WO2023276626A1 - Heat pump cycle apparatus - Google Patents

Heat pump cycle apparatus Download PDF

Info

Publication number
WO2023276626A1
WO2023276626A1 PCT/JP2022/023573 JP2022023573W WO2023276626A1 WO 2023276626 A1 WO2023276626 A1 WO 2023276626A1 JP 2022023573 W JP2022023573 W JP 2022023573W WO 2023276626 A1 WO2023276626 A1 WO 2023276626A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature side
heat medium
heat
defrosting operation
low
Prior art date
Application number
PCT/JP2022/023573
Other languages
French (fr)
Japanese (ja)
Inventor
芳生 林
紘明 河野
康弘 横尾
好則 一志
吉毅 加藤
幸久 伊集院
順基 平山
騎士 武藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023276626A1 publication Critical patent/WO2023276626A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a heat pump cycle device that performs a defrosting operation when frost forms on the heat absorbing portion.
  • Patent Document 1 it is applied to a vehicle air conditioner, and when frost forms on an outdoor heat exchanger forming a heat absorption part, a defrosting operation is performed to remove frost on the outdoor heat exchanger.
  • a heat pump cycle device is disclosed.
  • the high-temperature and high-pressure refrigerant (so-called hot gas) discharged from the compressor flows into the outdoor heat exchanger, thereby reaching the outdoor heat exchanger. It melts and removes frost. Therefore, in the heat pump cycle device of Patent Document 1, the heat of the outside air cannot be absorbed by the refrigerant in the outdoor heat exchanger during the defrosting operation, and the vehicle interior cannot be heated. end up
  • the present disclosure aims to provide a heat pump cycle device capable of suppressing execution of unnecessary defrosting operation.
  • a heat pump cycle device includes a compressor, a heating unit, a pressure reducing unit, a heat absorbing unit, a frosting determination unit, a defrosting operation execution unit, and a defrosting and a driving prohibition unit.
  • the compressor compresses the refrigerant.
  • the heating unit heats the fluid to be heated by dissipating heat from the refrigerant discharged from the compressor.
  • the decompression unit decompresses the refrigerant flowing out from the heating unit.
  • the heat absorption section causes the refrigerant decompressed by the decompression section to absorb heat of outside air.
  • the frost formation determination unit determines that frost has formed on the heat absorption unit.
  • the defrosting operation executing unit executes a defrosting operation for defrosting the heat absorbing unit when the frost formation determining unit determines that frost has formed on the heat absorbing unit.
  • the defrosting operation prohibition unit prohibits the defrosting operation execution unit from performing the defrosting operation.
  • the heat absorption part has a heat medium circuit connected to a heat medium heat exchange part that exchanges heat between the refrigerant decompressed in the decompression part and the heat medium, and an outside air heat exchange part that exchanges heat between the heat medium and the outside air.
  • a heat-generating portion that heats the heat medium is arranged in the heat medium circuit.
  • the defrosting operation execution unit defrosts the outside air heat exchange unit using the heat medium heated by the heat generating unit as a heat source when the defrosting operation is executed.
  • the defrosting operation prohibition unit prohibits the execution of the next defrosting operation until the defrosting elapsed time, which is the elapsed time from the end of the previous defrosting operation, is equal to or longer than a predetermined defrosting standby time. do.
  • the defrosting operation prohibiting unit prohibits execution of the next defrosting operation until the defrosting elapsed time is equal to or longer than the defrosting standby time.
  • the heating unit can heat the heat medium. Further, the defrosting standby time can be set so that the amount of heat stored in the heat medium from the heat generating section is such that the frost on the outside air heat exchange section can be reliably melted and removed. .
  • the defrosting operation executing section executes the defrosting operation, so that the frost on the outside air heat exchange section can be sufficiently removed.
  • the defrosting operation executing section executes the defrosting operation, so that the frost on the outside air heat exchange section can be sufficiently removed.
  • the heat pump cycle device of one aspect of the present disclosure it is possible to provide a heat pump cycle device capable of suppressing execution of unnecessary defrosting operation.
  • FIG. 1 is a schematic configuration diagram of a vehicle air conditioner to which a heat pump cycle device of one embodiment is applied;
  • FIG. It is an explanatory view for explaining the operation mode of the five-way valve of one embodiment.
  • 1 is a schematic configuration diagram of an indoor air conditioning unit of one embodiment;
  • FIG. It is a block diagram which shows the electric-control part of the heat pump cycle apparatus of one Embodiment.
  • 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a single cooling mode of a heat pump cycle device of one embodiment;
  • FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a single dehumidifying and heating mode of the heat pump cycle device of one embodiment
  • FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a single heating mode of a heat pump cycle device of one embodiment
  • FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a cooling mode of a heat pump cycle device of one embodiment
  • FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a cooling, dehumidifying, and heating mode of the heat pump cycle device of one embodiment
  • FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a cooling, dehumidifying, and heating mode of the heat pump cycle device of one embodiment
  • FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in
  • FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a cooling/heating mode of a heat pump cycle device of one embodiment
  • FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a single cooling mode of a heat pump cycle device of one embodiment
  • FIG. It is a flowchart which shows the control flow of the defrosting operation of the heat pump cycle apparatus of one Embodiment.
  • FIG. 4 is a control characteristic diagram for determining a frost state by a frost formation determination unit of one embodiment
  • FIG. 2 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a defrosting operation of the heat pump cycle device of one embodiment
  • FIG. 10 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a defrosting operation of a heat pump cycle device of another embodiment;
  • FIG. 1 An embodiment of a heat pump cycle device 1 according to the present disclosure will be described using FIGS. 1 to 15.
  • FIG. The heat pump cycle device 1 of this embodiment is mounted on an electric vehicle, and is applied to a vehicle air conditioner with a vehicle-mounted device temperature adjustment function.
  • An electric vehicle is a vehicle that obtains driving force for running from an electric motor.
  • the heat pump cycle device 1 air-conditions the interior of the vehicle, which is the space to be air-conditioned, and adjusts the temperature of the in-vehicle equipment, which is the object of temperature adjustment.
  • Vehicle-mounted devices that are temperature-adjusted objects of the heat pump cycle device 1 are the battery 80 and the high-voltage device 81 .
  • the battery 80 is a secondary battery that stores power to be supplied to a plurality of on-vehicle devices that operate on electricity.
  • the battery 80 is an assembled battery formed by electrically connecting a plurality of stacked battery cells in series or in parallel.
  • the battery cell of this embodiment is a lithium ion battery.
  • the battery 80 generates heat during operation (that is, during charging and discharging).
  • the battery 80 has a characteristic that the output tends to decrease when the temperature becomes low, and the deterioration tends to progress when the temperature becomes high. Therefore, the temperature of the battery 80 must be maintained within an appropriate temperature range (15° C. or higher and 55° C. or lower in this embodiment).
  • the heavy electric system device 81 is an in-vehicle device that operates when power is supplied and generates heat during operation.
  • the heavy electric system device 81 of this embodiment is specifically a sensor processing unit 82 , a power control unit 83 and a transaxle 84 .
  • the sensor processing unit 82 is a control device that aggregates environmental sensor interfaces and communication functions for automatic operation and energy-saving operation.
  • the power control unit 83 is a power control unit that performs power transformation and power distribution.
  • the transaxle 84 is a power transmission mechanism that integrates a transmission, a differential gear, and the like.
  • the heat pump cycle device 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, and a low temperature side heat medium circuit 30, as shown in the overall configuration diagram of FIG. Furthermore, the heat pump cycle device 1 includes an indoor air conditioning unit 40 shown in FIG. 4 and a control device 50 shown in FIG.
  • the heat pump cycle device 1 can execute normal operation for air-conditioning the vehicle interior and adjusting the temperature of on-vehicle equipment.
  • the circuit configurations of the heat pump cycle 10, the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30 can be switched to switch between various operation modes.
  • frost forms on the heat absorbing portion which will be described later, during normal operation, it is possible to perform a defrosting operation to remove frost from the heat absorbing portion.
  • the heat pump cycle 10 supplies the air blown into the vehicle interior, the high temperature side heat medium circulating through the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30 to air-condition the vehicle interior and adjust the temperature of the onboard equipment. It is a vapor compression refrigeration cycle device that adjusts the temperature of the circulating low-temperature heat medium.
  • the heat pump cycle 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant.
  • the heat pump cycle 10 constitutes a subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant.
  • Refrigerating machine oil is PAG oil having compatibility with the liquid phase refrigerant. Some of the refrigerating machine oil circulates through the cycle together with the refrigerant.
  • the compressor 11 sucks, compresses, and discharges the refrigerant.
  • the compressor 11 is arranged in the drive unit room on the front side of the passenger compartment.
  • the driving device room forms a space in which at least part of a device (for example, a motor generator) used to generate driving force for running the vehicle is arranged.
  • the compressor 11 is an electric compressor in which an electric motor drives a fixed displacement type compression mechanism with a fixed displacement.
  • the compressor 11 has its rotation speed (that is, refrigerant discharge capacity) controlled by a control signal output from a control device 50, which will be described later.
  • the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11 .
  • the water-refrigerant heat exchanger 12 has a refrigerant passage through which the high pressure refrigerant discharged from the compressor 11 flows, and a heat medium passage through which the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 flows.
  • the water-refrigerant heat exchanger 12 is a heat exchange unit that heats the high temperature side heat medium by exchanging heat between the high pressure refrigerant flowing through the refrigerant passage and the high temperature side heat medium flowing through the heat medium passage.
  • the inlet side of the receiver 13 is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 .
  • the receiver 13 is a high-pressure-side gas-liquid separator that separates the gas-liquid of the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and stores surplus liquid-phase refrigerant in the cycle.
  • the refrigerant outlet of the receiver 13 is connected to the inlet side of the first refrigerant joint portion 14a.
  • the first refrigerant joint portion 14a is a three-way joint having three inlets and outlets communicating with each other.
  • a joint member formed by joining a plurality of pipes or a joint member formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the heat pump cycle 10 has a second refrigerant joint portion 14b.
  • the basic configuration of the second refrigerant joint portion 14b is the same as that of the first refrigerant joint portion 14a.
  • the inlet side of the cooling expansion valve 15a is connected to one outlet of the first refrigerant joint portion 14a.
  • the inlet side of the cooling expansion valve 15b is connected to the other outflow port of the first refrigerant joint portion 14a.
  • the cooling expansion valve 15a reduces the pressure of the high-pressure refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate (mass flow rate) of the refrigerant that flows out downstream during a single cooling mode or the like, which will be described later. .
  • the cooling expansion valve 15a is an electric variable valve having a valve body portion that changes the opening degree of the throttle passage (that is, the valve opening degree) and an electric actuator (specifically, a stepping motor) that displaces the valve body portion. A diaphragm mechanism.
  • the operation of the cooling expansion valve 15 a is controlled by a control signal (specifically, a control pulse) output from the control device 50 .
  • the cooling expansion valve 15b reduces the pressure of the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side during a single cooling mode or the like, which will be described later. This is the decompression section.
  • the basic configuration of the cooling expansion valve 15b is similar to that of the cooling expansion valve 15a.
  • the cooling expansion valve 15a and the cooling expansion valve 15b have a fully closing function of closing the refrigerant passage by fully closing the throttle passage with the valve body.
  • the cooling expansion valve 15a and the cooling expansion valve 15b can switch the refrigerant circuit of the heat pump cycle 10 by the fully closed function. Therefore, the cooling expansion valve 15a and the cooling expansion valve 15b also function as a refrigerant circuit switching unit.
  • the refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a.
  • the indoor evaporator 16 is arranged in an air conditioning case 41 of an indoor air conditioning unit 40, which will be described later.
  • the indoor evaporator 16 is a heat exchange unit that exchanges heat between the low-pressure refrigerant decompressed by the cooling expansion valve 15a and the air blown into the vehicle interior.
  • the indoor evaporator 16 cools the blown air by evaporating the low-pressure refrigerant and exerting an endothermic effect.
  • the refrigerant outlet of the indoor evaporator 16 is connected to the inlet side of the evaporation pressure regulating valve 17 .
  • the evaporation pressure regulating valve 17 maintains the refrigerant evaporation temperature in the indoor evaporator 16 at a frost suppression temperature (in this embodiment, 1° C.) or higher at which frost formation of the indoor evaporator 16 can be suppressed.
  • the evaporating pressure regulating valve 17 is composed of a mechanical mechanism that increases the valve opening as the refrigerant pressure on the refrigerant outlet side of the indoor evaporator 16 increases.
  • the outlet of the evaporating pressure regulating valve 17 is connected to one inlet side of the second refrigerant joint 14b.
  • the inlet side of the refrigerant passage of the chiller 18 is connected to the outlet of the cooling expansion valve 15b.
  • the chiller 18 has a refrigerant passage through which the low-pressure refrigerant flowing out from the cooling expansion valve 15b flows, and a heat medium passage through which the low temperature side heat medium circulating in the low temperature side heat medium circuit 30 flows.
  • the chiller 18 is a heat medium heat exchange unit that exchanges heat between the low-pressure refrigerant flowing through the refrigerant passage and the low-temperature side heat medium flowing through the heat medium passage.
  • the chiller 18 cools the low-temperature side heat medium by evaporating the low-pressure refrigerant and exerting an endothermic action.
  • the outlet of the refrigerant passage of the chiller 18 is connected to the other inlet side of the second refrigerant joint 14b.
  • the suction port side of the compressor 11 is connected to the outflow port of the second refrigerant joint portion 14b.
  • the high temperature side heat medium circuit 20 is a circuit that circulates the high temperature side heat medium.
  • the high temperature side heat medium circuit 20 employs an ethylene glycol aqueous solution as the high temperature side heat medium.
  • the high temperature side heat medium circuit 20 includes a high temperature side pump 21, a high temperature side flow control valve 22, a heater core 23, a high temperature side radiator 25, and the like. Furthermore, the heat medium passage of the water-refrigerant heat exchanger 12 is connected to the high temperature side heat medium circuit 20 .
  • the high temperature side pump 21 is an electric water pump that draws in the high temperature side heat medium that has flowed out from the heat medium passage of the water-refrigerant heat exchanger 12 and pumps it to the inlet side of the high temperature side flow control valve 22 .
  • the high temperature side pump 21 has its rotation speed (that is, pumping capability) controlled by a control voltage output from the control device 50 .
  • the high-temperature side flow control valve 22 is an electric three-way flow control valve that has one inlet and two outlets and can continuously adjust the passage area ratio of the two outlets.
  • the operation of the high temperature side flow control valve 22 is controlled by a control signal output from the control device 50 .
  • the heating medium inlet side of the heater core 23 is connected to one outflow port of the high temperature side flow control valve 22 . Also, the heat medium inlet side of the high temperature side radiator 25 is connected to the other outflow port of the high temperature side flow control valve 22 .
  • the high temperature side flow control valve 22 adjusts the flow rate of the high temperature side heat medium that flows into the heater core 23 and the flow rate of the high temperature side heat medium that flows into the high temperature side radiator 25 among the high temperature side heat medium pressure-fed from the high temperature side pump 21 . can be continuously adjusted.
  • the high-temperature side flow control valve 22 adjusts the flow ratio so that the entire flow rate of the high-temperature side heat medium pressure-fed from the high-temperature side pump 21 flows out to either the heater core 23 side or the high-temperature side radiator 25 side. can be made Therefore, the high temperature side flow control valve 22 also functions as a high temperature side heat medium circuit switching section for switching the circuit configuration of the high temperature side heat medium circuit 20 .
  • the heater core 23 is a heat exchange section that heats the air blown into the passenger compartment by exchanging heat between the high temperature side heat medium flowing out of the high temperature side flow control valve 22 and the air blown into the vehicle compartment.
  • the heater core 23 is arranged inside the air conditioning case 41 of the indoor air conditioning unit 40 . Therefore, the blown air becomes the fluid to be heated by the heat pump cycle device 1 .
  • the heat medium outlet of the heater core 23 is connected to one inlet side of the first heat medium joint 24a.
  • the first heat medium joint portion 24a is a three-way joint having the same configuration as the first refrigerant joint portion 14a and the like.
  • a high-voltage heater 26 is arranged in the heat medium flow path connecting the high temperature side flow control valve 22 , one outlet, and the heat medium inlet of the heater core 23 .
  • the high voltage heater 26 is an electric heater that heats the high temperature side heat medium.
  • the high voltage heater 26 is a PTC heater having a positive temperature coefficient thermistor. The amount of heat generated by the high voltage heater 26 is controlled by a control voltage output from the control device 50 .
  • the amount of energy consumed when using the high-voltage heater 26 to raise the temperature of the heat medium flowing into the heater core 23 by a predetermined amount is greater than when using the heat pump cycle 10 to raise the temperature. Therefore, when heating the vehicle interior, operating the heat pump cycle 10 can reduce the amount of power stored in the battery 80 rather than energizing the high voltage heater 26 .
  • the high temperature side radiator 25 is a heat exchange section that exchanges heat between the high temperature side heat medium flowing out of the high temperature side flow control valve 22 and the outside air.
  • the high temperature side radiator 25 is arranged on the front side in the drive unit room together with the low temperature side radiator 35 which will be described later. Therefore, when the vehicle is running, the high-temperature side radiator 25 can be exposed to running wind that has flowed into the drive unit compartment through the grill.
  • the heat medium outlet of the high temperature side radiator 25 is connected to the other inlet side of the first heat medium joint 24a.
  • the inlet side of the heat medium passage of the water-refrigerant heat exchanger 12 is connected to the outflow port of the first heat medium joint portion 24 a via the high temperature side reserve tank 27 .
  • the high temperature side reserve tank 27 is a reservoir that stores the high temperature side heat medium. In the high temperature side heat medium circuit 20, by storing the surplus high temperature side heat medium in the high temperature side reserve tank 27, it is possible to suppress the decrease in the liquid amount of the high temperature side heat medium circulating in the high temperature side heat medium circuit 20. can. Furthermore, the high temperature side reserve tank 27 has a heat medium supply port for replenishing the high temperature side heat medium when the high temperature side heat medium is insufficient.
  • the water-refrigerant heat exchanger 12 heat-exchanges the high-temperature-side heat medium and the high-pressure refrigerant to heat the high-temperature-side heat medium. Furthermore, the heater core 23 heat-exchanges the high-temperature-side heat medium and the blast air to heat the blast air. That is, the water-refrigerant heat exchanger 12 and the heater core 23 of the high-temperature side heat medium circuit 20 form a heating portion that heats the blast air, which is the fluid to be heated, using the refrigerant discharged from the compressor 11 as a heat source.
  • the low temperature side heat medium circuit 30 is a heat medium circuit that circulates a low temperature side heat medium that is a heat medium.
  • the same kind of fluid as the high temperature side heat medium is used as the low temperature side heat medium.
  • a first low temperature side pump 31a, a second low temperature side pump 31b, a five-way valve 32, a low temperature side radiator 35, a bypass passage 38, and the like are connected to the low temperature side heat medium circuit 30. Furthermore, the heat medium passage of the chiller 18 , the cooling water passage 80 a of the battery 80 , and the cooling water passage of the high-voltage equipment 81 are connected to the low temperature side heat medium circuit 30 .
  • a cooling water passage 80a of the battery 80 is formed within a dedicated case that accommodates a plurality of battery cells.
  • a cooling water passage 80a of the battery 80 is a heat exchange portion that exchanges heat between the plurality of battery cells forming the battery 80 and the low temperature side heat medium.
  • the cooling water passage 80a of the battery 80 can cool the battery 80 by exchanging heat between the low temperature side heat medium cooled by the chiller 18 and the battery 80. Also, the battery 80 can be heated by exchanging heat between the battery 80 and the low-temperature heat medium heated by the battery heater 36, which will be described later.
  • the cooling water passages of the high-voltage equipment 81 specifically include a cooling water passage 82a of the sensor processing unit 82, a cooling water passage 83a of the power control unit 83, and a cooling water passage 84a of the transaxle 84.
  • Each of the cooling water passages 82a-84a is connected in series with the flow of the low temperature side heat medium.
  • Each of the cooling water passages 82a to 84a is a heat exchange portion that exchanges heat between the low-temperature side heat medium and the high-voltage equipment 81. As shown in FIG.
  • the high current system equipment 81 can be cooled by heat exchange between the low temperature side heat medium cooled by the low temperature side radiator 35 and the high current system equipment 81.
  • the low-temperature side heat medium can be heat-exchanged with the high-voltage equipment 81 to heat the low-temperature side heat medium. Therefore, the high-power system device 81 serves as a heat generating portion that heats the low-temperature side heat medium.
  • the first low temperature side pump 31a is an electric water pump that draws in the low temperature side heat medium that has flowed out from the second heat medium joint 34b and pumps it to the inlet side of the heat medium passage of the chiller 18.
  • the basic configuration of the first low temperature side pump 31a and the second low temperature side pump 31b is the same as that of the high temperature side pump 21 .
  • the basic configurations of the second heat medium joint portion 34b, the third heat medium joint portion 34c, and the fourth heat medium joint portion 34d, which will be described later, are the same as those of the first heat medium joint portion 24a.
  • a chiller-side inflow port 32a side of a five-way valve 32 is connected to the outlet of the heat medium passage of the chiller 18.
  • the five-way valve 32 is a low temperature side heat medium circuit switching unit that switches the circuit configuration of the low temperature side heat medium circuit 30 .
  • the five-way valve 32 has five inlets and outlets. Specifically, the five-way valve 32 has a chiller-side inlet 32a and a high-power equipment-side inlet 32b as inlets for inflowing the low-temperature heat medium.
  • the five-way valve 32 has a battery side outflow port 32c, a radiator side outflow port 32d, and a bypass passage side outflow port 32e as outflow ports for outflowing the low temperature side heat medium that has flowed into the interior. A detailed configuration of the five-way valve 32 will be described later.
  • the inlet side of the cooling water passage 80a of the battery 80 is connected to the battery side outlet 32c of the five-way valve 32.
  • a battery heater 36 is arranged in a heat medium flow path that connects the battery side outlet 32 c of the five-way valve 32 and the inlet of the cooling water passage 80 a of the battery 80 .
  • the battery heater 36 is an electric heater that heats the low temperature side heat medium flowing into the cooling water passage 80 a of the battery 80 in order to warm up the battery 80 .
  • a basic configuration of the battery heater 36 is similar to that of the high voltage heater 26 .
  • As the battery heater 36 an electric heater having a smaller output than the high voltage heater 26 can be used.
  • the outlet of the cooling water passage 80a of the battery 80 is connected to one inlet side of the second heat medium joint portion 34b.
  • the suction port side of the first low temperature side pump 31a is connected to the outflow port of the second heat medium joint portion 34b.
  • the second low-temperature side pump 31b is an electric water pump that draws in the low-temperature side heat medium that has flowed out from the third heat medium joint portion 34c and pumps it to the inlet side of the cooling water passage of the high-voltage equipment 81. More specifically, the low temperature side heat medium pressure-fed from the second low temperature side pump 31b passes through the cooling water passage 82a of the sensor processing unit 82, the cooling water passage 83a of the power control unit 83, and the cooling water passage 84a of the transaxle 84. flow in the order of
  • a low temperature side reserve tank 37 is arranged in the heat medium flow path connecting the outlet of the third heat medium joint 34c and the suction port of the second low temperature side pump 31b.
  • the low temperature side reserve tank 37 is a reservoir that stores the low temperature side heat medium.
  • the basic configuration of the low temperature side reserve tank 37 is similar to that of the high temperature side reserve tank 27 .
  • the high-current equipment side inflow port 32b side of the five-way valve 32 is connected to the outlet of the cooling water passage of the high-current equipment 81, that is, the outlet of the cooling water passage 84a of the transaxle 84.
  • the heat medium inlet side of the low temperature side radiator 35 is connected to the radiator side outlet 32 d of the five-way valve 32 .
  • the low-temperature side radiator 35 is an outside air heat exchange section that exchanges heat between the low-temperature side heat medium flowing out from the radiator-side outlet 32d of the five-way valve 32 and the outside air.
  • the basic configuration of the low temperature side radiator 35 is similar to that of the high temperature side radiator 25 .
  • the low temperature side radiator 35 is arranged on the front side in the driving device room together with the high temperature side radiator 25 described above. More specifically, the low temperature side radiator 35 is arranged downstream of the high temperature side radiator 25 in the flow of outside air. Therefore, in the low-temperature side radiator 35 , heat is exchanged between the low-temperature side heat medium and the outside air after passing through the high-temperature side radiator 25 .
  • the high temperature side radiator 25 and the low temperature side radiator 35 of the present embodiment are integrated so that the heat of the high temperature side heat medium and the heat of the low temperature side heat medium can be transferred to each other. Therefore, the high temperature side radiator 25 and the low temperature side radiator 35 can transfer the heat of the high temperature side heat medium to the low temperature side radiator 35 . Furthermore, the heat of the low temperature side heat medium can be transferred to the high temperature side radiator 25 .
  • the metal heat exchange fins 25a for promoting heat exchange are formed of a common member.
  • the heat of the high-temperature side heat medium and the heat of the low-temperature side heat medium can be mutually transferred via the heat exchange fins 25a, which are common members.
  • the heat medium outlet of the low temperature side radiator 35 is connected to the inlet side of the fourth heat medium joint 34d.
  • One inflow port side of the third heat medium joint portion 34c is connected to one outflow port of the fourth heat medium joint portion 34d.
  • the other inflow port side of the second heat medium joint portion 34b is connected to the other outflow port of the fourth heat medium joint portion 34d.
  • the inlet side of the bypass passage 38 is connected to the bypass passage side outlet 32 e of the five-way valve 32 .
  • the bypass passage 38 is a heat medium flow path that guides the low temperature side heat medium that has flowed into the five-way valve 32 to the side of the third heat medium joint portion 34c, bypassing the low temperature side radiator 35 . Therefore, the outlet of the bypass passage 38 is connected to the other inlet side of the third heat medium joint portion 34c.
  • the five-way valve 32 allows the low-temperature side heat medium to flow into the interior from a chiller-side inlet 32a and a high-current equipment-side inlet 32b. Further, the low temperature side heat medium that has flowed inside is caused to flow out from at least one of the battery side outlet 32c, the radiator side outlet 32d, and the bypass passage side outlet 32e.
  • the five-way valve 32 includes, for example, a plurality of three-way flow control valves having the same configuration as the high temperature side flow control valve 22, the first heat medium joint portion 24a, and the like. can be formed by combining three-way joints having the configuration of
  • the five-way valve 32 allows the low-temperature side heat medium that has flowed out of the heat medium passage of the chiller 18 to flow inside from the chiller side inlet 32a, as indicated by the thick solid line arrows in the explanatory view of FIG. Then, the low-temperature heat medium that has flowed into the interior from the chiller-side inlet 32a can flow out from at least one of the battery-side outlet 32c and the radiator-side outlet 32d.
  • the five-way valve 32 controls the flow rate of the low-temperature side heat medium flowing out from the battery side outlet 32c to the inlet side of the cooling water passage 80a of the battery 80 and the flow rate of the low temperature side heat medium from the radiator side outlet 32d to the heat medium inlet side of the low temperature side radiator 35. It is possible to continuously adjust the flow rate ratio with the flow rate of the low temperature side heat medium flowing out to.
  • the five-way valve 32 adjusts the flow ratio so that the total flow of the low-temperature side heat medium flowing into the interior from the chiller-side inlet 32a is diverted to the inlet side of the cooling water passage 80a of the battery 80 and the low-temperature side radiator. It is also possible to flow out to either one of the heat medium inlet sides of 35 . Thereby, the five-way valve 32 can switch a part of the circuit configuration of the low temperature side heat medium circuit 30 to the battery cooling circuit and the heat absorption circuit.
  • the low temperature side heat medium pressure-fed from the first low temperature side pump 31a is sucked into the heat medium passage of the chiller 18, the battery heater 36, the cooling water passage 80a of the battery 80, and the first low temperature side pump 31a. Circulate in mouth order.
  • the low temperature side heat medium pressure-fed from the first low temperature side pump 31a circulates through the heat medium passage of the chiller 18, the low temperature side radiator 35, and the suction port of the first low temperature side pump 31a in this order.
  • the five-way valve 32 switches the circuit configuration of a part of the low temperature side heat medium circuit 30 to the battery cooling circuit or the battery cooling circuit, and at the same time, as indicated by the thin solid line arrow in FIG. Another part of the circuit configuration of the medium circuit 30 can be switched to a heat storage circuit, which will be described later.
  • the five-way valve 32 allows the low-temperature-side heat medium that has flowed out of the cooling water passage 84a of the transaxle 84 to enter through the high-current equipment-side inlet 32b. Let Then, the low-temperature side heat medium that has flowed into the interior from the high-voltage equipment side inlet 32b can be flowed out from at least one of the radiator side outlet 32d and the bypass passage side outlet 32e.
  • the five-way valve 32 regulates the flow rate of the low temperature side heat medium flowing out from the radiator side outlet 32d to the heat medium inlet side of the low temperature side radiator 35 and the low temperature side heat flowing out from the bypass passage side outlet 32e to the bypass passage 38.
  • the flow ratio to the medium flow can be adjusted continuously.
  • the five-way valve 32 adjusts the flow ratio so that the entire flow of the low-temperature side heat medium flowing into the inside from the high-voltage equipment side inlet 32b is diverted to the heat medium inlet side of the low-temperature side radiator 35 and the bypass passage. It is also possible to flow out to either one of the 38 sides. Thereby, the five-way valve 32 can switch a part of the circuit configuration of the low temperature side heat medium circuit 30 to the equipment cooling circuit and the heat storage circuit.
  • the low-temperature side heat medium pumped from the second low-temperature side pump 31b circulates through the cooling water passage of the high-voltage device 81, the low-temperature side radiator 35, and the suction port of the second low-temperature side pump 31b in this order.
  • the low-temperature side heat medium pressure-fed from the second low-temperature side pump 31b circulates through the cooling water passage of the high-voltage equipment 81, the bypass passage 38, and the suction port of the second low-temperature side pump 31b in this order.
  • the five-way valve 32 switches the circuit configuration of a part of the low temperature side heat medium circuit 30 to the equipment cooling circuit or the heat storage circuit, and at the same time, as indicated by the thin solid line arrow in FIG. Another portion of the circuit configuration of circuit 30 may be switched to form the battery cooling circuit described above.
  • the indoor air conditioning unit 40 is a unit that integrates a plurality of components for blowing air adjusted to an appropriate temperature for air-conditioning the vehicle interior to appropriate locations within the vehicle interior.
  • the indoor air conditioning unit 40 is arranged inside the dashboard (instrument panel) at the forefront of the vehicle interior.
  • the indoor air conditioning unit 40 houses an indoor blower 42, an indoor evaporator 16, a heater core 23, etc. in an air conditioning case 41 that forms an air passage for blown air.
  • the air-conditioning case 41 is molded from a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside/outside air switching device 43 is arranged on the most upstream side of the air-conditioning case 41 in the blown air flow.
  • the inside/outside air switching device 43 switches and introduces inside air (that is, vehicle interior air) and outside air (that is, vehicle exterior air) into the air conditioning case 41 .
  • the operation of the inside/outside air switching device 43 is controlled by a control signal output from the control device 50 .
  • An indoor fan 42 is arranged on the downstream side of the inside/outside air switching device 43 in the blown air flow.
  • the indoor air blower 42 blows the air sucked through the inside/outside air switching device 43 into the vehicle interior.
  • the indoor blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the indoor fan 42 has its rotation speed (that is, air blowing capacity) controlled by a control voltage output from the control device 50 .
  • the indoor evaporator 16 and the heater core 23 are arranged on the downstream side of the indoor blower 42 in the blown air flow.
  • the indoor evaporator 16 is arranged upstream of the heater core 23 in the air flow.
  • a cold air bypass passage 45 is formed in the air conditioning case 41 so that the air that has passed through the indoor evaporator 16 flows around the heater core 23 .
  • An air mix door 44 is arranged downstream of the indoor evaporator 16 in the air conditioning case 41 and upstream of the heater core 23 and the cold air bypass passage 45 .
  • the air mix door 44 adjusts the air volume ratio between the air volume of the air that passes through the heater core 23 side and the air volume of the air that passes through the cold air bypass passage 45 among the air that has passed through the indoor evaporator 16. Department.
  • the air mix door 44 is driven by an air mix door electric actuator.
  • the operation of the electric actuator for the air mix door is controlled by a control signal output from the control device 50 .
  • a mixing space 46 is arranged on the downstream side of the heater core 23 and the cold air bypass passage 45 in the blown air flow.
  • the mixing space 46 is a space for mixing the blast air heated by the heater core 23 and the unheated blast air that has passed through the cold air bypass passage 45 . Therefore, in the indoor air conditioning unit 40 , the temperature of the air mixed in the mixing space 46 (that is, the conditioned air) can be adjusted by adjusting the opening degree of the air mix door 44 .
  • a plurality of opening holes (not shown) for blowing out the blast air mixed in the mixing space 46 into the vehicle interior are formed at the most downstream portion of the blast air flow of the air conditioning case 41 .
  • a plurality of opening holes communicate with a plurality of outlets formed in the passenger compartment.
  • a face outlet, a foot outlet, and a defroster outlet are provided as the plurality of outlets.
  • the face air outlet is an air outlet that blows air toward the upper body of the passenger (that is, the user).
  • the foot air outlet is an air outlet that blows air toward the feet of the occupant.
  • the defroster outlet is an outlet that blows air toward the windshield in front of the vehicle.
  • a blowout mode door (not shown) is arranged in each of the plurality of opening holes. Blow-mode doors open and close respective apertures.
  • the blow mode door is driven by a blow mode door electric actuator.
  • the operation of the electric actuator for the blowout mode door is controlled by a control signal output from the control device 50 .
  • the indoor air conditioning unit 40 by switching the opening hole opened by the blow-out mode door, it is possible to change the location from which the conditioned air is blown out in the vehicle compartment.
  • the control device 50 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits.
  • the control device 50 performs various calculations and processes based on the control program stored in the ROM, and controls various controlled devices 11, 15a, 15b, 21, 22, 26, 31a, 31b, Controls the operation of 32, 36, etc.
  • the input side of the control device 50 includes an inside air temperature sensor 61, an outside air temperature sensor 62, a solar radiation sensor 63, a chiller temperature sensor 64c, an evaporator temperature sensor 64e, and a high pressure sensor 65a.
  • a control sensor group such as a battery temperature sensor 68 and an air conditioning air temperature sensor 69 is connected. Detection signals from a group of sensors for control are input to the control device 50 .
  • the inside air temperature sensor 61 is an inside air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 62 is an outside air temperature detection unit that detects the vehicle outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
  • the chiller temperature sensor 64c is a chiller outlet side refrigerant temperature detection section that detects the chiller side refrigerant temperature Tc, which is the temperature of the refrigerant flowing out of the refrigerant passage of the chiller 18 .
  • the evaporator temperature sensor 64 e is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16 . Specifically, the evaporator temperature sensor 64e of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 16 .
  • the high-pressure sensor 65a is a high-pressure refrigerant pressure detection unit that detects the high-pressure refrigerant pressure Pd, which is the pressure of the high-pressure refrigerant discharged from the compressor 11.
  • the chiller pressure sensor 65c is a chiller-side refrigerant pressure detection unit that detects the chiller-side refrigerant pressure Pc, which is the pressure of the refrigerant in the refrigerant passage of the chiller 18 .
  • the evaporator pressure sensor 65 e is an evaporator-side refrigerant pressure detection unit that detects the evaporator-side refrigerant pressure Pe, which is the pressure of the refrigerant in the indoor evaporator 16 .
  • a high temperature side heat medium temperature sensor 66 a is a high temperature side heat medium temperature detection unit that detects a high temperature side heat medium temperature TWH that is the temperature of the high temperature side heat medium flowing into the heater core 23 .
  • the first low temperature side heat medium temperature sensor 67a is a first low temperature side heat medium temperature detection unit that detects a first low temperature side heat medium temperature TWL1, which is the temperature of the low temperature side heat medium flowing into the cooling water passage 80a of the battery 80. be.
  • the second low-temperature side heat medium temperature sensor 67b detects a second low-temperature side heat medium temperature TWL2, which is the temperature of the low-temperature side heat medium flowing out of the cooling water passage of the high-voltage device 81. is. Specifically, the second low-temperature-side heat medium temperature sensor 67b of the present embodiment detects the temperature of the low-temperature-side heat medium immediately after it flows out from the cooling water passage 84a of the transaxle 84 .
  • the third low temperature side heat medium temperature sensor 67c is a third low temperature side heat medium temperature detection unit that detects a third low temperature side heat medium temperature TWL3, which is the temperature of the low temperature side heat medium immediately after flowing out from the low temperature side radiator 35. .
  • the battery temperature sensor 68 is a battery temperature detection unit that detects the battery temperature TB, which is the temperature of the battery 80 .
  • the battery temperature sensor 68 of this embodiment has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 80 . Therefore, the control device 50 can detect the temperature difference between the battery cells forming the battery 80 . Furthermore, as the battery temperature TB, an average value of detection values of a plurality of temperature sensors is used.
  • the air-conditioning air temperature sensor 69 is an air-conditioning air temperature detection unit that detects the air temperature TAV, which is the temperature of the air blown from the mixing space 46 into the vehicle interior.
  • an air conditioning operation panel 70 is connected to the input side of the control device 50, as shown in FIG.
  • An air-conditioning operation panel 70 is arranged near the instrument panel in the front part of the passenger compartment. Operation signals from various operation switches provided on an operation panel 70 for air conditioning are input to the control device 50 .
  • operation switches provided on the operation panel 70 for air conditioning include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, a defrosting permission switch 70a, and the like.
  • the auto switch is an operation unit that allows the user to set or cancel the automatic control operation of the cabin air conditioning.
  • the air conditioner switch is an operation unit for requesting that the indoor evaporator 16 cool the blown air.
  • the air volume setting switch is an operation unit for manually setting the air volume of the indoor fan 42 by the user.
  • the temperature setting switch is an operation unit for the user to set the set temperature Tset inside the vehicle compartment.
  • the defrosting permission switch 70a is an operation unit for allowing the user to perform the defrosting operation.
  • control device 50 can store whether or not the defrosting operation has been performed since the user started the vehicle system.
  • the controller 50 can measure and store the startup elapsed time Tm1, the defrosting elapsed time Tm2, and the defrosting time Tmd.
  • the activation elapsed time Tm1 is the elapsed time after the vehicle system is activated.
  • the defrosting elapsed time Tm2 is the elapsed time since the previous defrosting operation ended.
  • the defrosting time Tmd is the elapsed time after starting the defrosting operation.
  • the control device 50 is integrally configured with a control unit that controls various controlled devices connected to the output side.
  • the configuration (hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 constitutes a discharge capacity control section 50a.
  • the heat pump cycle device 1 switches the circuit configurations of the heat pump cycle 10, the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30 during normal operation for air conditioning the vehicle interior and adjusting the temperature of the onboard equipment, and operates in various operation modes. can be switched.
  • the switching of the operation mode during normal operation is performed by executing a control program stored in the control device 50 in advance.
  • the control program is executed not only when the vehicle system is activated, but also when the battery 80 is being charged from the external power supply.
  • the detection signals of the above-described sensor group and the operation signals of the operation switches of the operation panel 70 are read at predetermined intervals. Further, when the auto switch of the operation panel 70 is turned on (ON) and automatic control operation of the vehicle interior air conditioning is set, the amount of blown air blown into the vehicle interior is controlled based on the read detection signal and operation signal.
  • a target outlet temperature TAO which is a target temperature, is calculated.
  • TAO The target blowing temperature TAO is calculated using the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As+C (F1)
  • Tr is the internal temperature detected by the internal temperature sensor 61 .
  • Tam is the outside temperature detected by the outside temperature sensor 62 .
  • Kset, Kr, Kam, and Ks are control gains, and C is a correction constant. Detailed operation of each operation mode will be described below.
  • the single cooling mode is an operation mode in which the vehicle interior is cooled by blowing cooled air into the vehicle interior without cooling the battery 80 .
  • an operation mode for cooling the passenger compartment is executed when the target air temperature TAO is in the low temperature range or when the outside air temperature Tam is relatively high. do.
  • the control device 50 puts the cooling expansion valve 15a in a throttled state that exerts a refrigerant decompression action, and puts the cooling expansion valve 15b in a fully closed state.
  • control device 50 controls the refrigerant discharge capacity of the compressor 11 so that the evaporator temperature Tefin detected by the evaporator temperature sensor 64e approaches the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined by referring to a control map stored in advance in the controller 50 based on the target outlet temperature TAO.
  • control device 50 controls the degree of throttle opening of the cooling expansion valve 15a so that the degree of superheat SH1 of the refrigerant on the outlet side of the indoor evaporator 16 reaches a predetermined reference degree of superheat KSH (5° C. in this embodiment). Control to get closer.
  • the degree of superheat SH1 can be determined based on the evaporator temperature Tefin and the evaporator-side refrigerant pressure Pe detected by the evaporator pressure sensor 65e.
  • control device 50 operates the high temperature side pump 21 so as to exhibit a predetermined reference pumping capability.
  • control device 50 operates the high-temperature side flow control valve 22 so that the high-temperature side heat medium temperature TWH detected by the high-temperature side heat medium temperature sensor 66a approaches a predetermined reference high-temperature side heat medium temperature KTWH. to control.
  • the high temperature side flow control valve 22 causes the high temperature side heat medium to flow out to the heater core 23 side and the high temperature side radiator 25 side so that the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH. Adjust the flow rate ratio with the flow rate of the high temperature side heat medium.
  • the reference high temperature side heat medium temperature KTWH is set to a value that can appropriately heat the blown air when the high temperature side heat medium is caused to flow into the heater core 23 .
  • the control device 50 keeps the high temperature side heat medium temperature TWH at the reference high temperature side heat medium temperature KTWH. When it does not reach, the high voltage heater 26 is caused to generate heat. Then, the control device 50 controls the amount of heat generated by the high voltage heater 26 so that the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH.
  • the operation mode for cooling the interior of the vehicle is executed when the target blowout temperature TAO is in the low temperature range. Therefore, in the single cooling mode, the amount of heat radiated from the high-temperature side heat medium to the blast air by the heater core 23 tends to decrease. Therefore, in the single cooling mode, the flow rate of the high temperature side heat medium flowing out to the high temperature side radiator 25 side tends to be larger than the flow rate of the high temperature side heat medium flowing out from the high temperature side flow control valve 22 to the heater core 23 side.
  • FIG. 6 the flow of the high temperature side heat medium flowing out from the high temperature side flow control valve 22 to the heater core 23 side is indicated by a thick dashed line. flow is indicated by a thick solid line.
  • the control device 50 stops the first low temperature side pump 31a and operates the second low temperature side pump 31b so as to exhibit a predetermined reference pumping capability.
  • the control device 50 controls the second low temperature side heat medium temperature TWL2 detected by the second low temperature side heat medium temperature sensor 67b to reach the predetermined second reference low temperature side heat medium temperature KTWL2. Control the movement to get closer.
  • the five-way valve 32 adjusts the flow rate of the low temperature side heat medium flowing out to the low temperature side radiator 35 side and the bypass passage 38 side so that the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2. Adjust the flow ratio with the flow rate of the low temperature side heat medium flowing out to.
  • the second reference low-temperature side heat medium temperature KTWL2 is obtained by causing the low-temperature side heat medium pressure-fed from the second low-temperature side pump 31b to flow into the cooling water passage of the high-power system device 81, thereby setting the temperature of the high-power device 81 to the reference heat resistance temperature. It is set to a value that can be maintained below the temperature.
  • the operation mode for cooling the vehicle interior is executed when the outside air temperature Tam is relatively high. Therefore, in the independent cooling mode, the high-voltage equipment 81 heats the low-temperature side heat medium, and the temperature of the low-temperature side heat medium circulating in the heat storage circuit tends to rise. Therefore, as shown in FIG. 6, the five-way valve 32 in the single cooling mode often switches the circuit configuration of the low temperature side heat medium circuit 30 to the device cooling circuit.
  • the control device 50 operates the indoor fan 42 so as to exhibit the target air blowing capacity.
  • the target blowing capacity is determined by referring to a control map stored in advance in the control device 50 based on the target blowing temperature TAO.
  • the blowing capacity is maximized when the target outlet temperature TAO is in the extremely low temperature range (that is, maximum cooling) or the extremely high temperature range (that is, maximum heating). decide. Further, the blowing capacity is determined to decrease as the target blowing temperature TAO moves from the extremely low temperature range or the extremely high temperature range to the intermediate temperature range. Then, when the target blowout temperature TAO is in the intermediate temperature range, the blowing capacity is determined to be the minimum.
  • the controller 50 changes the opening degree of the air mix door 44 so that the air temperature TAV detected by the conditioned air temperature sensor 69 approaches the target outlet temperature TAO.
  • control device 50 refers to a control map stored in advance in the control device 50 to control the operation of the inside/outside air switching device 43 and the electric actuator for the blowout mode door.
  • a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the indoor evaporator 16 functions as an evaporator.
  • the water-refrigerant heat exchanger 12 heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium.
  • the indoor evaporator 16 heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows through the heater core 23 and the high temperature side radiator 25 depending on the operating state of the high temperature side flow control valve 22. flow into As a result, the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH.
  • the heater core 23 heat is exchanged between the high-temperature heat medium and the blast air according to the degree of opening of the air mix door 44, and the blast air is heated.
  • the high temperature side radiator 25 heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
  • the low-temperature side heat medium pumped from the second low-temperature side pump 31 b flows through the cooling water passages of the high-voltage equipment 81 .
  • the heavy electrical equipment 81 is cooled.
  • the low-temperature heat medium is heated in the cooling water passage of the high-voltage equipment 81 .
  • the low-temperature side heat medium flowing out of the cooling water passage of the high-voltage equipment 81 flows into the low-temperature side radiator 35 and the bypass passage 38 according to the operating state of the five-way valve 32 .
  • the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2.
  • the low temperature side radiator 35 heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the heat of the low temperature side heat medium is radiated to the outside air.
  • the air blown from the indoor blower 42 is cooled by the indoor evaporator 16 .
  • the blown air cooled by the indoor evaporator 16 is adjusted in temperature by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO. Then, the temperature-controlled blowing air is blown into the vehicle interior, thereby cooling the vehicle interior.
  • the single dehumidification and heating mode is an operation mode in which the dehumidification and heating of the vehicle interior is performed by reheating the cooled and dehumidified blast air and blowing it into the vehicle interior without cooling the battery 80. is.
  • the controller 50 throttles the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
  • the refrigerant circuit is switched to circulate in the order of the evaporator 16, the evaporating pressure regulating valve 17, and the suction side of the compressor 11.
  • the refrigerant discharged from the compressor 11 is switched to a refrigerant circuit that circulates through the refrigerant passage of the water-refrigerant heat exchanger 12, the receiver 13, the cooling expansion valve 15b, the chiller 18, and the suction side of the compressor 11 in that order. That is, the indoor evaporator 16 and the chiller 18 are switched to a refrigerant circuit that is connected in parallel with respect to the refrigerant flow.
  • control device 50 controls the refrigerant discharge capacity of the compressor 11 and the throttle opening of the cooling expansion valve 15a in the same manner as in the single cooling mode. Further, the control device 50 controls the throttle opening degree of the cooling expansion valve 15b so that the chiller-side refrigerant temperature Tc detected by the chiller temperature sensor 64c is lower than the outside air temperature Tam.
  • control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 in the same manner as in the independent cooling mode.
  • the heater core 23 reheats the blown air cooled by the indoor evaporator 16 . Therefore, in the high temperature side flow control valve 22 in the single dehumidification and heating mode, as shown in FIG.
  • control device 50 operates the first low-temperature side pump 31a and the second low-temperature side pump 31b so as to exhibit a predetermined reference pumping capability. Further, the control device 50 controls the operation of the five-way valve 32 so that the heat absorbing circuit and the heat storing circuit are simultaneously formed as shown in FIG.
  • control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. controls the operation of
  • a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the indoor evaporator 16 and chiller 18 function as evaporators.
  • the water-refrigerant heat exchanger 12 heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium.
  • the indoor evaporator 16 heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air.
  • the chiller 18 heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
  • the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode.
  • the heater core 23 heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
  • the low temperature side heat medium pumped from the first low temperature side pump 31a circulates in the heat absorption circuit.
  • the low temperature side radiator 35 heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the low temperature side heat medium absorbs heat from the outside air.
  • the chiller 18 the low-pressure refrigerant and the low-temperature side heat medium exchange heat, and the low-pressure refrigerant absorbs heat from the low-temperature side heat medium.
  • the low temperature side heat medium pumped from the second low temperature side pump 31b circulates in the heat storage circuit.
  • the low-temperature side heat medium circulating in the heat storage circuit is heated by the high-voltage equipment 81 . That is, the heat generated by the high-voltage equipment 81 is stored in the low temperature side heat medium circulating in the heat storage circuit.
  • the air blown from the indoor blower 42 is cooled by the indoor evaporator 16 and dehumidified.
  • the temperature of the air cooled and dehumidified by the indoor evaporator 16 is adjusted by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO.
  • Dehumidification and heating of the interior of the vehicle are achieved by blowing out the temperature-adjusted blown air into the interior of the vehicle.
  • the low-pressure refrigerant absorbs the heat of the outside air via the low-temperature side heat medium circulating in the heat absorption circuit of the low-temperature side heat medium circuit 30, and the blown air is used as a heat source to heat the Therefore, the chiller 18 and the low-temperature side radiator 35 of the low-temperature side heat medium circuit 30 form a heat absorbing portion that causes the low-pressure refrigerant decompressed by the cooling expansion valve 15b to absorb the heat of the outside air.
  • the single heating mode is an operation mode in which the vehicle interior is heated by blowing heated air into the vehicle interior without cooling the battery 80 .
  • an operation mode for heating the passenger compartment is executed when the target air temperature TAO is in the high temperature range or when the outside air temperature Tam is relatively low. do.
  • the controller 50 fully closes the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
  • control device 50 controls the refrigerant discharge capacity of the compressor 11 so that the high-pressure refrigerant pressure Pd detected by the high-pressure sensor 65a approaches the target high-pressure PDO.
  • the target high pressure PDO is determined by referring to a control map stored in advance in the controller 50 based on the target outlet temperature TAO.
  • the controller 50 controls the throttle opening of the cooling expansion valve 15b so that the degree of superheat SH2 of the refrigerant flowing out of the refrigerant passage of the chiller 18 approaches a predetermined reference degree of superheat KSH.
  • the degree of superheat SH2 can be determined based on the chiller-side refrigerant temperature Tc detected by the chiller temperature sensor 64c and the chiller-side refrigerant pressure Pc detected by the chiller pressure sensor 65c.
  • the control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 as in the single cooling mode.
  • the high temperature side flow control valve 22 in the individual heating mode as shown in FIG. 8, the entire flow rate of the high temperature side heat medium pressure-fed from the high temperature side pump 21 flows out to the heater core 23 side, as in the individual dehumidifying heating mode.
  • control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b in the same manner as in the single dehumidifying and heating mode. Further, the control device 50 controls the operation of the five-way valve 32 so that the heat absorption circuit and the heat storage circuit are simultaneously formed, as in the single dehumidifying and heating mode, as shown in FIG.
  • control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. control the actuation.
  • the operation mode for heating the interior of the vehicle is executed when the outside air temperature Tam is relatively low. Therefore, in the single heating mode, the control device 50 often adjusts the opening degree of the air mix door 44 so that the entire amount of air blown from the indoor fan 42 flows into the heater core 23 side.
  • a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the chiller 18 functions as an evaporator.
  • the water-refrigerant heat exchanger 12 heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium.
  • the chiller 18 heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
  • the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode.
  • the heater core 23 heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
  • the low temperature side heat medium pumped from the first low temperature side pump 31a circulates in the heat absorption circuit in the same manner as in the single dehumidifying and heating mode.
  • the low temperature side radiator 35 heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the low temperature side heat medium absorbs heat from the outside air.
  • the chiller 18 the low-pressure refrigerant and the low-temperature side heat medium exchange heat, and the low-pressure refrigerant absorbs heat from the low-temperature side heat medium.
  • the low temperature side heat medium pumped from the second low temperature side pump 31b circulates in the heat storage circuit.
  • the heat generated by the high-voltage equipment 81 is stored in the low-temperature side heat medium circulating in the heat storage circuit.
  • the air blown from the indoor blower 42 passes through the indoor evaporator 16 .
  • the temperature of the blown air that has passed through the indoor evaporator 16 is adjusted so as to approach the target blowout temperature TAO by adjusting the opening of the air mix door 44 .
  • the temperature-controlled blowing air is blown into the vehicle interior, thereby heating the vehicle interior.
  • the chiller 18 and the low-temperature side radiator 35 of the low-temperature side heat medium circuit 30 form a heat absorption portion, as in the individual dehumidifying and heating mode.
  • Cooling/cooling mode is an operation mode in which the battery 80 is cooled and the vehicle interior is cooled.
  • the control program of the present embodiment executes an operation mode for cooling the battery 80 when the battery temperature TB detected by the battery temperature sensor 68 is equal to or higher than a predetermined reference upper limit temperature KTBH.
  • the controller 50 throttles the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
  • the refrigerant circuit is switched to the same refrigerant circuit as in the single dehumidifying heating mode. That is, the indoor evaporator 16 and the chiller 18 are switched to a refrigerant circuit that is connected in parallel with respect to the refrigerant flow.
  • control device 50 controls the refrigerant discharge capacity of the compressor 11 and the throttle opening of the cooling expansion valve 15a in the same manner as in the single cooling mode.
  • control device 50 controls the throttle opening degree of the cooling expansion valve 15b so that the first low-temperature-side heat-medium temperature TWL1 detected by the first low-temperature-side heat-medium temperature sensor 67a reaches a predetermined first reference low-temperature-side temperature.
  • the temperature is controlled so as to approach the heat medium temperature KTWL1.
  • the first reference low-temperature-side heat medium temperature KTWL1 is set to a value that allows the battery 80 to be appropriately cooled when the low-temperature-side heat medium is caused to flow into the cooling water passage 80a of the battery 80 .
  • control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 as in the single cooling mode.
  • the cooling cooling mode as in the single cooling mode, the amount of heat released by the high-temperature-side heat medium in the heater core 23 to the blown air is reduced. Furthermore, in the cooling mode, the heat absorbed by the low-pressure refrigerant from the low-temperature heat medium in the chiller 18 (that is, the waste heat of the battery 80) must also be released to the outside air via the high-temperature heat medium.
  • the high-temperature side heat transfer medium pressure-fed from the high-temperature side pump 21 often flows out to the high-temperature side radiator 25 side. .
  • control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b so as to exhibit a predetermined reference pumping capability.
  • the control device 50 controls the second low temperature side heat medium temperature TWL2 detected by the second low temperature side heat medium temperature sensor 67b to reach the predetermined second reference low temperature side heat medium temperature KTWL2. At the same time as controlling the operation to approach, as shown in FIG. 9, the operation is controlled so that a circuit for cooling the battery is formed.
  • the temperature of the low temperature side heat medium circulating in the heat storage circuit tends to rise, as in the independent cooling mode. Therefore, in the five-way valve 32 in the cooling cooling mode, as shown in FIG. 9, the low-temperature side heat medium circuit 30 is often switched to a circuit configuration in which the device cooling circuit and the battery cooling circuit are formed at the same time.
  • control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the independent cooling mode. control the actuation.
  • a vapor compression refrigeration cycle similar to that in the single dehumidifying heating mode is formed.
  • the water-refrigerant heat exchanger 12 heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium.
  • the indoor evaporator 16 heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air.
  • the chiller 18 heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
  • the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode.
  • the high temperature side radiator 25 heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
  • the low-temperature side heat medium pumped from the first low-temperature side pump 31a is cooled by the chiller 18 by exchanging heat with the low-pressure refrigerant.
  • the first low temperature side heat medium temperature TWL1 approaches the first reference low temperature side heat medium temperature KTWL1. Then, when the low temperature side heat medium cooled by the chiller 18 flows through the cooling water passage 80a of the battery 80, the battery 80 is cooled.
  • the low temperature side heat medium pressure-fed from the second low temperature side pump 31b flows into the low temperature side radiator 35 and the bypass passage 38 according to the operating state of the five-way valve 32, as in the single cooling mode.
  • the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2.
  • the low temperature side radiator 35 heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the heat of the low temperature side heat medium is radiated to the outside air.
  • the air blown from the indoor blower 42 is cooled by the indoor evaporator 16 in the same manner as in the independent cooling mode.
  • the blown air cooled by the indoor evaporator 16 is adjusted in temperature by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO. Then, the temperature-controlled blowing air is blown into the vehicle interior, thereby cooling the vehicle interior.
  • the cooling, dehumidifying, and heating mode is an operation mode that cools the battery 80 and performs dehumidifying and heating in the passenger compartment.
  • the controller 50 throttles the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
  • the refrigerant circuit is switched to the same refrigerant circuit as in the single dehumidification heating mode. That is, the indoor evaporator 16 and the chiller 18 are switched to a refrigerant circuit that is connected in parallel with respect to the refrigerant flow.
  • control device 50 controls the refrigerant discharge capacity of the compressor 11, the throttle opening degree of the cooling expansion valve 15a, and the throttle opening degree of the cooling expansion valve 15b in the same manner as in the cooling mode.
  • control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 in the same manner as in the single dehumidification heating mode.
  • the cooling dehumidification heating mode it is necessary to reheat the blown air cooled by the indoor evaporator 16 by the heater core 23, as in the single dehumidification heating mode.
  • the heat absorbed by the low-pressure refrigerant from the low-temperature side heat medium in the chiller 18 can be used as a heat source for heating the high-temperature side heat medium. can.
  • the flow rate of the high temperature side heat medium flowing out from the high temperature side flow control valve 22 to the high temperature side radiator 25 side increases more than in the single dehumidifying heating mode. Therefore, in FIG. 10, the flow of the high temperature side heat medium flowing out from the high temperature side flow control valve 22 to the heater core 23 side is indicated by a thick solid line. flow is indicated by a thick dashed line.
  • the control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b in the same manner as in the cooling cooling mode.
  • the controller 50 also controls the operation of the five-way valve 32 in the same manner as in the cooling mode.
  • FIG. 10 shows the flow of the low temperature side heat medium when the five-way valve 32 switches the low temperature side heat medium circuit 30 to a circuit configuration in which the battery cooling circuit and the device cooling circuit are simultaneously formed.
  • control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. controls the operation of
  • a vapor compression refrigeration cycle similar to that in the single dehumidification heating mode is formed.
  • the water-refrigerant heat exchanger 12 heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium.
  • the indoor evaporator 16 heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air.
  • the chiller 18 heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
  • the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode.
  • the heater core 23 heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
  • the high temperature side radiator 25 heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
  • the first low temperature side heat medium temperature TWL1 approaches the first reference low temperature side heat medium temperature KTWL1, as in the cooling cooling mode. Then, when the low temperature side heat medium cooled by the chiller 18 flows through the cooling water passage 80a of the battery 80, the battery 80 is cooled.
  • the low temperature side heat medium pressure-fed from the second low temperature side pump 31b flows into the low temperature side radiator 35 and the bypass passage 38 according to the operating state of the five-way valve 32, as in the cooling cooling mode.
  • the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2.
  • the low temperature side radiator 35 heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the heat of the low temperature side heat medium is radiated to the outside air.
  • the air blown from the indoor blower 42 is cooled and dehumidified by the indoor evaporator 16 as in the single dehumidifying heating mode.
  • the temperature of the air cooled and dehumidified by the indoor evaporator 16 is adjusted by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO. Dehumidification and heating of the interior of the vehicle are achieved by blowing out the temperature-adjusted blown air into the interior of the vehicle.
  • Cooling/heating mode is an operation mode in which the battery 80 is cooled and the vehicle interior is heated.
  • the controller 50 In the heat pump cycle 10 in the cooling/heating mode, the controller 50 fully closes the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
  • the refrigerant circuit is switched to the same refrigerant circuit as in the single heating mode.
  • control device 50 controls the refrigerant discharge capacity of the compressor 11 in the same manner as in the single heating mode. Further, the controller 50 controls the throttle opening of the cooling expansion valve 15b in the same manner as in the cooling mode.
  • control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 in the same manner as in the single heating mode.
  • the cooling/heating mode as in the cooling/dehumidifying/heating mode, as shown in FIG. Drain the medium.
  • the control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b as in the cooling/cooling mode.
  • the controller 50 also controls the operation of the five-way valve 32 in the same manner as in the cooling mode.
  • FIG. 11 shows the flow of the low temperature side heat medium when the five-way valve 32 switches the low temperature side heat medium circuit 30 to a circuit configuration in which a battery cooling circuit and a heat storage circuit are simultaneously formed.
  • the controller 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. control the actuation.
  • a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the chiller 18 functions as an evaporator.
  • the water-refrigerant heat exchanger 12 heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium.
  • the chiller 18 heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
  • the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode.
  • the heater core 23 heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
  • the high temperature side radiator 25 heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
  • the first low temperature side heat medium temperature TWL1 approaches the first reference low temperature side heat medium temperature KTWL1, as in the cooling/cooling mode. Then, when the low temperature side heat medium cooled by the chiller 18 flows through the cooling water passage 80a of the battery 80, the battery 80 is cooled.
  • the low temperature side heat medium pressure-fed from the second low temperature side pump 31b flows into the low temperature side radiator 35 and the bypass passage 38 according to the operating state of the five-way valve 32, as in the cooling cooling mode.
  • the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2.
  • air blown from the indoor blower 42 passes through the indoor evaporator 16 as in the single heating mode.
  • the temperature of the blown air that has passed through the indoor evaporator 16 is adjusted so as to approach the target blowout temperature TAO by adjusting the opening of the air mix door 44 .
  • the temperature-controlled blowing air is blown into the vehicle interior, thereby heating the vehicle interior.
  • the single cooling mode is an operation mode in which the battery 80 is cooled without air-conditioning the vehicle interior.
  • control device 50 In the heat pump cycle 10 in the single cooling mode, the control device 50 fully closes the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
  • the refrigerant circuit is switched to the same refrigerant circuit as in the single heating mode.
  • control device 50 controls the operation of the compressor 11 so that the predetermined reference refrigerant discharge capacity for the single cooling mode is exhibited. Further, the controller 50 controls the throttle opening of the cooling expansion valve 15b in the same manner as in the cooling mode.
  • control device 50 operates the high temperature side pump 21 so as to exhibit a predetermined reference pumping capability. Further, the control device 50 controls the operation of the high temperature side flow control valve 22 so that the entire flow rate of the high temperature side heat medium that has flowed inside flows out to the high temperature side radiator 25 side.
  • control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b so as to exhibit a predetermined reference pumping capability.
  • FIG. 12 shows the flow of the low temperature side heat medium when the five-way valve 32 switches the low temperature side heat medium circuit 30 to a circuit configuration in which a battery cooling circuit and a heat storage circuit are simultaneously formed.
  • control device 50 stops the indoor blower 42 .
  • a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the chiller 18 functions as an evaporator, as in the single heating mode.
  • the water-refrigerant heat exchanger 12 heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium.
  • the chiller 18 heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 25 .
  • the high temperature side radiator 25 heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
  • the first low temperature side heat medium temperature TWL1 approaches the first reference low temperature side heat medium temperature KTWL1, as in the cooling/cooling mode. Then, when the low temperature side heat medium cooled by the chiller 18 flows through the cooling water passage 80a of the battery 80, the battery 80 is cooled.
  • the heat pump cycle device 1 of the present embodiment by switching the operation mode, it is possible to perform comfortable air conditioning in the vehicle compartment and appropriate temperature adjustment of the onboard equipment.
  • the low temperature side radiator 35 of the low temperature side heat medium circuit 30 causes the low temperature side heat medium to absorb the heat of the outside air in the single dehumidifying and heating mode and the single heating mode. Then, in the chiller 18 of the heat pump cycle 10, the heat of the low temperature side heat medium is absorbed by the refrigerant, and in the water-refrigerant heat exchanger 12, the heat absorbed by the refrigerant is radiated to the high temperature side heat medium. Furthermore, the heater core 23 of the high-temperature-side heat medium circuit 20 radiates the heat of the high-temperature-side heat medium to the air to heat the air.
  • the heat pump cycle device 1 uses the heat of the outside air as a heat source for the blown air in the single dehumidifying and heating mode and the single heating mode. Therefore, if the single dehumidifying/heating mode or the single heating mode is executed when the outside temperature Tam is 0° C. or lower, the low temperature side radiator 35 may be frosted.
  • the heat exchange performance of the low-temperature side radiator 35 is reduced, and the heat of the outside air is sufficiently transferred to the low-temperature side heat medium. I can't make it absorb heat. As a result, the heater core 23 may become unable to heat the blown air.
  • the control flow shown in FIG. 13 is a subroutine that is executed at predetermined intervals when the single dehumidifying/heating mode or the single heating mode is selected in the main routine of the control program.
  • Each control step shown in the flow chart of FIG. 13 is a function implementation part of the control device 50 .
  • step S1 of FIG. 13 it is determined whether or not there is a defrosting request for the low temperature side radiator 35 that forms the heat absorbing portion.
  • step S1 of the present embodiment when the third low temperature side heat medium temperature TWL3 detected by the third low temperature side heat medium temperature sensor 67c is lower than the reference defrost temperature KTWL, , it is determined that the low-temperature side radiator 35 is in a frosted state in which frost may occur. Further, in step S1, it is determined that there is a defrosting request when the frosted state time is equal to or longer than a predetermined reference frosting time KTmfr. In this embodiment, the reference frost formation time KTmfr is set to 10 seconds.
  • the reference defrost temperature KTWL is determined to increase as the outside temperature Tam rises when the outside temperature Tam is below 0°C.
  • the point determined by the outside air temperature Tam and the third low-temperature heat medium temperature TWL3 is in the dotted hatched area, it is determined that the frost is formed.
  • step S1 If it is determined in step S1 that there is a defrosting request, the process proceeds to step S3. Moreover, when it is determined that there is no defrosting request in step S1, the defrosting operation is not executed and the process returns to the main routine.
  • step S2 it is determined whether or not a condition for permitting execution of the defrosting operation is satisfied. Specifically, in step S2 of the present embodiment, when the defrosting permission switch 70a of the operation panel 70 is turned on (ON), it is determined that the permission condition is established.
  • step S2 When it is determined in step S2 that the permission condition is satisfied, the process proceeds to step S6, and the defrosting operation is performed. If it is determined in step S2 that the permission condition is not satisfied, the process proceeds to step S3.
  • step S3 the storage circuit of the control device 50 is referenced to determine whether or not it is the first defrosting operation since the user started the vehicle system.
  • the storage circuit of the control device 50 is referred to, and it is determined whether or not the defrosting operation is performed for the first time after the so-called IG switch is turned on (turned on).
  • step S3 If it is determined in step S3 that it is the first defrosting operation, proceed to step S4. Moreover, when it determines with it not being the first defrosting operation in step S4, it progresses to step S5.
  • step S4 it is determined whether or not the activation elapsed time Tm1 is greater than or equal to a predetermined activation standby time Tmi1.
  • the startup standby time Tmi1 is a value set to allow the low temperature side heat medium circulating in the heat storage circuit of the low temperature side heat medium circuit 30 to store the heat generated by the high power system device 81, which is the heat generating portion. Furthermore, the startup standby time Tmi1 is a value set so that the low-temperature side heat medium can store an amount of heat that can melt and remove frost on the low-temperature side radiator 35 . In this embodiment, the startup standby time Tmi1 is set to 10 minutes.
  • the activation elapsed time Tm1 after the vehicle system is activated is equal to or longer than the activation waiting time Tmi1, the low-temperature side heat medium circulating in the heat storage circuit is caused to flow into the low-temperature side radiator 35. Frost on the radiator 35 can be melted and removed.
  • the startup waiting time Tmi1 is a value obtained by experimental or experimental means.
  • step S4 If it is determined in step S4 that the startup elapsed time Tm1 is equal to or longer than the startup standby time Tmi1, the process proceeds to step S6 and the defrosting operation is performed. If it is not determined in step S4 that the activation elapsed time Tm1 is greater than or equal to the activation waiting time Tmi1, the process returns to the main routine. That is, even if it is determined in step S1 that there is a defrosting request, execution of the defrosting operation is prohibited.
  • step S5 it is determined whether the defrost elapsed time Tm2 is equal to or longer than a predetermined defrost standby time Tmi2.
  • the low temperature side heat medium circulating in the heat storage circuit of the low temperature side heat medium circuit 30 can melt and remove frost adhered to the low temperature side radiator 35. This value is set so that the amount of heat can be stored.
  • the defrosting standby time Tmi2 is set to be longer than the activation standby time Tmi1. In this embodiment, the defrosting standby time Tmi2 is set to 30 minutes.
  • step S5 When it is determined in step S5 that the defrosting elapsed time Tm2 is equal to or longer than the defrosting standby time Tmi2, the process proceeds to step S6 and the defrosting operation is performed. If it is not determined in step S5 that the defrost elapsed time Tm2 is equal to or longer than the defrost standby time Tmi2, the process returns to the main routine. That is, even if it is determined in step S1 that there is a defrosting request, execution of the defrosting operation is prohibited.
  • step S6 defrosting operation is performed. A detailed operation of the defrosting operation will be described later. Subsequently, in step S7, it is determined whether or not a defrosting end condition for ending defrosting is satisfied.
  • step S7 of the embodiment when the third low-temperature-side heat medium temperature TWL3 is equal to or higher than the reference defrosting temperature KTWL, the defrosting operation can be terminated. I judge. Further, it is determined that the defrosting end condition is met when the time during which the defrosting is possible is equal to or longer than the predetermined reference end time KTme.
  • the reference end time KTme is set to 10 seconds.
  • step S7 of the present embodiment it is determined that the defrosting end condition is met when the outside air temperature Tam is equal to or higher than the reference end outside temperature KTam.
  • the reference end outside temperature KTam is set at 10°C.
  • the defrosting time Tmd becomes equal to or longer than a predetermined reference defrosting time KTmd, it is determined that the defrosting end condition is met.
  • the reference defrost time KTmd is set to 5 minutes.
  • step S7 If it is determined in step S7 that the defrosting end condition is met, the process returns to the main routine. Moreover, when it is not determined in step S7 that the defrosting end condition is satisfied, the process returns to step S6, and the defrosting operation is continued.
  • step S1 of the present embodiment is a frost formation determination unit that determines whether frost has formed on the low-temperature side radiator 35 that forms the heat absorption unit.
  • steps S6 and S7 are a defrosting operation executing section that executes a defrosting operation for defrosting the heat absorbing portion.
  • steps S4 and S5 form a defrosting operation prohibition section that prohibits execution of the defrosting operation.
  • step S2 forms a defrosting operation permitting section that causes the defrosting operation executing section to execute the defrosting operation regardless of whether or not the defrosting operation prohibiting section prohibits execution of the defrosting operation.
  • the defrosting operation includes a dehumidifying/heating defrosting mode and a heating defrosting mode.
  • the dehumidifying/heating defrosting mode is a defrosting operation that is performed when frost forms on the low-temperature side radiator 35 during execution of the single dehumidifying/heating mode.
  • the heating defrosting mode is a defrosting operation that is performed when frost forms on the low-temperature side radiator 35 during execution of the single heating mode.
  • the refrigerant circuit is switched to the same refrigerant circuit as in the independent cooling mode, as indicated by the thick dashed line in FIG.
  • control device 50 controls the refrigerant discharge capacity of the compressor 11 and the throttle opening of the cooling expansion valve 15a in the same manner as in the single cooling mode.
  • control device 50 operates the high-temperature side pump 21 so as to exhibit a predetermined reference pumping capability.
  • control device 50 operates the high temperature side flow control valve 22 so that the entire flow rate of the high temperature side heat medium pressure-fed from the high temperature side pump 21 flows out to the heater core 23 side. Control.
  • control device 50 controls the operation of the high voltage heater 26 so that the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH.
  • the control device 50 stops the first low temperature side pump 31a and operates the second low temperature side pump 31b so as to exhibit a predetermined reference pumping capability. activate. Further, the control device 50 controls the operation of the five-way valve 32 so that a device cooling circuit is formed as shown in FIG.
  • control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the blowout mode door in the same manner as in the single cooling mode. Controls the operation of the electric actuator.
  • a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the indoor evaporator 16 functions as an evaporator.
  • the water-refrigerant heat exchanger 12 heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium.
  • the indoor evaporator 16 heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air.
  • the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 is heated by the high voltage heater 26 .
  • the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH.
  • the heater core 23 heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
  • the low-temperature side heat medium pressure-fed from the second low-temperature side pump 31b is sent to the low-temperature side radiator 35 via the cooling water passage of the high-voltage equipment 81.
  • frost is melted and removed from the low temperature side radiator 35 by the heat stored in the low temperature side heat medium. That is, the low-temperature side radiator 35 is defrosted using the low-temperature side heat medium heated when passing through the cooling water passage of the high-voltage equipment 81 as a heat source.
  • the air blown from the indoor blower 42 is cooled by the indoor evaporator 16 and dehumidified.
  • the temperature of the air cooled and dehumidified by the indoor evaporator 16 is adjusted by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO. Then, the dehumidification and heating of the vehicle interior are continued by blowing out the temperature-controlled blown air into the vehicle interior.
  • the control device 50 operates the high temperature side pump 21, the high temperature side flow control valve 22, and the high voltage heater 26 in the same manner as in the dehumidification and heating defrost mode. to control. Therefore, in the high temperature side heat medium circuit 20 in the heating defrost mode, as shown in FIG. 14, the high temperature side heat medium circulates in the same manner as in the dehumidifying heating defrosting mode.
  • the control device 50 stops the first low temperature side pump 31a, and stops the second low temperature side pump 31b and the five-way Controls actuation of valve 32 . Therefore, the low-temperature side heat medium circulates in the same manner as in the dehumidifying/heating defrosting mode.
  • control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. Controls the actuation of the actuator.
  • the high temperature side heat medium circuit 20 in the heating defrost mode the high temperature side heat medium is heated by the high voltage heater 26 .
  • the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH.
  • the heater core 23 heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
  • the low-temperature side heat medium circuit 30 in the dehumidification/heating defrost mode the low-temperature side heat medium heated when passing through the cooling water passage of the high-voltage equipment 81 is used as a heat source, as in the heating defrost mode.
  • the low temperature side radiator 35 is defrosted.
  • the frost on the low temperature side radiator 35 is removed. be able to.
  • defrosting of the low-temperature side radiator 35 using the low-temperature side heat medium heated by the high-power system device 81 as a heat source causes insufficient defrosting.
  • the reason for this is that the high-voltage equipment 81 does not generate sufficient heat, and the low-temperature side heat medium may not store enough heat to melt and remove the frost on the low-temperature side radiator 35. because there is
  • the next defrosting operation is continued until the startup elapsed time Tm1 becomes equal to or longer than the startup waiting time Tmi1 or until the defrosting elapsed time Tm2 becomes equal to or longer than the defrosting waiting time Tmi2.
  • Execution of frost operation is prohibited. Therefore, while the execution of the defrosting operation is prohibited, the heat generated by the high-voltage equipment 81 can be stored in the low temperature side heat medium.
  • the startup standby time Tmi1 and the defrost standby time Tmi2 are set so that the low-temperature side heat medium can store an amount of heat that can melt and remove frost on the low-temperature side radiator 35 . Therefore, in the defrosting operation of the heat pump cycle device 1, the low temperature side radiator 35 can be reliably defrosted.
  • the defrosting operation is terminated when the third low temperature side heat medium temperature TWL3 is equal to or higher than the reference defrosting temperature KTWL. According to this, since the temperature of the low-temperature-side heat medium immediately after flowing out from the low-temperature-side radiator 35 is used, it is possible to accurately determine that the defrosting of the low-temperature-side radiator 35 is completed, and to appropriately perform the defrosting operation. can be terminated.
  • the defrosting operation is terminated when the defrosting time Tmd becomes equal to or longer than the reference defrosting time KTmd. According to this, even if the defrosting of the low temperature side radiator 35 is not completed, the defrosting operation can be terminated.
  • the high-voltage heater 26, which consumes more energy than the heat pump cycle 10 is energized to heat the high temperature side heat medium. Therefore, by forcibly terminating the defrosting operation, it is possible to reduce the increase in energy consumption due to the execution of the defrosting operation. Furthermore, in the heat pump cycle device 1 of the present embodiment, shortening of the vehicle cruising distance can be suppressed.
  • the startup standby time Tmi1 is set shorter than the defrosting standby time Tmi2. Therefore, the first defrosting operation can be performed relatively quickly after starting the vehicle system. Furthermore, regarding the defrosting operation performed after the second time, it is possible not only to achieve reliable defrosting of the low-temperature side radiator 35, but also to effectively suppress the frequent execution of the defrosting operation. can. That is, shortening of the vehicle cruising distance can be effectively suppressed.
  • the heat pump cycle device 1 of the present embodiment includes a defrosting operation permitting section, as described in step S7. According to this, the defrosting operation can be performed while the vehicle is parked without the passenger on board. Then, when the passenger gets on the vehicle again, the operation in the independent dehumidifying/heating mode and the independent heating mode can be quickly executed.
  • the heat pump cycle device 1 is not limited to this. It can be widely applied to a device that performs a defrosting operation using a heat medium heated by a heat generating part different from the heat pump cycle 10 as a heat source when defrosting the heat absorbing part. For example, it may be applied to a stationary air conditioner. Moreover, it may be applied to a water heater for heating domestic water or the like as a fluid to be heated.
  • the configuration of the heat pump cycle device 1 is not limited to the configuration disclosed in the above embodiments.
  • the high-voltage device 81 is used as the heat generating unit, but the present invention is not limited to this.
  • a motor generator When applied to a stationary air conditioner or water heater, other stationary electric appliances may be used.
  • a motor generator when applied to a vehicle, a motor generator, an inverter, a control device for ADAS, and a charging device may be adopted as the heavy-current system device 81 and used as a heat generating portion.
  • the motor generator functions as an electric motor that outputs driving force for running when supplied with electric power, and functions as a power generating device that generates regenerative power when the vehicle is decelerating or running downhill.
  • the inverter is a power conversion device that converts the frequency of power supplied from the battery 80 to the motor generator, converts AC power generated by the motor generator into DC power, and outputs the DC power to the battery 80 side.
  • a control device for ADAS is a control device for a so-called advanced driver assistance system.
  • An advanced driving assistance system is a system that assists a driver's driving operation.
  • the charging device is an in-vehicle charger that charges the battery 80 with regenerated power or the like.
  • the heating section is formed by the water-refrigerant heat exchanger 12 of the heat pump cycle 10 and the heater core 23 of the high temperature side heat medium circuit 20 has been described, but the present invention is not limited to this.
  • the water-refrigerant heat exchanger 12 and the high temperature side heat medium circuit 20 may be eliminated, and an indoor condenser may be employed as the heating unit.
  • the indoor condenser is a heat exchange section that heats the air by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the air.
  • the indoor condenser may be arranged in the air conditioning case 41 of the indoor air conditioning unit 40, similarly to the heater core 23. FIG.
  • the present invention is not limited to this.
  • it has a condensing part that condenses the refrigerant, a liquid receiving part that separates the refrigerant condensed in the condensing part into gas and liquid and stores the liquid phase refrigerant, and a supercooling part that supercools the liquid phase refrigerant flowing out from the liquid receiving part.
  • a so-called subcool type heat exchanger may be employed.
  • R1234yf is used as the refrigerant for the heat pump cycle 10
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be employed.
  • a mixed refrigerant or the like in which a plurality of types of these refrigerants are mixed may be adopted.
  • a supercritical refrigerating cycle may be constructed in which carbon dioxide is employed as the refrigerant and the pressure of the refrigerant on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
  • a PTC heater is employed as the high voltage heater 26 and the battery heater 36, respectively, but the present invention is not limited to this.
  • a nichrome wire, a carbon fiber heater, or the like may be employed.
  • the present invention is not limited to this.
  • a solution containing dimethylpolysiloxane or a nanofluid, an antifreeze liquid, a water-based liquid refrigerant containing alcohol, or a liquid medium containing oil may be used.
  • the heat exchange fins 25a are employed in order to integrate the high-temperature side radiator 25 and the low-temperature side radiator 35 so that heat can be transferred to each other. Examples have been given, but are not limited to.
  • a so-called tank-and-tube type heat exchanger may be employed as the high-temperature side radiator 25 and the low-temperature side radiator 35, and heat transfer between them may be made possible by forming the respective tank portions from a common member.
  • the control mode of the heat pump cycle device 1 is not limited to the modes disclosed in the above-described embodiments.
  • the high temperature side flow control valve 22 is controlled so that the entire flow rate of the high temperature side heat medium pressure-fed from the high temperature side pump 21 flows out to the heater core 23 side. Illustrated, but not limited to. For example, as shown in FIG. 16, a predetermined amount of the high temperature side heat medium pressure-fed from the high temperature side pump 21 may flow out to the high temperature side radiator 25 side.
  • the heat of the high-temperature side heat medium can be transferred to the low-temperature side radiator 35 via the heat exchange fins 25a, and defrosting of the low-temperature side radiator 35 can be promoted. Therefore, as shown in FIG. 16, when defrosting operation is performed by causing the high temperature side heat medium to flow out from the high temperature side flow control valve 22 to the high temperature side radiator 25 side, the reference defrosting time KTmd described in step S7 is set to It can be shortened.
  • step S2 of the above-described embodiment it is determined that the permission condition is met when the defrosting permission switch 70a is turned on (ON), but the present invention is not limited to this.
  • the service tool does not have to be always installed in the vehicle, and may be prepared at a maintenance shop or the like where cooling water injection work is performed.
  • it may be determined that the permission condition is met when an existing switch is pressed for a long time or when a plurality of switches are pressed simultaneously.
  • a startup warm-up mode may be added.
  • the startup warm-up mode is executed to warm up battery 80 when battery temperature TB is equal to or lower than a predetermined reference lower limit temperature KTBL when the vehicle system is started.
  • the controller 50 stops the compressor 11.
  • the control device 50 operates the first low temperature side pump 31a so as to exhibit a predetermined reference pumping capability.
  • the controller 50 also controls the operation of the five-way valve 32 so that a battery cooling circuit is formed. Then, the controller 50 supplies electric power to the battery heater 36 so as to exhibit a predetermined heating capacity. According to this, the battery 80 can be warmed up to an appropriate temperature before the vehicle runs.
  • the second low temperature side pump 31b may be stopped.

Abstract

This heat pump cycle apparatus comprises: a defrosting operation execution unit (S6, S7) for executing a defrosting operation, in which a heat-absorbing unit (35) is defrosted, when it is assessed by a frosting assessment unit (S1) that frosting has occurred on the heat-absorbing unit (35); and a defrosting operation prohibition unit (S4, S5) for prohibiting executing of the defrosting operation by the defrosting operation execution unit (S6, S7). During execution of the defrosting operation, the defrosting operation execution unit (S6, S7) defrosts the heat-absorbing unit (35) by using a heat medium heated by a heat-emitting unit (81) as a heat source. The defrosting operation prohibition unit (S4, S5) prohibits subsequent execution of the defrosting operation until a defrosting elapsed time (Tm2), which is the elapsed time from when the previous instance of the defrosting operation ended, is equal to or greater than a defrosting standby time (Tmi2).

Description

ヒートポンプサイクル装置heat pump cycle device 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年6月30日に出願された日本特許出願2021-108737号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2021-108737 filed on June 30, 2021, and the contents thereof are incorporated herein.
 本開示は、吸熱部に着霜が生じた際に、除霜運転を行うヒートポンプサイクル装置に関する。 The present disclosure relates to a heat pump cycle device that performs a defrosting operation when frost forms on the heat absorbing portion.
 従来、特許文献1に、車両用空調装置に適用されて、吸熱部を形成する室外熱交換器に着霜が生じた際に、室外熱交換器に着いた霜を取り除く除霜運転を実行するヒートポンプサイクル装置が開示されている。 Conventionally, in Patent Document 1, it is applied to a vehicle air conditioner, and when frost forms on an outdoor heat exchanger forming a heat absorption part, a defrosting operation is performed to remove frost on the outdoor heat exchanger. A heat pump cycle device is disclosed.
 より詳細には、特許文献1のヒートポンプサイクル装置の除霜運転では、圧縮機から吐出された高温高圧冷媒(いわゆる、ホットガス)を室外熱交換器へ流入させることによって、室外熱交換器に着いた霜を融解させて取り除いている。このため、特許文献1のヒートポンプサイクル装置では、除霜運転の実行中に、室外熱交換器にて冷媒に外気の有する熱を吸熱させることができず、車室内の暖房を行うことができなくなってしまう。 More specifically, in the defrosting operation of the heat pump cycle device of Patent Document 1, the high-temperature and high-pressure refrigerant (so-called hot gas) discharged from the compressor flows into the outdoor heat exchanger, thereby reaching the outdoor heat exchanger. It melts and removes frost. Therefore, in the heat pump cycle device of Patent Document 1, the heat of the outside air cannot be absorbed by the refrigerant in the outdoor heat exchanger during the defrosting operation, and the vehicle interior cannot be heated. end up
 そこで、特許文献1のヒートポンプサイクル装置では、室外熱交換器に着霜が生じても、室外熱交換器に着いた霜が自然に融解すると判定される自然除霜条件が成立した際に、除霜運転の実行を禁止している。これにより、特許文献1のヒートポンプサイクル装置では、除霜運転が頻繁に実行されて、車室内の暖房が継続できなくなってしまうことを抑制しようとしている。 Therefore, in the heat pump cycle device of Patent Document 1, even if frost forms on the outdoor heat exchanger, when a natural defrosting condition is established in which it is determined that the frost on the outdoor heat exchanger naturally melts, the defrosting is performed. Execution of frost operation is prohibited. As a result, the heat pump cycle device of Patent Literature 1 attempts to prevent the frequent execution of the defrosting operation and the inability to continue heating the vehicle interior.
特開2019-43422号公報JP 2019-43422 A
 上述の如く、特許文献1のヒートポンプサイクル装置の除霜運転では、ホットガスを熱源として、霜を取り除いている。このため、特許文献1のヒートポンプサイクル装置では、圧縮機を作動させることによって、霜を融解して取り除くために充分な熱を、比較的容易に発生させることができる。 As described above, in the defrosting operation of the heat pump cycle device of Patent Document 1, hot gas is used as a heat source to remove frost. Therefore, in the heat pump cycle device of Patent Document 1, by operating the compressor, it is possible to relatively easily generate enough heat to melt and remove the frost.
 ところが、圧縮機と異なる発熱部が発生させた熱を熱源として除霜運転を行うヒートポンプサイクル装置では、除霜運転を実行する際に、霜を融解して取り除くために充分な熱を確保できない可能性もある。さらに、充分な熱を確保できない状態で除霜運転を行うと、除霜が不充分となってしまう。その結果、除霜運転の終了直後に再び吸熱部に着霜が生じていると判定されてしまい、除霜運転が頻繁に実行されてしまう可能性もある。 However, in a heat pump cycle device that performs a defrosting operation using heat generated by a heat-generating part that is different from the compressor as a heat source, it is possible that sufficient heat cannot be secured to melt and remove the frost when performing the defrosting operation. There is also sex. Furthermore, if defrosting operation is performed in a state in which sufficient heat cannot be secured, defrosting will be insufficient. As a result, it may be determined that frost has formed on the heat absorbing portion again immediately after the defrosting operation ends, and the defrosting operation may be performed frequently.
 本開示は、上記点に鑑み、不必要な除霜運転が実行されてしまうことを抑制可能なヒートポンプサイクル装置を提供することを目的とする。 In view of the above points, the present disclosure aims to provide a heat pump cycle device capable of suppressing execution of unnecessary defrosting operation.
 上記目的を達成するため、本開示の1つの態様のヒートポンプサイクル装置は、圧縮機と、加熱部と、減圧部と、吸熱部と、着霜判定部と、除霜運転実行部と、除霜運転禁止部と、を備える。 In order to achieve the above object, a heat pump cycle device according to one aspect of the present disclosure includes a compressor, a heating unit, a pressure reducing unit, a heat absorbing unit, a frosting determination unit, a defrosting operation execution unit, and a defrosting and a driving prohibition unit.
 圧縮機は、冷媒を圧縮する。加熱部は、圧縮機から吐出された冷媒を放熱させて加熱対象流体を加熱する。減圧部は、加熱部から流出した冷媒を減圧させる。吸熱部は、減圧部にて減圧された冷媒に外気の有する熱を吸熱させる。着霜判定部は、吸熱部に着霜が生じたことを判定する。除霜運転実行部は、着霜判定部によって吸熱部に着霜が生じたことが判定された際に、吸熱部の除霜を行う除霜運転を実行する。除霜運転禁止部は、除霜運転実行部が除霜運転を実行することを禁止する。 The compressor compresses the refrigerant. The heating unit heats the fluid to be heated by dissipating heat from the refrigerant discharged from the compressor. The decompression unit decompresses the refrigerant flowing out from the heating unit. The heat absorption section causes the refrigerant decompressed by the decompression section to absorb heat of outside air. The frost formation determination unit determines that frost has formed on the heat absorption unit. The defrosting operation executing unit executes a defrosting operation for defrosting the heat absorbing unit when the frost formation determining unit determines that frost has formed on the heat absorbing unit. The defrosting operation prohibition unit prohibits the defrosting operation execution unit from performing the defrosting operation.
 さらに、吸熱部は、減圧部にて減圧された冷媒と熱媒体とを熱交換させる熱媒体熱交換部、および熱媒体と外気とを熱交換させる外気熱交換部が接続された熱媒体回路を有している。熱媒体回路には、熱媒体を加熱する発熱部が配置されている。 Furthermore, the heat absorption part has a heat medium circuit connected to a heat medium heat exchange part that exchanges heat between the refrigerant decompressed in the decompression part and the heat medium, and an outside air heat exchange part that exchanges heat between the heat medium and the outside air. have. A heat-generating portion that heats the heat medium is arranged in the heat medium circuit.
 除霜運転実行部は、除霜運転の実行時に、発熱部によって加熱された熱媒体を熱源として外気熱交換部の除霜を行う。 The defrosting operation execution unit defrosts the outside air heat exchange unit using the heat medium heated by the heat generating unit as a heat source when the defrosting operation is executed.
 また、除霜運転禁止部は、前回の除霜運転が終了してからの経過時間である除霜経過時間が予め定めた除霜待機時間以上となるまで、次の除霜運転の実行を禁止する。 In addition, the defrosting operation prohibition unit prohibits the execution of the next defrosting operation until the defrosting elapsed time, which is the elapsed time from the end of the previous defrosting operation, is equal to or longer than a predetermined defrosting standby time. do.
 これによれば、除霜経過時間が除霜待機時間以上となるまで、除霜運転禁止部が次の除霜運転の実行を禁止する。 According to this, the defrosting operation prohibiting unit prohibits execution of the next defrosting operation until the defrosting elapsed time is equal to or longer than the defrosting standby time.
 このため、除霜運転禁止部が次の除霜運転の実行を禁止している間は、発熱部によって熱媒体を加熱することができる。さらに、発熱部から熱媒体に蓄熱された熱量が、外気熱交換部についた霜を確実に融解させて取り除くことが可能な熱量となるように、除霜待機時間を設定しておくことができる。 Therefore, while the defrosting operation prohibition unit prohibits execution of the next defrosting operation, the heating unit can heat the heat medium. Further, the defrosting standby time can be set so that the amount of heat stored in the heat medium from the heat generating section is such that the frost on the outside air heat exchange section can be reliably melted and removed. .
 従って、除霜運転実行部が除霜運転を実行することで、外気熱交換部についた霜を充分に取り除くことができる。つまり、除霜が不充分となって、除霜運転の終了直後に、着霜判定部によって、再び吸熱部に着霜が生じていると判定されてしまうことを抑制することができる。 Therefore, the defrosting operation executing section executes the defrosting operation, so that the frost on the outside air heat exchange section can be sufficiently removed. In other words, it is possible to prevent the defrosting from becoming insufficient and the frost formation determining unit determining that the heat absorbing unit is frosted again immediately after the defrosting operation ends.
 その結果、除霜運転が頻繁に実行されてしまうことを抑制することができる。すなわち、本開示の1つの態様のヒートポンプサイクル装置によれば、不必要な除霜運転が実行されてしまうことを抑制可能なヒートポンプサイクル装置を提供することができる。 As a result, frequent execution of the defrosting operation can be suppressed. That is, according to the heat pump cycle device of one aspect of the present disclosure, it is possible to provide a heat pump cycle device capable of suppressing execution of unnecessary defrosting operation.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確となる。
一実施形態のヒートポンプサイクル装置が適用された車両用空調装置の模式的な構成図である。 一実施形態の五方弁の作動態様を説明するための説明図である。 一実施形態の五方弁の別の作動態様を説明するための説明図である。 一実施形態の室内空調ユニットの模式的な構成図である。 一実施形態のヒートポンプサイクル装置の電気制御部を示すブロック図である。 一実施形態のヒートポンプサイクル装置の単独冷房モードにおける冷媒および熱媒体の流れを示す模式的な全体構成図である。 一実施形態のヒートポンプサイクル装置の単独除湿暖房モードにおける冷媒および熱媒体の流れを示す模式的な全体構成図である。 一実施形態のヒートポンプサイクル装置の単独暖房モードにおける冷媒および熱媒体の流れを示す模式的な全体構成図である。 一実施形態のヒートポンプサイクル装置の冷却冷房モードにおける冷媒および熱媒体の流れを示す模式的な全体構成図である。 一実施形態のヒートポンプサイクル装置の冷却除湿暖房モードにおける冷媒および熱媒体の流れを示す模式的な全体構成図である。 一実施形態のヒートポンプサイクル装置の冷却暖房モードにおける冷媒および熱媒体の流れを示す模式的な全体構成図である。 一実施形態のヒートポンプサイクル装置の単独冷却モードにおける冷媒および熱媒体の流れを示す模式的な全体構成図である。 一実施形態のヒートポンプサイクル装置の除霜運転の制御フローを示すフローチャートである。 一実施形態の着霜判定部が着霜状態を判定するための制御特性図である。 一実施形態のヒートポンプサイクル装置の除霜運転における冷媒および熱媒体の流れを示す模式的な全体構成図である。 他の実施形態のヒートポンプサイクル装置の除霜運転における冷媒および熱媒体の流れを示す模式的な全体構成図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
1 is a schematic configuration diagram of a vehicle air conditioner to which a heat pump cycle device of one embodiment is applied; FIG. It is an explanatory view for explaining the operation mode of the five-way valve of one embodiment. It is an explanatory view for explaining another operation mode of the five-way valve of one embodiment. 1 is a schematic configuration diagram of an indoor air conditioning unit of one embodiment; FIG. It is a block diagram which shows the electric-control part of the heat pump cycle apparatus of one Embodiment. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a single cooling mode of a heat pump cycle device of one embodiment; FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a single dehumidifying and heating mode of the heat pump cycle device of one embodiment; FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a single heating mode of a heat pump cycle device of one embodiment; FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a cooling mode of a heat pump cycle device of one embodiment; FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a cooling, dehumidifying, and heating mode of the heat pump cycle device of one embodiment; FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a cooling/heating mode of a heat pump cycle device of one embodiment; FIG. 1 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a single cooling mode of a heat pump cycle device of one embodiment; FIG. It is a flowchart which shows the control flow of the defrosting operation of the heat pump cycle apparatus of one Embodiment. FIG. 4 is a control characteristic diagram for determining a frost state by a frost formation determination unit of one embodiment; FIG. 2 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a defrosting operation of the heat pump cycle device of one embodiment; FIG. 10 is a schematic overall configuration diagram showing flows of a refrigerant and a heat medium in a defrosting operation of a heat pump cycle device of another embodiment;
 図1~図15を用いて、本開示に係るヒートポンプサイクル装置1の一実施形態を説明する。本実施形態のヒートポンプサイクル装置1は、電気自動車に搭載されており、車載機器温度調整機能付きの車両用空調装置に適用されている。電気自動車は、走行用の駆動力を電動モータから得る車両である。 An embodiment of a heat pump cycle device 1 according to the present disclosure will be described using FIGS. 1 to 15. FIG. The heat pump cycle device 1 of this embodiment is mounted on an electric vehicle, and is applied to a vehicle air conditioner with a vehicle-mounted device temperature adjustment function. An electric vehicle is a vehicle that obtains driving force for running from an electric motor.
 ヒートポンプサイクル装置1は、電気自動車において、空調対象空間である車室内の空調、および温度調整対象物である車載機器の温度調整を行う。ヒートポンプサイクル装置1の温度調整対象物となる車載機器は、バッテリ80および強電系機器81である。 In an electric vehicle, the heat pump cycle device 1 air-conditions the interior of the vehicle, which is the space to be air-conditioned, and adjusts the temperature of the in-vehicle equipment, which is the object of temperature adjustment. Vehicle-mounted devices that are temperature-adjusted objects of the heat pump cycle device 1 are the battery 80 and the high-voltage device 81 .
 バッテリ80は、電気によって作動する複数の車載機器へ供給される電力を蓄える二次電池である。バッテリ80は、積層配置された複数の電池セルを、電気的に直列あるいは並列に接続することによって形成された組電池である。本実施形態の電池セルは、リチウムイオン電池である。 The battery 80 is a secondary battery that stores power to be supplied to a plurality of on-vehicle devices that operate on electricity. The battery 80 is an assembled battery formed by electrically connecting a plurality of stacked battery cells in series or in parallel. The battery cell of this embodiment is a lithium ion battery.
 バッテリ80は、作動時(すなわち、充放電時)に発熱する。バッテリ80は、低温になると出力が低下しやすく、高温になると劣化が進行しやすいという特性を有している。このため、バッテリ80の温度は、適切な温度範囲内(本実施形態では、15℃以上、かつ、55℃以下)に維持されている必要がある。 The battery 80 generates heat during operation (that is, during charging and discharging). The battery 80 has a characteristic that the output tends to decrease when the temperature becomes low, and the deterioration tends to progress when the temperature becomes high. Therefore, the temperature of the battery 80 must be maintained within an appropriate temperature range (15° C. or higher and 55° C. or lower in this embodiment).
 強電系機器81は、電力が供給されることによって作動し、作動時に発熱する車載機器である。本実施形態の強電系機器81は、具体的に、センサプロセッシングユニット82、パワーコントロールユニット83、およびトランスアクスル84である。 The heavy electric system device 81 is an in-vehicle device that operates when power is supplied and generates heat during operation. The heavy electric system device 81 of this embodiment is specifically a sensor processing unit 82 , a power control unit 83 and a transaxle 84 .
 センサプロセッシングユニット82は、自動運転や省エネルギ運転のために、環境センサのインターフェイスや通信機能を集約させた制御装置である。パワーコントロールユニット83は、変電や電力分配を行う電力制御ユニットである。トランスアクスル84は、トランスミッションやディファレンシャルギア等を一体化させた動力伝達機構である。 The sensor processing unit 82 is a control device that aggregates environmental sensor interfaces and communication functions for automatic operation and energy-saving operation. The power control unit 83 is a power control unit that performs power transformation and power distribution. The transaxle 84 is a power transmission mechanism that integrates a transmission, a differential gear, and the like.
 強電系機器81は、高温になると電気回路の劣化が進行してしまう可能性がある。このため、それぞれ電気回路の保護が可能な基準耐熱温度(本実施形態では、130℃)よりも低い温度に維持されている必要がある。 There is a possibility that the electrical circuit of the heavy electrical equipment 81 will deteriorate when it reaches a high temperature. Therefore, it is necessary to keep the temperature lower than the reference heat resistant temperature (130° C. in this embodiment) that can protect the respective electric circuits.
 ヒートポンプサイクル装置1は、図1の全体構成図に示すように、ヒートポンプサイクル10、高温側熱媒体回路20、および低温側熱媒体回路30を備えている。さらに、ヒートポンプサイクル装置1は、図4に示す室内空調ユニット40、および図5に示す制御装置50を備えている。 The heat pump cycle device 1 includes a heat pump cycle 10, a high temperature side heat medium circuit 20, and a low temperature side heat medium circuit 30, as shown in the overall configuration diagram of FIG. Furthermore, the heat pump cycle device 1 includes an indoor air conditioning unit 40 shown in FIG. 4 and a control device 50 shown in FIG.
 ヒートポンプサイクル装置1では、車室内の空調および車載機器の温度調整を行う通常運転を実行することができる。通常運転時には、ヒートポンプサイクル10、高温側熱媒体回路20、および低温側熱媒体回路30のそれぞれの回路構成を切り替えて、各種運転モードを切り替えることができる。さらに、通常運転時に、後述する吸熱部に着霜が生じた際には、吸熱部に着いた霜を取り除く除霜運転を実行することができる。 The heat pump cycle device 1 can execute normal operation for air-conditioning the vehicle interior and adjusting the temperature of on-vehicle equipment. During normal operation, the circuit configurations of the heat pump cycle 10, the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30 can be switched to switch between various operation modes. Furthermore, when frost forms on the heat absorbing portion, which will be described later, during normal operation, it is possible to perform a defrosting operation to remove frost from the heat absorbing portion.
 まず、ヒートポンプサイクル10について説明する。ヒートポンプサイクル10は、車室内の空調および車載機器の温度調整のために、車室内へ送風される送風空気、高温側熱媒体回路20を循環する高温側熱媒体、および低温側熱媒体回路30を循環する低温側熱媒体の温度を調整する蒸気圧縮式の冷凍サイクル装置である。 First, the heat pump cycle 10 will be explained. The heat pump cycle 10 supplies the air blown into the vehicle interior, the high temperature side heat medium circulating through the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30 to air-condition the vehicle interior and adjust the temperature of the onboard equipment. It is a vapor compression refrigeration cycle device that adjusts the temperature of the circulating low-temperature heat medium.
 ヒートポンプサイクル10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。ヒートポンプサイクル10は、圧縮機11から吐出された高圧冷媒の圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成する。冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油は、液相冷媒に相溶性を有するPAGオイルである。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The heat pump cycle 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant. The heat pump cycle 10 constitutes a subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Refrigerating machine oil is PAG oil having compatibility with the liquid phase refrigerant. Some of the refrigerating machine oil circulates through the cycle together with the refrigerant.
 圧縮機11は、ヒートポンプサイクル10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方側の駆動装置室内に配置されている。駆動装置室は、車両走行用の駆動力を発生させるために用いられる機器(例えば、モータジェネレータ)の少なくとも一部が配置される空間を形成している。 In the heat pump cycle 10, the compressor 11 sucks, compresses, and discharges the refrigerant. The compressor 11 is arranged in the drive unit room on the front side of the passenger compartment. The driving device room forms a space in which at least part of a device (for example, a motor generator) used to generate driving force for running the vehicle is arranged.
 圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機である。圧縮機11は、後述する制御装置50から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 is an electric compressor in which an electric motor drives a fixed displacement type compression mechanism with a fixed displacement. The compressor 11 has its rotation speed (that is, refrigerant discharge capacity) controlled by a control signal output from a control device 50, which will be described later.
 圧縮機11の吐出口には、水冷媒熱交換器12の冷媒通路の入口側が接続されている。水冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒を流通させる冷媒通路と、高温側熱媒体回路20を循環する高温側熱媒体を流通させる熱媒体通路とを有している。水冷媒熱交換器12は、冷媒通路を流通する高圧冷媒と、熱媒体通路を流通する高温側熱媒体とを熱交換させて、高温側熱媒体を加熱する熱交換部である。 The inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11 . The water-refrigerant heat exchanger 12 has a refrigerant passage through which the high pressure refrigerant discharged from the compressor 11 flows, and a heat medium passage through which the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 flows. The water-refrigerant heat exchanger 12 is a heat exchange unit that heats the high temperature side heat medium by exchanging heat between the high pressure refrigerant flowing through the refrigerant passage and the high temperature side heat medium flowing through the heat medium passage.
 水冷媒熱交換器12の冷媒通路の出口には、レシーバ13の入口側が接続されている。レシーバ13は、水冷媒熱交換器12の冷媒通路から流出した高圧冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える高圧側の気液分離器である。レシーバ13の冷媒出口には、第1冷媒継手部14aの流入口側が接続されている。 The inlet side of the receiver 13 is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12 . The receiver 13 is a high-pressure-side gas-liquid separator that separates the gas-liquid of the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and stores surplus liquid-phase refrigerant in the cycle. The refrigerant outlet of the receiver 13 is connected to the inlet side of the first refrigerant joint portion 14a.
 第1冷媒継手部14aは、互いに連通する3つの流入出口を有する三方継手である。第1冷媒継手部14aとしては、複数の配管を接合して形成された継手部材や、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成された継手部材を採用することができる。 The first refrigerant joint portion 14a is a three-way joint having three inlets and outlets communicating with each other. As the first refrigerant joint portion 14a, a joint member formed by joining a plurality of pipes or a joint member formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 さらに、ヒートポンプサイクル10は、第2冷媒継手部14bを有している。第2冷媒継手部14bの基本的構成は、第1冷媒継手部14aと同様である。 Furthermore, the heat pump cycle 10 has a second refrigerant joint portion 14b. The basic configuration of the second refrigerant joint portion 14b is the same as that of the first refrigerant joint portion 14a.
 これらの継手部は、3つの流入出口のうち1つが流入口として用いられ、残りの2つが流出口として用いられた際には、冷媒の流れを分岐する分岐部となる。また、3つの流入出口のうち2つが流入口として用いられ、残りの1つが流出口として用いられた際には、冷媒の流れを合流させる合流部となる。 When one of the three inflow ports is used as the inflow port and the remaining two are used as the outflow ports, these joints serve as branching portions that branch the flow of the refrigerant. Further, when two of the three inflow ports are used as the inflow port and the remaining one is used as the outflow port, it becomes a confluence portion that merges the flows of the refrigerant.
 第1冷媒継手部14aの一方の流出口には、冷房用膨張弁15aの入口側が接続されている。第1冷媒継手部14aの他方の流出口には、冷却用膨張弁15bの入口側が接続されている。 The inlet side of the cooling expansion valve 15a is connected to one outlet of the first refrigerant joint portion 14a. The inlet side of the cooling expansion valve 15b is connected to the other outflow port of the first refrigerant joint portion 14a.
 冷房用膨張弁15aは、後述する単独冷房モード時等に、水冷媒熱交換器12の冷媒通路から流出した高圧冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量(質量流量)を調整する。 The cooling expansion valve 15a reduces the pressure of the high-pressure refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate (mass flow rate) of the refrigerant that flows out downstream during a single cooling mode or the like, which will be described later. .
 冷房用膨張弁15aは、絞り通路の開度(すなわち、弁開度)を変化させる弁体部、および弁体部を変位させる電動アクチュエータ(具体的には、ステッピングモータ)を有する電動式の可変絞り機構である。冷房用膨張弁15aは、制御装置50から出力される制御信号(具体的には、制御パルス)によって、その作動が制御される。 The cooling expansion valve 15a is an electric variable valve having a valve body portion that changes the opening degree of the throttle passage (that is, the valve opening degree) and an electric actuator (specifically, a stepping motor) that displaces the valve body portion. A diaphragm mechanism. The operation of the cooling expansion valve 15 a is controlled by a control signal (specifically, a control pulse) output from the control device 50 .
 冷却用膨張弁15bは、後述する単独冷却モード時等に、水冷媒熱交換器12の冷媒通路から流出した高圧冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量(質量流量)を調整する減圧部である。冷却用膨張弁15bの基本的構成は、冷房用膨張弁15aと同様である。 The cooling expansion valve 15b reduces the pressure of the high-pressure refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 and adjusts the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side during a single cooling mode or the like, which will be described later. This is the decompression section. The basic configuration of the cooling expansion valve 15b is similar to that of the cooling expansion valve 15a.
 冷房用膨張弁15aおよび冷却用膨張弁15bは、弁体部が絞り通路を全閉にすることで、冷媒通路を閉塞する全閉機能を有している。冷房用膨張弁15aおよび冷却用膨張弁15bは、全閉機能によって、ヒートポンプサイクル10の冷媒回路を切り替えることができる。従って、冷房用膨張弁15aおよび冷却用膨張弁15bは、冷媒回路切替部としての機能を兼ね備えている。 The cooling expansion valve 15a and the cooling expansion valve 15b have a fully closing function of closing the refrigerant passage by fully closing the throttle passage with the valve body. The cooling expansion valve 15a and the cooling expansion valve 15b can switch the refrigerant circuit of the heat pump cycle 10 by the fully closed function. Therefore, the cooling expansion valve 15a and the cooling expansion valve 15b also function as a refrigerant circuit switching unit.
 冷房用膨張弁15aの出口には、室内蒸発器16の冷媒入口側が接続されている。室内蒸発器16は、後述する室内空調ユニット40の空調ケース41内に配置されている。室内蒸発器16は、冷房用膨張弁15aにて減圧された低圧冷媒と車室内へ送風される送風空気とを熱交換させる熱交換部である。室内蒸発器16では、低圧冷媒を蒸発させて吸熱作用を発揮させることによって、送風空気を冷却する。 The refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a. The indoor evaporator 16 is arranged in an air conditioning case 41 of an indoor air conditioning unit 40, which will be described later. The indoor evaporator 16 is a heat exchange unit that exchanges heat between the low-pressure refrigerant decompressed by the cooling expansion valve 15a and the air blown into the vehicle interior. The indoor evaporator 16 cools the blown air by evaporating the low-pressure refrigerant and exerting an endothermic effect.
 室内蒸発器16の冷媒出口には、蒸発圧力調整弁17の入口側が接続されている。蒸発圧力調整弁17は、室内蒸発器16における冷媒蒸発温度を、室内蒸発器16の着霜を抑制可能な着霜抑制温度(本実施形態では、1℃)以上に維持する。蒸発圧力調整弁17は、室内蒸発器16の冷媒出口側の冷媒圧力の上昇に伴って、弁開度を増加させる機械的機構で構成されている。 The refrigerant outlet of the indoor evaporator 16 is connected to the inlet side of the evaporation pressure regulating valve 17 . The evaporation pressure regulating valve 17 maintains the refrigerant evaporation temperature in the indoor evaporator 16 at a frost suppression temperature (in this embodiment, 1° C.) or higher at which frost formation of the indoor evaporator 16 can be suppressed. The evaporating pressure regulating valve 17 is composed of a mechanical mechanism that increases the valve opening as the refrigerant pressure on the refrigerant outlet side of the indoor evaporator 16 increases.
 蒸発圧力調整弁17の出口には、第2冷媒継手部14bの一方の流入口側が接続されている。 The outlet of the evaporating pressure regulating valve 17 is connected to one inlet side of the second refrigerant joint 14b.
 冷却用膨張弁15bの出口には、チラー18の冷媒通路の入口側が接続されている。チラー18は、冷却用膨張弁15bから流出した低圧冷媒を流通させる冷媒通路と、低温側熱媒体回路30を循環する低温側熱媒体を流通させる熱媒体通路とを有している。チラー18は、冷媒通路を流通する低圧冷媒と、熱媒体通路を流通する低温側熱媒体とを熱交換させる熱媒体熱交換部である。チラー18では、低圧冷媒を蒸発させて吸熱作用を発揮させることによって、低温側熱媒体を冷却する。 The inlet side of the refrigerant passage of the chiller 18 is connected to the outlet of the cooling expansion valve 15b. The chiller 18 has a refrigerant passage through which the low-pressure refrigerant flowing out from the cooling expansion valve 15b flows, and a heat medium passage through which the low temperature side heat medium circulating in the low temperature side heat medium circuit 30 flows. The chiller 18 is a heat medium heat exchange unit that exchanges heat between the low-pressure refrigerant flowing through the refrigerant passage and the low-temperature side heat medium flowing through the heat medium passage. The chiller 18 cools the low-temperature side heat medium by evaporating the low-pressure refrigerant and exerting an endothermic action.
 チラー18の冷媒通路の出口には、第2冷媒継手部14bの他方の流入口側が接続されている。第2冷媒継手部14bの流出口には、圧縮機11の吸入口側が接続されている。 The outlet of the refrigerant passage of the chiller 18 is connected to the other inlet side of the second refrigerant joint 14b. The suction port side of the compressor 11 is connected to the outflow port of the second refrigerant joint portion 14b.
 次に、高温側熱媒体回路20について説明する。高温側熱媒体回路20は、高温側熱媒体を循環させる回路である。高温側熱媒体回路20では、高温側熱媒体として、エチレングリコール水溶液を採用している。 Next, the high temperature side heat medium circuit 20 will be described. The high temperature side heat medium circuit 20 is a circuit that circulates the high temperature side heat medium. The high temperature side heat medium circuit 20 employs an ethylene glycol aqueous solution as the high temperature side heat medium.
 高温側熱媒体回路20には、高温側ポンプ21、高温側流量調整弁22、ヒータコア23、高温側ラジエータ25等を有している。さらに、高温側熱媒体回路20には、水冷媒熱交換器12の熱媒体通路が接続されている。 The high temperature side heat medium circuit 20 includes a high temperature side pump 21, a high temperature side flow control valve 22, a heater core 23, a high temperature side radiator 25, and the like. Furthermore, the heat medium passage of the water-refrigerant heat exchanger 12 is connected to the high temperature side heat medium circuit 20 .
 高温側ポンプ21は、水冷媒熱交換器12の熱媒体通路から流出した高温側熱媒体を吸入して、高温側流量調整弁22の流入口側へ圧送する電動水ポンプである。高温側ポンプ21は、制御装置50から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される。 The high temperature side pump 21 is an electric water pump that draws in the high temperature side heat medium that has flowed out from the heat medium passage of the water-refrigerant heat exchanger 12 and pumps it to the inlet side of the high temperature side flow control valve 22 . The high temperature side pump 21 has its rotation speed (that is, pumping capability) controlled by a control voltage output from the control device 50 .
 高温側流量調整弁22は、1つの流入口と2つの流出口を有し、2つの流出口の通路面積比を連続的に調整可能な電気式の三方流量調整弁である。高温側流量調整弁22は、制御装置50から出力される制御信号によって、その作動が制御される。 The high-temperature side flow control valve 22 is an electric three-way flow control valve that has one inlet and two outlets and can continuously adjust the passage area ratio of the two outlets. The operation of the high temperature side flow control valve 22 is controlled by a control signal output from the control device 50 .
 高温側流量調整弁22の一方の流出口には、ヒータコア23の熱媒体入口側が接続されている。また、高温側流量調整弁22の他方の流出口には、高温側ラジエータ25の熱媒体入口側が接続されている。 The heating medium inlet side of the heater core 23 is connected to one outflow port of the high temperature side flow control valve 22 . Also, the heat medium inlet side of the high temperature side radiator 25 is connected to the other outflow port of the high temperature side flow control valve 22 .
 従って、高温側流量調整弁22は、高温側ポンプ21から圧送された高温側熱媒体のうち、ヒータコア23へ流入させる高温側熱媒体の流量と高温側ラジエータ25へ流入させる高温側熱媒体の流量との流量比を連続的に調整することができる。 Therefore, the high temperature side flow control valve 22 adjusts the flow rate of the high temperature side heat medium that flows into the heater core 23 and the flow rate of the high temperature side heat medium that flows into the high temperature side radiator 25 among the high temperature side heat medium pressure-fed from the high temperature side pump 21 . can be continuously adjusted.
 さらに、高温側流量調整弁22は、流量比を調整することによって、高温側ポンプ21から圧送された高温側熱媒体の全流量を、ヒータコア23側および高温側ラジエータ25側のいずれか一方へ流出させることができる。従って、高温側流量調整弁22は、高温側熱媒体回路20の回路構成を切り替える高温側の熱媒体回路切替部としての機能を兼ね備えている。 Furthermore, the high-temperature side flow control valve 22 adjusts the flow ratio so that the entire flow rate of the high-temperature side heat medium pressure-fed from the high-temperature side pump 21 flows out to either the heater core 23 side or the high-temperature side radiator 25 side. can be made Therefore, the high temperature side flow control valve 22 also functions as a high temperature side heat medium circuit switching section for switching the circuit configuration of the high temperature side heat medium circuit 20 .
 ヒータコア23は、高温側流量調整弁22から流出した高温側熱媒体と車室内へ送風される送風空気とを熱交換させて、送風空気を加熱する熱交換部である。ヒータコア23は、室内空調ユニット40の空調ケース41内に配置されている。このため、送風空気は、ヒートポンプサイクル装置1の加熱対象流体となる。 The heater core 23 is a heat exchange section that heats the air blown into the passenger compartment by exchanging heat between the high temperature side heat medium flowing out of the high temperature side flow control valve 22 and the air blown into the vehicle compartment. The heater core 23 is arranged inside the air conditioning case 41 of the indoor air conditioning unit 40 . Therefore, the blown air becomes the fluid to be heated by the heat pump cycle device 1 .
 ヒータコア23の熱媒体出口には、第1熱媒体継手部24aの一方の流入口側が接続されている。第1熱媒体継手部24aは、第1冷媒継手部14a等と同様の構成の三方継手である。 The heat medium outlet of the heater core 23 is connected to one inlet side of the first heat medium joint 24a. The first heat medium joint portion 24a is a three-way joint having the same configuration as the first refrigerant joint portion 14a and the like.
 また、高温側流量調整弁22と一方の流出口とヒータコア23の熱媒体入口とを接続する熱媒体流路には、ハイボルテージヒータ26が配置されている。ハイボルテージヒータ26は、高温側熱媒体を加熱する電気ヒータである。ハイボルテージヒータ26は、正特性サーミスタを有するPTCヒータである。ハイボルテージヒータ26の発熱量は、制御装置50から出力される制御電圧によって制御される。 A high-voltage heater 26 is arranged in the heat medium flow path connecting the high temperature side flow control valve 22 , one outlet, and the heat medium inlet of the heater core 23 . The high voltage heater 26 is an electric heater that heats the high temperature side heat medium. The high voltage heater 26 is a PTC heater having a positive temperature coefficient thermistor. The amount of heat generated by the high voltage heater 26 is controlled by a control voltage output from the control device 50 .
 ここで、ハイボルテージヒータ26を用いてヒータコア23へ流入する熱媒体の温度を所定量上昇させる際に消費されるエネルギ量は、ヒートポンプサイクル10を用いて上昇させる際よりも多くなる。従って、車室内を暖房する際には、ハイボルテージヒータ26に通電するよりも、ヒートポンプサイクル10を作動させた方がバッテリ80に蓄えられた電力の消費量を低減することができる。 Here, the amount of energy consumed when using the high-voltage heater 26 to raise the temperature of the heat medium flowing into the heater core 23 by a predetermined amount is greater than when using the heat pump cycle 10 to raise the temperature. Therefore, when heating the vehicle interior, operating the heat pump cycle 10 can reduce the amount of power stored in the battery 80 rather than energizing the high voltage heater 26 .
 高温側ラジエータ25は、高温側流量調整弁22から流出した高温側熱媒体と外気とを熱交換させる熱交換部である。高温側ラジエータ25は、後述する低温側ラジエータ35とともに、駆動装置室内の前方側に配置されている。このため、車両走行時には、高温側ラジエータ25に、グリルを介して駆動装置室内へ流入した走行風を当てることができる。 The high temperature side radiator 25 is a heat exchange section that exchanges heat between the high temperature side heat medium flowing out of the high temperature side flow control valve 22 and the outside air. The high temperature side radiator 25 is arranged on the front side in the drive unit room together with the low temperature side radiator 35 which will be described later. Therefore, when the vehicle is running, the high-temperature side radiator 25 can be exposed to running wind that has flowed into the drive unit compartment through the grill.
 高温側ラジエータ25の熱媒体出口には、第1熱媒体継手部24aの他方の流入口側が接続されている。第1熱媒体継手部24aの流出口には、高温側リザーブタンク27を介して、水冷媒熱交換器12の熱媒体通路の入口側が接続されている。 The heat medium outlet of the high temperature side radiator 25 is connected to the other inlet side of the first heat medium joint 24a. The inlet side of the heat medium passage of the water-refrigerant heat exchanger 12 is connected to the outflow port of the first heat medium joint portion 24 a via the high temperature side reserve tank 27 .
 高温側リザーブタンク27は、高温側熱媒体を貯留する貯留部である。高温側熱媒体回路20では、余剰の高温側熱媒体を高温側リザーブタンク27に貯留しておくことによって、高温側熱媒体回路20を循環する高温側熱媒体の液量低下を抑制することができる。さらに、高温側リザーブタンク27は、高温側熱媒体が不足した際に、高温側熱媒体を補充するための熱媒体供給口を有している。 The high temperature side reserve tank 27 is a reservoir that stores the high temperature side heat medium. In the high temperature side heat medium circuit 20, by storing the surplus high temperature side heat medium in the high temperature side reserve tank 27, it is possible to suppress the decrease in the liquid amount of the high temperature side heat medium circulating in the high temperature side heat medium circuit 20. can. Furthermore, the high temperature side reserve tank 27 has a heat medium supply port for replenishing the high temperature side heat medium when the high temperature side heat medium is insufficient.
 従って、高温側熱媒体回路20では、水冷媒熱交換器12にて高温側熱媒体と高圧冷媒とを熱交換させて、高温側熱媒体を加熱することができる。さらに、ヒータコア23にて高温側熱媒体と送風空気とを熱交換させて、送風空気を加熱することができる。つまり、水冷媒熱交換器12および高温側熱媒体回路20のヒータコア23は、圧縮機11から吐出された冷媒を熱源として加熱対象流体である送風空気を加熱する加熱部を形成している。 Therefore, in the high-temperature-side heat medium circuit 20, the water-refrigerant heat exchanger 12 heat-exchanges the high-temperature-side heat medium and the high-pressure refrigerant to heat the high-temperature-side heat medium. Furthermore, the heater core 23 heat-exchanges the high-temperature-side heat medium and the blast air to heat the blast air. That is, the water-refrigerant heat exchanger 12 and the heater core 23 of the high-temperature side heat medium circuit 20 form a heating portion that heats the blast air, which is the fluid to be heated, using the refrigerant discharged from the compressor 11 as a heat source.
 次に、低温側熱媒体回路30について説明する。低温側熱媒体回路30は、熱媒体である低温側熱媒体を循環させる熱媒体回路である。低温側熱媒体回路30では、低温側熱媒体として、高温側熱媒体と同じ種類の流体を採用している。 Next, the low temperature side heat medium circuit 30 will be described. The low temperature side heat medium circuit 30 is a heat medium circuit that circulates a low temperature side heat medium that is a heat medium. In the low temperature side heat medium circuit 30, the same kind of fluid as the high temperature side heat medium is used as the low temperature side heat medium.
 低温側熱媒体回路30には、第1低温側ポンプ31a、第2低温側ポンプ31b、五方弁32、低温側ラジエータ35、バイパス通路38等が接続されている。さらに、低温側熱媒体回路30には、チラー18の熱媒体通路、バッテリ80の冷却水通路80a、強電系機器81の冷却水通路が接続されている。 A first low temperature side pump 31a, a second low temperature side pump 31b, a five-way valve 32, a low temperature side radiator 35, a bypass passage 38, and the like are connected to the low temperature side heat medium circuit 30. Furthermore, the heat medium passage of the chiller 18 , the cooling water passage 80 a of the battery 80 , and the cooling water passage of the high-voltage equipment 81 are connected to the low temperature side heat medium circuit 30 .
 バッテリ80の冷却水通路80aは、複数の電池セルを収容する専用ケース内に形成されている。バッテリ80の冷却水通路80aは、バッテリ80を形成する複数の電池セルと低温側熱媒体と熱交換させる熱交換部である。 A cooling water passage 80a of the battery 80 is formed within a dedicated case that accommodates a plurality of battery cells. A cooling water passage 80a of the battery 80 is a heat exchange portion that exchanges heat between the plurality of battery cells forming the battery 80 and the low temperature side heat medium.
 バッテリ80の冷却水通路80aは、チラー18にて冷却された低温側熱媒体とバッテリ80とを熱交換させて、バッテリ80を冷却することができる。また、後述するバッテリ用ヒータ36にて加熱された低温側熱媒体とバッテリ80とを熱交換させて、バッテリ80を加熱することができる。 The cooling water passage 80a of the battery 80 can cool the battery 80 by exchanging heat between the low temperature side heat medium cooled by the chiller 18 and the battery 80. Also, the battery 80 can be heated by exchanging heat between the battery 80 and the low-temperature heat medium heated by the battery heater 36, which will be described later.
 強電系機器81の冷却水通路としては、具体的に、センサプロセッシングユニット82の冷却水通路82a、パワーコントロールユニット83の冷却水通路83a、およびトランスアクスル84の冷却水通路84aがある。各冷却水通路82a~84aは、低温側熱媒体の流れに対して直列に接続されている。各冷却水通路82a~84aは、低温側熱媒体と強電系機器81と熱交換させる熱交換部である。 The cooling water passages of the high-voltage equipment 81 specifically include a cooling water passage 82a of the sensor processing unit 82, a cooling water passage 83a of the power control unit 83, and a cooling water passage 84a of the transaxle 84. Each of the cooling water passages 82a-84a is connected in series with the flow of the low temperature side heat medium. Each of the cooling water passages 82a to 84a is a heat exchange portion that exchanges heat between the low-temperature side heat medium and the high-voltage equipment 81. As shown in FIG.
 強電系機器81の冷却水通路では、低温側ラジエータ35にて冷却された低温側熱媒体と強電系機器81とを熱交換させて、強電系機器81を冷却することができる。換言すると、強電系機器81の冷却水通路では、低温側熱媒体と強電系機器81とを熱交換させて、低温側熱媒体を加熱することができる。従って、強電系機器81は、低温側熱媒体を加熱する発熱部となる。 In the cooling water passage of the high current system equipment 81, the high current system equipment 81 can be cooled by heat exchange between the low temperature side heat medium cooled by the low temperature side radiator 35 and the high current system equipment 81. In other words, in the cooling water passage of the high-voltage equipment 81, the low-temperature side heat medium can be heat-exchanged with the high-voltage equipment 81 to heat the low-temperature side heat medium. Therefore, the high-power system device 81 serves as a heat generating portion that heats the low-temperature side heat medium.
 第1低温側ポンプ31aは、第2熱媒体継手部34bから流出した低温側熱媒体を吸入して、チラー18の熱媒体通路の流入口側へ圧送する電動水ポンプである。第1低温側ポンプ31aおよび第2低温側ポンプ31bの基本的構成は、高温側ポンプ21を同様である。第2熱媒体継手部34b、後述する第3熱媒体継手部34cおよび第4熱媒体継手部34dの基本的構成は、第1熱媒体継手部24aと同様である。 The first low temperature side pump 31a is an electric water pump that draws in the low temperature side heat medium that has flowed out from the second heat medium joint 34b and pumps it to the inlet side of the heat medium passage of the chiller 18. The basic configuration of the first low temperature side pump 31a and the second low temperature side pump 31b is the same as that of the high temperature side pump 21 . The basic configurations of the second heat medium joint portion 34b, the third heat medium joint portion 34c, and the fourth heat medium joint portion 34d, which will be described later, are the same as those of the first heat medium joint portion 24a.
 チラー18の熱媒体通路の出口には、五方弁32のチラー側流入口32a側が接続されている。五方弁32は、低温側熱媒体回路30の回路構成を切り替える低温側の熱媒体回路切替部である。 A chiller-side inflow port 32a side of a five-way valve 32 is connected to the outlet of the heat medium passage of the chiller 18. The five-way valve 32 is a low temperature side heat medium circuit switching unit that switches the circuit configuration of the low temperature side heat medium circuit 30 .
 五方弁32は、5つの流入出口を有している。具体的には、五方弁32は、低温側熱媒体を流入させる流入口として、チラー側流入口32aおよび強電系機器側流入口32bを有している。五方弁32は、内部へ流入した低温側熱媒体を流出させる流出口として、バッテリ側流出口32c、ラジエータ側流出口32d、バイパス通路側流出口32eを有している。五方弁32の詳細構成については後述する。 The five-way valve 32 has five inlets and outlets. Specifically, the five-way valve 32 has a chiller-side inlet 32a and a high-power equipment-side inlet 32b as inlets for inflowing the low-temperature heat medium. The five-way valve 32 has a battery side outflow port 32c, a radiator side outflow port 32d, and a bypass passage side outflow port 32e as outflow ports for outflowing the low temperature side heat medium that has flowed into the interior. A detailed configuration of the five-way valve 32 will be described later.
 五方弁32のバッテリ側流出口32cには、バッテリ80の冷却水通路80aの入口側が接続されている。五方弁32のバッテリ側流出口32cとバッテリ80の冷却水通路80aの入口とを接続する熱媒体流路には、バッテリ用ヒータ36が配置されている。 The inlet side of the cooling water passage 80a of the battery 80 is connected to the battery side outlet 32c of the five-way valve 32. A battery heater 36 is arranged in a heat medium flow path that connects the battery side outlet 32 c of the five-way valve 32 and the inlet of the cooling water passage 80 a of the battery 80 .
 バッテリ用ヒータ36は、バッテリ80を暖機するために、バッテリ80の冷却水通路80aへ流入する低温側熱媒体を加熱する電気ヒータである。バッテリ用ヒータ36の基本的構成は、ハイボルテージヒータ26と同様である。バッテリ用ヒータ36としては、ハイボルテージヒータ26よりも出力の小さい電気ヒータを採用することができる。 The battery heater 36 is an electric heater that heats the low temperature side heat medium flowing into the cooling water passage 80 a of the battery 80 in order to warm up the battery 80 . A basic configuration of the battery heater 36 is similar to that of the high voltage heater 26 . As the battery heater 36, an electric heater having a smaller output than the high voltage heater 26 can be used.
 バッテリ80の冷却水通路80aの出口には、第2熱媒体継手部34bの一方の流入口側が接続されている。第2熱媒体継手部34bの流出口には、第1低温側ポンプ31aの吸入口側が接続されている。 The outlet of the cooling water passage 80a of the battery 80 is connected to one inlet side of the second heat medium joint portion 34b. The suction port side of the first low temperature side pump 31a is connected to the outflow port of the second heat medium joint portion 34b.
 第2低温側ポンプ31bは、第3熱媒体継手部34cから流出した低温側熱媒体を吸入して、強電系機器81の冷却水通路の入口側へ圧送する電動水ポンプである。より具体的には、第2低温側ポンプ31bから圧送された低温側熱媒体は、センサプロセッシングユニット82の冷却水通路82a、パワーコントロールユニット83の冷却水通路83a、トランスアクスル84の冷却水通路84aの順で流れる。 The second low-temperature side pump 31b is an electric water pump that draws in the low-temperature side heat medium that has flowed out from the third heat medium joint portion 34c and pumps it to the inlet side of the cooling water passage of the high-voltage equipment 81. More specifically, the low temperature side heat medium pressure-fed from the second low temperature side pump 31b passes through the cooling water passage 82a of the sensor processing unit 82, the cooling water passage 83a of the power control unit 83, and the cooling water passage 84a of the transaxle 84. flow in the order of
 第3熱媒体継手部34cの流出口と第2低温側ポンプ31bの吸入口とを接続する熱媒体流路には、低温側リザーブタンク37が配置されている。低温側リザーブタンク37は、低温側熱媒体を貯留する貯留部である。低温側リザーブタンク37の基本的構成は、高温側リザーブタンク27と同様である。 A low temperature side reserve tank 37 is arranged in the heat medium flow path connecting the outlet of the third heat medium joint 34c and the suction port of the second low temperature side pump 31b. The low temperature side reserve tank 37 is a reservoir that stores the low temperature side heat medium. The basic configuration of the low temperature side reserve tank 37 is similar to that of the high temperature side reserve tank 27 .
 強電系機器81の冷却水通路の出口、すなわちトランスアクスル84の冷却水通路84aの出口には、五方弁32の強電系機器側流入口32b側が接続されている。 The high-current equipment side inflow port 32b side of the five-way valve 32 is connected to the outlet of the cooling water passage of the high-current equipment 81, that is, the outlet of the cooling water passage 84a of the transaxle 84.
 五方弁32のラジエータ側流出口32dには、低温側ラジエータ35の熱媒体入口側が接続されている。低温側ラジエータ35は、五方弁32のラジエータ側流出口32dから流出した低温側熱媒体と外気とを熱交換させる外気熱交換部である。低温側ラジエータ35の基本的構成は、高温側ラジエータ25と同様である。 The heat medium inlet side of the low temperature side radiator 35 is connected to the radiator side outlet 32 d of the five-way valve 32 . The low-temperature side radiator 35 is an outside air heat exchange section that exchanges heat between the low-temperature side heat medium flowing out from the radiator-side outlet 32d of the five-way valve 32 and the outside air. The basic configuration of the low temperature side radiator 35 is similar to that of the high temperature side radiator 25 .
 低温側ラジエータ35は、前述した高温側ラジエータ25とともに、駆動装置室内の前方側に配置されている。より具体的には、低温側ラジエータ35は、高温側ラジエータ25の外気流れ下流側に配置されている。このため、低温側ラジエータ35では、低温側熱媒体と高温側ラジエータ25通過後の外気とを熱交換させる。 The low temperature side radiator 35 is arranged on the front side in the driving device room together with the high temperature side radiator 25 described above. More specifically, the low temperature side radiator 35 is arranged downstream of the high temperature side radiator 25 in the flow of outside air. Therefore, in the low-temperature side radiator 35 , heat is exchanged between the low-temperature side heat medium and the outside air after passing through the high-temperature side radiator 25 .
 また、本実施形態の高温側ラジエータ25および低温側ラジエータ35は、高温側熱媒体の有する熱および低温側熱媒体の有する熱を、互いに熱移動可能に一体化されている。従って、高温側ラジエータ25および低温側ラジエータ35は、高温側熱媒体の有する熱を低温側ラジエータ35へ伝熱させることができる。さらに、低温側熱媒体の有する熱を高温側ラジエータ25へ伝熱させることができる。 Also, the high temperature side radiator 25 and the low temperature side radiator 35 of the present embodiment are integrated so that the heat of the high temperature side heat medium and the heat of the low temperature side heat medium can be transferred to each other. Therefore, the high temperature side radiator 25 and the low temperature side radiator 35 can transfer the heat of the high temperature side heat medium to the low temperature side radiator 35 . Furthermore, the heat of the low temperature side heat medium can be transferred to the high temperature side radiator 25 .
 より具体的には、本実施形態の高温側ラジエータ25および低温側ラジエータ35では、熱交換促進用の金属製の熱交換フィン25aを、共通する部材で形成している。そして、共通する部材である熱交換フィン25aを介して、高温側熱媒体の有する熱および低温側熱媒体の有する熱を、互いに熱移動可能としている。 More specifically, in the high temperature side radiator 25 and the low temperature side radiator 35 of this embodiment, the metal heat exchange fins 25a for promoting heat exchange are formed of a common member. The heat of the high-temperature side heat medium and the heat of the low-temperature side heat medium can be mutually transferred via the heat exchange fins 25a, which are common members.
 低温側ラジエータ35の熱媒体出口には、第4熱媒体継手部34dの流入口側が接続されている。第4熱媒体継手部34dの一方の流出口には、第3熱媒体継手部34cの一方の流入口側が接続されている。第4熱媒体継手部34dの他方の流出口には、第2熱媒体継手部34bの他方の流入口側が接続されている。 The heat medium outlet of the low temperature side radiator 35 is connected to the inlet side of the fourth heat medium joint 34d. One inflow port side of the third heat medium joint portion 34c is connected to one outflow port of the fourth heat medium joint portion 34d. The other inflow port side of the second heat medium joint portion 34b is connected to the other outflow port of the fourth heat medium joint portion 34d.
 五方弁32のバイパス通路側流出口32eには、バイパス通路38の入口側が接続されている。バイパス通路38は、五方弁32へ流入した低温側熱媒体を、低温側ラジエータ35を迂回させて、第3熱媒体継手部34c側へ導く熱媒体流路である。従って、バイパス通路38の出口には、第3熱媒体継手部34cの他方の流入口側が接続されている。 The inlet side of the bypass passage 38 is connected to the bypass passage side outlet 32 e of the five-way valve 32 . The bypass passage 38 is a heat medium flow path that guides the low temperature side heat medium that has flowed into the five-way valve 32 to the side of the third heat medium joint portion 34c, bypassing the low temperature side radiator 35 . Therefore, the outlet of the bypass passage 38 is connected to the other inlet side of the third heat medium joint portion 34c.
 次に、図2、図3を用いて、五方弁32の詳細構成について説明する。五方弁32は、図2、図3に示すように、チラー側流入口32aおよび強電系機器側流入口32bから低温側熱媒体を内部へ流入させる。さらに、内部へ流入した低温側熱媒体を、バッテリ側流出口32c、ラジエータ側流出口32d、およびバイパス通路側流出口32eの少なくとも1つから流出させる。 Next, the detailed configuration of the five-way valve 32 will be described with reference to FIGS. 2 and 3. FIG. As shown in FIGS. 2 and 3, the five-way valve 32 allows the low-temperature side heat medium to flow into the interior from a chiller-side inlet 32a and a high-current equipment-side inlet 32b. Further, the low temperature side heat medium that has flowed inside is caused to flow out from at least one of the battery side outlet 32c, the radiator side outlet 32d, and the bypass passage side outlet 32e.
 五方弁32は、図2、図3の説明図に示すように、例えば、高温側流量調整弁22と同様の構成の複数の三方流量調整弁や、第1熱媒体継手部24a等と同様の構成の三方継手を組み合わせることによって形成することができる。 2 and 3, the five-way valve 32 includes, for example, a plurality of three-way flow control valves having the same configuration as the high temperature side flow control valve 22, the first heat medium joint portion 24a, and the like. can be formed by combining three-way joints having the configuration of
 五方弁32は、図2の説明図に太実線矢印で示すように、チラー18の熱媒体通路から流出した低温側熱媒体を、チラー側流入口32aから内部へ流入させる。そして、チラー側流入口32aから内部へ流入させた低温側熱媒体を、バッテリ側流出口32cおよびラジエータ側流出口32dの少なくとも一方から流出させることができる。 The five-way valve 32 allows the low-temperature side heat medium that has flowed out of the heat medium passage of the chiller 18 to flow inside from the chiller side inlet 32a, as indicated by the thick solid line arrows in the explanatory view of FIG. Then, the low-temperature heat medium that has flowed into the interior from the chiller-side inlet 32a can flow out from at least one of the battery-side outlet 32c and the radiator-side outlet 32d.
 換言すると、五方弁32は、バッテリ側流出口32cからバッテリ80の冷却水通路80aの入口側へ流出させる低温側熱媒体の流量とラジエータ側流出口32dから低温側ラジエータ35の熱媒体入口側へ流出させる低温側熱媒体の流量との流量比を連続的に調整することができる。 In other words, the five-way valve 32 controls the flow rate of the low-temperature side heat medium flowing out from the battery side outlet 32c to the inlet side of the cooling water passage 80a of the battery 80 and the flow rate of the low temperature side heat medium from the radiator side outlet 32d to the heat medium inlet side of the low temperature side radiator 35. It is possible to continuously adjust the flow rate ratio with the flow rate of the low temperature side heat medium flowing out to.
 さらに、五方弁32は、流量比を調整することによって、チラー側流入口32aから内部へ流入させた低温側熱媒体の全流量を、バッテリ80の冷却水通路80aの入口側および低温側ラジエータ35の熱媒体入口側のいずれか一方へ流出させることもできる。これにより、五方弁32は、低温側熱媒体回路30の一部の回路構成を、バッテリ冷却用回路および吸熱用回路に切り替えることができる。 Furthermore, the five-way valve 32 adjusts the flow ratio so that the total flow of the low-temperature side heat medium flowing into the interior from the chiller-side inlet 32a is diverted to the inlet side of the cooling water passage 80a of the battery 80 and the low-temperature side radiator. It is also possible to flow out to either one of the heat medium inlet sides of 35 . Thereby, the five-way valve 32 can switch a part of the circuit configuration of the low temperature side heat medium circuit 30 to the battery cooling circuit and the heat absorption circuit.
 バッテリ冷却用回路では、第1低温側ポンプ31aから圧送された低温側熱媒体が、チラー18の熱媒体通路、バッテリ用ヒータ36、バッテリ80の冷却水通路80a、第1低温側ポンプ31aの吸入口の順に循環する。吸熱用回路では、第1低温側ポンプ31aから圧送された低温側熱媒体が、チラー18の熱媒体通路、低温側ラジエータ35、第1低温側ポンプ31aの吸入口の順に循環する。 In the battery cooling circuit, the low temperature side heat medium pressure-fed from the first low temperature side pump 31a is sucked into the heat medium passage of the chiller 18, the battery heater 36, the cooling water passage 80a of the battery 80, and the first low temperature side pump 31a. Circulate in mouth order. In the heat absorption circuit, the low temperature side heat medium pressure-fed from the first low temperature side pump 31a circulates through the heat medium passage of the chiller 18, the low temperature side radiator 35, and the suction port of the first low temperature side pump 31a in this order.
 さらに、五方弁32は、低温側熱媒体回路30の一部の回路構成を、バッテリ冷却用回路あるいはバッテリ冷却用回路に切り替えると同時に、図2の細実線矢印で示すように、低温側熱媒体回路30の別の一部の回路構成を、後述する蓄熱用回路に切り替えることもできる。 Furthermore, the five-way valve 32 switches the circuit configuration of a part of the low temperature side heat medium circuit 30 to the battery cooling circuit or the battery cooling circuit, and at the same time, as indicated by the thin solid line arrow in FIG. Another part of the circuit configuration of the medium circuit 30 can be switched to a heat storage circuit, which will be described later.
 また、五方弁32は、図3の説明図に太実線矢印で示すように、トランスアクスル84の冷却水通路84aから流出した低温側熱媒体を、強電系機器側流入口32bから内部へ流入させる。そして、強電系機器側流入口32bから内部へ流入させた低温側熱媒体を、ラジエータ側流出口32dおよびバイパス通路側流出口32eの少なくとも一方から流出させることができる。 3, the five-way valve 32 allows the low-temperature-side heat medium that has flowed out of the cooling water passage 84a of the transaxle 84 to enter through the high-current equipment-side inlet 32b. Let Then, the low-temperature side heat medium that has flowed into the interior from the high-voltage equipment side inlet 32b can be flowed out from at least one of the radiator side outlet 32d and the bypass passage side outlet 32e.
 換言すると、五方弁32は、ラジエータ側流出口32dから低温側ラジエータ35の熱媒体入口側へ流出させる低温側熱媒体の流量とバイパス通路側流出口32eからバイパス通路38へ流出させる低温側熱媒体の流量との流量比を連続的に調整することができる。 In other words, the five-way valve 32 regulates the flow rate of the low temperature side heat medium flowing out from the radiator side outlet 32d to the heat medium inlet side of the low temperature side radiator 35 and the low temperature side heat flowing out from the bypass passage side outlet 32e to the bypass passage 38. The flow ratio to the medium flow can be adjusted continuously.
 さらに、五方弁32は、流量比を調整することによって、強電系機器側流入口32bから内部へ流入させた低温側熱媒体の全流量を、低温側ラジエータ35の熱媒体入口側およびバイパス通路38側のいずれか一方へ流出させることもできる。これにより、五方弁32は、低温側熱媒体回路30の一部の回路構成を、機器冷却用回路および蓄熱用回路に切り替えることができる。 Furthermore, the five-way valve 32 adjusts the flow ratio so that the entire flow of the low-temperature side heat medium flowing into the inside from the high-voltage equipment side inlet 32b is diverted to the heat medium inlet side of the low-temperature side radiator 35 and the bypass passage. It is also possible to flow out to either one of the 38 sides. Thereby, the five-way valve 32 can switch a part of the circuit configuration of the low temperature side heat medium circuit 30 to the equipment cooling circuit and the heat storage circuit.
 機器冷却用回路では、第2低温側ポンプ31bから圧送された低温側熱媒体が、強電系機器81の冷却水通路、低温側ラジエータ35、第2低温側ポンプ31bの吸入口の順に循環する。蓄熱用回路では、第2低温側ポンプ31bから圧送された低温側熱媒体が、強電系機器81の冷却水通路、バイパス通路38、第2低温側ポンプ31bの吸入口の順に循環する。 In the device cooling circuit, the low-temperature side heat medium pumped from the second low-temperature side pump 31b circulates through the cooling water passage of the high-voltage device 81, the low-temperature side radiator 35, and the suction port of the second low-temperature side pump 31b in this order. In the heat storage circuit, the low-temperature side heat medium pressure-fed from the second low-temperature side pump 31b circulates through the cooling water passage of the high-voltage equipment 81, the bypass passage 38, and the suction port of the second low-temperature side pump 31b in this order.
 さらに、五方弁32は、低温側熱媒体回路30の一部の回路構成を、機器冷却用回路あるいは蓄熱用回路に切り替えると同時に、図3の細実線矢印で示すように、低温側熱媒体回路30の別の一部の回路構成を、前述したバッテリ冷却用回路を形成するように切り替えることもできる。 Furthermore, the five-way valve 32 switches the circuit configuration of a part of the low temperature side heat medium circuit 30 to the equipment cooling circuit or the heat storage circuit, and at the same time, as indicated by the thin solid line arrow in FIG. Another portion of the circuit configuration of circuit 30 may be switched to form the battery cooling circuit described above.
 次に、室内空調ユニット40について説明する。室内空調ユニット40は、車室内の空調のために適切な温度に調整された送風空気を、車室内の適切な箇所へ吹き出すために、複数の構成機器を一体化したユニットである。室内空調ユニット40は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 40 will be explained. The indoor air-conditioning unit 40 is a unit that integrates a plurality of components for blowing air adjusted to an appropriate temperature for air-conditioning the vehicle interior to appropriate locations within the vehicle interior. The indoor air conditioning unit 40 is arranged inside the dashboard (instrument panel) at the forefront of the vehicle interior.
 室内空調ユニット40は、図4に示すように、送風空気の空気通路を形成する空調ケース41内に、室内送風機42、室内蒸発器16、ヒータコア23等を収容したものである。空調ケース41は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。 As shown in FIG. 4, the indoor air conditioning unit 40 houses an indoor blower 42, an indoor evaporator 16, a heater core 23, etc. in an air conditioning case 41 that forms an air passage for blown air. The air-conditioning case 41 is molded from a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 空調ケース41の送風空気流れ最上流側には、内外気切替装置43が配置されている。内外気切替装置43は、空調ケース41内へ内気(すなわち、車室内空気)と外気(すなわち、車室外空気)とを切替導入する。内外気切替装置43は、制御装置50から出力される制御信号によって、その作動が制御される。 An inside/outside air switching device 43 is arranged on the most upstream side of the air-conditioning case 41 in the blown air flow. The inside/outside air switching device 43 switches and introduces inside air (that is, vehicle interior air) and outside air (that is, vehicle exterior air) into the air conditioning case 41 . The operation of the inside/outside air switching device 43 is controlled by a control signal output from the control device 50 .
 内外気切替装置43の送風空気流れ下流側には、室内送風機42が配置されている。室内送風機42は、内外気切替装置43を介して吸入した空気を車室内へ向けて送風する。室内送風機42は、遠心多翼ファンを電動モータにて駆動する電動送風機である。室内送風機42は、制御装置50から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 An indoor fan 42 is arranged on the downstream side of the inside/outside air switching device 43 in the blown air flow. The indoor air blower 42 blows the air sucked through the inside/outside air switching device 43 into the vehicle interior. The indoor blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The indoor fan 42 has its rotation speed (that is, air blowing capacity) controlled by a control voltage output from the control device 50 .
 室内送風機42の送風空気流れ下流側には、室内蒸発器16およびヒータコア23が、配置されている。室内蒸発器16は、ヒータコア23よりも、送風空気流れ上流側に配置されている。また、空調ケース41内には、室内蒸発器16通過後の送風空気を、ヒータコア23を迂回させて流す冷風バイパス通路45が形成されている。 The indoor evaporator 16 and the heater core 23 are arranged on the downstream side of the indoor blower 42 in the blown air flow. The indoor evaporator 16 is arranged upstream of the heater core 23 in the air flow. In addition, a cold air bypass passage 45 is formed in the air conditioning case 41 so that the air that has passed through the indoor evaporator 16 flows around the heater core 23 .
 空調ケース41内の室内蒸発器16の送風空気流れ下流側であって、かつ、ヒータコア23および冷風バイパス通路45の送風空気流れ上流側には、エアミックスドア44が配置されている。 An air mix door 44 is arranged downstream of the indoor evaporator 16 in the air conditioning case 41 and upstream of the heater core 23 and the cold air bypass passage 45 .
 エアミックスドア44は、室内蒸発器16通過後の送風空気のうち、ヒータコア23側を通過させる送風空気の風量と冷風バイパス通路45を通過させる送風空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア44は、エアミックスドア用の電動アクチュエータによって駆動される。エアミックスドア用の電動アクチュエータは、制御装置50から出力される制御信号によって、その作動が制御される。 The air mix door 44 adjusts the air volume ratio between the air volume of the air that passes through the heater core 23 side and the air volume of the air that passes through the cold air bypass passage 45 among the air that has passed through the indoor evaporator 16. Department. The air mix door 44 is driven by an air mix door electric actuator. The operation of the electric actuator for the air mix door is controlled by a control signal output from the control device 50 .
 ヒータコア23および冷風バイパス通路45の送風空気流れ下流側には、混合空間46が配置されている。混合空間46は、ヒータコア23にて加熱された送風空気と冷風バイパス通路45を通過して加熱されていない送風空気とを混合させる空間である。従って、室内空調ユニット40では、エアミックスドア44の開度調整によって、混合空間46にて混合された送風空気(すなわち、空調風)の温度を調整することができる。 A mixing space 46 is arranged on the downstream side of the heater core 23 and the cold air bypass passage 45 in the blown air flow. The mixing space 46 is a space for mixing the blast air heated by the heater core 23 and the unheated blast air that has passed through the cold air bypass passage 45 . Therefore, in the indoor air conditioning unit 40 , the temperature of the air mixed in the mixing space 46 (that is, the conditioned air) can be adjusted by adjusting the opening degree of the air mix door 44 .
 空調ケース41の送風空気流れ最下流部には、混合空間46にて混合された送風空気を、車室内へ吹き出すための図示しない複数の開口穴が形成されている。複数の開口穴は、車室内に形成された複数の吹出口に連通している。複数の吹出口としては、フェイス吹出口、フット吹出口、デフロスタ吹出口が設けられている。 A plurality of opening holes (not shown) for blowing out the blast air mixed in the mixing space 46 into the vehicle interior are formed at the most downstream portion of the blast air flow of the air conditioning case 41 . A plurality of opening holes communicate with a plurality of outlets formed in the passenger compartment. A face outlet, a foot outlet, and a defroster outlet are provided as the plurality of outlets.
 フェイス吹出口は、乗員(すなわち、ユーザ)の上半身に向けて送風空気を吹き出す吹出口である。フット吹出口は、乗員の足元に向けて送風空気を吹き出す吹出口である。デフロスタ吹出口は、車両前方窓ガラスに向けて送風空気を吹き出す吹出口である。 The face air outlet is an air outlet that blows air toward the upper body of the passenger (that is, the user). The foot air outlet is an air outlet that blows air toward the feet of the occupant. The defroster outlet is an outlet that blows air toward the windshield in front of the vehicle.
 複数の開口穴には、それぞれ図示しない吹出モードドアが配置されている。吹出モードドアは、それぞれの開口穴を開閉する。吹出モードドアは、吹出モードドア用の電動アクチュエータによって駆動される。吹出モードドア用の電動アクチュエータは、制御装置50から出力される制御信号によって、その作動が制御される。 A blowout mode door (not shown) is arranged in each of the plurality of opening holes. Blow-mode doors open and close respective apertures. The blow mode door is driven by a blow mode door electric actuator. The operation of the electric actuator for the blowout mode door is controlled by a control signal output from the control device 50 .
 従って、室内空調ユニット40では、吹出モードドアによって開口される開口穴を切り替えることによって、車室内の空調風が吹き出される箇所を変更することができる。 Therefore, in the indoor air conditioning unit 40, by switching the opening hole opened by the blow-out mode door, it is possible to change the location from which the conditioned air is blown out in the vehicle compartment.
 次に、ヒートポンプサイクル装置1の電気制御部の概要について説明する。制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置50は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、15a、15b、21、22、26、31a、31b、32、36等の作動を制御する。 Next, an outline of the electric control unit of the heat pump cycle device 1 will be described. The control device 50 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and its peripheral circuits. The control device 50 performs various calculations and processes based on the control program stored in the ROM, and controls various controlled devices 11, 15a, 15b, 21, 22, 26, 31a, 31b, Controls the operation of 32, 36, etc.
 また、制御装置50の入力側には、図5のブロック図に示すように、内気温センサ61、外気温センサ62、日射センサ63、チラー温度センサ64c、蒸発器温度センサ64e、高圧圧力センサ65a、チラー圧力センサ65c、蒸発器圧力センサ65e、高温側熱媒体温度センサ66a、第1低温側熱媒体温度センサ67a、第2低温側熱媒体温度センサ67b、第3低温側熱媒体温度センサ67c、バッテリ温度センサ68、空調風温度センサ69といった制御用のセンサ群が接続されている。制御装置50には、制御用のセンサ群の検出信号が入力される。 As shown in the block diagram of FIG. 5, the input side of the control device 50 includes an inside air temperature sensor 61, an outside air temperature sensor 62, a solar radiation sensor 63, a chiller temperature sensor 64c, an evaporator temperature sensor 64e, and a high pressure sensor 65a. , chiller pressure sensor 65c, evaporator pressure sensor 65e, high temperature side heat medium temperature sensor 66a, first low temperature side heat medium temperature sensor 67a, second low temperature side heat medium temperature sensor 67b, third low temperature side heat medium temperature sensor 67c, A control sensor group such as a battery temperature sensor 68 and an air conditioning air temperature sensor 69 is connected. Detection signals from a group of sensors for control are input to the control device 50 .
 内気温センサ61は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ63は、車室内へ照射される日射量Asを検出する日射量検出部である。 The inside air temperature sensor 61 is an inside air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr. The outside air temperature sensor 62 is an outside air temperature detection unit that detects the vehicle outside temperature (outside air temperature) Tam. The solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
 チラー温度センサ64cは、チラー18の冷媒通路から流出した冷媒の温度であるチラー側冷媒温度Tcを検出するチラー出口側冷媒温度検出部である。蒸発器温度センサ64eは、室内蒸発器16における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ64eでは、具体的に、室内蒸発器16の熱交換フィン温度を検出している。 The chiller temperature sensor 64c is a chiller outlet side refrigerant temperature detection section that detects the chiller side refrigerant temperature Tc, which is the temperature of the refrigerant flowing out of the refrigerant passage of the chiller 18 . The evaporator temperature sensor 64 e is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16 . Specifically, the evaporator temperature sensor 64e of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 16 .
 高圧圧力センサ65aは、圧縮機11から吐出された高圧冷媒の圧力である高圧冷媒圧力Pdを検出する高圧冷媒圧力検出部である。チラー圧力センサ65cは、チラー18の冷媒通路における冷媒の圧力であるチラー側冷媒圧力Pcを検出するチラー側冷媒圧力検出部である。蒸発器圧力センサ65eは、室内蒸発器16における冷媒の圧力である蒸発器側冷媒圧力Peを検出する蒸発器側冷媒圧力検出部である。 The high-pressure sensor 65a is a high-pressure refrigerant pressure detection unit that detects the high-pressure refrigerant pressure Pd, which is the pressure of the high-pressure refrigerant discharged from the compressor 11. The chiller pressure sensor 65c is a chiller-side refrigerant pressure detection unit that detects the chiller-side refrigerant pressure Pc, which is the pressure of the refrigerant in the refrigerant passage of the chiller 18 . The evaporator pressure sensor 65 e is an evaporator-side refrigerant pressure detection unit that detects the evaporator-side refrigerant pressure Pe, which is the pressure of the refrigerant in the indoor evaporator 16 .
 高温側熱媒体温度センサ66a、ヒータコア23へ流入する高温側熱媒体の温度である高温側熱媒体温度TWHを検出する高温側熱媒体温度検出部である。 A high temperature side heat medium temperature sensor 66 a is a high temperature side heat medium temperature detection unit that detects a high temperature side heat medium temperature TWH that is the temperature of the high temperature side heat medium flowing into the heater core 23 .
 第1低温側熱媒体温度センサ67aは、バッテリ80の冷却水通路80aへ流入する低温側熱媒体の温度である第1低温側熱媒体温度TWL1を検出する第1低温側熱媒体温度検出部である。 The first low temperature side heat medium temperature sensor 67a is a first low temperature side heat medium temperature detection unit that detects a first low temperature side heat medium temperature TWL1, which is the temperature of the low temperature side heat medium flowing into the cooling water passage 80a of the battery 80. be.
 第2低温側熱媒体温度センサ67bは、強電系機器81の冷却水通路から流出した低温側熱媒体の温度である第2低温側熱媒体温度TWL2を検出する第2低温側熱媒体温度検出部である。本実施形態の第2低温側熱媒体温度センサ67bは、具体的に、トランスアクスル84の冷却水通路84aから流出した直後の低温側熱媒体の温度を検出する。 The second low-temperature side heat medium temperature sensor 67b detects a second low-temperature side heat medium temperature TWL2, which is the temperature of the low-temperature side heat medium flowing out of the cooling water passage of the high-voltage device 81. is. Specifically, the second low-temperature-side heat medium temperature sensor 67b of the present embodiment detects the temperature of the low-temperature-side heat medium immediately after it flows out from the cooling water passage 84a of the transaxle 84 .
 第3低温側熱媒体温度センサ67cは、低温側ラジエータ35から流出した直後の低温側熱媒体の温度である第3低温側熱媒体温度TWL3を検出する第3低温側熱媒体温度検出部である。 The third low temperature side heat medium temperature sensor 67c is a third low temperature side heat medium temperature detection unit that detects a third low temperature side heat medium temperature TWL3, which is the temperature of the low temperature side heat medium immediately after flowing out from the low temperature side radiator 35. .
 バッテリ温度センサ68は、バッテリ80の温度であるバッテリ温度TBを検出するバッテリ温度検出部である。本実施形態のバッテリ温度センサ68は、複数の温度センサを有し、バッテリ80の複数の箇所の温度を検出している。このため、制御装置50では、バッテリ80を形成する各電池セルの温度差を検出することができる。さらに、バッテリ温度TBとしては、複数の温度センサの検出値の平均値を採用している。 The battery temperature sensor 68 is a battery temperature detection unit that detects the battery temperature TB, which is the temperature of the battery 80 . The battery temperature sensor 68 of this embodiment has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 80 . Therefore, the control device 50 can detect the temperature difference between the battery cells forming the battery 80 . Furthermore, as the battery temperature TB, an average value of detection values of a plurality of temperature sensors is used.
 空調風温度センサ69は、混合空間46から車室内へ送風される送風空気の温度である送風空気温度TAVを検出する空調風温度検出部である。 The air-conditioning air temperature sensor 69 is an air-conditioning air temperature detection unit that detects the air temperature TAV, which is the temperature of the air blown from the mixing space 46 into the vehicle interior.
 さらに、制御装置50の入力側には、図5に示すように、空調用の操作パネル70が接続されている。空調用の操作パネル70は、車室内前部の計器盤付近に配置されている。制御装置50には、空調用の操作パネル70に設けられた各種操作スイッチからの操作信号が入力される。 Furthermore, an air conditioning operation panel 70 is connected to the input side of the control device 50, as shown in FIG. An air-conditioning operation panel 70 is arranged near the instrument panel in the front part of the passenger compartment. Operation signals from various operation switches provided on an operation panel 70 for air conditioning are input to the control device 50 .
 空調用の操作パネル70に設けられた各種操作スイッチとしては、具体的に、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ、除霜許可スイッチ70a等がある。 Specific examples of the various operation switches provided on the operation panel 70 for air conditioning include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, a defrosting permission switch 70a, and the like.
 オートスイッチは、ユーザが車室内空調の自動制御運転を設定あるいは解除する操作部である。エアコンスイッチは、ユーザが室内蒸発器16にて送風空気の冷却を行うことを要求する操作部である。風量設定スイッチは、ユーザが室内送風機42の風量をマニュアル設定する操作部である。温度設定スイッチは、ユーザが車室内の設定温度Tsetを設定する操作部である。除霜許可スイッチ70aは、ユーザが除霜運転の実行を許可するための操作部である。 The auto switch is an operation unit that allows the user to set or cancel the automatic control operation of the cabin air conditioning. The air conditioner switch is an operation unit for requesting that the indoor evaporator 16 cool the blown air. The air volume setting switch is an operation unit for manually setting the air volume of the indoor fan 42 by the user. The temperature setting switch is an operation unit for the user to set the set temperature Tset inside the vehicle compartment. The defrosting permission switch 70a is an operation unit for allowing the user to perform the defrosting operation.
 また、制御装置50では、ユーザが車両システムを起動させてから除霜運転が実行されたか否かを記憶することができる。 In addition, the control device 50 can store whether or not the defrosting operation has been performed since the user started the vehicle system.
 また、制御装置50では、起動経過時間Tm1、除霜経過時間Tm2、および除霜時間Tmdを計測して記憶しておくことができる。起動経過時間Tm1は、車両システムを起動させてからの経過時間である。除霜経過時間Tm2は、前回の除霜運転が終了してからの経過時間である。除霜時間Tmdは、除霜運転を開始してからの経過時間である。 In addition, the controller 50 can measure and store the startup elapsed time Tm1, the defrosting elapsed time Tm2, and the defrosting time Tmd. The activation elapsed time Tm1 is the elapsed time after the vehicle system is activated. The defrosting elapsed time Tm2 is the elapsed time since the previous defrosting operation ended. The defrosting time Tmd is the elapsed time after starting the defrosting operation.
 制御装置50は、出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。そして、制御装置50のうち、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。例えば、制御装置50のうち、圧縮機11の冷媒吐出能力を制御する構成は、吐出能力制御部50aを構成している。 The control device 50 is integrally configured with a control unit that controls various controlled devices connected to the output side. In the control device 50, the configuration (hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device. For example, in the control device 50, the configuration for controlling the refrigerant discharge capacity of the compressor 11 constitutes a discharge capacity control section 50a.
 次に、上記構成における本実施形態の車両用空調装置に適用されたヒートポンプサイクル装置1の作動について説明する。ヒートポンプサイクル装置1は、車室内の空調および車載機器の温度調整を行う通常運転時に、ヒートポンプサイクル10、高温側熱媒体回路20、および低温側熱媒体回路30の回路構成を切り替えて、各種運転モードを切り替えることができる。 Next, the operation of the heat pump cycle device 1 applied to the vehicle air conditioner of this embodiment having the above configuration will be described. The heat pump cycle device 1 switches the circuit configurations of the heat pump cycle 10, the high temperature side heat medium circuit 20, and the low temperature side heat medium circuit 30 during normal operation for air conditioning the vehicle interior and adjusting the temperature of the onboard equipment, and operates in various operation modes. can be switched.
 通常運転時の運転モードの切り替えは、予め制御装置50に記憶されている制御プログラムが実行されることによって行われる。制御プログラムは、車両システムが起動している際だけでなく、外部電源からバッテリ80に充電されている際にも実行される。 The switching of the operation mode during normal operation is performed by executing a control program stored in the control device 50 in advance. The control program is executed not only when the vehicle system is activated, but also when the battery 80 is being charged from the external power supply.
 制御プログラムのメインルーチンでは、所定の周期毎に上述したセンサ群の検出信号および操作パネル70の操作スイッチの操作信号を読み込む。さらに、操作パネル70のオートスイッチが投入(ON)され、車室内空調の自動制御運転が設定された際には、読み込んだ検出信号および操作信号に基づいて、車室内へ吹き出される送風空気の目標温度である目標吹出温度TAOを算定する。 In the main routine of the control program, the detection signals of the above-described sensor group and the operation signals of the operation switches of the operation panel 70 are read at predetermined intervals. Further, when the auto switch of the operation panel 70 is turned on (ON) and automatic control operation of the vehicle interior air conditioning is set, the amount of blown air blown into the vehicle interior is controlled based on the read detection signal and operation signal. A target outlet temperature TAO, which is a target temperature, is calculated.
 目標吹出温度TAOは、以下数式F1を用いて算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは、操作パネル70の温度設定スイッチによって設定された車室内の設定温度である。Trは、内気温センサ61によって検出された内気温である。Tamは、外気温センサ62によって検出された外気温である。Asは、日射センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。以下に各運転モードの詳細作動について説明する。
The target blowing temperature TAO is calculated using the following formula F1.
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C (F1)
Note that Tset is the set temperature in the passenger compartment set by the temperature setting switch on the operation panel 70 . Tr is the internal temperature detected by the internal temperature sensor 61 . Tam is the outside temperature detected by the outside temperature sensor 62 . As is the amount of solar radiation detected by the solar radiation sensor 63 . Kset, Kr, Kam, and Ks are control gains, and C is a correction constant. Detailed operation of each operation mode will be described below.
 (a)単独冷房モード
 単独冷房モードは、バッテリ80の冷却を行うことなく、冷却された送風空気を車室内へ吹き出すことによって車室内の冷房を行う運転モードである。本実施形態の制御プログラムでは、目標吹出温度TAOが低温域の値となっている際、あるいは、外気温Tamが比較的高温となっている際に車室内の冷房を行うための運転モードを実行する。
(a) Single Cooling Mode The single cooling mode is an operation mode in which the vehicle interior is cooled by blowing cooled air into the vehicle interior without cooling the battery 80 . In the control program of the present embodiment, an operation mode for cooling the passenger compartment is executed when the target air temperature TAO is in the low temperature range or when the outside air temperature Tam is relatively high. do.
 単独冷房モードのヒートポンプサイクル10では、制御装置50が、冷房用膨張弁15aを冷媒減圧作用を発揮する絞り状態とし、冷却用膨張弁15bを全閉状態とする。 In the heat pump cycle 10 in the single cooling mode, the control device 50 puts the cooling expansion valve 15a in a throttled state that exerts a refrigerant decompression action, and puts the cooling expansion valve 15b in a fully closed state.
 このため、単独冷房モードのヒートポンプサイクル10では、図6に示すように、圧縮機11から吐出された冷媒が、水冷媒熱交換器12の冷媒通路、レシーバ13、冷房用膨張弁15a、室内蒸発器16、蒸発圧力調整弁17、圧縮機11の吸入側の順に循環する冷媒回路に切り替えられる。 Therefore, in the single cooling mode heat pump cycle 10, as shown in FIG. 16, the evaporating pressure regulating valve 17, and the suction side of the compressor 11, in that order.
 また、制御装置50は、圧縮機11の冷媒吐出能力については、蒸発器温度センサ64eによって検出された蒸発器温度Tefinが、目標蒸発器温度TEOに近づくように制御する。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め制御装置50に記憶された制御マップを参照して決定される。 In addition, the control device 50 controls the refrigerant discharge capacity of the compressor 11 so that the evaporator temperature Tefin detected by the evaporator temperature sensor 64e approaches the target evaporator temperature TEO. The target evaporator temperature TEO is determined by referring to a control map stored in advance in the controller 50 based on the target outlet temperature TAO.
 また、制御装置50は、冷房用膨張弁15aの絞り開度については、室内蒸発器16の出口側冷媒の過熱度SH1が、予め定めた基準過熱度KSH(本実施形態では、5℃)に近づくように制御する。過熱度SH1は、蒸発器温度Tefinおよび蒸発器圧力センサ65eによって検出された蒸発器側冷媒圧力Peに基づいて決定することができる。 In addition, the control device 50 controls the degree of throttle opening of the cooling expansion valve 15a so that the degree of superheat SH1 of the refrigerant on the outlet side of the indoor evaporator 16 reaches a predetermined reference degree of superheat KSH (5° C. in this embodiment). Control to get closer. The degree of superheat SH1 can be determined based on the evaporator temperature Tefin and the evaporator-side refrigerant pressure Pe detected by the evaporator pressure sensor 65e.
 また、単独冷房モードの高温側熱媒体回路20では、制御装置50が、予め定めた基準圧送能力を発揮するように、高温側ポンプ21を作動させる。 In addition, in the high temperature side heat medium circuit 20 in the single cooling mode, the control device 50 operates the high temperature side pump 21 so as to exhibit a predetermined reference pumping capability.
 また、制御装置50は、高温側流量調整弁22については、高温側熱媒体温度センサ66aによって検出された高温側熱媒体温度TWHが、予め定めた基準高温側熱媒体温度KTWHに近づくように作動を制御する。 Further, the control device 50 operates the high-temperature side flow control valve 22 so that the high-temperature side heat medium temperature TWH detected by the high-temperature side heat medium temperature sensor 66a approaches a predetermined reference high-temperature side heat medium temperature KTWH. to control.
 従って、高温側流量調整弁22は、高温側熱媒体温度TWHが基準高温側熱媒体温度KTWHに近づくように、ヒータコア23側へ流出させる高温側熱媒体の流量と高温側ラジエータ25側へ流出させる高温側熱媒体の流量との流量比を調整する。基準高温側熱媒体温度KTWHは、高温側熱媒体をヒータコア23へ流入させた際に、送風空気を適切に加熱できる値に設定されている。 Therefore, the high temperature side flow control valve 22 causes the high temperature side heat medium to flow out to the heater core 23 side and the high temperature side radiator 25 side so that the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH. Adjust the flow rate ratio with the flow rate of the high temperature side heat medium. The reference high temperature side heat medium temperature KTWH is set to a value that can appropriately heat the blown air when the high temperature side heat medium is caused to flow into the heater core 23 .
 さらに、制御装置50は、高温側流量調整弁22の内部へ流入した高温側熱媒体の全流量をヒータコア23側へ流出させても、高温側熱媒体温度TWHが基準高温側熱媒体温度KTWHに到達しない場合に、ハイボルテージヒータ26を発熱させる。そして、制御装置50は、高温側熱媒体温度TWHが基準高温側熱媒体温度KTWHに近づくように、ハイボルテージヒータ26の発熱量を制御する。 Furthermore, even if the entire flow rate of the high temperature side heat medium that has flowed into the high temperature side flow control valve 22 is allowed to flow out to the heater core 23 side, the control device 50 keeps the high temperature side heat medium temperature TWH at the reference high temperature side heat medium temperature KTWH. When it does not reach, the high voltage heater 26 is caused to generate heat. Then, the control device 50 controls the amount of heat generated by the high voltage heater 26 so that the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH.
 ここで、車室内を冷房する運転モードは、目標吹出温度TAOが低温域となっている際に実行される。従って、単独冷房モードでは、ヒータコア23にて高温側熱媒体から送風空気へ放熱される放熱量が少なくなりやすい。そのため、単独冷房モードでは、高温側流量調整弁22からヒータコア23側へ流出させる高温側熱媒体の流量よりも、高温側ラジエータ25側へ流出させる高温側熱媒体の流量が多くなりやすい。 Here, the operation mode for cooling the interior of the vehicle is executed when the target blowout temperature TAO is in the low temperature range. Therefore, in the single cooling mode, the amount of heat radiated from the high-temperature side heat medium to the blast air by the heater core 23 tends to decrease. Therefore, in the single cooling mode, the flow rate of the high temperature side heat medium flowing out to the high temperature side radiator 25 side tends to be larger than the flow rate of the high temperature side heat medium flowing out from the high temperature side flow control valve 22 to the heater core 23 side.
 そこで、図6では、高温側流量調整弁22からヒータコア23側へ流出する高温側熱媒体の流れを太破線で示し、高温側流量調整弁22から高温側ラジエータ25側へ流出する高温側熱媒体の流れを太実線で示している。 Therefore, in FIG. 6, the flow of the high temperature side heat medium flowing out from the high temperature side flow control valve 22 to the heater core 23 side is indicated by a thick dashed line. flow is indicated by a thick solid line.
 また、単独冷房モードの低温側熱媒体回路30では、制御装置50が、第1低温側ポンプ31aを停止させ、予め定めた基準圧送能力を発揮するように第2低温側ポンプ31bを作動させる。
また、制御装置50は、五方弁32については、第2低温側熱媒体温度センサ67bによって検出された第2低温側熱媒体温度TWL2が、予め定めた第2基準低温側熱媒体温度KTWL2に近づくように作動を制御する。
In addition, in the low temperature side heat medium circuit 30 in the independent cooling mode, the control device 50 stops the first low temperature side pump 31a and operates the second low temperature side pump 31b so as to exhibit a predetermined reference pumping capability.
For the five-way valve 32, the control device 50 controls the second low temperature side heat medium temperature TWL2 detected by the second low temperature side heat medium temperature sensor 67b to reach the predetermined second reference low temperature side heat medium temperature KTWL2. Control the movement to get closer.
 従って、五方弁32は、第2低温側熱媒体温度TWL2が第2基準低温側熱媒体温度KTWL2に近づくように、低温側ラジエータ35側へ流出させる低温側熱媒体の流量とバイパス通路38側へ流出させる低温側熱媒体の流量との流量比を調整する。 Therefore, the five-way valve 32 adjusts the flow rate of the low temperature side heat medium flowing out to the low temperature side radiator 35 side and the bypass passage 38 side so that the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2. Adjust the flow ratio with the flow rate of the low temperature side heat medium flowing out to.
 第2基準低温側熱媒体温度KTWL2は、第2低温側ポンプ31bから圧送された低温側熱媒体を、強電系機器81の冷却水通路へ流入させることによって、強電系機器81の温度を基準耐熱温度以下に維持することが可能な値に設定されている。 The second reference low-temperature side heat medium temperature KTWL2 is obtained by causing the low-temperature side heat medium pressure-fed from the second low-temperature side pump 31b to flow into the cooling water passage of the high-power system device 81, thereby setting the temperature of the high-power device 81 to the reference heat resistance temperature. It is set to a value that can be maintained below the temperature.
 ここで、車室内を冷房する運転モードは、外気温Tamが比較的高くなっている際に実行される。従って、単独冷房モードでは、強電系機器81によって低温側熱媒体が加熱されて、蓄熱用回路を循環する低温側熱媒体の温度が上昇しやすい。そのため、単独冷房モードの五方弁32は、図6に示すように、低温側熱媒体回路30の回路構成を機器冷却用回路に切り替えることが多い。 Here, the operation mode for cooling the vehicle interior is executed when the outside air temperature Tam is relatively high. Therefore, in the independent cooling mode, the high-voltage equipment 81 heats the low-temperature side heat medium, and the temperature of the low-temperature side heat medium circulating in the heat storage circuit tends to rise. Therefore, as shown in FIG. 6, the five-way valve 32 in the single cooling mode often switches the circuit configuration of the low temperature side heat medium circuit 30 to the device cooling circuit.
 また、単独冷房モードの室内空調ユニット40では、制御装置50が、目標送風能力を発揮するように室内送風機42を作動させる。目標送風能力は、目標吹出温度TAOに基づいて、予め制御装置50に記憶された制御マップを参照して決定される。 Also, in the indoor air conditioning unit 40 in the single cooling mode, the control device 50 operates the indoor fan 42 so as to exhibit the target air blowing capacity. The target blowing capacity is determined by referring to a control map stored in advance in the control device 50 based on the target blowing temperature TAO.
 室内送風機42用の制御マップでは、目標吹出温度TAOが極低温域(すなわち、最大冷房時)あるいは極高温域(すなわち、最大暖房時)となっている際に、送風能力が最大となるように決定する。さらに、目標吹出温度TAOが極低温域あるいは極高温域から中間温度域に向かうに伴って、送風能力を低下させるように決定する。そして、目標吹出温度TAOが中間温度域となっている際に、送風能力が最小となるように決定する。 In the control map for the indoor fan 42, the blowing capacity is maximized when the target outlet temperature TAO is in the extremely low temperature range (that is, maximum cooling) or the extremely high temperature range (that is, maximum heating). decide. Further, the blowing capacity is determined to decrease as the target blowing temperature TAO moves from the extremely low temperature range or the extremely high temperature range to the intermediate temperature range. Then, when the target blowout temperature TAO is in the intermediate temperature range, the blowing capacity is determined to be the minimum.
 また、制御装置50は、エアミックスドア用の電動アクチュエータについては、空調風温度センサ69によって検出された送風空気温度TAVが目標吹出温度TAOに近づくようにエアミックスドア44の開度を変化させる。 As for the electric actuator for the air mix door, the controller 50 changes the opening degree of the air mix door 44 so that the air temperature TAV detected by the conditioned air temperature sensor 69 approaches the target outlet temperature TAO.
 また、制御装置50は、目標吹出温度TAOに基づいて、予め制御装置50に記憶された制御マップを参照して内外気切替装置43および吹出モードドア用の電動アクチュエータの作動を制御する。 In addition, based on the target blowout temperature TAO, the control device 50 refers to a control map stored in advance in the control device 50 to control the operation of the inside/outside air switching device 43 and the electric actuator for the blowout mode door.
 従って、単独冷房モードのヒートポンプサイクル10では、水冷媒熱交換器12を放熱器として機能させ、室内蒸発器16を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが形成される。水冷媒熱交換器12では、高圧冷媒と高温側熱媒体が熱交換して、高温側熱媒体が加熱される。室内蒸発器16では、低圧冷媒と送風空気が熱交換して、送風空気が冷却される。 Therefore, in the heat pump cycle 10 in the single cooling mode, a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the indoor evaporator 16 functions as an evaporator. In the water-refrigerant heat exchanger 12, heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium. In the indoor evaporator 16, heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air.
 また、単独冷房モードの高温側熱媒体回路20では、水冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁22の作動状態に応じてヒータコア23および高温側ラジエータ25へ流入する。これにより、高温側熱媒体温度TWHが、基準高温側熱媒体温度KTWHに近づく。 In addition, in the high temperature side heat medium circuit 20 in the independent cooling mode, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows through the heater core 23 and the high temperature side radiator 25 depending on the operating state of the high temperature side flow control valve 22. flow into As a result, the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH.
 ヒータコア23では、エアミックスドア44の開度に応じて、高温側熱媒体と送風空気が熱交換して、送風空気が加熱される。高温側ラジエータ25では、高温側熱媒体と外気が熱交換して、高温側熱媒体の有する熱が外気に放熱される。 In the heater core 23, heat is exchanged between the high-temperature heat medium and the blast air according to the degree of opening of the air mix door 44, and the blast air is heated. In the high temperature side radiator 25, heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
 また、単独冷房モードの低温側熱媒体回路30では、第2低温側ポンプ31bから圧送された低温側熱媒体が、強電系機器81の冷却水通路を流通する。これにより、強電系機器81が冷却される。換言すると、強電系機器81の冷却水通路にて、低温側熱媒体が加熱される。 In addition, in the low-temperature side heat medium circuit 30 in the independent cooling mode, the low-temperature side heat medium pumped from the second low-temperature side pump 31 b flows through the cooling water passages of the high-voltage equipment 81 . As a result, the heavy electrical equipment 81 is cooled. In other words, the low-temperature heat medium is heated in the cooling water passage of the high-voltage equipment 81 .
 強電系機器81の冷却水通路から流出した低温側熱媒体は、五方弁32の作動状態に応じて低温側ラジエータ35およびバイパス通路38へ流入する。これにより、第2低温側熱媒体温度TWL2が第2基準低温側熱媒体温度KTWL2に近づく。低温側ラジエータ35では、低温側熱媒体と高温側ラジエータ25を通過した外気が熱交換して、低温側熱媒体の有する熱が外気に放熱される。 The low-temperature side heat medium flowing out of the cooling water passage of the high-voltage equipment 81 flows into the low-temperature side radiator 35 and the bypass passage 38 according to the operating state of the five-way valve 32 . As a result, the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2. In the low temperature side radiator 35, heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the heat of the low temperature side heat medium is radiated to the outside air.
 また、単独冷房モードの室内空調ユニット40では、室内送風機42から送風された送風空気が室内蒸発器16にて冷却される。室内蒸発器16にて冷却された送風空気は、エアミックスドア44の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の冷房が実現される。 Also, in the indoor air conditioning unit 40 in the single cooling mode, the air blown from the indoor blower 42 is cooled by the indoor evaporator 16 . The blown air cooled by the indoor evaporator 16 is adjusted in temperature by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO. Then, the temperature-controlled blowing air is blown into the vehicle interior, thereby cooling the vehicle interior.
 (b)単独除湿暖房モード
 単独除湿暖房モードは、バッテリ80の冷却を行うことなく、冷却されて除湿された送風空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。
(b) Single Dehumidification and Heating Mode The single dehumidification and heating mode is an operation mode in which the dehumidification and heating of the vehicle interior is performed by reheating the cooled and dehumidified blast air and blowing it into the vehicle interior without cooling the battery 80. is.
 単独除湿暖房モードのヒートポンプサイクル10では、制御装置50が、冷房用膨張弁15aを絞り状態とし、冷却用膨張弁15bを絞り状態とする。 In the heat pump cycle 10 in the single dehumidifying and heating mode, the controller 50 throttles the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
 このため、単独除湿暖房モードのヒートポンプサイクル10では、図7に示すように、圧縮機11から吐出された冷媒が、水冷媒熱交換器12の冷媒通路、レシーバ13、冷房用膨張弁15a、室内蒸発器16、蒸発圧力調整弁17、圧縮機11の吸入側の順に循環する冷媒回路に切り替えられる。同時に、圧縮機11から吐出された冷媒が、水冷媒熱交換器12の冷媒通路、レシーバ13、冷却用膨張弁15b、チラー18、圧縮機11の吸入側の順に循環する冷媒回路に切り替えられる。つまり、室内蒸発器16とチラー18が、冷媒の流れに対して並列的に接続される冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the single dehumidifying and heating mode, as shown in FIG. The refrigerant circuit is switched to circulate in the order of the evaporator 16, the evaporating pressure regulating valve 17, and the suction side of the compressor 11. FIG. At the same time, the refrigerant discharged from the compressor 11 is switched to a refrigerant circuit that circulates through the refrigerant passage of the water-refrigerant heat exchanger 12, the receiver 13, the cooling expansion valve 15b, the chiller 18, and the suction side of the compressor 11 in that order. That is, the indoor evaporator 16 and the chiller 18 are switched to a refrigerant circuit that is connected in parallel with respect to the refrigerant flow.
 また、制御装置50は、圧縮機11の冷媒吐出能力および冷房用膨張弁15aの絞り開度については、単独冷房モードと同様に制御する。また、制御装置50は、冷却用膨張弁15bの絞り開度については、チラー温度センサ64cによって検出されたチラー側冷媒温度Tcが、外気温Tamよりも低い値となるように制御する。 In addition, the control device 50 controls the refrigerant discharge capacity of the compressor 11 and the throttle opening of the cooling expansion valve 15a in the same manner as in the single cooling mode. Further, the control device 50 controls the throttle opening degree of the cooling expansion valve 15b so that the chiller-side refrigerant temperature Tc detected by the chiller temperature sensor 64c is lower than the outside air temperature Tam.
 また、単独除湿暖房モードの高温側熱媒体回路20では、制御装置50が、単独冷房モードと同様に、高温側ポンプ21を作動させるとともに、高温側流量調整弁22の作動を制御する。 In addition, in the high temperature side heat medium circuit 20 in the independent dehumidifying and heating mode, the control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 in the same manner as in the independent cooling mode.
 ここで、単独除湿暖房モードでは、室内蒸発器16にて冷却された送風空気をヒータコア23にて再加熱する。従って、単独除湿暖房モードの高温側流量調整弁22では、図7に示すように、高温側ポンプ21から圧送された高温側熱媒体の全流量を、ヒータコア23側へ流出させることが多い。 Here, in the single dehumidification heating mode, the heater core 23 reheats the blown air cooled by the indoor evaporator 16 . Therefore, in the high temperature side flow control valve 22 in the single dehumidification and heating mode, as shown in FIG.
 また、単独除湿暖房モードの低温側熱媒体回路30では、制御装置50が、それぞれ予め定めた基準圧送能力を発揮するように第1低温側ポンプ31aおよび第2低温側ポンプ31bを作動させる。また、制御装置50は、五方弁32については、図7に示すように、吸熱用回路と蓄熱用回路が同時に形成されるように作動を制御する。 In addition, in the low-temperature side heat medium circuit 30 in the single dehumidifying and heating mode, the control device 50 operates the first low-temperature side pump 31a and the second low-temperature side pump 31b so as to exhibit a predetermined reference pumping capability. Further, the control device 50 controls the operation of the five-way valve 32 so that the heat absorbing circuit and the heat storing circuit are simultaneously formed as shown in FIG.
 また、単独除湿暖房モードの室内空調ユニット40では、制御装置50が、単独冷房モードと同様に、室内送風機42、エアミックスドア用の電動アクチュエータ、内外気切替装置43および吹出モードドア用の電動アクチュエータの作動を制御する。 Further, in the indoor air conditioning unit 40 in the single dehumidifying and heating mode, the control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. controls the operation of
 従って、単独除湿暖房モードのヒートポンプサイクル10では、水冷媒熱交換器12を放熱器として機能させ、室内蒸発器16およびチラー18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが形成される。水冷媒熱交換器12では、高圧冷媒と高温側熱媒体が熱交換して、高温側熱媒体が加熱される。室内蒸発器16では、低圧冷媒と送風空気が熱交換して、送風空気が冷却される。チラー18では、低圧冷媒と低温側熱媒体が熱交換して、低温側熱媒体が冷却される。 Therefore, in the heat pump cycle 10 in the single dehumidifying and heating mode, a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the indoor evaporator 16 and chiller 18 function as evaporators. In the water-refrigerant heat exchanger 12, heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium. In the indoor evaporator 16, heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air. In the chiller 18, heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
 また、単独除湿暖房モードの高温側熱媒体回路20では、単独冷房モードと同様に、高温側熱媒体温度TWHが、基準高温側熱媒体温度KTWHに近づく。ヒータコア23では、エアミックスドア44の開度に応じて、高温側熱媒体と送風空気が熱交換して、送風空気が加熱される。 In addition, in the high temperature side heat medium circuit 20 in the single dehumidifying and heating mode, the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode. In the heater core 23, heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
 また、単独除湿暖房モードの低温側熱媒体回路30では、第1低温側ポンプ31aから圧送された低温側熱媒体が、吸熱用回路を循環する。低温側ラジエータ35では、低温側熱媒体と高温側ラジエータ25を通過した外気が熱交換して、低温側熱媒体が外気から吸熱する。チラー18では、低圧冷媒と低温側熱媒体が熱交換して、低圧冷媒が低温側熱媒体から吸熱する。 In addition, in the low temperature side heat medium circuit 30 in the single dehumidification heating mode, the low temperature side heat medium pumped from the first low temperature side pump 31a circulates in the heat absorption circuit. In the low temperature side radiator 35, heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the low temperature side heat medium absorbs heat from the outside air. In the chiller 18, the low-pressure refrigerant and the low-temperature side heat medium exchange heat, and the low-pressure refrigerant absorbs heat from the low-temperature side heat medium.
 第2低温側ポンプ31bから圧送された低温側熱媒体は、蓄熱用回路を循環する。これにより、強電系機器81によって蓄熱回路を循環する低温側熱媒体が加熱される。つまり、強電系機器81の発生させた熱が蓄熱回路を循環する低温側熱媒体に蓄熱される。 The low temperature side heat medium pumped from the second low temperature side pump 31b circulates in the heat storage circuit. As a result, the low-temperature side heat medium circulating in the heat storage circuit is heated by the high-voltage equipment 81 . That is, the heat generated by the high-voltage equipment 81 is stored in the low temperature side heat medium circulating in the heat storage circuit.
 また、単独除湿暖房モードの室内空調ユニット40では、室内送風機42から送風された送風空気が室内蒸発器16にて冷却されて除湿される。室内蒸発器16にて冷却されて除湿された送風空気は、エアミックスドア44の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の除湿暖房が実現される。 In addition, in the indoor air conditioning unit 40 in the single dehumidifying and heating mode, the air blown from the indoor blower 42 is cooled by the indoor evaporator 16 and dehumidified. The temperature of the air cooled and dehumidified by the indoor evaporator 16 is adjusted by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO. Dehumidification and heating of the interior of the vehicle are achieved by blowing out the temperature-adjusted blown air into the interior of the vehicle.
 以上の説明から明らかなように、単独除湿暖房モードでは、低温側熱媒体回路30の吸熱用回路を循環する低温側熱媒体を介して、外気の有する熱を低圧冷媒に吸熱させて、送風空気を加熱するための熱源として利用している。従って、チラー18および低温側熱媒体回路30の低温側ラジエータ35は、冷却用膨張弁15bにて減圧された低圧冷媒に、外気の有する熱を吸熱させる吸熱部を形成している。 As is clear from the above description, in the single dehumidifying and heating mode, the low-pressure refrigerant absorbs the heat of the outside air via the low-temperature side heat medium circulating in the heat absorption circuit of the low-temperature side heat medium circuit 30, and the blown air is used as a heat source to heat the Therefore, the chiller 18 and the low-temperature side radiator 35 of the low-temperature side heat medium circuit 30 form a heat absorbing portion that causes the low-pressure refrigerant decompressed by the cooling expansion valve 15b to absorb the heat of the outside air.
 (c)単独暖房モード
 単独暖房モードは、バッテリ80の冷却を行うことなく、加熱された送風空気を車室内へ吹き出すことによって車室内の暖房を行う運転モードである。本実施形態の制御プログラムでは、目標吹出温度TAOが高温域の値となっている際、あるいは、外気温Tamが比較的低温となっている際に車室内の暖房を行うための運転モードを実行する。
(c) Single Heating Mode The single heating mode is an operation mode in which the vehicle interior is heated by blowing heated air into the vehicle interior without cooling the battery 80 . In the control program of the present embodiment, an operation mode for heating the passenger compartment is executed when the target air temperature TAO is in the high temperature range or when the outside air temperature Tam is relatively low. do.
 単独暖房モードのヒートポンプサイクル10では、制御装置50が、冷房用膨張弁15aを全閉状態とし、冷却用膨張弁15bを絞り状態とする。 In the heat pump cycle 10 in the single heating mode, the controller 50 fully closes the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
 このため、単独暖房モードのヒートポンプサイクル10では、図8に示すように、圧縮機11から吐出された冷媒が、水冷媒熱交換器12の冷媒通路、レシーバ13、冷房用膨張弁15a、チラー18、圧縮機11の吸入側の順に循環する冷媒回路に切り替えられる。 For this reason, in the heat pump cycle 10 in the single heating mode, as shown in FIG. , to the refrigerant circuit that circulates in the order of the suction side of the compressor 11 .
 また、制御装置50は、圧縮機11の冷媒吐出能力については、高圧圧力センサ65aによって検出された高圧冷媒圧力Pdが、目標高圧PDOに近づくように制御する。目標高圧PDOは、目標吹出温度TAOに基づいて、予め制御装置50に記憶された制御マップを参照して決定される。 In addition, the control device 50 controls the refrigerant discharge capacity of the compressor 11 so that the high-pressure refrigerant pressure Pd detected by the high-pressure sensor 65a approaches the target high-pressure PDO. The target high pressure PDO is determined by referring to a control map stored in advance in the controller 50 based on the target outlet temperature TAO.
 また、制御装置50は、冷却用膨張弁15bの絞り開度については、チラー18の冷媒通路から流出した冷媒の過熱度SH2が、予め定めた基準過熱度KSHに近づくように制御する。過熱度SH2は、チラー温度センサ64cによって検出されたチラー側冷媒温度Tcおよびチラー圧力センサ65cによって検出されたチラー側冷媒圧力Pcに基づいて決定することができる。 In addition, the controller 50 controls the throttle opening of the cooling expansion valve 15b so that the degree of superheat SH2 of the refrigerant flowing out of the refrigerant passage of the chiller 18 approaches a predetermined reference degree of superheat KSH. The degree of superheat SH2 can be determined based on the chiller-side refrigerant temperature Tc detected by the chiller temperature sensor 64c and the chiller-side refrigerant pressure Pc detected by the chiller pressure sensor 65c.
 また、単独暖房モードの高温側熱媒体回路20では、制御装置50が、単独冷房モードと同様に、高温側ポンプ21を作動させるとともに、高温側流量調整弁22の作動を制御する。単独暖房モードの高温側流量調整弁22では、図8に示すように、単独除湿暖房モードと同様に、高温側ポンプ21から圧送された高温側熱媒体の全流量を、ヒータコア23側へ流出させることが多い。 In addition, in the high temperature side heat medium circuit 20 in the single heating mode, the control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 as in the single cooling mode. In the high temperature side flow control valve 22 in the individual heating mode, as shown in FIG. 8, the entire flow rate of the high temperature side heat medium pressure-fed from the high temperature side pump 21 flows out to the heater core 23 side, as in the individual dehumidifying heating mode. There are many things.
 また、単独暖房モードの低温側熱媒体回路30では、制御装置50が、単独除湿暖房モードと同様に、第1低温側ポンプ31aおよび第2低温側ポンプ31bを作動させる。また、制御装置50は、五方弁32については、図8に示すように、単独除湿暖房モードと同様に、吸熱用回路と蓄熱用回路が同時に形成されるように作動を制御する。 In addition, in the low temperature side heat medium circuit 30 in the single heating mode, the control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b in the same manner as in the single dehumidifying and heating mode. Further, the control device 50 controls the operation of the five-way valve 32 so that the heat absorption circuit and the heat storage circuit are simultaneously formed, as in the single dehumidifying and heating mode, as shown in FIG.
 また、単独暖房モードの室内空調ユニット40では、制御装置50が、単独冷房モードと同様に、室内送風機42、エアミックスドア用の電動アクチュエータ、内外気切替装置43および吹出モードドア用の電動アクチュエータの作動を制御する。 Further, in the indoor air conditioning unit 40 in the single heating mode, the control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. control the actuation.
 ここで、車室内を暖房する運転モードは、外気温Tamが比較的低くなっている際に実行される。従って、単独暖房モードでは、制御装置50は、室内送風機42から送風された送風空気の全風量をヒータコア23側へ流入させるように、エアミックスドア44の開度を調整することが多い。 Here, the operation mode for heating the interior of the vehicle is executed when the outside air temperature Tam is relatively low. Therefore, in the single heating mode, the control device 50 often adjusts the opening degree of the air mix door 44 so that the entire amount of air blown from the indoor fan 42 flows into the heater core 23 side.
 従って、単独暖房モードのヒートポンプサイクル10では、水冷媒熱交換器12を放熱器として機能させ、チラー18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが形成される。水冷媒熱交換器12では、高圧冷媒と高温側熱媒体が熱交換して、高温側熱媒体が加熱される。チラー18では、低圧冷媒と低温側熱媒体が熱交換して、低温側熱媒体が冷却される。 Therefore, in the heat pump cycle 10 in the single heating mode, a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the chiller 18 functions as an evaporator. In the water-refrigerant heat exchanger 12, heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium. In the chiller 18, heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
 また、単独暖房モードの高温側熱媒体回路20では、単独冷房モードと同様に、高温側熱媒体温度TWHが、基準高温側熱媒体温度KTWHに近づく。ヒータコア23では、エアミックスドア44の開度に応じて、高温側熱媒体と送風空気が熱交換して、送風空気が加熱される。 Also, in the high temperature side heat medium circuit 20 in the single heating mode, the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode. In the heater core 23, heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
 また、単独暖房モードの低温側熱媒体回路30では、単独除湿暖房モードと同様に、第1低温側ポンプ31aから圧送された低温側熱媒体が、吸熱用回路を循環する。低温側ラジエータ35では、低温側熱媒体と高温側ラジエータ25を通過した外気が熱交換して、低温側熱媒体が外気から吸熱する。チラー18では、低圧冷媒と低温側熱媒体が熱交換して、低圧冷媒が低温側熱媒体から吸熱する。 In addition, in the low temperature side heat medium circuit 30 in the single heating mode, the low temperature side heat medium pumped from the first low temperature side pump 31a circulates in the heat absorption circuit in the same manner as in the single dehumidifying and heating mode. In the low temperature side radiator 35, heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the low temperature side heat medium absorbs heat from the outside air. In the chiller 18, the low-pressure refrigerant and the low-temperature side heat medium exchange heat, and the low-pressure refrigerant absorbs heat from the low-temperature side heat medium.
 第2低温側ポンプ31bから圧送された低温側熱媒体は、蓄熱用回路を循環する。これにより、強電系機器81の発生させた熱が蓄熱回路を循環する低温側熱媒体に蓄熱される。 The low temperature side heat medium pumped from the second low temperature side pump 31b circulates in the heat storage circuit. As a result, the heat generated by the high-voltage equipment 81 is stored in the low-temperature side heat medium circulating in the heat storage circuit.
 また、単独暖房モードの室内空調ユニット40では、室内送風機42から送風された送風空気が室内蒸発器16を通過する。室内蒸発器16を通過した送風空気は、エアミックスドア44の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の暖房が実現される。 Also, in the indoor air conditioning unit 40 in the single heating mode, the air blown from the indoor blower 42 passes through the indoor evaporator 16 . The temperature of the blown air that has passed through the indoor evaporator 16 is adjusted so as to approach the target blowout temperature TAO by adjusting the opening of the air mix door 44 . Then, the temperature-controlled blowing air is blown into the vehicle interior, thereby heating the vehicle interior.
 さらに、単独暖房モードでは、単独除湿暖房モードと同様に、チラー18および低温側熱媒体回路30の低温側ラジエータ35が吸熱部を形成している。 Furthermore, in the individual heating mode, the chiller 18 and the low-temperature side radiator 35 of the low-temperature side heat medium circuit 30 form a heat absorption portion, as in the individual dehumidifying and heating mode.
 (d)冷却冷房モード
 冷却冷房モードは、バッテリ80の冷却を行うとともに、車室内の冷房を行う運転モードである。本実施形態の制御プログラムでは、バッテリ温度センサ68によって検出されたバッテリ温度TBが、予め定めた基準上限温度KTBH以上となっている際にバッテリ80を冷却するための運転モードを実行する。
(d) Cooling/cooling mode The cooling/cooling mode is an operation mode in which the battery 80 is cooled and the vehicle interior is cooled. The control program of the present embodiment executes an operation mode for cooling the battery 80 when the battery temperature TB detected by the battery temperature sensor 68 is equal to or higher than a predetermined reference upper limit temperature KTBH.
 冷却冷房モードのヒートポンプサイクル10では、制御装置50が、冷房用膨張弁15aを絞り状態とし、冷却用膨張弁15bを絞り状態とする。 In the heat pump cycle 10 in the cooling mode, the controller 50 throttles the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
 このため、冷却冷房モードのヒートポンプサイクル10では、図9に示すように、単独除湿暖房モードと同様の冷媒回路に切り替えられる。つまり、室内蒸発器16とチラー18が、冷媒の流れに対して並列的に接続される冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the cooling cooling mode, as shown in FIG. 9, the refrigerant circuit is switched to the same refrigerant circuit as in the single dehumidifying heating mode. That is, the indoor evaporator 16 and the chiller 18 are switched to a refrigerant circuit that is connected in parallel with respect to the refrigerant flow.
 また、制御装置50は、圧縮機11の冷媒吐出能力および冷房用膨張弁15aの絞り開度については、単独冷房モードと同様に制御する。 In addition, the control device 50 controls the refrigerant discharge capacity of the compressor 11 and the throttle opening of the cooling expansion valve 15a in the same manner as in the single cooling mode.
 また、制御装置50は、冷却用膨張弁15bの絞り開度については、第1低温側熱媒体温度センサ67aによって検出された第1低温側熱媒体温度TWL1が、予め定めた第1基準低温側熱媒体温度KTWL1に近づくように制御する。第1基準低温側熱媒体温度KTWL1は、低温側熱媒体をバッテリ80の冷却水通路80aへ流入させた際に、バッテリ80を適切に冷却可能な値に設定されている。 Further, the control device 50 controls the throttle opening degree of the cooling expansion valve 15b so that the first low-temperature-side heat-medium temperature TWL1 detected by the first low-temperature-side heat-medium temperature sensor 67a reaches a predetermined first reference low-temperature-side temperature. The temperature is controlled so as to approach the heat medium temperature KTWL1. The first reference low-temperature-side heat medium temperature KTWL1 is set to a value that allows the battery 80 to be appropriately cooled when the low-temperature-side heat medium is caused to flow into the cooling water passage 80a of the battery 80 .
 また、冷却冷房モードの高温側熱媒体回路20では、制御装置50が、単独冷房モードと同様に、高温側ポンプ21を作動させるとともに、高温側流量調整弁22の作動を制御する。 In addition, in the high temperature side heat medium circuit 20 in the cooling cooling mode, the control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 as in the single cooling mode.
 ここで、冷却冷房モードでは、単独冷房モードと同様に、ヒータコア23にて高温側熱媒体が送風空気へ放熱する放熱量が少なくなる。さらに、冷却冷房モードでは、チラー18にて低圧冷媒が低温側熱媒体から吸熱した熱(すなわち、バッテリ80の廃熱)についても、高温側熱媒体を介して外気に放熱する必要がある。 Here, in the cooling cooling mode, as in the single cooling mode, the amount of heat released by the high-temperature-side heat medium in the heater core 23 to the blown air is reduced. Furthermore, in the cooling mode, the heat absorbed by the low-pressure refrigerant from the low-temperature heat medium in the chiller 18 (that is, the waste heat of the battery 80) must also be released to the outside air via the high-temperature heat medium.
 このため、冷却冷房モードの高温側流量調整弁22では、図9に示すように、高温側ポンプ21から圧送された高温側熱媒体の全流量を、高温側ラジエータ25側へ流出させることが多い。 Therefore, in the high-temperature side flow control valve 22 in the cooling mode, as shown in FIG. 9, the high-temperature side heat transfer medium pressure-fed from the high-temperature side pump 21 often flows out to the high-temperature side radiator 25 side. .
 また、冷却冷房モードの低温側熱媒体回路30では、制御装置50が、それぞれ予め定めた基準圧送能力を発揮するように第1低温側ポンプ31aおよび第2低温側ポンプ31bを作動させる。 In addition, in the low temperature side heat medium circuit 30 in the cooling cooling mode, the control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b so as to exhibit a predetermined reference pumping capability.
 また、制御装置50は、五方弁32については、第2低温側熱媒体温度センサ67bによって検出された第2低温側熱媒体温度TWL2が、予め定めた第2基準低温側熱媒体温度KTWL2に近づくように作動を制御すると同時に、図9に示すように、バッテリ冷却用回路が形成されるように作動を制御する。 For the five-way valve 32, the control device 50 controls the second low temperature side heat medium temperature TWL2 detected by the second low temperature side heat medium temperature sensor 67b to reach the predetermined second reference low temperature side heat medium temperature KTWL2. At the same time as controlling the operation to approach, as shown in FIG. 9, the operation is controlled so that a circuit for cooling the battery is formed.
 ここで、冷却冷房モードでは、単独冷房モードと同様に、蓄熱用回路を循環する低温側熱媒体の温度が上昇しやすい。そのため、冷却冷房モードの五方弁32では、図9に示すように、低温側熱媒体回路30を機器冷却用回路およびバッテリ冷却用回路が同時に形成される回路構成に切り替えることが多い。 Here, in the cooling cooling mode, the temperature of the low temperature side heat medium circulating in the heat storage circuit tends to rise, as in the independent cooling mode. Therefore, in the five-way valve 32 in the cooling cooling mode, as shown in FIG. 9, the low-temperature side heat medium circuit 30 is often switched to a circuit configuration in which the device cooling circuit and the battery cooling circuit are formed at the same time.
 また、冷却冷房モードの室内空調ユニット40では、制御装置50が、単独冷房モードと同様に、室内送風機42、エアミックスドア用の電動アクチュエータ、内外気切替装置43および吹出モードドア用の電動アクチュエータの作動を制御する。 In addition, in the indoor air conditioning unit 40 in the cooling cooling mode, the control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the independent cooling mode. control the actuation.
 従って、冷却冷房モードのヒートポンプサイクル10では、単独除湿暖房モードと同様の蒸気圧縮式の冷凍サイクルが形成される。水冷媒熱交換器12では、高圧冷媒と高温側熱媒体が熱交換して、高温側熱媒体が加熱される。室内蒸発器16では、低圧冷媒と送風空気が熱交換して、送風空気が冷却される。チラー18では、低圧冷媒と低温側熱媒体が熱交換して、低温側熱媒体が冷却される。 Therefore, in the heat pump cycle 10 in the cooling cooling mode, a vapor compression refrigeration cycle similar to that in the single dehumidifying heating mode is formed. In the water-refrigerant heat exchanger 12, heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium. In the indoor evaporator 16, heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air. In the chiller 18, heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
 また、冷却冷房モードの高温側熱媒体回路20では、単独冷房モードと同様に、高温側熱媒体温度TWHが、基準高温側熱媒体温度KTWHに近づく。高温側ラジエータ25では、高温側熱媒体と外気が熱交換して、高温側熱媒体の有する熱が外気に放熱される。 Also, in the high temperature side heat medium circuit 20 in the cooling cooling mode, the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode. In the high temperature side radiator 25, heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
 また、冷却冷房モードの低温側熱媒体回路30では、第1低温側ポンプ31aから圧送された低温側熱媒体が、チラー18にて低圧冷媒と熱交換して冷却される。これにより、第1低温側熱媒体温度TWL1が、第1基準低温側熱媒体温度KTWL1に近づく。そして、チラー18にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aを流通する際に、バッテリ80が冷却される。 In addition, in the low-temperature side heat medium circuit 30 in the cooling cooling mode, the low-temperature side heat medium pumped from the first low-temperature side pump 31a is cooled by the chiller 18 by exchanging heat with the low-pressure refrigerant. As a result, the first low temperature side heat medium temperature TWL1 approaches the first reference low temperature side heat medium temperature KTWL1. Then, when the low temperature side heat medium cooled by the chiller 18 flows through the cooling water passage 80a of the battery 80, the battery 80 is cooled.
 第2低温側ポンプ31bから圧送された低温側熱媒体は、単独冷房モードと同様に、五方弁32の作動状態に応じて低温側ラジエータ35およびバイパス通路38へ流入する。これにより、第2低温側熱媒体温度TWL2が第2基準低温側熱媒体温度KTWL2に近づく。低温側ラジエータ35では、低温側熱媒体と高温側ラジエータ25を通過した外気が熱交換して、低温側熱媒体の有する熱が外気に放熱される。 The low temperature side heat medium pressure-fed from the second low temperature side pump 31b flows into the low temperature side radiator 35 and the bypass passage 38 according to the operating state of the five-way valve 32, as in the single cooling mode. As a result, the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2. In the low temperature side radiator 35, heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the heat of the low temperature side heat medium is radiated to the outside air.
 また、冷却冷房モードの室内空調ユニット40では、単独冷房モードと同様に、室内送風機42から送風された送風空気が室内蒸発器16にて冷却される。室内蒸発器16にて冷却された送風空気は、エアミックスドア44の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の冷房が実現される。 In addition, in the indoor air conditioning unit 40 in the cooling cooling mode, the air blown from the indoor blower 42 is cooled by the indoor evaporator 16 in the same manner as in the independent cooling mode. The blown air cooled by the indoor evaporator 16 is adjusted in temperature by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO. Then, the temperature-controlled blowing air is blown into the vehicle interior, thereby cooling the vehicle interior.
 (e)冷却除湿暖房モード
 冷却除湿暖房モードは、バッテリ80の冷却を行うとともに、車室内の除湿暖房を行う運転モードである。
(e) Cooling, Dehumidifying, and Heating Mode The cooling, dehumidifying, and heating mode is an operation mode that cools the battery 80 and performs dehumidifying and heating in the passenger compartment.
 冷却除湿暖房モードのヒートポンプサイクル10では、制御装置50が、冷房用膨張弁15aを絞り状態とし、冷却用膨張弁15bを絞り状態とする。 In the heat pump cycle 10 in the cooling/dehumidifying/heating mode, the controller 50 throttles the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
 このため、冷却除湿暖房モードのヒートポンプサイクル10では、図10に示すように、単独除湿暖房モードと同様の冷媒回路に切り替えられる。つまり、室内蒸発器16とチラー18が、冷媒の流れに対して並列的に接続される冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the cooling dehumidification heating mode, as shown in FIG. 10, the refrigerant circuit is switched to the same refrigerant circuit as in the single dehumidification heating mode. That is, the indoor evaporator 16 and the chiller 18 are switched to a refrigerant circuit that is connected in parallel with respect to the refrigerant flow.
 また、制御装置50は、圧縮機11の冷媒吐出能力、冷房用膨張弁15aの絞り開度、および冷却用膨張弁15bの絞り開度については、冷却冷房モードと同様に制御する。 In addition, the control device 50 controls the refrigerant discharge capacity of the compressor 11, the throttle opening degree of the cooling expansion valve 15a, and the throttle opening degree of the cooling expansion valve 15b in the same manner as in the cooling mode.
 また、冷却除湿暖房モードの高温側熱媒体回路20では、制御装置50が、単独除湿暖房モードと同様に、高温側ポンプ21を作動させるとともに、高温側流量調整弁22の作動を制御する。 In addition, in the high temperature side heat medium circuit 20 in the cooling dehumidification heating mode, the control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 in the same manner as in the single dehumidification heating mode.
 ここで、冷却除湿暖房モードでは、単独除湿暖房モードと同様に、室内蒸発器16にて冷却された送風空気をヒータコア23にて再加熱する必要がある。この際、冷却除湿暖房モードでは、チラー18にて低圧冷媒が低温側熱媒体から吸熱した熱(すなわち、バッテリ80の廃熱)を、高温側熱媒体を加熱するための熱源として利用することができる。その一方で、冷却冷房モードと同様に、チラー18にて低圧冷媒が低温側熱媒体から吸熱した熱が余剰となった際には、高温側熱媒体を介して外気に放熱する必要がある。 Here, in the cooling dehumidification heating mode, it is necessary to reheat the blown air cooled by the indoor evaporator 16 by the heater core 23, as in the single dehumidification heating mode. At this time, in the cooling/dehumidifying/heating mode, the heat absorbed by the low-pressure refrigerant from the low-temperature side heat medium in the chiller 18 (that is, the waste heat of the battery 80) can be used as a heat source for heating the high-temperature side heat medium. can. On the other hand, as in the cooling mode, when the low-pressure refrigerant absorbs heat from the low-temperature side heat medium in the chiller 18 and the excess heat becomes excessive, it is necessary to dissipate the heat to the outside air via the high-temperature side heat medium.
 このため、冷却除湿暖房モードでは、単独除湿暖房モードよりも高温側流量調整弁22から高温側ラジエータ25側へ流出させる高温側熱媒体の流量が増加する。そこで、図10では、高温側流量調整弁22からヒータコア23側へ流出する高温側熱媒体の流れを太実線で示し、高温側流量調整弁22から高温側ラジエータ25側へ流出する高温側熱媒体の流れを太破線で示している。 Therefore, in the cooling dehumidifying heating mode, the flow rate of the high temperature side heat medium flowing out from the high temperature side flow control valve 22 to the high temperature side radiator 25 side increases more than in the single dehumidifying heating mode. Therefore, in FIG. 10, the flow of the high temperature side heat medium flowing out from the high temperature side flow control valve 22 to the heater core 23 side is indicated by a thick solid line. flow is indicated by a thick dashed line.
 また、冷却除湿暖房モードの低温側熱媒体回路30では、制御装置50が、冷却冷房モードと同様に、第1低温側ポンプ31aおよび第2低温側ポンプ31bを作動させる。また、制御装置50は、五方弁32については、冷却冷房モードと同様に作動を制御する。図10では、五方弁32が、低温側熱媒体回路30をバッテリ冷却用回路および機器冷却用回路が同時に形成される回路構成に切り替えた際の低温側熱媒体の流れを示している。 In addition, in the low temperature side heat medium circuit 30 in the cooling dehumidification heating mode, the control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b in the same manner as in the cooling cooling mode. The controller 50 also controls the operation of the five-way valve 32 in the same manner as in the cooling mode. FIG. 10 shows the flow of the low temperature side heat medium when the five-way valve 32 switches the low temperature side heat medium circuit 30 to a circuit configuration in which the battery cooling circuit and the device cooling circuit are simultaneously formed.
 また、冷却除湿暖房モードの室内空調ユニット40では、制御装置50が、単独冷房モードと同様に、室内送風機42、エアミックスドア用の電動アクチュエータ、内外気切替装置43および吹出モードドア用の電動アクチュエータの作動を制御する。 In addition, in the indoor air conditioning unit 40 in the cooling dehumidifying heating mode, the control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. controls the operation of
 従って、冷却除湿暖房モードのヒートポンプサイクル10では、単独除湿暖房モードと同様の蒸気圧縮式の冷凍サイクルが形成される。水冷媒熱交換器12では、高圧冷媒と高温側熱媒体が熱交換して、高温側熱媒体が加熱される。室内蒸発器16では、低圧冷媒と送風空気が熱交換して、送風空気が冷却される。チラー18では、低圧冷媒と低温側熱媒体が熱交換して、低温側熱媒体が冷却される。 Therefore, in the heat pump cycle 10 in the cooling dehumidification heating mode, a vapor compression refrigeration cycle similar to that in the single dehumidification heating mode is formed. In the water-refrigerant heat exchanger 12, heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium. In the indoor evaporator 16, heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air. In the chiller 18, heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
 また、冷却除湿暖房モードの高温側熱媒体回路20では、単独冷房モードと同様に、高温側熱媒体温度TWHが、基準高温側熱媒体温度KTWHに近づく。ヒータコア23では、エアミックスドア44の開度に応じて、高温側熱媒体と送風空気が熱交換して、送風空気が加熱される。高温側ラジエータ25では、高温側熱媒体と外気が熱交換して、高温側熱媒体の有する熱が外気に放熱される。 Also, in the high temperature side heat medium circuit 20 in the cooling dehumidification heating mode, the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode. In the heater core 23, heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated. In the high temperature side radiator 25, heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
 また、冷却除湿暖房モードの低温側熱媒体回路30では、冷却冷房モードと同様に、第1低温側熱媒体温度TWL1が、第1基準低温側熱媒体温度KTWL1に近づく。そして、チラー18にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aを流通する際に、バッテリ80が冷却される。 Also, in the low temperature side heat medium circuit 30 in the cooling dehumidifying heating mode, the first low temperature side heat medium temperature TWL1 approaches the first reference low temperature side heat medium temperature KTWL1, as in the cooling cooling mode. Then, when the low temperature side heat medium cooled by the chiller 18 flows through the cooling water passage 80a of the battery 80, the battery 80 is cooled.
 第2低温側ポンプ31bから圧送された低温側熱媒体は、冷却冷房モードと同様に、五方弁32の作動状態に応じて低温側ラジエータ35およびバイパス通路38へ流入する。これにより、第2低温側熱媒体温度TWL2が第2基準低温側熱媒体温度KTWL2に近づく。低温側ラジエータ35では、低温側熱媒体と高温側ラジエータ25を通過した外気が熱交換して、低温側熱媒体の有する熱が外気に放熱される。 The low temperature side heat medium pressure-fed from the second low temperature side pump 31b flows into the low temperature side radiator 35 and the bypass passage 38 according to the operating state of the five-way valve 32, as in the cooling cooling mode. As a result, the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2. In the low temperature side radiator 35, heat is exchanged between the low temperature side heat medium and the outside air that has passed through the high temperature side radiator 25, and the heat of the low temperature side heat medium is radiated to the outside air.
 また、冷却除湿暖房モードの室内空調ユニット40では、単独除湿暖房モードと同様に、室内送風機42から送風された送風空気が室内蒸発器16にて冷却されて除湿される。室内蒸発器16にて冷却されて除湿された送風空気は、エアミックスドア44の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の除湿暖房が実現される。 In addition, in the indoor air conditioning unit 40 in the cooling dehumidifying heating mode, the air blown from the indoor blower 42 is cooled and dehumidified by the indoor evaporator 16 as in the single dehumidifying heating mode. The temperature of the air cooled and dehumidified by the indoor evaporator 16 is adjusted by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO. Dehumidification and heating of the interior of the vehicle are achieved by blowing out the temperature-adjusted blown air into the interior of the vehicle.
 (f)冷却暖房モード
 冷却暖房モードは、バッテリ80の冷却を行うとともに、車室内の暖房を行う運転モードである。
(f) Cooling/heating mode The cooling/heating mode is an operation mode in which the battery 80 is cooled and the vehicle interior is heated.
 冷却暖房モードのヒートポンプサイクル10では、制御装置50が、冷房用膨張弁15aを全閉状態とし、冷却用膨張弁15bを絞り状態とする。 In the heat pump cycle 10 in the cooling/heating mode, the controller 50 fully closes the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
 このため、冷却暖房モードのヒートポンプサイクル10では、図11に示すように、単独暖房モードと同様の冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the cooling/heating mode, as shown in FIG. 11, the refrigerant circuit is switched to the same refrigerant circuit as in the single heating mode.
 また、制御装置50は、圧縮機11の冷媒吐出能力については、単独暖房モードと同様に制御する。また、制御装置50は、冷却用膨張弁15bの絞り開度については、冷却冷房モードと同様に制御する。 Also, the control device 50 controls the refrigerant discharge capacity of the compressor 11 in the same manner as in the single heating mode. Further, the controller 50 controls the throttle opening of the cooling expansion valve 15b in the same manner as in the cooling mode.
 また、冷却暖房モードの高温側熱媒体回路20では、制御装置50が、単独暖房モードと同様に、高温側ポンプ21を作動させるとともに、高温側流量調整弁22の作動を制御する。冷却暖房モードでは、図11に示すように、冷却除湿暖房モードと同様に、高温側流量調整弁22からヒータコア23側へ高温側熱媒体を流出させるとともに、高温側ラジエータ25側へも高温側熱媒体を流出させる。 In addition, in the high temperature side heat medium circuit 20 in the cooling/heating mode, the control device 50 operates the high temperature side pump 21 and controls the operation of the high temperature side flow control valve 22 in the same manner as in the single heating mode. In the cooling/heating mode, as in the cooling/dehumidifying/heating mode, as shown in FIG. Drain the medium.
 また、冷却暖房モードの低温側熱媒体回路30では、制御装置50が、冷却冷房モードと同様に、第1低温側ポンプ31aおよび第2低温側ポンプ31bを作動させる。また、制御装置50は、五方弁32については、冷却冷房モードと同様に作動を制御する。図11では、五方弁32が、低温側熱媒体回路30をバッテリ冷却用回路および蓄熱用回路が同時に形成される回路構成に切り替えた際の低温側熱媒体の流れを示している。 In addition, in the low temperature side heat medium circuit 30 in the cooling/heating mode, the control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b as in the cooling/cooling mode. The controller 50 also controls the operation of the five-way valve 32 in the same manner as in the cooling mode. FIG. 11 shows the flow of the low temperature side heat medium when the five-way valve 32 switches the low temperature side heat medium circuit 30 to a circuit configuration in which a battery cooling circuit and a heat storage circuit are simultaneously formed.
 また、冷却暖房モードの室内空調ユニット40では、制御装置50が、単独冷房モードと同様に、室内送風機42、エアミックスドア用の電動アクチュエータ、内外気切替装置43および吹出モードドア用の電動アクチュエータの作動を制御する。 In addition, in the indoor air conditioning unit 40 in the cooling/heating mode, the controller 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. control the actuation.
 従って、冷却暖房モードのヒートポンプサイクル10では、水冷媒熱交換器12を放熱器として機能させ、チラー18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが形成される。水冷媒熱交換器12では、高圧冷媒と高温側熱媒体が熱交換して、高温側熱媒体が加熱される。チラー18では、低圧冷媒と低温側熱媒体が熱交換して、低温側熱媒体が冷却される。 Therefore, in the heat pump cycle 10 in the cooling/heating mode, a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the chiller 18 functions as an evaporator. In the water-refrigerant heat exchanger 12, heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium. In the chiller 18, heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
 また、冷却暖房モードの高温側熱媒体回路20では、単独冷房モードと同様に、高温側熱媒体温度TWHが、基準高温側熱媒体温度KTWHに近づく。ヒータコア23では、エアミックスドア44の開度に応じて、高温側熱媒体と送風空気が熱交換して、送風空気が加熱される。高温側ラジエータ25では、高温側熱媒体と外気が熱交換して、高温側熱媒体の有する熱が外気に放熱される。 Also, in the high temperature side heat medium circuit 20 in the cooling/heating mode, the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH, as in the single cooling mode. In the heater core 23, heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated. In the high temperature side radiator 25, heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
 また、冷却暖房モードの低温側熱媒体回路30では、冷却冷房モードと同様に、第1低温側熱媒体温度TWL1が、第1基準低温側熱媒体温度KTWL1に近づく。そして、チラー18にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aを流通する際に、バッテリ80が冷却される。 Also, in the low temperature side heat medium circuit 30 in the cooling/heating mode, the first low temperature side heat medium temperature TWL1 approaches the first reference low temperature side heat medium temperature KTWL1, as in the cooling/cooling mode. Then, when the low temperature side heat medium cooled by the chiller 18 flows through the cooling water passage 80a of the battery 80, the battery 80 is cooled.
 第2低温側ポンプ31bから圧送された低温側熱媒体は、冷却冷房モードと同様に、五方弁32の作動状態に応じて低温側ラジエータ35およびバイパス通路38へ流入する。これにより、第2低温側熱媒体温度TWL2が第2基準低温側熱媒体温度KTWL2に近づく。 The low temperature side heat medium pressure-fed from the second low temperature side pump 31b flows into the low temperature side radiator 35 and the bypass passage 38 according to the operating state of the five-way valve 32, as in the cooling cooling mode. As a result, the second low temperature side heat medium temperature TWL2 approaches the second reference low temperature side heat medium temperature KTWL2.
 また、冷却暖房モードの室内空調ユニット40では、単独暖房モードと同様に、室内送風機42から送風された送風空気が室内蒸発器16を通過する。室内蒸発器16を通過した送風空気は、エアミックスドア44の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の暖房が実現される。 In addition, in the indoor air conditioning unit 40 in the cooling/heating mode, air blown from the indoor blower 42 passes through the indoor evaporator 16 as in the single heating mode. The temperature of the blown air that has passed through the indoor evaporator 16 is adjusted so as to approach the target blowout temperature TAO by adjusting the opening of the air mix door 44 . Then, the temperature-controlled blowing air is blown into the vehicle interior, thereby heating the vehicle interior.
 (g)単独冷却モード
 単独冷却モードは、車室内の空調を行うことなく、バッテリ80の冷却を行う運転モードである。
(g) Single Cooling Mode The single cooling mode is an operation mode in which the battery 80 is cooled without air-conditioning the vehicle interior.
 単独冷却モードのヒートポンプサイクル10では、制御装置50が、冷房用膨張弁15aを全閉状態とし、冷却用膨張弁15bを絞り状態とする。 In the heat pump cycle 10 in the single cooling mode, the control device 50 fully closes the cooling expansion valve 15a and throttles the cooling expansion valve 15b.
 このため、単独冷却モードのヒートポンプサイクル10では、図12に示すように、単独暖房モードと同様の冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the single cooling mode, as shown in FIG. 12, the refrigerant circuit is switched to the same refrigerant circuit as in the single heating mode.
 また、制御装置50は、予め定めた単独冷却モード用の基準冷媒吐出能力の発揮するように、圧縮機11の作動を制御する。また、制御装置50は、冷却用膨張弁15bの絞り開度については、冷却冷房モードと同様に制御する。 In addition, the control device 50 controls the operation of the compressor 11 so that the predetermined reference refrigerant discharge capacity for the single cooling mode is exhibited. Further, the controller 50 controls the throttle opening of the cooling expansion valve 15b in the same manner as in the cooling mode.
 また、単独冷却モードの高温側熱媒体回路20では、制御装置50が、予め定めた基準圧送能力を発揮するように、高温側ポンプ21を作動させる。また、制御装置50は、内部へ流入した高温側熱媒体の全流量を高温側ラジエータ25側へ流出させるように、高温側流量調整弁22の作動を制御する。 Also, in the high temperature side heat medium circuit 20 in the independent cooling mode, the control device 50 operates the high temperature side pump 21 so as to exhibit a predetermined reference pumping capability. Further, the control device 50 controls the operation of the high temperature side flow control valve 22 so that the entire flow rate of the high temperature side heat medium that has flowed inside flows out to the high temperature side radiator 25 side.
 また、単独冷却モードの低温側熱媒体回路30では、制御装置50が、それぞれ予め定めた基準圧送能力を発揮するように第1低温側ポンプ31aおよび第2低温側ポンプ31bを作動させる。 In addition, in the low temperature side heat medium circuit 30 in the independent cooling mode, the control device 50 operates the first low temperature side pump 31a and the second low temperature side pump 31b so as to exhibit a predetermined reference pumping capability.
 また、制御装置50は、五方弁32については、冷却冷房モードと同様に作動を制御する。図12では、五方弁32が、低温側熱媒体回路30をバッテリ冷却用回路および蓄熱用回路が同時に形成される回路構成に切り替えた際の低温側熱媒体の流れを示している。 Also, the control device 50 controls the operation of the five-way valve 32 in the same manner as in the cooling mode. FIG. 12 shows the flow of the low temperature side heat medium when the five-way valve 32 switches the low temperature side heat medium circuit 30 to a circuit configuration in which a battery cooling circuit and a heat storage circuit are simultaneously formed.
 また、単独冷却モードの室内空調ユニット40では、制御装置50が、室内送風機42を停止させる。 Also, in the indoor air conditioning unit 40 in the independent cooling mode, the control device 50 stops the indoor blower 42 .
 従って、単独冷却モードのヒートポンプサイクル10では、単独暖房モードと同様に、水冷媒熱交換器12を放熱器として機能させ、チラー18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが形成される。水冷媒熱交換器12では、高圧冷媒と高温側熱媒体が熱交換して、高温側熱媒体が加熱される。チラー18では、低圧冷媒と低温側熱媒体が熱交換して、低温側熱媒体が冷却される。 Therefore, in the heat pump cycle 10 in the single cooling mode, a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the chiller 18 functions as an evaporator, as in the single heating mode. In the water-refrigerant heat exchanger 12, heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium. In the chiller 18, heat is exchanged between the low-pressure refrigerant and the low-temperature side heat medium to cool the low-temperature side heat medium.
 また、冷却暖房モードの高温側熱媒体回路20では、水冷媒熱交換器12にて加熱された高温側熱媒体が高温側ラジエータ25へ流入する。高温側ラジエータ25では、高温側熱媒体と外気が熱交換して、高温側熱媒体の有する熱が外気に放熱される。 Also, in the high temperature side heat medium circuit 20 in the cooling/heating mode, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 flows into the high temperature side radiator 25 . In the high temperature side radiator 25, heat is exchanged between the high temperature side heat medium and the outside air, and the heat of the high temperature side heat medium is radiated to the outside air.
 また、冷却暖房モードの低温側熱媒体回路30では、冷却冷房モードと同様に、第1低温側熱媒体温度TWL1が、第1基準低温側熱媒体温度KTWL1に近づく。そして、チラー18にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aを流通する際に、バッテリ80が冷却される。 Also, in the low temperature side heat medium circuit 30 in the cooling/heating mode, the first low temperature side heat medium temperature TWL1 approaches the first reference low temperature side heat medium temperature KTWL1, as in the cooling/cooling mode. Then, when the low temperature side heat medium cooled by the chiller 18 flows through the cooling water passage 80a of the battery 80, the battery 80 is cooled.
 以上の如く、本実施形態のヒートポンプサイクル装置1によれば、運転モードを切り替えることによって、車室内の快適な空調、および車載機器の適切な温度調整を行うことができる。 As described above, according to the heat pump cycle device 1 of the present embodiment, by switching the operation mode, it is possible to perform comfortable air conditioning in the vehicle compartment and appropriate temperature adjustment of the onboard equipment.
 ところで、ヒートポンプサイクル装置1では、単独除湿暖房モード時および単独暖房モード時に、低温側熱媒体回路30の低温側ラジエータ35にて、低温側熱媒体に外気の有する熱を吸熱させる。そして、ヒートポンプサイクル10のチラー18にて、低温側熱媒体の有する熱を冷媒に吸熱させ、水冷媒熱交換器12にて、冷媒が吸熱した熱を高温側熱媒体に放熱させる。さらに、高温側熱媒体回路20のヒータコア23にて、高温側熱媒体の有する熱を送風空気に放熱させて、送風空気を加熱している。 By the way, in the heat pump cycle device 1, the low temperature side radiator 35 of the low temperature side heat medium circuit 30 causes the low temperature side heat medium to absorb the heat of the outside air in the single dehumidifying and heating mode and the single heating mode. Then, in the chiller 18 of the heat pump cycle 10, the heat of the low temperature side heat medium is absorbed by the refrigerant, and in the water-refrigerant heat exchanger 12, the heat absorbed by the refrigerant is radiated to the high temperature side heat medium. Furthermore, the heater core 23 of the high-temperature-side heat medium circuit 20 radiates the heat of the high-temperature-side heat medium to the air to heat the air.
 つまり、ヒートポンプサイクル装置1では、単独除湿暖房モード時および単独暖房モード時に、外気の有する熱を送風空気の加熱源として利用している。このため、外気温Tamが0℃以下となる低外気温時に、単独除湿暖房モードあるいは単独暖房モードを実行すると、低温側ラジエータ35に着霜が生じてしまう可能性がある。 In other words, the heat pump cycle device 1 uses the heat of the outside air as a heat source for the blown air in the single dehumidifying and heating mode and the single heating mode. Therefore, if the single dehumidifying/heating mode or the single heating mode is executed when the outside temperature Tam is 0° C. or lower, the low temperature side radiator 35 may be frosted.
 単独除湿暖房モード時および単独暖房モード時に、低温側ラジエータ35に着霜が生じてしまうと、低温側ラジエータ35の熱交換性能を低下させてしまい、低温側熱媒体に外気の有する熱を充分に吸熱させることができなくなてつぃまう。その結果、ヒータコア23にて、送風空気を加熱することができなくなってしまう可能性がある。 If frost forms on the low-temperature side radiator 35 during the individual dehumidification and heating mode and the individual heating mode, the heat exchange performance of the low-temperature side radiator 35 is reduced, and the heat of the outside air is sufficiently transferred to the low-temperature side heat medium. I can't make it absorb heat. As a result, the heater core 23 may become unable to heat the blown air.
 これに対して、本実施形態のヒートポンプサイクル装置1では、図13に示す制御フローを実行して、低温側ラジエータ35に着霜が生じた際に、低温側ラジエータ35に着いた霜を取り除く除霜運転を実行する。 On the other hand, in the heat pump cycle device 1 of the present embodiment, the control flow shown in FIG. Carry out frost operation.
 図13に示す制御フローは、制御プログラムのメインルーチンにて、単独除湿暖房モードあるいは単独暖房モードが選択された際に、所定の周期毎に実行されるサブルーチンである。図13のフローチャートに示された各制御ステップは、それぞれ制御装置50が有する機能実現部である。 The control flow shown in FIG. 13 is a subroutine that is executed at predetermined intervals when the single dehumidifying/heating mode or the single heating mode is selected in the main routine of the control program. Each control step shown in the flow chart of FIG. 13 is a function implementation part of the control device 50 .
 まず、図13のステップS1では、吸熱部を形成する低温側ラジエータ35に、除霜要求が有るか否かが判定される。 First, in step S1 of FIG. 13, it is determined whether or not there is a defrosting request for the low temperature side radiator 35 that forms the heat absorbing portion.
 より具体的には、本実施形態のステップS1では、第3低温側熱媒体温度センサ67cによって検出された第3低温側熱媒体温度TWL3が、基準除霜温度KTWLよりも低くなっている際に、低温側ラジエータ35に着霜が生じ得る着霜状態となっていると判定する。さらに、ステップS1では、着霜状態となっている時間が予め定めた基準着霜時間KTmfr以上となっている際に、除霜要求が有ると判定する。本実施形態では、基準着霜時間KTmfrを10秒に設定している。 More specifically, in step S1 of the present embodiment, when the third low temperature side heat medium temperature TWL3 detected by the third low temperature side heat medium temperature sensor 67c is lower than the reference defrost temperature KTWL, , it is determined that the low-temperature side radiator 35 is in a frosted state in which frost may occur. Further, in step S1, it is determined that there is a defrosting request when the frosted state time is equal to or longer than a predetermined reference frosting time KTmfr. In this embodiment, the reference frost formation time KTmfr is set to 10 seconds.
 基準除霜温度KTWLは、図14の制御特性図に示すように、外気温Tamが0℃未満になっている際は、外気温Tamの上昇に伴って、上昇するように決定される。そして、図14において、外気温Tamと第3低温側熱媒体温度TWL3とによって決定される点が、点ハッチング領域に在るときは、着霜状態になっていると判定される。 As shown in the control characteristic diagram of FIG. 14, the reference defrost temperature KTWL is determined to increase as the outside temperature Tam rises when the outside temperature Tam is below 0°C. In FIG. 14, when the point determined by the outside air temperature Tam and the third low-temperature heat medium temperature TWL3 is in the dotted hatched area, it is determined that the frost is formed.
 ステップS1にて、除霜要求が有ると判定された場合は、ステップS3へ進む。また、ステップS1にて、除霜要求が有ると判定されなかった場合は、除霜運転は実行されずにメインルーチンへ戻る。 If it is determined in step S1 that there is a defrosting request, the process proceeds to step S3. Moreover, when it is determined that there is no defrosting request in step S1, the defrosting operation is not executed and the process returns to the main routine.
 ステップS2では、除霜運転の実行を許可する許可条件が成立しているか否かが判定される。本実施形態のステップS2では、具体的に、操作パネル70の除霜許可スイッチ70aが投入(ON)されている際に、許可条件が成立していると判定する。 In step S2, it is determined whether or not a condition for permitting execution of the defrosting operation is satisfied. Specifically, in step S2 of the present embodiment, when the defrosting permission switch 70a of the operation panel 70 is turned on (ON), it is determined that the permission condition is established.
 ステップS2にて、許可条件が成立していると判定された場合は、ステップS6へ進み、除霜運転が実行される。ステップS2にて、許可条件が成立していると判定されなかった場合は、ステップS3へ進む。 When it is determined in step S2 that the permission condition is satisfied, the process proceeds to step S6, and the defrosting operation is performed. If it is determined in step S2 that the permission condition is not satisfied, the process proceeds to step S3.
 ステップS3では、制御装置50の記憶回路を参照して、ユーザが車両システムを起動させてから、最初の除霜運転であるか否かが判定される。換言すると、ステップS3では、制御装置50の記憶回路を参照して、いわゆるIGスイッチがON(投入)されてから、最初の除霜運転であるか否かが判定される。 In step S3, the storage circuit of the control device 50 is referenced to determine whether or not it is the first defrosting operation since the user started the vehicle system. In other words, in step S3, the storage circuit of the control device 50 is referred to, and it is determined whether or not the defrosting operation is performed for the first time after the so-called IG switch is turned on (turned on).
 ステップS3にて、最初の除霜運転であると判定された場合は、ステップS4へ進む。また、ステップS4にて、最初の除霜運転ではないと判定された場合は、ステップS5へ進む。 If it is determined in step S3 that it is the first defrosting operation, proceed to step S4. Moreover, when it determines with it not being the first defrosting operation in step S4, it progresses to step S5.
 ステップS4では、起動経過時間Tm1が、予め定めた起動待機時間Tmi1以上となっているか否かが判定される。 In step S4, it is determined whether or not the activation elapsed time Tm1 is greater than or equal to a predetermined activation standby time Tmi1.
 起動待機時間Tmi1は、低温側熱媒体回路30の蓄熱回路を循環する低温側熱媒体に、発熱部である強電系機器81の発生させた熱を蓄熱させるため設定された値である。さらに、起動待機時間Tmi1は、低温側熱媒体に、低温側ラジエータ35に着いた霜を融解して取り除くことが可能な熱量を蓄熱できるように設定された値である。本実施形態では、起動待機時間Tmi1を10分に設定している。 The startup standby time Tmi1 is a value set to allow the low temperature side heat medium circulating in the heat storage circuit of the low temperature side heat medium circuit 30 to store the heat generated by the high power system device 81, which is the heat generating portion. Furthermore, the startup standby time Tmi1 is a value set so that the low-temperature side heat medium can store an amount of heat that can melt and remove frost on the low-temperature side radiator 35 . In this embodiment, the startup standby time Tmi1 is set to 10 minutes.
 換言すると、車両システムを起動させてからの起動経過時間Tm1が、起動待機時間Tmi1以上となっていれば、蓄熱回路を循環する低温側熱媒体を低温側ラジエータ35へ流入させることで、低温側ラジエータ35に着いた霜を融解して取り除くことができる。起動待機時間Tmi1は、実験的あるいは試験的な手段によって得られる値である。 In other words, if the activation elapsed time Tm1 after the vehicle system is activated is equal to or longer than the activation waiting time Tmi1, the low-temperature side heat medium circulating in the heat storage circuit is caused to flow into the low-temperature side radiator 35. Frost on the radiator 35 can be melted and removed. The startup waiting time Tmi1 is a value obtained by experimental or experimental means.
 ステップS4にて、起動経過時間Tm1が起動待機時間Tmi1以上となっていると判定された場合は、ステップS6へ進み除霜運転が実行される。また、ステップS4にて、起動経過時間Tm1が起動待機時間Tmi1以上となっていると判定されなかった場合は、メインルーチンへ戻る。つまり、ステップS1にて除霜要求が有ると判定されても除霜運転の実行が禁止される。 If it is determined in step S4 that the startup elapsed time Tm1 is equal to or longer than the startup standby time Tmi1, the process proceeds to step S6 and the defrosting operation is performed. If it is not determined in step S4 that the activation elapsed time Tm1 is greater than or equal to the activation waiting time Tmi1, the process returns to the main routine. That is, even if it is determined in step S1 that there is a defrosting request, execution of the defrosting operation is prohibited.
 ステップS5では、除霜経過時間Tm2が、予め定めた除霜待機時間Tmi2以上となっているか否かが判定される。 In step S5, it is determined whether the defrost elapsed time Tm2 is equal to or longer than a predetermined defrost standby time Tmi2.
 除霜待機時間Tmi2は、起動待機時間Tmi1と同様に、低温側熱媒体回路30の蓄熱回路を循環する低温側熱媒体に、低温側ラジエータ35に着いた霜を融解して取り除くことが可能な熱量を蓄熱できるように設定された値である。 During the defrost standby time Tmi2, similarly to the startup standby time Tmi1, the low temperature side heat medium circulating in the heat storage circuit of the low temperature side heat medium circuit 30 can melt and remove frost adhered to the low temperature side radiator 35. This value is set so that the amount of heat can be stored.
 換言すると、前回の除霜運転が終了してからの除霜経過時間Tm2が、除霜待機時間Tmi2以上となっていれば、蓄熱回路を循環する低温側熱媒体を低温側ラジエータ35へ流入させることで、低温側ラジエータ35に着いた霜を融解して取り除くことができる。さらに、除霜待機時間Tmi2は、起動待機時間Tmi1よりも長い時間に設定されている。本実施形態では、除霜待機時間Tmi2を30分に設定している。 In other words, if the defrosting elapsed time Tm2 from the end of the previous defrosting operation is equal to or longer than the defrosting standby time Tmi2, the low temperature side heat medium circulating in the heat storage circuit is caused to flow into the low temperature side radiator 35. As a result, the frost on the low-temperature side radiator 35 can be melted and removed. Furthermore, the defrosting standby time Tmi2 is set to be longer than the activation standby time Tmi1. In this embodiment, the defrosting standby time Tmi2 is set to 30 minutes.
 ステップS5にて、除霜経過時間Tm2が除霜待機時間Tmi2以上となっていると判定された場合は、ステップS6へ進み除霜運転が実行される。また、ステップS5にて、除霜経過時間Tm2が除霜待機時間Tmi2以上となっていると判定されなかった場合は、メインルーチンへ戻る。つまり、ステップS1にて除霜要求が有ると判定されても除霜運転の実行が禁止される。 When it is determined in step S5 that the defrosting elapsed time Tm2 is equal to or longer than the defrosting standby time Tmi2, the process proceeds to step S6 and the defrosting operation is performed. If it is not determined in step S5 that the defrost elapsed time Tm2 is equal to or longer than the defrost standby time Tmi2, the process returns to the main routine. That is, even if it is determined in step S1 that there is a defrosting request, execution of the defrosting operation is prohibited.
 ステップS6では、除霜運転が実行される。除霜運転の詳細作動については後述する。続く、ステップS7では、除霜を終了させるための除霜終了条件が成立したか否かを判定する。 In step S6, defrosting operation is performed. A detailed operation of the defrosting operation will be described later. Subsequently, in step S7, it is determined whether or not a defrosting end condition for ending defrosting is satisfied.
 実施形態のステップS7では、具体的に、第3低温側熱媒体温度TWL3が、基準除霜温度KTWL以上となっている際に、除霜運転を終了することのできる終了可能状態となっていると判定する。さらに、終了可能状態となっている時間が予め定めた基準終了時間KTme以上となっている際に、除霜終了条件が成立したと判定する。本実施形態では、基準終了時間KTmeを10秒に設定している。 Specifically, in step S7 of the embodiment, when the third low-temperature-side heat medium temperature TWL3 is equal to or higher than the reference defrosting temperature KTWL, the defrosting operation can be terminated. I judge. Further, it is determined that the defrosting end condition is met when the time during which the defrosting is possible is equal to or longer than the predetermined reference end time KTme. In this embodiment, the reference end time KTme is set to 10 seconds.
 また、本実施形態のステップS7では、外気温Tamが基準終了外気温KTam以上となっている際に、除霜終了条件が成立したと判定する。本実施形態では、基準終了外気温KTamを10℃に設定している。また、本実施形態のステップS7では、除霜時間Tmdが予め定めた基準除霜時間KTmd以上となった際に、除霜終了条件が成立したと判定する。本実施形態では、基準除霜時間KTmdを、5分に設定している。 Also, in step S7 of the present embodiment, it is determined that the defrosting end condition is met when the outside air temperature Tam is equal to or higher than the reference end outside temperature KTam. In this embodiment, the reference end outside temperature KTam is set at 10°C. Further, in step S7 of the present embodiment, when the defrosting time Tmd becomes equal to or longer than a predetermined reference defrosting time KTmd, it is determined that the defrosting end condition is met. In this embodiment, the reference defrost time KTmd is set to 5 minutes.
 ステップS7にて、除霜終了条件が成立したと判定された場合は、メインルーチンへ戻る。また、ステップS7にて、除霜終了条件が成立したと判定されなかった場合は、ステップS6へ戻り、除霜運転が継続される。 If it is determined in step S7 that the defrosting end condition is met, the process returns to the main routine. Moreover, when it is not determined in step S7 that the defrosting end condition is satisfied, the process returns to step S6, and the defrosting operation is continued.
 以上の説明から明らかなように、本実施形態のステップS1は、吸熱部を形成する低温側ラジエータ35に着霜が生じたことを判定する着霜判定部である。また、ステップS6、S7は、吸熱部の除霜を行う除霜運転を実行する除霜運転実行部である。また、ステップS4、S5は、除霜運転実行が除霜運転を実行することを禁止する除霜運転禁止部を形である。また、ステップS2は、除霜運転禁止部が除霜運転の実行を禁止しているか否かにかかわらず除霜運転実行部に除霜運転を実行させる除霜運転許可部を形成である。 As is clear from the above description, step S1 of the present embodiment is a frost formation determination unit that determines whether frost has formed on the low-temperature side radiator 35 that forms the heat absorption unit. Further, steps S6 and S7 are a defrosting operation executing section that executes a defrosting operation for defrosting the heat absorbing portion. Further, steps S4 and S5 form a defrosting operation prohibition section that prohibits execution of the defrosting operation. Further, step S2 forms a defrosting operation permitting section that causes the defrosting operation executing section to execute the defrosting operation regardless of whether or not the defrosting operation prohibiting section prohibits execution of the defrosting operation.
 次に、除霜運転の詳細作動について説明する。除霜運転には、除湿暖房時除霜モードと暖房時除霜モードがある。除湿暖房時除霜モードは、単独除湿暖房モードの実行中に低温側ラジエータ35に着霜が生じた際に実行される除霜運転である。暖房時除霜モードは、単独暖房モードの実行中に低温側ラジエータ35に着霜が生じた際に実行される除霜運転である。 Next, the detailed operation of the defrosting operation will be explained. The defrosting operation includes a dehumidifying/heating defrosting mode and a heating defrosting mode. The dehumidifying/heating defrosting mode is a defrosting operation that is performed when frost forms on the low-temperature side radiator 35 during execution of the single dehumidifying/heating mode. The heating defrosting mode is a defrosting operation that is performed when frost forms on the low-temperature side radiator 35 during execution of the single heating mode.
 (h-1)除湿暖房時除霜モード
 除湿暖房時除霜モードのヒートポンプサイクル10では、制御装置50が、冷房用膨張弁15aを絞り状態とし、冷却用膨張弁15bを全閉状態とする。
(h-1) Dehumidification/heating defrost mode In the heat pump cycle 10 in the dehumidification/heating defrost mode, the controller 50 throttles the cooling expansion valve 15a and fully closes the cooling expansion valve 15b.
 このため、除湿暖房時除霜モードのヒートポンプサイクル10では、図15の太破線に示すように、単独冷房モードと同様の冷媒回路に切り替えられる。 Therefore, in the heat pump cycle 10 in the dehumidifying/heating/defrosting mode, the refrigerant circuit is switched to the same refrigerant circuit as in the independent cooling mode, as indicated by the thick dashed line in FIG.
 また、制御装置50は、圧縮機11の冷媒吐出能力および冷房用膨張弁15aの絞り開度については、単独冷房モードと同様に制御する。 In addition, the control device 50 controls the refrigerant discharge capacity of the compressor 11 and the throttle opening of the cooling expansion valve 15a in the same manner as in the single cooling mode.
 また、除湿暖房時除霜モードの高温側熱媒体回路20では、制御装置50が、予め定めた基準圧送能力を発揮するように、高温側ポンプ21を作動させる。また、制御装置50は、高温側流量調整弁22については、図15に示すように、高温側ポンプ21から圧送された高温側熱媒体の全流量を、ヒータコア23側へ流出させるように作動を制御する。 In addition, in the high-temperature side heat medium circuit 20 in the dehumidifying/heating/defrosting mode, the control device 50 operates the high-temperature side pump 21 so as to exhibit a predetermined reference pumping capability. 15, the control device 50 operates the high temperature side flow control valve 22 so that the entire flow rate of the high temperature side heat medium pressure-fed from the high temperature side pump 21 flows out to the heater core 23 side. Control.
 また、制御装置50は、高温側熱媒体温度TWHが基準高温側熱媒体温度KTWHに近づくように、ハイボルテージヒータ26の作動を制御する。 In addition, the control device 50 controls the operation of the high voltage heater 26 so that the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH.
 また、除湿暖房時除霜モードの低温側熱媒体回路30では、制御装置50が、第1低温側ポンプ31aを停止させ、予め定めた基準圧送能力を発揮するように第2低温側ポンプ31bを作動させる。また、制御装置50は、五方弁32については、図15に示すように、機器冷却用回路が形成されるように作動を制御する。 In addition, in the low temperature side heat medium circuit 30 in the dehumidification/heating defrost mode, the control device 50 stops the first low temperature side pump 31a and operates the second low temperature side pump 31b so as to exhibit a predetermined reference pumping capability. activate. Further, the control device 50 controls the operation of the five-way valve 32 so that a device cooling circuit is formed as shown in FIG.
 また、除湿暖房時除霜モードの室内空調ユニット40では、制御装置50が、単独冷房モードと同様に、室内送風機42、エアミックスドア用の電動アクチュエータ、内外気切替装置43および吹出モードドア用の電動アクチュエータの作動を制御する。 In addition, in the indoor air conditioning unit 40 in the dehumidification/heating defrost mode, the control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the blowout mode door in the same manner as in the single cooling mode. Controls the operation of the electric actuator.
 従って、除湿暖房時除霜モードのヒートポンプサイクル10では、水冷媒熱交換器12を放熱器として機能させ、室内蒸発器16を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが形成される。水冷媒熱交換器12では、高圧冷媒と高温側熱媒体が熱交換して、高温側熱媒体が加熱される。室内蒸発器16では、低圧冷媒と送風空気が熱交換して、送風空気が冷却される。 Therefore, in the heat pump cycle 10 in the dehumidifying/heating/defrosting mode, a vapor compression refrigeration cycle is formed in which the water-refrigerant heat exchanger 12 functions as a radiator and the indoor evaporator 16 functions as an evaporator. In the water-refrigerant heat exchanger 12, heat is exchanged between the high pressure refrigerant and the high temperature side heat medium to heat the high temperature side heat medium. In the indoor evaporator 16, heat is exchanged between the low-pressure refrigerant and the blown air to cool the blown air.
 また、除湿暖房時除霜モードの高温側熱媒体回路20では、水冷媒熱交換器12にて加熱された高温側熱媒体が、ハイボルテージヒータ26によって加熱される。これにより、高温側熱媒体温度TWHが、基準高温側熱媒体温度KTWHに近づく。ヒータコア23では、エアミックスドア44の開度に応じて、高温側熱媒体と送風空気が熱交換して、送風空気が加熱される。 In addition, in the high temperature side heat medium circuit 20 in the dehumidifying/heating/defrosting mode, the high temperature side heat medium heated by the water-refrigerant heat exchanger 12 is heated by the high voltage heater 26 . As a result, the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH. In the heater core 23, heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
 また、除湿暖房時除霜モードの低温側熱媒体回路30では、第2低温側ポンプ31bから圧送された低温側熱媒体が、強電系機器81の冷却水通路を介して、低温側ラジエータ35へ流入する。低温側ラジエータ35では、低温側熱媒体に蓄熱された熱によって、低温側ラジエータ35について霜が融解されて取り除かれる。つまり、強電系機器81の冷却水通路を通過する際に加熱された低温側熱媒体を熱源として、低温側ラジエータ35の除霜がなされる。 In addition, in the low-temperature side heat medium circuit 30 in the dehumidification/heating defrost mode, the low-temperature side heat medium pressure-fed from the second low-temperature side pump 31b is sent to the low-temperature side radiator 35 via the cooling water passage of the high-voltage equipment 81. influx. In the low temperature side radiator 35, frost is melted and removed from the low temperature side radiator 35 by the heat stored in the low temperature side heat medium. That is, the low-temperature side radiator 35 is defrosted using the low-temperature side heat medium heated when passing through the cooling water passage of the high-voltage equipment 81 as a heat source.
 また、除湿暖房時除霜モードの室内空調ユニット40では、室内送風機42から送風された送風空気が室内蒸発器16にて冷却されて除湿される。室内蒸発器16にて冷却されて除湿された送風空気は、エアミックスドア44の開度調整によって、目標吹出温度TAOに近づくように温度調整される。そして、温度調整された送風空気が車室内へ吹き出されることによって、車室内の除湿暖房が継続される。 In addition, in the indoor air conditioning unit 40 in the dehumidification/heating defrost mode, the air blown from the indoor blower 42 is cooled by the indoor evaporator 16 and dehumidified. The temperature of the air cooled and dehumidified by the indoor evaporator 16 is adjusted by adjusting the opening of the air mix door 44 so as to approach the target blowout temperature TAO. Then, the dehumidification and heating of the vehicle interior are continued by blowing out the temperature-controlled blown air into the vehicle interior.
 (h-2)暖房時除霜モード
 暖房時除霜モードのヒートポンプサイクル10では、制御装置50が、圧縮機11を停止させる。このため、単独暖房モード時に実行される除霜運転のヒートポンプサイクル10では、冷媒は循環しない。
(h-2) Heating defrost mode In the heat pump cycle 10 in the heating defrost mode, the controller 50 stops the compressor 11 . Therefore, the refrigerant does not circulate in the heat pump cycle 10 in the defrosting operation that is performed in the single heating mode.
 また、暖房時除霜モードの高温側熱媒体回路20では、制御装置50が、除湿暖房時除霜モードと同様に、高温側ポンプ21、高温側流量調整弁22、およびハイボルテージヒータ26の作動を制御する。従って、暖房時除霜モード時の高温側熱媒体回路20では、図14に示すように、除湿暖房時除霜モードと同様に高温側熱媒体が循環する。 In addition, in the high temperature side heat medium circuit 20 in the heating defrost mode, the control device 50 operates the high temperature side pump 21, the high temperature side flow control valve 22, and the high voltage heater 26 in the same manner as in the dehumidification and heating defrost mode. to control. Therefore, in the high temperature side heat medium circuit 20 in the heating defrost mode, as shown in FIG. 14, the high temperature side heat medium circulates in the same manner as in the dehumidifying heating defrosting mode.
 また、暖房時除霜モードの低温側熱媒体回路30では、制御装置50が、除湿暖房時除霜モードと同様に、第1低温側ポンプ31aを停止させ、第2低温側ポンプ31bおよび五方弁32の作動を制御する。従って、除湿暖房時除霜モードと同様に低温側熱媒体が循環する。 In addition, in the low temperature side heat medium circuit 30 in the heating defrost mode, the control device 50 stops the first low temperature side pump 31a, and stops the second low temperature side pump 31b and the five-way Controls actuation of valve 32 . Therefore, the low-temperature side heat medium circulates in the same manner as in the dehumidifying/heating defrosting mode.
 また、暖房時除霜モードの室内空調ユニット40では、制御装置50が、単独冷房モードと同様に、室内送風機42、エアミックスドア用の電動アクチュエータ、内外気切替装置43および吹出モードドア用の電動アクチュエータの作動を制御する。 In addition, in the indoor air conditioning unit 40 in the heating defrost mode, the control device 50 controls the indoor fan 42, the electric actuator for the air mix door, the inside/outside air switching device 43, and the electric actuator for the blowout mode door, as in the single cooling mode. Controls the actuation of the actuator.
 従って、暖房時除霜モードの高温側熱媒体回路20では、高温側熱媒体が、ハイボルテージヒータ26によって加熱される。これにより、高温側熱媒体温度TWHが、基準高温側熱媒体温度KTWHに近づく。ヒータコア23では、エアミックスドア44の開度に応じて、高温側熱媒体と送風空気が熱交換して、送風空気が加熱される。 Therefore, in the high temperature side heat medium circuit 20 in the heating defrost mode, the high temperature side heat medium is heated by the high voltage heater 26 . As a result, the high temperature side heat medium temperature TWH approaches the reference high temperature side heat medium temperature KTWH. In the heater core 23, heat is exchanged between the high-temperature side heat medium and the blown air according to the opening degree of the air mix door 44, and the blown air is heated.
 また、除湿暖房時除霜モードの低温側熱媒体回路30では、暖房時除霜モードと同様に、強電系機器81の冷却水通路を通過する際に加熱された低温側熱媒体を熱源として、低温側ラジエータ35の除霜がなされる。 In addition, in the low-temperature side heat medium circuit 30 in the dehumidification/heating defrost mode, the low-temperature side heat medium heated when passing through the cooling water passage of the high-voltage equipment 81 is used as a heat source, as in the heating defrost mode. The low temperature side radiator 35 is defrosted.
 以上の如く、本実施形態のヒートポンプサイクル装置1によれば、単独除湿暖房モードおよび単独暖房モードの実行中に、低温側ラジエータ35に着霜が生じても、低温側ラジエータ35についた霜を取り除くことができる。 As described above, according to the heat pump cycle device 1 of the present embodiment, even if frost forms on the low temperature side radiator 35 during execution of the single dehumidifying heating mode and the single heating mode, the frost on the low temperature side radiator 35 is removed. be able to.
 ここで、本実施形態のヒートポンプサイクル装置1のように、強電系機器81によって加熱された低温側熱媒体を熱源として、低温側ラジエータ35の除霜を行う構成では、除霜が不充分になってしまう可能性がある。その理由は、強電系機器81が充分な熱を発生させておらず、低温側ラジエータ35に着いた霜を融解して取り除くために充分な熱量を、低温側熱媒体に蓄熱できていない可能性があるからである。 Here, as in the heat pump cycle device 1 of the present embodiment, defrosting of the low-temperature side radiator 35 using the low-temperature side heat medium heated by the high-power system device 81 as a heat source causes insufficient defrosting. There is a possibility that The reason for this is that the high-voltage equipment 81 does not generate sufficient heat, and the low-temperature side heat medium may not store enough heat to melt and remove the frost on the low-temperature side radiator 35. because there is
 これに対して、本実施形態のヒートポンプサイクル装置1では、起動経過時間Tm1が起動待機時間Tmi1以上となるまで、あるいは、除霜経過時間Tm2が除霜待機時間Tmi2以上となるまで、次の除霜運転の実行を禁止している。従って、除霜運転の実行が禁止されている間に、強電系機器81の発生させた熱を低温側熱媒体に蓄熱させることができる。 On the other hand, in the heat pump cycle device 1 of the present embodiment, the next defrosting operation is continued until the startup elapsed time Tm1 becomes equal to or longer than the startup waiting time Tmi1 or until the defrosting elapsed time Tm2 becomes equal to or longer than the defrosting waiting time Tmi2. Execution of frost operation is prohibited. Therefore, while the execution of the defrosting operation is prohibited, the heat generated by the high-voltage equipment 81 can be stored in the low temperature side heat medium.
 さらに、起動待機時間Tmi1および除霜待機時間Tmi2は、低温側熱媒体に、低温側ラジエータ35に着いた霜を融解して取り除くことが可能な熱量を蓄熱できるように設定されている。従って、ヒートポンプサイクル装置1の除霜運転では、低温側ラジエータ35の確実な除霜を行うことができる。 Furthermore, the startup standby time Tmi1 and the defrost standby time Tmi2 are set so that the low-temperature side heat medium can store an amount of heat that can melt and remove frost on the low-temperature side radiator 35 . Therefore, in the defrosting operation of the heat pump cycle device 1, the low temperature side radiator 35 can be reliably defrosted.
 従って、除霜が不充分となり、除霜運転の終了直後に再び低温側ラジエータ35に着霜が生じていると判定されてしまうことを抑制することができる。その結果、本実施形態のヒートポンプサイクル装置1によれば、除霜運転が頻繁に実行されてしまうことを抑制することができる。 Therefore, it is possible to prevent a situation in which the defrosting becomes insufficient and it is determined that the low temperature side radiator 35 is frosted again immediately after the defrosting operation ends. As a result, according to the heat pump cycle device 1 of the present embodiment, frequent execution of the defrosting operation can be suppressed.
 また、本実施形態のヒートポンプサイクル装置1では、ステップS7にて説明したように、第3低温側熱媒体温度TWL3が基準除霜温度KTWL以上となっている際に、除霜運転を終了する。これによれば、低温側ラジエータ35から流出した直後の低温側熱媒体の温度を用いているので、低温側ラジエータ35の除霜が完了したことを精度よく判定して、除霜運転を適切に終了させることができる。 Also, in the heat pump cycle device 1 of the present embodiment, as described in step S7, the defrosting operation is terminated when the third low temperature side heat medium temperature TWL3 is equal to or higher than the reference defrosting temperature KTWL. According to this, since the temperature of the low-temperature-side heat medium immediately after flowing out from the low-temperature-side radiator 35 is used, it is possible to accurately determine that the defrosting of the low-temperature-side radiator 35 is completed, and to appropriately perform the defrosting operation. can be terminated.
 また、本実施形態のヒートポンプサイクル装置1では、ステップS7にて説明したように、除霜時間Tmdが基準除霜時間KTmd以上となった際に、除霜運転を終了する。これによれば、仮に低温側ラジエータ35の除霜が完了していなくても、除霜運転を終了させることができる。 Also, in the heat pump cycle device 1 of the present embodiment, as described in step S7, the defrosting operation is terminated when the defrosting time Tmd becomes equal to or longer than the reference defrosting time KTmd. According to this, even if the defrosting of the low temperature side radiator 35 is not completed, the defrosting operation can be terminated.
 除霜運転中は、ヒートポンプサイクル10よりもエネルギ消費量の多いハイボルテージヒータ26に通電して高温側熱媒体を加熱している。従って、除霜運転を強制的に終了することで、除霜運転を実行することによるエネルギ消費量の増大を低減することができる。さらに、本実施形態のヒートポンプサイクル装置1では、車両航続距離の短縮化を抑制することができる。 During the defrosting operation, the high-voltage heater 26, which consumes more energy than the heat pump cycle 10, is energized to heat the high temperature side heat medium. Therefore, by forcibly terminating the defrosting operation, it is possible to reduce the increase in energy consumption due to the execution of the defrosting operation. Furthermore, in the heat pump cycle device 1 of the present embodiment, shortening of the vehicle cruising distance can be suppressed.
 また、本実施形態のヒートポンプサイクル装置1では、起動待機時間Tmi1が除霜待機時間Tmi2よりも短く設定されている。従って、車両システムを起動させてから一回目の除霜運転については比較的速やかに実行することができる。さらに、二回目以降に実施される除霜運転については、低温側ラジエータ35の確実な除霜を実現できるだけでなく、除霜運転が頻繁に実行されてしまうことを、効果的に抑制することができる。つまり、車両航続距離の短縮化を効果的に抑制することができる。 Also, in the heat pump cycle device 1 of the present embodiment, the startup standby time Tmi1 is set shorter than the defrosting standby time Tmi2. Therefore, the first defrosting operation can be performed relatively quickly after starting the vehicle system. Furthermore, regarding the defrosting operation performed after the second time, it is possible not only to achieve reliable defrosting of the low-temperature side radiator 35, but also to effectively suppress the frequent execution of the defrosting operation. can. That is, shortening of the vehicle cruising distance can be effectively suppressed.
 また、本実施形態のヒートポンプサイクル装置1では、ステップS7にて説明したように、除霜運転許可部を備えている。これによれば、乗員が搭乗していない駐車中等に除霜運転を実行することができる。そして、再び乗員が乗車した際に、速やかに単独除湿暖房モードおよび単独暖房モードでの運転を実行することができる。 Also, the heat pump cycle device 1 of the present embodiment includes a defrosting operation permitting section, as described in step S7. According to this, the defrosting operation can be performed while the vehicle is parked without the passenger on board. Then, when the passenger gets on the vehicle again, the operation in the independent dehumidifying/heating mode and the independent heating mode can be quickly executed.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiments, and can be variously modified as follows without departing from the scope of the present disclosure.
 上述した実施形態では、本開示に係るヒートポンプサイクル装置1を電気自動車に適用した例を説明したが、ヒートポンプサイクル装置1の適用はこれに限定されない。吸熱部を除霜する際に、ヒートポンプサイクル10とは異なる発熱部によって加熱された熱媒体を熱源として除霜運転を行う装置に広く適用可能である。例えば、定置型の空調装置に適用されていてもよい。また、加熱対象流体として生活用水等を加熱する給湯機に適用されていてもよい。 In the above-described embodiment, an example in which the heat pump cycle device 1 according to the present disclosure is applied to an electric vehicle has been described, but application of the heat pump cycle device 1 is not limited to this. It can be widely applied to a device that performs a defrosting operation using a heat medium heated by a heat generating part different from the heat pump cycle 10 as a heat source when defrosting the heat absorbing part. For example, it may be applied to a stationary air conditioner. Moreover, it may be applied to a water heater for heating domestic water or the like as a fluid to be heated.
 ヒートポンプサイクル装置1の構成は、上述の実施形態に開示された構成に限定されない。 The configuration of the heat pump cycle device 1 is not limited to the configuration disclosed in the above embodiments.
 上述の実施形態では、発熱部として、強電系機器81を採用した例を説明したが、これに限定されない。定置型の空調装置あるいは給湯機に適用される場合は、その他の定置型の電化製品等であってもよい。また、車両用に適用される場合は、強電系機器81として、モータジェネレータ、インバータ、ADAS用の制御装置、充電装置を採用して、発熱部として用いてもよい。
モータジェネレータは、電力を供給されることによって走行用の駆動力を出力する電動モータとなり、車両の減速中や降坂走行時には回生電力を発生させる発電装置となる。インバータは、バッテリ80からモータジェネレータへ供給される電力の周波数を変換するとともに、モータジェネレータが発生させた交流電力を直流電力に変換してバッテリ80側へ出力する電力変換装置である。ADAS用の制御装置は、いわゆる先進運転支援システム用の制御装置である。先進運転支援システムは、運転者の運転操作を支援するシステムである。充電装置は、バッテリ80に回生電力等を充電する車載充電器である。
In the above-described embodiment, an example in which the high-voltage device 81 is used as the heat generating unit has been described, but the present invention is not limited to this. When applied to a stationary air conditioner or water heater, other stationary electric appliances may be used. Further, when applied to a vehicle, a motor generator, an inverter, a control device for ADAS, and a charging device may be adopted as the heavy-current system device 81 and used as a heat generating portion.
The motor generator functions as an electric motor that outputs driving force for running when supplied with electric power, and functions as a power generating device that generates regenerative power when the vehicle is decelerating or running downhill. The inverter is a power conversion device that converts the frequency of power supplied from the battery 80 to the motor generator, converts AC power generated by the motor generator into DC power, and outputs the DC power to the battery 80 side. A control device for ADAS is a control device for a so-called advanced driver assistance system. An advanced driving assistance system is a system that assists a driver's driving operation. The charging device is an in-vehicle charger that charges the battery 80 with regenerated power or the like.
 また、上述の実施形態では、ヒートポンプサイクル10の水冷媒熱交換器12および高温側熱媒体回路20のヒータコア23によって加熱部を形成した例を説明したが、これに限定されない。水冷媒熱交換器12および高温側熱媒体回路20を廃止して、加熱部として室内凝縮器を採用してもよい。 Further, in the above-described embodiment, an example in which the heating section is formed by the water-refrigerant heat exchanger 12 of the heat pump cycle 10 and the heater core 23 of the high temperature side heat medium circuit 20 has been described, but the present invention is not limited to this. The water-refrigerant heat exchanger 12 and the high temperature side heat medium circuit 20 may be eliminated, and an indoor condenser may be employed as the heating unit.
 室内凝縮器は、圧縮機11から吐出された高圧冷媒と送風空気とを熱交換させて、送風空気を加熱する熱交換部である。室内凝縮器は、ヒータコア23と同様に、室内空調ユニット40の空調ケース41内に配置すればよい。 The indoor condenser is a heat exchange section that heats the air by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the air. The indoor condenser may be arranged in the air conditioning case 41 of the indoor air conditioning unit 40, similarly to the heater core 23. FIG.
 また、上述の実施形態のヒートポンプサイクル10では、水冷媒熱交換器12およびレシーバ13を採用した例を説明したが、これに限定されない。例えば、冷媒を凝縮する凝縮部、凝縮部にて凝縮した冷媒を気液分離して液相冷媒を蓄える受液部、および受液部から流出した液相冷媒を過冷却する過冷却部を有する、いわゆるサブクール型の熱交換器を採用してもよい。 Also, in the heat pump cycle 10 of the above-described embodiment, an example in which the water-refrigerant heat exchanger 12 and the receiver 13 are employed has been described, but the present invention is not limited to this. For example, it has a condensing part that condenses the refrigerant, a liquid receiving part that separates the refrigerant condensed in the condensing part into gas and liquid and stores the liquid phase refrigerant, and a supercooling part that supercools the liquid phase refrigerant flowing out from the liquid receiving part. , a so-called subcool type heat exchanger may be employed.
 また、上述の実施形態のヒートポンプサイクル10では、蒸発圧力調整弁17として機械的機構を採用した例を説明したが、これに限定されない。冷房用膨張弁15a等と同様の構成の電気式の可変絞り機構を採用してもよい。 Also, in the heat pump cycle 10 of the above-described embodiment, an example in which a mechanical mechanism is employed as the evaporation pressure regulating valve 17 has been described, but the present invention is not limited to this. An electric variable throttle mechanism having the same configuration as the cooling expansion valve 15a and the like may be employed.
 また、上述の実施形態では、ヒートポンプサイクル10の冷媒として、R1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 Also, in the above-described embodiment, an example in which R1234yf is used as the refrigerant for the heat pump cycle 10 has been described, but the refrigerant is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, etc. may be employed. Alternatively, a mixed refrigerant or the like in which a plurality of types of these refrigerants are mixed may be adopted. Furthermore, a supercritical refrigerating cycle may be constructed in which carbon dioxide is employed as the refrigerant and the pressure of the refrigerant on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
 また、上述の実施形態の高温側熱媒体回路20および低温側熱媒体回路30では、それぞれハイボルテージヒータ26およびバッテリ用ヒータ36として、PTCヒータを採用した例を説明したが、これに限定されない。例えば、ニクロム線やカーボン繊維ヒータ等を採用してもよい。 Also, in the high temperature side heat medium circuit 20 and the low temperature side heat medium circuit 30 of the above-described embodiment, an example in which a PTC heater is employed as the high voltage heater 26 and the battery heater 36, respectively, has been described, but the present invention is not limited to this. For example, a nichrome wire, a carbon fiber heater, or the like may be employed.
 また、上述の実施形態の高温側熱媒体回路20および低温側熱媒体回路30では、それぞれ高温側熱媒体および低温側熱媒体として、エチレングリコール水溶液を採用した例を説明したが、これに限定されない。高温側熱媒体および低温側熱媒体として、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液冷媒、オイル等を含む液媒体等を採用してもよい。 Further, in the high-temperature side heat medium circuit 20 and the low-temperature side heat medium circuit 30 of the above-described embodiment, an example in which an ethylene glycol aqueous solution is employed as the high-temperature side heat medium and the low-temperature side heat medium, respectively, has been described, but the present invention is not limited to this. . As the heat medium on the high temperature side and the heat medium on the low temperature side, a solution containing dimethylpolysiloxane or a nanofluid, an antifreeze liquid, a water-based liquid refrigerant containing alcohol, or a liquid medium containing oil may be used.
 また、上述の実施形態の高温側熱媒体回路20および低温側熱媒体回路30では、高温側ラジエータ25および低温側ラジエータ35を互いに熱移動可能に一体化するために、熱交換フィン25aを採用した例を説明したが、これに限定されない。例えば、高温側ラジエータ25および低温側ラジエータ35として、いわゆるタンクアンドチューブ型の熱交換器を採用し、それぞれのタンク部を共通する部材で形成することによって、互いに熱移動可能としてもよい。 Further, in the high-temperature side heat medium circuit 20 and the low-temperature side heat medium circuit 30 of the above-described embodiment, the heat exchange fins 25a are employed in order to integrate the high-temperature side radiator 25 and the low-temperature side radiator 35 so that heat can be transferred to each other. Examples have been given, but are not limited to. For example, a so-called tank-and-tube type heat exchanger may be employed as the high-temperature side radiator 25 and the low-temperature side radiator 35, and heat transfer between them may be made possible by forming the respective tank portions from a common member.
 ヒートポンプサイクル装置1の制御態様は、上述の実施形態に開示された態様に限定されない。 The control mode of the heat pump cycle device 1 is not limited to the modes disclosed in the above-described embodiments.
 例えば、上述の実施形態では、除霜運転時に、高温側流量調整弁22について、高温側ポンプ21から圧送された高温側熱媒体の全流量を、ヒータコア23側へ流出させるように制御した例を説明したが、これに限定されない。例えば、図16に示すように、高温側ポンプ21から圧送された高温側熱媒体のうち所定量を高温側ラジエータ25側へ流出さてもよい。 For example, in the above-described embodiment, during the defrosting operation, the high temperature side flow control valve 22 is controlled so that the entire flow rate of the high temperature side heat medium pressure-fed from the high temperature side pump 21 flows out to the heater core 23 side. Illustrated, but not limited to. For example, as shown in FIG. 16, a predetermined amount of the high temperature side heat medium pressure-fed from the high temperature side pump 21 may flow out to the high temperature side radiator 25 side.
 これによれば、高温側熱媒体の有する熱を熱交換フィン25aを介して、低温側ラジエータ35へ伝熱させて、低温側ラジエータ35の除霜を促進することができる。従って、図16に示すように、高温側流量調整弁22から高温側ラジエータ25側へ高温側熱媒体側を流出させて除霜運転を行う場合は、ステップS7で説明した基準除霜時間KTmdを短縮化してもよい。 According to this, the heat of the high-temperature side heat medium can be transferred to the low-temperature side radiator 35 via the heat exchange fins 25a, and defrosting of the low-temperature side radiator 35 can be promoted. Therefore, as shown in FIG. 16, when defrosting operation is performed by causing the high temperature side heat medium to flow out from the high temperature side flow control valve 22 to the high temperature side radiator 25 side, the reference defrosting time KTmd described in step S7 is set to It can be shortened.
 また、上述の実施形態のステップS2では、除霜許可スイッチ70aが投入(ON)されている際に許可条件が成立したと判定しているが、これに限定されない。
例えば、車両が駐車中と判定されて際に、許可条件が成立したと判定してもよい。また、サービスツールが接続されている際に許可条件が成立したと判定してもよい。サービスツールは、車両に常備されている必要はなく、冷却水の注水作業を行う整備工場等に準備されていればよい。さらに、既存のスイッチの長押しや、複数のスイッチの同時押しがあった際に、許可条件が成立したと判定してもよい。
Further, in step S2 of the above-described embodiment, it is determined that the permission condition is met when the defrosting permission switch 70a is turned on (ON), but the present invention is not limited to this.
For example, it may be determined that the permission condition is satisfied when it is determined that the vehicle is parked. Alternatively, it may be determined that the permission condition is met when the service tool is connected. The service tool does not have to be always installed in the vehicle, and may be prepared at a maintenance shop or the like where cooling water injection work is performed. Furthermore, it may be determined that the permission condition is met when an existing switch is pressed for a long time or when a plurality of switches are pressed simultaneously.
 また、ヒートポンプサイクル装置1の運転モードとして、他の運転モードが設けられていてもよい。例えば、起動暖機モードを追加してもよい。起動暖機モードは、車両システムを起動させた際に、バッテリ温度TBが予め定めた基準下限温度KTBL以下となっている場合に、バッテリ80を暖機するために実行される。 Further, as the operation mode of the heat pump cycle device 1, another operation mode may be provided. For example, a startup warm-up mode may be added. The startup warm-up mode is executed to warm up battery 80 when battery temperature TB is equal to or lower than a predetermined reference lower limit temperature KTBL when the vehicle system is started.
 起動暖機モードでは、制御装置50が、圧縮機11を停止させる。また、制御装置50は、予め定めた基準圧送能力を発揮するように第1低温側ポンプ31aを作動させる。また、制御装置50は、五方弁32については、バッテリ冷却用回路が形成されるように作動を制御する。そして、制御装置50は、所定の加熱能力を発揮するようにバッテリ用ヒータ36に電力を供給する。これによれば、車両走行前にバッテリ80を適切な温度に暖機することができる。 In the startup warm-up mode, the controller 50 stops the compressor 11. In addition, the control device 50 operates the first low temperature side pump 31a so as to exhibit a predetermined reference pumping capability. The controller 50 also controls the operation of the five-way valve 32 so that a battery cooling circuit is formed. Then, the controller 50 supplies electric power to the battery heater 36 so as to exhibit a predetermined heating capacity. According to this, the battery 80 can be warmed up to an appropriate temperature before the vehicle runs.
 また、上述の実施形態の単独冷却モードでは、第2低温側ポンプ31bを停止させてもよい。 Also, in the single cooling mode of the above embodiment, the second low temperature side pump 31b may be stopped.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (5)

  1.  冷媒を圧縮する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させて加熱対象流体を加熱する加熱部(12、23)と、
     前記加熱部から流出した前記冷媒を減圧させる減圧部(15b)と、
     前記減圧部にて減圧された前記冷媒に外気の有する熱を吸熱させる吸熱部(18、35)と、
     前記吸熱部に着霜が生じたことを判定する着霜判定部(S1)と、
     前記着霜判定部によって前記吸熱部に着霜が生じたことが判定された際に、前記吸熱部の除霜を行う除霜運転を実行する除霜運転実行部(S6、S7)と、
     前記除霜運転実行部が前記除霜運転を実行することを禁止する除霜運転禁止部(S4、S5)と、を備え、
     前記吸熱部は、前記減圧部にて減圧された前記冷媒と熱媒体とを熱交換させる熱媒体熱交換部(18)、および前記熱媒体と外気とを熱交換させる外気熱交換部(35)が接続された熱媒体回路(30)を有し、
     前記熱媒体回路には、前記熱媒体を加熱する発熱部(81)が配置されており、
     前記除霜運転実行部は、前記除霜運転の実行時に、前記発熱部によって加熱された前記熱媒体を熱源として前記外気熱交換部の除霜を行い、
     前記除霜運転禁止部(S5)は、前回の前記除霜運転が終了してからの経過時間である除霜経過時間(Tm2)が予め定めた除霜待機時間(Tmi2)以上となるまで、次の前記除霜運転の実行を禁止するヒートポンプサイクル装置。
    a compressor (11) for compressing a refrigerant;
    a heating unit (12, 23) for heating a fluid to be heated by radiating heat from the refrigerant discharged from the compressor;
    a decompression unit (15b) for decompressing the refrigerant flowing out of the heating unit;
    a heat absorption part (18, 35) for absorbing heat of outside air into the refrigerant decompressed by the decompression part;
    a frost formation determination unit (S1) that determines that frost has formed on the heat absorption unit;
    a defrosting operation executing unit (S6, S7) for executing a defrosting operation for defrosting the heat absorbing unit when the frost formation determination unit determines that frost has formed on the heat absorbing unit;
    A defrosting operation prohibiting unit (S4, S5) that prohibits the defrosting operation execution unit from executing the defrosting operation,
    The heat absorption section includes a heat medium heat exchange section (18) for exchanging heat between the refrigerant decompressed by the decompression section and a heat medium, and an outside air heat exchange section (35) for exchanging heat between the heat medium and outside air. has a heat medium circuit (30) connected to
    A heat generating part (81) for heating the heat medium is arranged in the heat medium circuit,
    When the defrosting operation is executed, the defrosting operation execution unit defrosts the outside air heat exchange unit using the heat medium heated by the heat generating unit as a heat source,
    The defrosting operation prohibition unit (S5) continues until the defrosting elapsed time (Tm2), which is the elapsed time from the end of the previous defrosting operation, becomes equal to or longer than a predetermined defrosting standby time (Tmi2). A heat pump cycle device that prohibits execution of the next defrosting operation.
  2.  前記除霜運転実行部は、前記外気熱交換部から流出した前記熱媒体の温度(TWL3)が予め定めた基準除霜温度(KTWL)以上となった際に、前記除霜運転を終了する請求項1に記載のヒートポンプサイクル装置。 The defrosting operation execution unit terminates the defrosting operation when the temperature (TWL3) of the heat medium flowing out from the outside air heat exchange unit becomes equal to or higher than a predetermined reference defrosting temperature (KTWL). Item 1. The heat pump cycle device according to item 1.
  3.  前記除霜運転実行部は、前記除霜運転を開始してからの経過時間である除霜時間(Tmd)が予め定めた基準除霜時間(KTmd)以上となった際に、前記除霜運転を終了する請求項1または2に記載のヒートポンプサイクル装置。 The defrosting operation execution unit performs the defrosting operation when the defrosting time (Tmd), which is the elapsed time from the start of the defrosting operation, becomes equal to or longer than a predetermined reference defrosting time (KTmd). 3. The heat pump cycle device according to claim 1 or 2, wherein the heat pump cycle device is terminated.
  4.  車両に適用されるヒートポンプサイクル装置であって、
     前記除霜運転禁止部(S4)は、車両システムを起動させてからの経過時間である起動経過時間(Tm1)が、予め定めた起動待機時間(Tmi1)以上となるまで、前記除霜運転の実行を禁止し、
     前記起動待機時間は、前記除霜待機時間よりも短く設定されている請求項1ないし3のいずれか1つに記載のヒートポンプサイクル装置。
    A heat pump cycle device applied to a vehicle,
    The defrosting operation prohibition unit (S4) prohibits the defrosting operation until the elapsed activation time (Tm1), which is the elapsed time after the vehicle system is activated, becomes equal to or longer than a predetermined activation waiting time (Tmi1). prohibit the execution of
    The heat pump cycle device according to any one of claims 1 to 3, wherein the startup standby time is set shorter than the defrosting standby time.
  5.  前記除霜運転禁止部が前記除霜運転の実行を禁止しているか否かにかかわらず前記除霜運転実行部に前記除霜運転を実行させる除霜運転許可部(S2)を備える請求項1ないし4のいずれか1つに記載のヒートポンプサイクル装置。 A defrosting operation permitting unit (S2) that causes the defrosting operation execution unit to perform the defrosting operation regardless of whether or not the defrosting operation prohibiting unit prohibits execution of the defrosting operation. 5. The heat pump cycle device according to any one of 1 to 4.
PCT/JP2022/023573 2021-06-30 2022-06-13 Heat pump cycle apparatus WO2023276626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108737A JP2023006234A (en) 2021-06-30 2021-06-30 heat pump cycle device
JP2021-108737 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276626A1 true WO2023276626A1 (en) 2023-01-05

Family

ID=84691691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023573 WO2023276626A1 (en) 2021-06-30 2022-06-13 Heat pump cycle apparatus

Country Status (2)

Country Link
JP (1) JP2023006234A (en)
WO (1) WO2023276626A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247588A (en) * 1995-03-07 1996-09-27 Daikin Ind Ltd Heat pump multi-system
JPH10332231A (en) * 1997-06-02 1998-12-15 Mitsubishi Heavy Ind Ltd Air conditioner and air-conditioning method
JP2003065638A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2019199113A (en) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 Vehicle heat management device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247588A (en) * 1995-03-07 1996-09-27 Daikin Ind Ltd Heat pump multi-system
JPH10332231A (en) * 1997-06-02 1998-12-15 Mitsubishi Heavy Ind Ltd Air conditioner and air-conditioning method
JP2003065638A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2019199113A (en) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 Vehicle heat management device

Also Published As

Publication number Publication date
JP2023006234A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
US11525611B2 (en) Refrigeration cycle device for vehicle
JP6015636B2 (en) Heat pump system
US20190111756A1 (en) Refrigeration cycle device
JP7230642B2 (en) refrigeration cycle equipment
US20220011006A1 (en) Air conditioner
US11833887B2 (en) Vehicular air conditioner
US20220402331A1 (en) Vehicle air-conditioning device
JP7275621B2 (en) refrigeration cycle equipment
CN112739562B (en) Refrigeration cycle device
US20220402336A1 (en) Vehicle air conditioner
US20210190389A1 (en) Refrigeration cycle device
WO2020050039A1 (en) Refrigeration cycle device
US20230364969A1 (en) Thermal management system
US20230382195A1 (en) Air conditioner
JP7294075B2 (en) refrigeration cycle equipment
WO2023276626A1 (en) Heat pump cycle apparatus
WO2020250764A1 (en) Vehicle air conditioner
WO2023053746A1 (en) Refrigeration cycle apparatus
JP7294000B2 (en) vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE