aにて減圧された低圧冷媒と送風機32から送風された送風空気とを熱交換させて低圧冷媒を蒸発させ、低圧冷媒に吸熱作用を発揮させることによって送風空気を冷却する熱交換部である。 出口 The refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the cooling expansion valve 14a. The indoor evaporator 18 is arranged in an air-conditioning case 31 of an indoor air-conditioning unit 30 described later. The indoor evaporator 18 blows air by exchanging heat between the low-pressure refrigerant depressurized by the cooling expansion valve 14a and the blast air blown from the blower 32 to evaporate the low-pressure refrigerant and exerting an endothermic effect on the low-pressure refrigerant. This is a heat exchange unit that cools air.
 室内蒸発器18の冷媒出口には、第2三方継手13bの一方の流入口側が接続されている。第2三方継手13bの基本的構成は、第1三方継手13aと同様である。 冷媒 One inlet side of the second three-way joint 13b is connected to the refrigerant outlet of the indoor evaporator 18. The basic configuration of the second three-way joint 13b is the same as that of the first three-way joint 13a.
 第1冷却用膨張弁14bは、水-冷媒熱交換器12から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する第1冷却用減圧部である。 The first cooling expansion valve 14b is a first cooling pressure reducing unit that reduces the pressure of the refrigerant flowing out of the water-refrigerant heat exchanger 12 and adjusts the flow rate of the refrigerant flowing downstream.
 第1冷却用膨張弁14bの出口には、第1チラー19aの冷媒通路の入口側が接続されている。第1チラー19aは、第1冷却用膨張弁14bから流出した冷媒を流通させる冷媒通路と、温度調整側熱媒体回路50を循環する温度調整側熱媒体を流通させる水通路とを有している。第1チラー19aは、冷媒通路を流通する冷媒と水通路を流通する温度調整側熱媒体とを熱交換させて、温度調整側熱媒体の温度を調整する熱交換部である。 出口 The outlet of the first cooling expansion valve 14b is connected to the inlet side of the refrigerant passage of the first chiller 19a. The first chiller 19a has a refrigerant passage through which the refrigerant flowing out of the first cooling expansion valve 14b flows, and a water passage through which the temperature adjustment side heat medium circulating through the temperature adjustment side heat medium circuit 50 flows. . The first chiller 19a is a heat exchange unit that exchanges heat between the refrigerant flowing through the refrigerant passage and the temperature adjustment-side heat medium flowing through the water passage to adjust the temperature of the temperature adjustment-side heat medium.
 より詳細には、第1チラー19aは、冷媒通路へ流入する冷媒の温度が水通路を流通する温度調整側熱媒体よりも高くなっている際には、冷媒を凝縮させる凝縮部として機能する。一方、冷媒通路へ流入する冷媒の温度が水通路を流通する温度調整側熱媒体よりも低くなっている際には、冷媒を蒸発させる蒸発部として機能する。 More specifically, when the temperature of the refrigerant flowing into the refrigerant passage is higher than the temperature control-side heat medium flowing through the water passage, the first chiller 19a functions as a condensing unit that condenses the refrigerant. On the other hand, when the temperature of the refrigerant flowing into the refrigerant passage is lower than the temperature control side heat medium flowing through the water passage, the refrigerant functions as an evaporating unit for evaporating the refrigerant.
 第1チラー19aの冷媒通路の出口には、第2冷却用膨張弁14cの入口側が接続されている。第2冷却用膨張弁14cは、第1チラー19aの冷媒通路から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する第2冷却用減圧部である。 入口 The outlet side of the refrigerant passage of the first chiller 19a is connected to the inlet side of the second cooling expansion valve 14c. The second cooling expansion valve 14c is a second cooling pressure reducing unit that reduces the pressure of the refrigerant flowing out of the refrigerant passage of the first chiller 19a and adjusts the flow rate of the refrigerant flowing downstream.
 第2冷却用膨張弁14cの出口には、第2チラー19bの冷媒通路の入口側が接続されている。第2チラー19bの基本的構成は、第1チラー19aと同様である。第2チラー19bは、冷媒通路を流通する低圧冷媒と水通路を流通する吸熱側熱媒体とを熱交換させて低圧冷媒を蒸発させ、低圧冷媒に吸熱作用を発揮させることによって吸熱用熱媒体を冷却する熱交換部である。 The inlet of the refrigerant passage of the second chiller 19b is connected to the outlet of the second cooling expansion valve 14c. The basic configuration of the second chiller 19b is the same as that of the first chiller 19a. The second chiller 19b exchanges heat between the low-pressure refrigerant flowing through the refrigerant passage and the heat-absorbing heat medium flowing through the water passage to evaporate the low-pressure refrigerant, and causes the low-pressure refrigerant to exhibit an endothermic effect, thereby forming a heat-absorbing heat medium. This is a heat exchange unit for cooling.
 第2チラー19bの冷媒通路の出口には、第2三方継手13bの他方の流入口側が接続されている。 出口 The other inlet side of the second three-way joint 13b is connected to the outlet of the refrigerant passage of the second chiller 19b.
 第2三方継手13bの流出口には、蒸発圧力調整弁20の入口側が接続されている。蒸発圧力調整弁20は、室内蒸発器18の着霜を抑制するために、室内蒸発器18における冷媒蒸発圧力を、予め定めた基準圧力以上に維持する機能を果たす。蒸発圧力調整弁20は、室内蒸発器18の出口側冷媒の圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構で構成されている。 流 The outlet side of the second three-way joint 13b is connected to the inlet side of the evaporation pressure regulating valve 20. The evaporation pressure adjusting valve 20 has a function of maintaining the refrigerant evaporation pressure in the indoor evaporator 18 at or above a predetermined reference pressure in order to suppress frost formation on the indoor evaporator 18. The evaporating pressure adjusting valve 20 is configured by a mechanical variable throttle mechanism that increases the valve opening as the pressure of the refrigerant on the outlet side of the indoor evaporator 18 increases.
 これにより、蒸発圧力調整弁20は、室内蒸発器18における冷媒蒸発温度を、室内蒸発器18の着霜を抑制可能な着霜抑制温度(本実施形態では、1℃)以上に維持している。さらに、蒸発圧力調整弁20は、第2三方継手13bよりも冷媒流れ下流側に配置されている。このため、蒸発圧力調整弁20は、第2チラー19bにおける冷媒蒸発温度についても、着霜抑制温度以上に維持している。 As a result, the evaporation pressure regulating valve 20 maintains the refrigerant evaporation temperature in the indoor evaporator 18 at a frost formation suppression temperature (1 ° C. in the present embodiment) capable of suppressing frost formation on the indoor evaporator 18. . Further, the evaporating pressure regulating valve 20 is arranged downstream of the second three-way joint 13b in the refrigerant flow. For this reason, the evaporation pressure regulating valve 20 also maintains the refrigerant evaporation temperature in the second chiller 19b at a temperature equal to or higher than the frost formation suppression temperature.
 蒸発圧力調整弁20の出口には、アキュムレータ21の入口側が接続されている。アキュムレータ21は、内部に流入した冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える気液分離器である。アキュムレータ21の気相冷媒出口には、圧縮機11の吸入口側が接続されている。 出口 The outlet of the evaporating pressure regulating valve 20 is connected to the inlet of the accumulator 21. The accumulator 21 is a gas-liquid separator that separates the gas-liquid of the refrigerant flowing into the inside and stores the surplus liquid-phase refrigerant in the cycle. The suction side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 21.
 以上の説明から明らかなように、第1三方継手13aは、水-冷媒熱交換器12の冷媒通路から流出した冷媒の流れを分岐する分岐部である。また、第2三方継手13bは、室内蒸発器18から流出した冷媒の流れと第2チラー19bから流出した冷媒の流れとを合流させて、圧縮機11の吸入側へ流出させる合流部である。 As is clear from the above description, the first three-way joint 13a is a branch portion that branches the flow of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12. Further, the second three-way joint 13 b is a junction where the flow of the refrigerant flowing out of the indoor evaporator 18 and the flow of the refrigerant flowing out of the second chiller 19 b are merged and flow out to the suction side of the compressor 11.
 次に、高温側熱媒体回路40について説明する。高温側熱媒体回路40は、高温側熱媒体を循環させる熱媒体循環回路である。高温側熱媒体としては、エチレングリコール、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液等を採用することができる。高温側熱媒体回路40には、水-冷媒熱交換器12の水通路、高温側熱媒体ポンプ41、ヒータコア42、高温側三方弁43、高温側ラジエータ44等が配置されている。 Next, the high-temperature side heat medium circuit 40 will be described. The high-temperature-side heat medium circuit 40 is a heat medium circulation circuit that circulates the high-temperature-side heat medium. As the high-temperature side heat medium, ethylene glycol, dimethylpolysiloxane, a solution containing a nanofluid, or the like, an antifreeze, or the like can be used. The high-temperature heat medium circuit 40 includes a water passage of the water-refrigerant heat exchanger 12, a high-temperature heat medium pump 41, a heater core 42, a high-temperature three-way valve 43, a high-temperature radiator 44, and the like.
 高温側熱媒体ポンプ41は、高温側熱媒体を水-冷媒熱交換器12の水通路の入口側へ圧送する水ポンプである。高温側熱媒体ポンプ41は、制御装置70から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動ポンプである。 The high-temperature heat medium pump 41 is a water pump for pumping the high-temperature heat medium to the inlet side of the water passage of the water-refrigerant heat exchanger 12. The high-temperature side heat medium pump 41 is an electric pump whose rotation speed (that is, pumping capacity) is controlled by a control voltage output from the control device 70.
 水-冷媒熱交換器12の水通路の出口には、ヒータコア42の熱媒体入口側が接続されている。ヒータコア42は、水-冷媒熱交換器12にて加熱された高温側熱媒体と室内蒸発器18を通過した送風空気とを熱交換させて、送風空気を加熱する熱交換器である。ヒータコア42は、室内空調ユニット30の空調ケース31内に配置されている。 熱 The outlet of the water passage of the water-refrigerant heat exchanger 12 is connected to the heat medium inlet side of the heater core 42. The heater core 42 is a heat exchanger that heats the blown air by exchanging heat between the high-temperature side heat medium heated by the water-refrigerant heat exchanger 12 and the blown air that has passed through the indoor evaporator 18. The heater core 42 is arranged inside the air conditioning case 31 of the indoor air conditioning unit 30.
 ヒータコア42の熱媒体出口には、高温側三方弁43の流入口側が接続されている。高温側三方弁43は、1つの流入口と、2つの流出口とを有し、2つの流出口の通路面積比を連続的に調整可能な電気式の三方流量調整弁である。高温側三方弁43は、制御装置70から出力される制御信号によって、その作動が制御される。 熱 The heat medium outlet of the heater core 42 is connected to the inlet side of the high temperature side three-way valve 43. The high temperature side three-way valve 43 is an electric three-way flow control valve having one inlet and two outlets and capable of continuously adjusting the passage area ratio of the two outlets. The operation of the high-temperature side three-way valve 43 is controlled by a control signal output from the control device 70.
 高温側三方弁43の一方の流出口には、高温側ラジエータ44の熱媒体入口側が接続されている。高温側三方弁43の他方の流出口には、高温側熱媒体ポンプ41の吸入口側が接続されている。従って、高温側三方弁43は、ヒータコア42から流出した高温側熱媒体のうち、高温側ラジエータ44へ流入させる流量と高温側ラジエータ44を迂回させて高温側熱媒体ポンプ41へ吸入させる流量との流量比を調整する機能を果たす。 The heat medium inlet side of the high-temperature radiator 44 is connected to one outlet of the high-temperature three-way valve 43. The suction port side of the high-temperature side heat medium pump 41 is connected to the other outlet of the high-temperature side three-way valve 43. Accordingly, the high-temperature side three-way valve 43 determines the flow rate of the high-temperature side heat medium flowing out of the heater core 42 into the high-temperature side radiator 44 and the flow rate of the high-temperature side heat medium pump 41 bypassing the high-temperature side radiator 44 and sucking into the high-temperature side heat medium pump 41. Performs the function of adjusting the flow ratio.
 高温側ラジエータ44は、ヒータコア42から流出した高温側熱媒体と図示しない外気ファンにより送風された外気とを熱交換させて、高温側熱媒体の有する熱を外気に放熱させる熱交換器である。 The high-temperature radiator 44 is a heat exchanger that exchanges heat between the high-temperature heat medium flowing out of the heater core 42 and the outside air blown by an outside air fan (not shown), and radiates heat of the high-temperature heat medium to the outside air.
 高温側ラジエータ44は、駆動装置室内の前方側に配置されている。このため、車両走行時には、高温側ラジエータ44に走行風を当てることができる。高温側ラジエータ44の熱媒体出口には、高温側熱媒体ポンプ41の吸入口側が接続されている。 (4) The high-temperature side radiator 44 is disposed on the front side in the drive device chamber. Therefore, when the vehicle is traveling, the traveling wind can be applied to the high-temperature side radiator 44. The heat medium outlet of the high temperature radiator 44 is connected to the suction port side of the high temperature heat medium pump 41.
 従って、高温側熱媒体回路40では、制御装置70が高温側熱媒体ポンプ41を作動させることにより、水-冷媒熱交換器12にて圧縮機11から吐出された冷媒と高温側熱媒体とを熱交換させて、高温側熱媒体を加熱することができる。さらに、ヒータコア42では、水-冷媒熱交換器12にて加熱された高温側熱媒体と送風空気とを熱交換させて、送風空気を加熱することができる。 Therefore, in the high-temperature side heat medium circuit 40, the control device 70 operates the high-temperature side heat medium pump 41, so that the refrigerant discharged from the compressor 11 in the water-refrigerant heat exchanger 12 and the high-temperature side heat medium are separated. The high-temperature side heat medium can be heated by heat exchange. Further, in the heater core 42, the high-temperature side heat medium heated in the water-refrigerant heat exchanger 12 and the blown air can be heat-exchanged to heat the blown air.
 つまり、本実施形態では、水-冷媒熱交換器12および高温側熱媒体回路40の各構成機器によって、圧縮機11から吐出された冷媒を熱源として、送風空気を加熱する加熱部が構成されている。 In other words, in the present embodiment, each component of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 40 constitutes a heating unit that heats the blown air using the refrigerant discharged from the compressor 11 as a heat source. I have.
 次に、温度調整側熱媒体回路50について説明する。温度調整側熱媒体回路50は、温度調整側熱媒体を循環させる熱媒体循環回路である。温度調整側熱媒体としては、高温側熱媒体と同様の流体を採用することができる。温度調整側熱媒体回路50には、第1チラー19aの水通路、温度調整側熱媒体ポンプ51、温度調整用熱交換部52等が配置されている。 Next, the temperature adjustment-side heat medium circuit 50 will be described. The temperature adjustment-side heat medium circuit 50 is a heat medium circulation circuit that circulates the temperature adjustment-side heat medium. The same fluid as the high-temperature-side heat medium can be used as the temperature-adjustment-side heat medium. In the temperature adjustment-side heat medium circuit 50, a water passage of the first chiller 19a, a temperature adjustment-side heat medium pump 51, a temperature adjustment heat exchange section 52, and the like are arranged.
 温度調整側熱媒体ポンプ51は、温度調整側熱媒体を第1チラー19aの水通路の入口側へ圧送する水ポンプである。温度調整側熱媒体ポンプ51の基本的構成は、高温側熱媒体ポンプ41と同様である。 The temperature adjustment-side heat medium pump 51 is a water pump that pumps the temperature adjustment-side heat medium to the inlet side of the water passage of the first chiller 19a. The basic configuration of the temperature adjustment side heat medium pump 51 is the same as that of the high temperature side heat medium pump 41.
 第1チラー19aの水通路の出口には、温度調整用熱交換部52の入口側が接続されている。温度調整用熱交換部52は、バッテリ80を形成する複数の電池セル81に接触するように配置された金属プレートによって形成された複数の熱媒体流路を有している。そして、熱媒体流路を流通する温調用熱媒体と電池セル81とを熱交換させることによって、バッテリ80の温度を調整する熱交換部である。 入口 The inlet side of the temperature adjusting heat exchange unit 52 is connected to the outlet of the water passage of the first chiller 19a. The temperature-adjusting heat exchanging section 52 has a plurality of heat medium passages formed by metal plates arranged to be in contact with a plurality of battery cells 81 forming the battery 80. The heat exchange unit is a heat exchange unit that adjusts the temperature of the battery 80 by exchanging heat between the battery cell 81 and the temperature control heat medium flowing through the heat medium flow path.
 このような温度調整用熱交換部52は、積層配置された電池セル81同士の間に熱媒体流路を配置したものを採用すればよい。また、温度調整用熱交換部52は、バッテリ80に一体的に形成されていてもよい。例えば、積層配置された電池セル81を収容する専用ケースに熱媒体流路を設けることによって、バッテリ80に一体的に形成されていてもよい。温度調整用熱交換部52の出口には、温度調整側熱媒体ポンプ51の吸入口側が接続されている。 As such a temperature-adjusting heat exchange unit 52, a unit in which a heat medium flow path is arranged between the battery cells 81 arranged in a stack may be adopted. Further, the temperature-adjusting heat exchange section 52 may be formed integrally with the battery 80. For example, the battery case may be formed integrally with the battery 80 by providing a heat medium flow path in a dedicated case for accommodating the stacked battery cells 81. The outlet of the temperature control heat exchange unit 52 is connected to the suction port side of the temperature control-side heat medium pump 51.
 従って、温度調整側熱媒体回路50では、制御装置70が温度調整側熱媒体ポンプ51を作動させることにより、第1チラー19aにて第1冷却用膨張弁14bから流出した冷媒と温度調整側熱媒体とを熱交換させることができる。これにより、温度調整側熱媒体の温度を調整することができる。さらに、温度調整用熱交換部52では、温度調整された温度調整側熱媒体とバッテリ80とを熱交換させて、バッテリ80の温度調整を行うことができる。 Therefore, in the temperature-adjustment-side heat medium circuit 50, the controller 70 operates the temperature-adjustment-side heat medium pump 51, so that the refrigerant flowing out of the first cooling expansion valve 14b in the first chiller 19a and the temperature adjustment-side heat Heat can be exchanged with the medium. Thereby, the temperature of the temperature adjustment-side heat medium can be adjusted. Further, in the temperature-adjusting heat exchanging section 52, the temperature of the battery 80 can be adjusted by exchanging heat between the temperature-adjusted heat medium whose temperature has been adjusted and the battery 80.
 つまり、本実施形態では、第1チラー19aおよび温度調整側熱媒体回路50の各構成機器によって、第1冷却用膨張弁14bから流出した冷媒によってバッテリ80の温度を調整する温度調整部が構成されている。また、温度調整側熱媒体は、温度調整側熱媒体であり、温度調整側熱媒体回路50は、温度調整側熱媒体を循環させる温度調整側熱媒体回路である。 That is, in the present embodiment, the respective components of the first chiller 19a and the temperature adjustment-side heat medium circuit 50 constitute a temperature adjustment unit that adjusts the temperature of the battery 80 by the refrigerant flowing out of the first cooling expansion valve 14b. ing. The temperature adjustment-side heat medium is a temperature adjustment-side heat medium, and the temperature adjustment-side heat medium circuit 50 is a temperature adjustment-side heat medium circuit that circulates the temperature adjustment-side heat medium.
 次に、吸熱側熱媒体回路60について説明する。吸熱側熱媒体回路60は、吸熱側熱媒体を循環させる熱媒体循環回路である。吸熱側熱媒体としては、高温側熱媒体と同様の流体を採用することができる。吸熱側熱媒体回路60には、第2チラー19bの水通路、吸熱側熱媒体ポンプ61、作動時に発熱する車載機器82に形成された冷却水通路、吸熱側三方弁63、吸熱側ラジエータ64等が配置されている。 Next, the heat absorption side heat medium circuit 60 will be described. The heat absorption side heat medium circuit 60 is a heat medium circulation circuit that circulates the heat absorption side heat medium. As the heat absorbing side heat medium, the same fluid as the high temperature side heat medium can be adopted. The heat absorption side heat medium circuit 60 includes a water passage of the second chiller 19 b, a heat absorption side heat medium pump 61, a cooling water passage formed in a vehicle-mounted device 82 that generates heat during operation, a heat absorption side three-way valve 63, a heat absorption side radiator 64, and the like. Is arranged.
 吸熱側熱媒体ポンプ61は、吸熱側熱媒体を第2チラー19bの水通路の入口側へ圧送する水ポンプである。温度調整側熱媒体ポンプ51の基本的構成は、高温側熱媒体ポンプ41と同様である。 熱 The heat absorption side heat medium pump 61 is a water pump that pumps the heat absorption side heat medium to the inlet side of the water passage of the second chiller 19b. The basic configuration of the temperature adjustment side heat medium pump 51 is the same as that of the high temperature side heat medium pump 41.
 第2チラー19bの水通路の出口には、車載機器82の冷却水通路の入口側が接続されている。車載機器82は、作動時に発生させた熱を冷凍サイクル装置10の冷媒に吸熱させる吸熱対象物である。このような車載機器としては、走行用の駆動力を出力する電動モータ、電動モータに供給させる電力の周波数を変換するインバータ、バッテリ80に電力を充電するための充電器等を採用することができる。 入口 The outlet side of the water passage of the second chiller 19b is connected to the inlet side of the cooling water passage of the vehicle-mounted device 82. The on-vehicle device 82 is a heat-absorbing target that causes the refrigerant of the refrigeration cycle device 10 to absorb heat generated during operation. As such an in-vehicle device, an electric motor that outputs driving force for traveling, an inverter that converts the frequency of electric power supplied to the electric motor, a charger that charges the battery 80 with electric power, and the like can be used. .
 車載機器82の冷却水通路の入口には、吸熱側三方弁63の流入口側が接続されている。吸熱側三方弁63の基本的構成は、高温側三方弁43と同様である。 流 The inlet of the heat-absorbing three-way valve 63 is connected to the inlet of the cooling water passage of the vehicle-mounted device 82. The basic configuration of the heat absorption side three-way valve 63 is the same as that of the high temperature side three-way valve 43.
 吸熱側三方弁63の一方の流出口には、吸熱側ラジエータ64の熱媒体入口側が接続されている。吸熱側三方弁63の他方の流出口には、吸熱側熱媒体ポンプ61の吸入口側が接続されている。従って、吸熱側三方弁63は、車載機器82の冷却水通路から流出した吸熱側熱媒体のうち、吸熱側ラジエータ64へ流入させる流量と吸熱側ラジエータ64を迂回させて吸熱側熱媒体ポンプ61へ吸入させる流量との流量比を調整する機能を果たす。 熱 The heat medium inlet side of the heat absorbing radiator 64 is connected to one outlet of the heat absorbing side three-way valve 63. The other outlet of the three-way valve 63 on the heat absorption side is connected to the suction port side of the heat medium pump 61 on the heat absorption side. Accordingly, the heat-absorbing side three-way valve 63 supplies the heat-absorbing-side heat medium pump 61 to the heat-absorbing-side heat medium pump 61 by bypassing the heat-absorbing-side radiator 64 and the flow rate of the heat-absorbing-side heat medium flowing out of the cooling water passage of the vehicle-mounted device 82. It has the function of adjusting the flow ratio with the flow to be sucked.
 吸熱側ラジエータ64は、車載機器82の冷却水通路から流出した冷媒と図示しない外気ファンにより送風された外気とを熱交換させて、温度調整側熱媒体の有する熱を外気に放熱させる熱交換器である。 The heat-absorbing radiator 64 exchanges heat between the refrigerant flowing out of the cooling water passage of the on-vehicle equipment 82 and the outside air blown by an outside air fan (not shown), and radiates the heat of the temperature-adjusting heat medium to the outside air. It is.
 吸熱側ラジエータ64は、駆動装置室内の前方側に配置されている。このため、車両走行時には、吸熱側ラジエータ64に走行風を当てることができる。従って、吸熱側ラジエータ64は、高温側ラジエータ44と一体的に形成されていてもよい。吸熱側ラジエータ64の熱媒体出口には、吸熱側熱媒体ポンプ61の吸入口側が接続されている。 (4) The heat-absorbing radiator 64 is disposed on the front side in the drive device room. Therefore, during traveling of the vehicle, traveling wind can be applied to the heat absorbing radiator 64. Therefore, the heat-absorbing radiator 64 may be formed integrally with the high-temperature radiator 44. The suction medium side of the heat absorption side heat medium pump 61 is connected to the heat medium outlet of the heat absorption side radiator 64.
 従って、吸熱側熱媒体回路60では、制御装置70が吸熱側熱媒体ポンプ61を作動させることにより、第2チラー19bにて第2冷却用膨張弁14cから流出した冷媒と吸熱側熱媒体とを熱交換させ、冷媒を蒸発させて吸熱側熱媒体を冷却することができる。さらに、冷却された吸熱側熱媒体を車載機器82の冷却水通路を流通させることで、車載機器82を冷却することができる。 Therefore, in the heat absorbing side heat medium circuit 60, the control device 70 operates the heat absorbing side heat medium pump 61, so that the refrigerant flowing out of the second cooling expansion valve 14c and the heat absorbing side heat medium in the second chiller 19b. Heat is exchanged, and the refrigerant is evaporated to cool the heat absorbing side heat medium. Further, by flowing the cooled heat absorbing side heat medium through the cooling water passage of the vehicle-mounted device 82, the vehicle-mounted device 82 can be cooled.
 つまり、本実施形態では、第2チラー19bおよび吸熱側熱媒体回路60の各構成機器によって、第2冷却用膨張弁14cから流出した冷媒を蒸発させて車載機器82を冷却する吸熱部が構成されている。 That is, in the present embodiment, each component of the second chiller 19b and the heat absorbing side heat medium circuit 60 constitutes a heat absorbing portion that evaporates the refrigerant flowing out of the second cooling expansion valve 14c and cools the vehicle-mounted device 82. ing.
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された送風空気を車室内へ吹き出すためのものである。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 30 will be described. The indoor air-conditioning unit 30 blows out the blast air whose temperature has been adjusted by the refrigeration cycle device 10 into the vehicle interior. The indoor air-conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
 室内空調ユニット30は、図1に示すように、その外殻を形成する空調ケース31内に形成された空気通路内に送風機32、室内蒸発器18、ヒータコア42等を収容したものである。 As shown in FIG. 1, the indoor air-conditioning unit 30 houses the blower 32, the indoor evaporator 18, the heater core 42, and the like in an air passage formed in an air-conditioning case 31 forming an outer shell.
 空調ケース31は、車室内に送風される送風空気の空気通路を形成している。空調ケース31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。空調ケース31の送風空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、空調ケース31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。 The air-conditioning case 31 forms an air passage for blowing air blown into the vehicle interior. The air-conditioning case 31 has a certain degree of elasticity and is formed of a resin (for example, polypropylene) having excellent strength. An inside / outside air switching device 33 is disposed on the most upstream side of the airflow of the air conditioning case 31. The inside / outside air switching device 33 switches and introduces inside air (vehicle interior air) and outside air (vehicle outside air) into the air conditioning case 31.
 内外気切替装置33は、空調ケース31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、制御装置70から出力される制御信号によって、その作動が制御される。 The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, and the inside air introduction air volume and the outside air. Is to change the rate of introduction with the amount of air introduced. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The operation of the electric actuator is controlled by a control signal output from the control device 70.
 内外気切替装置33の送風空気流れ下流側には、送風機32が配置されている。送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する。送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。送風機32は、制御装置70から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 A blower 32 is disposed downstream of the inside / outside air switching device 33 in the blown air flow. The blower 32 blows the air taken in through the inside / outside air switching device 33 toward the vehicle interior. The blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The rotation speed (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the control device 70.
 送風機32の送風空気流れ下流側には、室内蒸発器18、ヒータコア42が、送風空気流れに対して、この順に配置されている。つまり、室内蒸発器18は、ヒータコア42よりも、送風空気流れ上流側に配置されている。 室内 On the downstream side of the blown air flow of the blower 32, the indoor evaporator 18 and the heater core 42 are arranged in this order with respect to the blown air flow. That is, the indoor evaporator 18 is arranged on the upstream side of the flow of the blown air from the heater core 42.
 空調ケース31内には、室内蒸発器18通過後の送風空気を、ヒータコア42を迂回して流す冷風バイパス通路35が設けられている。空調ケース31内の室内蒸発器18の送風空気流れ下流側であって、かつ、ヒータコア42の送風空気流れ上流側には、エアミックスドア34が配置されている。 冷 A cool air bypass passage 35 is provided in the air conditioning case 31 to allow the air blown after passing through the indoor evaporator 18 to bypass the heater core 42. An air mix door 34 is arranged on the downstream side of the blown air flow of the indoor evaporator 18 in the air conditioning case 31 and on the upstream side of the blown air flow of the heater core 42.
 エアミックスドア34は、室内蒸発器18通過後の送風空気のうち、ヒータコア42側を通過する送風空気の風量と冷風バイパス通路35を通過させる送風空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア34は、エアミックスドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、制御装置70から出力される制御信号によって、その作動が制御される。 The air mix door 34 adjusts a flow rate ratio of a flow rate of the blown air passing through the heater core 42 and a flow rate of the blown air passing through the cool air bypass passage 35 among the blown air after passing through the indoor evaporator 18. Department. The air mix door 34 is driven by an electric actuator for the air mix door. The operation of the electric actuator is controlled by a control signal output from the control device 70.
 空調ケース31内のヒータコア42および冷風バイパス通路35の送風空気流れ下流側には、混合空間が配置されている。混合空間は、ヒータコア42にて加熱された送風空気と冷風バイパス通路35を通過して加熱されていない送風空気とを混合させる空間である。 {Circle around (4)} The mixing space is disposed downstream of the air flow of the heater core 42 and the cool air bypass passage 35 in the air conditioning case 31. The mixing space is a space for mixing the blast air heated by the heater core 42 and the blast air that has not passed through the cool air bypass passage 35 and is not heated.
 さらに、空調ケース31の送風空気流れ下流部には、混合空間にて混合された送風空気(すなわち、空調風)を、空調対象空間である車室内へ吹き出すための開口穴が配置されている。 Furthermore, an opening hole for blowing out the blast air mixed in the mixing space (that is, the conditioned air) into the vehicle interior, which is a space to be air-conditioned, is arranged downstream of the blast air flow of the air conditioning case 31.
 この開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 開口 As the opening, a face opening, a foot opening, and a defroster opening (all not shown) are provided. The face opening hole is an opening hole for blowing out conditioned air toward the upper body of the occupant in the passenger compartment. The foot opening hole is an opening hole for blowing out conditioned air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing out conditioned air toward the inner surface of the vehicle front window glass.
 これらのフェイス開口穴、フット開口穴、およびデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 The face opening, the foot opening, and the defroster opening are respectively formed by a face opening, a foot opening, and a defroster opening provided in the vehicle cabin through ducts forming air passages. )It is connected to the.
 従って、エアミックスドア34が、ヒータコア42を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。そして、各吹出口から車室内へ吹き出される送風空気(空調風)の温度が調整される。 Therefore, the temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air flow ratio of the air flow passing through the heater core 42 and the air flow passing through the cool air bypass passage 35 by the air mixing door 34. Then, the temperature of the blown air (conditioned air) blown out from each outlet into the vehicle interior is adjusted.
 また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイスドア、フットドア、およびデフロスタドア(いずれも図示せず)が配置されている。フェイスドアは、フェイス開口穴の開口面積を調整する。フットドアは、フット開口穴の開口面積を調整する。デフロスタドアは、フロスタ開口穴の開口面積を調整する。 フ ェ イ ス Face doors, foot doors, and defroster doors (all not shown) are disposed on the upstream side of the airflow from the face opening, the foot opening, and the defroster opening. The face door adjusts the opening area of the face opening hole. The foot door adjusts the opening area of the foot opening hole. The defroster door adjusts the opening area of the froster opening hole.
 これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替装置を構成する。これらのドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。この電動アクチュエータも、制御装置70から出力される制御信号によって、その作動が制御される。 フ ェ イ ス These face doors, foot doors and defroster doors constitute an outlet mode switching device for switching the outlet mode. These doors are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction therewith. The operation of this electric actuator is also controlled by a control signal output from the control device 70.
 吹出口モード切替装置によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 吹 Specific examples of the outlet mode switched by the outlet mode switching device include a face mode, a bi-level mode, and a foot mode.
 フェイスモードは、フェイス吹出口を全開としてフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開とするとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。 The face mode is an outlet mode in which the face outlet is fully opened and air is blown from the face outlet toward the upper body of the passenger in the vehicle. The bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened to blow air toward the upper body and feet of the occupant in the vehicle. The foot mode is an outlet mode in which the foot outlet is fully opened, the defroster outlet is opened by a small opening, and air is mainly blown out from the foot outlet.
 さらに、乗員が操作パネル701に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタモードに切り替えることもできる。デフロスタモードは、デフロスタ吹出口を全開としてデフロスタ吹出口からフロント窓ガラス内面に空気を吹き出す吹出口モードである。 Furthermore, the occupant can switch to the defroster mode by manually operating the blowout mode changeover switch provided on the operation panel 701. The defroster mode is an outlet mode in which the defroster outlet is fully opened and air is blown from the defroster outlet to the inner surface of the windshield.
 次に、本実施形態の電気制御部の概要について説明する。制御装置70は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、14a~14c、32、41、43、51、61、63等の作動を制御する。 Next, an outline of the electric control unit of the present embodiment will be described. The control device 70 includes a well-known microcomputer including a CPU, a ROM, a RAM, and the like, and its peripheral circuits. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and various control target devices 11, 14a to 14c, 32, 41, 43, 51, 61, 63 connected to the output side. And the like.
 また、制御装置70の入力側には、図2のブロック図に示すように、内気温センサ71、外気温センサ72、日射センサ73、第1~第3冷媒温度センサ74a~74c、蒸発器温度センサ74f、第1、第2冷媒圧力センサ75a、75b、高温側熱媒体温度センサ76a、温度調整側熱媒体温度センサ76b、吸熱側熱媒体温度センサ76c、バッテリ温度センサ78、空調風温度センサ79等が接続されている。そして、制御装置70には、これらのセンサ群の検出信号が入力される。 On the input side of the control device 70, as shown in the block diagram of FIG. 2, an internal air temperature sensor 71, an external air temperature sensor 72, a solar radiation sensor 73, first to third refrigerant temperature sensors 74a to 74c, an evaporator temperature. Sensor 74f, first and second refrigerant pressure sensors 75a and 75b, high-temperature side heat medium temperature sensor 76a, temperature adjustment side heat medium temperature sensor 76b, heat absorption side heat medium temperature sensor 76c, battery temperature sensor 78, air conditioning air temperature sensor 79 Etc. are connected. Then, the detection signals of these sensor groups are input to the control device 70.
 内気温センサ71は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ72は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ73は、車室内へ照射される日射量Tsを検出する日射量検出部である。 The internal air temperature sensor 71 is an internal air temperature detecting unit that detects the vehicle interior temperature (internal air temperature) Tr. The outside air temperature sensor 72 is an outside air temperature detection unit that detects a vehicle outside temperature (outside air temperature) Tam. The solar radiation sensor 73 is a solar radiation amount detecting unit that detects the amount of solar radiation Ts emitted to the vehicle interior.
 第1冷媒温度センサ74aは、圧縮機11から吐出された冷媒の温度T1を検出する第1冷媒温度検出部である。第2冷媒温度センサ74bは、水-冷媒熱交換器12の冷媒通路から流出した冷媒の温度T2を検出する第2冷媒温度検出部である。第3冷媒温度センサ74cは、第2チラー19bの冷媒通路から流出した冷媒の温度T3を検出する第3冷媒温度検出部である。 The first refrigerant temperature sensor 74a is a first refrigerant temperature detecting unit that detects the temperature T1 of the refrigerant discharged from the compressor 11. The second refrigerant temperature sensor 74b is a second refrigerant temperature detector that detects the temperature T2 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12. The third refrigerant temperature sensor 74c is a third refrigerant temperature detector that detects the temperature T3 of the refrigerant flowing out of the refrigerant passage of the second chiller 19b.
 蒸発器温度センサ74fは、室内蒸発器18における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ74fでは、具体的に、室内蒸発器18の熱交換フィン温度を検出している。 The evaporator temperature sensor 74f is an evaporator temperature detector that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 18. Specifically, the evaporator temperature sensor 74f of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 18.
 第1冷媒圧力センサ75aは、水-冷媒熱交換器12の冷媒通路から流出した冷媒の圧力P1を検出する第1冷媒圧力検出部である。第2冷媒圧力センサ75bは、第2チラー19bの冷媒通路から流出した冷媒の圧力P2を検出する第2冷媒圧力検出部である。 The first refrigerant pressure sensor 75a is a first refrigerant pressure detecting unit that detects the pressure P1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12. The second refrigerant pressure sensor 75b is a second refrigerant pressure detector that detects the pressure P2 of the refrigerant flowing out of the refrigerant passage of the second chiller 19b.
 高温側熱媒体温度センサ76aは、水-冷媒熱交換器12の水通路から流出してヒータコア42へ流入する高温側熱媒体の温度である高温側熱媒体温度TWHを検出する高温側熱媒体温度検出部である。 The high-temperature heat medium temperature sensor 76a detects a high-temperature heat medium temperature TWH that is the temperature of the high-temperature heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 and flowing into the heater core 42. It is a detection unit.
 温度調整側熱媒体温度センサ76bは、第1チラー19aの水通路から流出して温度調整用熱交換部52へ流入する温度調整側熱媒体の温度である温度調整側熱媒体温度TWC1を検出する温度調整側熱媒体温度検出部である。 The temperature adjustment-side heat medium temperature sensor 76b detects the temperature adjustment-side heat medium temperature TWC1, which is the temperature of the temperature adjustment-side heat medium flowing out of the water passage of the first chiller 19a and flowing into the temperature adjustment heat exchange section 52. It is a temperature adjusting-side heat medium temperature detecting section.
 吸熱側熱媒体温度センサ76cは、第2チラー19bの水通路から流出して車載機器82の冷却水通路へ流入する吸熱側熱媒体の温度である吸熱側熱媒体温度TWC2を検出する吸熱側熱媒体温度検出部である。 The heat absorption side heat medium temperature sensor 76c detects the heat absorption side heat medium temperature TWC2 which is the temperature of the heat absorption side heat medium flowing out of the water passage of the second chiller 19b and flowing into the cooling water passage of the vehicle-mounted device 82. It is a medium temperature detecting unit.
 バッテリ温度センサ78は、バッテリ80の温度であるバッテリ温度TBを検出するバッテリ温度検出部である。本実施形態のバッテリ温度センサ78は、複数の温度センサを有し、バッテリ80の複数の箇所の温度を検出している。このため、制御装置70では、バッテリ80の各部の温度差を検出することもできる。さらに、バッテリ温度TBとしては、複数の温度センサの検出値の平均値を採用している。 The battery temperature sensor 78 is a battery temperature detection unit that detects the battery temperature TB that is the temperature of the battery 80. The battery temperature sensor 78 of the present embodiment has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 80. Therefore, the control device 70 can also detect the temperature difference between the components of the battery 80. Further, as the battery temperature TB, an average value of detection values of a plurality of temperature sensors is employed.
 空調風温度センサ79は、混合空間から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The air-conditioning air temperature sensor 79 is an air-conditioning air temperature detecting unit that detects the temperature of the air blown from the mixing space into the vehicle compartment TAV.
 さらに、制御装置70の入力側には、車室内前部の計器盤付近に配置された操作パネル701が接続され、この操作パネル701に設けられた各種操作スイッチからの操作信号が入力される。操作パネル701に設けられた各種操作スイッチとしては、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ、吹出モード切替スイッチ等がある。 {Circle around (4)} An input panel of the control device 70 is connected to an operation panel 701 disposed near the instrument panel in the front of the vehicle compartment, and receives operation signals from various operation switches provided on the operation panel 701. Various operation switches provided on the operation panel 701 include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, a blowout mode switching switch, and the like.
 オートスイッチは、自動空調運転を設定あるいは解除するための操作部である。エアコンスイッチは、室内蒸発器18で送風空気の冷却を行うことを要求するための操作部である。風量設定スイッチは、送風機32の風量をマニュアル設定するための操作部である。温度設定スイッチは、車室内の設定温度Tsetを設定するための操作部である。吹出モード切替スイッチは、吹出モードをマニュアル設定するための操作部である。 The auto switch is an operation unit for setting or canceling the automatic air-conditioning operation. The air conditioner switch is an operation unit for requesting that the blown air be cooled by the indoor evaporator 18. The air volume setting switch is an operation unit for manually setting the air volume of the blower 32. The temperature setting switch is an operation unit for setting a set temperature Tset in the vehicle compartment. The blowing mode changeover switch is an operation unit for manually setting the blowing mode.
 なお、本実施形態の制御装置70は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。従って、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 The control device 70 according to the present embodiment is configured such that a control unit that controls various control target devices connected to the output side is integrally formed. Therefore, the configuration (hardware and software) that controls the operation of each control target device constitutes a control unit that controls the operation of each control target device.
 例えば、制御装置70のうち、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を制御する構成は、圧縮機制御部70aを構成している。また、冷房用膨張弁14a、第1冷却用膨張弁14b、第2冷却用膨張弁14c等の作動を制御する構成は、減圧部制御部70bを構成している。 For example, of the control device 70, the configuration that controls the refrigerant discharge capacity of the compressor 11 (specifically, the rotation speed of the compressor 11) constitutes the compressor control unit 70a. The configuration for controlling the operations of the cooling expansion valve 14a, the first cooling expansion valve 14b, the second cooling expansion valve 14c, and the like constitutes a pressure reducing unit control unit 70b.
 次に、上記構成における本実施形態の作動について説明する。本実施形態の車両用空調装置1は、車室内の空調を行う機能、およびバッテリ80の温度を調整する機能を有している。そのため、冷凍サイクル装置10では、冷媒回路を切り替えて、冷房温調モード、暖房温調モード、単独冷却モード、単独暖機モード、単独冷房モード、単独暖房モードといった運転モードを切り替える。 Next, the operation of the present embodiment in the above configuration will be described. The vehicle air conditioner 1 according to the present embodiment has a function of performing air conditioning of the vehicle interior and a function of adjusting the temperature of the battery 80. Therefore, in the refrigeration cycle apparatus 10, the refrigerant circuit is switched to switch between operation modes such as a cooling temperature control mode, a heating temperature control mode, a single cooling mode, a single warming mode, a single cooling mode, and a single heating mode.
 冷房温調モードは、車室内の冷房を行うために送風空気を冷却するとともに、バッテリ80の温度調整を行う運転モードである。冷房温調モードには、送風空気を冷却するとともに、バッテリ80の冷却を行う冷房冷却モード、および送風空気を冷却するとともに、バッテリ80を加熱して暖機を行う冷房暖機モードがある。 (4) The cooling temperature control mode is an operation mode in which the blast air is cooled in order to perform cooling in the vehicle compartment and the temperature of the battery 80 is adjusted. The cooling temperature control mode includes a cooling cooling mode for cooling the blast air and cooling the battery 80, and a cooling warming mode for cooling the blast air and heating the battery 80 to warm it up.
 暖房温調モードは、車室内の暖房を行うために送風空気を加熱するとともに、バッテリ80の温度調整を行う運転モードである。暖房温調モードには、送風空気を加熱するとともに、バッテリ80の冷却を行う暖房冷却モード、および送風空気を加熱するとともに、バッテリ80を加熱して暖機を行う暖房暖機モードがある。 The heating temperature control mode is an operation mode in which the blast air is heated to heat the vehicle interior and the temperature of the battery 80 is adjusted. The heating temperature control mode includes a heating / cooling mode in which the blast air is heated and the battery 80 is cooled, and a heating and warming mode in which the blast air is heated and the battery 80 is heated to warm up.
 単独冷却モードは、送風空気の温度調整を行うことなく、バッテリ80の冷却を行う運転モードである。単独暖機モードは、送風空気の温度調整を行うことなく、バッテリ80を加熱して暖機を行う運転モードである。 The single cooling mode is an operation mode in which the battery 80 is cooled without adjusting the temperature of the blown air. The single warm-up mode is an operation mode in which the battery 80 is heated and warmed up without adjusting the temperature of the blown air.
 単独冷房モードは、バッテリ80の温度調整を行うことなく、車室内の冷房を行うために送風空気を冷却する運転モードである。単独暖房モードは、バッテリ80の温度調整を行うことなく、車室内の暖房を行うために送風空気を加熱する運転モードである。 The single cooling mode is an operation mode in which the blown air is cooled in order to perform cooling in the vehicle compartment without adjusting the temperature of the battery 80. The single heating mode is an operation mode in which the blast air is heated in order to heat the vehicle interior without adjusting the temperature of the battery 80.
 これらの運転モードの切り替えは、制御装置70に予め記憶された制御プログラムが実行されることによって行われる。この制御プログラムでは、所定の制御周期毎に上述したセンサ群の検出信号、および操作パネル701の操作信号を読み込む。そして、読み込まれた検出信号および操作信号を用いて、車室内へ送風される送風空気の目標吹出温度TAOを決定する。 運 転 These operation modes are switched by executing a control program stored in the control device 70 in advance. In this control program, the detection signal of the above-described sensor group and the operation signal of the operation panel 701 are read every predetermined control cycle. Then, the target blowing temperature TAO of the blown air blown into the vehicle compartment is determined using the read detection signal and operation signal.
 具体的には、目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内の設定温度である。Trは内気センサによって検出された車室内温度である。Tamは外気センサによって検出された車室外温度である。Tsは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
Specifically, the target outlet temperature TAO is calculated by the following equation F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C (F1)
Tset is a set temperature in the vehicle cabin set by the temperature setting switch. Tr is a vehicle interior temperature detected by the inside air sensor. Tam is the vehicle outside temperature detected by the outside air sensor. Ts is the amount of solar radiation detected by the solar radiation sensor. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 さらに、制御プログラムでは、目標吹出温度TAO、バッテリ温度センサ78によって検出されたバッテリ温度TB、および操作パネル701の操作信号等に基づいて、運転モードを切り替える。 (4) In the control program, the operation mode is switched based on the target outlet temperature TAO, the battery temperature TB detected by the battery temperature sensor 78, the operation signal of the operation panel 701, and the like.
 具体的には、オートスイッチの操作によって自動空調運転が設定された状態で、エアコンスイッチが投入されており、外気温Tamが予め定めた基準冷房温度Kα以上となっている際には、冷房温調モードでの運転を行う。そして、冷房温調モードでは、バッテリ温度TBが予め定めた基準上限温度KTBH(本実施形態では、40℃)以上になると、冷房冷却モードに切り替えられる。また、バッテリ温度TBが予め定めた基準下限温度KTBL(本実施形態では、20℃)以下になると、冷房暖機モードに切り替えられる。 Specifically, when the automatic air-conditioning operation is set by operating the auto switch and the air-conditioning switch is turned on and the outside temperature Tam is equal to or higher than the predetermined reference cooling temperature Kα, the cooling temperature Operate in tuning mode. In the cooling temperature control mode, when the battery temperature TB becomes equal to or higher than a predetermined reference upper limit temperature KTBH (40 ° C. in the present embodiment), the mode is switched to the cooling cooling mode. When the battery temperature TB becomes equal to or lower than a predetermined reference lower limit temperature KTBL (20 ° C. in the present embodiment), the mode is switched to the cooling / warm-up mode.
 また、オートスイッチの操作によって自動空調運転が設定された状態で、エアコンスイッチが投入されておらず、外気温Tamが予め定めた基準暖房温度Kβ以下となっている際には、暖房温調モードでの運転を行う。暖房温調モードでは、バッテリ温度TBが基準上限温度KTBH以上になると、暖房冷却モードに切り替えられる。また、バッテリ温度TBが基準下限温度KTBL以下になると、暖房暖機モードに切り替えられる。 When the air conditioner switch is not turned on and the outside air temperature Tam is equal to or lower than the predetermined reference heating temperature Kβ in a state where the automatic air conditioning operation is set by operating the auto switch, the heating temperature control mode is set. Driving at. In the heating temperature control mode, when the battery temperature TB becomes equal to or higher than the reference upper limit temperature KTBH, the mode is switched to the heating / cooling mode. When the battery temperature TB falls below the reference lower limit temperature KTBL, the mode is switched to the heating warm-up mode.
 また、オートスイッチの操作によって自動空調運転が解除されている際等のように、車室内の空調を行わない場合には、単独温調モードでの運転を行う。単独温調モードでは、バッテリ温度TBが基準上限温度KTBH以上になると、単独冷却モードに切り替えられる。また、バッテリ温度TBが基準下限温度KTBL以下になると、単独暖機モードに切り替えられる。 When the air conditioning in the vehicle compartment is not performed, such as when the automatic air conditioning operation is canceled by operating the auto switch, the operation is performed in the single temperature control mode. In the single temperature control mode, when the battery temperature TB becomes equal to or higher than the reference upper limit temperature KTBH, the mode is switched to the single cooling mode. When the battery temperature TB falls below the reference lower limit temperature KTBL, the mode is switched to the single warm-up mode.
 ここで、バッテリ80の温度は、車室内の空調を行うか否かによらず、車両システムが起動している際には、常時適切な温度範囲内に維持されていることが望ましい。このため、車両システムが起動している際には、冷凍サイクル装置10は、バッテリ80の温度調整を行うことのできる運転モード(本実施形態では、冷房温調モード、暖房温調モード、単独冷却モード、単独暖機モード)で作動していることが望ましい。 Here, it is desirable that the temperature of the battery 80 is always maintained within an appropriate temperature range when the vehicle system is activated, regardless of whether or not the vehicle compartment is air-conditioned. For this reason, when the vehicle system is activated, the refrigeration cycle device 10 operates in the operation mode in which the temperature of the battery 80 can be adjusted (in the present embodiment, the cooling temperature adjustment mode, the heating temperature adjustment mode, the individual cooling mode). Mode, or a single warm-up mode).
 そこで、本実施形態の制御プログラムでは、予め定めた運転条件が成立した際に、単独冷却モードおよび単独暖機モードの運転に切り替えるようにしている。以下、各運転モードの詳細作動について説明する。 Therefore, in the control program of the present embodiment, when a predetermined operating condition is satisfied, the operation is switched to the single cooling mode or the single warm-up mode. Hereinafter, the detailed operation of each operation mode will be described.
 (1)冷房温調モード
 冷房温調モードでは、制御装置70が、冷房用膨張弁14a、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cを、冷媒減圧作用を発揮する絞り状態とする。また、制御装置70は、予め定めた冷房温調モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41、温度調整側熱媒体ポンプ51、および吸熱側熱媒体ポンプ61の作動を制御する。
(1) Cooling Temperature Control Mode In the cooling temperature control mode, the control device 70 sets the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c to the throttle state in which the refrigerant depressurizes. I do. Further, the control device 70 operates the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the cooling temperature control mode. Control.
 また、制御装置70は、ヒータコア42から流出した高温側熱媒体が高温側ラジエータ44の入口側へ流出するように、高温側三方弁43の作動を制御する。 The control device 70 controls the operation of the high-temperature side three-way valve 43 so that the high-temperature side heat medium flowing out of the heater core 42 flows out to the inlet side of the high-temperature side radiator 44.
 また、制御装置70は、車載機器82が適切な温度に冷却されるように吸熱側三方弁63の作動を制御する。より具体的には、吸熱側熱媒体温度センサ76cによって検出された吸熱側熱媒体温度TWC2が、予め定めた基準吸熱側熱媒体温度KTWC2に近づくように、吸熱側三方弁63の作動を制御する。 The control device 70 controls the operation of the heat-absorbing three-way valve 63 so that the vehicle-mounted device 82 is cooled to an appropriate temperature. More specifically, the operation of the heat-absorbing three-way valve 63 is controlled such that the heat-absorbing-side heat medium temperature TWC2 detected by the heat-absorbing-side heat medium temperature sensor 76c approaches a predetermined reference heat-absorbing-side heat medium temperature KTWC2. .
 これにより、冷房温調モードの冷凍サイクル装置10では、圧縮機11の吐出口、水-冷媒熱交換器12、第1三方継手13a、冷房用膨張弁14a、室内蒸発器18、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thus, in the refrigeration cycle apparatus 10 in the cooling temperature control mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the first three-way joint 13a, the cooling expansion valve 14a, the indoor evaporator 18, and the second three-way joint 13b, a refrigeration cycle in which the refrigerant circulates in the order of the evaporation pressure adjusting valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
 同時に、圧縮機11の吐出口、水-冷媒熱交換器12、第1三方継手13a、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 At the same time, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the first three-way joint 13a, the first cooling expansion valve 14b, the first chiller 19a, the second cooling expansion valve 14c, the second chiller 19b, (2) A refrigeration cycle in which the refrigerant circulates in the order of the three-way joint 13b, the evaporating pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
 つまり、冷房温調モードの冷凍サイクル装置10では、冷房用膨張弁14a、室内蒸発器18の順に冷媒が流れる経路、並びに、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19bの順に冷媒が流れる経路が、冷媒流れに対して並列的に接続される冷媒回路に切り替えられる。 That is, in the refrigeration cycle apparatus 10 in the cooling temperature control mode, the refrigerant flows through the cooling expansion valve 14a and the indoor evaporator 18 in this order, as well as the first cooling expansion valve 14b, the first chiller 19a, and the second cooling expansion. The path in which the refrigerant flows in the order of the valve 14c and the second chiller 19b is switched to a refrigerant circuit connected in parallel to the refrigerant flow.
 この回路構成で、制御装置70は、各制御対象機器の作動を適宜制御する。例えば、圧縮機11については、蒸発器温度センサ74fによって検出された蒸発器温度Tefinが目標蒸発器温度TEOに近づくように、回転数(すなわち、冷媒吐出能力)を制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of each control target device. For example, for the compressor 11, the number of revolutions (that is, the refrigerant discharge capacity) is controlled such that the evaporator temperature Tefin detected by the evaporator temperature sensor 74f approaches the target evaporator temperature TEO.
 目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め制御装置70に記憶された制御マップを参照して決定される。この制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発器温度TEOが低下するように決定する。 The target evaporator temperature TEO is determined based on the target outlet temperature TAO with reference to a control map stored in the control device 70 in advance. In this control map, the target evaporator temperature TEO is determined to decrease as the target outlet temperature TAO decreases.
 また、冷房用膨張弁14aについては、水-冷媒熱交換器12の冷媒通路から流出した冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように、絞り開度を制御する。 (4) The expansion opening of the cooling expansion valve 14a is controlled so that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1.
 過冷却度SC1は、第2冷媒温度センサ74bによって検出された温度T2および第1冷媒圧力センサ75aによって検出された圧力P1から算定される。目標過冷却度SCO1は、外気温Tamに基づいて、予め制御装置70に記憶された制御マップを参照して決定される。この制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO1を決定する。 The degree of supercooling SC1 is calculated from the temperature T2 detected by the second refrigerant temperature sensor 74b and the pressure P1 detected by the first refrigerant pressure sensor 75a. The target degree of supercooling SCO1 is determined based on the outside temperature Tam with reference to a control map stored in the control device 70 in advance. In this control map, the target degree of supercooling SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
 また、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cについては、過熱度SHC2が目標過熱度SHCO2に近づくように、第1冷却用膨張弁14bの絞り開度EX1および第2冷却用膨張弁14cの絞り開度EX2を制御する。 Further, the first cooling expansion valve 14b and the second cooling expansion valve 14c are provided with the throttle opening EX1 and the second cooling expansion valve EX1 of the first cooling expansion valve 14b such that the superheat degree SHC2 approaches the target superheat degree SHCO2. The throttle opening EX2 of the expansion valve 14c is controlled.
 過熱度SHC2は、第2チラー19bの冷媒通路から流出した冷媒の過熱度である。過熱度SHC2は、第3冷媒温度センサ74cによって検出された温度T3および第2冷媒圧力センサ75bによって検出された圧力P2から算定される。目標過熱度SHCO2は、予め定めた定数(本実施形態では、5℃)を採用することができる。 The superheat degree SHC2 is the degree of superheat of the refrigerant flowing out of the refrigerant passage of the second chiller 19b. The superheat degree SHC2 is calculated from the temperature T3 detected by the third refrigerant temperature sensor 74c and the pressure P2 detected by the second refrigerant pressure sensor 75b. As the target superheat degree SHCO2, a predetermined constant (5 ° C. in the present embodiment) can be adopted.
 さらに、制御装置70は、温度調整側熱媒体温度センサ76bによって検出された温度調整側熱媒体温度TWC1が目標温度調整側熱媒体温度TWCO1に近づくように、開度比EX1/EX2を調整する。開度比EX1/EX2は、第2冷却用膨張弁14cの絞り開度EX2に対する第1冷却用膨張弁14bの絞り開度EX1の比である。 {Circle around (4)} The control device 70 further adjusts the opening ratio EX1 / EX2 such that the temperature adjustment-side heat medium temperature TWC1 detected by the temperature adjustment-side heat medium temperature sensor 76b approaches the target temperature adjustment-side heat medium temperature TWCO1. The opening ratio EX1 / EX2 is the ratio of the throttle opening EX1 of the first cooling expansion valve 14b to the throttle opening EX2 of the second cooling expansion valve 14c.
 目標温度調整側熱媒体温度TWCO1は、バッテリ温度TBに基づいて、予め制御装置70に記憶された制御マップを参照して決定される。この制御マップでは、バッテリ温度TBの上昇に伴って、目標温度調整側熱媒体温度TWCO1を低下させるように決定する。このため、制御装置70は、バッテリ温度TBの上昇に伴って、開度比EX1/EX2を減少させる。 The target temperature adjustment-side heat medium temperature TWCO1 is determined based on the battery temperature TB with reference to a control map stored in the control device 70 in advance. In this control map, the target temperature adjustment-side heat medium temperature TWCO1 is determined to decrease as the battery temperature TB increases. Therefore, control device 70 decreases opening degree ratio EX1 / EX2 as battery temperature TB increases.
 この際、冷房冷却モードでは、目標温度調整側熱媒体温度TWCO1が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも低くなるように決定される。また、冷房暖機モードでは、目標温度調整側熱媒体温度TWCO1が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも高くなるように決定される。 At this time, in the cooling / cooling mode, the target temperature adjustment-side heat medium temperature TWCO1 is determined to be lower than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a. Further, in the cooling / warm-up mode, the target temperature adjustment-side heat medium temperature TWCO1 is determined to be higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
 また、エアミックスドア用のアクチュエータについては、エアミックスドア34の開度が以下数式F2を用いて決定される開度SWとなるように制御する。
SW={TAO-(Tefin+C2)}/{TWH-(Tefin+C2)}…(F2)
 なお、TWHは、高温側熱媒体温度センサ76aによって検出された高温側熱媒体温度である。C2は、制御用の定数である。エアミックスドア34の開度は、SWが大きくなるに伴って、ヒータコア42側の通路の通路面積が増加する。一方、SWが小さくなるに伴って、冷風バイパス通路35側の通路面積が増加する。
In addition, the actuator for the air mix door is controlled so that the opening of the air mix door 34 is equal to the opening SW determined using the following equation F2.
SW = {TAO- (Tefin + C2)} / {TWH- (Tefin + C2)} (F2)
TWH is the high-temperature-side heat medium temperature detected by the high-temperature-side heat medium temperature sensor 76a. C2 is a control constant. As for the opening degree of the air mix door 34, the passage area of the passage on the heater core 42 side increases as the SW increases. On the other hand, as the SW becomes smaller, the passage area on the side of the cool air bypass passage 35 increases.
 従って、冷房冷却モードの冷凍サイクル装置10では、図3のモリエル線図に示すように冷媒の状態が変化する。すなわち、圧縮機11から吐出された冷媒(図3のa3点)は、水-冷媒熱交換器12の冷媒通路へ流入して、水通路を流通する高温側熱媒体と熱交換して放熱する(図3のa3点、b3点)。これにより、水-冷媒熱交換器12の水通路を流通する高温側熱媒体が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the state of the refrigerant changes as shown in the Mollier diagram of FIG. That is, the refrigerant (point a3 in FIG. 3) discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12, and exchanges heat with the high-temperature side heat medium flowing through the water passage to radiate heat. (Points a3 and b3 in FIG. 3). Thus, the high-temperature side heat medium flowing through the water passage of the water-refrigerant heat exchanger 12 is heated.
 高温側熱媒体回路40では、水-冷媒熱交換器12の水通路で加熱された高温側熱媒体が、ヒータコア42へ流入する。ヒータコア42へ流入した高温側熱媒体は、室内蒸発器18にて冷却された送風空気と熱交換して放熱する。これにより、車室内へ送風される送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。 In the high-temperature side heat medium circuit 40, the high-temperature side heat medium heated in the water passage of the water-refrigerant heat exchanger 12 flows into the heater core 42. The high-temperature side heat medium that has flowed into the heater core 42 exchanges heat with the blast air cooled by the indoor evaporator 18 and radiates heat. As a result, the air blown into the vehicle compartment is heated, and the temperature of the blown air approaches the target blowing temperature TAO.
 ヒータコア42から流出した高温側熱媒体は、高温側三方弁43を介して、高温側ラジエータ44へ流入する。高温側ラジエータ44へ流入した高温側熱媒体は、外気と熱交換して放熱する。高温側ラジエータ44にて放熱した高温側熱媒体は、高温側熱媒体ポンプ41へ吸入されて、再び水-冷媒熱交換器12の水通路へ圧送される。 (4) The high-temperature side heat medium flowing out of the heater core 42 flows into the high-temperature side radiator 44 via the high-temperature side three-way valve 43. The high-temperature side heat medium that has flowed into the high-temperature side radiator 44 exchanges heat with the outside air and radiates heat. The high-temperature-side heat medium radiated by the high-temperature-side radiator 44 is sucked into the high-temperature-side heat medium pump 41 and is again pressure-fed to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路から流出した冷媒の流れは、第1三方継手13aにて分岐される。第1三方継手13aにて分岐された一方の冷媒は、冷房用膨張弁14aへ流入して減圧される(図3のb3点、c3点)。冷房用膨張弁14aにて減圧され冷媒は、室内蒸発器18へ流入して、送風機32から送風された送風空気と熱交換して蒸発する(図3のc3点、d3点)。これにより、室内蒸発器18にて送風空気が冷却される。 流 れ The flow of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 is branched at the first three-way joint 13a. One of the refrigerants branched at the first three-way joint 13a flows into the cooling expansion valve 14a and is decompressed (points b3 and c3 in FIG. 3). The refrigerant decompressed by the cooling expansion valve 14a flows into the indoor evaporator 18 and evaporates by exchanging heat with the air blown from the blower 32 (points c3 and d3 in FIG. 3). As a result, the blown air is cooled by the indoor evaporator 18.
 室内蒸発器18から流出した冷媒は、第2三方継手13bへ流入して、第2チラー19bの冷媒通路から流出した冷媒と合流する(図3のd3点、i3点)。 The refrigerant flowing out of the indoor evaporator 18 flows into the second three-way joint 13b and joins with the refrigerant flowing out of the refrigerant passage of the second chiller 19b (points d3 and i3 in FIG. 3).
 一方、第1三方継手13aにて分岐された他方の冷媒は、第1冷却用膨張弁14bへ流入して減圧される(図3のb3点、e3点)。冷房冷却モードでは、第1冷却用膨張弁14bにて減圧された冷媒の飽和温度が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも低くなる。 On the other hand, the other refrigerant branched at the first three-way joint 13a flows into the first cooling expansion valve 14b and is decompressed (points b3 and e3 in FIG. 3). In the cooling cooling mode, the saturation temperature of the refrigerant decompressed by the first cooling expansion valve 14b becomes lower than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
 このため、第1冷却用膨張弁14bにて減圧された冷媒は、第1チラー19aの冷媒通路へ流入して、水通路を流通する温度調整側熱媒体と熱交換して蒸発する(図3のe3点、f3点)。これにより、第1チラー19aの水通路を流通する温度調整側熱媒体が冷却される。 For this reason, the refrigerant decompressed by the first cooling expansion valve 14b flows into the refrigerant passage of the first chiller 19a, exchanges heat with the temperature control side heat medium flowing through the water passage, and evaporates (FIG. 3). E3 point, f3 point). Thereby, the temperature control side heat medium flowing through the water passage of the first chiller 19a is cooled.
 温度調整側熱媒体回路50では、第1チラー19aの水通路にて冷却された温度調整側熱媒体が、温度調整用熱交換部52へ流入して、バッテリ80と熱交換する。これにより、バッテリ80が冷却されて、バッテリ80の温度が適切な温度範囲内に維持される。温度調整用熱交換部52から流出した温度調整側熱媒体は、温度調整側熱媒体ポンプ51へ吸入されて、再び第1チラー19aの水通路へ圧送される。 In the temperature-adjusting-side heat medium circuit 50, the temperature-adjusting-side heat medium cooled in the water passage of the first chiller 19a flows into the temperature-adjusting heat exchanging section 52 and exchanges heat with the battery 80. Thereby, battery 80 is cooled, and the temperature of battery 80 is maintained within an appropriate temperature range. The temperature-adjustment-side heat medium that has flowed out of the temperature-adjustment heat exchange unit 52 is sucked into the temperature-adjustment-side heat medium pump 51, and is again pressure-fed to the water passage of the first chiller 19a.
 第1チラー19aの冷媒通路から流出した冷媒は、第2冷却用膨張弁14cへ流入して減圧される(図3のf3点、g3点)。第2冷却用膨張弁14cにて減圧された冷媒は、第2チラー19bの冷媒通路へ流入して、水通路を流通する吸熱側熱媒体と熱交換して蒸発する(図3のg3点、h3点)。これにより、第2チラー19bの水通路を流通する吸熱側熱媒体が冷却される。 (4) The refrigerant flowing out of the refrigerant passage of the first chiller 19a flows into the second cooling expansion valve 14c and is decompressed (points f3 and g3 in FIG. 3). The refrigerant decompressed by the second cooling expansion valve 14c flows into the refrigerant passage of the second chiller 19b, exchanges heat with the heat absorbing heat medium flowing through the water passage, and evaporates (point g3 in FIG. 3, h3 point). Thereby, the heat absorbing heat medium flowing through the water passage of the second chiller 19b is cooled.
 吸熱側熱媒体回路60では、第2チラー19bの水通路にて冷却された吸熱側熱媒体が、車載機器82の冷却水通路を流通することにより、車載機器82が冷却される。車載機器82の冷却水通路から流出した吸熱側熱媒体のうち、吸熱側三方弁63を介して吸熱側ラジエータ64へ流入した吸熱側熱媒体は、外気と熱交換する。これにより、車載機器82の廃熱が外気へ放熱される。 In the heat absorbing side heat medium circuit 60, the heat absorbing side heat medium cooled in the water passage of the second chiller 19b flows through the cooling water passage of the vehicle mounted device 82, so that the vehicle mounted device 82 is cooled. Of the heat-absorbing heat medium that has flowed out of the cooling water passage of the vehicle-mounted device 82, the heat-absorbing heat medium that has flowed into the heat-absorbing radiator 64 via the heat-absorbing three-way valve 63 exchanges heat with the outside air. Thereby, the waste heat of the vehicle-mounted device 82 is radiated to the outside air.
 第2チラー19bの冷媒通路から流出した冷媒は、第2三方継手13bへ流入して、室内蒸発器18から流出した冷媒と合流する(図3のd3点、i3点、h3点、i3点)。第2三方継手13bから流出した冷媒は、蒸発圧力調整弁20を介して、アキュムレータ21へ流入する。アキュムレータ21にて分離された気相冷媒は、圧縮機11へ吸入されて再び圧縮される(図3のi3点、a3点)。 The refrigerant flowing out of the refrigerant passage of the second chiller 19b flows into the second three-way joint 13b and merges with the refrigerant flowing out of the indoor evaporator 18 (points d3, i3, h3, and i3 in FIG. 3). . The refrigerant flowing out of the second three-way joint 13b flows into the accumulator 21 via the evaporation pressure adjusting valve 20. The gas-phase refrigerant separated by the accumulator 21 is sucked into the compressor 11 and compressed again (points i3 and a3 in FIG. 3).
 以上の如く、冷房冷却モードの冷凍サイクル装置10では、水-冷媒熱交換器12を放熱器として機能させ、室内蒸発器18、第1チラー19aおよび第2チラー19bを蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 As described above, in the refrigeration cycle apparatus 10 in the cooling / cooling mode, the vapor compression in which the water-refrigerant heat exchanger 12 functions as a radiator and the indoor evaporator 18, the first chiller 19a, and the second chiller 19b function as evaporators. The refrigerating cycle of the formula is constituted.
 従って、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。また、室内蒸発器18にて、送風空気を冷却することができる。また、第1チラー19aにて、温度調整側熱媒体を冷却することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12. In addition, the blown air can be cooled by the indoor evaporator 18. Further, the first chiller 19a can cool the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 その結果、冷房冷却モードの車両用空調装置1では、エアミックスドア34の開度調整によって、室内蒸発器18にて冷却された送風空気の一部をヒータコア42にて再加熱することができる。そして、ヒータコア42にて、目標吹出温度TAOに近づくように温度調整された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 As a result, in the vehicle air conditioner 1 in the cooling / cooling mode, a part of the blown air cooled by the indoor evaporator 18 can be reheated by the heater core 42 by adjusting the opening of the air mix door 34. Then, the inside of the vehicle compartment can be cooled by blowing out the blast air whose temperature has been adjusted so as to approach the target outlet temperature TAO by the heater core 42 into the vehicle compartment.
 また、第2チラー19bにて冷却された吸熱側熱媒体を、車載機器82の冷却水通路へ流入させることによって、車載機器82を冷却することができる。 車載 Further, the heat absorbing side heat medium cooled by the second chiller 19b flows into the cooling water passage of the vehicle-mounted device 82, so that the vehicle-mounted device 82 can be cooled.
 さらに、第1チラー19aにて冷却された温度調整側熱媒体を温度調整用熱交換部52へ流入させることによって、バッテリ80を冷却することができる。この際、制御装置70が、バッテリ温度TBに応じて、開度比EX1/EX2を調整する。従って、第1チラー19aへ流入する冷媒の温度を適切に変化させて、バッテリ80の温度を適切な温度範囲内に維持することができる。 バ ッ テ リ Furthermore, the battery 80 can be cooled by flowing the temperature-adjusting-side heat medium cooled by the first chiller 19a into the temperature-adjusting heat exchange unit 52. At this time, the control device 70 adjusts the opening ratio EX1 / EX2 according to the battery temperature TB. Therefore, the temperature of the refrigerant flowing into the first chiller 19a can be appropriately changed, and the temperature of the battery 80 can be maintained within an appropriate temperature range.
 つまり、制御装置70が、開度比EX1/EX2を調整することによって、第1チラー19aにて発揮される冷却能力と、第2チラー19bにて発揮される冷却能力とを適切に調整することができる。換言すると、冷凍サイクル装置10が発揮可能な冷却能力を、第1チラー19a側および第2チラー19b側へ適切に分配することができる。 That is, the control device 70 appropriately adjusts the cooling capacity exerted by the first chiller 19a and the cooling capacity exerted by the second chiller 19b by adjusting the opening degree ratio EX1 / EX2. Can be. In other words, the cooling capacity that can be exhibited by the refrigeration cycle device 10 can be appropriately distributed to the first chiller 19a and the second chiller 19b.
 また、冷房暖機モードの冷凍サイクル装置10では、第1冷却用膨張弁14bにて減圧された冷媒の飽和温度が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも高くなる。従って、第1冷却用膨張弁14bにて減圧された冷媒は、第1チラー19aの冷媒通路へ流入して、水通路を流通する温度調整側熱媒体と熱交換して放熱する。これにより、第1チラー19aの水通路を流通する温度調整側熱媒体が加熱される。 Further, in the refrigeration cycle apparatus 10 in the cooling / warm-up mode, the saturation temperature of the refrigerant depressurized by the first cooling expansion valve 14b is higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a. Get higher. Accordingly, the refrigerant decompressed by the first cooling expansion valve 14b flows into the refrigerant passage of the first chiller 19a, and exchanges heat with the temperature control side heat medium flowing through the water passage to radiate heat. Thereby, the temperature adjustment-side heat medium flowing through the water passage of the first chiller 19a is heated.
 温度調整側熱媒体回路50では、第1チラー19aの水通路にて加熱された温度調整側熱媒体が、温度調整用熱交換部52へ流入して、バッテリ80と熱交換する。これにより、バッテリ80が加熱されて、バッテリ80の温度が適切な温度範囲内に維持される。その他の作動は、冷房冷却モードと同様である。 In the temperature-adjusting-side heat medium circuit 50, the temperature-adjusting-side heat medium heated in the water passage of the first chiller 19a flows into the temperature-adjusting heat exchanging section 52 and exchanges heat with the battery 80. Thereby, battery 80 is heated, and the temperature of battery 80 is maintained within an appropriate temperature range. Other operations are the same as those in the cooling / cooling mode.
 以上の如く、冷房暖機モードの冷凍サイクル装置10では、水-冷媒熱交換器12および第1チラー19aを放熱器として機能させ、室内蒸発器18および第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。 As described above, in the refrigeration cycle apparatus 10 in the cooling / warm-up mode, the refrigeration system in which the water-refrigerant heat exchanger 12 and the first chiller 19a function as a radiator and the indoor evaporator 18 and the second chiller 19b function as an evaporator. A cycle is configured.
 従って、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。また、第1チラー19aにて、温度調整側熱媒体を加熱することができる。また、室内蒸発器18にて、送風空気を冷却することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12. Further, the first chiller 19a can heat the heat medium on the temperature adjustment side. In addition, the blown air can be cooled by the indoor evaporator 18. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 その結果、冷房暖機モードの車両用空調装置1では、冷房冷却モードと同様に、車室内の冷房を行うことができる。また、冷房冷却モードと同様に、車載機器82を冷却することができる。 As a result, in the vehicle air conditioner 1 in the cooling / warm-up mode, the vehicle interior can be cooled in the same manner as in the cooling / cooling mode. Further, similarly to the cooling mode, the on-vehicle device 82 can be cooled.
 さらに、第1チラー19aにて加熱された温度調整側熱媒体を温度調整用熱交換部52へ流入させることによって、バッテリ80を加熱することができる。この際、制御装置70が、バッテリ温度TBに応じて、開度比EX1/EX2を調整する。従って、第1チラー19aへ流入する冷媒の温度を適切に変化させて、バッテリ80の温度を適切な温度範囲内に維持することができる。 Furthermore, the battery 80 can be heated by causing the temperature-adjustment-side heat medium heated by the first chiller 19a to flow into the temperature-adjusting heat exchange unit 52. At this time, the control device 70 adjusts the opening ratio EX1 / EX2 according to the battery temperature TB. Therefore, the temperature of the refrigerant flowing into the first chiller 19a can be appropriately changed, and the temperature of the battery 80 can be maintained within an appropriate temperature range.
 ここで、車室内の冷房は、外気温Tamが比較的高くなっている際に行われる。このため、冷房温調モードの実行中に、バッテリ温度TBが基準下限温度KTBL以下となることは少ない。このため、冷房温調モードでは、冷房冷却モードが実行されることが多く、冷房暖機モードが実行される機会は少ない。 Here, cooling in the vehicle interior is performed when the outside temperature Tam is relatively high. For this reason, during execution of the cooling temperature adjustment mode, the battery temperature TB rarely falls below the reference lower limit temperature KTBL. For this reason, in the cooling temperature adjustment mode, the cooling cooling mode is often executed, and the opportunity to execute the cooling warm-up mode is small.
 (2)暖房温調モード
 暖房温調モードでは、制御装置70が、冷房用膨張弁14aを全閉とし、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cを絞り状態とする。また、制御装置70は、予め定めた暖房温調モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41、温度調整側熱媒体ポンプ51、および吸熱側熱媒体ポンプ61の作動を制御する。
(2) Heating Temperature Control Mode In the heating temperature control mode, the control device 70 fully closes the cooling expansion valve 14a and sets the first cooling expansion valve 14b and the second cooling expansion valve 14c to the throttle state. Further, the control device 70 operates the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the heating temperature adjustment mode. Control.
 また、制御装置70は、ヒータコア42から流出した高温側熱媒体が高温側熱媒体ポンプ41の吸入口側へ流出するように、高温側三方弁43の作動を制御する。また、制御装置70は、冷房温調モードと同様に、吸熱側三方弁63の作動を制御する。 The control device 70 controls the operation of the high-temperature side three-way valve 43 such that the high-temperature side heat medium flowing out of the heater core 42 flows out to the suction port side of the high-temperature side heat medium pump 41. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the cooling temperature control mode.
 これにより、暖房温調モードの冷凍サイクル装置10では、圧縮機11の吐出口、水-冷媒熱交換器12、第1三方継手13a、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thus, in the refrigeration cycle apparatus 10 in the heating temperature control mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the first three-way joint 13a, the first cooling expansion valve 14b, the first chiller 19a, A refrigeration cycle in which the refrigerant circulates in the order of the cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
 この回路構成で、制御装置70は、各制御対象機器の作動を適宜制御する。例えば、圧縮機11については、高温側熱媒体温度TWHが目標高温側熱媒体温度TWHOに近づくように、回転数を制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of each control target device. For example, the rotation speed of the compressor 11 is controlled such that the high-temperature-side heat medium temperature TWH approaches the target high-temperature-side heat medium temperature TWHO.
 目標高温側熱媒体温度TWHOは、目標吹出温度TAOに基づいて、予め制御装置70に記憶された制御マップを参照して決定される。この制御マップでは、車室内へ送風される送風空気の温度が目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇に伴って、目標高温側熱媒体温度TWHOを上昇させるように決定する。 The target high-temperature-side heat medium temperature TWHO is determined with reference to a control map stored in the control device 70 in advance, based on the target outlet temperature TAO. In this control map, it is determined that the target high-temperature-side heat medium temperature TWHO is increased with the increase of the target outlet temperature TAO so that the temperature of the blown air blown into the vehicle compartment approaches the target outlet temperature TAO.
 また、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cについては、過冷却度SC1が目標過冷却度SCO1に近づくように、第1冷却用膨張弁14bの絞り開度EX1および第2冷却用膨張弁14cの絞り開度EX2を制御する。過冷却度SC1は、水-冷媒熱交換器12の冷媒通路から流出した冷媒の過冷却度である。目標過冷却度SCO1は、冷房温調モードと同様に決定される。 In addition, the first cooling expansion valve 14b and the second cooling expansion valve 14c have the throttle opening EX1 and the second opening degree EX1 of the first cooling expansion valve 14b such that the supercooling degree SC1 approaches the target supercooling degree SCO1. The throttle opening EX2 of the cooling expansion valve 14c is controlled. The supercooling degree SC1 is a degree of subcooling of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12. The target degree of supercooling SCO1 is determined in the same manner as in the cooling temperature control mode.
 さらに、制御装置70は、温度調整側熱媒体温度TWC1が目標温度調整側熱媒体温度TWCO1に近づくように、開度比EX1/EX2を調整する。目標温度調整側熱媒体温度TWCO1は、冷房温調モードと同様に決定される。従って、制御装置70は、バッテリ温度TBの上昇に伴って、開度比EX1/EX2を減少させる。 {Circle around (4)} The control device 70 further adjusts the opening ratio EX1 / EX2 such that the temperature adjustment-side heat medium temperature TWC1 approaches the target temperature adjustment-side heat medium temperature TWCO1. The target temperature adjustment-side heat medium temperature TWCO1 is determined in the same manner as in the cooling temperature control mode. Therefore, control device 70 decreases opening degree ratio EX1 / EX2 as battery temperature TB increases.
 この際、暖房冷却モードでは、目標温度調整側熱媒体温度TWCO1が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも低くなるように決定される。また、暖房暖機モードでは、目標温度調整側熱媒体温度TWCO1が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも高くなるように決定される。 At this time, in the heating / cooling mode, the target temperature adjustment-side heat medium temperature TWCO1 is determined to be lower than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a. In the heating / warm-up mode, the target temperature adjustment-side heat medium temperature TWCO1 is determined to be higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
 また、エアミックスドア用のアクチュエータについては、冷房温調モードと同様に制御する。ここで、暖房温調モードでは、目標吹出温度TAOが比較的高くなるため、エアミックスドア34の開度SWは100%に近づく。このため、暖房温調モードでは、室内蒸発器18通過後の送風空気のほぼ全流量がヒータコア42を通過するように、エアミックスドア34が変位する。 ア ク チ ュ エ ー タ The actuator for the air mix door is controlled in the same way as in the cooling temperature control mode. Here, in the heating temperature control mode, since the target outlet temperature TAO is relatively high, the opening degree SW of the air mix door 34 approaches 100%. Therefore, in the heating temperature control mode, the air mix door 34 is displaced such that substantially the entire flow rate of the blown air after passing through the indoor evaporator 18 passes through the heater core 42.
 従って、暖房冷却モードの冷凍サイクル装置10では、図4のモリエル線図に示すように冷媒の状態が変化する。なお、図4では、冷房温調モードで説明した図3のモリエル線図に対してサイクル構成上同等の箇所の冷媒の状態を、図3と同一の符号(アルファベット)で示し、添字(数字)のみを図番に合わせて変更している。このことは、以下のモリエル線図においても同様である。 Therefore, in the refrigeration cycle apparatus 10 in the heating / cooling mode, the state of the refrigerant changes as shown in the Mollier diagram of FIG. In FIG. 4, the state of the refrigerant at a location equivalent to the cycle configuration with respect to the Mollier diagram of FIG. 3 described in the cooling temperature control mode is indicated by the same reference numeral (alphabet) as in FIG. Only the figure is changed to match the figure number. This is the same in the following Mollier diagram.
 暖房冷却モードでは、圧縮機11から吐出された冷媒(図4のa4点)は、冷房温調モードと同様に、水-冷媒熱交換器12の冷媒通路へ流入して、水通路を流通する高温側熱媒体と熱交換して放熱する(図4のa4点、b4点)。これにより、水-冷媒熱交換器12の水通路を流通する高温側熱媒体が加熱される。 In the heating / cooling mode, the refrigerant discharged from the compressor 11 (point a4 in FIG. 4) flows into the refrigerant passage of the water-refrigerant heat exchanger 12, and flows through the water passage, similarly to the cooling temperature control mode. Heat is exchanged with the high-temperature side heat medium and heat is released (points a4 and b4 in FIG. 4). Thus, the high-temperature side heat medium flowing through the water passage of the water-refrigerant heat exchanger 12 is heated.
 高温側熱媒体回路40では、冷房温調モードと同様に、水-冷媒熱交換器12の水通路で加熱された高温側熱媒体が、ヒータコア42にて、送風空気と熱交換して放熱する。これにより、車室内へ送風される送風空気の温度が目標吹出温度TAOに近づく。ヒータコア42から流出した高温側熱媒体は、高温側三方弁43を介して高温側熱媒体ポンプ41へ吸入されて、再び水-冷媒熱交換器12の水通路へ圧送される。 In the high-temperature side heat medium circuit 40, similarly to the cooling temperature control mode, the high-temperature side heat medium heated in the water passage of the water-refrigerant heat exchanger 12 exchanges heat with the blown air in the heater core 42 to radiate heat. . Thereby, the temperature of the blown air blown into the vehicle compartment approaches the target blowout temperature TAO. The high-temperature-side heat medium flowing out of the heater core 42 is sucked into the high-temperature-side heat medium pump 41 through the high-temperature-side three-way valve 43 and is again pressure-fed to the water passage of the water-refrigerant heat exchanger 12.
 水-冷媒熱交換器12の冷媒通路から流出した冷媒は、第1三方継手13aを介して、第1冷却用膨張弁14bへ流入して減圧される(図4のb4点、e4点)。暖房冷却モードでは、第1冷却用膨張弁14bにて減圧された冷媒の飽和温度が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも低くなる。 (4) The refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the first cooling expansion valve 14b via the first three-way joint 13a and is decompressed (points b4 and e4 in FIG. 4). In the heating / cooling mode, the saturation temperature of the refrigerant decompressed by the first cooling expansion valve 14b becomes lower than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
 従って、第1冷却用膨張弁14bにて減圧された冷媒は、第1チラー19aの冷媒通路へ流入して、水通路を流通する温度調整側熱媒体と熱交換して蒸発する(図4のe4点、f4点)。これにより、第1チラー19aの水通路を流通する温度調整側熱媒体が冷却される。温度調整側熱媒体回路50では、冷房冷却モードと同様に、バッテリ80が冷却される。 Therefore, the refrigerant decompressed by the first cooling expansion valve 14b flows into the refrigerant passage of the first chiller 19a, and exchanges heat with the temperature control side heat medium flowing through the water passage to evaporate (see FIG. 4). e4 point, f4 point). Thereby, the temperature control side heat medium flowing through the water passage of the first chiller 19a is cooled. In the temperature adjustment-side heat medium circuit 50, the battery 80 is cooled in the same manner as in the cooling mode.
 第1チラー19aの冷媒通路から流出した冷媒は、第2冷却用膨張弁14cへ流入して減圧される(図4のf4点、g4点)。第2冷却用膨張弁14cにて減圧された冷媒は、第2チラー19bの冷媒通路へ流入して、水通路を流通する吸熱側熱媒体と熱交換して蒸発する(図4のg4点、i4点)。これにより、第2チラー19bの水通路を流通する吸熱側熱媒体が冷却される。吸熱側熱媒体回路60では、冷房温調モードと同様に、車載機器82が冷却される。 (4) The refrigerant flowing out of the refrigerant passage of the first chiller 19a flows into the second cooling expansion valve 14c and is decompressed (points f4 and g4 in FIG. 4). The refrigerant decompressed by the second cooling expansion valve 14c flows into the refrigerant passage of the second chiller 19b, exchanges heat with the heat absorbing heat medium flowing through the water passage, and evaporates (point g4 in FIG. 4, i4 points). Thereby, the heat absorbing heat medium flowing through the water passage of the second chiller 19b is cooled. In the heat absorption side heat medium circuit 60, the on-vehicle device 82 is cooled in the same manner as in the cooling temperature control mode.
 第2チラー19bの冷媒通路から流出した冷媒は、第2三方継手13bを介して、アキュムレータ21へ流入する。アキュムレータ21にて分離された気相冷媒は、圧縮機11へ吸入されて再び圧縮される(図4のi4点、a4点)。 冷媒 The refrigerant flowing out of the refrigerant passage of the second chiller 19b flows into the accumulator 21 via the second three-way joint 13b. The gas-phase refrigerant separated by the accumulator 21 is drawn into the compressor 11 and compressed again (points i4 and a4 in FIG. 4).
 以上の如く、暖房冷却モードの冷凍サイクル装置10では、水-冷媒熱交換器12を放熱器として機能させ、第1チラー19aおよび第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。 As described above, in the refrigeration cycle apparatus 10 in the heating / cooling mode, a refrigeration cycle in which the water-refrigerant heat exchanger 12 functions as a radiator and the first chiller 19a and the second chiller 19b function as an evaporator is configured.
 従って、暖房冷却モードの冷凍サイクル装置10では、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。また、第1チラー19aにて、温度調整側熱媒体を冷却することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, in the refrigeration cycle apparatus 10 in the heating / cooling mode, the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. Further, the first chiller 19a can cool the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 その結果、暖房冷却モードの車両用空調装置1では、ヒータコア42にて目標吹出温度TAOに近づくように加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。また、第2チラー19bにて冷却された吸熱側熱媒体を車載機器82の冷却水通路へ流入させることによって、車載機器82を冷却することができる。 As a result, the vehicle air conditioner 1 in the heating / cooling mode can heat the vehicle interior by blowing the blast air heated by the heater core 42 so as to approach the target blowing temperature TAO into the vehicle interior. In addition, the heat absorbing side heat medium cooled by the second chiller 19b flows into the cooling water passage of the vehicle-mounted device 82, so that the vehicle-mounted device 82 can be cooled.
 さらに、第1チラー19aにて冷却された温度調整側熱媒体を温度調整用熱交換部52へ流入させることによって、バッテリ80を冷却することができる。この際、制御装置70が、バッテリ温度TBに応じて、開度比EX1/EX2を調整する。従って、第1チラー19aへ流入する冷媒の温度を適切に変化させて、バッテリ80の温度を適切な温度範囲内に維持することができる。 バ ッ テ リ Furthermore, the battery 80 can be cooled by flowing the temperature-adjusting-side heat medium cooled by the first chiller 19a into the temperature-adjusting heat exchange unit 52. At this time, the control device 70 adjusts the opening ratio EX1 / EX2 according to the battery temperature TB. Therefore, the temperature of the refrigerant flowing into the first chiller 19a can be appropriately changed, and the temperature of the battery 80 can be maintained within an appropriate temperature range.
 また、暖房暖機モードの冷凍サイクル装置10では、図5のモリエル線図に示すように、冷媒の状態が変化する。すなわち、圧縮機11から吐出された冷媒(図5のa5点)は、水-冷媒熱交換器12の冷媒通路へ流入して、暖房冷却モードと同様に、水通路を流通する高温側熱媒体と熱交換して放熱する(図5のa5点、b5点)。暖房暖機モードでは、第1チラー19aにおいても冷媒が放熱するので、暖房冷却モードよりも、水-冷媒熱交換器12における冷媒の放熱量が減少する。 In the refrigeration cycle device 10 in the heating / warm-up mode, the state of the refrigerant changes as shown in the Mollier diagram in FIG. That is, the refrigerant (point a5 in FIG. 5) discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12, and the high-temperature side heat medium flowing through the water passage similarly to the heating / cooling mode. And heat is released (points a5 and b5 in FIG. 5). In the heating / warm-up mode, the refrigerant radiates heat also in the first chiller 19a, so that the amount of heat radiation of the refrigerant in the water-refrigerant heat exchanger 12 is smaller than in the heating / cooling mode.
 高温側熱媒体回路40では、暖房冷却モードと同様に、ヒータコア42にて、送風空気が加熱される。これにより、車室内へ送風される送風空気の温度が目標吹出温度TAOに近づく。 (4) In the high-temperature side heat medium circuit 40, as in the heating / cooling mode, the blower air is heated by the heater core 42. Thereby, the temperature of the blown air blown into the vehicle compartment approaches the target blowout temperature TAO.
 水-冷媒熱交換器12の冷媒通路から流出した冷媒は、第1三方継手13aを介して、第1冷却用膨張弁14bへ流入して減圧される(図5のb5点、e5点)。暖房暖機モードでは、第1冷却用膨張弁14bにて減圧された冷媒の飽和温度が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも高くなる。 冷媒 The refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the first cooling expansion valve 14b via the first three-way joint 13a and is decompressed (points b5 and e5 in FIG. 5). In the heating / warm-up mode, the saturation temperature of the refrigerant depressurized by the first cooling expansion valve 14b becomes higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
 従って、第1冷却用膨張弁14bにて減圧された冷媒は、第1チラー19aの冷媒通路へ流入して、水通路を流通する温度調整側熱媒体と熱交換して放熱する(図4のe5点、f5点)。これにより、第1チラー19aの水通路を流通する温度調整側熱媒体が加熱される。温度調整側熱媒体回路50では、冷房暖機モードと同様に、バッテリ80が加熱される。 Therefore, the refrigerant decompressed by the first cooling expansion valve 14b flows into the refrigerant passage of the first chiller 19a, and exchanges heat with the temperature control side heat medium flowing through the water passage to radiate heat (see FIG. 4). e5 point, f5 point). Thereby, the temperature adjustment-side heat medium flowing through the water passage of the first chiller 19a is heated. In the temperature adjustment-side heat medium circuit 50, the battery 80 is heated in the same manner as in the cooling / warm-up mode.
 第1チラー19aの冷媒通路から流出した冷媒は、第2冷却用膨張弁14cへ流入して減圧される(図5のf5点、g5点)。第2冷却用膨張弁14cにて減圧された冷媒は、第2チラー19bの冷媒通路へ流入して、水通路を流通する吸熱側熱媒体から吸熱して蒸発する(図5のg5点、i5点)。これにより、第2チラー19bの水通路を流通する吸熱側熱媒体が冷却される。吸熱側熱媒体回路60では、冷房温調モードと同様に、車載機器82が冷却される。 冷媒 The refrigerant flowing out of the refrigerant passage of the first chiller 19a flows into the second cooling expansion valve 14c and is decompressed (points f5 and g5 in FIG. 5). The refrigerant decompressed by the second cooling expansion valve 14c flows into the refrigerant passage of the second chiller 19b, absorbs heat from the heat-absorbing heat medium flowing through the water passage, and evaporates (g5 point, i5 in FIG. 5). point). Thereby, the heat absorbing heat medium flowing through the water passage of the second chiller 19b is cooled. In the heat absorption side heat medium circuit 60, the on-vehicle device 82 is cooled in the same manner as in the cooling temperature control mode.
 第2チラー19bの冷媒通路から流出した冷媒は、第2三方継手13bを介して、アキュムレータ21へ流入する。アキュムレータ21にて分離された気相冷媒は、圧縮機11へ吸入されて再び圧縮される(図5のi5点、a5点)。 冷媒 The refrigerant flowing out of the refrigerant passage of the second chiller 19b flows into the accumulator 21 via the second three-way joint 13b. The gas-phase refrigerant separated by the accumulator 21 is drawn into the compressor 11 and compressed again (points i5 and a5 in FIG. 5).
 以上の如く、暖房暖機モードの冷凍サイクル装置10では、水-冷媒熱交換器12および第1チラー19aを放熱器として機能させ、第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。 As described above, in the refrigeration cycle apparatus 10 in the heating / warm-up mode, a refrigeration cycle in which the water-refrigerant heat exchanger 12 and the first chiller 19a function as a radiator and the second chiller 19b functions as an evaporator is configured. .
 従って、暖房暖機モードの冷凍サイクル装置10では、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。また、第1チラー19aにて、温度調整側熱媒体を加熱することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, in the refrigeration cycle apparatus 10 in the heating / warm-up mode, the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. Further, the first chiller 19a can heat the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 その結果、暖房暖機モードの車両用空調装置1では、暖房冷却モードと同様に、車室内の暖房を行うことができる。また、暖房冷却モードと同様に、車載機器82を冷却することができる。 As a result, in the vehicle air conditioner 1 in the heating / warm-up mode, the vehicle interior can be heated as in the heating / cooling mode. Further, similarly to the heating / cooling mode, the in-vehicle device 82 can be cooled.
 さらに、第1チラー19aにて加熱された温度調整側熱媒体を温度調整用熱交換部52へ流入させることによって、バッテリ80を加熱することができる。この際、制御装置70が、バッテリ温度TBに応じて、開度比EX1/EX2を調整する。従って、暖房冷却モードと同様に、第1チラー19aへ流入する冷媒の温度を適切に変化させて、バッテリ80の温度を適切な温度範囲内に維持することができる。 Furthermore, the battery 80 can be heated by causing the temperature-adjustment-side heat medium heated by the first chiller 19a to flow into the temperature-adjusting heat exchange unit 52. At this time, the control device 70 adjusts the opening ratio EX1 / EX2 according to the battery temperature TB. Therefore, similarly to the heating / cooling mode, the temperature of the refrigerant flowing into the first chiller 19a can be appropriately changed, and the temperature of the battery 80 can be maintained within an appropriate temperature range.
 ここで、車室内の暖房は、外気温Tamが比較的低くなっている際に行われる。このため、暖房温調モードの実行中に、バッテリ温度TBが基準下限温度KTBL以下となることがある。また、バッテリ80は充放電時に自己発熱を伴うため、暖房温調モードの実行中に、バッテリ温度TBが基準上限温度KTBH以上となることがある。従って、暖房温調モードでは、暖房冷房モードと暖房暖機モードが交互に切り替えられることがある。 Here, heating of the vehicle interior is performed when the outside temperature Tam is relatively low. Therefore, during execution of the heating temperature control mode, the battery temperature TB may become lower than or equal to the reference lower limit temperature KTBL. In addition, since the battery 80 generates its own heat during charging and discharging, the battery temperature TB may become higher than or equal to the reference upper limit temperature KTBH during the execution of the heating temperature adjustment mode. Therefore, in the heating temperature control mode, the heating / cooling mode and the heating / warm-up mode may be alternately switched.
 (3)単独冷却モード
 単独冷却モードでは、制御装置70が、冷房用膨張弁14aを全閉とし、第1冷却用膨張弁14bを絞り状態とし、第2冷却用膨張弁14cを全開とする。また、制御装置70は、予め定めた単独冷却モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41、温度調整側熱媒体ポンプ51、および吸熱側熱媒体ポンプ61の作動を制御する。
(3) Single Cooling Mode In the single cooling mode, the control device 70 fully closes the cooling expansion valve 14a, closes the first cooling expansion valve 14b, and fully opens the second cooling expansion valve 14c. Further, the control device 70 controls the operation of the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the single cooling mode. Control.
 また、制御装置70は、ヒータコア42から流出した高温側熱媒体が、高温側ラジエータ44へ流入するように高温側三方弁43の作動を制御する。また、制御装置70は、冷房温調モードと同様に、吸熱側三方弁63の作動を制御する。 The control device 70 controls the operation of the high-temperature three-way valve 43 so that the high-temperature heat medium flowing out of the heater core 42 flows into the high-temperature radiator 44. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the cooling temperature control mode.
 これにより、単独冷却モードの冷凍サイクル装置10では、圧縮機11の吐出口、水-冷媒熱交換器12、第1三方継手13a、第1冷却用膨張弁14b、第1チラー19a、(第2冷却用膨張弁14c、)第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thus, in the refrigeration cycle apparatus 10 in the single cooling mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the first three-way joint 13a, the first cooling expansion valve 14b, the first chiller 19a, the (second A refrigeration cycle in which the refrigerant circulates in the order of the cooling expansion valve 14c), the second chiller 19b, the second three-way joint 13b, the evaporating pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is formed.
 この回路構成で、制御装置70は、各制御対象機器の作動を適宜制御する。例えば、圧縮機11については、温度調整側熱媒体温度TWC1が目標温度調整側熱媒体温度TWCO1に近づくように、回転数を制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of each control target device. For example, the rotation speed of the compressor 11 is controlled so that the temperature adjustment-side heat medium temperature TWC1 approaches the target temperature adjustment-side heat medium temperature TWCO1.
 目標温度調整側熱媒体温度TWCO1は、バッテリ温度TBに基づいて、予め制御装置70に記憶されている単独冷却モード用の制御マップを参照して決定される。この制御マップでは、バッテリ温度TBの上昇に伴って、目標温度調整側熱媒体温度TWCO1を低下させるように決定する。また、単独冷却モードでは、目標温度調整側熱媒体温度TWCO1が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも低くなるように決定される。 The target temperature adjustment-side heat medium temperature TWCO1 is determined based on the battery temperature TB with reference to a control map for the single cooling mode stored in the control device 70 in advance. In this control map, the target temperature adjustment-side heat medium temperature TWCO1 is determined to decrease as the battery temperature TB increases. In the single cooling mode, the target temperature adjustment-side heat medium temperature TWCO1 is determined to be lower than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
 また、第1冷却用膨張弁14bについては、水-冷媒熱交換器12の冷媒通路から流出した冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように、絞り開度を制御する。目標過冷却度SCO1は、外気温Tamに基づいて、予め制御装置70に記憶された単独冷却モード用の制御マップを参照して決定される。この制御マップでは、サイクルのCOPが極大値に近づくように、目標過冷却度SCO1を決定する。 The throttle opening of the first cooling expansion valve 14b is controlled such that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1. The target degree of supercooling SCO1 is determined based on the outside temperature Tam with reference to a control map for the single cooling mode stored in the control device 70 in advance. In this control map, the target degree of supercooling SCO1 is determined so that the COP of the cycle approaches the maximum value.
 また、エアミックスドア用のアクチュエータについては、開度SWが0%となるように制御する。すなわち、冷風バイパス通路35を全開とし、ヒータコア42側の空気通路を全閉とするように制御する。 (4) The actuator for the air mix door is controlled so that the opening degree SW becomes 0%. That is, control is performed such that the cool air bypass passage 35 is fully opened and the air passage on the heater core 42 side is completely closed.
 このため、単独冷却モードの冷凍サイクル装置10では、水-冷媒熱交換器12を放熱器として機能させ、第1チラー19aおよび第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。 Therefore, in the refrigeration cycle apparatus 10 in the single cooling mode, a refrigeration cycle in which the water-refrigerant heat exchanger 12 functions as a radiator and the first chiller 19a and the second chiller 19b function as an evaporator is configured.
 従って、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。また、第1チラー19aにて、温度調整側熱媒体を冷却することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12. Further, the first chiller 19a can cool the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 単独冷却モードでは、エアミックスドア34がヒータコア42側の空気通路を全閉としている。このため、水-冷媒熱交換器12にて加熱された高温側熱媒体は、ヒータコア42にて送風空気に殆ど放熱することなく、高温側ラジエータ44にて外気に放熱する。従って、ヒータコア42にて送風空気が加熱されてしまうことはない。 In the single cooling mode, the air mixing door 34 completely closes the air passage on the heater core 42 side. For this reason, the high-temperature-side heat medium heated by the water-refrigerant heat exchanger 12 radiates heat to the outside air by the high-temperature radiator 44 without almost radiating heat to the blown air by the heater core 42. Therefore, the blown air is not heated by the heater core 42.
 その結果、単独冷却モードの車両用空調装置1では、車室内の空調を行うことなく、第1チラー19aにて冷却された温度調整側熱媒体を温度調整用熱交換部52へ流入させることによって、バッテリ80を冷却することができる。さらに、第2チラー19bにて冷却された吸熱側熱媒体を車載機器82の冷却水通路へ流入させることによって、車載機器82を冷却することができる。 As a result, the vehicle air conditioner 1 in the single cooling mode allows the temperature-adjusting-side heat medium cooled by the first chiller 19a to flow into the temperature-adjusting heat exchange unit 52 without performing air conditioning in the vehicle interior. Thus, the battery 80 can be cooled. Further, the heat absorbing side heat medium cooled by the second chiller 19b flows into the cooling water passage of the vehicle-mounted device 82, so that the vehicle-mounted device 82 can be cooled.
 (4)単独暖機モード
 単独暖機モードでは、制御装置70が、冷房用膨張弁14aを全閉とし、第1冷却用膨張弁14bを全開とし、第2冷却用膨張弁14cを絞り状態とする。また、制御装置70は、高温側熱媒体ポンプ41を停止させ、予め定めた単独暖機モード用の熱媒体圧送能力を発揮するように、温度調整側熱媒体ポンプ51、および吸熱側熱媒体ポンプ61の作動を制御する。また、制御装置70は、冷房温調モードと同様に、吸熱側三方弁63の作動を制御する。
(4) Independent warm-up mode In the independent warm-up mode, the control device 70 fully closes the cooling expansion valve 14a, fully opens the first cooling expansion valve 14b, and closes the second cooling expansion valve 14c. I do. In addition, the control device 70 stops the high-temperature side heat medium pump 41 and performs the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump so as to exhibit a predetermined heat medium pumping ability for the single warm-up mode. The operation of 61 is controlled. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the cooling temperature control mode.
 これにより、単独暖機モードの冷凍サイクル装置10では、圧縮機11の吐出口、(水-冷媒熱交換器12、第1三方継手13a、第1冷却用膨張弁14b、)第1チラー19a、第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thereby, in the refrigeration cycle apparatus 10 in the single warm-up mode, the discharge port of the compressor 11, the (water-refrigerant heat exchanger 12, the first three-way joint 13a, the first cooling expansion valve 14b), the first chiller 19a, A refrigeration cycle in which the refrigerant circulates in the order of the second cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure adjusting valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
 この回路構成で、制御装置70は、各制御対象機器の作動を適宜制御する。例えば、圧縮機11については、温度調整側熱媒体温度TWC1が目標温度調整側熱媒体温度TWCO1に近づくように、回転数を制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of each control target device. For example, the rotation speed of the compressor 11 is controlled so that the temperature adjustment-side heat medium temperature TWC1 approaches the target temperature adjustment-side heat medium temperature TWCO1.
 目標温度調整側熱媒体温度TWCO1は、バッテリ温度TBに基づいて、予め制御装置70に記憶されている単独暖機モード用の制御マップを参照して決定される。この制御マップでは、バッテリ温度TBの上昇に伴って、目標温度調整側熱媒体温度TWCO1を低下させるように決定する。また、単独暖機モードでは、目標温度調整側熱媒体温度TWCO1が、第1チラー19aの水通路へ流入する温度調整側熱媒体の温度よりも高くなるように決定される。 The target temperature adjustment-side heat medium temperature TWCO1 is determined based on the battery temperature TB with reference to a control map for the single warm-up mode stored in the control device 70 in advance. In this control map, the target temperature adjustment-side heat medium temperature TWCO1 is determined to decrease as the battery temperature TB increases. In the single warm-up mode, the target temperature adjustment-side heat medium temperature TWCO1 is determined to be higher than the temperature of the temperature adjustment-side heat medium flowing into the water passage of the first chiller 19a.
 また、第2冷却用膨張弁14cについては、水-冷媒熱交換器12の冷媒通路から流出した冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように、絞り開度を制御する。目標過冷却度SCO1は、外気温Tamに基づいて、予め制御装置70に記憶された単独冷却モード用の制御マップを参照して決定される。この制御マップでは、サイクルのCOPが極大値に近づくように、目標過冷却度SCO1を決定する。 絞 り The second cooling expansion valve 14c controls the throttle opening such that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1. The target degree of supercooling SCO1 is determined based on the outside temperature Tam with reference to a control map for the single cooling mode stored in the control device 70 in advance. In this control map, the target degree of supercooling SCO1 is determined so that the COP of the cycle approaches the maximum value.
 また、エアミックスドア用のアクチュエータについては、単独冷却モードと同様に、開度SWが0%となるように制御する。 ア ク チ ュ エ ー タ Also, the actuator for the air mix door is controlled so that the opening degree SW becomes 0% as in the single cooling mode.
 このため、単独暖機モードの冷凍サイクル装置10では、第1チラー19aを放熱器として機能させ、第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。従って、第1チラー19aにて、温度調整側熱媒体を加熱することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, in the refrigeration cycle apparatus 10 in the single warm-up mode, a refrigeration cycle in which the first chiller 19a functions as a radiator and the second chiller 19b functions as an evaporator is configured. Therefore, the first chiller 19a can heat the temperature adjustment-side heat medium. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 単独暖機モードでは、高温側熱媒体ポンプ41が停止しているので、水-冷媒熱交換器12の冷媒通路へ流入した冷媒は、殆ど放熱することなく水-冷媒熱交換器12から流出する。従って、ヒータコア42にて送風空気が加熱されてしまうことはない。 In the single warm-up mode, since the high-temperature side heat medium pump 41 is stopped, the refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 flows out of the water-refrigerant heat exchanger 12 with almost no heat radiation. . Therefore, the blown air is not heated by the heater core 42.
 その結果、単独暖機モードの車両用空調装置1では、車室内の空調を行うことなく、第1チラー19aにて加熱された温度調整側熱媒体を温度調整用熱交換部52へ流入させることによって、バッテリ80を加熱することができる。さらに、第2チラー19bにて冷却された吸熱側熱媒体を車載機器82の冷却水通路へ流入させることによって、車載機器82を冷却することができる。 As a result, in the vehicle air conditioner 1 in the single warm-up mode, the temperature-adjustment-side heat medium heated by the first chiller 19a flows into the temperature-adjustment heat exchange unit 52 without performing air conditioning in the vehicle interior. Thereby, the battery 80 can be heated. Further, the heat absorbing side heat medium cooled by the second chiller 19b flows into the cooling water passage of the vehicle-mounted device 82, so that the vehicle-mounted device 82 can be cooled.
 ここで、本実施形態の冷凍サイクル装置10は、プレ空調を行うことができる。プレ空調は、乗員が操作パネル701やリモコン端末によって、制御装置70に、車室内の設定温度Tset、プレ空調開始時刻等を記憶させることによって実行される。プレ空調開始時刻は、乗員が乗車する時刻が近づいており、比較的近い将来に車両を走行させる可能性が高い時刻である。 Here, the refrigeration cycle apparatus 10 of the present embodiment can perform pre-air conditioning. The pre-air conditioning is performed by the occupant having the control device 70 store the set temperature Tset in the vehicle compartment, the pre-air conditioning start time, and the like using the operation panel 701 or a remote control terminal. The pre-air-conditioning start time is a time at which the time when the occupant gets on board is approaching, and there is a high possibility that the vehicle will travel in the relatively near future.
 そこで、本実施形態の冷凍サイクル装置10では、プレ空調が設定された際に、プレ空調開始時刻よりも予め定めた時間だけ前(例えば、10分前)の時刻におけるバッテリ温度TBが基準下限温度KTBL以下となっている場合は、単独暖機モードでの運転を行う。 Therefore, in the refrigeration cycle apparatus 10 of the present embodiment, when the pre-air conditioning is set, the battery temperature TB at a time that is a predetermined time before (for example, 10 minutes before) the pre-air conditioning start time is equal to the reference lower limit temperature. If it is lower than KTBL, the operation is performed in the single warm-up mode.
 その後、プレ空調開始時刻になったら単独暖機モードから暖房温調モードへ切り替える。さらに、単独暖機モードから暖房温調モードへ切り替える前(例えば、1分前)に、目標温度調整側熱媒体温度TWCO1を上昇させる。 After that, when the pre-air conditioning start time comes, switch from the single warm-up mode to the heating temperature control mode. Further, before switching from the single warm-up mode to the heating temperature control mode (for example, one minute before), the target temperature adjustment-side heat medium temperature TWCO1 is increased.
 すなわち、本実施形態の冷凍サイクル装置10では、プレ空調が設定されて単独暖機モードでの運転が実行された際に、予め定めた暖機切替条件が成立したと判定する。そして、暖機切替条件が成立した際には、単独暖機モードから暖房温調モードへ切り替える前に、目標温度調整側熱媒体温度TWCO1を上昇させて、温度調整側熱媒体の温度を上昇させるようになっている。 That is, in the refrigeration cycle apparatus 10 of the present embodiment, when the pre-air conditioning is set and the operation in the single warm-up mode is performed, it is determined that the predetermined warm-up switching condition is satisfied. Then, when the warm-up switching condition is satisfied, before switching from the single warm-up mode to the heating temperature adjustment mode, the target temperature adjustment-side heat medium temperature TWCO1 is increased to increase the temperature of the temperature adjustment-side heat medium. It has become.
 (5)単独冷房モード
 単独冷房モードでは、制御装置70が、冷房用膨張弁14aを絞り状態とし、第1冷却用膨張弁14bを全閉とする。また、制御装置70は、予め定めた単独冷房モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41の作動を制御し、温度調整側熱媒体ポンプ51および吸熱側熱媒体ポンプ61を停止させる。
(5) Single Cooling Mode In the single cooling mode, the control device 70 closes the cooling expansion valve 14a and fully closes the first cooling expansion valve 14b. In addition, the control device 70 controls the operation of the high-temperature side heat medium pump 41 and the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump so as to exhibit a predetermined heat medium pumping capacity for the single cooling mode. 61 is stopped.
 また、制御装置70は、ヒータコア42から流出した高温側熱媒体が、高温側ラジエータ44へ流入するように高温側三方弁43の作動を制御する。 The control device 70 controls the operation of the high-temperature three-way valve 43 so that the high-temperature heat medium flowing out of the heater core 42 flows into the high-temperature radiator 44.
 これにより、単独冷房モードの冷凍サイクル装置10では、圧縮機11の吐出口、水-冷媒熱交換器12、第1三方継手13a、冷房用膨張弁14a、室内蒸発器18、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thus, in the refrigeration cycle apparatus 10 in the single cooling mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the first three-way joint 13a, the cooling expansion valve 14a, the indoor evaporator 18, and the second three-way joint 13b A refrigeration cycle in which the refrigerant circulates in the order of the evaporation pressure adjusting valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
 この回路構成で、制御装置70は、冷房温調モードと同様に、各種各制御対象機器の作動を適宜制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of each device to be controlled, similarly to the cooling temperature control mode.
 このため、単独冷房モードの冷凍サイクル装置10aでは、水-冷媒熱交換器12を放熱器として機能させ、室内蒸発器18を蒸発器として機能させる冷凍サイクルが構成される。従って、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。また、室内蒸発器18にて送風空気を冷却することができる。 Therefore, in the refrigeration cycle apparatus 10a in the single cooling mode, a refrigeration cycle is configured in which the water-refrigerant heat exchanger 12 functions as a radiator and the indoor evaporator 18 functions as an evaporator. Therefore, the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. Further, the blown air can be cooled by the indoor evaporator 18.
 その結果、単独冷房モードの車両用空調装置1では、バッテリ80の温度調整を行うことなく、冷房温調モードと同様に、車室内の冷房を行うことができる。 As a result, in the vehicle air conditioner 1 in the single cooling mode, the vehicle interior can be cooled similarly to the cooling temperature control mode without adjusting the temperature of the battery 80.
 (6)単独暖房モード
 単独冷房モードでは、制御装置70が、冷房用膨張弁14aを全閉とし、第1冷却用膨張弁14bを全開とし、第2冷却用膨張弁14cを絞り状態とする。また、制御装置70は、予め定めた単独暖房用モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41および吸熱側熱媒体ポンプ61の作動を制御し、温度調整側熱媒体ポンプ51を停止させる。
(6) Single Heating Mode In the single cooling mode, the control device 70 fully closes the cooling expansion valve 14a, fully opens the first cooling expansion valve 14b, and throttles the second cooling expansion valve 14c. Further, the control device 70 controls the operation of the high-temperature side heat medium pump 41 and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the single heating mode, and controls the temperature adjustment side heat medium pump. The pump 51 is stopped.
 また、制御装置70は、暖房温調モードと同様に、ヒータコア42から流出した高温側熱媒体が高温側熱媒体ポンプ41の吸入口側へ流出するように、高温側三方弁43の作動を制御する。また、制御装置70は、冷房温調モードと同様に、吸熱側三方弁63の作動を制御する。 Further, the control device 70 controls the operation of the high-temperature side three-way valve 43 so that the high-temperature side heat medium flowing out of the heater core 42 flows out to the suction port side of the high-temperature side heat medium pump 41, similarly to the heating temperature control mode. I do. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the cooling temperature control mode.
 これにより、単独暖房モードの冷凍サイクル装置10では、圧縮機11の吐出口、水-冷媒熱交換器12、第1三方継手13a、(第1冷却用膨張弁14b、第1チラー19a、)第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Accordingly, in the refrigeration cycle apparatus 10 in the single heating mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the first three-way joint 13a, the (first cooling expansion valve 14b, the first chiller 19a) A refrigeration cycle in which the refrigerant circulates in the order of the 2 cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure adjusting valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
 この回路構成で、制御装置70は、暖房温調モードと同様に、各種各制御対象機器の作動を適宜制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of various control target devices as in the heating temperature control mode.
 このため、単独冷房モードの冷凍サイクル装置10aでは、水-冷媒熱交換器12を放熱器として機能させ、第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。従って、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, in the refrigeration cycle apparatus 10a in the single cooling mode, a refrigeration cycle in which the water-refrigerant heat exchanger 12 functions as a radiator and the second chiller 19b functions as an evaporator is configured. Therefore, the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 単独冷房モードでは、温度調整側熱媒体ポンプ51が停止しているので、第1チラー19aの冷媒通路へ流入した冷媒は、殆ど放熱することなく第1チラー19aから流出する。従って、第1チラー19aにて温度調整側熱媒体が加熱されてしまうことは殆どない。 In the single cooling mode, since the temperature adjustment side heat medium pump 51 is stopped, the refrigerant flowing into the refrigerant passage of the first chiller 19a flows out of the first chiller 19a with almost no heat radiation. Therefore, the heat medium on the temperature adjustment side is hardly heated by the first chiller 19a.
 その結果、単独暖房モードの車両用空調装置1では、バッテリ80の温度調整を行うことなく、暖房温調モードと同様に、車室内の暖房を行うことができる。 As a result, in the vehicle air conditioner 1 in the single heating mode, the vehicle interior can be heated as in the heating temperature adjustment mode without adjusting the temperature of the battery 80.
 ここで、バッテリ80の温度調整を行うことなく、車室内の暖房が要求される条件としては、極低外気温時に乗員が乗車した状態でバッテリ80の急速充電を行う場合が考えられる。バッテリ80の急速充電中はバッテリ80の自己発熱量が多くなるため、低外気温時であってもバッテリ80の暖機を行う必要がない。ところが、急速充電の完了後に車両を走行させる際には、バッテリ80の暖機が必要となる。 Here, as a condition that the heating of the vehicle interior is required without adjusting the temperature of the battery 80, a case in which the battery 80 is rapidly charged in a state where the occupant gets in the vehicle at the extremely low outside temperature can be considered. During rapid charging of the battery 80, the amount of self-generated heat of the battery 80 increases, so that it is not necessary to warm up the battery 80 even at a low outside temperature. However, when driving the vehicle after the completion of the quick charge, the battery 80 needs to be warmed up.
 そこで、本実施形態の冷凍サイクル装置10では、車室内の暖房が要求された状態でバッテリ80の急速充電が開始された際に、単独暖房モードでの運転を行う。その後、急速充電が完了した際に、単独暖房モードから暖房温調モードへ切り替える。さらに、バッテリ80の蓄電残量が予め定めた基準蓄電残量よりも多くなった際に、すなわち、急速充電の完了直前に、温度調整側熱媒体ポンプ51を作動させる。 Therefore, in the refrigeration cycle apparatus 10 of the present embodiment, when the rapid charging of the battery 80 is started in a state where the heating of the vehicle interior is requested, the operation in the single heating mode is performed. Thereafter, when the quick charge is completed, the mode is switched from the single heating mode to the heating temperature control mode. Further, when the remaining charge amount of the battery 80 becomes larger than a predetermined reference remaining charge amount, that is, immediately before the completion of the quick charge, the temperature adjusting-side heat medium pump 51 is operated.
 すなわち、本実施形態の冷凍サイクル装置10では、車室内の暖房が要求された状態でバッテリ80の急速充電が開始された際に、予め定めた暖房切替条件が成立したと判定する。そして、暖房切替条件が成立した際には、単独暖房モードから暖房温調モードへ切り替える前に、目標高温側熱媒体温度TWHOを上昇させて、高温側熱媒体の温度を上昇させるようになっている。 That is, in the refrigeration cycle device 10 of the present embodiment, when rapid charging of the battery 80 is started in a state where heating of the vehicle interior is requested, it is determined that the predetermined heating switching condition is satisfied. Then, when the heating switching condition is satisfied, before switching from the single heating mode to the heating temperature adjustment mode, the target high-temperature-side heat medium temperature TWHO is increased to increase the temperature of the high-temperature side heat medium. I have.
 上記の如く、本実施形態の冷凍サイクル装置10は、冷房温調モード、暖房温調モード、単独冷却モード、単独暖機モード、単独冷房モード、単独暖房モードといった運転モードを切り替えて、車室内の空調およびバッテリ80の温度調整を行うことができる。 As described above, the refrigeration cycle apparatus 10 of the present embodiment switches operation modes such as a cooling temperature control mode, a heating temperature control mode, a single cooling mode, a single warm-up mode, a single cooling mode, and a single heating mode to switch the inside of the vehicle compartment. Air conditioning and temperature adjustment of the battery 80 can be performed.
 そして、冷房温調モードおよび暖房温調モード時には、空調対象空間である車室内へ送風される送風空気の適切な温度調整と、送風空気とは異なる温度調整対象物であるバッテリ80の適切な温度調整とを両立させることができる。 In the cooling temperature control mode and the heating temperature control mode, the appropriate temperature adjustment of the blast air blown into the cabin, which is the air-conditioned space, and the appropriate temperature adjustment of the battery 80, which is a temperature adjustment target different from the blast air, Adjustment can be compatible.
 より詳細には、冷房温調モードの冷凍サイクル装置10では、加熱部を構成する水-冷媒熱交換器12を放熱器として機能させ、室内蒸発器18および吸熱部を構成する第2チラー19bを蒸発器として機能させる蒸気圧縮式の冷凍サイクルを構成することができる。従って、室内蒸発器18にて、低圧冷媒を蒸発させて送風空気を冷却することができる。すなわち、車室内の冷房を行うことができる。 More specifically, in the refrigeration cycle apparatus 10 in the cooling temperature control mode, the water-refrigerant heat exchanger 12 constituting the heating section functions as a radiator, and the indoor evaporator 18 and the second chiller 19b constituting the heat absorbing section are provided. A vapor compression refrigeration cycle that functions as an evaporator can be configured. Therefore, in the indoor evaporator 18, the low-pressure refrigerant can be evaporated to cool the blown air. That is, cooling of the vehicle interior can be performed.
 また、暖房温調モードの冷凍サイクル装置10では、加熱部を構成する水-冷媒熱交換器12を放熱器として機能させ、吸熱部を構成する第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。従って、ヒータコア42にて、高圧冷媒によって加熱された高温側熱媒体を熱源として送風空気を加熱することができる。すなわち、車室内の暖房を行うことができる。 Further, in the refrigeration cycle apparatus 10 in the heating temperature control mode, the refrigeration cycle in which the water-refrigerant heat exchanger 12 constituting the heating section functions as a radiator and the second chiller 19b constituting the heat absorption section functions as an evaporator. Be composed. Therefore, the blower air can be heated by the heater core 42 using the high-temperature side heat medium heated by the high-pressure refrigerant as a heat source. That is, heating of the vehicle interior can be performed.
 さらに、冷房温調モードおよび暖房温調モードでは、開度比EX1/EX2を変化させることによって、温度調整部を構成する第1チラー19aへ流入させる冷媒の温度を変化させることができる。これにより、第1チラー19aにて冷媒と熱交換する温度調整側熱媒体の温度を変化させて、バッテリ80の冷却あるいは加熱を行うことができる。すなわち、バッテリ80の適切な温度調整を行うことができる。 Furthermore, in the cooling temperature adjustment mode and the heating temperature adjustment mode, the temperature of the refrigerant flowing into the first chiller 19a constituting the temperature adjustment unit can be changed by changing the opening ratio EX1 / EX2. This allows the first chiller 19a to cool or heat the battery 80 by changing the temperature of the temperature-adjusting heat medium that exchanges heat with the refrigerant. That is, appropriate temperature adjustment of the battery 80 can be performed.
 その結果、本実施形態の冷凍サイクル装置10によれば、送風空気の適切な温度調整と、バッテリ80の適切な温度調整とを両立させることができる。 As a result, according to the refrigeration cycle device 10 of the present embodiment, it is possible to achieve both appropriate temperature adjustment of the blown air and appropriate temperature adjustment of the battery 80.
 これに加えて、冷房温調モードおよび暖房温調モードでは、開度比EX1/EX2を変化させることによって、バッテリ80の温度調整を行っている。 In addition, in the cooling temperature adjustment mode and the heating temperature adjustment mode, the temperature of the battery 80 is adjusted by changing the opening ratio EX1 / EX2.
 これによれば、冷房温調モード時に、バッテリ80の温度調整を行うために、室内蒸発器18へ流入する冷媒の流れ方向を逆転させる必要や、圧縮機11を停止させる必要がない。同様に、暖房温調モード時に、バッテリ80の温度調整を行うために、水-冷媒熱交換器12へ流入させる冷媒の流れ方向を逆転させる必要や、圧縮機11を停止させる必要がない。従って、送風空気の温度変動を抑制することができる。 According to this, in the cooling temperature control mode, it is not necessary to reverse the flow direction of the refrigerant flowing into the indoor evaporator 18 or to stop the compressor 11 in order to adjust the temperature of the battery 80. Similarly, in the heating temperature control mode, it is not necessary to reverse the flow direction of the refrigerant flowing into the water-refrigerant heat exchanger 12 or to stop the compressor 11 in order to adjust the temperature of the battery 80. Therefore, it is possible to suppress the temperature fluctuation of the blown air.
 その結果、本実施形態の冷凍サイクル装置10によれば、バッテリ80の適切な温度調整と、バッテリ80の温度調整に伴う送風空気の温度変動の抑制とを両立させることができる。 As a result, according to the refrigeration cycle device 10 of the present embodiment, it is possible to achieve both the appropriate temperature adjustment of the battery 80 and the suppression of the temperature fluctuation of the blown air accompanying the temperature adjustment of the battery 80.
 このことを、図6のタイムチャートを用いてより詳細に説明する。図6のタイムチャートは、暖房温調モードにおける送風空気温度TAVおよびバッテリ温度TBの変化を示している。送風空気温度TAVは、空調風温度センサ79によって検出された送風空気の温度である。なお、図6の例では、車室内の暖房開始時にバッテリ温度TBが基準下限温度KTBL以下となっている。このため、この例では暖房暖機モードから開始される。 This will be described in more detail with reference to the time chart of FIG. The time chart of FIG. 6 shows changes in the blast air temperature TAV and the battery temperature TB in the heating temperature control mode. The blast air temperature TAV is the temperature of the blast air detected by the conditioned air temperature sensor 79. In the example of FIG. 6, the battery temperature TB is lower than or equal to the reference lower limit temperature KTBL at the time of starting the heating of the vehicle interior. Therefore, in this example, the operation is started from the heating warm-up mode.
 暖房暖機モードでは、バッテリ温度TBの上昇に伴って、開度比EX1/EX2を減少させる。さらに、本実施形態の制御マップでは、図6に示されるように、バッテリ温度TBに応じて開度比EX1/EX2の減少度合を変化させて、バッテリ温度TBの急上昇を抑制している。そして、バッテリ温度TBが基準上限温度KTBH以上になると、暖房冷却モードに切り替える。 (4) In the heating / warm-up mode, the opening degree ratio EX1 / EX2 is decreased as the battery temperature TB increases. Further, in the control map of the present embodiment, as shown in FIG. 6, the degree of decrease in the opening degree ratio EX1 / EX2 is changed according to the battery temperature TB, thereby suppressing a sharp rise in the battery temperature TB. When the battery temperature TB becomes equal to or higher than the reference upper limit temperature KTBH, the mode is switched to the heating / cooling mode.
 暖房冷却モードでは、バッテリ温度TBの低下に伴って、開度比EX1/EX2を増加させる。さらに、本実施形態の制御マップでは、図6に示されるように、バッテリ温度TBに応じて開度比EX1/EX2の増加度合を変化させて、バッテリ温度TBの急低下を抑制している。そして、バッテリ温度TBが基準下限温度KTBL以下になると、暖房暖機モードに切り替える。 (4) In the heating / cooling mode, the opening ratio EX1 / EX2 is increased as the battery temperature TB decreases. Further, in the control map of the present embodiment, as shown in FIG. 6, the degree of increase of the opening ratio EX1 / EX2 is changed in accordance with the battery temperature TB to suppress a sharp drop in the battery temperature TB. When the battery temperature TB becomes equal to or lower than the reference lower limit temperature KTBL, the mode is switched to the heating warm-up mode.
 このように暖房暖機モードおよび暖房冷却モードを切り替えることによって、バッテリ温度TBを適切な温度範囲内に維持することができる。 (4) By switching between the heating warm-up mode and the heating / cooling mode, the battery temperature TB can be maintained within an appropriate temperature range.
 なお、図6において、暖房暖機モードから暖房冷却モードへ切り替えた直後にバッテリ温度TBが僅かに上昇している。その理由は、温度調整側熱媒体回路50を循環する温度調整側熱媒体の熱容量により、温度調整側熱媒体の温度低下に応答遅れが生じてしまうからである。暖房冷却モードから暖房暖機モードへ切り替えた直後にバッテリ温度TBが僅かに低下している理由も同様である。 In FIG. 6, the battery temperature TB slightly increases immediately after switching from the heating warm-up mode to the heating cooling mode. The reason is that the heat capacity of the temperature adjustment-side heat medium circulating in the temperature adjustment-side heat medium circuit 50 causes a response delay in the temperature decrease of the temperature adjustment-side heat medium. The same holds for the reason that the battery temperature TB slightly decreases immediately after switching from the heating / cooling mode to the heating / warm-up mode.
 さらに、本実施形態の冷凍サイクル装置10では、暖房温調モード時に、開度比EX1/EX2を増減させる制御とは独立して、高温側熱媒体温度TWHが目標高温側熱媒体温度TWHOに近づくように、圧縮機11の回転数を制御している。 Further, in the refrigeration cycle apparatus 10 of the present embodiment, in the heating temperature control mode, the high-temperature heat medium temperature TWH approaches the target high-temperature heat medium temperature TWHO independently of the control of increasing or decreasing the opening ratio EX1 / EX2. Thus, the rotation speed of the compressor 11 is controlled.
 ここで、高温側熱媒体は、ヒータコア42にて送風空気を加熱する際の熱源として利用される。さらに、暖房温調モードでは、エアミックスドア34の開度SWが100%に近づく。このため、高温側熱媒体温度TWHが目標高温側熱媒体温度TWHOに近づくように圧縮機11の回転数を制御することは、送風空気温度TAVが目標吹出温度TAOに近づくように圧縮機11の冷媒吐出能力を制御することを意味する。 Here, the high-temperature side heat medium is used as a heat source when the blown air is heated by the heater core 42. Further, in the heating temperature control mode, the opening degree SW of the air mix door 34 approaches 100%. For this reason, controlling the rotation speed of the compressor 11 so that the high-temperature-side heat medium temperature TWH approaches the target high-temperature-side heat medium temperature TWHO requires that the blower air temperature TAV approach the target outlet temperature TAO. This means controlling the refrigerant discharge capacity.
 従って、本実施形態の冷凍サイクル装置10では、図6に示すように、暖房暖機モードと暖房冷却モードとを切り替えてバッテリ80の温度調整を行っても、送風空気温度TAVの変動を抑制することができる。 Therefore, in the refrigeration cycle apparatus 10 of the present embodiment, as shown in FIG. 6, even when the temperature of the battery 80 is adjusted by switching between the heating warm-up mode and the heating / cooling mode, the fluctuation of the blast air temperature TAV is suppressed. be able to.
 また、本実施形態の冷凍サイクル装置10では、単独冷却モードおよび単独暖機モードを行うことができる。これによれば、車室内の空調を行う必要の無い場合であっても、バッテリ80の冷却あるいは加熱を行って、バッテリ80の適切な温度調整を行うことができる。 In addition, in the refrigeration cycle apparatus 10 of the present embodiment, the single cooling mode and the single warm-up mode can be performed. According to this, even when it is not necessary to perform air conditioning in the vehicle compartment, the temperature of the battery 80 can be appropriately adjusted by cooling or heating the battery 80.
 この際、単独冷却モードでは、冷房用膨張弁14aを全閉とし、第1冷却用膨張弁14bを絞り状態とし、第2冷却用膨張弁14cを全開としている。つまり、単独冷却モードでは、実質的に、第1冷却用膨張弁14bの絞り開度を制御するという簡素な制御態様でバッテリ80の適切な冷却を行うことができる。 At this time, in the single cooling mode, the cooling expansion valve 14a is fully closed, the first cooling expansion valve 14b is in the throttled state, and the second cooling expansion valve 14c is fully open. That is, in the single cooling mode, it is possible to perform appropriate cooling of the battery 80 in a simple control mode in which the throttle opening of the first cooling expansion valve 14b is substantially controlled.
 一方、単独暖房モードでは、冷房用膨張弁14aを全閉とし、第1冷却用膨張弁14bを全開とし、第2冷却用膨張弁14cを絞り状態としている。つまり、単独暖房モードでは、実質的に、第2冷却用膨張弁14cの絞り開度を制御するという簡素な制御態様でバッテリ80の適切な暖機を行うことができる。 On the other hand, in the single heating mode, the cooling expansion valve 14a is fully closed, the first cooling expansion valve 14b is fully opened, and the second cooling expansion valve 14c is in a throttled state. That is, in the single heating mode, the battery 80 can be appropriately warmed up in a simple control mode in which the throttle opening of the second cooling expansion valve 14c is substantially controlled.
 また、本実施形態の冷凍サイクル装置10では、暖機切替条件が成立した際には、単独暖機モードから暖房温調モードへ切り替える前に、温度調整側熱媒体の温度を上昇させる。これによれば、暖房温調モードへ切り替える前に温度調整側熱媒体回路50を循環する温度調整側熱媒体の温度を上昇させることができる。 In addition, in the refrigeration cycle device 10 of the present embodiment, when the warm-up switching condition is satisfied, the temperature of the temperature-adjusting heat medium is increased before switching from the single warm-up mode to the heating temperature control mode. According to this, it is possible to increase the temperature of the temperature adjustment-side heat medium circulating in the temperature adjustment-side heat medium circuit 50 before switching to the heating temperature adjustment mode.
 これによれば、単独暖機モードから暖房温調モードへ切り替えた際に、温度調整側熱媒体回路50を循環する温度調整側熱媒体に蓄えられた熱を利用して、バッテリ80の加熱能力の低下を抑制することができる。つまり、単独暖機モードから暖房温調モードへ切り替えた際に、冷凍サイクル装置10の加熱能力が送風空気を加熱するために利用されてしまっても、温度調整側熱媒体に蓄熱された熱を利用してバッテリ80を暖機することができる。 According to this, when the mode is switched from the single warm-up mode to the heating temperature control mode, the heating capacity of the battery 80 is utilized by utilizing the heat stored in the temperature control side heat medium circulating in the temperature control side heat medium circuit 50. Can be suppressed. That is, when switching from the single warm-up mode to the heating temperature control mode, even if the heating capacity of the refrigeration cycle device 10 is used to heat the blown air, the heat stored in the temperature adjustment-side heat medium is The battery 80 can be warmed up by utilizing this.
 また、本実施形態の冷凍サイクル装置10では、単独冷房モードおよび単独暖房モードを行うことができる。これによれば、バッテリ80の温度調整を行う必要が無い場合であっても車室内の空調を行うことができる。 冷凍 In addition, in the refrigeration cycle apparatus 10 of the present embodiment, the single cooling mode and the single heating mode can be performed. According to this, even when it is not necessary to adjust the temperature of the battery 80, it is possible to perform air conditioning in the vehicle compartment.
 また、本実施形態の冷凍サイクル装置10では、暖房切替条件が成立した際には、単独暖房モードから暖房温調モードへ切り替える前に、高温側熱媒体の温度を上昇させる。 In addition, in the refrigeration cycle device 10 of the present embodiment, when the heating switching condition is satisfied, the temperature of the high-temperature side heat medium is increased before switching from the single heating mode to the heating temperature adjustment mode.
 これによれば、単独暖房モードから暖房温調モードへ切り替えた際に、高温側熱媒体回路40を循環する高温側熱媒体に蓄えられた熱を利用して、送風空気の加熱能力の低下を抑制することができる。つまり、単独暖房モードから暖房温調モードへ切り替えた際に、冷凍サイクル装置10の加熱能力がバッテリ80を加熱するために利用されてしまっても、高温側熱媒体に蓄熱された熱を利用して送風空気を暖機することができる。 According to this, when switching from the single heating mode to the heating temperature control mode, the heat stored in the high-temperature side heat medium circulating in the high-temperature side heat medium circuit 40 is used to reduce the heating capacity of the blown air. Can be suppressed. That is, even when the heating capacity of the refrigeration cycle device 10 is used to heat the battery 80 when the mode is switched from the independent heating mode to the heating temperature control mode, the heat stored in the high-temperature side heat medium is used. To warm up the blast air.
 (第2実施形態)
 本実施形態では、図7に示すように、冷凍サイクル装置10aを採用した例を説明する。冷凍サイクル装置10aでは、第1実施形態で説明した冷凍サイクル装置10に対して、第3~第6三方継手13c~13f、暖房用膨張弁14d、除湿用開閉弁15a、暖房用開閉弁15b、室外熱交換器16、バイパス通路22a、暖房用通路22b等が追加されている。
(2nd Embodiment)
In the present embodiment, an example in which a refrigeration cycle device 10a is employed as shown in FIG. 7 will be described. The refrigeration cycle apparatus 10a is different from the refrigeration cycle apparatus 10 described in the first embodiment in that third to sixth three-way joints 13c to 13f, a heating expansion valve 14d, a dehumidifying on-off valve 15a, a heating on-off valve 15b, An outdoor heat exchanger 16, a bypass passage 22a, a heating passage 22b, and the like are added.
 冷凍サイクル装置10aでは、水-冷媒熱交換器12の冷媒通路の出口に、第3三方継手13cの流入口側が接続されている。第3~第6三方継手13c~13fの基本的構成は、第1三方継手13aと同様である。 In the refrigeration cycle apparatus 10a, the inlet of the third three-way joint 13c is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12. The basic configuration of the third to sixth three-way joints 13c to 13f is the same as that of the first three-way joint 13a.
 第3三方継手13cの一方の流出口には、暖房用膨張弁14dの入口側が接続されている。第3三方継手13cの他方の流出口には、バイパス通路22aを介して、第4三方継手13dの一方の流入口側が接続されている。バイパス通路22aには、除湿用開閉弁15aが配置されている。 入口 An inlet of the heating expansion valve 14d is connected to one outlet of the third three-way joint 13c. One inflow side of the fourth three-way joint 13d is connected to the other outlet of the third three-way joint 13c via a bypass passage 22a. An on-off valve 15a for dehumidification is arranged in the bypass passage 22a.
 除湿用開閉弁15aは、第3三方継手13cの他方の流出口側と第4三方継手13dの一方の流入口側とを接続する冷媒通路を開閉する電磁弁である。さらに、冷凍サイクル装置10aは、後述するように、暖房用開閉弁15bを備えている。暖房用開閉弁15bの基本的構成は、除湿用開閉弁15aと同様である。 The on-off valve 15a for dehumidification is an electromagnetic valve that opens and closes a refrigerant passage that connects the other outlet side of the third three-way joint 13c and one inlet side of the fourth three-way joint 13d. Further, the refrigeration cycle device 10a includes a heating on-off valve 15b, as described later. The basic configuration of the heating on-off valve 15b is the same as that of the dehumidifying on-off valve 15a.
 除湿用開閉弁15aおよび暖房用開閉弁15bは、冷媒通路を開閉することで、各運転モードの冷媒回路を切り替えることができる。従って、除湿用開閉弁15aおよび暖房用開閉弁15bは、冷房用膨張弁14a等とともに、サイクルの冷媒回路を切り替える冷媒回路切替部である。除湿用開閉弁15aおよび暖房用開閉弁15bは、制御装置70から出力される制御電圧によって、その作動が制御される。 (4) The on-off valve 15a for dehumidification and the on-off valve 15b for heating can switch the refrigerant circuit of each operation mode by opening and closing the refrigerant passage. Therefore, the on-off valve 15a for dehumidification and the on-off valve 15b for heating, together with the expansion valve 14a for cooling, etc., are refrigerant circuit switching units that switch the refrigerant circuit of the cycle. The operations of the dehumidifying on-off valve 15a and the heating on-off valve 15b are controlled by a control voltage output from the control device 70.
 暖房用膨張弁14dは、水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する暖房用減圧部である。暖房用膨張弁14dの基本的構成は、冷房用膨張弁14a等と同様である。 The heating expansion valve 14d is a heating decompression unit that depressurizes the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate of the refrigerant that flows out downstream. The basic configuration of the heating expansion valve 14d is the same as that of the cooling expansion valve 14a and the like.
 暖房用膨張弁14dの出口には、室外熱交換器16の冷媒入口側が接続されている。室外熱交換器16は、暖房用膨張弁14dから流出した冷媒と図示しない外気ファンにより送風された外気とを熱交換させる熱交換器である。 冷媒 The refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet of the heating expansion valve 14d. The outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out of the heating expansion valve 14d and the outside air blown by an outside air fan (not shown).
 室外熱交換器16は、駆動装置室内の前方側に配置されている。このため、車両走行時には、室外熱交換器16に走行風を当てることができる。従って、室外熱交換器16は、高温側ラジエータ44、吸熱側ラジエータ64等と一体的に形成されていてもよい。 The outdoor heat exchanger 16 is arranged on the front side in the drive device room. For this reason, when the vehicle is traveling, traveling wind can be applied to the outdoor heat exchanger 16. Therefore, the outdoor heat exchanger 16 may be formed integrally with the high-temperature-side radiator 44, the heat-absorbing-side radiator 64, and the like.
 室外熱交換器16の冷媒出口には、第5三方継手13eの流入口側が接続されている。第5三方継手13eの一方の流出口には、暖房用通路22bを介して、第6三方継手13fの一方の流入口側が接続されている。暖房用通路22bには、この冷媒通路を開閉する暖房用開閉弁15bが配置されている。 流 The refrigerant outlet of the outdoor heat exchanger 16 is connected to the inlet side of the fifth three-way joint 13e. One of the outlets of the fifth three-way joint 13e is connected to one of the inlets of the sixth three-way joint 13f via a heating passage 22b. A heating opening / closing valve 15b that opens and closes the refrigerant passage is arranged in the heating passage 22b.
 第5三方継手13eの他方の流出口には、第4三方継手13dの他方の流入口側が接続されている。第5三方継手13eの他方の流出口側と第4三方継手13dの他方の流入口側とを接続する冷媒通路には、逆止弁17が配置されている。逆止弁17は、第5三方継手13e側から第4三方継手13d側へ冷媒が流れることを許容し、第4三方継手13d側から第5三方継手13e側へ冷媒が流れることを禁止する機能を果たす。 他方 The other inflow port of the fourth three-way joint 13d is connected to the other outflow port of the fifth three-way joint 13e. A check valve 17 is disposed in the refrigerant passage connecting the other outflow side of the fifth three-way joint 13e and the other inflow side of the fourth three-way joint 13d. The check valve 17 allows the refrigerant to flow from the fifth three-way joint 13e to the fourth three-way joint 13d, and inhibits the refrigerant from flowing from the fourth three-way joint 13d to the fifth three-way joint 13e. Fulfill.
 第4三方継手13dの流出口には、第1三方継手13aの流入口側が接続されている。また、蒸発圧力調整弁20の出口には、第6三方継手13fの他方の流入口側が接続されている。第6三方継手13fの流出口には、アキュムレータ21の入口側が接続されている。 流 The outlet of the first three-way joint 13a is connected to the outlet of the fourth three-way joint 13d. The other inlet side of the sixth three-way joint 13f is connected to the outlet of the evaporation pressure regulating valve 20. The inlet of the accumulator 21 is connected to the outlet of the sixth three-way joint 13f.
 従って、冷凍サイクル装置10aにおいて、バイパス通路22aは、加熱部を構成する水-冷媒熱交換器12から流出した冷媒を、室外熱交換器16を迂回させて、分岐部である第1三方継手13aの上流側へ導く冷媒通路である。 Therefore, in the refrigeration cycle apparatus 10a, the bypass passage 22a allows the refrigerant flowing out of the water-refrigerant heat exchanger 12 constituting the heating section to bypass the outdoor heat exchanger 16 and to be the first three-way joint 13a serving as the branch section. This is a refrigerant passage that leads to the upstream side of.
 また、暖房用通路22bは、室外熱交換器16から流出した冷媒を、室内蒸発器18、温度調整部を構成する第1チラー19a、および吸熱部を構成する第2チラー19bを迂回させて、圧縮機11の吸入口側へ導く冷媒通路である。 In addition, the heating passage 22b bypasses the refrigerant flowing out of the outdoor heat exchanger 16 to the indoor evaporator 18, the first chiller 19a forming the temperature adjustment unit, and the second chiller 19b forming the heat absorption unit. A refrigerant passage that leads to the suction port side of the compressor 11.
 また、本実施形態の制御装置70の入力側には、図8のブロック図に示すように、第4冷媒温度センサ74d、第3冷媒圧力センサ75cが接続されている。第4冷媒温度センサ74dは、室外熱交換器16から流出した冷媒の温度T4を検出する第4冷媒温度検出部である。第3冷媒圧力センサ75cは、室外熱交換器16から流出した冷媒の圧力P3を検出する第3圧力検出部である。その他の構成は、第1実施形態で説明した冷凍サイクル装置10と同様である。 As shown in the block diagram of FIG. 8, a fourth refrigerant temperature sensor 74d and a third refrigerant pressure sensor 75c are connected to the input side of the control device 70 of the present embodiment. The fourth refrigerant temperature sensor 74d is a fourth refrigerant temperature detection unit that detects the temperature T4 of the refrigerant flowing out of the outdoor heat exchanger 16. The third refrigerant pressure sensor 75c is a third pressure detector that detects the pressure P3 of the refrigerant flowing out of the outdoor heat exchanger 16. Other configurations are the same as those of the refrigeration cycle device 10 described in the first embodiment.
 次に、上記構成における本実施形態の作動について説明する。本実施形態の冷凍サイクル装置10aでは、冷房温調モード、暖房温調モード、単独冷却モード、単独暖機モード、単独冷房モード、単独暖房モードに加えて、除湿暖房温調モードでの運転を行うことができる。 Next, the operation of the present embodiment in the above configuration will be described. In the refrigeration cycle apparatus 10a of this embodiment, in addition to the cooling temperature control mode, the heating temperature control mode, the single cooling mode, the single warming mode, the single cooling mode, and the single heating mode, the operation is performed in the dehumidifying heating temperature control mode. be able to.
 除湿暖房温調モードは、車室内の除湿暖房を行うために送風空気の冷却と再加熱を行うとともに、バッテリ80の温度調整を行う運転モードである。除湿暖房温調モードには、送風空気を除湿して温度調整するとともに、バッテリ80の冷却を行う除湿暖房冷却モード、および送風空気を除湿して温度調整するとともに、バッテリ80を加熱して暖機を行う除湿暖房暖機モードがある。以下、各運転モードの詳細作動について説明する。 (4) The dehumidifying and heating temperature control mode is an operation mode in which the cooling and reheating of the blown air and the temperature of the battery 80 are adjusted in order to perform dehumidifying and heating of the vehicle interior. The dehumidification and heating temperature control mode includes a dehumidification and heating cooling mode for dehumidifying the blast air and adjusting the temperature, and cooling the battery 80, and a dehumidification and temperature adjustment for the blast air and heating and warming the battery 80. There is a dehumidifying heating warm-up mode. Hereinafter, the detailed operation of each operation mode will be described.
 (1)冷房温調モード
 冷房温調モードでは、制御装置70が、冷房用膨張弁14a、第1冷却用膨張弁14b、および第2冷却用膨張弁14cを絞り状態とし、暖房用膨張弁14dを全開とする。また、制御装置70は、高温側熱媒体ポンプ41を停止させ、予め定めた冷房温調モード用の熱媒体圧送能力を発揮するように、温度調整側熱媒体ポンプ51、および吸熱側熱媒体ポンプ61の作動を制御する。
(1) Cooling Temperature Control Mode In the cooling temperature control mode, the control device 70 sets the cooling expansion valve 14a, the first cooling expansion valve 14b, and the second cooling expansion valve 14c to the throttle state, and the heating expansion valve 14d. Is fully opened. In addition, the control device 70 stops the high-temperature side heat medium pump 41 and performs the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump so as to exhibit a predetermined heat medium pumping capacity for the cooling temperature control mode. The operation of 61 is controlled.
 また、制御装置70は、除湿用開閉弁15aおよび暖房用開閉弁15bを閉じる。また、制御装置70は、第1実施形態の冷房温調モードと同様に、吸熱側三方弁63の作動を制御する。 制 御 The control device 70 also closes the on-off valve 15a for dehumidification and the on-off valve 15b for heating. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 in the same manner as in the cooling temperature control mode of the first embodiment.
 これにより、冷房温調モードの冷凍サイクル装置10aでは、圧縮機11の吐出口(、水-冷媒熱交換器12、第3三方継手13c、暖房用膨張弁14d)、室外熱交換器16(、第5三方継手13e、逆止弁17、第4三方継手13d)、第1三方継手13a、冷房用膨張弁14a、室内蒸発器18、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thus, in the refrigeration cycle apparatus 10a in the cooling temperature control mode, the discharge port of the compressor 11 (the water-refrigerant heat exchanger 12, the third three-way joint 13c, the expansion valve 14d for heating), the outdoor heat exchanger 16 (, Fifth three-way joint 13e, check valve 17, fourth three-way joint 13d), first three-way joint 13a, cooling expansion valve 14a, indoor evaporator 18, second three-way joint 13b, evaporating pressure regulating valve 20, accumulator 21, A refrigeration cycle in which the refrigerant circulates in the order of the suction port of the compressor 11 is configured.
 同時に、圧縮機11の吐出口、水-冷媒熱交換器12、第3三方継手13c、暖房用膨張弁14d)、室外熱交換器16(、第5三方継手13e、逆止弁17、第4三方継手13d)、第1三方継手13a、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 At the same time, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the third three-way joint 13c, the heating expansion valve 14d), the outdoor heat exchanger 16 (the fifth three-way joint 13e, the check valve 17, the fourth Three-way joint 13d), first three-way joint 13a, first cooling expansion valve 14b, first chiller 19a, second cooling expansion valve 14c, second chiller 19b, second three-way joint 13b, evaporating pressure regulating valve 20, accumulator 21, a refrigeration cycle in which the refrigerant circulates in the order of the suction port of the compressor 11 is configured.
 つまり、冷房温調モードの冷凍サイクル装置10aでは、第1実施形態の冷凍サイクル装置10と同様に、冷房用膨張弁14a、室内蒸発器18の順に冷媒が流れる経路、並びに、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19bの順に冷媒が流れる経路が、冷媒流れに対して並列的に接続される冷媒回路に切り替えられる。 That is, in the refrigeration cycle apparatus 10a in the cooling temperature control mode, similarly to the refrigeration cycle apparatus 10 of the first embodiment, a path in which the refrigerant flows in the order of the cooling expansion valve 14a, the indoor evaporator 18, and the first cooling expansion. The path in which the refrigerant flows in the order of the valve 14b, the first chiller 19a, the second cooling expansion valve 14c, and the second chiller 19b is switched to a refrigerant circuit connected in parallel to the refrigerant flow.
 この回路構成で、制御装置70は、第1実施形態の冷房温調モードと同様に、各種各制御対象機器の作動を適宜制御する。冷房用膨張弁14aについては、室外熱交換器16から流出した冷媒の過冷却度SC3が目標過冷却度SCO3に近づくように、絞り開度を制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of each device to be controlled, similarly to the cooling temperature adjustment mode of the first embodiment. The throttle opening of the cooling expansion valve 14a is controlled such that the supercooling degree SC3 of the refrigerant flowing out of the outdoor heat exchanger 16 approaches the target supercooling degree SCO3.
 過冷却度SC3は、第4冷媒温度センサ74dによって検出された温度T4および第3冷媒圧力センサ75cによって検出された圧力P3から算定される。目標過冷却度SCO3は、外気温Tamに基づいて、予め制御装置70に記憶された制御マップを参照して決定される。この制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO3を決定する。 The degree of supercooling SC3 is calculated from the temperature T4 detected by the fourth refrigerant temperature sensor 74d and the pressure P3 detected by the third refrigerant pressure sensor 75c. The target degree of subcooling SCO3 is determined based on the outside temperature Tam with reference to a control map stored in the control device 70 in advance. In this control map, the target degree of supercooling SCO3 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
 このため、冷房冷却モードの冷凍サイクル装置10aでは、室外熱交換器16を放熱器として機能させ、室内蒸発器18、第1チラー19aおよび第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。従って、室内蒸発器18にて、送風空気を冷却することができる。また、第1チラー19aにて、温度調整側熱媒体を冷却することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, in the refrigeration cycle apparatus 10a in the cooling / cooling mode, a refrigeration cycle in which the outdoor heat exchanger 16 functions as a radiator and the indoor evaporator 18, the first chiller 19a, and the second chiller 19b function as an evaporator is configured. You. Therefore, the air blown by the indoor evaporator 18 can be cooled. Further, the first chiller 19a can cool the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 また、冷房暖機モードの冷凍サイクル装置10aでは、室外熱交換器16および第1チラー19aを放熱器として機能させ、室内蒸発器18および第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。従って、第1チラー19aにて、温度調整側熱媒体を加熱することができる。また、室内蒸発器18にて、送風空気を冷却することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 In the refrigeration cycle apparatus 10a in the cooling / warm-up mode, a refrigeration cycle is configured in which the outdoor heat exchanger 16 and the first chiller 19a function as a radiator, and the indoor evaporator 18 and the second chiller 19b function as an evaporator. You. Therefore, the first chiller 19a can heat the temperature adjustment-side heat medium. In addition, the blown air can be cooled by the indoor evaporator 18. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 さらに、冷房温調モードでは、高温側熱媒体ポンプ41が停止しているので、水-冷媒熱交換器12の冷媒通路へ流入した冷媒は、殆ど放熱することなく水-冷媒熱交換器12から流出する。従って、ヒータコア42にて送風空気が加熱されてしまうことはない。 Further, in the cooling temperature control mode, since the high-temperature side heat transfer medium pump 41 is stopped, the refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 hardly radiates heat from the water-refrigerant heat exchanger 12. leak. Therefore, the blown air is not heated by the heater core 42.
 その結果、冷房温調モードの車両用空調装置1では、室内蒸発器18にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。また、第1実施形態と同様に、車載機器82を冷却することができる。さらに、制御装置70が、バッテリ温度TBに応じて、開度比EX1/EX2を調整することによって、バッテリ80の温度を適切な温度範囲内に維持することができる。 As a result, in the vehicle air conditioner 1 in the cooling temperature control mode, the air in the vehicle cabin can be cooled by blowing the blast air cooled by the indoor evaporator 18 into the vehicle cabin. Further, similarly to the first embodiment, the in-vehicle device 82 can be cooled. Further, control device 70 can maintain the temperature of battery 80 within an appropriate temperature range by adjusting opening ratio EX1 / EX2 according to battery temperature TB.
 (2)除湿暖房温調モード
 除湿暖房温調モードでは、制御装置70が、冷房用膨張弁14a、第1冷却用膨張弁14b、第2冷却用膨張弁14c、および暖房用膨張弁14dを絞り状態とする。また、制御装置70は、予め定めた除湿暖房温調モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41、温度調整側熱媒体ポンプ51、および吸熱側熱媒体ポンプ61の作動を制御する。
(2) Dehumidifying / heating temperature control mode In the dehumidifying / heating temperature control mode, the control device 70 restricts the cooling expansion valve 14a, the first cooling expansion valve 14b, the second cooling expansion valve 14c, and the heating expansion valve 14d. State. In addition, the control device 70 controls the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the dehumidifying and heating temperature control mode. Control the operation.
 また、制御装置70は、除湿用開閉弁15aおよび暖房用開閉弁15bを開く。また、制御装置70は、第1実施形態の暖房温調モードと同様に、高温側三方弁43および吸熱側三方弁63の作動を制御する。 (4) The control device 70 opens the on-off valve 15a for dehumidification and the on-off valve 15b for heating. The control device 70 controls the operation of the high-temperature three-way valve 43 and the heat-absorbing three-way valve 63 as in the heating temperature control mode of the first embodiment.
 これにより、除湿暖房温調モードの冷凍サイクル装置10aでは、圧縮機11の吐出口、水-冷媒熱交換器12、第3三方継手13c、暖房用膨張弁14d、室外熱交換器16、第5三方継手13e、暖房用通路22b、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thereby, in the refrigeration cycle apparatus 10a in the dehumidifying and heating temperature control mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the third three-way joint 13c, the heating expansion valve 14d, the outdoor heat exchanger 16, A refrigeration cycle in which the refrigerant circulates in the order of the three-way joint 13e, the heating passage 22b, the accumulator 21, and the suction port of the compressor 11 is configured.
 さらに、圧縮機11の吐出口、水-冷媒熱交換器12、第3三方継手13c、バイパス通路22a、第4三方継手13d、第1三方継手13a、冷房用膨張弁14a、室内蒸発器18、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Furthermore, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the third three-way joint 13c, the bypass passage 22a, the fourth three-way joint 13d, the first three-way joint 13a, the cooling expansion valve 14a, the indoor evaporator 18, A refrigeration cycle in which the refrigerant circulates in the order of the second three-way joint 13b, the evaporating pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
 同時に、圧縮機11の吐出口、水-冷媒熱交換器12、第3三方継手13c、バイパス通路22a、第4三方継手13d、第1三方継手13a、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 At the same time, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the third three-way joint 13c, the bypass passage 22a, the fourth three-way joint 13d, the first three-way joint 13a, the first cooling expansion valve 14b, and the first chiller A refrigeration cycle in which the refrigerant circulates in the order of 19a, the second cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11.
 つまり、除湿暖房温調モードの冷凍サイクル装置10aでは、暖房用膨張弁14d、室外熱交換器16の順に冷媒が流れる経路、冷房用膨張弁14a、室内蒸発器18の順に冷媒が流れる経路、並びに、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19bの順に冷媒が流れる経路が、冷媒流れに対して並列的に接続される冷媒回路に切り替えられる。 That is, in the refrigeration cycle apparatus 10a in the dehumidifying and heating temperature control mode, a path in which the refrigerant flows in the order of the heating expansion valve 14d, the outdoor heat exchanger 16, a path in which the refrigerant flows in the order of the cooling expansion valve 14a, the indoor evaporator 18, and The path through which the refrigerant flows in the order of the first cooling expansion valve 14b, the first chiller 19a, the second cooling expansion valve 14c, and the second chiller 19b is switched to a refrigerant circuit connected in parallel to the refrigerant flow. .
 この回路構成で、制御装置70は、第1実施形態の冷房温調モードと同様に、各種各制御対象機器の作動を適宜制御する。圧縮機11については、第1実施形態の暖房温調モードと同様に制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of each device to be controlled, similarly to the cooling temperature adjustment mode of the first embodiment. The compressor 11 is controlled in the same manner as in the heating temperature control mode of the first embodiment.
 また、冷房用膨張弁14aおよび暖房用膨張弁14dについては、水-冷媒熱交換器12の冷媒通路から流出した冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように、絞り開度を制御する。さらに、制御装置70は、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14dの絞り開度EX4に対する冷房用膨張弁14aの絞り開度EX3の開度比EX3/EX4を増加させる。 The throttle opening of the cooling expansion valve 14a and the heating expansion valve 14d is set such that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1. Control. Further, the control device 70 increases the opening ratio EX3 / EX4 of the throttle opening EX3 of the cooling expansion valve 14a to the throttle opening EX4 of the heating expansion valve 14d as the target outlet temperature TAO increases.
 また、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cについては、第1実施形態の暖房温調モードと同様に制御する。また、エアミックスドア用のアクチュエータについては、第1実施形態の冷房温調モードと同様に制御する。 Further, the first cooling expansion valve 14b and the second cooling expansion valve 14c are controlled in the same manner as in the heating temperature control mode of the first embodiment. The actuator for the air mix door is controlled in the same manner as in the cooling temperature control mode of the first embodiment.
 このため、除湿暖房冷却モードの冷凍サイクル装置10aでは、水-冷媒熱交換器12を放熱器として機能させ、室外熱交換器16、室内蒸発器18、第1チラー19a、および第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。 Therefore, in the refrigeration cycle apparatus 10a in the dehumidifying heating / cooling mode, the water-refrigerant heat exchanger 12 functions as a radiator, and the outdoor heat exchanger 16, the indoor evaporator 18, the first chiller 19a, and the second chiller 19b are connected. A refrigeration cycle that functions as an evaporator is configured.
 従って、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。室内蒸発器18にて、送風空気を冷却することができる。第1チラー19aにて、温度調整側熱媒体を冷却することができる。第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12. In the indoor evaporator 18, the blown air can be cooled. In the first chiller 19a, the heat medium on the temperature adjustment side can be cooled. The heat absorption side heat medium can be cooled by the second chiller 19b.
 また、除湿暖房暖機モードの冷凍サイクル装置10aでは、水-冷媒熱交換器12、および第1チラー19aを放熱器として機能させ、室外熱交換器16、室内蒸発器18、および第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。 In the refrigeration cycle apparatus 10a in the dehumidification heating warm-up mode, the water-refrigerant heat exchanger 12 and the first chiller 19a function as a radiator, and the outdoor heat exchanger 16, the indoor evaporator 18, and the second chiller 19b Is configured as a refrigeration cycle that functions as an evaporator.
 従って、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。室内蒸発器18にて、送風空気を冷却することができる。第1チラー19aにて、温度調整側熱媒体を加熱することができる。第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, the high-temperature side heat medium can be heated by the water-refrigerant heat exchanger 12. In the indoor evaporator 18, the blown air can be cooled. The first chiller 19a can heat the heat medium on the temperature adjustment side. The heat absorption side heat medium can be cooled by the second chiller 19b.
 その結果、除湿暖房温調モードの車両用空調装置1では、室内蒸発器18にて冷却されて除湿された送風空気をヒータコア42にて再加熱して、車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 As a result, in the vehicle air conditioner 1 in the dehumidifying and heating temperature control mode, the blast air cooled and dehumidified by the indoor evaporator 18 is reheated by the heater core 42 and blown out into the vehicle cabin, whereby Dehumidification heating can be performed.
 この際、目標吹出温度TAOの上昇に伴って、開度比EX3/EX4を増加させて、室外熱交換器16における冷媒蒸発圧力を低下させることができる。従って、室外熱交換器16にて冷媒が外気から吸熱する吸熱量を増加させて、水-冷媒熱交換器12にて冷媒が高温側熱媒体へ放熱する放熱量を増加させることができる。そして、ヒータコア42における送風空気の加熱能力を向上させることができる。 際 At this time, as the target outlet temperature TAO increases, the opening degree ratio EX3 / EX4 is increased, and the refrigerant evaporation pressure in the outdoor heat exchanger 16 can be reduced. Therefore, the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 from the outside air can be increased, and the amount of heat released by the refrigerant to the high-temperature heat medium in the water-refrigerant heat exchanger 12 can be increased. And the heating capability of the blower air in the heater core 42 can be improved.
 さらに、バッテリ温度TBに応じて、開度比EX1/EX2を調整するので、冷房温調モードと同様に、バッテリ80の温度を適切な温度範囲内に維持することができる。 Furthermore, since the opening degree ratio EX1 / EX2 is adjusted according to the battery temperature TB, the temperature of the battery 80 can be maintained within an appropriate temperature range, similarly to the cooling temperature adjustment mode.
 (3)暖房温調モード
 暖房温調モードでは、制御装置70が、冷房用膨張弁14aおよび暖房用膨張弁14dを全閉とし、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cを絞り状態とする。また、制御装置70は、予め定めた暖房温調モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41、温度調整側熱媒体ポンプ51、および吸熱側熱媒体ポンプ61の作動を制御する。
(3) Heating Temperature Control Mode In the heating temperature control mode, the control device 70 fully closes the cooling expansion valve 14a and the heating expansion valve 14d, and closes the first cooling expansion valve 14b and the second cooling expansion valve 14c. The aperture state is set. Further, the control device 70 operates the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping capacity for the heating temperature adjustment mode. Control.
 また、制御装置70は、除湿用開閉弁15aを開き、暖房用開閉弁15bを閉じる。また、制御装置70は、第1実施形態の暖房温調モードと同様に、高温側三方弁43および吸熱側三方弁63の作動を制御する。 制 御 The control device 70 opens the dehumidifying on-off valve 15a and closes the heating on-off valve 15b. The control device 70 controls the operation of the high-temperature three-way valve 43 and the heat-absorbing three-way valve 63 as in the heating temperature control mode of the first embodiment.
 これにより、暖房温調モードの冷凍サイクル装置10aでは、圧縮機11の吐出口、水-冷媒熱交換器12、バイパス通路22a、第1三方継手13a、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thereby, in the refrigeration cycle apparatus 10a in the heating temperature control mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the bypass passage 22a, the first three-way joint 13a, the first cooling expansion valve 14b, the first chiller A refrigeration cycle in which the refrigerant circulates in the order of 19a, the second cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11.
 つまり、暖房温調モードの冷凍サイクル装置10aでは、第1実施形態の暖房温調モードと同様の冷凍サイクルが構成される。その他の作動は、第1実施形態の暖房温調モードと同様である。従って、本実施形態の車両用空調装置1では、第1実施形態の暖房温調モードと同様に、車室内の暖房、車載機器82の冷却、さらに、バッテリ80の温度調整を行うことができる。 That is, in the refrigeration cycle apparatus 10a in the heating temperature adjustment mode, a refrigeration cycle similar to that in the heating temperature adjustment mode in the first embodiment is configured. Other operations are the same as in the heating temperature control mode of the first embodiment. Therefore, in the vehicle air conditioner 1 of the present embodiment, similarly to the heating temperature control mode of the first embodiment, heating of the vehicle interior, cooling of the in-vehicle device 82, and further, temperature adjustment of the battery 80 can be performed.
 (4)単独冷却モード
 単独冷却モードでは、制御装置70が、冷房用膨張弁14aを全閉とし、第1冷却用膨張弁14bを絞り状態とし、第2冷却用膨張弁14cを全開とし、暖房用膨張弁14dを全開とする。また、制御装置70は、高温側熱媒体ポンプ41を停止させ、予め定めた単独冷却モード用の熱媒体圧送能力を発揮するように、温度調整側熱媒体ポンプ51および吸熱側熱媒体ポンプ61の作動を制御する。
(4) Single Cooling Mode In the single cooling mode, the controller 70 fully closes the cooling expansion valve 14a, closes the first cooling expansion valve 14b, fully opens the second cooling expansion valve 14c, and performs heating. The expansion valve 14d is fully opened. Further, the control device 70 stops the high-temperature side heat medium pump 41 and controls the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the single cooling mode. Control the operation.
 また、制御装置70は、除湿用開閉弁15aおよび暖房用開閉弁15bを閉じる。また、制御装置70は、第1実施形態の単独冷却モードと同様に、吸熱側三方弁63の作動を制御する。 制 御 The control device 70 also closes the on-off valve 15a for dehumidification and the on-off valve 15b for heating. The control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the single cooling mode of the first embodiment.
 これにより、単独冷却モードの冷凍サイクル装置10aでは、圧縮機11の吐出口、(水-冷媒熱交換器12、第3三方継手13c、暖房用膨張弁14d、)室外熱交換器16)、第5三方継手13e、第1三方継手13a、第1冷却用膨張弁14b、第1チラー19a、(第2冷却用膨張弁14c、)第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Accordingly, in the refrigeration cycle apparatus 10a in the single cooling mode, the discharge port of the compressor 11, the (water-refrigerant heat exchanger 12, the third three-way joint 13c, the expansion valve for heating 14d,) the outdoor heat exchanger 16), the 5 Three-way joint 13e, first three-way joint 13a, first cooling expansion valve 14b, first chiller 19a, (second cooling expansion valve 14c), second chiller 19b, second three-way joint 13b, evaporating pressure regulating valve 20 , A refrigeration cycle in which the refrigerant circulates in the order of the accumulator 21 and the suction port of the compressor 11.
 この回路構成で、制御装置70は、第1実施形態の単独冷却モードと同様に、各種各制御対象機器の作動を適宜制御する。第1冷却用膨張弁14bについては、室外熱交換器16から流出した冷媒の過冷却度SC3が目標過冷却度SCO3に近づくように、絞り開度を制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of each device to be controlled, similarly to the single cooling mode of the first embodiment. The throttle opening of the first cooling expansion valve 14b is controlled such that the supercooling degree SC3 of the refrigerant flowing out of the outdoor heat exchanger 16 approaches the target supercooling degree SCO3.
 このため、単独冷却モードの冷凍サイクル装置10aでは、室外熱交換器16を放熱器として機能させ、第1チラー19aおよび第2チラー19bを蒸発器として機能させる冷凍サイクルが構成される。従って、第1チラー19aにて、温度調整側熱媒体を冷却することができる。また、第2チラー19bにて、吸熱側熱媒体を冷却することができる。 Therefore, in the refrigeration cycle apparatus 10a in the single cooling mode, a refrigeration cycle in which the outdoor heat exchanger 16 functions as a radiator and the first chiller 19a and the second chiller 19b function as an evaporator is configured. Therefore, the first chiller 19a can cool the heat medium on the temperature adjustment side. Further, the heat absorption side heat medium can be cooled by the second chiller 19b.
 その結果、単独冷却モードの車両用空調装置1では、第1実施形態の単独冷却モードと同様に、車室内の空調を行うことなく、バッテリ80を冷却することができる。 結果 As a result, in the vehicle air conditioner 1 in the single cooling mode, the battery 80 can be cooled without performing air conditioning in the vehicle compartment, as in the single cooling mode of the first embodiment.
 さらに、単独冷却モードの冷凍サイクル装置10aでは、圧縮機11から吐出された冷媒の有する熱を、室外熱交換器16にて直接的に外気へ放熱することができる。従って、圧縮機11から吐出された冷媒の有する熱を、高温側熱媒体を介して高温側ラジエータ44にて間接的に外気へ放熱する場合に対して、熱交換効率および応答性を向上させることができる。 Further, in the refrigeration cycle apparatus 10a in the single cooling mode, the heat of the refrigerant discharged from the compressor 11 can be directly radiated to the outside air by the outdoor heat exchanger 16. Therefore, the heat exchange efficiency and the responsiveness are improved when the heat of the refrigerant discharged from the compressor 11 is indirectly radiated to the outside air by the high-temperature radiator 44 via the high-temperature heat medium. Can be.
 (5)単独暖機モード
 単独暖機モードでは、制御装置70が、冷房用膨張弁14aおよび暖房用膨張弁14dを全閉とし、第1冷却用膨張弁14bを全開とし、第2冷却用膨張弁14cを絞り状態とする。また、制御装置70は、高温側熱媒体ポンプ41を停止させ、予め定めた単独暖機モード用の熱媒体圧送能力を発揮するように、温度調整側熱媒体ポンプ51および吸熱側熱媒体ポンプ61の作動を制御する。
(5) Single warm-up mode In the single warm-up mode, the control device 70 fully closes the cooling expansion valve 14a and the heating expansion valve 14d, fully opens the first cooling expansion valve 14b, and expands the second cooling expansion. The valve 14c is set in the throttled state. Further, the control device 70 stops the high-temperature side heat medium pump 41, and controls the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the single warm-up mode. Controls the operation of.
 また、制御装置70は、除湿用開閉弁15aを開き、暖房用開閉弁15bを閉じる。また、制御装置70は、第1実施形態の単独暖機モードと同様に、吸熱側三方弁63の作動を制御する。 制 御 The control device 70 opens the dehumidifying on-off valve 15a and closes the heating on-off valve 15b. Further, the control device 70 controls the operation of the heat-absorbing three-way valve 63 as in the single warm-up mode of the first embodiment.
 これにより、単独暖機モードの冷凍サイクル装置10aでは、圧縮機11の吐出口、(水-冷媒熱交換器12、バイパス通路22a、第1三方継手13a、第1冷却用膨張弁14b、)第1チラー19a、第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 As a result, in the refrigeration cycle apparatus 10a in the single warm-up mode, the discharge port of the compressor 11 (the water-refrigerant heat exchanger 12, the bypass passage 22a, the first three-way joint 13a, the first cooling expansion valve 14b) A refrigeration cycle in which the refrigerant circulates in the order of the first chiller 19a, the second cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is configured. .
 つまり、単独暖機モードの冷凍サイクル装置10aでは、第1実施形態の単独暖機モードと同様の冷凍サイクルが構成される。その他の作動は、第1実施形態の単独暖機モードと同様である。従って、本実施形態の車両用空調装置1では、第1実施形態の単独暖機モードと同様に、車室内の空調を行うことなく、バッテリ80の温度を適切な温度範囲内に維持することができる。さらに、車載機器82の冷却を行うことができる。 That is, in the refrigeration cycle device 10a in the single warm-up mode, a refrigeration cycle similar to that in the single warm-up mode of the first embodiment is configured. Other operations are the same as in the single warm-up mode of the first embodiment. Therefore, in the vehicle air conditioner 1 of the present embodiment, similarly to the single warm-up mode of the first embodiment, it is possible to maintain the temperature of the battery 80 within an appropriate temperature range without performing air conditioning of the vehicle interior. it can. Further, the in-vehicle device 82 can be cooled.
 (6)単独冷房モード
 単独冷房モードでは、制御装置70が、冷房用膨張弁14aを絞り状態とし、第1冷却用膨張弁14bを全閉とし、暖房用膨張弁14dを全開とする。また、制御装置70は、高温側熱媒体ポンプ41、温度調整側熱媒体ポンプ51および吸熱側熱媒体ポンプ61を停止させる。また、制御装置70は、除湿用開閉弁15aおよび暖房用開閉弁15bを閉じる。
(6) Single Cooling Mode In the single cooling mode, the control device 70 closes the cooling expansion valve 14a, fully closes the first cooling expansion valve 14b, and fully opens the heating expansion valve 14d. Further, the control device 70 stops the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61. Further, the control device 70 closes the on-off valve 15a for dehumidification and the on-off valve 15b for heating.
 これにより、単独冷房モードの冷凍サイクル装置10aでは、圧縮機11の吐出口、(水-冷媒熱交換器12、暖房用膨張弁14d、)室外熱交換器16、第5三方継手13e、第1三方継手13a、冷房用膨張弁14a、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Accordingly, in the refrigeration cycle apparatus 10a in the single cooling mode, the discharge port of the compressor 11, the (water-refrigerant heat exchanger 12, the heating expansion valve 14d), the outdoor heat exchanger 16, the fifth three-way joint 13e, the first A refrigeration cycle in which the refrigerant circulates in the order of the three-way joint 13a, the cooling expansion valve 14a, the indoor evaporator 18, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11 is configured.
 この回路構成で、制御装置70は、冷房温調モードと同様に、各種各制御対象機器の作動を適宜制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of each device to be controlled, similarly to the cooling temperature control mode.
 このため、単独冷房モードの冷凍サイクル装置10aでは、室外熱交換器16を放熱器として機能させ、室内蒸発器18を蒸発器として機能させる冷凍サイクルが構成される。従って、室内蒸発器18にて送風空気を冷却することができる。その結果、単独冷房モードの車両用空調装置1では、バッテリ80の温度調整を行うことなく、冷房温調モードと同様に、車室内の冷房を行うことができる。 Therefore, in the refrigeration cycle apparatus 10a in the single cooling mode, a refrigeration cycle in which the outdoor heat exchanger 16 functions as a radiator and the indoor evaporator 18 functions as an evaporator is configured. Therefore, the air blown by the indoor evaporator 18 can be cooled. As a result, in the vehicle air conditioner 1 in the single cooling mode, the inside of the vehicle compartment can be cooled in the same manner as in the cooling temperature control mode without adjusting the temperature of the battery 80.
 さらに、単独冷房モードの冷凍サイクル装置10aでは、単独冷却モードと同様に、圧縮機11から吐出された冷媒の有する熱を、室外熱交換器16にて直接的に外気へ放熱することができる。 Further, in the refrigeration cycle apparatus 10a in the single cooling mode, similarly to the single cooling mode, the heat of the refrigerant discharged from the compressor 11 can be directly radiated to the outside air by the outdoor heat exchanger 16.
 (7)単独暖房モード
 単独暖房モードでは、単独冷房モードでは、制御装置70が、冷房用膨張弁14a、第1冷却用膨張弁14bを全閉とし、暖房用膨張弁14dを絞り状態とする。また、制御装置70は、予め定めた単独暖房用モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41の作動を制御し、温度調整側熱媒体ポンプ51および吸熱側熱媒体ポンプ61を停止させる。
(7) Single Heating Mode In the single heating mode, in the single cooling mode, the control device 70 fully closes the cooling expansion valve 14a and the first cooling expansion valve 14b, and sets the heating expansion valve 14d to the throttled state. Further, the control device 70 controls the operation of the high-temperature side heat medium pump 41 and the temperature adjustment side heat medium pump 51 and the heat absorption side heat medium so as to exhibit a predetermined heat medium pumping ability for the single heating mode. The pump 61 is stopped.
 また、制御装置70は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。また、制御装置70は、暖房温調モードと同様に、ヒータコア42から流出した高温側熱媒体が高温側熱媒体ポンプ41の吸入口側へ流出するように、高温側三方弁43の作動を制御する。 制 御 The control device 70 closes the dehumidifying on-off valve 15a and opens the heating on-off valve 15b. Further, the control device 70 controls the operation of the high-temperature side three-way valve 43 so that the high-temperature side heat medium flowing out of the heater core 42 flows out to the suction port side of the high-temperature side heat medium pump 41, similarly to the heating temperature control mode. I do.
 これにより、単独暖房モードの冷凍サイクル装置10aでは、圧縮機11の吐出口、水-冷媒熱交換器12、第3三方継手13c、暖房用膨張弁14d、室外熱交換器16、第5三方継手13e、暖房用通路22b、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thereby, in the refrigeration cycle apparatus 10a in the single heating mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the third three-way joint 13c, the heating expansion valve 14d, the outdoor heat exchanger 16, and the fifth three-way joint 13e, a refrigerating cycle in which the refrigerant circulates in the order of the heating passage 22b, the accumulator 21, and the suction port of the compressor 11.
 この回路構成で、制御装置70は、暖房温調モードと同様に、各種各制御対象機器の作動を適宜制御する。暖房用膨張弁14dについては、水-冷媒熱交換器12の冷媒通路から流出した冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように、絞り開度を制御する。 で With this circuit configuration, the control device 70 appropriately controls the operation of various control target devices as in the heating temperature control mode. The throttle opening of the heating expansion valve 14d is controlled such that the supercooling degree SC1 of the refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 approaches the target supercooling degree SCO1.
 このため、単独暖房モードの冷凍サイクル装置10aでは、水-冷媒熱交換器12を放熱器として機能させ、室外熱交換器16を蒸発器として機能させる冷凍サイクルが構成される。従って、水-冷媒熱交換器12にて、高温側熱媒体を加熱することができる。その結果、単独暖房モードの車両用空調装置1では、バッテリ80の温度調整を行うことなく、冷房温調モードと同様に、車室内の暖房を行うことができる。 Therefore, in the refrigeration cycle apparatus 10a in the single heating mode, a refrigeration cycle in which the water-refrigerant heat exchanger 12 functions as a radiator and the outdoor heat exchanger 16 functions as an evaporator is configured. Therefore, the water-refrigerant heat exchanger 12 can heat the high-temperature side heat medium. As a result, in the vehicle air conditioner 1 in the single heating mode, the vehicle interior can be heated as in the cooling temperature adjustment mode without adjusting the temperature of the battery 80.
 上記の如く、本実施形態の冷凍サイクル装置10aは、冷房温調モード、除湿暖房温調モード、暖房温調モード、単独冷却モード、単独暖機モード、単独冷房モード、単独暖房モードといった運転モードを切り替えて、車室内の空調とバッテリ80の温度調整を行うことができる。 As described above, the refrigeration cycle apparatus 10a according to the present embodiment performs operation modes such as a cooling temperature control mode, a dehumidifying heating temperature control mode, a heating temperature control mode, a single cooling mode, a single warming mode, a single cooling mode, and a single heating mode. By switching, air conditioning in the vehicle compartment and temperature adjustment of the battery 80 can be performed.
 さらに、本実施形態の冷凍サイクル装置10aでは、冷房温調モード、除湿暖房温調モード、および暖房温調モード時に、第1実施形態と同様の効果を得ることができる。すなわち、空調対象空間である車室内へ送風される送風空気の適切な温度調整と、送風空気とは異なる温度調整対象物であるバッテリ80の適切な温度調整とを両立させることができる。 Furthermore, in the refrigeration cycle apparatus 10a of the present embodiment, the same effects as those of the first embodiment can be obtained in the cooling temperature control mode, the dehumidifying heating temperature control mode, and the heating temperature control mode. That is, it is possible to achieve both appropriate temperature adjustment of the blast air blown into the vehicle cabin, which is the space to be air-conditioned, and appropriate temperature adjustment of the battery 80, which is a temperature adjustment target different from the blast air.
 また、本実施形態の冷凍サイクル装置10aでは、冷房温調モード、除湿暖房温調モード、および暖房温調モードでは、開度比EX1/EX2を変化させることによって、バッテリ80の温度調整を行っている。従って、第1実施形態と同様に、バッテリ80の適切な温度調整と、バッテリ80の温度調整に伴う送風空気の温度変動の抑制とを両立させることができる。 Further, in the refrigeration cycle device 10a of the present embodiment, in the cooling temperature control mode, the dehumidification heating temperature control mode, and the heating temperature control mode, the temperature of the battery 80 is adjusted by changing the opening degree ratio EX1 / EX2. I have. Therefore, similarly to the first embodiment, it is possible to achieve both the appropriate temperature adjustment of the battery 80 and the suppression of the temperature fluctuation of the blown air due to the temperature adjustment of the battery 80.
 また、本実施形態の冷凍サイクル装置10aでは、除湿暖房温調モードでの運転を行うことができる。従って、本実施形態の車両用空調装置1では、より一層、車室内の快適な空調を実現することができる。 冷凍 In addition, in the refrigeration cycle apparatus 10a of the present embodiment, the operation in the dehumidifying and heating temperature control mode can be performed. Therefore, in the vehicle air conditioner 1 of the present embodiment, more comfortable air conditioning in the vehicle interior can be realized.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、本開示に係る冷凍サイクル装置10、10aを電気自動車に搭載された車両用空調装置1に適用し、温度調整対象物がバッテリ80である例を説明したが、本開示の適用はこれに限定されない。 In the above-described embodiment, an example has been described in which the refrigeration cycle devices 10 and 10a according to the present disclosure are applied to the vehicle air conditioner 1 mounted on an electric vehicle and the temperature adjustment target is the battery 80. Application is not limited to this.
 例えば、エンジンおよび電動モータの双方から車両走行用の駆動力を得るハイブリッド車両に搭載される車両用空調装置に適用してもよい。さらに、温度調整対象物は、バッテリ80に限定されず、車載機器82であってもよい。また、本開示の適用は車両用に限定されることなく、コンピューターサーバーの温度を適切に調整しつつ、室内の空調行うサーバー温度調整機能付きの空調装置等に適用してもよい。 For example, the present invention may be applied to a vehicle air conditioner mounted on a hybrid vehicle that obtains driving force for vehicle traveling from both an engine and an electric motor. Furthermore, the temperature adjustment target is not limited to the battery 80, but may be an in-vehicle device 82. Further, the application of the present disclosure is not limited to a vehicle, and may be applied to an air conditioner or the like having a server temperature adjustment function for performing indoor air conditioning while appropriately adjusting the temperature of a computer server.
 上述の実施形態では、複数の運転モードに切替可能な冷凍サイクル装置10、10aについて説明したが、運転モードの切り替えは上述の実施形態に開示されたものに限定されない。 In the above-described embodiment, the refrigeration cycle apparatuses 10 and 10a that can be switched to a plurality of operation modes have been described. However, the switching of the operation mode is not limited to the one disclosed in the above-described embodiment.
 少なくとも、冷房温調モードおよび暖房温調モードの運転が実行可能であれば、送風空気の適切な温度調整の実現と、温度調整対象物の適切な温度調整の実現との両立を図るという効果を得ることができる。また、少なくとも、暖房温調モードの運転が実行可能であれば、温度調整対象物の適切な温度調整の実現と、温度調整対象物の温度調整を行うことに起因する送風空気の温度変動の抑制との両立を図るという効果を得ることができる。 At least, if the operation of the cooling temperature adjustment mode and the heating temperature adjustment mode is executable, the effect of achieving both the appropriate temperature adjustment of the blown air and the appropriate temperature adjustment of the temperature adjustment target can be achieved. Obtainable. Further, at least, if the operation in the heating temperature adjustment mode can be performed, realization of appropriate temperature adjustment of the temperature adjustment target and suppression of temperature fluctuation of the blown air due to performing the temperature adjustment of the temperature adjustment target. Can be obtained.
 さらに、上述の実施形態の冷房温調モードおよび暖房温調モードでは、制御装置70がバッテリ温度TBの上昇に伴って、開度比EX1/EX2を減少させる例を説明したが、これに限定されない。温度調整対象物の温度の上昇に伴って、開度比EX1/EX2を減少させることができれば、制御装置70が温度調整対象物の温度に相関する別のパラメータに基づいて、開度比EX1/EX2を変化させるようになっていてもよい。 Furthermore, in the cooling temperature adjustment mode and the heating temperature adjustment mode of the above-described embodiment, an example has been described in which the control device 70 decreases the opening degree ratio EX1 / EX2 with an increase in the battery temperature TB, but is not limited thereto. . If the opening ratio EX1 / EX2 can be reduced with the rise in the temperature of the temperature adjustment target, the control device 70 sets the opening ratio EX1 / EX2 based on another parameter correlated with the temperature of the temperature adjustment target. EX2 may be changed.
 例えば、温度調整側熱媒体温度TWC1の上昇に伴って、開度比EX1/EX2を減少させるようにしてもよい。さらに、温度調整用熱交換部52から流出した直後の温度調整側熱媒体の温度を検出する検出部を設け、この検出部によって検出された温度の上昇に伴って、開度比EX1/EX2を減少させるようにしてもよい。 For example, the opening ratio EX1 / EX2 may be decreased with an increase in the temperature adjustment-side heat medium temperature TWC1. Further, a detector is provided for detecting the temperature of the temperature-adjusting-side heat medium immediately after flowing out of the temperature-adjusting heat exchanging unit 52. With the rise in the temperature detected by this detector, the opening ratio EX1 / EX2 is determined. You may make it decrease.
 また、第2実施形態で説明した冷凍サイクル装置10aの運転モードとして、室外熱交換器16を用いた暖房温調モードを行ってもよい。例えば、室外熱交換器16を用いた暖房温調モードとして、直列暖房温調モード、および並列暖房温調モードを行ってもよい。 暖房 Further, as the operation mode of the refrigeration cycle device 10a described in the second embodiment, a heating temperature control mode using the outdoor heat exchanger 16 may be performed. For example, as the heating temperature control mode using the outdoor heat exchanger 16, a series heating temperature control mode and a parallel heating temperature control mode may be performed.
 直列暖房温調モードでは、制御装置70が、冷房用膨張弁14aを全閉とし、第1冷却用膨張弁14b、第2冷却用膨張弁14cおよび暖房用膨張弁14dを絞り状態とする。また、制御装置70は、予め定めた直列暖房温調モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41、温度調整側熱媒体ポンプ51、および吸熱側熱媒体ポンプ61の作動を制御する。 In the in-series heating temperature control mode, the control device 70 fully closes the cooling expansion valve 14a, and sets the first cooling expansion valve 14b, the second cooling expansion valve 14c, and the heating expansion valve 14d in a throttled state. Further, the control device 70 controls the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the series heating temperature control mode. Control the operation.
 また、制御装置70は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。また、制御装置70は、第1実施形態の暖房温調モードと同様に、高温側三方弁43および吸熱側三方弁63の作動を制御する。 制 御 The control device 70 also closes the dehumidifying on-off valve 15a and closes the heating on-off valve 15b. The control device 70 controls the operation of the high-temperature three-way valve 43 and the heat-absorbing three-way valve 63 as in the heating temperature control mode of the first embodiment.
 これにより、直列暖房温調モードの冷凍サイクル装置10aでは、圧縮機11の吐出口、水-冷媒熱交換器12、暖房用膨張弁14d、室外熱交換器16、第5三方継手13e、第4三方継手13d、第1三方継手13a、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。すなわち、室外熱交換器16、第1チラー19aおよび第2チラー19bが直列的に接続される冷凍サイクルが構成される。 Thus, in the refrigeration cycle apparatus 10a in the series heating temperature control mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the heating expansion valve 14d, the outdoor heat exchanger 16, the fifth three-way joint 13e, the fourth Three-way joint 13d, first three-way joint 13a, first cooling expansion valve 14b, first chiller 19a, second cooling expansion valve 14c, second chiller 19b, second three-way joint 13b, evaporation pressure regulating valve 20, accumulator 21 A refrigeration cycle in which the refrigerant circulates in the order of the suction port of the compressor 11 is configured. That is, a refrigeration cycle in which the outdoor heat exchanger 16, the first chiller 19a, and the second chiller 19b are connected in series is configured.
 これによれば、室外熱交換器16にて、冷媒と外気とを熱交換させることができるので、第2実施形態で説明した暖房温調モードのサイクルに対して、サイクルをバランスさせやすい。 According to this, since the refrigerant can exchange heat with the outside air in the outdoor heat exchanger 16, the cycle can be easily balanced with the cycle of the heating temperature control mode described in the second embodiment.
 つまり、暖房用膨張弁14dの絞り開度を増加させ、室外熱交換器16へ流入する冷媒の温度を外気温Tamよりも上昇させることで、室外熱交換器16を放熱器として機能させることができる。また、暖房用膨張弁14dの絞り開度を減少させ、室外熱交換器16へ流入する冷媒の温度を外気温Tamよりも低下させることで、室外熱交換器16を蒸発器として機能させることができる。 That is, by increasing the throttle opening of the heating expansion valve 14d and raising the temperature of the refrigerant flowing into the outdoor heat exchanger 16 above the outdoor temperature Tam, the outdoor heat exchanger 16 can function as a radiator. it can. Further, by reducing the throttle opening of the heating expansion valve 14d and lowering the temperature of the refrigerant flowing into the outdoor heat exchanger 16 below the outside air temperature Tam, the outdoor heat exchanger 16 can function as an evaporator. it can.
 並列暖房温調モードでは、制御装置70が、冷房用膨張弁14aを全閉とし、第1冷却用膨張弁14b、第2冷却用膨張弁14cおよび暖房用膨張弁14dを絞り状態とする。また、制御装置70は、予め定めた直列暖房温調モード用の熱媒体圧送能力を発揮するように、高温側熱媒体ポンプ41、温度調整側熱媒体ポンプ51、および吸熱側熱媒体ポンプ61の作動を制御する。 In the parallel heating temperature control mode, the control device 70 fully closes the cooling expansion valve 14a, and sets the first cooling expansion valve 14b, the second cooling expansion valve 14c, and the heating expansion valve 14d to a throttled state. Further, the control device 70 controls the high-temperature side heat medium pump 41, the temperature adjustment side heat medium pump 51, and the heat absorption side heat medium pump 61 so as to exhibit a predetermined heat medium pumping ability for the series heating temperature control mode. Control the operation.
 また、制御装置70は、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。また、制御装置70は、第1実施形態の暖房温調モードと同様に、高温側三方弁43および吸熱側三方弁63の作動を制御する。 制 御 The control device 70 opens the dehumidifying on-off valve 15a and opens the heating on-off valve 15b. The control device 70 controls the operation of the high-temperature three-way valve 43 and the heat-absorbing three-way valve 63 as in the heating temperature control mode of the first embodiment.
 これにより、並列暖房温調モードの冷凍サイクル装置10aでは、圧縮機11の吐出口、水-冷媒熱交換器12、第3三方継手13c、暖房用膨張弁14d、室外熱交換器16、第5三方継手13e、暖房用通路22b、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 Thereby, in the refrigeration cycle apparatus 10a in the parallel heating temperature control mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the third three-way joint 13c, the heating expansion valve 14d, the outdoor heat exchanger 16, A refrigeration cycle in which the refrigerant circulates in the order of the three-way joint 13e, the heating passage 22b, the accumulator 21, and the suction port of the compressor 11 is configured.
 同時に、圧縮機11の吐出口、水-冷媒熱交換器12、第3三方継手13c、バイパス通路22a、第4三方継手13d、第1三方継手13a、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19b、第2三方継手13b、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する冷凍サイクルが構成される。 At the same time, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the third three-way joint 13c, the bypass passage 22a, the fourth three-way joint 13d, the first three-way joint 13a, the first cooling expansion valve 14b, and the first chiller A refrigeration cycle in which the refrigerant circulates in the order of 19a, the second cooling expansion valve 14c, the second chiller 19b, the second three-way joint 13b, the evaporation pressure regulating valve 20, the accumulator 21, and the suction port of the compressor 11.
 つまり、並列暖房温調モードの冷凍サイクル装置10aでは、暖房用膨張弁14d、室外熱交換器16の順に冷媒が流れる経路、第1冷却用膨張弁14b、第1チラー19a、第2冷却用膨張弁14c、第2チラー19bの順に冷媒が流れる経路が、冷媒流れに対して並列的に接続される冷媒回路に切り替えられる。 That is, in the refrigeration cycle apparatus 10a in the parallel heating temperature control mode, the path through which the refrigerant flows in the order of the heating expansion valve 14d and the outdoor heat exchanger 16, the first cooling expansion valve 14b, the first chiller 19a, and the second cooling expansion. The path in which the refrigerant flows in the order of the valve 14c and the second chiller 19b is switched to a refrigerant circuit connected in parallel to the refrigerant flow.
 このサイクル構成で、制御装置70は室外熱交換器16へ流入する冷媒の温度を外気温Tamよりも低下させるように、暖房用膨張弁14dの作動を制御する。 In this cycle configuration, the controller 70 controls the operation of the heating expansion valve 14d so that the temperature of the refrigerant flowing into the outdoor heat exchanger 16 becomes lower than the outside temperature Tam.
 これによれば、第1チラー19aにおける冷媒蒸発温度および第2チラー19bにおける冷媒蒸発温度によらず、室外熱交換器16にて冷媒に外気から吸熱させることができる。さらに、暖房用膨張弁14dの絞り開度を減少させることによって、室外熱交換器16にて冷媒が外気から吸熱する吸熱量を増加させることができる。 According to this, regardless of the refrigerant evaporation temperature in the first chiller 19a and the refrigerant evaporation temperature in the second chiller 19b, the outdoor heat exchanger 16 allows the refrigerant to absorb heat from the outside air. Further, by reducing the throttle opening of the heating expansion valve 14d, the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 from the outside air can be increased.
 従って、直列暖房温調モードよりも、水-冷媒熱交換器12における高温側熱媒体の加熱能力を向上させることができる。延いては、直列暖房温調モードよりも、送風空気の加熱能力を向上させることができる。 Therefore, the heating capability of the high-temperature side heat medium in the water-refrigerant heat exchanger 12 can be improved as compared with the serial heating temperature control mode. As a result, the heating capacity of the blown air can be improved as compared with the series heating temperature control mode.
 また、各運転モードの切り替えは、上述の各実施形態に開示された態様に限定されない。例えば、操作パネル701に切替用スイッチを設け、乗員の操作によって各運転モードを切り替えるようにしてもよい。 切 り 替 え Further, switching of each operation mode is not limited to the mode disclosed in each of the above embodiments. For example, a switch for switching may be provided on the operation panel 701, and each operation mode may be switched by the operation of the occupant.
 冷凍サイクル装置10、10aの構成は、上述の実施形態に開示されたものに限定されない。例えば、冷房用膨張弁14aや第1冷却用膨張弁14b等として、全閉機能を有しない電気式膨張弁と開閉弁とを直接的に接続したものを採用してもよい。また、複数のサイクル構成機器の一体化を行ってもよい。 構成 The configurations of the refrigeration cycle devices 10 and 10a are not limited to those disclosed in the above embodiment. For example, as the cooling expansion valve 14a, the first cooling expansion valve 14b, or the like, a valve in which an electric expansion valve having no fully closed function and an on-off valve may be directly connected may be employed. Further, a plurality of cycle components may be integrated.
 また、上述の実施形態では、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cとして、電気式の可変絞り機構を採用した例を説明したが、これに限定されない。開度比EX1/EX2を適切に変更することができれば、例えば、第1冷却用膨張弁14bおよび第2冷却用膨張弁14cのいずれか一方に、電気式の可変絞り機構を採用し、他方に、固定絞り、あるいは、温度式膨張弁を採用してもよい。 Further, in the above-described embodiment, the example in which the electric variable throttle mechanism is employed as the first cooling expansion valve 14b and the second cooling expansion valve 14c has been described, but the present invention is not limited to this. If the opening ratio EX1 / EX2 can be appropriately changed, for example, an electric variable throttle mechanism is adopted for one of the first cooling expansion valve 14b and the second cooling expansion valve 14c, and the other is used for the other. Alternatively, a fixed throttle or a thermal expansion valve may be employed.
 このような温度式膨張弁としては、感温部と弁体部とを有する機械的機構で構成された可変絞り機構を採用することができる。感温部は、第2チラー19bの冷媒通路から流出した冷媒の温度および圧力に応じて変形する変形部材(具体的には、ダイヤフラム)を有する。弁体部は、変形部材の変形に応じて変位して絞り開度を変化させる。そして、第2チラー19bの冷媒通路から流出した冷媒の過熱度SHC2が目標過熱度SHCO2に近づくように絞り開度を変化させればよい。 可 変 As such a temperature-type expansion valve, a variable throttle mechanism composed of a mechanical mechanism having a temperature sensing part and a valve body can be adopted. The temperature sensing section has a deformable member (specifically, a diaphragm) that deforms according to the temperature and pressure of the refrigerant flowing out of the refrigerant passage of the second chiller 19b. The valve body is displaced according to the deformation of the deformable member to change the throttle opening. Then, the throttle opening may be changed so that the superheat degree SHC2 of the refrigerant flowing out of the refrigerant passage of the second chiller 19b approaches the target superheat degree SHCO2.
 また、上述の実施形態では、サイクルの余剰冷媒を低圧の液相冷媒として貯留しておく余剰冷媒貯留部としてアキュムレータ21を採用した例を説明したが、余剰冷媒貯留部はこれに限定されない。例えば、内部に流入した高圧冷媒の気液を分離して、サイクルの余剰冷媒を高圧の液相冷媒として貯留しておくレシーバを採用してもよい。例えば、冷凍サイクル装置10では、水-冷媒熱交換器12の冷媒通路の出口側にレシーバを配置すればよい。さらに、アキュムレータ21およびレシーバの双方を採用してもよい。 In the above-described embodiment, the example has been described in which the accumulator 21 is employed as the surplus refrigerant storage unit that stores the surplus refrigerant of the cycle as a low-pressure liquid-phase refrigerant, but the surplus refrigerant storage unit is not limited to this. For example, a receiver that separates gas-liquid of the high-pressure refrigerant flowing into the inside and stores the excess refrigerant in the cycle as a high-pressure liquid-phase refrigerant may be adopted. For example, in the refrigeration cycle apparatus 10, a receiver may be disposed on the outlet side of the refrigerant passage of the water-refrigerant heat exchanger 12. Further, both the accumulator 21 and the receiver may be employed.
 また、上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 In the above-described embodiment, the example in which R1234yf is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Alternatively, a mixed refrigerant obtained by mixing a plurality of types of these refrigerants may be employed. Further, a supercritical refrigeration cycle in which carbon dioxide is used as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
 また、冷凍サイクル装置10、10aの制御態様は、上述の各実施形態に開示されたものに限定されない。例えば、エアミックスドア用のアクチュエータについては、空調風温度センサ79によって検出された送風空気温度TAVが、目標吹出温度TAOに近づくように作動を制御してもよい。 制 御 In addition, the control mode of the refrigeration cycle devices 10 and 10a is not limited to those disclosed in the above-described embodiments. For example, the operation of the actuator for the air mix door may be controlled such that the blast air temperature TAV detected by the conditioned air temperature sensor 79 approaches the target outlet temperature TAO.
 さらに、上述の実施形態では、バッテリ温度TBの上昇に伴って開度比EX1/EX2を減少させた例を説明したが、バッテリ80の発熱量の増加に伴って開度比EX1/EX2を減少させてもよい。バッテリ80の発熱量は、バッテリ80を流れる内部電流等から検知すればよい。 Further, in the above-described embodiment, an example in which the opening ratio EX1 / EX2 is decreased with an increase in the battery temperature TB, but the opening ratio EX1 / EX2 is decreased with an increase in the amount of heat generated by the battery 80. May be. The heat value of the battery 80 may be detected from the internal current flowing through the battery 80 and the like.
 上述の実施形態では、水-冷媒熱交換器12および高温側熱媒体回路40の各構成機器によって構成された加熱部を採用したが、加熱部はこれに限定されない。例えば、圧縮機11から吐出された高圧冷媒と送風空気とを直接的に熱交換させる室内凝縮器を採用し、室内凝縮器をヒータコア42と同様に空調ケース31内に配置してもよい。 In the above-described embodiment, the heating unit constituted by the components of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 40 is employed, but the heating unit is not limited to this. For example, an indoor condenser that directly exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air may be adopted, and the indoor condenser may be arranged in the air-conditioning case 31 like the heater core 42.
 さらに、冷凍サイクル装置10、10aが、ハイブリッド車両に搭載される車両用空調装置に適用されている場合等には、エンジン冷却水を高温側熱媒体回路40へ流入させて循環させるようにしてもよい。これによれば、ヒータコア42にてエンジンの廃熱を熱源として送風空気を加熱することができる。 Further, when the refrigeration cycle devices 10 and 10a are applied to a vehicle air conditioner mounted on a hybrid vehicle or the like, the engine cooling water may flow into the high-temperature side heat medium circuit 40 and circulate. Good. According to this, the blown air can be heated by the heater core 42 using the waste heat of the engine as a heat source.
 また、上述の実施形態では、第1チラー19aおよび温度調整側熱媒体回路50の各構成機器によって構成された温度調整部を採用したが、温度調整部はこれに限定されない。温度調整部として、第1冷却用膨張弁14bから流出した冷媒とバッテリ80とを直接的に熱交換させる温度調整用熱交換部を採用してもよい。 Further, in the above-described embodiment, the temperature adjustment unit configured by the respective components of the first chiller 19a and the temperature adjustment-side heat medium circuit 50 is employed, but the temperature adjustment unit is not limited to this. As the temperature adjusting unit, a temperature adjusting heat exchanging unit that directly exchanges heat between the battery 80 and the refrigerant flowing out of the first cooling expansion valve 14b may be employed.
 さらに、温度調整部として、第1冷却用膨張弁14bから流出した冷媒と温度調整用送風空気とを熱交換させる熱交換器、および熱交換器にて温度調整された温度調整用送風空気をバッテリ80に吹き付ける温度調整用送風機を採用してもよい。 Further, as a temperature adjustment unit, a heat exchanger for exchanging heat between the refrigerant flowing out of the first cooling expansion valve 14b and the air for temperature adjustment, and the air for temperature adjustment adjusted by the heat exchanger to the battery A blower for adjusting the temperature blown to 80 may be employed.
 また、上述の実施形態では、第2チラー19bおよび吸熱側熱媒体回路60の各構成機器によって構成された吸熱部を採用したが、吸熱部はこれに限定されない。吸熱部として、車載機器82に形成された冷媒通路を採用し、第2冷却用膨張弁14cから流出した冷媒を、この冷媒通路に流通させるようにしてもよい。 Further, in the above-described embodiment, the heat absorbing portion configured by the respective components of the second chiller 19b and the heat absorbing side heat medium circuit 60 is employed, but the heat absorbing portion is not limited to this. A refrigerant passage formed in the vehicle-mounted device 82 may be adopted as the heat absorbing unit, and the refrigerant flowing out of the second cooling expansion valve 14c may be allowed to flow through this refrigerant passage.
 また、上述した実施形態で説明した高温側熱媒体回路40、温度調整側熱媒体回路50、および吸熱側熱媒体回路60を開閉弁等を介して互いに接続し、高温側熱媒体、温度調整側熱媒体、および吸熱側熱媒体を混合可能としてもよい。 In addition, the high-temperature side heat medium circuit 40, the temperature adjustment side heat medium circuit 50, and the heat absorption side heat medium circuit 60 described in the above-described embodiment are connected to each other via an on-off valve or the like, so that the high-temperature side heat medium, The heat medium and the heat absorption side heat medium may be mixed.
 そして、例えば、高温側熱媒体回路40と温度調整側熱媒体回路50とを接続して、車載機器82の廃熱を吸熱した吸熱側熱媒体を高温側熱媒体回路40へ流入させて循環させるようにしてもよい。これによれば、ヒータコア42にて車載機器82の廃熱を熱源として送風空気を加熱することができる。 Then, for example, the high-temperature-side heat medium circuit 40 and the temperature-adjustment-side heat medium circuit 50 are connected, and the heat-absorbing-side heat medium that has absorbed waste heat of the vehicle-mounted device 82 flows into the high-temperature-side heat medium circuit 40 and is circulated. You may do so. According to this, the blown air can be heated by the heater core 42 using the waste heat of the vehicle-mounted device 82 as a heat source.
 また、高温側熱媒体回路40の高温側三方弁43、および吸熱側熱媒体回路60の吸熱側三方弁63の制御態様は、上述の各実施形態に開示されたものに限定されない。 The control aspects of the high-temperature side three-way valve 43 of the high-temperature side heat medium circuit 40 and the heat absorption side three-way valve 63 of the heat absorption side heat medium circuit 60 are not limited to those disclosed in the above-described embodiments.
 例えば、冷房温調モード時には、車載機器82の冷却水通路から流出した吸熱側熱媒体を吸熱側ラジエータ64へ流入させるように、吸熱側三方弁63を作動させてもよい。また、暖房温調モード時には、車載機器82の冷却水通路から流出した吸熱側熱媒体を吸熱側ラジエータ64を迂回させて吸熱側熱媒体ポンプ61の吸入側へ導くように、吸熱側三方弁63を作動させてもよい。 For example, in the cooling temperature control mode, the heat absorbing side three-way valve 63 may be operated so that the heat absorbing side heat medium flowing out of the cooling water passage of the vehicle-mounted device 82 flows into the heat absorbing side radiator 64. In the heating temperature control mode, the heat absorption side three-way valve 63 is configured to guide the heat absorption side heat medium flowing out of the cooling water passage of the vehicle-mounted device 82 to the suction side of the heat absorption side heat medium pump 61 by bypassing the heat absorption side radiator 64. May be activated.
 上述の実施形態では、度調整部にて温度調整される温度調整対象物がバッテリ80であり、吸熱部にて冷却される吸熱対象物が車載機器82である例を説明したが、温度調整対象物および吸熱対象物はこれに限定されない。例えば、冷凍サイクル装置10、10aを、バッテリ80の暖機を必要としない車両用の空調装置に適用する場合は、温度調整対象物を車載機器82とし、吸熱対象物をバッテリ80としてもよい。 In the above-described embodiment, an example has been described in which the temperature adjustment target whose temperature is adjusted by the degree adjustment unit is the battery 80 and the heat absorption target that is cooled by the heat absorption unit is the vehicle-mounted device 82. The object and the endothermic object are not limited to this. For example, when the refrigeration cycle devices 10 and 10a are applied to an air conditioner for a vehicle that does not require warming up of the battery 80, the temperature adjustment target may be the vehicle-mounted device 82 and the heat absorption target may be the battery 80.
 これによれば、温度調整対象物である車載機器82の適切な温度調整の実現と、車載機器82の温度調整に起因する送風空気の温度変動の抑制との両立を図ることができる。 According to this, it is possible to achieve both appropriate temperature adjustment of the in-vehicle device 82 as the temperature adjustment target and suppression of temperature fluctuation of the blast air due to the temperature adjustment of the in-vehicle device 82.
 さらに、第1チラー19aへ流入させる冷媒の温度が、第1チラー19aへ流入する度調整側熱媒体の温度よりも低くなる運転条件では、開度比EX1/EX2を適切に調整すればよい。これにより、第1チラー19aにて発揮される冷却能力と、第2チラー19bにて発揮される冷却能力とを適切に調整することができる。 運 転 Furthermore, under operating conditions in which the temperature of the refrigerant flowing into the first chiller 19a is lower than the temperature of the adjusting-side heat medium each time the refrigerant flows into the first chiller 19a, the opening ratio EX1 / EX2 may be appropriately adjusted. Thereby, the cooling capacity exhibited by the first chiller 19a and the cooling capacity exhibited by the second chiller 19b can be appropriately adjusted.
 換言すると、開度比EX1/EX2を調整することによって、冷凍サイクル装置10が発揮可能な冷却能力を、第1チラー19a側および第2チラー19b側へ適切に分配することができる。 In other words, by adjusting the opening ratio EX1 / EX2, the cooling capacity that can be exhibited by the refrigeration cycle device 10 can be appropriately distributed to the first chiller 19a and the second chiller 19b.
 第1実施形態で説明した暖房温調モードでは、冷房用膨張弁14aを全閉とした例を説明したが、これに限定されない。すなわち、冷房用膨張弁14aが閉じる方向に絞り開度を変化させればよい。 In the heating temperature control mode described in the first embodiment, an example in which the cooling expansion valve 14a is fully closed has been described, but the present invention is not limited to this. That is, the throttle opening may be changed in the direction in which the cooling expansion valve 14a closes.
 具体的には、室内蒸発器18と第2三方継手13bとの間に、蒸発圧力調整部を配置する。蒸発圧力調整部としては、室内蒸発器18における冷媒蒸発圧力を予め定めた基準圧力以上に維持する蒸発圧力調整弁を採用することができる。蒸発圧力調整弁は、室内蒸発器18の出口側冷媒の圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構である。 Specifically, an evaporation pressure adjusting unit is arranged between the indoor evaporator 18 and the second three-way joint 13b. As the evaporating pressure adjusting section, an evaporating pressure adjusting valve for maintaining the refrigerant evaporating pressure in the indoor evaporator 18 at or above a predetermined reference pressure can be employed. The evaporation pressure adjusting valve is a mechanical variable throttle mechanism that increases the valve opening as the pressure of the refrigerant on the outlet side of the indoor evaporator 18 increases.
 そして、蒸発圧力調整弁の作用によって、第1チラー19aの冷媒通路における冷媒圧力が室内蒸発器18における冷媒圧力よりも高くなるようにすれば、必ずしも冷房用膨張弁14aを全閉とする必要は無く、冷房用膨張弁14aが閉じる方向に絞り開度を変化させればよい。 If the refrigerant pressure in the refrigerant passage of the first chiller 19a is made higher than the refrigerant pressure in the indoor evaporator 18 by the action of the evaporation pressure adjusting valve, it is not always necessary to completely close the cooling expansion valve 14a. Instead, the throttle opening may be changed in the direction in which the cooling expansion valve 14a closes.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also includes various modifications and variations within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and spirit of the present disclosure.

Claims (6)

  1.  空調装置に適用される冷凍サイクル装置であって、
     冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を熱源として空調対象空間へ送風される送風空気を加熱する加熱部(12、40)と、
     前記加熱部から流出した冷媒の流れを分岐する分岐部(13a)と、
     前記分岐部にて分岐された一方の冷媒を減圧させる冷房用減圧部(14a)と、
     前記冷房用減圧部にて減圧された冷媒を蒸発させて、空調対象空間へ送風される送風空気を冷却する室内蒸発器(18)と、
     前記分岐部にて分岐された他方の冷媒を減圧させる第1冷却用減圧部(14b)と、
     前記第1冷却用減圧部から流出した冷媒によって温度調整対象物(80)の温度を調整する温度調整部(19a、50)と、
     前記温度調整部から流出した冷媒を減圧させる第2冷却用減圧部(14c)と、
     前記第2冷却用減圧部から流出した冷媒によって吸熱対象物(82)を冷却する吸熱部(19b、60)と、
     前記室内蒸発器から流出した冷媒の流れと前記吸熱部から流出した冷媒の流れとを合流させて、前記圧縮機の吸入口側へ流出させる合流部(13b)と、を備え、
     前記加熱部にて前記送風空気を加熱するとともに前記温度調整部にて前記温度調整対象物の温度を調整する暖房温調モードでは、前記冷房用減圧部を閉じ、前記第1冷却用減圧部および前記第2冷却用減圧部を冷媒減圧作用を発揮する絞り状態とし、
     前記室内蒸発器にて前記送風空気を冷却するとともに前記温度調整部にて前記温度調整対象物の温度を調整する冷房温調モードでは、前記冷房用減圧部、前記第1冷却用減圧部および前記第2冷却用減圧部を冷媒減圧作用を発揮する絞り状態とする冷凍サイクル装置。
    A refrigeration cycle device applied to an air conditioner,
    A compressor (11) for compressing and discharging the refrigerant;
    A heating unit (12, 40) for heating blast air blown to the air-conditioned space using the refrigerant discharged from the compressor as a heat source;
    A branch section (13a) for branching a flow of the refrigerant flowing out of the heating section;
    A cooling decompression section (14a) for decompressing one of the refrigerants branched at the branch section;
    An indoor evaporator (18) for evaporating the refrigerant depressurized by the cooling decompression unit and cooling the blast air blown to the space to be air-conditioned;
    A first cooling decompression unit (14b) for decompressing the other refrigerant branched by the branch unit;
    A temperature adjustment unit (19a, 50) for adjusting the temperature of the temperature adjustment target (80) by the refrigerant flowing out of the first cooling decompression unit;
    A second cooling decompression unit (14c) for decompressing the refrigerant flowing out of the temperature adjustment unit,
    A heat absorbing section (19b, 60) for cooling the heat absorbing object (82) with the refrigerant flowing out of the second cooling pressure reducing section;
    A merging section (13b) for merging a flow of the refrigerant flowing out of the indoor evaporator with a flow of the refrigerant flowing out of the heat absorbing section and flowing out to a suction port side of the compressor;
    In a heating temperature control mode in which the heating unit heats the blown air and adjusts the temperature of the temperature adjustment target in the temperature adjustment unit, the cooling decompression unit is closed, and the first cooling decompression unit and The second cooling pressure-reducing section is in a throttle state in which a refrigerant pressure-reducing action is exhibited,
    In the cooling temperature control mode in which the air is cooled by the indoor evaporator and the temperature of the temperature adjustment target is adjusted by the temperature adjustment unit, the cooling decompression unit, the first cooling decompression unit, and A refrigeration cycle apparatus in which the second cooling depressurizing section is in a throttled state that exhibits a refrigerant depressurizing action.
  2.  さらに、前記第1冷却用減圧部および前記第2冷却用減圧部の少なくとも一方の作動を制御する減圧部制御部(70b)を備え、
     前記減圧部制御部は、前記暖房温調モード時および前記冷房温調モード時に、前記温度調整対象物の温度の上昇に伴って、前記第2冷却用減圧部の絞り開度(EX2)に対する前記第1冷却用減圧部の絞り開度(EX1)の開度比(EX1/EX2)を減少させるものである請求項1に記載の冷凍サイクル装置。
    A decompression unit control unit (70b) for controlling at least one of the first cooling decompression unit and the second cooling decompression unit;
    In the heating temperature control mode and the cooling temperature control mode, the decompression unit control unit is configured to control the second cooling decompression unit with respect to the throttle opening (EX2) in accordance with an increase in the temperature of the temperature adjustment target. The refrigeration cycle apparatus according to claim 1, wherein the opening ratio (EX1 / EX2) of the throttle opening (EX1) of the first cooling pressure reducing unit is reduced.
  3.  前記温度調整対象物を冷却する単独冷却モードでは、前記冷房用減圧部を全閉とし、前記第1冷却用減圧部を冷媒減圧作用を発揮する絞り状態とし、前記第2冷却用減圧部を全開とする請求項1または2に記載の冷凍サイクル装置。 In the single cooling mode for cooling the temperature adjustment target, the cooling depressurizing unit is fully closed, the first cooling depressurizing unit is in a throttled state for exerting a refrigerant depressurizing action, and the second cooling depressurizing unit is fully opened. The refrigeration cycle apparatus according to claim 1 or 2, wherein
  4.  前記温度調整対象物を加熱する単独暖機モードでは、前記冷房用減圧部を全閉とし、前記第1冷却用減圧部を全開とし、前記第2冷却用減圧部を冷媒減圧作用を発揮する絞り状態とする請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 In the single warm-up mode for heating the object to be temperature-controlled, the cooling depressurizing unit is fully closed, the first cooling depressurizing unit is fully opened, and the second cooling depressurizing unit is a throttle that exerts a refrigerant depressurizing action. The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigeration cycle apparatus is in a state.
  5.  前記加熱部は、前記圧縮機から吐出された冷媒と高温側熱媒体とを熱交換させる水-冷媒熱交換器(12)、および前記高温側熱媒体と前記送風空気とを熱交換させるヒータコア(42)を有し、
     前記高温側熱媒体を循環させる高温側熱媒体回路(40)には、前記高温側熱媒体と外気とを熱交換させる高温側ラジエータ(44)が配置されている請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。
    The heating unit includes a water-refrigerant heat exchanger (12) for exchanging heat between the refrigerant discharged from the compressor and the high-temperature side heat medium, and a heater core (heat-exchanger for exchanging heat between the high-temperature side heat medium and the blast air). 42)
    The high-temperature radiator (44) for exchanging heat between the high-temperature heat medium and the outside air is disposed in the high-temperature heat medium circuit (40) for circulating the high-temperature heat medium. A refrigeration cycle apparatus according to one of the preceding claims.
  6.  前記加熱部から流出した冷媒を減圧させる暖房用減圧部(14d)と、
     前記暖房用減圧部から流出した冷媒と外気とを熱交換させて前記分岐部の上流側へ流出させる室外熱交換器(16)と、
     前記加熱部から流出した冷媒を前記室外熱交換器を迂回させて前記分岐部の上流側へ導くバイパス通路(22a)と、
     前記室外熱交換器から流出した冷媒を前記圧縮機の吸入口側へ導く暖房用通路(22b)と、を備える請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。
    A heating decompression unit (14d) for decompressing the refrigerant flowing out of the heating unit;
    An outdoor heat exchanger (16) for exchanging heat between the refrigerant flowing out of the heating decompression unit and the outside air to flow out to the upstream side of the branch unit;
    A bypass passage (22a) that guides the refrigerant flowing out of the heating unit to the upstream side of the branch unit by bypassing the outdoor heat exchanger;
    The refrigeration cycle apparatus according to any one of claims 1 to 5, further comprising: a heating passage (22b) for guiding the refrigerant flowing out of the outdoor heat exchanger to a suction port side of the compressor.
PCT/JP2019/032751 2018-09-06 2019-08-22 Refrigeration cycle device WO2020050039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-166946 2018-09-06
JP2018166946A JP2020040430A (en) 2018-09-06 2018-09-06 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020050039A1 true WO2020050039A1 (en) 2020-03-12

Family

ID=69721710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032751 WO2020050039A1 (en) 2018-09-06 2019-08-22 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2020040430A (en)
WO (1) WO2020050039A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7307022B2 (en) * 2020-03-27 2023-07-11 トヨタ自動車株式会社 Thermal management device
JP2021173426A (en) * 2020-04-20 2021-11-01 株式会社デンソー Refrigeration cycle device
CN112428768B (en) * 2020-05-29 2024-06-11 杭州三花研究院有限公司 Thermal management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306300A (en) * 2004-04-23 2005-11-04 Denso Corp Air conditioner for vehicle
WO2013039047A1 (en) * 2011-09-12 2013-03-21 ダイキン工業株式会社 Automobile temperature regulation system
US20170001493A1 (en) * 2015-07-01 2017-01-05 Hanon Systems CHILLER INTEGRATION INTO vCOOL SYSTEM
DE102016007490A1 (en) * 2016-06-18 2017-12-21 Audi Ag Method for operating a refrigeration system of a vehicle
US20180222286A1 (en) * 2017-02-09 2018-08-09 Ford Global Technologies, Llc Method to heat the cabin while cooling the battery during fast charge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306300A (en) * 2004-04-23 2005-11-04 Denso Corp Air conditioner for vehicle
WO2013039047A1 (en) * 2011-09-12 2013-03-21 ダイキン工業株式会社 Automobile temperature regulation system
US20170001493A1 (en) * 2015-07-01 2017-01-05 Hanon Systems CHILLER INTEGRATION INTO vCOOL SYSTEM
DE102016007490A1 (en) * 2016-06-18 2017-12-21 Audi Ag Method for operating a refrigeration system of a vehicle
US20180222286A1 (en) * 2017-02-09 2018-08-09 Ford Global Technologies, Llc Method to heat the cabin while cooling the battery during fast charge

Also Published As

Publication number Publication date
JP2020040430A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US20190111756A1 (en) Refrigeration cycle device
US11525611B2 (en) Refrigeration cycle device for vehicle
US11718156B2 (en) Refrigeration cycle device
US20220009309A1 (en) Refrigeration cycle device
US11408615B2 (en) Refrigeration cycle device
WO2020050038A1 (en) Refrigeration cycle device
WO2016203903A1 (en) Air conditioner for vehicle
CN114514129B (en) Refrigeration cycle device
US11506404B2 (en) Refrigeration cycle device
WO2020050040A1 (en) Refrigeration cycle device
CN113423596A (en) Refrigeration cycle device
WO2020050039A1 (en) Refrigeration cycle device
US20210101451A1 (en) Refrigeration cycle device
CN111491815A (en) Vehicle heating device
JP2019217947A (en) Air conditioner
WO2022158153A1 (en) Heat management system
JP7294075B2 (en) refrigeration cycle equipment
WO2022181110A1 (en) Air conditioning device
WO2023053746A1 (en) Refrigeration cycle apparatus
WO2023248868A1 (en) Heat pump cycle apparatus
WO2024101061A1 (en) Heat pump cycle device
WO2023276626A1 (en) Heat pump cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857288

Country of ref document: EP

Kind code of ref document: A1