WO2020250764A1 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
WO2020250764A1
WO2020250764A1 PCT/JP2020/021884 JP2020021884W WO2020250764A1 WO 2020250764 A1 WO2020250764 A1 WO 2020250764A1 JP 2020021884 W JP2020021884 W JP 2020021884W WO 2020250764 A1 WO2020250764 A1 WO 2020250764A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
air
heat exchanger
generating device
Prior art date
Application number
PCT/JP2020/021884
Other languages
French (fr)
Japanese (ja)
Inventor
邦義 谷岡
牧原 正径
加藤 吉毅
前田 隆宏
紘明 河野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020250764A1 publication Critical patent/WO2020250764A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • the present disclosure relates to a vehicle air conditioner including a heat medium circuit.
  • Patent Document 1 the technology described in Patent Document 1 is known as a technology related to a vehicle air conditioner including a heat medium circuit.
  • the vehicle air-conditioning system of Patent Document 1 has a refrigeration cycle and a heat medium circuit.
  • the heat medium circuit of Patent Document 1 is configured by connecting a heat source of an engine, an in-vehicle device, or the like, a chiller of a refrigeration cycle, and a radiator in parallel with each other. Then, in Patent Document 1, the heat generated by a heat source of an in-vehicle device or the like is supplied to the radiator by switching the flow path configuration of the heat medium circuit, and the radiator is defrosted.
  • the in-vehicle equipment may be affected by the temperature or the in-vehicle equipment. May break down due to dew condensation.
  • the present disclosure has been made in view of these points, and is for vehicles that have realized efficient defrosting while protecting the heat generating equipment when defrosting the air heat medium heat exchanger using the heat of the heat generating equipment.
  • the purpose is to provide an air conditioner.
  • the vehicle air conditioner according to the first aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, an equipment side heat medium circuit, and a control unit.
  • the refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
  • the low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber.
  • the air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
  • the device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat.
  • the heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates.
  • the bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger.
  • the switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side.
  • the heat medium that has passed through the heat generating device passes through the heat generating device and the bypass flow path before the heat exchange performance of the heat medium that has passed through the heat absorber and the air heat medium heat exchanger related to the outside air is restored during the return operation.
  • the operation of the switching unit is controlled so as to circulate in the heat medium circuit on the device side.
  • the flow rate of the heat medium flowing through the heat generating device is increased. Can be secured.
  • the vehicle air conditioner can suppress the state in which the heat generating device becomes excessively high when the operating state is restored from the defrosting of the air heat medium heat exchanger, and protects the heat generating device. be able to.
  • the heat medium that has passed through the heat generating device circulates in the device side heat medium circuit via the heat generating device and the bypass flow path, the heat medium that has passed through the heat absorber and the air heat medium heat exchanger related to the outside air. Heat exchange performance is restored. Therefore, the heat medium cooled through the heat absorber is not supplied to the heat generating device. According to this, it is possible to protect the heat-generating device by suppressing the influence of the heat medium having a temperature difference on the heat-generating device.
  • the vehicle air conditioner according to the second aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, an equipment side heat medium circuit, and a control unit.
  • the refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
  • the low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber.
  • the air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
  • the device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat.
  • the heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates.
  • the bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger.
  • the switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side.
  • the control unit has an equipment dew condensation determination unit and a defrosting completion determination unit.
  • the device dew condensation determination unit determines whether or not the dew condensation condition in which dew condensation occurs in the heat generating device is satisfied when defrosting the air heat medium heat exchanger using the heat of the heat generating device.
  • the defrosting completion determination unit determines whether or not the defrosting of the air heat medium heat exchanger using the heat of the heat generating device is completed.
  • control unit determines that the defrosting of the air heat medium heat exchanger has not been completed by the defrosting completion determination unit, and the equipment dew condensation determination unit determines that the dew condensation condition is satisfied. Executes the return operation to return to the operating state before the defrosting of the air heat medium heat exchanger is performed.
  • the recovery operation is performed. Raise the temperature of the heating equipment and its surroundings by performing. As a result, the saturated water vapor pressure around the heat-generating device rises, so that the occurrence of dew condensation in the heat-generating device can be suppressed.
  • defrosting of the air heat medium heat exchanger using the heat generated in the heat generating device is realized, and dew condensation of the heat generating device due to defrosting is suppressed to protect the heat generating device.
  • the vehicle air conditioner according to the third aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, an equipment side heat medium circuit, and a control unit.
  • the refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
  • the low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber.
  • the air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
  • the device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat.
  • the heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates.
  • the bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger.
  • the switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side.
  • control unit reduces the heat exchange performance of the heat medium that has passed through the heat absorber and the air heat medium heat exchanger with respect to the outside air, and then the heat medium that has passed through the heat generating device is the air heat medium heat exchanger.
  • the operation of the switching unit is controlled so as to pass through.
  • the heat of the heat medium that has passed through the heat generating device is dissipated to the outside air or the heat medium that has passed through the heat absorber. Can be prevented. That is, according to the vehicle air conditioner, the heat of the heat medium that has passed through the heat generating device can be efficiently used for defrosting the air heat medium heat exchanger.
  • the flow rate of the heat medium passing through the heat generating device can be secured, so that the state in which the heat generating device becomes excessively high can be suppressed, and the heat generating device can be protected. it can.
  • the vehicle air conditioner according to the fourth aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, a device side heat medium circuit, a detection unit, and a control unit.
  • the refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
  • the low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber.
  • the air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
  • the device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat.
  • the heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates.
  • the bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger.
  • the switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side. Then, the detection unit detects a specific physical quantity having a correlation with the temperature of the heat medium passing through the air heat medium heat exchanger.
  • the specific physical quantity currently detected by the detection unit deviates significantly from the reference value determined by the specific physical quantity detected in advance by the detection unit, more than the fluctuation value determined according to the environment.
  • the defrosting operation is performed on the air heat medium heat exchanger.
  • the vehicle air conditioner according to the fifth aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, a device side heat medium circuit, and a control unit.
  • the refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
  • the low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber.
  • the air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
  • the device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat.
  • the heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates.
  • the bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger.
  • the switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side.
  • the control unit has a heat dissipation necessity determination unit and a defrosting determination unit.
  • the heat dissipation necessity determination unit determines whether or not the heat generated in the heat generating device needs to be dissipated.
  • the defrost determination unit determines whether or not defrosting of the air heat medium heat exchanger is necessary.
  • the defrosting determination unit determines that the defrosting of the air heat medium heat exchanger is not necessary, and the heat dissipation necessity determination unit determines that the heat generated in the heat generating device needs to be dissipated. In this case, the heat of the heat medium that has passed through the heat generating device is dissipated to the outside air by the air heat medium heat exchanger.
  • the heat generating device is used.
  • the heat of the heat medium that has passed through is dissipated to the outside air by the air heat medium heat exchanger.
  • the heat generated in the heat generating device is dissipated to the outside air through the heat medium in the air heat medium heat exchanger, so that the temperature rise of the heat generating device can be suppressed, and the heat generating device can be prevented from excessive temperature rise. Can be protected.
  • the vehicle air conditioner defrosting of the air heat medium heat exchanger using the heat generated in the heat generating device is realized, and excessive temperature rise in the heat generating device is suppressed to protect the heat generating device. be able to.
  • FIG. 1 is an overall configuration diagram of a vehicle air conditioner according to the first embodiment.
  • FIG. 2 is a schematic view showing the configuration of the composite heat exchanger according to the first embodiment.
  • FIG. 3 is an overall configuration diagram of the indoor air conditioning unit according to the first embodiment.
  • FIG. 4 is a block diagram showing a control system of the vehicle air conditioner according to the first embodiment.
  • FIG. 5 is a schematic view showing an operating state of the heating heat storage mode of the vehicle air conditioner.
  • FIG. 6 is a flowchart of the control process relating to heating and defrosting in the first embodiment.
  • FIG. 7 is an explanatory diagram regarding the defrost determination in the first embodiment.
  • FIG. 8 is a schematic view showing an operating state of a normal mode of a vehicle air conditioner in a heating / defrosting mode.
  • FIG. 9 is a schematic view showing the operating state of the battery cooling mode in the heating / defrosting mode of the vehicle air conditioner.
  • FIG. 10 is a flowchart of a control process relating to heating and defrosting in the second embodiment.
  • the vehicle air conditioner 1 according to the present disclosure is applied to an electric vehicle in which a driving force for traveling a vehicle is obtained from a traveling electric motor.
  • the vehicle air conditioner 1 performs air conditioning in the vehicle interior, which is an air conditioning target space, and temperature adjustment of equipment including a battery 45 and the like in an electric vehicle.
  • the vehicle air conditioner 1 can switch between a cooling mode, a dehumidifying heating mode, and a heating mode as an operation mode for air-conditioning the interior of the vehicle.
  • the cooling mode is an operation mode in which the blown air W blown into the vehicle interior is cooled and blown out into the vehicle interior.
  • the dehumidifying / heating mode is an operation mode in which the blown air W dehumidified by cooling is reheated and blown out into the vehicle interior.
  • the heating mode is an operation mode in which the blown air W is heated and blown out into the vehicle interior.
  • the vehicle air conditioner 1 includes a refrigeration cycle 10, a high temperature side heat medium circuit 20, a low temperature side heat medium circuit 40, an equipment side heat medium circuit 50, an indoor air conditioner unit 60, and a control device 70. ..
  • the refrigeration cycle 10 is a vapor compression type refrigeration cycle apparatus.
  • the refrigeration cycle 10 includes a compressor 11, a water refrigerant heat exchanger 12, a first expansion valve 14a, a second expansion valve 14b, a chiller 15, an indoor evaporator 16, an evaporation pressure adjusting valve 17, and the like. doing.
  • the circuit configuration of the refrigerant circuit can be switched according to each operation mode described later.
  • the refrigeration cycle 10 employs an HFC-based refrigerant (specifically, R1234yf) as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant.
  • PAG oil polyalkylene glycol oil
  • a part of the refrigerating machine oil circulates in the refrigerating cycle 10 together with the refrigerant.
  • the compressor 11 sucks in the refrigerant in the refrigeration cycle 10, compresses it, and discharges it.
  • the compressor 11 is arranged in the drive unit room on the front side of the vehicle.
  • the drive unit room forms a space in which at least a part of equipment (for example, a motor generator) used for generating or adjusting a driving force for traveling a vehicle is arranged.
  • the compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism with a fixed discharge capacity by an electric motor.
  • the number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the control device 70 described later.
  • the inlet side of the refrigerant passage in the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11.
  • the water refrigerant heat exchanger 12 is a high temperature side heat exchange unit that exchanges heat between the high pressure refrigerant discharged from the compressor 11 and the heat medium circulating in the high temperature side heat medium circuit 20.
  • the water-refrigerant heat exchanger 12 is composed of a so-called subcool type heat exchanger, and has a condensing section 12a, a receiver section 12b, and a supercooling section 12c.
  • the condensing unit 12a is a heat exchange unit for condensing that condenses the refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the heat medium of the high-temperature side heat medium circuit 20.
  • the receiver unit 12b is a liquid receiving unit that separates the gas-liquid of the refrigerant flowing out from the condensing unit 12a and stores the separated liquid-phase refrigerant.
  • the supercooling unit 12c is a heat exchange unit for supercooling that supercools the liquid phase refrigerant by exchanging heat between the liquid phase refrigerant flowing out from the receiver unit 12b and the heat medium of the high temperature side heat medium circuit 20.
  • the water-refrigerant heat exchanger 12 constitutes a part of the heating unit.
  • the inflow port side of the refrigerant branch portion 13a is connected to the outlet of the refrigerant passage of the water refrigerant heat exchanger 12.
  • the refrigerant branching portion 13a branches the flow of the liquid phase refrigerant flowing out of the water refrigerant heat exchanger 12.
  • the refrigerant branch portion 13a is a three-way joint having three inflow ports communicating with each other. In the refrigerant branch 13a, one of the three inflow ports is used as an inflow port, and the remaining two are used as outflow ports.
  • the inlet side of the refrigerant passage in the chiller 15 is connected to one outlet of the refrigerant branch portion 13a via the first expansion valve 14a.
  • the refrigerant inlet side of the indoor evaporator 16 is connected to the other outlet of the refrigerant branch portion 13a via the second expansion valve 14b.
  • the first expansion valve 14a is a pressure reducing unit that reduces the pressure of the refrigerant flowing out from one outlet of the refrigerant branching portion 13a at least in the heating mode.
  • the first expansion valve 14a is an electric variable throttle mechanism having a valve body that changes the throttle opening degree and an electric actuator (specifically, a stepping motor) that displaces the valve body.
  • the operation of the first expansion valve 14a is controlled by a control pulse output from the control device 70.
  • the second expansion valve 14b is a pressure reducing portion that reduces the pressure of the refrigerant flowing out from the other outlet of the refrigerant branching portion 13a.
  • the basic configuration of the second expansion valve 14b is the same as that of the first expansion valve 14a.
  • the operation of the second expansion valve 14b is controlled by a control pulse output from the control device 70.
  • the first expansion valve 14a and the second expansion valve 14b have a fully open function that functions as a mere refrigerant passage with almost no refrigerant decompression action and flow rate adjustment action by fully opening the valve opening. Further, the first expansion valve 14a and the second expansion valve 14b have a fully closing function of closing the refrigerant passage by fully closing the valve opening degree.
  • the first expansion valve 14a and the second expansion valve 14b can switch the refrigerant circuit of each operation mode by the fully open function and the fully closed function. Therefore, the first expansion valve 14a and the second expansion valve 14b also have a function as a refrigerant circuit switching unit for switching the circuit configuration of the refrigeration cycle 10.
  • the chiller 15 is a low temperature side heat exchanger that exchanges heat between the low pressure refrigerant decompressed by the first expansion valve 14a and the heat medium circulating in the low temperature side heat medium circuit 40.
  • the chiller 15 cools the heat medium of the low temperature side heat medium circuit 40 by evaporating the low pressure refrigerant to exert an endothermic action. That is, the chiller 15 is an example of a heat absorber.
  • One inflow port side of the refrigerant confluence portion 13b is connected to the outlet of the refrigerant passage in the chiller 15.
  • the refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the second expansion valve 14b.
  • the indoor evaporator 16 is an air cooling heat exchanger that exchanges heat between the low-pressure refrigerant decompressed by the second expansion valve 14b and the blown air W.
  • the indoor evaporator 16 cools the blown air W by evaporating the low-pressure refrigerant to exert an endothermic action.
  • the indoor evaporator 16 is arranged in the casing 61 of the indoor air conditioning unit 60, which will be described later.
  • the inlet side of the evaporation pressure adjusting valve 17 is connected to the refrigerant outlet of the indoor evaporator 16.
  • the evaporation pressure adjusting valve 17 is an evaporation pressure adjusting unit that maintains the refrigerant evaporation pressure in the indoor evaporator 16 at a predetermined reference pressure or higher.
  • the evaporation pressure adjusting valve 17 is a mechanical variable throttle mechanism that increases the valve opening degree as the refrigerant pressure on the refrigerant outlet side of the indoor evaporator 16 rises.
  • the refrigerant evaporation temperature in the indoor evaporator 16 is maintained at a frost formation suppression temperature (for example, 1 ° C.) that can suppress frost formation in the indoor evaporator 16.
  • frost formation suppression temperature for example, 1 ° C.
  • the refrigerant merging portion 13b merges the flow of the refrigerant flowing out from the refrigerant passage of the chiller 15 and the flow of the refrigerant flowing out from the evaporation pressure adjusting valve 17.
  • the refrigerant merging portion 13b is a three-way joint similar to the refrigerant branching portion 13a. In the refrigerant merging portion 13b, two of the three inflow ports are used as inflow ports, and the remaining one is used as an outflow port.
  • the suction port side of the compressor 11 is connected to the outlet of the refrigerant merging portion 13b.
  • the high temperature side heat medium circuit 20 in the vehicle air conditioner 1 is configured by connecting constituent devices such as a composite heat exchanger 21 and a heater core 22 by a high temperature side heat medium flow path 20a.
  • the high temperature side heat medium circuit 20 is a high temperature side heat medium circuit that circulates a heat medium through each component device.
  • An ethylene glycol aqueous solution is used as the heat medium in the high temperature side heat medium circuit 20.
  • the high temperature side heat medium circuit 20 includes a heat medium passage of the water refrigerant heat exchanger 12, a heat medium passage in the heat radiating portion 21a of the composite heat exchanger 21, a heater core 22, an electric heater 26, a high temperature side pump 27, and a first reserve.
  • the tank 28, the high temperature side switching portion 30, and the like are arranged.
  • the heat radiating portion 21a of the composite heat exchanger 21, the heater core 22, and the high temperature side switching portion 30 are connected by the high temperature side heat medium flow path 20a. .. Further, a common flow path 23 parallel to each of the heat radiating portion 21a of the composite heat exchanger 21 and the heater core 22 is arranged.
  • the first reserve tank 28, the high temperature side pump 27, the heat medium passage of the water refrigerant heat exchanger 12, and the electric heater 26 are arranged in the common flow path 23.
  • the inlet side of the heat medium passage in the water refrigerant heat exchanger 12 is connected to the discharge port of the high temperature side pump 27.
  • the high temperature side pump 27 pumps the heat medium in the high temperature side heat medium circuit 20 to the heat medium passage of the water refrigerant heat exchanger 12.
  • the high temperature side pump 27 is an electric pump whose rotation speed (that is, pumping capacity) is controlled by a control voltage output from the control device 70.
  • An electric heater 26 is arranged on the outlet side of the heat medium passage in the water refrigerant heat exchanger 12.
  • the electric heater 26 is a heating device that heats the heat medium flowing out from the heat medium passage of the water refrigerant heat exchanger 12.
  • a PTC heater having a PTC element that is, a positive characteristic thermistor
  • the calorific value of the electric heater 26 can be arbitrarily controlled by the control voltage output from the control device 70.
  • the inlet side of the branch portion 24 is connected to the downstream side of the electric heater 26.
  • the branching portion 24 branches the flow of the heat medium on the downstream side of the electric heater 26 in the high temperature side heat medium circuit 20.
  • the branch portion 24 is a three-way joint similar to the refrigerant branch portion 13a and the like, and is a connection portion between the high temperature side heat medium flow path 20a and the common flow path 23.
  • the heat medium inlet side of the heat dissipation portion 21a of the composite heat exchanger 21 is connected to one outlet of the branch portion 24 via the first solenoid valve 30a of the high temperature side switching portion 30. Further, the heat medium inlet side of the heater core 22 is connected to the other outlet of the branch portion 24 via the second solenoid valve 30b of the high temperature side switching portion 30.
  • the first solenoid valve 30a is a flow rate adjusting unit that adjusts the flow rate of the heat medium flowing into the heat radiating unit 21a of the composite heat exchanger 21 in the high temperature side heat medium circuit 20.
  • the first solenoid valve 30a is an electric flow control valve having a valve body that changes the passage cross-sectional area of the high temperature side heat medium flow path 20a and an electric actuator (specifically, a stepping motor) that displaces the valve body. is there.
  • the operation of the first solenoid valve 30a is restricted by the control pulse output from the control device 70.
  • the second solenoid valve 30b is a flow rate adjusting unit that adjusts the flow rate of the heat medium flowing into the heater core 22 in the high temperature side heat medium circuit 20.
  • the basic configuration of the second solenoid valve 30b is the same as that of the first solenoid valve 30a.
  • the first solenoid valve 30a and the second solenoid valve 30b set the high temperature side flow rate day of the flow rate of the heat medium flowing into the heater core 22 with respect to the flow rate of the heat medium flowing into the composite heat exchanger 21 in the high temperature side heat medium circuit 20. It is a high temperature side flow rate ratio adjustment unit to be adjusted.
  • first solenoid valve 30a and the second solenoid valve 30b have a fully open mechanism and a fully closed mechanism similar to the first expansion valve 14a and the second expansion valve 14b. Therefore, the first solenoid valve 30a and the second solenoid valve 30b form a high temperature side switching unit 30 that switches the circuit configuration of the high temperature side heat medium circuit 20.
  • the composite heat exchanger 21 exchanges heat between the heat radiating unit 21a that exchanges heat between the heat medium of the high temperature side heat medium circuit 20 and the outside air OA, and the heat medium that circulates the low temperature side heat medium circuit 40 and the outside air OA. It is a heat exchanger in which the heat absorbing portion 21b is integrally formed. One inflow port side of the merging portion 25 is connected to the heat medium outlet side of the heat radiating portion 21a.
  • the composite heat exchanger 21 is arranged on the front side in the drive unit room.
  • the heat radiating portion 21a is arranged on the front side of the vehicle with respect to the heat absorbing portion 21b.
  • the heat radiating section 21a is arranged on the upstream side of the heat absorbing section 21b with respect to the flow of the outside air OA.
  • the composite heat exchanger 21 can exchange heat with the outside air OA blown by the outside air fan and the outside air OA blown by the running of the electric vehicle. That is, the composite heat exchanger 21 is an example of an air heat medium heat exchanger.
  • the heat radiating portion 21a and the heat absorbing portion 21b of the composite heat exchanger 21 have a so-called tank and tube type heat exchanger structure.
  • a tank-and-tube heat exchanger that exchanges heat between a heat medium and air (that is, outside air OA) distributes or assembles a plurality of tubes that circulate the heat medium and a heat medium that circulates the plurality of tubes. It has a tank for the purpose.
  • the structure is such that the heat medium that flows through the tubes that are stacked and arranged at intervals in a certain direction and the air that flows through the air passage formed between the adjacent tubes exchange heat.
  • heat exchange fins 21c are arranged in the air passage formed between the tubes 21at in the heat radiating portion 21a and the air passage formed between the tubes 21bt in the heat absorbing portion 21b.
  • the heat exchange fin 21c is composed of one thin plate-shaped metal member.
  • the heat exchange fins 21c are members that promote heat exchange between the heat medium and the outside air OA in the heat radiating unit 21a and promote heat exchange between the heat medium and the outside air OA in the heat absorbing unit 21b.
  • the heat exchange fins 21c are brazed to both the tube 21at of the heat dissipation portion 21a and the tube 21bt of the heat absorption portion 21b to connect the heat dissipation portion 21a and the heat absorption portion 21b. ing.
  • the composite heat exchanger 21 is configured to be able to transfer heat between the heat medium on the heat radiating portion 21a side and the heat medium on the heat absorbing portion 21b side via the heat exchange fins 21c.
  • a shutter device 31 is arranged on the upstream side of the air flow of the composite heat exchanger 21.
  • the shutter device 31 adjusts the flow rate of the outside air OA flowing into the composite heat exchanger 21.
  • the shutter device 31 can adjust the amount of heat exchange between the heat medium flowing through the composite heat exchanger 21 and the outside air OA.
  • the operation of the shutter device 31 is controlled by a control signal output from the control device 70.
  • the heater core 22 is a heating heat exchange unit that heats the blown air W by exchanging heat between the heat medium heated by the water refrigerant heat exchanger 12 and the like and the blown air W. As shown in FIG. 1 and the like, the heater core 22 is arranged in the casing 61 of the indoor air conditioning unit 60. The other inlet side of the merging portion 25 is connected to the heat medium outlet side of the heater core 22.
  • the merging section 25 merges the flow of the heat medium flowing out from the heat radiating section 21a of the composite heat exchanger 21 with the flow of the heat medium flowing out from the heater core 22.
  • the merging portion 25 is a three-way joint similar to the refrigerant merging portion 13b and the like.
  • one end of the common flow path 23 is connected to the outlet side of the confluence portion 25. As shown in FIG. 1, the other end of the common flow path 23 is connected to the inflow port side of the branch portion 24.
  • the composite heat exchanger 21 and the heater core 22 are connected in parallel with respect to the flow of the heat medium in the high temperature side heat medium circuit 20.
  • both the heat medium that circulates through the composite heat exchanger 21 and the heat medium that circulates through the heater core 22 flow in common. It is a medium flow path.
  • the first reserve tank 28, the high temperature side pump 27, the heat medium passage of the water refrigerant heat exchanger 12, and the electric heater 26 are arranged in order from the upstream side of the flow of the heat medium.
  • the first reserve tank 28 is a storage unit for the high temperature side heat medium circuit that stores the heat medium that is surplus in the high temperature side heat medium circuit 20. In the high temperature side heat medium circuit 20, by arranging the first reserve tank 28, a decrease in the amount of liquid in the heat medium circulating in the high temperature side heat medium circuit 20 is suppressed.
  • the first reserve tank 28 has a heat medium supply port for replenishing the high temperature side heat medium when the amount of the high temperature side heat medium in the high temperature side heat medium circuit 20 is insufficient.
  • the suction port side of the high temperature side pump 27 is connected to the heat medium outlet side of the first reserve tank 28.
  • the low temperature side heat medium circuit 40 is configured by connecting the chiller 15, the endothermic portion 21b of the composite heat exchanger 21, and the battery 45 by a low temperature side heat medium flow path 40a or the like, and circulates the heat medium to each constituent device. It is a heat medium circuit to make it.
  • the heat medium of the low temperature side heat medium circuit 40 the same heat medium as that of the high temperature side heat medium circuit 20 can be adopted.
  • the low temperature side switching unit 43, the second reserve tank 29, and the like are arranged.
  • the low temperature side heat medium flow path 40a is an annular heat medium flow path connecting the heat medium passage of the heat absorbing portion 21b of the composite heat exchanger 21 and the heat medium passage of the chiller 15.
  • a low temperature side pump 41, a second reserve tank 29, and an on-off valve 43b of the low temperature side switching portion 43 are arranged in the low temperature side heat medium flow path 40a.
  • the inlet side of the heat medium passage in the chiller 15 is connected to the discharge port of the low temperature side pump 41.
  • the low temperature side pump 41 pumps the heat medium of the low temperature side heat medium circuit 40 to the inlet of the heat medium passage of the chiller 15.
  • the basic configuration of the low temperature side pump 41 is the same as that of the high temperature side pump 27.
  • the chiller 15 can cool the heat medium of the low temperature side heat medium circuit 40 by evaporating the low pressure refrigerant to exert an endothermic action.
  • An on-off valve 43b of the low temperature side switching unit 43 is connected to the outlet of the heat medium passage in the chiller 15 via the low temperature side heat medium flow path 40a.
  • the on-off valve 43b is an electric flow rate adjusting valve that adjusts the flow rate of the heat medium flowing through the low temperature side heat medium circuit 40.
  • the basic configuration of the on-off valve 43b is the same as that of the first solenoid valve 30a described above.
  • the on-off valve 43b opens and closes the low temperature side heat medium flow path 40a according to the control signal from the control device 70. As a result, the on-off valve 43b can switch the flow path configuration of the low temperature side heat medium circuit 40 by its operation, and thus constitutes the low temperature side switching unit 43.
  • the heat medium inlet side of the endothermic portion 21b of the composite heat exchanger 21 is connected to the outlet side of the on-off valve 43b. Therefore, the heat absorbing portion 21b of the composite heat exchanger 21 absorbs the heat of the outside air OA into the heat medium by exchanging heat between the heat medium of the low temperature side heat medium circuit 40 and the outside air OA blown from the outside air fan. be able to.
  • a second reserve tank 29 is connected to the heat medium outlet side of the endothermic portion 21b of the composite heat exchanger 21.
  • the second reserve tank 29 is a storage unit for the low temperature side heat medium that stores the heat medium that is surplus in the low temperature side heat medium circuit 40.
  • the basic configuration of the second reserve tank 29 is the same as that of the first reserve tank 28.
  • the suction port side of the low temperature side pump 41 is connected to the heat medium outlet side of the second reserve tank 29.
  • a detour flow path 42 is arranged in the low temperature side heat medium circuit 40.
  • One end side of the bypass flow path 42 is connected to the low temperature side heat medium flow path 40a that connects the outlet of the on-off valve 43b and the inlet of the endothermic portion 21b in the composite heat exchanger 21.
  • the other end of the bypass flow path 42 is connected to the low temperature side heat medium flow path 40a that connects the outlet of the second reserve tank 29 and the suction port of the low temperature side pump 41.
  • the vehicle air conditioner 1 can circulate the heat medium of the low temperature side heat medium circuit 40 so as to bypass the endothermic portion 21b of the composite heat exchanger 21 by using the bypass flow path 42.
  • the low temperature side three-way valve 43a constituting the low temperature side switching portion 43 is arranged.
  • the low temperature side three-way valve 43a is composed of three types of flow rate regulating valves having three inflow ports.
  • One of the inflow outlets in the low temperature side three-way valve 43a is connected to the outlet of the on-off valve 43b via the bypass flow path 42.
  • the other inflow port of the low temperature side three-way valve 43a is connected to the suction port side of the low temperature side pump 41 via the bypass flow path 42.
  • one end side of the battery connection flow path 44 is connected to the remaining inflow port of the low temperature side three-way valve 43a.
  • the low temperature side three-way valve 43a continuously adjusts the flow rate ratio of the flow rate of the heat medium flowing out to one outlet side and the flow rate of the heat medium flowing out to the other outlet side of the heat medium flowing in from the inflow port. it can. Therefore, the low temperature side three-way valve 43a can switch the flow path configuration in the low temperature side heat medium circuit 40 by its operation, and constitutes a part of the low temperature side switching unit 43.
  • the battery 45 is an assembled battery formed by electrically connecting a plurality of battery cells in series or in parallel.
  • the battery cell is a rechargeable secondary battery (in this embodiment, a lithium ion battery).
  • the battery 45 is housed in a special case by stacking a plurality of battery cells so as to have a substantially rectangular parallelepiped shape.
  • This type of secondary battery generates heat during operation (that is, during charging / discharging).
  • the temperature of a secondary battery becomes low, the chemical reaction does not easily proceed and the output tends to decrease. Further, the secondary battery tends to deteriorate at a high temperature. Therefore, the temperature of the secondary battery is maintained within an appropriate temperature range (in this embodiment, 15 ° C. or higher and 55 ° C. or lower) in which the charge / discharge capacity of the secondary battery can be fully utilized. It is desirable to be there.
  • a heat medium passage 45a for circulating the heat medium is formed inside the special case of the battery 45.
  • the heat medium passage 45a has a configuration in which a plurality of passages are connected in parallel inside a special case. As a result, the heat medium passage 45a can uniformly absorb the heat of all the battery cells, so that all the battery cells can be cooled evenly.
  • the battery 45 is an example of an object to be cooled.
  • the other end of the heat medium passage 45a in the battery 45 is connected to the low temperature side heat medium flow path 40a that connects the discharge port of the low temperature side pump 41 and the inflow port of the on-off valve 43b via the battery connection flow path 44. Has been done.
  • the low temperature side heat medium circuit 40 by controlling the operation of the low temperature side switching unit 43, the heat medium cooled by the chiller 15 can be passed through the heat medium passage 45a of the battery 45. As a result, the vehicle air conditioner 1 can appropriately cool the battery 45.
  • the device-side heat medium circuit 50 is a heat medium circuit for utilizing the heat generated in the heat generating device 51 mounted on the electric vehicle.
  • the equipment side heat medium circuit 50 is configured to also serve as a part of the configuration of the low temperature side heat medium circuit 40.
  • As the heat medium of the device side heat medium circuit 50 the same heat medium as the low temperature side heat medium circuit 40 described above can be adopted.
  • the device-side heat medium circuit 50 has a device-side heat medium flow path 50a, a heat-generating device 51, a device-side pump 52, a device-side three-way valve 53, and a bypass flow path 54. As shown in FIG. 1, one end of the device-side heat medium flow path 50a is connected to the low-temperature side heat medium flow path 40a on the heat medium inlet side of the endothermic portion 21b of the composite heat exchanger 21. The other end of the equipment-side heat medium flow path 50a is connected to the low-temperature side heat medium flow path 40a on the outlet side of the second reserve tank 29.
  • the heat medium passage 51a of the heat generating device 51 is arranged in the heat medium flow path 50a on the device side. Therefore, the heat generating device 51 is connected in parallel to the heat absorbing portion 21b of the composite heat exchanger 21.
  • the heat-generating device 51 is composed of in-vehicle devices mounted on an electric vehicle that generate heat incidentally when operated for the purpose of traveling or the like.
  • the heat generating device 51 is a device in which heat is generated by an operation having a purpose different from that of heat generation, and it is difficult to control the amount of heat generated.
  • the heat generating device 51 is not a heating device such as the electric heater 26 that operates for the purpose of heat generation and generates an arbitrary amount of heat.
  • a so-called power control unit (PCU) is adopted as the heat generating device 51.
  • the power control unit which is the heat generating device 51, includes, for example, an inverter, a motor generator, a transaxle device, and the like.
  • the heat medium passage 51a of the heat generating device 51 is formed so that the respective constituent devices can be cooled by circulating the heat medium.
  • the inverter is a power conversion unit that converts direct current into alternating current. Then, the motor generator outputs a driving force for traveling by being supplied with electric power, and also generates regenerative electric power at the time of deceleration or the like.
  • the transaxle device is a device that integrates a transmission and a final gear / differential gear (diff gear).
  • the discharge port of the device-side pump 52 is connected to the inlet side of the heat-generating device 51 in the heat medium passage 51a.
  • the device-side pump 52 pumps the heat medium of the device-side heat medium circuit 50 to the inlet side of the heat-generating device 51 in the heat medium passage 51a.
  • the basic configuration of the equipment side pump 52 is the same as that of the high temperature side pump 27 and the like.
  • the suction port of the device-side pump 52 is a low-temperature side heat medium that connects the outlet of the first solenoid valve 30a and the inlet of the second reserve tank 29 via the device-side heat medium flow path 50a. It is connected to the flow path 40a.
  • the device-side three-way valve 53 is composed of an electric three-way flow rate regulating valve having three inflow ports.
  • Another inflow port in the device-side three-way valve 53 is a low-temperature side heat medium flow that connects the heat medium inlet and the confluence 25 in the endothermic section 21b of the composite heat exchanger 21 via the device-side heat medium flow path 50a. It is connected to the road 40a. Therefore, according to the device-side heat medium circuit 50, the heat medium that has passed through the heat generating device 51 can be supplied to the endothermic section 21b of the composite heat exchanger 21.
  • a bypass flow path 54 is connected to yet another inflow port of the device-side three-way valve 53.
  • the bypass flow path 54 is a heat medium flow path for bypassing the composite heat exchanger 21 and the second reserve tank 29 with respect to the flow of the heat medium.
  • the other end side of the bypass flow path 54 is connected to the suction port side of the device side pump 52.
  • the device-side heat medium circuit 50 can switch the flow of the heat medium in the device-side heat medium circuit 50 by controlling the operation of the device-side three-way valve 53. Therefore, the device-side three-way valve 53 is an example of a switching unit.
  • the indoor air conditioner unit 60 constituting the vehicle air conditioner 1 will be described with reference to FIG.
  • the indoor air-conditioning unit 60 is a unit for blowing out blown air W whose temperature has been adjusted by a refrigeration cycle 10 or the like to an appropriate portion in the vehicle interior in the vehicle air-conditioning device 1.
  • the indoor air conditioning unit 60 is arranged inside the instrument panel (that is, the instrument panel) at the frontmost part of the vehicle interior.
  • the indoor air conditioning unit 60 has a casing 61 that forms an air passage for the blown air W.
  • a blower 62, an indoor evaporator 16, a heater core 22, and the like are arranged in an air passage formed inside the casing 61.
  • the casing 61 is made of a resin (specifically, polypropylene) having a certain degree of elasticity and excellent strength.
  • an inside / outside air switching device 63 is arranged on the most upstream side of the blast air flow of the casing 61.
  • the inside / outside air switching device 63 switches and introduces the inside air (vehicle interior air) and the outside air (vehicle interior outside air) into the casing 61.
  • the operation of the electric actuator for driving the inside / outside air switching device 63 is controlled by the control signal output from the control device 70.
  • a blower 62 is arranged on the downstream side of the blower air flow of the inside / outside air switching device 63.
  • the blower 62 is composed of an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the blower 62 blows the air sucked through the inside / outside air switching device 63 toward the vehicle interior.
  • the rotation speed (that is, the blowing capacity) of the blower 62 is controlled by the control voltage output from the control device 70.
  • the indoor evaporator 16 and the heater core 22 are arranged in this order with respect to the flow of the blower air W. That is, the indoor evaporator 16 is arranged on the upstream side of the blown air flow with respect to the heater core 22.
  • a cold air bypass passage 65 is formed in the casing 61.
  • the cold air bypass passage 65 is an air passage that allows the blown air W that has passed through the indoor evaporator 16 to bypass the heater core 22 and flow to the downstream side.
  • the air mix door 64 is arranged on the downstream side of the blast air flow of the indoor evaporator 16 and on the upstream side of the blast air flow of the heater core 22.
  • the air mix door 64 adjusts the air volume ratio between the air volume passing through the heater core 22 and the air volume passing through the cold air bypass passage 65 in the blown air W after passing through the indoor evaporator 16.
  • the operation of the electric actuator for driving the air mix door is controlled by a control signal output from the control device 70.
  • a mixing space 66 is provided on the downstream side of the blown air flow of the heater core 22.
  • the mixing space 66 the blown air W heated by the heater core 22 and the blown air W that has passed through the cold air bypass passage 65 and is not heated by the heater core 22 are mixed.
  • a plurality of opening holes for blowing the blown air (air-conditioned air) mixed in the mixing space 66 into the vehicle interior are arranged.
  • the plurality of opening holes include a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown).
  • the face opening hole is an opening hole for blowing air-conditioning air toward the upper body of the occupant in the passenger compartment.
  • the foot opening hole is an opening hole for blowing air-conditioning air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing air conditioning air toward the inner surface of the window glass arranged on the front surface of the vehicle.
  • An outlet mode switching door (not shown) is arranged on the upstream side of these opening holes.
  • the blowout mode switching door switches the opening holes for blowing out the conditioned air by opening and closing each opening hole.
  • the operation of the electric actuator for driving the blowout mode switching door is controlled by a control signal output from the control device 70.
  • the control device 70 is composed of a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
  • control device 70 performs various calculations and processes based on the control program stored in the ROM, and controls the operation of various controlled target devices connected to the output side thereof.
  • the control device 70 is an example of a control unit.
  • the devices to be controlled include a compressor 11, a first expansion valve 14a, a second expansion valve 14b, an electric heater 26, a high temperature side pump 27, a first solenoid valve 30a, a second solenoid valve 30b, and the like.
  • a shutter device 31 is included.
  • the equipment to be controlled includes a low temperature side pump 41, a low temperature side three-way valve 43a, an on-off valve 43b, an equipment side pump 52, an equipment side three-way valve 53, and a blower 62.
  • a sensor group for air conditioning control is connected to the input side of the control device 70.
  • the sensor group for air conditioning control includes an inside temperature sensor 72a, an outside temperature sensor 72b, a solar radiation sensor 72c, a high pressure sensor 72d, an evaporator temperature sensor 72e, a refrigerant pressure sensor 72f, an air conditioning air temperature sensor 72g, and a battery temperature sensor 72h. There is.
  • the detection signals of these sensors for air conditioning control are input to the control device 70.
  • the internal air temperature sensor 72a is an internal air temperature detection unit that detects the vehicle interior temperature (internal air temperature) Tr.
  • the outside air temperature sensor 72b is an outside air temperature detection unit that detects the outside air temperature (outside air temperature) Tam.
  • the solar radiation sensor 72c is a solar radiation amount detection unit that detects the solar radiation amount As emitted into the vehicle interior.
  • the high-pressure sensor 72d is a refrigerant pressure detecting unit that detects the high-pressure refrigerant pressure Pd of the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 14a or the second expansion valve 14b.
  • the evaporator temperature sensor 72e is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16.
  • the refrigerant pressure sensor 72f is a refrigerant pressure detecting unit that detects the refrigerant pressure in the refrigerant flow path on the refrigerant outlet side of the chiller 15.
  • the air-conditioning air temperature sensor 72g is an air-conditioning air temperature detecting unit that detects the air-conditioned air temperature TAV blown into the vehicle interior.
  • the battery temperature sensor 72h is a battery temperature detection unit that detects the temperature of the battery 45.
  • the battery temperature sensor 72h detects, for example, the temperature of each battery cell constituting the battery 45.
  • a plurality of heat medium temperature sensors are connected to the input side of the control device 70 in order to detect the temperature of the heat medium in the high temperature side heat medium circuit 20, the low temperature side heat medium circuit 40, and the device side heat medium circuit 50. Has been done.
  • the plurality of heat medium temperature sensors include a first heat medium temperature sensor 73a to a fifth heat medium temperature sensor 73e.
  • the first heat medium temperature sensor 73a is arranged at the inlet portion of the branch portion 24 to which the common flow path 23 is connected, and detects the temperature of the heat medium flowing out from the common flow path 23.
  • the second heat medium temperature sensor 73b is arranged at the outlet portion of the heater core 22 and detects the temperature of the heat medium passing through the heater core 22.
  • the third heat medium temperature sensor 73c is arranged at the heat medium outlet portion of the endothermic portion 21b of the composite heat exchanger 21 and detects the temperature of the heat medium passing through the heat absorbing portion 21b of the composite heat exchanger 21. ..
  • the third heat medium temperature sensor 73c is an example of a detection unit, and the temperature of the heat medium flowing out from the endothermic unit 21b of the composite heat exchanger 21 is an example of a specific physical quantity.
  • the fourth heat medium temperature sensor 73d is arranged at the inflow port portion of the heat medium passage in the chiller 15 and detects the temperature of the heat medium flowing into the chiller 15.
  • the fifth heat medium temperature sensor 73e is arranged at the outlet portion of the heat medium passage 51a of the heat generating device 51, and detects the temperature of the heat medium flowing out from the heat medium passage 51a of the heat generating device 51.
  • the vehicle air conditioner 1 refers to the detection results of the first heat medium temperature sensor 73a to the fifth heat medium temperature sensor 73e, and refers to the high temperature side heat medium circuit 20, the low temperature side heat medium circuit 40, and the device side heat medium circuit 50. Switch the flow of heat medium in. As a result, the vehicle air conditioner 1 can manage and effectively utilize the heat in the vehicle by using the heat medium.
  • an operation panel 71 is connected to the input side of the control device 70.
  • a plurality of operation switches are arranged on the operation panel 71. Therefore, operation signals from the plurality of operation switches are input to the control device 70.
  • the various operation switches on the operation panel 71 include a temperature setting switch for setting a target temperature Tset in the vehicle interior.
  • control device 70 a control unit that controls various control target devices connected to the output side is integrally configured, but a configuration (hardware and software) that controls the operation of each control target device is provided. It constitutes a control unit that controls the operation of each controlled device.
  • the configuration for determining whether or not it is necessary to dissipate the heat generated in the heat generating device 51 by the composite heat exchanger 21 to the outside air OA is the heat dissipation necessity determination unit 70a.
  • the configuration for determining whether or not the endothermic unit 21b in the composite heat exchanger 21 needs to be defrosted is the defrost determination unit 70b.
  • control device 70 when the composite heat exchanger 21 is defrosted, the configuration for determining whether or not the dew condensation condition for the heat generating device 51 to condense due to the heat exchanger with the heat medium is set as the device dew condensation.
  • the determination unit 70c when the composite heat exchanger 21 is defrosted, the configuration for determining whether or not the dew condensation condition for the heat generating device 51 to condense due to the heat exchanger with the heat medium is set as the device dew condensation.
  • the configuration for determining whether or not the defrosting of the composite heat exchanger 21 has been completed is the defrosting completion determination unit 70d. Further, among the control devices 70, the configuration for determining whether or not the battery 45 needs to be cooled during the defrosting operation of the composite heat exchanger 21 is the cooling necessity determination unit 70e.
  • the configuration that controls the operation of the composite heat exchanger 21 regarding defrosting is the defrosting operation control unit 75a.
  • the control device 70 that executes steps S1 to S9, which will be described later, is a defrosting operation control unit 75a.
  • the configuration for performing operation control regarding the recovery from defrosting of the composite heat exchanger 21 is the recovery operation control unit 75b.
  • the control device 70 that executes steps S10 to S12, which will be described later, is a return operation control unit 75b.
  • the operation of the vehicle air conditioner 1 in the first embodiment will be described.
  • air conditioning in the vehicle interior and temperature adjustment of the heat generating device 51, the battery 45, etc. are realized by appropriately switching the operation mode from the plurality of operation modes. can do.
  • the plurality of operation modes in the vehicle air conditioner 1 include a cooling cooling mode, a dehumidifying heating mode, and a heating mode, and the heating mode includes a heating heat storage mode and a heating defrost mode. There is.
  • each operation mode will be described.
  • the cooling / cooling mode is an operation mode in which the vehicle interior is cooled and the battery 45 is cooled.
  • the control device 70 operates the compressor 11 of the refrigeration cycle 10. Further, the control device 70 puts the first expansion valve 14a and the second expansion valve 14b in a throttled state in which the refrigerant depressurizing action is exerted.
  • control device 70 operates the high temperature side pump 27 of the high temperature side heat medium circuit 20. Further, the control device 70 sets the first solenoid valve 30a of the high temperature side switching unit 30 in the fully open state and the second solenoid valve 30b in the fully closed state.
  • control device 70 operates the low temperature side pump 41 of the low temperature side heat medium circuit 40.
  • the control device 70 closes the on-off valve 43b of the low temperature side switching unit 43 in a fully closed state, controls the operation of the low temperature side three-way valve 43a, and heats the heat medium flowing out from the heat medium passage of the chiller 15 to the heat of the battery 45. It flows into the medium passage 45a.
  • control device 70 operates the device-side pump 52 of the device-side heat medium circuit 50. In the cooling / cooling mode, the control device 70 controls the operation of the device-side three-way valve 53 so that the temperature of the heating device 51 is maintained within an appropriate temperature range.
  • the control device 70 controls the operation of the device side three-way valve 53 so as to increase the flow rate of the heat medium flowing out to the composite heat exchanger 21 side.
  • the heat generated in the heat generating device 51 can be dissipated from the composite heat exchanger 21 to the outside air OA via the heat medium flowing through the device side heat medium circuit 50, and the temperature of the heat generating device 51 is lowered. be able to.
  • the control device 70 controls the operation of the device-side three-way valve 53 so as to increase the flow rate of the heat medium flowing out to the bypass flow path 54 side.
  • the heat medium flowing out of the heat medium passage 51a of the heat generating device 51 can be returned to the suction port side of the device side pump 52 again via the bypass flow path 54. Therefore, the heat generated in the heat generating device 51 can be stored in the heat medium circuit 50 on the device side, and the heat generating device 51 can be warmed up by the self-heating of the heat generating device 51.
  • control device 70 operates the blower 62 of the indoor air conditioning unit 60. Further, the control device 70 displaces the air mix door 64 so that the total air volume of the blown air W that has passed through the indoor evaporator 16 passes through the cold air bypass passage 65.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water refrigerant heat exchanger 12.
  • the high-pressure refrigerant flowing into the refrigerant passage dissipates heat to the heat medium flowing through the heat medium passage to become a supercooled liquid-phase refrigerant. As a result, the heat medium flowing through the heat medium passage is heated.
  • the flow of the supercooled liquid phase refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 is branched at the refrigerant branching portion 13a.
  • One of the refrigerants branched by the refrigerant branching portion 13a is depressurized by the first expansion valve 14a.
  • the low-pressure refrigerant decompressed by the first expansion valve 14a flows into the refrigerant passage of the chiller 15.
  • the low-pressure refrigerant flowing into the refrigerant passage absorbs heat from the heat medium flowing through the heat medium passage and evaporates. As a result, the heat medium flowing through the heat medium passage is cooled.
  • the refrigerant flowing out of the refrigerant passage of the chiller 15 flows into one of the inlets of the refrigerant merging portion 13b.
  • the other refrigerant branched at the refrigerant branching portion 13a is depressurized at the second expansion valve 14b.
  • the low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 16.
  • the low-pressure refrigerant flowing into the indoor evaporator 16 absorbs heat from the blown air W blown from the blower 62 and evaporates. As a result, the blown air W is cooled.
  • the refrigerant flowing out of the indoor evaporator 16 flows into the other inflow port of the refrigerant confluence portion 13b via the evaporation pressure adjusting valve 17.
  • the refrigerant flowing out from the refrigerant merging portion 13b is sucked into the compressor 11 and compressed again.
  • the heat medium pumped from the high temperature side pump 27 flows into the heat medium passage of the water refrigerant heat exchanger 12 and is heated.
  • the heat medium flowing out from the heat medium passage of the water refrigerant heat exchanger 12 passes through the electric heater 26, the branch portion 24, and the first electromagnetic valve 30a of the high temperature side switching portion 30, and the heat radiating portion 21a of the composite heat exchanger 21. Inflow to.
  • the heat medium dissipates heat to the outside air OA passing through the heat radiating section 21a of the composite heat exchanger 21 via the shutter device 31.
  • the heat medium of the high temperature side heat medium circuit 20 is cooled.
  • the heat medium flowing out of the heat radiating portion 21a of the composite heat exchanger 21 is sucked into the high temperature side pump 27 via the merging portion 25 and the first reserve tank 28 and pumped again.
  • the heat medium pumped from the low temperature side pump 41 flows into the heat medium passage of the chiller 15 and is cooled.
  • the heat medium flowing out of the heat medium passage of the chiller 15 flows into the heat medium passage 45a of the battery 45 via the battery connection flow path 44.
  • the heat medium flowing into the heat medium passage 45a of the battery 45 absorbs heat from the battery cell of the battery 45 and rises in temperature. As a result, the battery 45 is cooled.
  • the heat medium flowing out of the heat medium passage 45a of the battery 45 is sucked into the low temperature side pump 41 via the low temperature side three-way valve 43a and the bypass flow path 42, and is pumped again.
  • the indoor air conditioning unit 60 in the cooling / cooling mode, the blown air W that has passed through the indoor evaporator 16 and is cooled is blown into the vehicle interior. As a result, cooling of the passenger compartment is realized.
  • cooling / cooling mode cooling of the vehicle interior and cooling of the battery 45 are realized as described above. Further, in the cooling / cooling mode, under the operating condition that the battery 45 does not need to be cooled, the control device 70 may execute the independent cooling mode with the first expansion valve 14a fully closed. Further, under operating conditions in which cooling of the vehicle interior is not required in the cooling cooling mode, the control device 70 may execute the independent cooling mode with the second expansion valve 14b fully closed.
  • the dehumidifying and heating mode is an operation mode for dehumidifying and heating the interior of the vehicle.
  • the control device 70 operates the compressor 11 of the refrigeration cycle 10. Further, the control device 70 puts the first expansion valve 14a in a fully closed state and the second expansion valve 14b in a throttled state.
  • control device 70 operates the high temperature side pump 27 of the high temperature side heat medium circuit 20. Then, the control device 70 puts the first solenoid valve 30a and the second solenoid valve 30b of the high temperature side switching unit 30 into the flow rate adjusting state, respectively. Further, the control device 70 adjusts the heating capacity of the electric heater 26 so that the temperature of the heat medium flowing out from the heater core 22 becomes equal to or higher than the predetermined reference heater core outlet side temperature.
  • control device 70 stops the low temperature side pump 41 in the low temperature side heat medium circuit 40.
  • control device 70 operates the device-side pump 52 of the device-side heat medium circuit 50. In the dehumidifying / heating mode as well, the control device 70 controls the operation of the device-side three-way valve 53 so that the temperature of the heating device 51 is maintained within an appropriate temperature range, as in the cooling / cooling mode.
  • the control device 70 operates the blower 62 of the indoor air conditioning unit 60. Further, the control device 70 displaces the air mix door 64 so that the temperature of the blown air W blown into the vehicle interior approaches the target blowing temperature TAO.
  • the target blowout temperature TAO is calculated using the detection signal of the sensor group described above and the operation signal of the operation panel 71.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water refrigerant heat exchanger 12.
  • the high-pressure refrigerant that has flowed into the refrigerant passage of the water-refrigerant heat exchanger 12 dissipates heat to the heat medium flowing through the heat medium passage and becomes a supercooled liquid-phase refrigerant.
  • the heat medium flowing through the heat medium passage is heated as in the cooling / cooling mode.
  • the supercooled liquid-phase refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the second expansion valve 14b via the refrigerant branching portion 13a and is depressurized.
  • the low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 16.
  • the low-pressure refrigerant that has flowed into the indoor evaporator 16 absorbs heat from the blown air W blown from the blower 62 and evaporates. As a result, the blown air W flowing into the indoor evaporator 16 is cooled and dehumidified.
  • the refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the refrigerant merging portion 13b, and is compressed again.
  • the heat medium pumped from the high temperature side pump 27 flows into the heat medium passage of the water refrigerant heat exchanger 12 and is heated.
  • the flow of the heat medium flowing out from the heat medium passage of the water refrigerant heat exchanger 12 flows into the branch portion 24 via the electric heater 26 and is branched.
  • one of the heat media branched at the branch portion 24 flows into the heat dissipation portion 21a of the composite heat exchanger 21 via the first solenoid valve 30a.
  • the heat medium that has flowed into the heat radiating section 21a of the composite heat exchanger 21 dissipates heat to the outside air OA that has flowed into the heat radiating section 21a via the shutter device 31.
  • the heat medium of the high temperature side heat medium circuit 20 is cooled.
  • the heat medium flowing out from the heat radiating portion 21a of the composite heat exchanger 21 flows into one inflow port of the merging portion 25.
  • the other heat medium branched at the branch portion 24 flows into the heater core 22 via the second solenoid valve 30b.
  • the heat medium flowing into the heater core 22 dissipates heat to at least a part of the blown air W cooled by the indoor evaporator 16. As a result, at least a part of the blown air W is reheated.
  • the heat medium flowing out of the heater core 22 flows into the other inlet of the confluence 25.
  • the heat medium flowing out from the merging portion 25 is sucked into the high temperature side pump 27 via the first reserve tank 28 and pumped again.
  • the indoor air conditioning unit 60 in the dehumidifying / heating mode at least a part of the blown air W dehumidified by the indoor evaporator 16 is heated by the heater core 22. Then, by adjusting the opening degree of the air mix door 64, the blown air W whose temperature is adjusted so as to approach the target blowing temperature TAO is blown into the vehicle interior. As a result, dehumidifying and heating of the vehicle interior is realized.
  • the heating mode is an operation mode for heating the interior of the vehicle.
  • the vehicle air conditioner 1 has operation modes such as a heating heat storage mode, a heating heat dissipation mode, and a heating defrosting mode as specific operation modes of the heating mode.
  • the heating heat storage mode which is the normal operation mode in the heating mode, will be described.
  • the heating heat storage mode is an operation mode in which the heat generated in the heat generating device 51 is stored in the device side heat medium circuit 50 at the same time as heating the interior of the vehicle.
  • control device 70 operates the compressor 11 of the refrigeration cycle 10. Further, the control device 70 puts the first expansion valve 14a in the throttled state and the second expansion valve 14b in the fully closed state.
  • control device 70 operates the high temperature side pump 27 of the high temperature side heat medium circuit 20. Further, the control device 70 sets the first solenoid valve 30a of the high temperature side switching unit 30 in a fully closed state and the second solenoid valve 30b in a fully open state.
  • control device 70 adjusts the heating capacity of the electric heater 26 so that the temperature of the heat medium flowing out from the heater core 22 becomes equal to or higher than the predetermined reference heater core outlet side temperature.
  • the temperature on the outlet side of the reference heater core is determined so that the temperature of the blown air W heated by the heater core 22 can realize sufficient heating in the vehicle interior. Therefore, when the temperature of the heat medium exceeds the temperature on the outlet side of the reference heater core, the control device 70 does not supply electric power to the electric heater 26.
  • control device 70 operates the low temperature side pump 41 of the low temperature side heat medium circuit 40. Further, the control device 70 sets the on-off valve 43b of the low temperature side switching unit 43 to the fully open state, controls the operation of the low temperature side three-way valve 43a, and heats the heat medium flowing out from the heat medium passage of the chiller 15 as a composite type heat. It flows into the heat absorbing portion 21b of the exchanger 21.
  • the control device 70 operates the device-side pump 52. Then, the control device 70 controls the operation of the device-side three-way valve 53 so that the heat medium flowing out from the heat medium passage 51a of the heat generating device 51 passes through the bypass flow path 54. At this time, the heat medium in the device side heat medium circuit 50 flows in the order of the device side pump 52, the heat medium passage 51a of the heat generating device 51, the device side three-way valve 53, the bypass flow path 54, and the device side pump 52, and the device side heat flows. It circulates in the medium circuit 50.
  • control device 70 operates the blower 62 of the indoor air conditioning unit 60. Further, the control device 70 controls the operation of the electric actuator for driving the air mix door so that the total amount of the blown air that has passed through the indoor evaporator 16 passes through the heater core 22.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water refrigerant heat exchanger 12.
  • the high-pressure refrigerant flowing into the refrigerant passage dissipates heat to the heat medium flowing through the heat medium passage to become a supercooled liquid-phase refrigerant.
  • the heat medium flowing through the heat medium passage of the water refrigerant heat exchanger 12 is heated.
  • the supercooled liquid-phase refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the first expansion valve 14a via the refrigerant branching portion 13a and is depressurized.
  • the low-pressure refrigerant decompressed by the first expansion valve 14a flows into the refrigerant passage of the chiller 15.
  • the low-pressure refrigerant flowing into the refrigerant passage absorbs heat from the heat medium flowing through the heat medium passage and evaporates.
  • the heat medium flowing through the heat medium passage of the chiller 15 is cooled.
  • the refrigerant flowing out of the refrigerant passage of the chiller 15 is sucked into the compressor 11 via the refrigerant merging portion 13b and compressed again.
  • the heat medium pumped from the high temperature side pump 27 flows into the heat medium passage of the water refrigerant heat exchanger 12 and is heated.
  • the heat medium flowing out from the heat medium passage of the water refrigerant heat exchanger 12 flows into the heater core 22 via the electric heater 26, the branch portion 24, and the second solenoid valve 30b.
  • the heat medium flowing into the heater core 22 dissipates heat to the blown air W blown from the blower 62. As a result, the blown air W is heated.
  • the heat medium flowing out of the heater core 22 is sucked into the high temperature side pump 27 via the merging portion 25 and the first reserve tank 28 and pumped again.
  • the heat medium pumped from the low temperature side pump 41 flows into the heat medium passage of the chiller 15 and passes through the refrigerant passage. It is cooled by the heat absorption action that accompanies the evaporation of the refrigerant.
  • the heat medium flowing out of the heat medium passage of the chiller 15 flows into the heat absorbing portion 21b of the composite heat exchanger 21 via the on-off valve 43b of the low temperature side switching portion 43.
  • the heat medium that has flowed into the heat absorbing portion 21b absorbs heat from the outside air OA that has passed through the heat radiating portion 21a and rises in temperature.
  • the heat medium flowing out of the endothermic unit 21b is sucked into the low temperature side pump 41 via the second reserve tank 29 and pumped again.
  • the heat absorbed from the outside air OA by the heat absorbing portion 21b of the composite heat exchanger 21 can be absorbed by the low pressure refrigerant by the chiller 15 by the circulation of the heat medium. ..
  • the flow of the heat medium in the low temperature side heat medium circuit 40 at this time is an example of the flow rate configuration of the first aspect.
  • the heat medium pumped from the device-side pump 52 flows into the heat medium passage 51a of the heat-generating device 51.
  • the heat medium is heated by the exhaust heat generated by the operation of the heat generating device 51.
  • the heat medium flowing out of the heat medium passage 51a of the heat generating device 51 is sucked into the device side pump 52 via the device side three-way valve 53 and the bypass flow path 54 and pumped again. As a result, the exhaust heat of the heat generating device 51 is stored in the heat medium circulating in the device side heat medium circuit 50.
  • the blown air W heated through the heater core 22 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
  • the heat of the outside air OA is absorbed by the heat medium in the heat absorbing portion 21b of the composite heat exchanger 21.
  • the heat medium absorbed from the outside air OA flows into the chiller 15 in the process of circulating in the low temperature side heat medium circuit 40, and is endothermic by the low-pressure refrigerant in the refrigeration cycle 10.
  • the heat absorbed by the refrigerant in the chiller 15 is pumped up by the refrigeration cycle 10 and dissipated to the heat medium of the high temperature side heat medium circuit 20 by the water refrigerant heat exchanger 12.
  • the heat medium of the high temperature side heat medium circuit 20 flows into the heater core 22 via the electric heater 26 and the like, and exchanges heat with the blown air W blown by the blower 62. That is, according to the heating heat storage mode of the vehicle air conditioner 1, the outside air OA can be used as a heat source for heating the interior of the vehicle.
  • the specific operation mode of the heating mode includes the heating / radiating mode.
  • the heating / radiating mode is an operation mode in which the heat generated in the heat generating device 51 is radiated to the outside air at the same time as heating the interior of the vehicle.
  • the heating heat dissipation mode is an operation mode that can be switched when the temperature of the heating device 51 rises in the heating heat storage mode.
  • the operation of the device side heat medium circuit 50 is different from that in the heating heat storage mode. That is, the operation of the refrigeration cycle 10 and the like is basically the same as the heating heat storage mode.
  • the control device 70 controls the operation of the device-side three-way valve 53 to allow the heat medium flowing out from the heat medium passage 51a of the heat generating device 51 to flow into the heat absorbing portion 21b of the composite heat exchanger 21.
  • the heat medium in the heating / radiating mode is the equipment side pump 52, the heat medium passage 51a of the heat generating equipment 51, the equipment side three-way valve 53, the endothermic portion 21b of the composite heat exchanger 21, the second reserve tank 29, and the equipment side. It flows in the order of the pump 52 and circulates in the heat medium circuit 50 on the device side.
  • the device side heat medium circuit 50 when the heat medium flows into the heat medium passage 51a of the heat generating device 51, it is heated by the exhaust heat of the heat generating device 51.
  • the heat medium flowing out of the heat medium passage 51a of the heat generating device 51 flows into the composite heat exchanger 21 and dissipates heat to the outside air OA.
  • the heat generated in the heat generating device 51 is transferred from the composite heat exchanger 21 to the outside air OA through the heat medium flowing through the device side heat medium circuit 50 at the same time as the heating of the vehicle interior is realized.
  • the temperature of the heating device 51 can be lowered by dissipating heat to.
  • the outside air OA can be used as the heating heat source.
  • the surface of the composite heat exchanger 21 will frost when the composite heat exchanger 21 absorbs heat from the outside air OA. ..
  • the heat exchange performance between the heat medium and the outside air OA is significantly lowered, which is considered to be a factor of lowering the heating performance in the vehicle air conditioner 1.
  • the composite heat exchanger 21 cannot be defrosted at an appropriate timing, it is expected that the temperature adjustment of the heat medium in the device side heat medium circuit 50 will be affected. Since the heat medium passes through the heat medium passage 51a of the heat generating device 51, it is considered that the temperature of the heat medium also affects the operation of the heat generating device 51.
  • control content of the heating mode is configured to optimize the defrosting of the composite heat exchanger 21 and protect the heat generating device 51.
  • control contents executed in the heating mode of the vehicle air conditioner 1 will be described with reference to the drawings.
  • the heating heat storage mode is started in step S1 and the air conditioning operation related to the heating heat storage mode is performed.
  • the control device 70 operates the device-side pump 52 and causes the device-side three-way valve 53 so that the heat medium flowing out from the heat medium passage 51a of the heat-generating device 51 passes through the bypass flow path 54. Control the operation. As a result, the exhaust heat derived from the heat generating device 51 is stored in the heat medium circulating in the device side heat medium circuit 50.
  • control device 70 operates the compressor 11 by setting the rotation speed of the compressor 11 to a predetermined rotation speed Nc for a predetermined period with respect to the operation of the refrigeration cycle 10 in the heating heat storage mode.
  • step S2 after the compressor 11 is operated under the conditions of step S1 for a predetermined period, the outside air temperature Tam detected by the outside air temperature sensor 72b and the vehicle speed of the electromagnetic vehicle are used as indicators of the initial state in the heating mode.
  • V the rotation speed Nc of the compressor 11 is acquired.
  • the outside air temperature Tam detected at this time is called the standard outside air temperature KTam.
  • the vehicle speed V and the rotation speed Nc of the compressor 11 detected in step S2 are referred to as a reference vehicle speed KV and a reference rotation speed KNc, respectively.
  • step S2 the heat medium temperature Tw detected by the third heat medium temperature sensor 73c is acquired as an index indicating the initial state of the endothermic unit 21b in the composite heat exchanger 21.
  • the heat medium temperature Tw acquired in step S2 is referred to as the reference heat medium temperature KTw.
  • step S2 after acquiring the non-standard air temperature KTam, the reference vehicle speed KV, the reference rotation speed KNc, and the reference heat medium temperature KTw, the operation control in the heating heat storage mode is performed as shown in FIG.
  • step S3 it is determined whether or not the device temperature Twd, which is an index showing the influence of heat on the heat generating device 51, is lower than the predetermined protection temperature KTp.
  • the device temperature Twd As the device temperature Twd, the heat medium temperature passing through the outlet of the heat medium passage 51a of the heat generating device 51 is adopted, and is detected by the fifth heat medium temperature sensor 73e.
  • the protection temperature KTp indicates the upper limit of the temperature at which the heat generating device 51 can be used normally. For example, when the heat generating device 51 is composed of a plurality of devices, the protection temperature KTp is set to the lowest temperature among the upper limit values of the operating temperature range in each device. In step S3, it can be said that it is determined whether or not the usage environment of the heat generating device 51 of the device side heat medium circuit 50 is within an appropriately usable range.
  • step S4 a determination correction value Cv for accurately determining whether or not defrosting is required for the endothermic portion 21b of the composite heat exchanger 21 is determined. The determination of the determination correction value Cv will be described in detail later.
  • the process proceeds to step S5 in order to suppress the temperature rise of the heat medium in the device side heat medium circuit 50.
  • the device temperature Twd is higher than the protection temperature KTp, it can be determined that the heat generating device 51 is in an excessively high temperature environment. In this case, it is assumed that the operation of the heat generating device 51 is affected by the high temperature environment.
  • step S5 the control device 70 controls the operation of the device-side three-way valve 53, and the heat medium flowing out from the heat medium passage 51a of the heat generating device 51 flows into the heat absorbing portion 21b of the composite heat exchanger 21.
  • the flow path of the heat medium is switched so as to do so.
  • the operation mode of the vehicle air conditioner 1 can be switched from the heating heat storage mode to the heating heat dissipation mode.
  • the heat contained in the heat medium is radiated to the outside air OA by the composite heat exchanger 21, so that the temperature of the heat medium passing through the heat generating device 51 can be lowered.
  • step S6 it is determined whether or not the device temperature Twd, which is the heat medium temperature of the device side heat medium circuit 50, is lower than the heat dissipation completion temperature KTr, which is lower than the protection temperature KTp. That is, the device side heat medium circuit 50 determines whether or not the temperature environment of the heat generating device 51 has returned to the standard state.
  • the device side three-way valve 53 is controlled to restart the heat storage of the device side heat medium circuit 50 for the heat medium, and the process returns to step S3. That is, when returning to step S3, the operation mode of the vehicle air conditioner 1 is switched from the heating / radiating mode to the heating / heat storage mode shown in FIG.
  • the process is waited for. That is, since the vehicle air conditioner 1 continues to operate in the heating / radiating mode, heat dissipation from the heat medium of the device-side heat medium circuit 50 to the outside air OA is continued.
  • step S4 the determination correction value Cv regarding the defrost determination of the composite heat exchanger 21 is determined.
  • the non-reference temperature KTam, the reference vehicle speed KV, and the reference rotation speed KNc acquired in step S2 are used to determine the determination correction value Cv.
  • the current outside air temperature Tam, vehicle speed, and rotation speed Nc of the compressor 11 are acquired.
  • the difference value between the current outside air temperature Tam and the standard non-standard air temperature KTam, the difference value between the current vehicle speed V and the reference vehicle speed KV, and the difference value between the current compressor 11 rotation speed Nc and the reference rotation speed KNc are calculated. ..
  • the determination correction value Cv is determined by referring to the difference values related to the outside air temperature Tam, the vehicle speed V, and the rotation speed Nc, and the control map created in association with each of them. Therefore, the determination correction value Cv is determined to be a numerical value corresponding to the change in the environment from the time of step S2 to the present time from the viewpoint of the outside air temperature Tam, the vehicle speed V, and the rotation speed Nc of the compressor 11. After determining the determination correction value Cv, the process proceeds to step S7.
  • step S7 it is determined whether or not the current state where the heat medium temperature Tw is higher than the value obtained by subtracting the determination correction value Cv and the determination lowering allowance M from the reference heat medium temperature KTw continues for a predetermined predetermined period.
  • the condition determined in step S7 is referred to as a defrosting condition.
  • the determination lowering allowance M indicates the magnitude of the influence on the heat medium temperature Tw caused by the frost formation of the endothermic portion 21b of the composite heat exchanger 21, and is predetermined by an experiment or the like.
  • the reference heat medium temperature KTw is an example of a reference value determined by a specific physical quantity. Further, the value to be subtracted from the reference heat medium temperature KTw is the total value of the judgment correction value Cv and the judgment reduction allowance M, which is an example of the fluctuation value determined according to the environment.
  • step S7 When it is determined in step S7 that the defrosting condition is satisfied, it means that the heat absorbing portion 21b of the composite heat exchanger 21 is frosted and the composite heat exchanger 21 needs to be defrosted. To do. Therefore, if it is determined that the defrosting condition is satisfied, the process proceeds to step S8 to defrost the composite heat exchanger 21 in parallel with the heating of the vehicle interior. On the other hand, if not, the process returns to step S3.
  • the change in the heat medium temperature Tw accompanying the operation in the heating heat storage mode will be described with reference to FIG. 7.
  • the heat medium cooled by the chiller 15 flows through the heat absorbing portion 21b of the composite heat exchanger 21. Therefore, the heat medium temperature Tw detected by the third heat medium temperature sensor 73c decreases as the vehicle air conditioner 1 warms up, and the temperature fluctuation becomes smaller as the operation of the device becomes stable.
  • the reference heat medium temperature KTw is acquired in step S2 in a state where the operation of the device is stable.
  • the heat medium temperature Tw decreases as the outside air temperature Tam and the like fluctuate, as shown in FIG. Since the heat absorption target of the composite heat exchanger 21 is the outside air OA, the outside air temperature Tam affects the heat medium temperature Tw detected by the third heat medium temperature sensor 73c.
  • the vehicle speed V affects the heat medium temperature Tw detected by the third heat medium temperature sensor 73c.
  • the rotation speed Nc of the compressor 11 has a correlation with the cooling performance of the chiller 15, it affects the heat medium temperature Tw detected by the third heat medium temperature sensor 73c. That is, the determination correction value Cv determines the magnitude of the influence of external factors other than frost formation on the composite heat exchanger 21 on the heat medium temperature Tw flowing out from the endothermic portion 21b of the composite heat exchanger 21. Shown.
  • the surface of the endothermic portion 21b of the composite heat exchanger 21 becomes frosted as the heat is absorbed from the outside air OA.
  • the frost formation of the endothermic section 21b progresses, the heat exchange performance between the heat medium and the outside air OA in the endothermic section 21b deteriorates, so that the heat medium temperature Tw drops significantly.
  • the defrosting condition in step S7 includes the condition that the current heat medium temperature Tw is higher than the value obtained by subtracting the judgment correction value Cv and the judgment lowering allowance M from the reference heat medium temperature KTw. It has been. In other words, it includes the condition that the current heat medium temperature Tw deviates from the reference heat medium temperature KTw more than the fluctuation value defined by the total value of the judgment correction value Cv and the judgment reduction allowance M. I'm out.
  • this condition uses the difference value between step S2 and the value detected at the present time, it does not include an error of a sensor such as the outside air temperature sensor 72b, and the composite heat exchanger 21 frosts with high accuracy. It is possible to determine whether defrosting is necessary.
  • step S8 it is determined whether or not the device temperature Twd is higher than the predetermined defrosting permission temperature KTds.
  • Step S8 is a determination process for determining whether or not the execution of the defrosting operation of the composite heat exchanger 21 is permitted as a result of the determination performed in step S7.
  • the defrosting permitted temperature KTds is determined according to the operating temperature range of each device constituting the heat generating device 51, and is set so that the defrosting of the composite heat exchanger 21 reduces the influence on the operation of each device. Has been done.
  • step S9 When the equipment temperature Twd is higher than the defrosting permitted temperature KTds, the process proceeds to step S9 to perform the defrosting operation in order to defrost the composite heat exchanger 21. On the other hand, if the equipment temperature Twd is not higher than the defrosting permitted temperature KTds, the process is returned to step S3.
  • the control device 70 controls the operation of each component device in a predetermined order to switch from the heating heat storage mode to the heating defrosting mode. Specifically, first, the control device 70 determines whether or not the battery 45 needs to be cooled based on the battery temperature detected by the battery temperature sensor 72h.
  • the battery temperature is higher than the predetermined reference battery temperature, it is determined that the battery 45 needs to be cooled, and the combined heat exchanger 21 is removed in parallel with the heating of the vehicle interior. Frost and cool the battery 45.
  • the operation mode in this case is referred to as a battery cooling mode of the heating / defrosting mode.
  • the composite heat exchanger 21 is defrosted in parallel with the heating of the vehicle interior.
  • the operation mode in this case is referred to as a normal mode of the heating / defrosting mode.
  • FIG. 8 shows an operating state in a normal mode of the heating defrost mode.
  • the portion where the refrigerant or the heat medium is flowing is shown by a thick line.
  • the refrigerant of the refrigerating cycle 10 in the heating heat storage mode is the compressor 11, the water refrigerant heat exchanger 12, the refrigerant branch 13a, the first expansion valve 14a, the chiller 15, the refrigerant confluence 13b, and the compressor. It circulates in the order of 11.
  • the heat medium of the high temperature side heat medium circuit 20 in the heating heat storage mode is the high temperature side pump 27, the water refrigerant heat exchanger 12, the electric heater 26, the branch portion 24, the second solenoid valve 30b, the heater core 22, the confluence portion 25, and the like.
  • the first reserve tank 28 and the high temperature side pump 27 circulate in this order.
  • the heat medium of the low temperature side heat medium circuit 40 in the heating heat storage mode is the low temperature side pump 41, the chiller 15, the on-off valve 43b, the heat absorbing portion 21b of the composite heat exchanger 21, the second reserve tank 29, and the low temperature side pump 41. It circulates in the order of.
  • the heat medium of the device side heat medium circuit 50 in the heating heat storage mode circulates in the order of the device side pump 52, the heat generating device 51, the device side three-way valve 53, the bypass flow path 54, and the device side pump 52.
  • control device 70 When switching from the heating heat storage mode shown in FIG. 5 to the normal mode of the heating defrosting mode shown in FIG. 8, the control device 70 first executes a plurality of pre-operations. As one of the preliminary operations, the control device 70 stops the operation of the compressor 11 and stops the operation of the refrigeration cycle 10.
  • the control device 70 controls the operation of the shutter device 31, and the flow rate of the outside air OA flowing into the composite heat exchanger 21 is the largest. Adjust so that it is less. As a result, the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be reduced from the viewpoint of the flow rate of the outside air OA.
  • the operation of the low temperature side pump 41 is stopped.
  • the circulation of the heat medium in the low temperature side heat medium circuit 40 is stopped.
  • the defrosting execution operation in the normal mode of the heating defrosting mode is performed.
  • the flow path configuration of the heat medium in the device side heat medium circuit 50 is switched.
  • control device 70 controls the operation of the device-side three-way valve 53 to enter the heat absorbing portion 21b of the composite heat exchanger 21 and the outlet side of the heat medium passage 51a of the heat generating device 51. To communicate with. At this time, the inflow outlet on the bypass flow path 54 side of the device-side three-way valve 53 is closed.
  • the heat medium of the device-side heat medium circuit 50 becomes the device-side pump 52, the heat-generating device 51, the device-side three-way valve 53, and the endothermic portion 21b of the composite heat exchanger 21.
  • the second reserve tank 29 and the equipment side pump 52 flow in this order.
  • the heat medium of the device side heat medium circuit 50 circulates through the composite heat exchanger 21. Since the heat medium of the device-side heat medium circuit 50 stores the exhaust heat of the heat generating device 51 in the heating heat storage mode, it adheres to the heat absorbing section 21b when passing through the heat absorbing section 21b of the composite heat exchanger 21. The frost that is forming can be removed.
  • the vehicle air conditioner 1 switches from the heating heat storage mode to the normal mode of the heating defrosting mode by performing the pre-operation and the defrosting execution operation.
  • the control device 70 ends step S9 and proceeds to step S10 when the pre-operation and the defrosting execution operation are performed and the operating state shown in FIG. 8 is reached.
  • the heat medium of the high temperature side heat medium circuit 20 is the high temperature side pump 27, the water refrigerant heat exchanger 12, the electric heater 26, the branch portion 24, the second solenoid valve 30b, the heater core 22, the merging portion 25, and the first reserve tank. 28, the high temperature side pump 27 continues to circulate in this order.
  • the heating of the blown air W can be continued by utilizing the heat stored in the heat medium of the high temperature side heat medium circuit 20, and the heating of the vehicle interior is realized. can do.
  • the device When switching from the heating heat storage mode to the heating defrosting mode, after performing pre-operations such as stopping the refrigeration cycle 10, controlling the operation of the shutter device 31, and stopping the low-temperature side pump 41, the device is used as the defrosting execution operation.
  • the switching operation of the side three-way valve 53 is performed.
  • the device-side three-way valve 53 can be switched in a state where the amount of heat radiated from the heat of the device-side heat medium circuit 50 to the outside air OA is small. .. That is, the heat contained in the heat medium of the device-side heat medium circuit 50 can be effectively used for defrosting the composite heat exchanger 21 by suppressing leakage to the outside air OA.
  • the operation of the low-temperature side pump 41 is stopped, and the heat medium flows into the heat absorbing portion 21b of the composite heat exchanger 21 via the chiller 15. It is restricted.
  • the amount of heat radiated from the heat of the heat medium of the device-side heat medium circuit 50 to the heat medium via the chiller 15 can be reduced in the composite heat exchanger 21. That is, with respect to the heat contained in the heat medium of the device side heat medium circuit 50, the heat leakage to the heat medium of the low temperature side heat medium circuit 40 is suppressed, and the heat is effectively used for defrosting the composite heat exchanger 21. Can be done.
  • the operation of the refrigeration cycle 10 is stopped by stopping the operation of the compressor 11.
  • the operation of the refrigeration cycle 10 when defrosting the composite heat exchanger 21 it is possible to reduce the energy consumption and the like associated with the operation of the compressor 11.
  • FIG. 9 shows an operating state in the battery cooling mode of the heating / defrosting mode.
  • the battery cooling mode of the heating / defrosting mode is one aspect of the heating / defrosting mode that is executed when it is determined that the battery 45 needs to be cooled when the process proceeds to step S9.
  • the control device 70 also executes a plurality of pre-operations when switching from the heating heat storage mode to the battery cooling mode of the heating defrost mode.
  • the control device 70 stops the operation of the compressor 11 and stops the operation of the refrigeration cycle 10.
  • control device 70 controls the operation of the shutter device 31 and adjusts so that the flow rate of the outside air OA flowing into the composite heat exchanger 21 is minimized.
  • the operation stop of the refrigeration cycle 10 and the operation control of the shutter device 31 are the same as the pre-operation when switching to the normal mode of the heating / defrosting mode.
  • the pre-operation when switching to the battery cooling mode of the heating / defrosting mode includes the operation control of the low temperature side switching unit 43 instead of stopping the low temperature side pump 41 in the normal mode. Therefore, in the battery cooling mode of the heating / defrosting mode, the circulation of the heat medium in the low temperature side heat medium circuit 40 is continued.
  • control device 70 sets the on-off valve 43b of the low-temperature side switching unit 43 to the fully closed state and the low-temperature side three-way valve 43a. Control the operation.
  • the heat medium of the low temperature side heat medium circuit 40 is the low temperature side pump 41, the heat medium passage of the chiller 15, the heat medium passage 45a of the battery 45, the low temperature side three-way valve 43a, and the like. It flows in the order of the low temperature side pump 41 and circulates.
  • the flow of the heat medium in the low temperature side heat medium circuit 40 in this case is an example of the flow path configuration of the second aspect.
  • the heat medium cooled by the chiller 15 can be circulated through the heat medium passage 45a of the battery 45, so that the battery 45 is cooled. can do.
  • the heat absorbing unit 21b of the composite heat exchanger 21 is passed through the chiller 15. No heat medium flows in. That is, with respect to the heat medium of the low temperature side heat medium circuit 40, the flow rate passing through the endothermic portion 21b of the composite heat exchanger 21 can be reduced. Therefore, the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be reduced from the viewpoint of the heat medium flow rate of the low temperature side heat medium circuit 40.
  • the defrosting execution operation in the battery cooling mode of the heating defrosting mode is performed.
  • the flow path configuration of the heat medium in the device side heat medium circuit 50 can be switched as in the case of the normal mode of the heating defrosting mode.
  • the heat medium of the device-side heat medium circuit 50 includes the device-side pump 52, the heat-generating device 51, the device-side three-way valve 53, and the endothermic portion 21b of the composite heat exchanger 21. 2
  • the reserve tank 29 and the equipment side pump 52 flow in this order.
  • the heat medium of the device side heat medium circuit 50 circulates through the composite heat exchanger 21. Since the heat medium of the device-side heat medium circuit 50 stores the exhaust heat of the heat generating device 51 in the heating heat storage mode, it adheres to the heat absorbing section 21b when passing through the heat absorbing section 21b of the composite heat exchanger 21. The frost that is forming can be removed.
  • the vehicle air conditioner 1 switches from the heating heat storage mode to the heating defrosting mode battery cooling mode by performing the pre-operation and the defrosting execution operation.
  • the control device 70 ends step S9 and proceeds to step S10 when the pre-operation and the defrosting execution operation are performed and the operating state shown in FIG. 9 is reached.
  • the battery 45 is cooled by circulating the heat medium of the low temperature side heat medium circuit 40 at the same time as heating the vehicle interior and defrosting the composite heat exchanger 21. be able to.
  • the heat contained in the heat medium of the device side heat medium circuit 50 is suppressed from leaking to the outside air OA and effectively used for defrosting the composite heat exchanger 21. it can.
  • the flow path configuration in the low temperature side heat medium circuit 40 is switched to a configuration that circulates via the battery 45 and the chiller 15.
  • the heat medium cooled by the chiller 15 circulates through the heat medium passage 45a of the battery 45, so that the battery 45 can be cooled. Further, by switching the flow path configuration in the low temperature side heat medium circuit 40, the inflow of the heat medium through the chiller 15 is restricted to the endothermic portion 21b of the composite heat exchanger 21.
  • the heat of the heat medium of the device side heat medium circuit 50 is suppressed from leaking to the heat medium of the low temperature side heat medium circuit 40, and the combined heat exchange is performed. It can be effectively used for defrosting the vessel 21.
  • step S10 it is determined whether or not the heat medium temperature Tw detected by the third heat medium temperature sensor 73c is lower than the predetermined dew condensation protection temperature KTc.
  • the dew condensation protection temperature KTc means an upper limit value at which dew condensation does not occur in the heat generating device 51 in relation to the temperature of the heat medium passing through the heat medium passage 51a of the heat generating device 51.
  • the heat generating device 51 may be affected by the dew condensation generated inside.
  • the fact that the heat medium temperature Tw is lower than the dew condensation protection temperature KTc is an example of dew condensation conditions. In this case, in order to suppress dew condensation on the heat generating device 51, even if the defrosting of the composite heat exchanger 21 has not been completed, the process proceeds to step S12 to return to the heating heat storage mode.
  • step S11 it is determined whether or not the defrosting completion condition is satisfied in the heating defrosting mode.
  • the defrosting completion condition means a condition in which the heat exchange performance is considered to have been restored by defrosting the heat absorbing portion 21b in the composite heat exchanger 21.
  • the defrosting completion condition for example, the heat medium temperature Tw is higher than the predetermined reference value, the predetermined period has passed from the start of the defrosting operation in step S9, and the like. Can be done. Further, as the physical quantity instead of the heat medium temperature Tw, the temperature of the heat medium passing through the heat medium passage of the chiller 15 and the temperature of the heat medium passing through the heat medium passage 51a of the heat generating device 51 can be adopted.
  • the process proceeds to step S12 in order to return from the heating defrosting mode to the heating heat storage mode.
  • control device 70 controls the operation of each component device in a predetermined order to switch from the heating defrosting mode to the heating heat storage mode. As described above, since there are two modes, the normal mode and the battery cooling mode, in the heating defrost mode, each mode will be described.
  • the control device 70 first executes a switching operation. Specifically, the flow path configuration of the heat medium in the device side heat medium circuit 50 is switched.
  • the heat medium of the equipment side heat medium circuit 50 flows and circulates in the order of the equipment side pump 52, the heat medium passage 51a of the heat generating equipment 51, the equipment side three-way valve 53, the bypass flow path 54, and the equipment side pump 52. Therefore, the heat storage of the exhaust heat generated in the heat generating device 51 is restarted with respect to the heat medium of the device side heat medium circuit 50.
  • control device 70 In the return operation from the normal mode of the heating defrost mode, when the switching operation is completed, the control device 70 performs a plurality of return execution operations in order to return to the heating heat storage mode. As one of the return execution operations, the control device 70 first starts the operation of the compressor 11 and restarts the operation of the refrigeration cycle 10.
  • the refrigerant in the refrigeration cycle 10 flows and circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the refrigerant branch portion 13a, the first expansion valve 14a, the chiller 15, the refrigerant confluence portion 13b, and the compressor 11.
  • the control device 70 restarts the operation of the low temperature side pump 41. Therefore, the heat medium of the low temperature side heat medium circuit 40 flows in the order of the low temperature side pump 41, the chiller 15, the on-off valve 43b, the endothermic portion 21b of the composite heat exchanger 21, the second reserve tank 29, and the low temperature side pump 41. Circulate.
  • the flow rate of the heat medium of the low temperature side heat medium circuit 40 passing through the endothermic portion 21b of the composite heat exchanger 21 can be increased by the return execution operation.
  • the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be recovered from the viewpoint of the heat medium flow rate of the low temperature side heat medium circuit 40.
  • the control device 70 controls the operation of the shutter device 31 and the flow rate of the outside air OA flowing into the composite heat exchanger 21 is the largest. Adjust so that thereby, from the viewpoint of the flow rate of the outside air OA, the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be recovered.
  • the vehicle air conditioner 1 can store the exhaust heat of the heat generating device 51 in the heat medium of the device side heat medium circuit 50, and can reheat the vehicle interior using the outside air OA as a heat source.
  • the exhaust heat generated in the heat generating device 51 leaks to the outside air OA or the heat medium of the low temperature side heat medium circuit 40. Can be suppressed. That is, in the return operation from the normal mode of the heating / defrosting mode, the exhaust heat of the heat generating device 51 can be stored in the heat medium circulating in the device side heat medium circuit 50 from the earliest possible stage.
  • the operation of the low-temperature side pump 41 is restarted, so that the heat medium that has passed through the chiller 15 directly flows into the heat medium passage 51a of the heat-generating device 51. Absent. As a result, it is possible to prevent the heat generating device 51 from being rapidly cooled by the heat medium that has passed through the chiller 15, and it is possible to protect the heat generating device 51.
  • the control device 70 first executes a switching operation. Specifically, the flow path configuration of the heat medium in the device side heat medium circuit 50 is switched.
  • the heat medium of the device-side heat medium circuit 50 circulates through the heat medium passage 51a and the bypass flow path 54 of the heat generating device 51, as in the case of returning from the normal mode of the heating defrost mode. It becomes. Therefore, the heat storage of the exhaust heat generated in the heat generating device 51 is restarted with respect to the heat medium of the device side heat medium circuit 50.
  • the control device 70 In the recovery operation from the battery cooling mode of the heating / defrost mode, when the switching operation is completed, the control device 70 performs a plurality of recovery execution operations. As one of the return execution operations, the control device 70 first restarts the operation of the refrigeration cycle 10.
  • control device 70 controls the operation of the shutter device 31 to reduce the flow rate of the outside air OA flowing into the composite heat exchanger 21. Adjust to the maximum.
  • the operation restart of the refrigeration cycle 10 and the operation control of the shutter device 31 are the same as in the case of returning from the normal mode of the heating / defrosting mode.
  • the control device 70 controls the operation of the low temperature side switching unit 43. Specifically, the control device 70 sets the on-off valve 43b of the low-temperature side switching unit 43 to the fully open state, and controls the operation of the low-temperature side three-way valve 43a. As a result, the heat medium of the low temperature side heat medium circuit 40 flows in the order of the low temperature side pump 41, the chiller 15, the on-off valve 43b, the endothermic portion 21b of the composite heat exchanger 21, the second reserve tank 29, and the low temperature side pump 41. And circulate.
  • the return execution operation can increase the flow rate of the heat medium of the low temperature side heat medium circuit 40 passing through the endothermic portion 21b of the composite heat exchanger 21.
  • the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be recovered from the viewpoint of the heat medium flow rate of the low temperature side heat medium circuit 40.
  • the heat medium of the low temperature side heat medium circuit flows and circulates so as to bypass the battery 45. Therefore, when returning from the battery cooling mode of the heating / defrosting mode, the battery 45 is not cooled by the heat medium that has passed through the chiller 15.
  • the operating state of the vehicle air conditioner 1 is shown by performing a switching operation and a plurality of return execution operations as the return operation when returning from the battery cooling mode of the heating defrost mode to the heating heat storage mode. It returns to the state of the heating heat storage mode shown in 5.
  • the vehicle air conditioner 1 can store the exhaust heat of the heat generating device 51 in the heat medium of the device side heat medium circuit 50, and can reheat the vehicle interior using the outside air OA as a heat source.
  • the distribution of the heat medium to the heat medium passage 51a of the heat generating device 51 can be maintained even when returning from the battery cooling mode of the heating / defrosting mode. As a result, it is possible to prevent the heat generating device 51 from becoming excessively hot due to exhaust heat, as compared with the case where the flow of the heat medium to the heat generating device 51 is stopped.
  • the heat exhaust of the heat-generating device 51 is exhausted from the heat medium circulating in the device-side heat medium circuit 50 from the earliest possible stage. Can store heat.
  • the return execution operation is performed after the switching operation of the device side three-way valve 53, and the low temperature side heat medium.
  • the heat exchange performance of the composite heat exchanger 21 relating to the heat medium of the circuit 40 and the outside air OA is restored.
  • the vehicle air conditioner 1 can suppress a state in which the heat generating device 51 becomes excessively high in temperature when returning from the heating defrosting mode to the heating heat storage mode.
  • the vehicle air conditioner 1 can defrost the composite heat exchanger 21 by utilizing the exhaust heat of the heat generating device 51, and also protect the heat generating device 51 when returning from the heating defrost mode. it can.
  • the heat medium of the device-side heat medium circuit 50 is in a state of circulating via the heat-generating device 51 and the bypass flow path 54. Therefore, even if the heat exchange performance of the composite heat exchanger 21 relating to the heat medium of the low temperature side heat medium circuit 40 and the outside air OA is restored thereafter, the heat medium that has passed through the chiller 15 is directly supplied to the heat generating device 51. There is nothing.
  • the vehicle air conditioner 1 can protect the heat generating device 51 by suppressing the rapid cooling of the heat generating device 51 by the heat medium of the low temperature side heat medium circuit 40 when returning from the heating / defrosting mode. ..
  • step S12 the vehicle air conditioner 1 first restarts the operation of the refrigeration cycle 10 as a return execution operation in the return operation from the heating / defrost mode. That is, according to the vehicle air conditioner 1, in order to restart the operation of the refrigeration cycle 10 after the switching operation of the device-side three-way valve 53, the operation in the heating heat storage mode is restarted while protecting the heat generating device 51. it can.
  • the dew condensation condition is satisfied and dew condensation of the heat generating device 51 is assumed.
  • the temperature of the heat generating device 51 and its surroundings can be raised, and the saturated water vapor pressure can be raised.
  • the vehicle air conditioner 1 can protect the heat generating device 51 by suppressing dew condensation on the heat generating device 51 due to defrosting of the composite heat exchanger 21.
  • the vehicle air conditioner 1 controls the operation of the shutter device 31 as one of the return execution operations in step S12, and restores the outside air OA so as to maximize the flow rate.
  • the vehicle air conditioner 1 restores the heat exchange performance of the composite heat exchanger 21 regarding the heat medium of the low temperature side heat medium circuit 40 and the outside air OA in the heating heat storage mode from the viewpoint of the flow rate of the outside air OA. It is possible to secure the amount of heat absorbed from the outside air OA in the heating heat storage mode.
  • the vehicle air conditioner 1 restarts the operation of the low temperature side pump 41 in the normal mode of the heating defrost mode, and in the battery cooling mode of the heating defrost mode. , The operation of the low temperature side switching unit 43 is controlled. As a result, the vehicle air conditioner 1 recovers the heat exchange performance of the composite heat exchanger 21 relating to the heat medium of the low temperature side heat medium circuit 40 and the outside air OA from the viewpoint of the flow rate of the heat medium of the low temperature side heat medium circuit 40. It is possible to secure the amount of heat absorbed from the outside air OA in the heating heat storage mode.
  • step S9 the vehicle air conditioner 1 performs the defrosting execution operation by the device-side three-way valve 53 after executing the plurality of pre-operations when performing the defrosting operation of the composite heat exchanger 21. That is, the defrosting execution operation by the device-side three-way valve 53 is executed after the heat exchange performance of the composite heat exchanger 21 regarding the heat medium of the low-temperature side heat medium circuit 40 and the outside air OA is lowered, and the device-side heat medium circuit. Fifty heat media are supplied to the composite heat exchanger 21.
  • the vehicle air conditioner 1 can efficiently utilize the exhaust heat of the heat generating device 51 for defrosting the composite heat exchanger 21.
  • the flow rate of the heat medium passing through the heat generating device 51 can be secured, so that the state in which the heat generating device 51 becomes excessively high can be suppressed, and the heat generating device 51 is protected. Can be realized.
  • the vehicle air conditioner 1 stops the operation of the refrigeration cycle 10 as one of the preliminary operations in the defrosting operation for switching to the heating defrosting mode. That is, after the operation of the refrigeration cycle 10 is stopped, the defrosting execution operation by the device-side three-way valve 53 is performed. As a result, the energy consumption of the compressor 11 in the heating defrost mode can be suppressed, and the defrosting of the composite heat exchanger 21 using the exhaust heat of the heat generating device 51 can be efficiently executed.
  • the vehicle air conditioner 1 even if it is determined that the defrosting condition is satisfied, if it is determined that the heat generating device 51 is excessively hot, it passes through the heat generating device 51.
  • the heat medium is circulated through the heat absorbing portion 21b of the composite heat exchanger 21.
  • the exhaust heat of the heat generating device 51 is dissipated to the outside air OA by the composite heat exchanger 21, and the temperature rise of the heat generating device 51 can be suppressed.
  • defrosting of the composite heat exchanger 21 using the heat generated in the heat generating device 51 is realized, and the excessive temperature rise in the heat generating device 51 is suppressed to suppress the heat generating device 51. Can be protected.
  • step S7 it is determined whether or not the defrosting condition is satisfied, and if the defrosting condition is satisfied, the defrosting for switching to the heating defrosting mode is performed. Perform the action.
  • the defrosting condition in step S7 is that the current heat medium temperature Tw is higher than the value obtained by subtracting the judgment correction value Cv and the judgment lowering allowance M from the reference heat medium temperature KTw for a predetermined period of time. Is.
  • the determination criterion for whether or not to execute the defrosting of the composite heat exchanger 21 using the exhaust heat of the heat generating device 51 is determined by the determination correction value Cv that varies depending on the environment. Can be changed including.
  • the vehicle air conditioner 1 can make an accurate determination regarding the execution of defrosting, and can start the defrosting operation of the composite heat exchanger 21 at an appropriate timing. Further, since the heat generated in the heat generating device 51 can be used for defrosting the composite heat exchanger 21 at an appropriate timing, it is possible to suppress the influence of heat on the heat generating device 51 and protect the heat generating device 51. it can.
  • the vehicle air conditioner 1 controls the operation of the shutter device 31 as one of the preliminary operations in step S9 to minimize the flow rate of the outside air OA.
  • the vehicle air conditioner 1 reduces the heat exchange performance of the composite heat exchanger 21 regarding the heat medium of the low temperature side heat medium circuit 40 and the outside air OA in the heating / defrosting mode from the viewpoint of the flow rate of the outside air OA. be able to. Therefore, according to the vehicle air conditioner 1 in the heating / defrosting mode, it is possible to suppress the exhaust heat of the heat generating device 51 from leaking to the outside air OA, and it can be efficiently used for defrosting the composite heat exchanger 21. ..
  • step S9 when the vehicle air conditioner 1 shifts to the normal mode of the heating / defrosting mode as one of the preliminary operations in step S9, the operation of the low temperature side pump 41 is stopped and the battery cooling mode of the heating / defrosting mode is stopped.
  • the operation of the low temperature side switching unit 43 is controlled.
  • the vehicle air conditioner 1 reduces the heat exchange performance of the composite heat exchanger 21 regarding the heat medium of the low temperature side heat medium circuit 40 and the outside air OA in terms of the flow rate of the heat medium of the low temperature side heat medium circuit 40. Can be made to. Therefore, according to the vehicle air conditioner 1 in the heating / defrosting mode, it is possible to prevent the exhaust heat of the heat generating device 51 from leaking to the heat medium of the low temperature side heat medium circuit 40, and it is possible to defrost the composite heat exchanger 21. It can be used efficiently.
  • the vehicle air conditioner 1 uses the reference heat medium temperature KTw constituting the determination condition in step S7, the non-reference temperature KTam used for determining the determination correction value Cv, the reference vehicle speed KV, and the reference rotation speed KNc for the vehicle. Acquired after the start of operation of the heating heat storage mode in the air conditioner 1.
  • the vehicle air conditioner 1 can improve the determination accuracy regarding the defrosting conditions in step S7.
  • step S2 the acquisition of the reference heat medium temperature KTw or the like in step S2 is executed after the compressor 11 is operated at a predetermined rotation speed Nc for a predetermined period of time.
  • the reference heat medium temperature KTw or the like is acquired while the compressor 11 is operated under predetermined conditions and the operation of the vehicle air conditioner 1 is stable.
  • the reference heat medium temperature KTw and the like are not included in the state where the operation of the vehicle air conditioner 1 is unstable. Therefore, the reliability of the reference heat medium temperature KTw and the judgment correction value Cv is improved, and the step The accuracy of determining the defrosting condition in S7 can be improved.
  • the determination correction value Cv constituting the defrosting condition in step S7 is determined in step S4. Specifically, when determining the determination correction value Cv, the difference value between the current outside air temperature Tam and the non-standard air temperature KTam, the difference value between the current vehicle speed V and the reference vehicle speed KV, and the current rotation speed of the compressor 11 The difference value between Nc and the reference rotation speed KNc is calculated.
  • the judgment correction value Cv is determined by referring to the difference values related to the outside air temperature Tam, the vehicle speed V, and the rotation speed Nc, and the control map created in association with each of them. Therefore, the determination correction value Cv is a numerical value corresponding to the change in the environment from the time of step S2 to the present time from the viewpoint of the outside air temperature Tam, the vehicle speed V, and the rotation speed Nc of the compressor 11.
  • step S7 by using the determination correction value Cv for the defrosting condition in step S7, it is possible to reflect the change in the environment surrounding the vehicle air conditioner 1, and the combined heat exchanger 21 is removed at an appropriate timing. Frost can be realized.
  • the above-mentioned difference value is calculated by using values acquired at different timings from the same configuration such as the outside air temperature sensor 72b. Therefore, the determination of the determination correction value Cv is not affected by the error of the configuration itself of the outside air temperature sensor 72b or the like. As a result, the determination correction value Cv becomes a value that purely reflects the change in the environment surrounding the vehicle air conditioner 1, and thus the determination accuracy of the defrosting condition in step S7 can be improved also in this respect. ..
  • step S9 it is determined whether or not the battery 45 needs to be cooled in the defrosting operation to the heating defrost mode in step S9, and it is determined that the battery 45 needs to be cooled. If so, the mode is switched to the battery cooling mode of the heating defrost mode.
  • the heating defrosting mode in the battery cooling mode of the heating defrosting mode, the heating of the vehicle interior by the high temperature side heat medium circuit 20 and the defrosting of the composite heat exchanger 21 by the equipment side heat medium circuit 50, as well as the low temperature side.
  • the heat medium circuit 40 cools the battery 45.
  • the battery 45 According to the vehicle air conditioner 1 in the battery cooling mode of the heating / defrosting mode, in addition to heating the vehicle interior and defrosting the composite heat exchanger 21, the battery 45 can be cooled in parallel.
  • the mode is switched to the normal mode of the heating defrosting mode.
  • the heating of the vehicle interior by the high temperature side heat medium circuit 20 and the defrosting of the composite heat exchanger 21 by the equipment side heat medium circuit 50 are performed in parallel. Will be.
  • the operation of the low temperature side pump 41 is stopped, and the circulation of the heat medium in the low temperature side heat medium circuit 40 is stopped.
  • the vehicle air conditioner 1 in the normal mode of the heating / defrosting mode the vehicle interior heating and the defrosting of the composite heat exchanger 21 can be realized in parallel while suppressing the energy consumption.
  • Step S21 is the same process as step S1 of the first embodiment.
  • step S22 it is determined whether or not the device temperature Twd is lower than the protection temperature KTp.
  • Step S22 is the same process as step S3. If the device temperature Twd is lower than the protection temperature KTp, the process proceeds to step S23.
  • Step S24 and step S25 are the same processes as steps S5 and S6 of the first embodiment. Therefore, the description will be omitted again.
  • the device side heat medium circuit 50 is switched.
  • the exhaust heat of the heat generating device 51 can be dissipated to the outside air OA.
  • step S23 it is determined whether or not the defrosting condition in the second embodiment is satisfied.
  • the defrosting condition in the second embodiment is that the heat medium temperature Tw detected by the third heat medium temperature sensor 73c is lower than the predetermined determination threshold value KTwa.
  • the determination threshold value KTwa is determined by the temperature of the heat medium flowing out from the endothermic portion 21b of the composite heat exchanger 21 in a state where defrosting of the composite heat exchanger 21 is required.
  • the determination threshold value KTwa is obtained by, for example, an experimental value, and is stored in a ROM or the like of the control device 70.
  • the determination threshold KTwa is an example of the threshold.
  • step S26 If the heat medium temperature Tw is lower than the determination threshold value KTwa, it is determined that defrosting of the composite heat exchanger 21 is necessary, and the process proceeds to step S26. If the heat medium temperature Tw is not lower than the determination threshold value KTwa, it is determined that defrosting of the composite heat exchanger 21 is unnecessary, and the process returns to step S22.
  • step S26 it is determined whether or not the device temperature Twd is higher than the defrosting permitted temperature KTds. Step S26 is the same process as step S8 of the first embodiment. If the equipment temperature Twd is higher than the defrosting permitted temperature KTds, the process proceeds to step S27. If not, the process returns to step S22.
  • step S27 the defrosting operation according to the second embodiment is performed.
  • step S27 as in step S9 of the first embodiment, it is first determined whether or not the battery 45 needs to be cooled. Based on this determination result, the operation mode of the vehicle air conditioner 1 is determined to be either a normal mode of the heating / defrosting mode or a battery cooling mode of the heating / defrosting mode.
  • step S27 After executing a plurality of pre-operations according to either the normal mode of the heating defrosting mode or the battery cooling mode of the heating defrosting mode, the switching operation is performed. Since the processing content of step S27 has already been explained, the description will be omitted again.
  • steps S28 and S29 after starting the heating and defrosting mode are the same as those of steps S10 and S11 in the first embodiment.
  • the vehicle air conditioner 1 according to the first embodiment is returned to the heating heat storage mode when dew condensation on the heat generating device 51 is expected even during the defrosting of the composite heat exchanger 21. , Condensation of the heat generating device 51 can be suppressed.
  • step S30 the return operation according to the second embodiment is performed.
  • step S30 as in step S12 of the first embodiment, after executing the switching operation, a plurality of return execution operations are performed.
  • the content of the plurality of return execution operations is determined depending on whether the current operation mode is the normal mode of the heating defrosting mode or the battery cooling mode of the heating defrosting mode. Since the processing content of step S30 has already been explained, the description will be omitted again.
  • the defrosting condition determined in step S23 is set so that the heat medium temperature Tw is lower than the determination threshold value KTwa. Therefore, according to the vehicle air conditioner 1 according to the second embodiment, it is possible to simplify the process of determining whether or not defrosting of the composite heat exchanger 21 is necessary and suppress the processing load of the control device 70. it can.
  • the vehicle air conditioner 1 according to the second embodiment even when the determination content of whether or not the composite heat exchanger 21 needs to be defrosted is changed, the first implementation is performed.
  • the action and effect produced from the configuration and operation common to the embodiment can be obtained in the same manner as in the first embodiment.
  • the defrosting condition is determined by comparing the heat medium temperature Tw by the third heat medium temperature sensor 73c with the predetermined determination threshold value KTwa. ..
  • the vehicle air conditioner 1 can simplify the determination regarding defrosting of the composite heat exchanger 21, and can reduce the processing load of the control device 70.
  • the electric expansion valve is adopted as the first expansion valve 14a and the second expansion valve 14b in the refrigeration cycle 10, but the present invention is not limited to this embodiment.
  • various aspects can be adopted as long as the high-pressure refrigerant can be depressurized.
  • the second expansion valve 14b may be changed to a thermal expansion valve while the first expansion valve 14a is an electric expansion valve.
  • the subcool type condenser is adopted as the water refrigerant heat exchanger 12, but the present invention is not limited to this mode.
  • the water-refrigerant heat exchanger 12 an embodiment in which the receiver unit 12b and the supercooling unit 12c are not provided and the water refrigerant heat exchanger 12 is composed of the condensing unit 12a may be adopted.
  • the high temperature side heat medium circuit 20 including the water refrigerant heat exchanger 12 and the heater core 22 is adopted as the configuration of the heating unit for heating the blown air W. It is not limited. For example, a configuration may be adopted in which the indoor condenser is arranged at the position of the heater core 22 in the above-described embodiment and the blown air W is heated by the heat of the high-pressure refrigerant in the refrigeration cycle 10.
  • the composite heat exchanger 21 has been adopted as the air heat medium heat exchanger, but the present invention is not limited to this embodiment. Any heat exchanger capable of heat exchange between the heat medium of the low temperature side heat medium circuit or the heat medium of the device side heat medium circuit 50 and the outside air OA can be adopted as an air heat medium heat exchanger.
  • the outside air heat exchanger may be arranged instead of the heat absorbing portion 21b of the composite heat exchanger 21.
  • a high temperature side radiator may be arranged, or another embodiment may be adopted.
  • the high-temperature side switching unit 30 in the high-temperature side heat medium circuit 20 is composed of the first solenoid valve 30a and the second solenoid valve 30b, but the present invention is not limited to this embodiment. Absent.
  • the high temperature side switching unit 30 various modes can be used as long as the flow rate of the heat medium on one outlet side of the branch portion 24 and the flow rate of the heat medium on the other outlet side of the branch portion 24 can be adjusted. Can be adopted.
  • the high temperature side switching portion 30 may be configured by a three-way valve arranged at the position of the branch portion 24.
  • the low temperature side switching unit 43 is composed of the low temperature side three-way valve 43a and the on-off valve 43b, but the present invention is not limited to this mode.
  • the low temperature side three-way valve 43a it may be composed of two on-off valves arranged on the bypass flow path 42 so that the connection portion between the bypass flow path 42 and the battery connection flow path 44 is located between them.
  • the power control unit including the inverter, the motor generator, and the transaxle device is adopted as the heat generating device 51, but the present invention is not limited to this mode.
  • the heat generating device 51 various devices can be adopted as long as they are mounted on the vehicle and generate heat secondarily as the operation for exerting a predetermined function is performed.
  • the heat medium temperature Tw and the reference heat medium temperature KTw flowing out from the endothermic portion of the composite heat exchanger 21 are used, but the present invention is limited to this embodiment. is not.
  • Other physical quantities may be adopted as long as they are physical quantities that correlate with frost formation in the endothermic portion 21b of the composite heat exchanger 21.
  • the heat medium temperature in the heat medium passage of the chiller 15, the refrigerant temperature in the refrigerant passage of the chiller 15, the refrigerant pressure in the refrigerant passage of the chiller 15, and the like may be adopted as the defrosting conditions. It is also possible to adopt the amount of light passing through the heat absorbing portion 21b of the composite heat exchanger 21, the amount of air before and after passing through the heat absorbing portion 21b, the rotation speed Nc of the compressor 11, and the like.
  • step S6 it is determined whether or not the heat dissipation of the heat generating device 51 is completed by comparing the device temperature Twd and the heat dissipation completion temperature KTr, but the present invention is not limited to this embodiment. Absent.
  • step S5 it may be determined whether or not the heat dissipation of the heat generating device 51 is completed based on the elapsed time from the time when the exhaust heat of the heat generating device 51 is dissipated to the outside air OA.
  • the dew condensation in the heat generating device 51 is determined by comparing the heat medium temperature Tw detected by the third heat medium temperature sensor 73c with the dew condensation protection temperature KTc.
  • the device temperature Twd detected by the fifth heat medium temperature sensor 73e may be adopted as the physical quantity for determining dew condensation in the heat generating device 51.
  • the refrigeration cycle 10, the high temperature side heat medium circuit 20, the low temperature side heat medium circuit 40, and the device side heat medium circuit 50 in the vehicle air conditioner 1 are not limited to those disclosed in the above-described embodiment. ..
  • refrigerant of the refrigeration cycle 10 for example, R134a, R600a, R410A, R404A, R32, R407C and the like may be adopted.
  • a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
  • the low temperature side heat medium circuit 40 and the device side heat medium circuit 50 for example, a solution containing dimethylpolysiloxane or nanofluid, an antifreeze liquid, an aqueous liquid refrigerant containing alcohol or the like, A liquid medium or the like containing oil or the like may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This vehicle air conditioner (1) includes a refrigeration cycle (10), a low-temperature-side heat medium circuit (40), a device-side heat medium circuit (50) and a control unit (70). The low-temperature-side heat medium circuit (40) has an air/heat medium heat exchanger (21) and causes a heat medium to circulate so as to be cooled by heat being absorbed by a low-pressure coolant in a heat absorber (15). The device-side heat medium circuit (50) has a heat-generating device (51), a bypass passage (54) and a switching unit (53) and causes a heat medium to circulate such that the heat medium exchanges heat with the heat-generating device (51). During a return operation, before restoring the heat exchange performance of the air/heat medium heat exchanger (21) in relation to outside air (OA) and the heat medium that has passed through the heat absorber (15), the control unit (70) controls the operation of the switching unit (53) such that the heat medium that has passed through the heat-generating device (51) circulates through the device-side heat medium circuit (50) via the heat-generating device (51) and the bypass passage (54).

Description

車両用空調装置Vehicle air conditioner 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年6月10日に出願された日本特許出願2019-107955号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2019-107955 filed on June 10, 2019, the contents of which are incorporated herein by reference.
 本開示は、熱媒体回路を含む車両用空調装置に関する。 The present disclosure relates to a vehicle air conditioner including a heat medium circuit.
 従来、熱媒体回路を含む車両用空調装置に関する技術として、特許文献1に記載された技術が知られている。特許文献1の車両用空調システムは、冷凍サイクルと、熱媒体回路を有している。特許文献1の熱媒体回路は、エンジンや車載機器等の熱源、冷凍サイクルのチラー及び、ラジエータを相互に並列に接続して構成されている。そして、特許文献1では、熱媒体回路の流路構成を切り替えることで、車載機器等の熱源で生じた熱をラジエータに供給し、ラジエータの除霜を行っている。 Conventionally, the technology described in Patent Document 1 is known as a technology related to a vehicle air conditioner including a heat medium circuit. The vehicle air-conditioning system of Patent Document 1 has a refrigeration cycle and a heat medium circuit. The heat medium circuit of Patent Document 1 is configured by connecting a heat source of an engine, an in-vehicle device, or the like, a chiller of a refrigeration cycle, and a radiator in parallel with each other. Then, in Patent Document 1, the heat generated by a heat source of an in-vehicle device or the like is supplied to the radiator by switching the flow path configuration of the heat medium circuit, and the radiator is defrosted.
特許第6020064号公報Japanese Patent No. 6020064
 ここで、特許文献1に記載された車両用空調装置において、車載機器の排熱を利用したラジエータの除霜を行う際に、熱媒体回路の流路構成を切り替える旨は開示されているが、流路構成の切替に伴う種々の作動の具体的な順番については何等記載されていない。 Here, in the vehicle air conditioner described in Patent Document 1, it is disclosed that the flow path configuration of the heat medium circuit is switched when defrosting the radiator using the exhaust heat of the in-vehicle device. No specific order of various operations associated with the switching of the flow path configuration is described.
 この為、ラジエータの除霜やラジエータの除霜からの復帰に際して、車両用空調装置の構成機器を適切な順番で作動させなければ、車載機器に対して温度による影響が生じてしまったり、車載機器が結露によって故障してしまったりすることが考えられる。 For this reason, when the radiator is defrosted or the radiator is restored from defrosting, if the components of the vehicle air conditioner are not operated in an appropriate order, the in-vehicle equipment may be affected by the temperature or the in-vehicle equipment. May break down due to dew condensation.
 又、車両用空調装置の構成機器を作動させる順番を誤った場合には、車載機器等で生じた熱を、ラジエータの除霜に充分に活用することができない場合も想定される。更に、ラジエータの除霜に関して車載機器等の熱を用いる場合、除霜を実行するタイミングを適切に制御しなければ、車載機器に対して熱の影響が及ぶことが考えられる。 In addition, if the order in which the components of the vehicle air conditioner are operated is incorrect, it is assumed that the heat generated by the in-vehicle equipment cannot be fully utilized for defrosting the radiator. Further, when the heat of an in-vehicle device or the like is used for defrosting the radiator, it is considered that the heat affects the in-vehicle device unless the timing of executing the defrosting is appropriately controlled.
 本開示は、これらの点に鑑みてなされており、発熱機器の熱を用いた空気熱媒体熱交換器の除霜に際して、発熱機器の保護を図りつつ、効率の良い除霜を実現した車両用空調装置を提供することを目的とする。 The present disclosure has been made in view of these points, and is for vehicles that have realized efficient defrosting while protecting the heat generating equipment when defrosting the air heat medium heat exchanger using the heat of the heat generating equipment. The purpose is to provide an air conditioner.
 本開示の第1態様に係る車両用空調装置は、冷凍サイクルと、低温側熱媒体回路と、機器側熱媒体回路と、制御部と、を有する。冷凍サイクルは、圧縮機と、加熱部と、減圧部と、吸熱器と、を有する。 The vehicle air conditioner according to the first aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, an equipment side heat medium circuit, and a control unit. The refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
 低温側熱媒体回路は、空気熱媒体熱交換器を有すると共に、吸熱器にて低圧冷媒に吸熱させて冷却するように熱媒体を循環させる。空気熱媒体熱交換器は、車室外の外気と熱媒体とを熱交換させる。 The low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber. The air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
 機器側熱媒体回路は、発熱機器と、バイパス流路と、切替部と、を有すると共に、発熱機器と熱媒体が熱交換するように熱媒体を循環させる。発熱機器は、空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する機器である。バイパス流路は、発熱機器を流通した熱媒体が空気熱媒体熱交換器を迂回するように接続された流路である。切替部は、発熱機器を流通する熱媒体の流れを少なくともバイパス流路の側と空気熱媒体熱交換器の側の何れかに切り替える。 The device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat. The heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates. The bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger. The switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side.
 制御部は、復帰動作に際して、吸熱器を通過した熱媒体と外気に関する空気熱媒体熱交換器の熱交換性能を回復させる前に、発熱機器を流通した熱媒体が発熱機器及びバイパス流路を介して機器側熱媒体回路を循環するように、切替部の作動を制御する。 In the control unit, the heat medium that has passed through the heat generating device passes through the heat generating device and the bypass flow path before the heat exchange performance of the heat medium that has passed through the heat absorber and the air heat medium heat exchanger related to the outside air is restored during the return operation. The operation of the switching unit is controlled so as to circulate in the heat medium circuit on the device side.
 これによれば、発熱機器に生じた熱を利用して空気熱媒体熱交換器の除霜から前記除霜動作の前の運転状態に復帰させる過程において、発熱機器を流通する熱媒体の流量を確保することができる。この結果、車両用空調装置は、空気熱媒体熱交換器の除霜から運転状態を復帰させる際に、発熱機器が過度に高温になる状態を抑制することができ、発熱機器の保護を実現することができる。 According to this, in the process of returning from the defrosting of the air heat medium heat exchanger to the operating state before the defrosting operation by utilizing the heat generated in the heat generating device, the flow rate of the heat medium flowing through the heat generating device is increased. Can be secured. As a result, the vehicle air conditioner can suppress the state in which the heat generating device becomes excessively high when the operating state is restored from the defrosting of the air heat medium heat exchanger, and protects the heat generating device. be able to.
 又、発熱機器を流通した熱媒体が発熱機器及びバイパス流路を介して機器側熱媒体回路を循環する状態になった後で、吸熱器を通過した熱媒体と外気に関する空気熱媒体熱交換器の熱交換性能が回復される。この為、吸熱器を通過して冷却された熱媒体が発熱機器に対して供給されることはない。これによれば、温度差がある熱媒体が及ぼす発熱機器への影響を抑えて、発熱機器の保護を図ることができる。 In addition, after the heat medium that has passed through the heat generating device circulates in the device side heat medium circuit via the heat generating device and the bypass flow path, the heat medium that has passed through the heat absorber and the air heat medium heat exchanger related to the outside air. Heat exchange performance is restored. Therefore, the heat medium cooled through the heat absorber is not supplied to the heat generating device. According to this, it is possible to protect the heat-generating device by suppressing the influence of the heat medium having a temperature difference on the heat-generating device.
 又、本開示の第2態様に係る車両用空調装置は、冷凍サイクルと、低温側熱媒体回路と、機器側熱媒体回路と、制御部と、を有する。冷凍サイクルは、圧縮機と、加熱部と、減圧部と、吸熱器と、を有する。 Further, the vehicle air conditioner according to the second aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, an equipment side heat medium circuit, and a control unit. The refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
 低温側熱媒体回路は、空気熱媒体熱交換器を有すると共に、吸熱器にて低圧冷媒に吸熱させて冷却するように熱媒体を循環させる。空気熱媒体熱交換器は、車室外の外気と熱媒体とを熱交換させる。 The low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber. The air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
 機器側熱媒体回路は、発熱機器と、バイパス流路と、切替部と、を有すると共に、発熱機器と熱媒体が熱交換するように熱媒体を循環させる。発熱機器は、空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する機器である。バイパス流路は、発熱機器を流通した熱媒体が空気熱媒体熱交換器を迂回するように接続された流路である。切替部は、発熱機器を流通する熱媒体の流れを少なくともバイパス流路の側と空気熱媒体熱交換器の側の何れかに切り替える。 The device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat. The heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates. The bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger. The switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side.
 制御部は、機器結露判定部と、除霜完了判定部とを有している。機器結露判定部は、発熱機器の熱を用いた空気熱媒体熱交換器の除霜に際して、発熱機器に結露が発生する結露条件を満たすか否かを判定する。除霜完了判定部は、発熱機器の熱を用いた空気熱媒体熱交換器の除霜が完了したか否かを判定する。 The control unit has an equipment dew condensation determination unit and a defrosting completion determination unit. The device dew condensation determination unit determines whether or not the dew condensation condition in which dew condensation occurs in the heat generating device is satisfied when defrosting the air heat medium heat exchanger using the heat of the heat generating device. The defrosting completion determination unit determines whether or not the defrosting of the air heat medium heat exchanger using the heat of the heat generating device is completed.
 更に、制御部は、除霜完了判定部にて空気熱媒体熱交換器の除霜が完了していないと判定される状態で、機器結露判定部にて結露条件を満たすと判定された場合には、復帰動作を実行して、空気熱媒体熱交換器の除霜を実行する前の運転状態に復帰させる。 Further, when the control unit determines that the defrosting of the air heat medium heat exchanger has not been completed by the defrosting completion determination unit, and the equipment dew condensation determination unit determines that the dew condensation condition is satisfied. Executes the return operation to return to the operating state before the defrosting of the air heat medium heat exchanger is performed.
 これによれば、発熱機器の熱を用いた空気熱媒体熱交換器の除霜を完了していない状態であっても結露条件を満たして発熱機器の結露が想定される場合には、復帰動作を実行することによって発熱機器及びその周囲の温度を上昇させる。この結果、発熱機器周辺の飽和水蒸気圧が上昇する為、発熱機器における結露の発生を抑制することができる。 According to this, even if the defrosting of the air heat medium heat exchanger using the heat of the heat generating device is not completed, if the dew condensation conditions are satisfied and dew condensation is expected in the heat generating device, the recovery operation is performed. Raise the temperature of the heating equipment and its surroundings by performing. As a result, the saturated water vapor pressure around the heat-generating device rises, so that the occurrence of dew condensation in the heat-generating device can be suppressed.
 即ち、車両用空調装置によれば、発熱機器に生じた熱を用いた空気熱媒体熱交換器の除霜を実現すると共に、除霜に伴う発熱機器の結露を抑制して発熱機器の保護を図ることができる。 That is, according to the vehicle air conditioner, defrosting of the air heat medium heat exchanger using the heat generated in the heat generating device is realized, and dew condensation of the heat generating device due to defrosting is suppressed to protect the heat generating device. Can be planned.
 そして、本開示の第3態様に係る車両用空調装置は、冷凍サイクルと、低温側熱媒体回路と、機器側熱媒体回路と、制御部と、を有する。冷凍サイクルは、圧縮機と、加熱部と、減圧部と、吸熱器と、を有する。 The vehicle air conditioner according to the third aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, an equipment side heat medium circuit, and a control unit. The refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
 低温側熱媒体回路は、空気熱媒体熱交換器を有すると共に、吸熱器にて低圧冷媒に吸熱させて冷却するように熱媒体を循環させる。空気熱媒体熱交換器は、車室外の外気と熱媒体とを熱交換させる。 The low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber. The air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
 機器側熱媒体回路は、発熱機器と、バイパス流路と、切替部と、を有すると共に、発熱機器と熱媒体が熱交換するように熱媒体を循環させる。発熱機器は、空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する機器である。バイパス流路は、発熱機器を流通した熱媒体が空気熱媒体熱交換器を迂回するように接続された流路である。切替部は、発熱機器を流通する熱媒体の流れを少なくともバイパス流路の側と空気熱媒体熱交換器の側の何れかに切り替える。 The device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat. The heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates. The bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger. The switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side.
 制御部は、除霜動作に際して、吸熱器を通過した熱媒体と外気に関する空気熱媒体熱交換器の熱交換性能を低下させた後に、発熱機器を流通した熱媒体が前記空気熱媒体熱交換器を通過するように、切替部の作動を制御する。 During the defrosting operation, the control unit reduces the heat exchange performance of the heat medium that has passed through the heat absorber and the air heat medium heat exchanger with respect to the outside air, and then the heat medium that has passed through the heat generating device is the air heat medium heat exchanger. The operation of the switching unit is controlled so as to pass through.
 これによれば、発熱機器に生じた熱を利用した空気熱媒体熱交換器の除霜に際して、発熱機器を通過した熱媒体の熱が、外気や吸熱器を通過した熱媒体等に放熱されることを防止することができる。即ち、車両用空調装置によれば、発熱機器を通過した熱媒体の熱を効率よく空気熱媒体熱交換器の除霜に利用することができる。 According to this, when defrosting the air heat medium heat exchanger using the heat generated in the heat generating device, the heat of the heat medium that has passed through the heat generating device is dissipated to the outside air or the heat medium that has passed through the heat absorber. Can be prevented. That is, according to the vehicle air conditioner, the heat of the heat medium that has passed through the heat generating device can be efficiently used for defrosting the air heat medium heat exchanger.
 又、この除霜動作に際して、発熱機器を通過する熱媒体の流量を確保することができる為、発熱機器が過度に高温になる状態を抑制することができ、発熱機器の保護を実現することができる。 Further, in this defrosting operation, the flow rate of the heat medium passing through the heat generating device can be secured, so that the state in which the heat generating device becomes excessively high can be suppressed, and the heat generating device can be protected. it can.
 又、本開示の第4態様に係る車両用空調装置は、冷凍サイクルと、低温側熱媒体回路と、機器側熱媒体回路と、検出部と、制御部と、を有する。冷凍サイクルは、圧縮機と、加熱部と、減圧部と、吸熱器と、を有する。 Further, the vehicle air conditioner according to the fourth aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, a device side heat medium circuit, a detection unit, and a control unit. The refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
 低温側熱媒体回路は、空気熱媒体熱交換器を有すると共に、吸熱器にて低圧冷媒に吸熱させて冷却するように熱媒体を循環させる。空気熱媒体熱交換器は、車室外の外気と熱媒体とを熱交換させる。 The low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber. The air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
 機器側熱媒体回路は、発熱機器と、バイパス流路と、切替部と、を有すると共に、発熱機器と熱媒体が熱交換するように熱媒体を循環させる。発熱機器は、空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する機器である。バイパス流路は、発熱機器を流通した熱媒体が空気熱媒体熱交換器を迂回するように接続された流路である。切替部は、発熱機器を流通する熱媒体の流れを少なくともバイパス流路の側と空気熱媒体熱交換器の側の何れかに切り替える。そして、検出部は、空気熱媒体熱交換器を通過する熱媒体の温度に相関を有する特定物理量を検出する。 The device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat. The heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates. The bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger. The switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side. Then, the detection unit detects a specific physical quantity having a correlation with the temperature of the heat medium passing through the air heat medium heat exchanger.
 制御部は、検出部にて現時点で検出された特定物理量が、予め検出部で検出された特定物理量によって定められる基準値に対して、環境に応じて定められる変動値よりも大きく乖離していた場合に、空気熱媒体熱交換器に対する除霜動作を行う。 In the control unit, the specific physical quantity currently detected by the detection unit deviates significantly from the reference value determined by the specific physical quantity detected in advance by the detection unit, more than the fluctuation value determined according to the environment. In this case, the defrosting operation is performed on the air heat medium heat exchanger.
 これによれば、発熱機器の熱を利用した空気熱媒体熱交換器の除霜を実行するか否かの判定基準を環境に応じて変化させることが可能となり、適切なタイミングで精度よく除霜動作を実現させることができる。又、発熱機器に生じた熱を適切なタイミングで空気熱媒体熱交換器の除霜に利用する為、発熱機器に対する熱の影響を抑えて発熱機器の保護を図ることができる。 According to this, it is possible to change the criteria for determining whether or not to perform defrosting of the air heat medium heat exchanger using the heat of the heat generating equipment according to the environment, and it is possible to defrost accurately at an appropriate timing. The operation can be realized. Further, since the heat generated in the heat generating device is used for defrosting the air heat medium heat exchanger at an appropriate timing, the influence of heat on the heat generating device can be suppressed and the heat generating device can be protected.
 そして、本開示の第5態様に係る車両用空調装置は、冷凍サイクルと、低温側熱媒体回路と、機器側熱媒体回路と、制御部と、を有する。冷凍サイクルは、圧縮機と、加熱部と、減圧部と、吸熱器と、を有する。 The vehicle air conditioner according to the fifth aspect of the present disclosure includes a refrigeration cycle, a low temperature side heat medium circuit, a device side heat medium circuit, and a control unit. The refrigeration cycle includes a compressor, a heating unit, a decompression unit, and a heat absorber.
 低温側熱媒体回路は、空気熱媒体熱交換器を有すると共に、吸熱器にて低圧冷媒に吸熱させて冷却するように熱媒体を循環させる。空気熱媒体熱交換器は、車室外の外気と熱媒体とを熱交換させる。 The low temperature side heat medium circuit has an air heat medium heat exchanger, and the heat medium is circulated so as to be cooled by absorbing heat from a low pressure refrigerant with the heat absorber. The air heat medium heat exchanger exchanges heat between the outside air outside the vehicle interior and the heat medium.
 機器側熱媒体回路は、発熱機器と、バイパス流路と、切替部と、を有すると共に、発熱機器と熱媒体が熱交換するように熱媒体を循環させる。発熱機器は、空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する機器である。バイパス流路は、発熱機器を流通した熱媒体が空気熱媒体熱交換器を迂回するように接続された流路である。切替部は、発熱機器を流通する熱媒体の流れを少なくともバイパス流路の側と空気熱媒体熱交換器の側の何れかに切り替える。 The device-side heat medium circuit has a heat generating device, a bypass flow path, and a switching portion, and circulates the heat medium so that the heat generating device and the heat medium exchange heat. The heat generating device is a device that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates. The bypass flow path is a flow path in which the heat medium flowing through the heat generating device is connected so as to bypass the air heat medium heat exchanger. The switching unit switches the flow of the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side.
 制御部は、放熱要否判定部と、除霜判定部と、を有している。放熱要否判定部は、発熱機器に生じた熱の放熱が必要であるか否かを判定する。除霜判定部は、空気熱媒体熱交換器の除霜が必要であるか否かを判定する。 The control unit has a heat dissipation necessity determination unit and a defrosting determination unit. The heat dissipation necessity determination unit determines whether or not the heat generated in the heat generating device needs to be dissipated. The defrost determination unit determines whether or not defrosting of the air heat medium heat exchanger is necessary.
 更に、制御部は、除霜判定部で空気熱媒体熱交換器の除霜が必要でないと判定された状態で、放熱要否判定部で発熱機器に生じた熱の放熱が必要と判定された場合には、発熱機器を流通した熱媒体の熱を空気熱媒体熱交換器にて外気に放熱させる。 Further, in the control unit, the defrosting determination unit determines that the defrosting of the air heat medium heat exchanger is not necessary, and the heat dissipation necessity determination unit determines that the heat generated in the heat generating device needs to be dissipated. In this case, the heat of the heat medium that has passed through the heat generating device is dissipated to the outside air by the air heat medium heat exchanger.
 これによれば、発熱機器の熱を用いた空気熱媒体熱交換器の除霜が必要でないと判定される状態であっても、発熱機器の放熱が必要と判定された場合には、発熱機器を流通した熱媒体の熱を空気熱媒体熱交換器にて外気に放熱させる。この結果、発熱機器に生じた熱が空気熱媒体熱交換器にて熱媒体を介して外気に放熱される為、発熱機器の温度上昇を抑制でき、発熱機器の過度の温度上昇から発熱機器を保護することができる。 According to this, even if it is determined that defrosting of the air heat medium heat exchanger using the heat of the heat generating device is not necessary, if it is determined that heat dissipation of the heat generating device is necessary, the heat generating device is used. The heat of the heat medium that has passed through is dissipated to the outside air by the air heat medium heat exchanger. As a result, the heat generated in the heat generating device is dissipated to the outside air through the heat medium in the air heat medium heat exchanger, so that the temperature rise of the heat generating device can be suppressed, and the heat generating device can be prevented from excessive temperature rise. Can be protected.
 即ち、車両用空調装置によれば、発熱機器に生じた熱を用いた空気熱媒体熱交換器の除霜を実現すると共に、発熱機器における過度の温度上昇を抑制して発熱機器の保護を図ることができる。 That is, according to the vehicle air conditioner, defrosting of the air heat medium heat exchanger using the heat generated in the heat generating device is realized, and excessive temperature rise in the heat generating device is suppressed to protect the heat generating device. be able to.
 本開示についての上記及び他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、第1実施形態に係る車両用空調装置の全体構成図であり、 図2は、第1実施形態に係る複合型熱交換器の構成を示す模式図であり、 図3は、第1実施形態に係る室内空調ユニットの全体構成図であり、 図4は、第1実施形態に係る車両用空調装置の制御系を示すブロック図であり、 図5は、車両用空調装置の暖房蓄熱モードの作動状態を示す模式図であり、 図6は、第1実施形態における暖房及び除霜に関する制御処理のフローチャートであり、 図7は、第1実施形態における除霜判定に関する説明図であり、 図8は、車両用空調装置の暖房除霜モードにおける通常態様の作動状態を示す模式図であり、 図9は、車両用空調装置の暖房除霜モードにおけるバッテリ冷却態様の作動状態を示す模式図であり、 図10は、第2実施形態における暖房及び除霜に関する制御処理のフローチャートである。
The above and other objectives, features and advantages of the present disclosure will become clearer from the detailed description below with reference to the accompanying drawings. In the attached drawing
FIG. 1 is an overall configuration diagram of a vehicle air conditioner according to the first embodiment. FIG. 2 is a schematic view showing the configuration of the composite heat exchanger according to the first embodiment. FIG. 3 is an overall configuration diagram of the indoor air conditioning unit according to the first embodiment. FIG. 4 is a block diagram showing a control system of the vehicle air conditioner according to the first embodiment. FIG. 5 is a schematic view showing an operating state of the heating heat storage mode of the vehicle air conditioner. FIG. 6 is a flowchart of the control process relating to heating and defrosting in the first embodiment. FIG. 7 is an explanatory diagram regarding the defrost determination in the first embodiment. FIG. 8 is a schematic view showing an operating state of a normal mode of a vehicle air conditioner in a heating / defrosting mode. FIG. 9 is a schematic view showing the operating state of the battery cooling mode in the heating / defrosting mode of the vehicle air conditioner. FIG. 10 is a flowchart of a control process relating to heating and defrosting in the second embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において、先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of forms for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, the same reference numerals may be given to the parts corresponding to the matters described in the preceding embodiments, and duplicate description may be omitted. When only a part of the configuration is described in each embodiment, other embodiments described above can be applied to the other parts of the configuration. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the partial combination of the embodiments even if the combination is not specified if there is no problem in the combination. Is also possible.
 (第1実施形態)
 先ず、本開示における第1実施形態について、図1~図9を参照して説明する。第1実施形態では、本開示に係る車両用空調装置1を、車両走行用の駆動力を走行用電動モータから得る電気自動車に適用している。車両用空調装置1は、電気自動車において、空調対象空間である車室内の空調や、バッテリ45等を含む機器の温度調整を行う。
(First Embodiment)
First, the first embodiment in the present disclosure will be described with reference to FIGS. 1 to 9. In the first embodiment, the vehicle air conditioner 1 according to the present disclosure is applied to an electric vehicle in which a driving force for traveling a vehicle is obtained from a traveling electric motor. The vehicle air conditioner 1 performs air conditioning in the vehicle interior, which is an air conditioning target space, and temperature adjustment of equipment including a battery 45 and the like in an electric vehicle.
 そして、車両用空調装置1は、車室内の空調を行う運転モードとして、冷房モードと、除湿暖房モードと、暖房モードとを切り替えることができる。冷房モードは、車室内へ送風される送風空気Wを冷却して車室内へ吹き出す運転モードである。除湿暖房モードは、冷却に伴い除湿された送風空気Wを再度加熱して車室内に吹き出す運転モードである。暖房モードは、送風空気Wを加熱して車室内へ吹き出す運転モードである。 Then, the vehicle air conditioner 1 can switch between a cooling mode, a dehumidifying heating mode, and a heating mode as an operation mode for air-conditioning the interior of the vehicle. The cooling mode is an operation mode in which the blown air W blown into the vehicle interior is cooled and blown out into the vehicle interior. The dehumidifying / heating mode is an operation mode in which the blown air W dehumidified by cooling is reheated and blown out into the vehicle interior. The heating mode is an operation mode in which the blown air W is heated and blown out into the vehicle interior.
 次に、第1実施形態に係る車両用空調装置1の具体的構成について、図1を参照して説明する。車両用空調装置1は、冷凍サイクル10と、高温側熱媒体回路20と、低温側熱媒体回路40と、機器側熱媒体回路50と、室内空調ユニット60と、制御装置70を有している。 Next, the specific configuration of the vehicle air conditioner 1 according to the first embodiment will be described with reference to FIG. The vehicle air conditioner 1 includes a refrigeration cycle 10, a high temperature side heat medium circuit 20, a low temperature side heat medium circuit 40, an equipment side heat medium circuit 50, an indoor air conditioner unit 60, and a control device 70. ..
 初めに、車両用空調装置1における冷凍サイクル10について説明する。冷凍サイクル10は、蒸気圧縮式の冷凍サイクル装置である。冷凍サイクル10は、圧縮機11と、水冷媒熱交換器12と、第1膨張弁14aと、第2膨張弁14bと、チラー15と、室内蒸発器16と、蒸発圧力調整弁17等を有している。冷凍サイクル10は、後述する各運転モードに応じて、冷媒回路の回路構成を切り替えることができる。 First, the refrigeration cycle 10 in the vehicle air conditioner 1 will be described. The refrigeration cycle 10 is a vapor compression type refrigeration cycle apparatus. The refrigeration cycle 10 includes a compressor 11, a water refrigerant heat exchanger 12, a first expansion valve 14a, a second expansion valve 14b, a chiller 15, an indoor evaporator 16, an evaporation pressure adjusting valve 17, and the like. doing. In the refrigeration cycle 10, the circuit configuration of the refrigerant circuit can be switched according to each operation mode described later.
 冷凍サイクル10では、冷媒として、HFC系冷媒(具体的には、R1234yf)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑する為の冷凍機油が混入されている。冷凍機油としては、液相冷媒に相溶性を有するPAGオイル(ポリアルキレングリコールオイル)が採用されている。冷凍機油の一部は、冷媒と共に冷凍サイクル10を循環している。 The refrigeration cycle 10 employs an HFC-based refrigerant (specifically, R1234yf) as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. As the refrigerating machine oil, PAG oil (polyalkylene glycol oil) having compatibility with the liquid phase refrigerant is adopted. A part of the refrigerating machine oil circulates in the refrigerating cycle 10 together with the refrigerant.
 圧縮機11は、冷凍サイクル10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は車両前方側の駆動装置室内に配置されている。駆動装置室は、車両走行用の駆動力の発生或いは調整のために用いられる機器(例えば、モータジェネレータ)等の少なくとも一部が配置される空間を形成している。 The compressor 11 sucks in the refrigerant in the refrigeration cycle 10, compresses it, and discharges it. The compressor 11 is arranged in the drive unit room on the front side of the vehicle. The drive unit room forms a space in which at least a part of equipment (for example, a motor generator) used for generating or adjusting a driving force for traveling a vehicle is arranged.
 圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する制御装置70から出力される制御信号によって、回転数(即ち、冷媒吐出能力)が制御される。 The compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism with a fixed discharge capacity by an electric motor. The number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the control device 70 described later.
 圧縮機11の吐出口には、水冷媒熱交換器12における冷媒通路の入口側が接続されている。水冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒と、高温側熱媒体回路20を循環する熱媒体とを熱交換させる高温側熱交換部である。水冷媒熱交換器12は、所謂、サブクール型の熱交換器によって構成されており、凝縮部12aと、レシーバ部12bと、過冷却部12cを有している。 The inlet side of the refrigerant passage in the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11. The water refrigerant heat exchanger 12 is a high temperature side heat exchange unit that exchanges heat between the high pressure refrigerant discharged from the compressor 11 and the heat medium circulating in the high temperature side heat medium circuit 20. The water-refrigerant heat exchanger 12 is composed of a so-called subcool type heat exchanger, and has a condensing section 12a, a receiver section 12b, and a supercooling section 12c.
 凝縮部12aは、圧縮機11から吐出された高圧冷媒と、高温側熱媒体回路20の熱媒体とを熱交換させて冷媒を凝縮させる凝縮用の熱交換部である。レシーバ部12bは、凝縮部12aから流出した冷媒の気液を分離して、分離された液相冷媒を蓄える受液部である。過冷却部12cは、レシーバ部12bから流出した液相冷媒と、高温側熱媒体回路20の熱媒体とを熱交換させて液相冷媒を過冷却する過冷却用の熱交換部である。尚、水冷媒熱交換器12は、加熱部の一部を構成する。 The condensing unit 12a is a heat exchange unit for condensing that condenses the refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the heat medium of the high-temperature side heat medium circuit 20. The receiver unit 12b is a liquid receiving unit that separates the gas-liquid of the refrigerant flowing out from the condensing unit 12a and stores the separated liquid-phase refrigerant. The supercooling unit 12c is a heat exchange unit for supercooling that supercools the liquid phase refrigerant by exchanging heat between the liquid phase refrigerant flowing out from the receiver unit 12b and the heat medium of the high temperature side heat medium circuit 20. The water-refrigerant heat exchanger 12 constitutes a part of the heating unit.
 水冷媒熱交換器12の冷媒通路の出口には、冷媒分岐部13aの流入口側が接続されている。冷媒分岐部13aは、水冷媒熱交換器12から流出した液相冷媒の流れを分岐する。冷媒分岐部13aは、互いに連通する3つの流入出口を有する三方継手である。冷媒分岐部13aでは、3つの流入出口の内の1つを流入口として用い、残りの2つを流出口として用いている。 The inflow port side of the refrigerant branch portion 13a is connected to the outlet of the refrigerant passage of the water refrigerant heat exchanger 12. The refrigerant branching portion 13a branches the flow of the liquid phase refrigerant flowing out of the water refrigerant heat exchanger 12. The refrigerant branch portion 13a is a three-way joint having three inflow ports communicating with each other. In the refrigerant branch 13a, one of the three inflow ports is used as an inflow port, and the remaining two are used as outflow ports.
 冷媒分岐部13aの一方の流出口には、第1膨張弁14aを介して、チラー15における冷媒通路の入口側が接続されている。冷媒分岐部13aの他方の流出口には、第2膨張弁14bを介して、室内蒸発器16の冷媒入口側が接続されている。 The inlet side of the refrigerant passage in the chiller 15 is connected to one outlet of the refrigerant branch portion 13a via the first expansion valve 14a. The refrigerant inlet side of the indoor evaporator 16 is connected to the other outlet of the refrigerant branch portion 13a via the second expansion valve 14b.
 第1膨張弁14aは、少なくとも暖房モード時において、冷媒分岐部13aの一方の流出口から流出した冷媒を減圧させる減圧部である。第1膨張弁14aは、絞り開度を変化させる弁体及び、弁体を変位させる電動アクチュエータ(具体的には、ステッピングモータ)を有する電気式の可変絞り機構である。第1膨張弁14aは、制御装置70から出力される制御パルスによって、その作動が制御される。 The first expansion valve 14a is a pressure reducing unit that reduces the pressure of the refrigerant flowing out from one outlet of the refrigerant branching portion 13a at least in the heating mode. The first expansion valve 14a is an electric variable throttle mechanism having a valve body that changes the throttle opening degree and an electric actuator (specifically, a stepping motor) that displaces the valve body. The operation of the first expansion valve 14a is controlled by a control pulse output from the control device 70.
 第2膨張弁14bは、冷媒分岐部13aの他方の流出口から流出した冷媒を減圧させる減圧部である。第2膨張弁14bの基本的構成は、第1膨張弁14aと同様である。第2膨張弁14bは、制御装置70から出力される制御パルスによって、その作動が制御される。 The second expansion valve 14b is a pressure reducing portion that reduces the pressure of the refrigerant flowing out from the other outlet of the refrigerant branching portion 13a. The basic configuration of the second expansion valve 14b is the same as that of the first expansion valve 14a. The operation of the second expansion valve 14b is controlled by a control pulse output from the control device 70.
 第1膨張弁14a及び第2膨張弁14bは、弁開度を全開にすることで冷媒減圧作用及び流量調整作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。更に、第1膨張弁14aおよび第2膨張弁14bは、弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。 The first expansion valve 14a and the second expansion valve 14b have a fully open function that functions as a mere refrigerant passage with almost no refrigerant decompression action and flow rate adjustment action by fully opening the valve opening. Further, the first expansion valve 14a and the second expansion valve 14b have a fully closing function of closing the refrigerant passage by fully closing the valve opening degree.
 第1膨張弁14a及び第2膨張弁14bは、この全開機能及び全閉機能によって、各運転モードの冷媒回路を切り替えることができる。従って、第1膨張弁14a及び第2膨張弁14bは、冷凍サイクル10の回路構成を切り替える冷媒回路切替部としての機能を兼ね備えている。 The first expansion valve 14a and the second expansion valve 14b can switch the refrigerant circuit of each operation mode by the fully open function and the fully closed function. Therefore, the first expansion valve 14a and the second expansion valve 14b also have a function as a refrigerant circuit switching unit for switching the circuit configuration of the refrigeration cycle 10.
 そして、第1膨張弁14aの出口には、チラー15における冷媒通路の入口側が接続されている。チラー15は、第1膨張弁14aにて減圧された低圧冷媒と、低温側熱媒体回路40を循環する熱媒体とを熱交換させる低温側熱交換器である。チラー15は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって低温側熱媒体回路40の熱媒体を冷却する。即ち、チラー15は吸熱器の一例である。チラー15における冷媒通路の出口には、冷媒合流部13bの一方の流入口側が接続されている。 Then, the inlet side of the refrigerant passage in the chiller 15 is connected to the outlet of the first expansion valve 14a. The chiller 15 is a low temperature side heat exchanger that exchanges heat between the low pressure refrigerant decompressed by the first expansion valve 14a and the heat medium circulating in the low temperature side heat medium circuit 40. The chiller 15 cools the heat medium of the low temperature side heat medium circuit 40 by evaporating the low pressure refrigerant to exert an endothermic action. That is, the chiller 15 is an example of a heat absorber. One inflow port side of the refrigerant confluence portion 13b is connected to the outlet of the refrigerant passage in the chiller 15.
 第2膨張弁14bの出口には、室内蒸発器16の冷媒入口側が接続されている。室内蒸発器16は、第2膨張弁14bにて減圧された低圧冷媒と送風空気Wとを熱交換させる空気冷却用熱交換器である。室内蒸発器16は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気Wを冷却する。室内蒸発器16は、後述する室内空調ユニット60のケーシング61内に配置されている。 The refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the second expansion valve 14b. The indoor evaporator 16 is an air cooling heat exchanger that exchanges heat between the low-pressure refrigerant decompressed by the second expansion valve 14b and the blown air W. The indoor evaporator 16 cools the blown air W by evaporating the low-pressure refrigerant to exert an endothermic action. The indoor evaporator 16 is arranged in the casing 61 of the indoor air conditioning unit 60, which will be described later.
 室内蒸発器16の冷媒出口には、蒸発圧力調整弁17の入口側が接続されている。蒸発圧力調整弁17は、室内蒸発器16における冷媒蒸発圧力を予め定めた基準圧力以上に維持する蒸発圧力調整部である。 The inlet side of the evaporation pressure adjusting valve 17 is connected to the refrigerant outlet of the indoor evaporator 16. The evaporation pressure adjusting valve 17 is an evaporation pressure adjusting unit that maintains the refrigerant evaporation pressure in the indoor evaporator 16 at a predetermined reference pressure or higher.
 蒸発圧力調整弁17は、室内蒸発器16の冷媒出口側の冷媒圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構である。これにより、本実施形態の蒸発圧力調整弁17では、室内蒸発器16における冷媒蒸発温度を、室内蒸発器16の着霜を抑制可能な着霜抑制温度(例えば、1℃)以上に維持している。蒸発圧力調整弁17の出口には、冷媒合流部13bの他方の流入口側が接続されている。 The evaporation pressure adjusting valve 17 is a mechanical variable throttle mechanism that increases the valve opening degree as the refrigerant pressure on the refrigerant outlet side of the indoor evaporator 16 rises. As a result, in the evaporation pressure adjusting valve 17 of the present embodiment, the refrigerant evaporation temperature in the indoor evaporator 16 is maintained at a frost formation suppression temperature (for example, 1 ° C.) that can suppress frost formation in the indoor evaporator 16. There is. The other inlet side of the refrigerant merging portion 13b is connected to the outlet of the evaporation pressure adjusting valve 17.
 冷媒合流部13bは、チラー15の冷媒通路から流出した冷媒の流れと蒸発圧力調整弁17から流出した冷媒の流れとを合流させる。冷媒合流部13bは、冷媒分岐部13aと同様の三方継手である。冷媒合流部13bでは、3つの流入出口のうち2つを流入口とし、残りの1つを流出口としている。冷媒合流部13bの流出口には、圧縮機11の吸入口側が接続されている。 The refrigerant merging portion 13b merges the flow of the refrigerant flowing out from the refrigerant passage of the chiller 15 and the flow of the refrigerant flowing out from the evaporation pressure adjusting valve 17. The refrigerant merging portion 13b is a three-way joint similar to the refrigerant branching portion 13a. In the refrigerant merging portion 13b, two of the three inflow ports are used as inflow ports, and the remaining one is used as an outflow port. The suction port side of the compressor 11 is connected to the outlet of the refrigerant merging portion 13b.
 次に、車両用空調装置1における高温側熱媒体回路20について説明する。高温側熱媒体回路20は、複合型熱交換器21、ヒータコア22等の構成機器を高温側熱媒体流路20aにて接続して構成されている。高温側熱媒体回路20は、各構成機器を介して熱媒体を循環させる高温側熱媒体回路である。高温側熱媒体回路20における熱媒体としては、エチレングリコール水溶液を採用している。 Next, the high temperature side heat medium circuit 20 in the vehicle air conditioner 1 will be described. The high temperature side heat medium circuit 20 is configured by connecting constituent devices such as a composite heat exchanger 21 and a heater core 22 by a high temperature side heat medium flow path 20a. The high temperature side heat medium circuit 20 is a high temperature side heat medium circuit that circulates a heat medium through each component device. An ethylene glycol aqueous solution is used as the heat medium in the high temperature side heat medium circuit 20.
 高温側熱媒体回路20には、水冷媒熱交換器12の熱媒体通路、複合型熱交換器21の放熱部21aにおける熱媒体通路、ヒータコア22、電気ヒータ26、高温側ポンプ27、第1リザーブタンク28、高温側切替部30等が配置されている。 The high temperature side heat medium circuit 20 includes a heat medium passage of the water refrigerant heat exchanger 12, a heat medium passage in the heat radiating portion 21a of the composite heat exchanger 21, a heater core 22, an electric heater 26, a high temperature side pump 27, and a first reserve. The tank 28, the high temperature side switching portion 30, and the like are arranged.
 図1に示すように、高温側熱媒体回路20では、複合型熱交換器21の放熱部21aと、ヒータコア22と、高温側切替部30が、高温側熱媒体流路20aによって接続されている。又、複合型熱交換器21の放熱部21aと、ヒータコア22にそれぞれ並列な共通流路23が配置されている。共通流路23には、第1リザーブタンク28、高温側ポンプ27、水冷媒熱交換器12の熱媒体通路、電気ヒータ26が配置されている。 As shown in FIG. 1, in the high temperature side heat medium circuit 20, the heat radiating portion 21a of the composite heat exchanger 21, the heater core 22, and the high temperature side switching portion 30 are connected by the high temperature side heat medium flow path 20a. .. Further, a common flow path 23 parallel to each of the heat radiating portion 21a of the composite heat exchanger 21 and the heater core 22 is arranged. The first reserve tank 28, the high temperature side pump 27, the heat medium passage of the water refrigerant heat exchanger 12, and the electric heater 26 are arranged in the common flow path 23.
 高温側ポンプ27の吐出口には、水冷媒熱交換器12における熱媒体通路の入口側が接続されている。高温側ポンプ27は、高温側熱媒体回路20における熱媒体を水冷媒熱交換器12の熱媒体通路へ圧送する。水冷媒熱交換器12では、冷媒通路を流通する高圧冷媒の流れと熱媒体通路を流通する熱媒体の流れが対向流となっている。高温側ポンプ27は、制御装置70から出力される制御電圧によって、回転数(即ち、圧送能力)が制御される電動ポンプである。 The inlet side of the heat medium passage in the water refrigerant heat exchanger 12 is connected to the discharge port of the high temperature side pump 27. The high temperature side pump 27 pumps the heat medium in the high temperature side heat medium circuit 20 to the heat medium passage of the water refrigerant heat exchanger 12. In the water refrigerant heat exchanger 12, the flow of the high-pressure refrigerant flowing through the refrigerant passage and the flow of the heat medium flowing through the heat medium passage are countercurrents. The high temperature side pump 27 is an electric pump whose rotation speed (that is, pumping capacity) is controlled by a control voltage output from the control device 70.
 水冷媒熱交換器12における熱媒体通路の出口側には、電気ヒータ26が配置されている。電気ヒータ26は、水冷媒熱交換器12の熱媒体通路から流出した熱媒体を加熱する加熱装置である。高温側熱媒体回路20では、電気ヒータ26として、PTC素子(即ち、正特性サーミスタ)を有するPTCヒータを採用している。電気ヒータ26の発熱量は、制御装置70から出力される制御電圧によって任意に制御することができる。 An electric heater 26 is arranged on the outlet side of the heat medium passage in the water refrigerant heat exchanger 12. The electric heater 26 is a heating device that heats the heat medium flowing out from the heat medium passage of the water refrigerant heat exchanger 12. In the high temperature side heat medium circuit 20, a PTC heater having a PTC element (that is, a positive characteristic thermistor) is adopted as the electric heater 26. The calorific value of the electric heater 26 can be arbitrarily controlled by the control voltage output from the control device 70.
 電気ヒータ26の下流側には、分岐部24の流入口側が接続されている。分岐部24は、高温側熱媒体回路20において、電気ヒータ26の下流側の熱媒体の流れを分岐する。分岐部24は、冷媒分岐部13a等と同様の三方継手であり、高温側熱媒体流路20aと共通流路23の接続部である。 The inlet side of the branch portion 24 is connected to the downstream side of the electric heater 26. The branching portion 24 branches the flow of the heat medium on the downstream side of the electric heater 26 in the high temperature side heat medium circuit 20. The branch portion 24 is a three-way joint similar to the refrigerant branch portion 13a and the like, and is a connection portion between the high temperature side heat medium flow path 20a and the common flow path 23.
 分岐部24の一方の流出口には、高温側切替部30の第1電磁弁30aを介して、複合型熱交換器21における放熱部21aの熱媒体入口側が接続されている。又、分岐部24の他方の流出口には、高温側切替部30の第2電磁弁30bを介して、ヒータコア22の熱媒体入口側が接続されている。 The heat medium inlet side of the heat dissipation portion 21a of the composite heat exchanger 21 is connected to one outlet of the branch portion 24 via the first solenoid valve 30a of the high temperature side switching portion 30. Further, the heat medium inlet side of the heater core 22 is connected to the other outlet of the branch portion 24 via the second solenoid valve 30b of the high temperature side switching portion 30.
 第1電磁弁30aは、高温側熱媒体回路20において、複合型熱交換器21の放熱部21aへ流入する熱媒体の流量を調整する流量調整部である。第1電磁弁30aは、高温側熱媒体流路20aの通路断面積を変化させる弁体、及び弁体を変位させる電動アクチュエータ(具体的には、ステッピングモータ)を有する電気式の流量調整弁である。第1電磁弁30aは、制御装置70から出力される制御パルスによって、その作動が制限される。 The first solenoid valve 30a is a flow rate adjusting unit that adjusts the flow rate of the heat medium flowing into the heat radiating unit 21a of the composite heat exchanger 21 in the high temperature side heat medium circuit 20. The first solenoid valve 30a is an electric flow control valve having a valve body that changes the passage cross-sectional area of the high temperature side heat medium flow path 20a and an electric actuator (specifically, a stepping motor) that displaces the valve body. is there. The operation of the first solenoid valve 30a is restricted by the control pulse output from the control device 70.
 第2電磁弁30bは、高温側熱媒体回路20において、ヒータコア22へ流入する熱媒体の流量を調整する流量調整部である。第2電磁弁30bの基本的構成は、第1電磁弁30aと同様である。第1電磁弁30a及び第2電磁弁30bは、高温側熱媒体回路20において、複合型熱交換器21へ流入する熱媒体の流量に対するヒータコア22へ流入する熱媒体の流量の高温側流量日を調整する高温側流量比調整部である。 The second solenoid valve 30b is a flow rate adjusting unit that adjusts the flow rate of the heat medium flowing into the heater core 22 in the high temperature side heat medium circuit 20. The basic configuration of the second solenoid valve 30b is the same as that of the first solenoid valve 30a. The first solenoid valve 30a and the second solenoid valve 30b set the high temperature side flow rate day of the flow rate of the heat medium flowing into the heater core 22 with respect to the flow rate of the heat medium flowing into the composite heat exchanger 21 in the high temperature side heat medium circuit 20. It is a high temperature side flow rate ratio adjustment unit to be adjusted.
 更に、第1電磁弁30a及び第2電磁弁30bは、第1膨張弁14a及び第2膨張弁14bと同様の全開機構及び全閉機構を有している。従って、第1電磁弁30a及び第2電磁弁30bは、高温側熱媒体回路20の回路構成を切り替える高温側切替部30を構成している。 Further, the first solenoid valve 30a and the second solenoid valve 30b have a fully open mechanism and a fully closed mechanism similar to the first expansion valve 14a and the second expansion valve 14b. Therefore, the first solenoid valve 30a and the second solenoid valve 30b form a high temperature side switching unit 30 that switches the circuit configuration of the high temperature side heat medium circuit 20.
 複合型熱交換器21は、高温側熱媒体回路20の熱媒体と外気OAとを熱交換させる放熱部21aと、低温側熱媒体回路40等を循環する熱媒体と外気OAとを熱交換させる吸熱部21bとを一体的に構成した熱交換器である。放熱部21aにおける熱媒体出口側には、合流部25における一方の流入口側が接続されている。 The composite heat exchanger 21 exchanges heat between the heat radiating unit 21a that exchanges heat between the heat medium of the high temperature side heat medium circuit 20 and the outside air OA, and the heat medium that circulates the low temperature side heat medium circuit 40 and the outside air OA. It is a heat exchanger in which the heat absorbing portion 21b is integrally formed. One inflow port side of the merging portion 25 is connected to the heat medium outlet side of the heat radiating portion 21a.
 複合型熱交換器21は、駆動装置室内の前方側に配置されている。そして、放熱部21aは吸熱部21bに対して車両前方側に配置されている。換言すると、放熱部21aは、外気OAの流れに関して、吸熱部21bの上流側に配置されている。 The composite heat exchanger 21 is arranged on the front side in the drive unit room. The heat radiating portion 21a is arranged on the front side of the vehicle with respect to the heat absorbing portion 21b. In other words, the heat radiating section 21a is arranged on the upstream side of the heat absorbing section 21b with respect to the flow of the outside air OA.
 又、複合型熱交換器21には、図示しない外気ファンが配置されている。従って、複合型熱交換器21は、外気ファンによって送風される外気OAや、電気自動車の走行に伴って送風される外気OAとの熱交換を行うことができる。つまり、複合型熱交換器21は空気熱媒体熱交換器の一例である。 Further, an outside air fan (not shown) is arranged in the composite heat exchanger 21. Therefore, the composite heat exchanger 21 can exchange heat with the outside air OA blown by the outside air fan and the outside air OA blown by the running of the electric vehicle. That is, the composite heat exchanger 21 is an example of an air heat medium heat exchanger.
 そして、複合型熱交換器21の放熱部21a及び吸熱部21bは、いわゆるタンクアンドチューブ型の熱交換器構造になっている。熱媒体と、空気(即ち、外気OA)とを熱交換させるタンクアンドチューブ型の熱交換器は、熱媒体を流通させる複数のチューブと、複数のチューブを流通する熱媒体の分配或いは集合を行う為のタンク等を有している。そして、一定方向に互いに間隔を開けて積層配置されたチューブを流通する熱媒体と、隣り合うチューブ間に形成された空気通路を流通する空気とを熱交換させる構造になっている。 The heat radiating portion 21a and the heat absorbing portion 21b of the composite heat exchanger 21 have a so-called tank and tube type heat exchanger structure. A tank-and-tube heat exchanger that exchanges heat between a heat medium and air (that is, outside air OA) distributes or assembles a plurality of tubes that circulate the heat medium and a heat medium that circulates the plurality of tubes. It has a tank for the purpose. The structure is such that the heat medium that flows through the tubes that are stacked and arranged at intervals in a certain direction and the air that flows through the air passage formed between the adjacent tubes exchange heat.
 図2に示すように、放熱部21aにおけるチューブ21atの間に形成される空気通路と、吸熱部21bにおけるチューブ21btの間に形成される空気通路には、熱交換フィン21cが配置されている。熱交換フィン21cは、一つの薄板状の金属部材により構成されている。熱交換フィン21cは、放熱部21aにおける熱媒体と外気OAとの熱交換を促進させると共に、吸熱部21bにおける熱媒体と外気OAとの熱交換を促進させる部材である。 As shown in FIG. 2, heat exchange fins 21c are arranged in the air passage formed between the tubes 21at in the heat radiating portion 21a and the air passage formed between the tubes 21bt in the heat absorbing portion 21b. The heat exchange fin 21c is composed of one thin plate-shaped metal member. The heat exchange fins 21c are members that promote heat exchange between the heat medium and the outside air OA in the heat radiating unit 21a and promote heat exchange between the heat medium and the outside air OA in the heat absorbing unit 21b.
 そして、複合型熱交換器21では、熱交換フィン21cが、放熱部21aのチューブ21atと、吸熱部21bのチューブ21btの双方にろう付け接合されており、放熱部21aと吸熱部21bを連結している。これにより、複合型熱交換器21では、熱交換フィン21cを介して、放熱部21a側の熱媒体と、吸熱部21b側の熱媒体との間における伝熱可能に構成されている。 In the composite heat exchanger 21, the heat exchange fins 21c are brazed to both the tube 21at of the heat dissipation portion 21a and the tube 21bt of the heat absorption portion 21b to connect the heat dissipation portion 21a and the heat absorption portion 21b. ing. As a result, the composite heat exchanger 21 is configured to be able to transfer heat between the heat medium on the heat radiating portion 21a side and the heat medium on the heat absorbing portion 21b side via the heat exchange fins 21c.
 複合型熱交換器21の空気流れ上流側には、シャッター装置31が配置されている。シャッター装置31は、複合型熱交換器21へ流入する外気OAの流量を調整する。これにより、シャッター装置31は、複合型熱交換器21を流通する熱媒体と外気OAとの熱交換量を調整することができる。シャッター装置31は、制御装置70から出力される制御信号によって、その作動が制御される。 A shutter device 31 is arranged on the upstream side of the air flow of the composite heat exchanger 21. The shutter device 31 adjusts the flow rate of the outside air OA flowing into the composite heat exchanger 21. As a result, the shutter device 31 can adjust the amount of heat exchange between the heat medium flowing through the composite heat exchanger 21 and the outside air OA. The operation of the shutter device 31 is controlled by a control signal output from the control device 70.
 ヒータコア22は、水冷媒熱交換器12等で加熱された熱媒体と送風空気Wとを熱交換させて、送風空気Wを加熱する加熱用熱交換部である。図1等に示すように、ヒータコア22は、室内空調ユニット60のケーシング61内に配置されている。ヒータコア22の熱媒体出口側には、合流部25における他方の流入口側が接続されている。 The heater core 22 is a heating heat exchange unit that heats the blown air W by exchanging heat between the heat medium heated by the water refrigerant heat exchanger 12 and the like and the blown air W. As shown in FIG. 1 and the like, the heater core 22 is arranged in the casing 61 of the indoor air conditioning unit 60. The other inlet side of the merging portion 25 is connected to the heat medium outlet side of the heater core 22.
 合流部25は、複合型熱交換器21の放熱部21aから流出した熱媒体の流れと、ヒータコア22から流出した熱媒体の流れとを合流させる。合流部25は、冷媒合流部13b等と同様の三方継手である。 The merging section 25 merges the flow of the heat medium flowing out from the heat radiating section 21a of the composite heat exchanger 21 with the flow of the heat medium flowing out from the heater core 22. The merging portion 25 is a three-way joint similar to the refrigerant merging portion 13b and the like.
 そして、合流部25の流出口側には、共通流路23の一端が接続されている。図1に示すように、共通流路23の他端は、分岐部24の流入口側に接続されている。高温側熱媒体回路20では、複合型熱交換器21とヒータコア22は、高温側熱媒体回路20における熱媒体の流れに対して並列に接続されている。 Then, one end of the common flow path 23 is connected to the outlet side of the confluence portion 25. As shown in FIG. 1, the other end of the common flow path 23 is connected to the inflow port side of the branch portion 24. In the high temperature side heat medium circuit 20, the composite heat exchanger 21 and the heater core 22 are connected in parallel with respect to the flow of the heat medium in the high temperature side heat medium circuit 20.
 即ち、共通流路23は、高温側熱媒体回路20にて、複合型熱交換器21を介して循環する熱媒体と、ヒータコア22を介して循環する熱媒体の何れもが共通して流れる熱媒体流路である。共通流路23には、第1リザーブタンク28、高温側ポンプ27、水冷媒熱交換器12の熱媒体通路、電気ヒータ26が、熱媒体の流れ上流側から順に配置されている。 That is, in the common flow path 23, in the high temperature side heat medium circuit 20, both the heat medium that circulates through the composite heat exchanger 21 and the heat medium that circulates through the heater core 22 flow in common. It is a medium flow path. In the common flow path 23, the first reserve tank 28, the high temperature side pump 27, the heat medium passage of the water refrigerant heat exchanger 12, and the electric heater 26 are arranged in order from the upstream side of the flow of the heat medium.
 第1リザーブタンク28は、高温側熱媒体回路20で余剰となっている熱媒体を貯留する高温側熱媒体回路用の貯留部である。高温側熱媒体回路20では、第1リザーブタンク28を配置することで、高温側熱媒体回路20を循環する熱媒体の液量低下を抑制している。 The first reserve tank 28 is a storage unit for the high temperature side heat medium circuit that stores the heat medium that is surplus in the high temperature side heat medium circuit 20. In the high temperature side heat medium circuit 20, by arranging the first reserve tank 28, a decrease in the amount of liquid in the heat medium circulating in the high temperature side heat medium circuit 20 is suppressed.
 又、第1リザーブタンク28は、高温側熱媒体回路20内の高温側熱媒体量が不足した際に高温側熱媒体を補給するための熱媒体供給口を有している。そして、第1リザーブタンク28の熱媒体出口側には、高温側ポンプ27の吸入口側が接続されている。 Further, the first reserve tank 28 has a heat medium supply port for replenishing the high temperature side heat medium when the amount of the high temperature side heat medium in the high temperature side heat medium circuit 20 is insufficient. The suction port side of the high temperature side pump 27 is connected to the heat medium outlet side of the first reserve tank 28.
 次に、車両用空調装置1における低温側熱媒体回路40について説明する。低温側熱媒体回路40は、チラー15、複合型熱交換器21の吸熱部21b、バッテリ45を低温側熱媒体流路40a等で接続して構成され、各構成機器に対して熱媒体を循環させる熱媒体回路である。低温側熱媒体回路40の熱媒体としては、高温側熱媒体回路20と同様の熱媒体を採用できる。 Next, the low temperature side heat medium circuit 40 in the vehicle air conditioner 1 will be described. The low temperature side heat medium circuit 40 is configured by connecting the chiller 15, the endothermic portion 21b of the composite heat exchanger 21, and the battery 45 by a low temperature side heat medium flow path 40a or the like, and circulates the heat medium to each constituent device. It is a heat medium circuit to make it. As the heat medium of the low temperature side heat medium circuit 40, the same heat medium as that of the high temperature side heat medium circuit 20 can be adopted.
 図1に示すように、低温側熱媒体回路40には、チラー15の熱媒体通路、複合型熱交換器21における吸熱部21bの熱媒体通路、低温側ポンプ41、バッテリ45の熱媒体通路45a、低温側切替部43、第2リザーブタンク29等が配置されている。 As shown in FIG. 1, in the low temperature side heat medium circuit 40, the heat medium passage of the chiller 15, the heat medium passage of the heat absorbing portion 21b in the composite heat exchanger 21, the low temperature side pump 41, and the heat medium passage 45a of the battery 45 , The low temperature side switching unit 43, the second reserve tank 29, and the like are arranged.
 そして、低温側熱媒体流路40aは、複合型熱交換器21における吸熱部21bの熱媒体通路と、チラー15の熱媒体通路を接続した環状の熱媒体流路である。低温側熱媒体流路40aには、低温側ポンプ41、第2リザーブタンク29、低温側切替部43の開閉弁43bが配置されている。 The low temperature side heat medium flow path 40a is an annular heat medium flow path connecting the heat medium passage of the heat absorbing portion 21b of the composite heat exchanger 21 and the heat medium passage of the chiller 15. A low temperature side pump 41, a second reserve tank 29, and an on-off valve 43b of the low temperature side switching portion 43 are arranged in the low temperature side heat medium flow path 40a.
 低温側ポンプ41の吐出口には、チラー15における熱媒体通路の入口側が接続されている。低温側ポンプ41は、低温側熱媒体回路40の熱媒体をチラー15の熱媒体通路の入口へ圧送する。低温側ポンプ41の基本的構成は、高温側ポンプ27と同様である。 The inlet side of the heat medium passage in the chiller 15 is connected to the discharge port of the low temperature side pump 41. The low temperature side pump 41 pumps the heat medium of the low temperature side heat medium circuit 40 to the inlet of the heat medium passage of the chiller 15. The basic configuration of the low temperature side pump 41 is the same as that of the high temperature side pump 27.
 チラー15では、冷媒通路を流通する低圧冷媒の流れと熱媒体流路を流通する熱媒体の流れが対向流となっている。従って、チラー15は、低圧冷媒を蒸発させて吸熱作用を発揮させることで低温側熱媒体回路40の熱媒体を冷却することができる。 In the chiller 15, the flow of the low-pressure refrigerant flowing through the refrigerant passage and the flow of the heat medium flowing through the heat medium flow path are countercurrents. Therefore, the chiller 15 can cool the heat medium of the low temperature side heat medium circuit 40 by evaporating the low pressure refrigerant to exert an endothermic action.
 チラー15における熱媒体通路の出口には、低温側切替部43の開閉弁43bが、低温側熱媒体流路40aを介して接続されている。開閉弁43bは、低温側熱媒体回路40を流通する熱媒体の流量を調整する電気式の流量調整弁である。開閉弁43bの基本的構成は、上述した第1電磁弁30aと同様である。 An on-off valve 43b of the low temperature side switching unit 43 is connected to the outlet of the heat medium passage in the chiller 15 via the low temperature side heat medium flow path 40a. The on-off valve 43b is an electric flow rate adjusting valve that adjusts the flow rate of the heat medium flowing through the low temperature side heat medium circuit 40. The basic configuration of the on-off valve 43b is the same as that of the first solenoid valve 30a described above.
 開閉弁43bは、制御装置70からの制御信号に従って、低温側熱媒体流路40aを開閉する。これにより、開閉弁43bは、その動作によって、低温側熱媒体回路40の流路構成を切り替えることができる為、低温側切替部43を構成する。 The on-off valve 43b opens and closes the low temperature side heat medium flow path 40a according to the control signal from the control device 70. As a result, the on-off valve 43b can switch the flow path configuration of the low temperature side heat medium circuit 40 by its operation, and thus constitutes the low temperature side switching unit 43.
 開閉弁43bの流出口側には、複合型熱交換器21における吸熱部21bの熱媒体入口側が接続されている。従って、複合型熱交換器21の吸熱部21bは、低温側熱媒体回路40の熱媒体と外気ファンから送風された外気OAとを熱交換させることで、外気OAの熱を熱媒体に吸熱させることができる。 The heat medium inlet side of the endothermic portion 21b of the composite heat exchanger 21 is connected to the outlet side of the on-off valve 43b. Therefore, the heat absorbing portion 21b of the composite heat exchanger 21 absorbs the heat of the outside air OA into the heat medium by exchanging heat between the heat medium of the low temperature side heat medium circuit 40 and the outside air OA blown from the outside air fan. be able to.
 複合型熱交換器21における吸熱部21bの熱媒体出口側には、第2リザーブタンク29が接続されている。第2リザーブタンク29は、低温側熱媒体回路40で余剰となっている熱媒体を貯留する低温側熱媒体用の貯留部である。第2リザーブタンク29の基本的構成は、第1リザーブタンク28と同様である。そして、第2リザーブタンク29の熱媒体出口側には、低温側ポンプ41の吸入口側が接続されている。 A second reserve tank 29 is connected to the heat medium outlet side of the endothermic portion 21b of the composite heat exchanger 21. The second reserve tank 29 is a storage unit for the low temperature side heat medium that stores the heat medium that is surplus in the low temperature side heat medium circuit 40. The basic configuration of the second reserve tank 29 is the same as that of the first reserve tank 28. The suction port side of the low temperature side pump 41 is connected to the heat medium outlet side of the second reserve tank 29.
 図1に示すように、低温側熱媒体回路40には、迂回流路42が配置されている。迂回流路42の一端側は、開閉弁43bの流出口と複合型熱交換器21における吸熱部21bの入口を接続する低温側熱媒体流路40aに対して接続されている。一方、迂回流路42の他端部は、第2リザーブタンク29の流出口と低温側ポンプ41の吸入口を接続する低温側熱媒体流路40aに対して接続されている。 As shown in FIG. 1, a detour flow path 42 is arranged in the low temperature side heat medium circuit 40. One end side of the bypass flow path 42 is connected to the low temperature side heat medium flow path 40a that connects the outlet of the on-off valve 43b and the inlet of the endothermic portion 21b in the composite heat exchanger 21. On the other hand, the other end of the bypass flow path 42 is connected to the low temperature side heat medium flow path 40a that connects the outlet of the second reserve tank 29 and the suction port of the low temperature side pump 41.
 従って、車両用空調装置1は、迂回流路42を利用することによって、低温側熱媒体回路40の熱媒体を複合型熱交換器21の吸熱部21bを迂回するように循環させることができる。 Therefore, the vehicle air conditioner 1 can circulate the heat medium of the low temperature side heat medium circuit 40 so as to bypass the endothermic portion 21b of the composite heat exchanger 21 by using the bypass flow path 42.
 そして、迂回流路42とバッテリ接続流路44の接続部には、低温側切替部43を構成する低温側三方弁43aが配置されている。低温側三方弁43aは、3つの流入出口を有する三方式の流量調整弁によって構成されている。 Then, at the connection portion between the bypass flow path 42 and the battery connection flow path 44, the low temperature side three-way valve 43a constituting the low temperature side switching portion 43 is arranged. The low temperature side three-way valve 43a is composed of three types of flow rate regulating valves having three inflow ports.
 低温側三方弁43aにおける流入出口の一つは、迂回流路42を介して、開閉弁43bの流出口に接続されている。低温側三方弁43aにおける他の流入出口は、迂回流路42を介して、低温側ポンプ41の吸入口側に接続されている。そして、低温側三方弁43aの残りの流入出口には、バッテリ接続流路44の一端側が接続されている。 One of the inflow outlets in the low temperature side three-way valve 43a is connected to the outlet of the on-off valve 43b via the bypass flow path 42. The other inflow port of the low temperature side three-way valve 43a is connected to the suction port side of the low temperature side pump 41 via the bypass flow path 42. Then, one end side of the battery connection flow path 44 is connected to the remaining inflow port of the low temperature side three-way valve 43a.
 低温側三方弁43aは、流入口から流入した熱媒体の内、一方の流出口側へ流出させる熱媒体流量と、他方の流出口側へ流出させる熱媒体流量との流量比を連続的に調整できる。従って、低温側三方弁43aは、その動作によって低温側熱媒体回路40における流路構成を切り替えることができ、低温側切替部43の一部を構成する。 The low temperature side three-way valve 43a continuously adjusts the flow rate ratio of the flow rate of the heat medium flowing out to one outlet side and the flow rate of the heat medium flowing out to the other outlet side of the heat medium flowing in from the inflow port. it can. Therefore, the low temperature side three-way valve 43a can switch the flow path configuration in the low temperature side heat medium circuit 40 by its operation, and constitutes a part of the low temperature side switching unit 43.
 そして、低温側三方弁43aの一つの流入出口は、バッテリ接続流路44を介して、バッテリ45の熱媒体通路45aに接続されている。ここで、バッテリ45は、複数の電池セルを電気的に直列的あるいは並列的に接続することによって形成された組電池である。電池セルは、充放電可能な二次電池(本実施形態では、リチウムイオン電池)である。バッテリ45は、複数の電池セルを略直方体形状となるように積層配置して専用ケースに収容している。 Then, one inflow port of the low temperature side three-way valve 43a is connected to the heat medium passage 45a of the battery 45 via the battery connection passage 44. Here, the battery 45 is an assembled battery formed by electrically connecting a plurality of battery cells in series or in parallel. The battery cell is a rechargeable secondary battery (in this embodiment, a lithium ion battery). The battery 45 is housed in a special case by stacking a plurality of battery cells so as to have a substantially rectangular parallelepiped shape.
 この種の二次電池は、作動時(即ち、充放電時)に発熱する。二次電池は、低温になると化学反応が進行しにくく出力が低下しやすい。更に、二次電池は、高温になると劣化が進行しやすい。この為、二次電池の温度は、二次電池の充放電容量を充分に活用することのできる適切な温度範囲内(本実施形態では、15℃以上、かつ、55℃以下)に維持されていることが望ましい。 This type of secondary battery generates heat during operation (that is, during charging / discharging). When the temperature of a secondary battery becomes low, the chemical reaction does not easily proceed and the output tends to decrease. Further, the secondary battery tends to deteriorate at a high temperature. Therefore, the temperature of the secondary battery is maintained within an appropriate temperature range (in this embodiment, 15 ° C. or higher and 55 ° C. or lower) in which the charge / discharge capacity of the secondary battery can be fully utilized. It is desirable to be there.
 そこで、バッテリ45の専用ケースの内部には、熱媒体を流通させる熱媒体通路45aが形成されている。熱媒体通路45aは、専用ケースの内部で複数の通路を並列的に接続した構成になっている。これにより、熱媒体通路45aは、全ての電池セルの有する熱を均等に吸熱することができる為、全ての電池セルについて均等に冷却可能な構成になっている。バッテリ45は冷却対象物の一例である。 Therefore, a heat medium passage 45a for circulating the heat medium is formed inside the special case of the battery 45. The heat medium passage 45a has a configuration in which a plurality of passages are connected in parallel inside a special case. As a result, the heat medium passage 45a can uniformly absorb the heat of all the battery cells, so that all the battery cells can be cooled evenly. The battery 45 is an example of an object to be cooled.
 そして、バッテリ45における熱媒体通路45aの他端側は、バッテリ接続流路44を介して、低温側ポンプ41の吐出口と開閉弁43bの流入口を接続する低温側熱媒体流路40aに接続されている。 The other end of the heat medium passage 45a in the battery 45 is connected to the low temperature side heat medium flow path 40a that connects the discharge port of the low temperature side pump 41 and the inflow port of the on-off valve 43b via the battery connection flow path 44. Has been done.
 従って、低温側熱媒体回路40によれば、低温側切替部43の動作を制御することで、チラー15で冷却された熱媒体を、バッテリ45の熱媒体通路45aを通過させることができる。これにより、車両用空調装置1は、バッテリ45を適切に冷却できる。 Therefore, according to the low temperature side heat medium circuit 40, by controlling the operation of the low temperature side switching unit 43, the heat medium cooled by the chiller 15 can be passed through the heat medium passage 45a of the battery 45. As a result, the vehicle air conditioner 1 can appropriately cool the battery 45.
 続いて、車両用空調装置1における機器側熱媒体回路50について説明する。機器側熱媒体回路50は、電気自動車に搭載された発熱機器51に生じる熱を活用する為の熱媒体回路である。機器側熱媒体回路50は、低温側熱媒体回路40の構成の一部を兼用して構成されている。機器側熱媒体回路50の熱媒体としては、上述した低温側熱媒体回路40等と同様の熱媒体を採用できる。 Next, the device-side heat medium circuit 50 in the vehicle air conditioner 1 will be described. The device-side heat medium circuit 50 is a heat medium circuit for utilizing the heat generated in the heat generating device 51 mounted on the electric vehicle. The equipment side heat medium circuit 50 is configured to also serve as a part of the configuration of the low temperature side heat medium circuit 40. As the heat medium of the device side heat medium circuit 50, the same heat medium as the low temperature side heat medium circuit 40 described above can be adopted.
 機器側熱媒体回路50は、機器側熱媒体流路50aと、発熱機器51と、機器側ポンプ52と、機器側三方弁53と、バイパス流路54とを有している。図1に示すように、機器側熱媒体流路50aの一端部は、複合型熱交換器21における吸熱部21bの熱媒体入口側の低温側熱媒体流路40aに接続されている。機器側熱媒体流路50aの他端部は、第2リザーブタンク29の流出口側の低温側熱媒体流路40aに対して接続されている。 The device-side heat medium circuit 50 has a device-side heat medium flow path 50a, a heat-generating device 51, a device-side pump 52, a device-side three-way valve 53, and a bypass flow path 54. As shown in FIG. 1, one end of the device-side heat medium flow path 50a is connected to the low-temperature side heat medium flow path 40a on the heat medium inlet side of the endothermic portion 21b of the composite heat exchanger 21. The other end of the equipment-side heat medium flow path 50a is connected to the low-temperature side heat medium flow path 40a on the outlet side of the second reserve tank 29.
 そして、機器側熱媒体流路50aには、発熱機器51の熱媒体通路51aが配置されている。従って、発熱機器51は、複合型熱交換器21の吸熱部21bに対して並列に接続されている。 Then, the heat medium passage 51a of the heat generating device 51 is arranged in the heat medium flow path 50a on the device side. Therefore, the heat generating device 51 is connected in parallel to the heat absorbing portion 21b of the composite heat exchanger 21.
 発熱機器51は、電気自動車に搭載された車載機器の内、走行等を目的とした作動に伴って付随的に発熱する機器によって構成されている。換言すると、発熱機器51は、発熱とは異なる目的の作動によって発熱し、その発熱量の制御が困難な機器である。 The heat-generating device 51 is composed of in-vehicle devices mounted on an electric vehicle that generate heat incidentally when operated for the purpose of traveling or the like. In other words, the heat generating device 51 is a device in which heat is generated by an operation having a purpose different from that of heat generation, and it is difficult to control the amount of heat generated.
 従って、発熱機器51は、発熱を目的として作動して、任意の熱量を発生させる電気ヒータ26のような加熱装置ではない。発熱機器51としては、所謂、パワーコントロールユニット(PCU)が採用されている。 Therefore, the heat generating device 51 is not a heating device such as the electric heater 26 that operates for the purpose of heat generation and generates an arbitrary amount of heat. As the heat generating device 51, a so-called power control unit (PCU) is adopted.
 発熱機器51であるパワーコントロールユニットには、例えば、インバータ、モータジェネレータ、トランスアクスル装置等が含まれている。そして、発熱機器51の熱媒体通路51aは、熱媒体を流通させることで、それぞれの構成機器を冷却できるように形成されている。 The power control unit, which is the heat generating device 51, includes, for example, an inverter, a motor generator, a transaxle device, and the like. The heat medium passage 51a of the heat generating device 51 is formed so that the respective constituent devices can be cooled by circulating the heat medium.
 インバータは、直流電流を交流電流に変換する電力変換部である。そして、モータジェネレータは、電力を供給されることによって走行用の駆動力を出力すると共に、減速時等には回生電力を発生させるものである。又、トランスアクスル装置は、トランスミッションとファイナルギア・ディファレンシャルギア(デフギア)を一体化した装置である。 The inverter is a power conversion unit that converts direct current into alternating current. Then, the motor generator outputs a driving force for traveling by being supplied with electric power, and also generates regenerative electric power at the time of deceleration or the like. The transaxle device is a device that integrates a transmission and a final gear / differential gear (diff gear).
 そして、発熱機器51の熱媒体通路51aにおける入口側には、機器側ポンプ52の吐出口が接続されている。機器側ポンプ52は、機器側熱媒体回路50の熱媒体を発熱機器51の熱媒体通路51aにおける入口側へ圧送する。機器側ポンプ52の基本的構成は、高温側ポンプ27等と同様である。 Then, the discharge port of the device-side pump 52 is connected to the inlet side of the heat-generating device 51 in the heat medium passage 51a. The device-side pump 52 pumps the heat medium of the device-side heat medium circuit 50 to the inlet side of the heat-generating device 51 in the heat medium passage 51a. The basic configuration of the equipment side pump 52 is the same as that of the high temperature side pump 27 and the like.
 図1に示すように、機器側ポンプ52の吸込口は、機器側熱媒体流路50aを介して、第1電磁弁30aの出口と第2リザーブタンク29の入口とを接続する低温側熱媒体流路40aに接続されている。 As shown in FIG. 1, the suction port of the device-side pump 52 is a low-temperature side heat medium that connects the outlet of the first solenoid valve 30a and the inlet of the second reserve tank 29 via the device-side heat medium flow path 50a. It is connected to the flow path 40a.
 そして、発熱機器51の熱媒体通路51aにおける出口側には、機器側三方弁53の流入出口の1つが接続されている。機器側三方弁53は、3つの流入出口を有する電気式の三方流量調整弁によって構成されている。 Then, one of the inflow outlets of the device-side three-way valve 53 is connected to the outlet side of the heat generating device 51 in the heat medium passage 51a. The device-side three-way valve 53 is composed of an electric three-way flow rate regulating valve having three inflow ports.
 機器側三方弁53における別の流入出口は、機器側熱媒体流路50aを介して、複合型熱交換器21の吸熱部21bにおける熱媒体入口と合流部25とを接続する低温側熱媒体流路40aに対して接続されている。従って、機器側熱媒体回路50によれば、発熱機器51を通過した熱媒体を複合型熱交換器21の吸熱部21bに供給することができる。 Another inflow port in the device-side three-way valve 53 is a low-temperature side heat medium flow that connects the heat medium inlet and the confluence 25 in the endothermic section 21b of the composite heat exchanger 21 via the device-side heat medium flow path 50a. It is connected to the road 40a. Therefore, according to the device-side heat medium circuit 50, the heat medium that has passed through the heat generating device 51 can be supplied to the endothermic section 21b of the composite heat exchanger 21.
 ここで、機器側三方弁53のさらに別の流入出口は、バイパス流路54が接続されている。バイパス流路54は、熱媒体の流れに関して、複合型熱交換器21及び第2リザーブタンク29を迂回させる為の熱媒体流路である。バイパス流路54の他端側は、機器側ポンプ52の吸込口側に接続されている。 Here, a bypass flow path 54 is connected to yet another inflow port of the device-side three-way valve 53. The bypass flow path 54 is a heat medium flow path for bypassing the composite heat exchanger 21 and the second reserve tank 29 with respect to the flow of the heat medium. The other end side of the bypass flow path 54 is connected to the suction port side of the device side pump 52.
 これにより、機器側熱媒体回路50は、機器側三方弁53の作動を制御することで、機器側熱媒体回路50における熱媒体の流れを切り替えることができる。従って、機器側三方弁53は切替部の一例である。 As a result, the device-side heat medium circuit 50 can switch the flow of the heat medium in the device-side heat medium circuit 50 by controlling the operation of the device-side three-way valve 53. Therefore, the device-side three-way valve 53 is an example of a switching unit.
 次に、車両用空調装置1を構成する室内空調ユニット60について、図3を参照して説明する。室内空調ユニット60は、車両用空調装置1において、冷凍サイクル10等によって温度調整された送風空気Wを車室内の適切な箇所へ吹き出すためのユニットである。室内空調ユニット60は、車室内最前部の計器盤(即ち、インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioner unit 60 constituting the vehicle air conditioner 1 will be described with reference to FIG. The indoor air-conditioning unit 60 is a unit for blowing out blown air W whose temperature has been adjusted by a refrigeration cycle 10 or the like to an appropriate portion in the vehicle interior in the vehicle air-conditioning device 1. The indoor air conditioning unit 60 is arranged inside the instrument panel (that is, the instrument panel) at the frontmost part of the vehicle interior.
 室内空調ユニット60は、送風空気Wの空気通路を形成するケーシング61を有している。ケーシング61の内部に形成された空気通路には、送風機62、室内蒸発器16、ヒータコア22等が配置されている。ケーシング61は、或る程度の弾性を有し、強度的にも優れた樹脂(具体的には、ポリプロピレン)にて成形されている。 The indoor air conditioning unit 60 has a casing 61 that forms an air passage for the blown air W. A blower 62, an indoor evaporator 16, a heater core 22, and the like are arranged in an air passage formed inside the casing 61. The casing 61 is made of a resin (specifically, polypropylene) having a certain degree of elasticity and excellent strength.
 図3に示すように、ケーシング61の送風空気流れ最上流側には、内外気切替装置63が配置されている。内外気切替装置63は、ケーシング61内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。内外気切替装置63の駆動用の電動アクチュエータは、制御装置70から出力される制御信号によって、その作動が制御される。 As shown in FIG. 3, an inside / outside air switching device 63 is arranged on the most upstream side of the blast air flow of the casing 61. The inside / outside air switching device 63 switches and introduces the inside air (vehicle interior air) and the outside air (vehicle interior outside air) into the casing 61. The operation of the electric actuator for driving the inside / outside air switching device 63 is controlled by the control signal output from the control device 70.
 内外気切替装置63の送風空気流れ下流側には、送風機62が配置されている。送風機62は、遠心多翼ファンを電動モータにて駆動する電動送風機によって構成されている。送風機62は、内外気切替装置63を介して吸入した空気を車室内へ向けて送風する。送風機62は、制御装置70から出力される制御電圧によって、回転数(即ち、送風能力)が制御される。 A blower 62 is arranged on the downstream side of the blower air flow of the inside / outside air switching device 63. The blower 62 is composed of an electric blower that drives a centrifugal multi-blade fan with an electric motor. The blower 62 blows the air sucked through the inside / outside air switching device 63 toward the vehicle interior. The rotation speed (that is, the blowing capacity) of the blower 62 is controlled by the control voltage output from the control device 70.
 送風機62の送風空気流れ下流側には、室内蒸発器16及びヒータコア22が、送風空気Wの流れに対して、この順に配置されている。つまり、室内蒸発器16は、ヒータコア22よりも送風空気流れ上流側に配置されている。 On the downstream side of the blower air flow of the blower 62, the indoor evaporator 16 and the heater core 22 are arranged in this order with respect to the flow of the blower air W. That is, the indoor evaporator 16 is arranged on the upstream side of the blown air flow with respect to the heater core 22.
 又、ケーシング61内には、冷風バイパス通路65が形成されている。冷風バイパス通路65は、室内蒸発器16を通過した送風空気Wを、ヒータコア22を迂回させて下流側へ流す空気通路である。 Further, a cold air bypass passage 65 is formed in the casing 61. The cold air bypass passage 65 is an air passage that allows the blown air W that has passed through the indoor evaporator 16 to bypass the heater core 22 and flow to the downstream side.
 室内蒸発器16の送風空気流れ下流側であって、かつ、ヒータコア22の送風空気流れ上流側には、エアミックスドア64が配置されている。エアミックスドア64は、室内蒸発器16を通過後の送風空気Wのうち、ヒータコア22を通過させる風量と冷風バイパス通路65を通過させる風量との風量割合を調整する。エアミックスドア駆動用の電動アクチュエータは、制御装置70から出力される制御信号により、その作動が制御される。 The air mix door 64 is arranged on the downstream side of the blast air flow of the indoor evaporator 16 and on the upstream side of the blast air flow of the heater core 22. The air mix door 64 adjusts the air volume ratio between the air volume passing through the heater core 22 and the air volume passing through the cold air bypass passage 65 in the blown air W after passing through the indoor evaporator 16. The operation of the electric actuator for driving the air mix door is controlled by a control signal output from the control device 70.
 ヒータコア22の送風空気流れ下流側には、混合空間66が設けられている。混合空間66では、ヒータコア22にて加熱された送風空気Wと冷風バイパス通路65を通過してヒータコア22にて加熱されていない送風空気Wとが混合される。 A mixing space 66 is provided on the downstream side of the blown air flow of the heater core 22. In the mixing space 66, the blown air W heated by the heater core 22 and the blown air W that has passed through the cold air bypass passage 65 and is not heated by the heater core 22 are mixed.
 更に、ケーシング61の送風空気流れ最下流部には、混合空間66にて混合された送風空気(空調風)を車室内へ吹き出す複数の開口穴が配置されている。そして、複数の開口穴は、フェイス開口穴、フット開口穴、及びデフロスタ開口穴(いずれも図示せず)を含んでいる。 Further, at the most downstream portion of the blown air flow of the casing 61, a plurality of opening holes for blowing the blown air (air-conditioned air) mixed in the mixing space 66 into the vehicle interior are arranged. The plurality of opening holes include a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown).
 フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面に配置された窓ガラスの内側面に向けて空調風を吹き出すための開口穴である。 The face opening hole is an opening hole for blowing air-conditioning air toward the upper body of the occupant in the passenger compartment. The foot opening hole is an opening hole for blowing air-conditioning air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing air conditioning air toward the inner surface of the window glass arranged on the front surface of the vehicle.
 これらの開口穴の上流側には、図示しない吹出モード切替ドアが配置されている。吹出モード切替ドアは、各開口穴を開閉することによって、空調風を吹き出す開口穴を切り替える。吹出モード切替ドア駆動用の電動アクチュエータは、制御装置70から出力される制御信号によって、その作動が制御される。 An outlet mode switching door (not shown) is arranged on the upstream side of these opening holes. The blowout mode switching door switches the opening holes for blowing out the conditioned air by opening and closing each opening hole. The operation of the electric actuator for driving the blowout mode switching door is controlled by a control signal output from the control device 70.
 次に、第1実施形態に係る車両用空調装置1の制御系について、図4を参照して説明する。制御装置70は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。 Next, the control system of the vehicle air conditioner 1 according to the first embodiment will be described with reference to FIG. The control device 70 is composed of a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
 そして、制御装置70は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器の作動を制御する。制御装置70は、制御部の一例である。 Then, the control device 70 performs various calculations and processes based on the control program stored in the ROM, and controls the operation of various controlled target devices connected to the output side thereof. The control device 70 is an example of a control unit.
 制御対象機器には、圧縮機11と、第1膨張弁14aと、第2膨張弁14bと、電気ヒータ26と、高温側ポンプ27と、第1電磁弁30aと、第2電磁弁30bと、シャッター装置31が含まれている。更に、制御対象機器には、低温側ポンプ41と、低温側三方弁43aと、開閉弁43bと、機器側ポンプ52と、機器側三方弁53と、送風機62が含まれている。 The devices to be controlled include a compressor 11, a first expansion valve 14a, a second expansion valve 14b, an electric heater 26, a high temperature side pump 27, a first solenoid valve 30a, a second solenoid valve 30b, and the like. A shutter device 31 is included. Further, the equipment to be controlled includes a low temperature side pump 41, a low temperature side three-way valve 43a, an on-off valve 43b, an equipment side pump 52, an equipment side three-way valve 53, and a blower 62.
 図4に示すように、制御装置70の入力側には、空調制御用のセンサ群が接続されている。空調制御用のセンサ群は、内気温センサ72a、外気温センサ72b、日射センサ72c、高圧センサ72d、蒸発器温度センサ72e、冷媒圧力センサ72f、空調風温度センサ72g、バッテリ温度センサ72hを含んでいる。制御装置70には、これらの空
調制御用のセンサ群の検出信号が入力される。
As shown in FIG. 4, a sensor group for air conditioning control is connected to the input side of the control device 70. The sensor group for air conditioning control includes an inside temperature sensor 72a, an outside temperature sensor 72b, a solar radiation sensor 72c, a high pressure sensor 72d, an evaporator temperature sensor 72e, a refrigerant pressure sensor 72f, an air conditioning air temperature sensor 72g, and a battery temperature sensor 72h. There is. The detection signals of these sensors for air conditioning control are input to the control device 70.
 内気温センサ72aは、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ72bは、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ72cは、車室内へ照射される日射量Asを検出する日射量検出部である。高圧センサ72dは、圧縮機11の吐出口側から第1膨張弁14a或いは第2膨張弁14bの入口側へ至る冷媒流路の高圧冷媒圧力Pdを検出する冷媒圧力検出部である。 The internal air temperature sensor 72a is an internal air temperature detection unit that detects the vehicle interior temperature (internal air temperature) Tr. The outside air temperature sensor 72b is an outside air temperature detection unit that detects the outside air temperature (outside air temperature) Tam. The solar radiation sensor 72c is a solar radiation amount detection unit that detects the solar radiation amount As emitted into the vehicle interior. The high-pressure sensor 72d is a refrigerant pressure detecting unit that detects the high-pressure refrigerant pressure Pd of the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 14a or the second expansion valve 14b.
 蒸発器温度センサ72eは、室内蒸発器16における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。冷媒圧力センサ72fは、チラー15の冷媒出口側の冷媒流路における冷媒圧力を検出する冷媒圧力検出部である。空調風温度センサ72gは、車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The evaporator temperature sensor 72e is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16. The refrigerant pressure sensor 72f is a refrigerant pressure detecting unit that detects the refrigerant pressure in the refrigerant flow path on the refrigerant outlet side of the chiller 15. The air-conditioning air temperature sensor 72g is an air-conditioning air temperature detecting unit that detects the air-conditioned air temperature TAV blown into the vehicle interior.
 そして、バッテリ温度センサ72hは、バッテリ45の温度を検出するバッテリ温度検出部である。バッテリ温度センサ72hは、例えば、バッテリ45を構成する各電池セルの温度を検出する。 The battery temperature sensor 72h is a battery temperature detection unit that detects the temperature of the battery 45. The battery temperature sensor 72h detects, for example, the temperature of each battery cell constituting the battery 45.
 又、制御装置70の入力側には、高温側熱媒体回路20、低温側熱媒体回路40、機器側熱媒体回路50における熱媒体の温度を検出する為に、複数の熱媒体温度センサが接続されている。複数の熱媒体温度センサには、第1熱媒体温度センサ73a~第5熱媒体温度センサ73eが含まれている。 Further, a plurality of heat medium temperature sensors are connected to the input side of the control device 70 in order to detect the temperature of the heat medium in the high temperature side heat medium circuit 20, the low temperature side heat medium circuit 40, and the device side heat medium circuit 50. Has been done. The plurality of heat medium temperature sensors include a first heat medium temperature sensor 73a to a fifth heat medium temperature sensor 73e.
 第1熱媒体温度センサ73aは、共通流路23が接続された分岐部24の入口部分に配置されており、共通流路23から流出する熱媒体の温度を検出する。第2熱媒体温度センサ73bは、ヒータコア22の流出口部分に配置されており、ヒータコア22を通過する熱媒体の温度を検出する。 The first heat medium temperature sensor 73a is arranged at the inlet portion of the branch portion 24 to which the common flow path 23 is connected, and detects the temperature of the heat medium flowing out from the common flow path 23. The second heat medium temperature sensor 73b is arranged at the outlet portion of the heater core 22 and detects the temperature of the heat medium passing through the heater core 22.
 第3熱媒体温度センサ73cは、複合型熱交換器21における吸熱部21bの熱媒体出口部分に配置されており、複合型熱交換器21の吸熱部21bを通過する熱媒体の温度を検出する。第3熱媒体温度センサ73cは検出部の一例であり、複合型熱交換器21の吸熱部21bから流出する熱媒体の温度は、特定物理量の一例である。 The third heat medium temperature sensor 73c is arranged at the heat medium outlet portion of the endothermic portion 21b of the composite heat exchanger 21 and detects the temperature of the heat medium passing through the heat absorbing portion 21b of the composite heat exchanger 21. .. The third heat medium temperature sensor 73c is an example of a detection unit, and the temperature of the heat medium flowing out from the endothermic unit 21b of the composite heat exchanger 21 is an example of a specific physical quantity.
 第4熱媒体温度センサ73dは、チラー15における熱媒体通路の流入口部分に配置されており、チラー15に流入する熱媒体の温度を検出する。第5熱媒体温度センサ73eは、発熱機器51の熱媒体通路51aにおける流出口部分に配置されており、発熱機器51の熱媒体通路51aから流出する熱媒体の温度を検出する。 The fourth heat medium temperature sensor 73d is arranged at the inflow port portion of the heat medium passage in the chiller 15 and detects the temperature of the heat medium flowing into the chiller 15. The fifth heat medium temperature sensor 73e is arranged at the outlet portion of the heat medium passage 51a of the heat generating device 51, and detects the temperature of the heat medium flowing out from the heat medium passage 51a of the heat generating device 51.
 車両用空調装置1は、第1熱媒体温度センサ73a~第5熱媒体温度センサ73eの検出結果を参照して、高温側熱媒体回路20、低温側熱媒体回路40、機器側熱媒体回路50における熱媒体の流れを切り替える。これにより、車両用空調装置1は、熱媒体を用いて、車両における熱を管理して有効に活用することができる。 The vehicle air conditioner 1 refers to the detection results of the first heat medium temperature sensor 73a to the fifth heat medium temperature sensor 73e, and refers to the high temperature side heat medium circuit 20, the low temperature side heat medium circuit 40, and the device side heat medium circuit 50. Switch the flow of heat medium in. As a result, the vehicle air conditioner 1 can manage and effectively utilize the heat in the vehicle by using the heat medium.
 更に、制御装置70の入力側には、操作パネル71が接続されている。操作パネル71には、複数の操作スイッチが配置されている。従って、制御装置70には、この複数の操作スイッチからの操作信号が入力される。操作パネル71における各種操作スイッチとしては、車室内の目標温度Tsetを設定する為の温度設定スイッチ等が含まれている。 Further, an operation panel 71 is connected to the input side of the control device 70. A plurality of operation switches are arranged on the operation panel 71. Therefore, operation signals from the plurality of operation switches are input to the control device 70. The various operation switches on the operation panel 71 include a temperature setting switch for setting a target temperature Tset in the vehicle interior.
 尚、制御装置70では、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されているが、それぞれの制御対象機器の作動を制御する構成(ハードウェア及びソフトウェア)がそれぞれの制御対象機器の作動を制御する制御部を構成している。 In the control device 70, a control unit that controls various control target devices connected to the output side is integrally configured, but a configuration (hardware and software) that controls the operation of each control target device is provided. It constitutes a control unit that controls the operation of each controlled device.
 例えば、制御装置70のうち、複合型熱交換器21にて発熱機器51に生じた熱を外気OAに放熱する必要があるか否かを判定する構成は、放熱要否判定部70aである。制御装置70の内、複合型熱交換器21における吸熱部21bの除霜が必要であるか否かを判定する構成は、除霜判定部70bである。 For example, in the control device 70, the configuration for determining whether or not it is necessary to dissipate the heat generated in the heat generating device 51 by the composite heat exchanger 21 to the outside air OA is the heat dissipation necessity determination unit 70a. Among the control devices 70, the configuration for determining whether or not the endothermic unit 21b in the composite heat exchanger 21 needs to be defrosted is the defrost determination unit 70b.
 そして、制御装置70の内、複合型熱交換器21の除霜の際に、熱媒体との熱交換器によって発熱機器51が結露する結露条件を満たすか否かを判定する構成は、機器結露判定部70cである。 Then, in the control device 70, when the composite heat exchanger 21 is defrosted, the configuration for determining whether or not the dew condensation condition for the heat generating device 51 to condense due to the heat exchanger with the heat medium is set as the device dew condensation. The determination unit 70c.
 制御装置70の内、複合型熱交換器21の除霜が完了したか否かを判定する構成は、除霜完了判定部70dである。又、制御装置70の内、複合型熱交換器21の除霜動作時において、バッテリ45を冷却する必要があるか否かを判定する構成は、冷却要否判定部70eである。 Among the control devices 70, the configuration for determining whether or not the defrosting of the composite heat exchanger 21 has been completed is the defrosting completion determination unit 70d. Further, among the control devices 70, the configuration for determining whether or not the battery 45 needs to be cooled during the defrosting operation of the composite heat exchanger 21 is the cooling necessity determination unit 70e.
 又、制御装置70の内、複合型熱交換器21の除霜に関する動作制御を行う構成は、除霜動作制御部75aである。後述するステップS1~ステップS9を実行する制御装置70は、除霜動作制御部75aである。 Further, among the control devices 70, the configuration that controls the operation of the composite heat exchanger 21 regarding defrosting is the defrosting operation control unit 75a. The control device 70 that executes steps S1 to S9, which will be described later, is a defrosting operation control unit 75a.
 そして、制御装置70の内、複合型熱交換器21の除霜からの復帰に関する動作制御を行う構成は、復帰動作制御部75bである。後述するステップS10~ステップS12を実行する制御装置70は、復帰動作制御部75bである。 Then, among the control devices 70, the configuration for performing operation control regarding the recovery from defrosting of the composite heat exchanger 21 is the recovery operation control unit 75b. The control device 70 that executes steps S10 to S12, which will be described later, is a return operation control unit 75b.
 続いて、第1実施形態における車両用空調装置1の作動について説明する。上述したように、第1実施形態に係る車両用空調装置1では、複数の運転モードから適宜運転モードを切り替えることによって、車室内の空調や、発熱機器51及び、バッテリ45等の温度調整を実現することができる。 Subsequently, the operation of the vehicle air conditioner 1 in the first embodiment will be described. As described above, in the vehicle air conditioner 1 according to the first embodiment, air conditioning in the vehicle interior and temperature adjustment of the heat generating device 51, the battery 45, etc. are realized by appropriately switching the operation mode from the plurality of operation modes. can do.
 具体的に、車両用空調装置1における複数の運転モードには、冷房冷却モード、除湿暖房モード、暖房モードが含まれており、暖房モードには、暖房蓄熱モード、暖房除霜モードが含まれている。以下、各運転モードについて説明する。 Specifically, the plurality of operation modes in the vehicle air conditioner 1 include a cooling cooling mode, a dehumidifying heating mode, and a heating mode, and the heating mode includes a heating heat storage mode and a heating defrost mode. There is. Hereinafter, each operation mode will be described.
 (a)冷房冷却モード
 冷房冷却モードは、車室内の冷房を行うとともに、バッテリ45の冷却を行う運転モードである。冷房冷却モードでは、制御装置70が、冷凍サイクル10の圧縮機11を作動させる。更に、制御装置70は、第1膨張弁14a及び第2膨張弁14bを、冷媒減圧作用を発揮する絞り状態とする。
(A) Cooling / Cooling Mode The cooling / cooling mode is an operation mode in which the vehicle interior is cooled and the battery 45 is cooled. In the cooling cooling mode, the control device 70 operates the compressor 11 of the refrigeration cycle 10. Further, the control device 70 puts the first expansion valve 14a and the second expansion valve 14b in a throttled state in which the refrigerant depressurizing action is exerted.
 又、制御装置70は、高温側熱媒体回路20の高温側ポンプ27を作動させる。更に、制御装置70は、高温側切替部30の第1電磁弁30aを全開状態とし、第2電磁弁30bを全閉状態とする。 Further, the control device 70 operates the high temperature side pump 27 of the high temperature side heat medium circuit 20. Further, the control device 70 sets the first solenoid valve 30a of the high temperature side switching unit 30 in the fully open state and the second solenoid valve 30b in the fully closed state.
 そして、制御装置70は、低温側熱媒体回路40の低温側ポンプ41を作動させる。制御装置70は、低温側切替部43の開閉弁43bを全閉状態にすると共に、低温側三方弁43aの作動を制御して、チラー15の熱媒体通路から流出した熱媒体をバッテリ45の熱媒体通路45aに流入させる。 Then, the control device 70 operates the low temperature side pump 41 of the low temperature side heat medium circuit 40. The control device 70 closes the on-off valve 43b of the low temperature side switching unit 43 in a fully closed state, controls the operation of the low temperature side three-way valve 43a, and heats the heat medium flowing out from the heat medium passage of the chiller 15 to the heat of the battery 45. It flows into the medium passage 45a.
 又、制御装置70は、機器側熱媒体回路50の機器側ポンプ52を作動させる。冷房冷却モードにおいて、制御装置70は、発熱機器51の温度が適正な温度範囲内に維持されるように、機器側三方弁53の作動を制御する。 Further, the control device 70 operates the device-side pump 52 of the device-side heat medium circuit 50. In the cooling / cooling mode, the control device 70 controls the operation of the device-side three-way valve 53 so that the temperature of the heating device 51 is maintained within an appropriate temperature range.
 具体的には、発熱機器51の温度が上昇した場合、制御装置70は、複合型熱交換器21側へ流出させる熱媒体流量を増加させるように、機器側三方弁53の作動を制御する。これにより、機器側熱媒体回路50を流通する熱媒体を介して、発熱機器51に生じた熱を複合型熱交換器21から外気OAへ放熱することができ、発熱機器51の温度を低下させることができる。 Specifically, when the temperature of the heat generating device 51 rises, the control device 70 controls the operation of the device side three-way valve 53 so as to increase the flow rate of the heat medium flowing out to the composite heat exchanger 21 side. As a result, the heat generated in the heat generating device 51 can be dissipated from the composite heat exchanger 21 to the outside air OA via the heat medium flowing through the device side heat medium circuit 50, and the temperature of the heat generating device 51 is lowered. be able to.
 一方、発熱機器51の温度が低下した場合は、制御装置70は、バイパス流路54側へ流出させる熱媒体流量を増加させるように、機器側三方弁53の作動を制御する。これにより、発熱機器51の熱媒体通路51aから流出した熱媒体を、バイパス流路54を介して、再び機器側ポンプ52の吸入口側へ戻すことができる。従って、発熱機器51に生じた熱を機器側熱媒体回路50に蓄熱すると共に、発熱機器51の自己発熱によって、発熱機器51を暖機することができる。 On the other hand, when the temperature of the heating device 51 drops, the control device 70 controls the operation of the device-side three-way valve 53 so as to increase the flow rate of the heat medium flowing out to the bypass flow path 54 side. As a result, the heat medium flowing out of the heat medium passage 51a of the heat generating device 51 can be returned to the suction port side of the device side pump 52 again via the bypass flow path 54. Therefore, the heat generated in the heat generating device 51 can be stored in the heat medium circuit 50 on the device side, and the heat generating device 51 can be warmed up by the self-heating of the heat generating device 51.
 そして、制御装置70は、室内空調ユニット60の送風機62を作動させる。更に、制御装置70は、室内蒸発器16を通過した送風空気Wの全風量が冷風バイパス通路65を通過するように、エアミックスドア64を変位させる。 Then, the control device 70 operates the blower 62 of the indoor air conditioning unit 60. Further, the control device 70 displaces the air mix door 64 so that the total air volume of the blown air W that has passed through the indoor evaporator 16 passes through the cold air bypass passage 65.
 従って、冷房冷却モードの冷凍サイクル10では、圧縮機11から吐出された高圧冷媒が、水冷媒熱交換器12の冷媒通路へ流入する。水冷媒熱交換器12において、冷媒通路へ流入した高圧冷媒は、熱媒体通路を流通する熱媒体へ放熱して過冷却液相冷媒となる。これにより、熱媒体通路を流通する熱媒体が加熱される。 Therefore, in the refrigerating cycle 10 in the cooling / cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, the high-pressure refrigerant flowing into the refrigerant passage dissipates heat to the heat medium flowing through the heat medium passage to become a supercooled liquid-phase refrigerant. As a result, the heat medium flowing through the heat medium passage is heated.
 水冷媒熱交換器12の冷媒通路から流出した過冷却液相冷媒の流れは、冷媒分岐部13aにて分岐される。冷媒分岐部13aにて分岐された一方の冷媒は、第1膨張弁14aにて減圧される。第1膨張弁14aにて減圧された低圧冷媒は、チラー15の冷媒通路へ流入する。 The flow of the supercooled liquid phase refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 is branched at the refrigerant branching portion 13a. One of the refrigerants branched by the refrigerant branching portion 13a is depressurized by the first expansion valve 14a. The low-pressure refrigerant decompressed by the first expansion valve 14a flows into the refrigerant passage of the chiller 15.
 チラー15において、冷媒通路へ流入した低圧冷媒は、熱媒体通路を流通する熱媒体から吸熱して蒸発する。これにより、熱媒体通路を流通する熱媒体が冷却される。チラー15の冷媒通路から流出した冷媒は、冷媒合流部13bの一方の流入口へ流入する。 In the chiller 15, the low-pressure refrigerant flowing into the refrigerant passage absorbs heat from the heat medium flowing through the heat medium passage and evaporates. As a result, the heat medium flowing through the heat medium passage is cooled. The refrigerant flowing out of the refrigerant passage of the chiller 15 flows into one of the inlets of the refrigerant merging portion 13b.
 冷媒分岐部13aにて分岐された他方の冷媒は、第2膨張弁14bにて減圧される。第2膨張弁14bにて減圧された低圧冷媒は、室内蒸発器16へ流入する。室内蒸発器16へ流入した低圧冷媒は、送風機62から送風された送風空気Wから吸熱して蒸発する。これにより、送風空気Wが冷却される。 The other refrigerant branched at the refrigerant branching portion 13a is depressurized at the second expansion valve 14b. The low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 16. The low-pressure refrigerant flowing into the indoor evaporator 16 absorbs heat from the blown air W blown from the blower 62 and evaporates. As a result, the blown air W is cooled.
 室内蒸発器16から流出した冷媒は、蒸発圧力調整弁17を介して、冷媒合流部13bの他方の流入口へ流入する。冷媒合流部13bから流出した冷媒は、圧縮機11に吸入されて再び圧縮される。 The refrigerant flowing out of the indoor evaporator 16 flows into the other inflow port of the refrigerant confluence portion 13b via the evaporation pressure adjusting valve 17. The refrigerant flowing out from the refrigerant merging portion 13b is sucked into the compressor 11 and compressed again.
 又、冷房冷却モードの高温側熱媒体回路20では、高温側ポンプ27から圧送された熱媒体が、水冷媒熱交換器12の熱媒体通路へ流入して加熱される。水冷媒熱交換器12の熱媒体通路から流出した熱媒体は、電気ヒータ26、分岐部24及び高温側切替部30の第1電磁弁30aを介して、複合型熱交換器21の放熱部21aへ流入する。 Further, in the high temperature side heat medium circuit 20 in the cooling / cooling mode, the heat medium pumped from the high temperature side pump 27 flows into the heat medium passage of the water refrigerant heat exchanger 12 and is heated. The heat medium flowing out from the heat medium passage of the water refrigerant heat exchanger 12 passes through the electric heater 26, the branch portion 24, and the first electromagnetic valve 30a of the high temperature side switching portion 30, and the heat radiating portion 21a of the composite heat exchanger 21. Inflow to.
 複合型熱交換器21の放熱部21aにおいて、熱媒体は、シャッター装置31を介して複合型熱交換器21の放熱部21aを通過する外気OAに放熱する。これにより、高温側熱媒体回路20の熱媒体が冷却される。複合型熱交換器21の放熱部21aから流出した熱媒体は、合流部25及び第1リザーブタンク28を介して、高温側ポンプ27へ吸入されて再び圧送される。 In the heat radiating section 21a of the composite heat exchanger 21, the heat medium dissipates heat to the outside air OA passing through the heat radiating section 21a of the composite heat exchanger 21 via the shutter device 31. As a result, the heat medium of the high temperature side heat medium circuit 20 is cooled. The heat medium flowing out of the heat radiating portion 21a of the composite heat exchanger 21 is sucked into the high temperature side pump 27 via the merging portion 25 and the first reserve tank 28 and pumped again.
 又、冷房冷却モードの低温側熱媒体回路40では、低温側ポンプ41から圧送された熱媒体が、チラー15の熱媒体通路へ流入して冷却される。チラー15の熱媒体通路から流出した熱媒体は、バッテリ接続流路44を介して、バッテリ45の熱媒体通路45aへ流入する。 Further, in the low temperature side heat medium circuit 40 in the cooling cooling mode, the heat medium pumped from the low temperature side pump 41 flows into the heat medium passage of the chiller 15 and is cooled. The heat medium flowing out of the heat medium passage of the chiller 15 flows into the heat medium passage 45a of the battery 45 via the battery connection flow path 44.
 バッテリ45の熱媒体通路45aへ流入した熱媒体は、バッテリ45の電池セルから吸熱して温度上昇する。これにより、バッテリ45が冷却される。バッテリ45の熱媒体通路45aから流出した熱媒体は、低温側三方弁43a及び迂回流路42を介して、低温側ポンプ41へ吸入されて再び圧送される。 The heat medium flowing into the heat medium passage 45a of the battery 45 absorbs heat from the battery cell of the battery 45 and rises in temperature. As a result, the battery 45 is cooled. The heat medium flowing out of the heat medium passage 45a of the battery 45 is sucked into the low temperature side pump 41 via the low temperature side three-way valve 43a and the bypass flow path 42, and is pumped again.
 そして、冷房冷却モードの室内空調ユニット60では、室内蒸発器16を通過して冷却された送風空気Wが車室内へ送風される。これにより、車室内の冷房が実現される。 Then, in the indoor air conditioning unit 60 in the cooling / cooling mode, the blown air W that has passed through the indoor evaporator 16 and is cooled is blown into the vehicle interior. As a result, cooling of the passenger compartment is realized.
 冷房冷却モードでは、上記の如く、車室内の冷房及びバッテリ45の冷却が実現される。更に、冷房冷却モードにおいて、バッテリ45の冷却が不要となる運転条件では、制御装置70が第1膨張弁14aを全閉状態として単独冷房モードを実行してもよい。又、冷房冷却モードにおいて車室内の冷房が不要となる運転条件では、制御装置70が第2膨張弁14bを全閉状態として単独冷却モードを実行してもよい。 In the cooling / cooling mode, cooling of the vehicle interior and cooling of the battery 45 are realized as described above. Further, in the cooling / cooling mode, under the operating condition that the battery 45 does not need to be cooled, the control device 70 may execute the independent cooling mode with the first expansion valve 14a fully closed. Further, under operating conditions in which cooling of the vehicle interior is not required in the cooling cooling mode, the control device 70 may execute the independent cooling mode with the second expansion valve 14b fully closed.
 (b)除湿暖房モード
 除湿暖房モードは、車室内の除湿暖房を行う運転モードである。除湿暖房モードでは、制御装置70が、冷凍サイクル10の圧縮機11を作動させる。更に、制御装置70は、第1膨張弁14aを全閉状態とし、第2膨張弁14bを絞り状態とする。
(B) Dehumidifying and heating mode The dehumidifying and heating mode is an operation mode for dehumidifying and heating the interior of the vehicle. In the dehumidifying / heating mode, the control device 70 operates the compressor 11 of the refrigeration cycle 10. Further, the control device 70 puts the first expansion valve 14a in a fully closed state and the second expansion valve 14b in a throttled state.
 又、制御装置70は、高温側熱媒体回路20の高温側ポンプ27を作動させる。そして、制御装置70は、高温側切替部30の第1電磁弁30a及び第2電磁弁30bを、それぞれ流量調整状態とする。更に、制御装置70は、ヒータコア22から流出した熱媒体の温度が、予め定めた基準ヒータコア出口側温度以上になるように、電気ヒータ26の加熱能力を調整する。 Further, the control device 70 operates the high temperature side pump 27 of the high temperature side heat medium circuit 20. Then, the control device 70 puts the first solenoid valve 30a and the second solenoid valve 30b of the high temperature side switching unit 30 into the flow rate adjusting state, respectively. Further, the control device 70 adjusts the heating capacity of the electric heater 26 so that the temperature of the heat medium flowing out from the heater core 22 becomes equal to or higher than the predetermined reference heater core outlet side temperature.
 そして、制御装置70は、低温側熱媒体回路40における低温側ポンプ41を停止させる。 Then, the control device 70 stops the low temperature side pump 41 in the low temperature side heat medium circuit 40.
 又、制御装置70は、機器側熱媒体回路50の機器側ポンプ52を作動させる。除湿暖房モードにおいても、制御装置70は、冷房冷却モードと同様に、発熱機器51の温度が適正な温度範囲内に維持されるように、機器側三方弁53の作動を制御する。 Further, the control device 70 operates the device-side pump 52 of the device-side heat medium circuit 50. In the dehumidifying / heating mode as well, the control device 70 controls the operation of the device-side three-way valve 53 so that the temperature of the heating device 51 is maintained within an appropriate temperature range, as in the cooling / cooling mode.
 制御装置70は、室内空調ユニット60の送風機62を作動させる。更に、制御装置70は、車室内へ送風される送風空気Wの温度が目標吹出温度TAOに近づくように、エアミックスドア64を変位させる。目標吹出温度TAOは、上述したセンサ群の検出信号及び操作パネル71の操作信号を用いて算定される。 The control device 70 operates the blower 62 of the indoor air conditioning unit 60. Further, the control device 70 displaces the air mix door 64 so that the temperature of the blown air W blown into the vehicle interior approaches the target blowing temperature TAO. The target blowout temperature TAO is calculated using the detection signal of the sensor group described above and the operation signal of the operation panel 71.
 従って、除湿暖房モードの冷凍サイクル10では、圧縮機11から吐出された高圧冷媒が、水冷媒熱交換器12の冷媒通路へ流入する。水冷媒熱交換器12の冷媒通路へ流入した高圧冷媒は、熱媒体通路を流通する熱媒体へ放熱して過冷却液相冷媒となる。これにより、水冷媒熱交換器12においては、冷房冷却モードと同様に、熱媒体通路を流通する熱媒体が加熱される。 Therefore, in the refrigeration cycle 10 in the dehumidification / heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water refrigerant heat exchanger 12. The high-pressure refrigerant that has flowed into the refrigerant passage of the water-refrigerant heat exchanger 12 dissipates heat to the heat medium flowing through the heat medium passage and becomes a supercooled liquid-phase refrigerant. As a result, in the water refrigerant heat exchanger 12, the heat medium flowing through the heat medium passage is heated as in the cooling / cooling mode.
 水冷媒熱交換器12の冷媒通路から流出した過冷却液相冷媒は、冷媒分岐部13aを介して、第2膨張弁14bへ流入して減圧される。第2膨張弁14bにて減圧された低圧冷媒は、室内蒸発器16へ流入する。 The supercooled liquid-phase refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the second expansion valve 14b via the refrigerant branching portion 13a and is depressurized. The low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 16.
 室内蒸発器16へ流入した低圧冷媒は、送風機62から送風された送風空気Wから吸熱して蒸発する。これにより、室内蒸発器16へ流入した送風空気Wが冷却されて除湿される。室内蒸発器16から流出した冷媒は、蒸発圧力調整弁17及び冷媒合流部13bを介して圧縮機11に吸入されて再び圧縮される。 The low-pressure refrigerant that has flowed into the indoor evaporator 16 absorbs heat from the blown air W blown from the blower 62 and evaporates. As a result, the blown air W flowing into the indoor evaporator 16 is cooled and dehumidified. The refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the refrigerant merging portion 13b, and is compressed again.
 又、除湿暖房モードの高温側熱媒体回路20では、高温側ポンプ27から圧送された熱媒体が、水冷媒熱交換器12の熱媒体通路へ流入して加熱される。水冷媒熱交換器12の熱媒体通路から流出した熱媒体の流れは、電気ヒータ26を介して、分岐部24へ流入して分岐される。 Further, in the high temperature side heat medium circuit 20 in the dehumidifying and heating mode, the heat medium pumped from the high temperature side pump 27 flows into the heat medium passage of the water refrigerant heat exchanger 12 and is heated. The flow of the heat medium flowing out from the heat medium passage of the water refrigerant heat exchanger 12 flows into the branch portion 24 via the electric heater 26 and is branched.
 高温側熱媒体回路20において、分岐部24で分岐された一方の熱媒体は、第1電磁弁30aを介して、複合型熱交換器21の放熱部21aへ流入する。複合型熱交換器21の放熱部21aへ流入した熱媒体は、シャッター装置31を介して放熱部21aへ流入した外気OAに放熱する。これにより、高温側熱媒体回路20の熱媒体が冷却される。複合型熱交換器21の放熱部21aから流出した熱媒体は、合流部25の一方の流入口へ流入する。 In the high temperature side heat medium circuit 20, one of the heat media branched at the branch portion 24 flows into the heat dissipation portion 21a of the composite heat exchanger 21 via the first solenoid valve 30a. The heat medium that has flowed into the heat radiating section 21a of the composite heat exchanger 21 dissipates heat to the outside air OA that has flowed into the heat radiating section 21a via the shutter device 31. As a result, the heat medium of the high temperature side heat medium circuit 20 is cooled. The heat medium flowing out from the heat radiating portion 21a of the composite heat exchanger 21 flows into one inflow port of the merging portion 25.
 一方、分岐部24にて分岐された他方の熱媒体は、第2電磁弁30bを介して、ヒータコア22へ流入する。ヒータコア22へ流入した熱媒体は、室内蒸発器16にて冷却された送風空気Wの少なくとも一部に放熱する。これにより、送風空気Wの少なくとも一部が再加熱される。ヒータコア22から流出した熱媒体は、合流部25の他方の流入口へ流入する。 On the other hand, the other heat medium branched at the branch portion 24 flows into the heater core 22 via the second solenoid valve 30b. The heat medium flowing into the heater core 22 dissipates heat to at least a part of the blown air W cooled by the indoor evaporator 16. As a result, at least a part of the blown air W is reheated. The heat medium flowing out of the heater core 22 flows into the other inlet of the confluence 25.
 高温側熱媒体回路20において、合流部25から流出した熱媒体は、第1リザーブタンク28を介して、高温側ポンプ27へ吸入されて再び圧送される。 In the high temperature side heat medium circuit 20, the heat medium flowing out from the merging portion 25 is sucked into the high temperature side pump 27 via the first reserve tank 28 and pumped again.
 そして、除湿暖房モードの室内空調ユニット60では、室内蒸発器16にて除湿された送風空気Wの少なくとも一部が、ヒータコア22にて加熱される。そして、エアミックスドア64の開度調整によって、目標吹出温度TAOに近づくように温度調整された送風空気Wが車室内へ送風される。これにより、車室内の除湿暖房が実現される。 Then, in the indoor air conditioning unit 60 in the dehumidifying / heating mode, at least a part of the blown air W dehumidified by the indoor evaporator 16 is heated by the heater core 22. Then, by adjusting the opening degree of the air mix door 64, the blown air W whose temperature is adjusted so as to approach the target blowing temperature TAO is blown into the vehicle interior. As a result, dehumidifying and heating of the vehicle interior is realized.
 (c)暖房モード
 暖房モードは、車室内の暖房を行う運転モードである。車両用空調装置1は、暖房モードの具体的な運転モードとして、暖房蓄熱モード、暖房放熱モード、暖房除霜モード等の運転モードを有している。以下の説明では、先ず、暖房モードにおける通常運転モードである暖房蓄熱モードについて説明する。暖房蓄熱モードは、車室内の暖房を行うと同時に、発熱機器51に生じた熱を機器側熱媒体回路50にて蓄熱しておく運転モードである。
(C) Heating mode The heating mode is an operation mode for heating the interior of the vehicle. The vehicle air conditioner 1 has operation modes such as a heating heat storage mode, a heating heat dissipation mode, and a heating defrosting mode as specific operation modes of the heating mode. In the following description, first, the heating heat storage mode, which is the normal operation mode in the heating mode, will be described. The heating heat storage mode is an operation mode in which the heat generated in the heat generating device 51 is stored in the device side heat medium circuit 50 at the same time as heating the interior of the vehicle.
 暖房蓄熱モードでは、制御装置70が、冷凍サイクル10の圧縮機11を作動させる。更に、制御装置70は、第1膨張弁14aを絞り状態とし、第2膨張弁14bを全閉状態とする。 In the heating heat storage mode, the control device 70 operates the compressor 11 of the refrigeration cycle 10. Further, the control device 70 puts the first expansion valve 14a in the throttled state and the second expansion valve 14b in the fully closed state.
 又、制御装置70は、高温側熱媒体回路20の高温側ポンプ27を作動させる。更に、制御装置70は、高温側切替部30の第1電磁弁30aを全閉状態とし、第2電磁弁30bを全開状態とする。 Further, the control device 70 operates the high temperature side pump 27 of the high temperature side heat medium circuit 20. Further, the control device 70 sets the first solenoid valve 30a of the high temperature side switching unit 30 in a fully closed state and the second solenoid valve 30b in a fully open state.
 更に、制御装置70は、ヒータコア22から流出した熱媒体の温度が、予め定めた基準ヒータコア出口側温度以上となるように、電気ヒータ26の加熱能力を調整する。基準ヒータコア出口側温度は、ヒータコア22にて加熱された送風空気Wの温度が車室内の充分な暖房を実現できるように決定されている。この為、熱媒体の温度が基準ヒータコア出口側温度を超えている場合は、制御装置70は、電気ヒータ26に電力を供給しない。 Further, the control device 70 adjusts the heating capacity of the electric heater 26 so that the temperature of the heat medium flowing out from the heater core 22 becomes equal to or higher than the predetermined reference heater core outlet side temperature. The temperature on the outlet side of the reference heater core is determined so that the temperature of the blown air W heated by the heater core 22 can realize sufficient heating in the vehicle interior. Therefore, when the temperature of the heat medium exceeds the temperature on the outlet side of the reference heater core, the control device 70 does not supply electric power to the electric heater 26.
 そして、制御装置70は、低温側熱媒体回路40の低温側ポンプ41を作動させる。更に、制御装置70は、低温側切替部43の開閉弁43bを全開状態にすると共に、低温側三方弁43aの作動を制御して、チラー15の熱媒体通路から流出した熱媒体を複合型熱交換器21の吸熱部21bへ流入させる。 Then, the control device 70 operates the low temperature side pump 41 of the low temperature side heat medium circuit 40. Further, the control device 70 sets the on-off valve 43b of the low temperature side switching unit 43 to the fully open state, controls the operation of the low temperature side three-way valve 43a, and heats the heat medium flowing out from the heat medium passage of the chiller 15 as a composite type heat. It flows into the heat absorbing portion 21b of the exchanger 21.
 暖房蓄熱モードの機器側熱媒体回路50について、制御装置70は、機器側ポンプ52を作動させる。そして、制御装置70は、発熱機器51の熱媒体通路51aから流出した熱媒体がバイパス流路54を通過するように、機器側三方弁53の作動を制御する。この時、機器側熱媒体回路50における熱媒体は、機器側ポンプ52、発熱機器51の熱媒体通路51a、機器側三方弁53、バイパス流路54、機器側ポンプ52の順に流れ、機器側熱媒体回路50を循環する。 Regarding the device-side heat medium circuit 50 in the heating heat storage mode, the control device 70 operates the device-side pump 52. Then, the control device 70 controls the operation of the device-side three-way valve 53 so that the heat medium flowing out from the heat medium passage 51a of the heat generating device 51 passes through the bypass flow path 54. At this time, the heat medium in the device side heat medium circuit 50 flows in the order of the device side pump 52, the heat medium passage 51a of the heat generating device 51, the device side three-way valve 53, the bypass flow path 54, and the device side pump 52, and the device side heat flows. It circulates in the medium circuit 50.
 そして、制御装置70は、室内空調ユニット60の送風機62を作動させる。更に、制御装置70は、室内蒸発器16を通過した送風空気の全風量がヒータコア22を通過するように、エアミックスドア駆動用の電動アクチュエータの作動を制御する。 Then, the control device 70 operates the blower 62 of the indoor air conditioning unit 60. Further, the control device 70 controls the operation of the electric actuator for driving the air mix door so that the total amount of the blown air that has passed through the indoor evaporator 16 passes through the heater core 22.
 従って、暖房蓄熱モードの冷凍サイクル10では、圧縮機11から吐出された高圧冷媒が、水冷媒熱交換器12の冷媒通路へ流入する。水冷媒熱交換器12において、冷媒通路へ流入した高圧冷媒は、熱媒体通路を流通する熱媒体へ放熱して過冷却液相冷媒となる。これにより、水冷媒熱交換器12の熱媒体通路を流通する熱媒体が加熱される。 Therefore, in the refrigerating cycle 10 in the heating heat storage mode, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water refrigerant heat exchanger 12. In the water-refrigerant heat exchanger 12, the high-pressure refrigerant flowing into the refrigerant passage dissipates heat to the heat medium flowing through the heat medium passage to become a supercooled liquid-phase refrigerant. As a result, the heat medium flowing through the heat medium passage of the water refrigerant heat exchanger 12 is heated.
 水冷媒熱交換器12の冷媒通路から流出した過冷却液相冷媒は、冷媒分岐部13aを介して、第1膨張弁14aへ流入して減圧される。第1膨張弁14aにて減圧された低圧冷媒は、チラー15の冷媒通路へ流入する。 The supercooled liquid-phase refrigerant flowing out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the first expansion valve 14a via the refrigerant branching portion 13a and is depressurized. The low-pressure refrigerant decompressed by the first expansion valve 14a flows into the refrigerant passage of the chiller 15.
 チラー15において、冷媒通路へ流入した低圧冷媒は、熱媒体通路を流通する熱媒体から吸熱して蒸発する。これにより、低温側熱媒体回路40では、チラー15の熱媒体通路を流通する熱媒体が冷却される。チラー15の冷媒通路から流出した冷媒は、冷媒合流部13bを介して圧縮機11に吸入されて再び圧縮される。 In the chiller 15, the low-pressure refrigerant flowing into the refrigerant passage absorbs heat from the heat medium flowing through the heat medium passage and evaporates. As a result, in the low temperature side heat medium circuit 40, the heat medium flowing through the heat medium passage of the chiller 15 is cooled. The refrigerant flowing out of the refrigerant passage of the chiller 15 is sucked into the compressor 11 via the refrigerant merging portion 13b and compressed again.
 又、暖房蓄熱モードの高温側熱媒体回路20では、図5等に示すように、高温側ポンプ27から圧送された熱媒体は、水冷媒熱交換器12の熱媒体通路へ流入して加熱される。水冷媒熱交換器12の熱媒体通路から流出した熱媒体は、電気ヒータ26、分岐部24及び第2電磁弁30bを介して、ヒータコア22へ流入する。 Further, in the high temperature side heat medium circuit 20 in the heating heat storage mode, as shown in FIG. 5 and the like, the heat medium pumped from the high temperature side pump 27 flows into the heat medium passage of the water refrigerant heat exchanger 12 and is heated. To. The heat medium flowing out from the heat medium passage of the water refrigerant heat exchanger 12 flows into the heater core 22 via the electric heater 26, the branch portion 24, and the second solenoid valve 30b.
 ヒータコア22へ流入した熱媒体は、送風機62から送風された送風空気Wに放熱する。これにより、送風空気Wが加熱される。ヒータコア22から流出した熱媒体は、合流部25及び第1リザーブタンク28を介して、高温側ポンプ27へ吸入されて再び圧送される。 The heat medium flowing into the heater core 22 dissipates heat to the blown air W blown from the blower 62. As a result, the blown air W is heated. The heat medium flowing out of the heater core 22 is sucked into the high temperature side pump 27 via the merging portion 25 and the first reserve tank 28 and pumped again.
 又、暖房蓄熱モードの低温側熱媒体回路40では、図5に示すように、低温側ポンプ41から圧送された熱媒体は、チラー15の熱媒体通路へ流入して、冷媒通路を通過する低圧冷媒の蒸発に伴う吸熱作用によって冷却される。チラー15の熱媒体通路から流出した熱媒体は、低温側切替部43の開閉弁43bを介して、複合型熱交換器21の吸熱部21bへ流入する。 Further, in the low temperature side heat medium circuit 40 in the heating heat storage mode, as shown in FIG. 5, the heat medium pumped from the low temperature side pump 41 flows into the heat medium passage of the chiller 15 and passes through the refrigerant passage. It is cooled by the heat absorption action that accompanies the evaporation of the refrigerant. The heat medium flowing out of the heat medium passage of the chiller 15 flows into the heat absorbing portion 21b of the composite heat exchanger 21 via the on-off valve 43b of the low temperature side switching portion 43.
 複合型熱交換器21において、吸熱部21bへ流入した熱媒体は、放熱部21aを通過した外気OAから吸熱して温度上昇する。吸熱部21bから流出した熱媒体は、第2リザーブタンク29を介して、低温側ポンプ41へ吸入されて再び圧送される。 In the composite heat exchanger 21, the heat medium that has flowed into the heat absorbing portion 21b absorbs heat from the outside air OA that has passed through the heat radiating portion 21a and rises in temperature. The heat medium flowing out of the endothermic unit 21b is sucked into the low temperature side pump 41 via the second reserve tank 29 and pumped again.
 これにより、低温側熱媒体回路40によれば、熱媒体の循環によって、複合型熱交換器21の吸熱部21bで外気OAから吸熱した熱を、チラー15にて低圧冷媒に吸熱させることができる。この時の低温側熱媒体回路40における熱媒体の流れは、第1態様の流量構成の一例である。 As a result, according to the low temperature side heat medium circuit 40, the heat absorbed from the outside air OA by the heat absorbing portion 21b of the composite heat exchanger 21 can be absorbed by the low pressure refrigerant by the chiller 15 by the circulation of the heat medium. .. The flow of the heat medium in the low temperature side heat medium circuit 40 at this time is an example of the flow rate configuration of the first aspect.
 暖房蓄熱モードの機器側熱媒体回路50では、図5に示すように、機器側ポンプ52から圧送された熱媒体は、発熱機器51の熱媒体通路51aへ流入する。熱媒体通路51aへ流入すると、熱媒体は、発熱機器51の作動によって生じた排熱によって加熱される。 In the device-side heat medium circuit 50 in the heating heat storage mode, as shown in FIG. 5, the heat medium pumped from the device-side pump 52 flows into the heat medium passage 51a of the heat-generating device 51. When flowing into the heat medium passage 51a, the heat medium is heated by the exhaust heat generated by the operation of the heat generating device 51.
 発熱機器51の熱媒体通路51aから流出した熱媒体は、機器側三方弁53及びバイパス流路54を介して、機器側ポンプ52へ吸入されて再び圧送される。これにより、機器側熱媒体回路50を循環する熱媒体に対して、発熱機器51の排熱が蓄熱される。 The heat medium flowing out of the heat medium passage 51a of the heat generating device 51 is sucked into the device side pump 52 via the device side three-way valve 53 and the bypass flow path 54 and pumped again. As a result, the exhaust heat of the heat generating device 51 is stored in the heat medium circulating in the device side heat medium circuit 50.
 又、暖房蓄熱モードの室内空調ユニット60では、ヒータコア22を通過して加熱された送風空気Wが車室内へ送風される。これにより、車室内の暖房が実現される。 Further, in the indoor air conditioning unit 60 in the heating heat storage mode, the blown air W heated through the heater core 22 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
 暖房蓄熱モードの低温側熱媒体回路40では、複合型熱交換器21の吸熱部21bにおいて、外気OAの熱が熱媒体に対して吸熱される。外気OAから吸熱した熱媒体は、低温側熱媒体回路40を循環する過程で、チラー15に流入して、冷凍サイクル10の低圧冷媒によって吸熱される。 In the low temperature side heat medium circuit 40 in the heating heat storage mode, the heat of the outside air OA is absorbed by the heat medium in the heat absorbing portion 21b of the composite heat exchanger 21. The heat medium absorbed from the outside air OA flows into the chiller 15 in the process of circulating in the low temperature side heat medium circuit 40, and is endothermic by the low-pressure refrigerant in the refrigeration cycle 10.
 そして、チラー15で冷媒に吸熱された熱は、冷凍サイクル10によって汲み上げられて、水冷媒熱交換器12にて、高温側熱媒体回路20の熱媒体に放熱される。高温側熱媒体回路20の熱媒体は、電気ヒータ26等を介して、ヒータコア22に流入して、送風機62によって送風された送風空気Wと熱交換する。つまり、車両用空調装置1の暖房蓄熱モードによれば、車室内暖房の熱源として、外気OAを利用することができる。 Then, the heat absorbed by the refrigerant in the chiller 15 is pumped up by the refrigeration cycle 10 and dissipated to the heat medium of the high temperature side heat medium circuit 20 by the water refrigerant heat exchanger 12. The heat medium of the high temperature side heat medium circuit 20 flows into the heater core 22 via the electric heater 26 and the like, and exchanges heat with the blown air W blown by the blower 62. That is, according to the heating heat storage mode of the vehicle air conditioner 1, the outside air OA can be used as a heat source for heating the interior of the vehicle.
 上述したように、暖房モードの具体的な運転モードには、暖房放熱モードが含まれている。暖房放熱モードは、車室内の暖房を行うと同時に、発熱機器51に生じた熱を外気に放熱する運転モードである。暖房放熱モードは、暖房蓄熱モードにて発熱機器51の温度が上昇した場合に切り替えられる運転モードである。 As described above, the specific operation mode of the heating mode includes the heating / radiating mode. The heating / radiating mode is an operation mode in which the heat generated in the heat generating device 51 is radiated to the outside air at the same time as heating the interior of the vehicle. The heating heat dissipation mode is an operation mode that can be switched when the temperature of the heating device 51 rises in the heating heat storage mode.
 暖房放熱モードでは、機器側熱媒体回路50の作動が暖房蓄熱モードと異なっている。つまり、冷凍サイクル10等の作動については、基本的に暖房蓄熱モードと同様である。暖房放熱モードにおいて、制御装置70は、機器側三方弁53の作動を制御して、発熱機器51の熱媒体通路51aから流出した熱媒体を複合型熱交換器21の吸熱部21bに流入させる。 In the heating heat dissipation mode, the operation of the device side heat medium circuit 50 is different from that in the heating heat storage mode. That is, the operation of the refrigeration cycle 10 and the like is basically the same as the heating heat storage mode. In the heating / radiating mode, the control device 70 controls the operation of the device-side three-way valve 53 to allow the heat medium flowing out from the heat medium passage 51a of the heat generating device 51 to flow into the heat absorbing portion 21b of the composite heat exchanger 21.
 これにより、暖房放熱モードの熱媒体は、機器側ポンプ52、発熱機器51の熱媒体通路51a、機器側三方弁53、複合型熱交換器21の吸熱部21b、第2リザーブタンク29、機器側ポンプ52の順に流れて、機器側熱媒体回路50を循環する。 As a result, the heat medium in the heating / radiating mode is the equipment side pump 52, the heat medium passage 51a of the heat generating equipment 51, the equipment side three-way valve 53, the endothermic portion 21b of the composite heat exchanger 21, the second reserve tank 29, and the equipment side. It flows in the order of the pump 52 and circulates in the heat medium circuit 50 on the device side.
 この結果、機器側熱媒体回路50において、熱媒体は、発熱機器51の熱媒体通路51aに流入すると、発熱機器51の排熱によって加熱される。発熱機器51の熱媒体通路51aから流出した熱媒体は、複合型熱交換器21に流入して、外気OAに放熱する。 As a result, in the device side heat medium circuit 50, when the heat medium flows into the heat medium passage 51a of the heat generating device 51, it is heated by the exhaust heat of the heat generating device 51. The heat medium flowing out of the heat medium passage 51a of the heat generating device 51 flows into the composite heat exchanger 21 and dissipates heat to the outside air OA.
 従って、暖房放熱モードによれば、車室内の暖房を実現すると同時に、機器側熱媒体回路50を流通する熱媒体を介して、発熱機器51に生じた熱を複合型熱交換器21から外気OAへ放熱して、発熱機器51の温度を低下させることができる。 Therefore, according to the heating / radiating mode, the heat generated in the heat generating device 51 is transferred from the composite heat exchanger 21 to the outside air OA through the heat medium flowing through the device side heat medium circuit 50 at the same time as the heating of the vehicle interior is realized. The temperature of the heating device 51 can be lowered by dissipating heat to.
 上述したように、車両用空調装置1における暖房蓄熱モードでは、暖房熱源として外気OAを利用することができる。ここで、外気OAが低温高湿度である場合には、複合型熱交換器21にて外気OAから吸熱する際に、複合型熱交換器21の表面が着霜してしまうことが想定される。 As described above, in the heating heat storage mode in the vehicle air conditioner 1, the outside air OA can be used as the heating heat source. Here, when the outside air OA is low temperature and high humidity, it is assumed that the surface of the composite heat exchanger 21 will frost when the composite heat exchanger 21 absorbs heat from the outside air OA. ..
 複合型熱交換器21に着霜が生じてしまうと、熱媒体と外気OAの間における熱交換性能を大きく低下させてしまう為、車両用空調装置1における暖房性能の低下要因になると考えられる。 If frost is formed on the composite heat exchanger 21, the heat exchange performance between the heat medium and the outside air OA is significantly lowered, which is considered to be a factor of lowering the heating performance in the vehicle air conditioner 1.
 又、暖房蓄熱モードにおいて、複合型熱交換器21の除霜を適切なタイミングで行うことができない場合、機器側熱媒体回路50における熱媒体の温度調整に影響を及ぼすことが想定される。そして、熱媒体は発熱機器51の熱媒体通路51aを通過する為、熱媒体の温度は、発熱機器51の作動に対しても影響を及ぼすことが考えられる。 Further, in the heating heat storage mode, if the composite heat exchanger 21 cannot be defrosted at an appropriate timing, it is expected that the temperature adjustment of the heat medium in the device side heat medium circuit 50 will be affected. Since the heat medium passes through the heat medium passage 51a of the heat generating device 51, it is considered that the temperature of the heat medium also affects the operation of the heat generating device 51.
 そこで、車両用空調装置1では、暖房モードの制御内容について、複合型熱交換器21の除霜の適正化と共に、発熱機器51の保護を図るように構成している。以下、車両用空調装置1の暖房モードで実行される制御内容について、図面を参照して説明する。 Therefore, in the vehicle air conditioner 1, the control content of the heating mode is configured to optimize the defrosting of the composite heat exchanger 21 and protect the heat generating device 51. Hereinafter, the control contents executed in the heating mode of the vehicle air conditioner 1 will be described with reference to the drawings.
 図6に示すように、操作パネル71の操作によって車両用空調装置1の暖房モードが開始されると、ステップS1において、暖房蓄熱モードが開始され、暖房蓄熱モードに係る空調動作が行われる。暖房蓄熱モードにおいては、制御装置70は、機器側ポンプ52を作動させると共に、発熱機器51の熱媒体通路51aから流出した熱媒体がバイパス流路54を通過するように、機器側三方弁53の作動を制御する。これにより、発熱機器51に由来する排熱は、機器側熱媒体回路50を循環する熱媒体に蓄熱される。 As shown in FIG. 6, when the heating mode of the vehicle air conditioner 1 is started by the operation of the operation panel 71, the heating heat storage mode is started in step S1 and the air conditioning operation related to the heating heat storage mode is performed. In the heating heat storage mode, the control device 70 operates the device-side pump 52 and causes the device-side three-way valve 53 so that the heat medium flowing out from the heat medium passage 51a of the heat-generating device 51 passes through the bypass flow path 54. Control the operation. As a result, the exhaust heat derived from the heat generating device 51 is stored in the heat medium circulating in the device side heat medium circuit 50.
 又、制御装置70は、暖房蓄熱モードにおける冷凍サイクル10の作動に関し、所定期間の間、圧縮機11の回転数を予め定められた回転数Ncに定めて作動させる。 Further, the control device 70 operates the compressor 11 by setting the rotation speed of the compressor 11 to a predetermined rotation speed Nc for a predetermined period with respect to the operation of the refrigeration cycle 10 in the heating heat storage mode.
 ステップS2においては、所定期間の間、ステップS1の条件で圧縮機11を作動させた後に、暖房モードにおける初期状態を示す指標として、外気温センサ72bで検出される外気温Tam、電磁自動車の車速V、圧縮機11の回転数Ncが取得される。この時に検出された外気温Tamを基準外気温KTamという。同様に、ステップS2で検出された車速V、圧縮機11の回転数Ncを、それぞれ、基準車速KV、基準回転数KNcという。 In step S2, after the compressor 11 is operated under the conditions of step S1 for a predetermined period, the outside air temperature Tam detected by the outside air temperature sensor 72b and the vehicle speed of the electromagnetic vehicle are used as indicators of the initial state in the heating mode. V, the rotation speed Nc of the compressor 11 is acquired. The outside air temperature Tam detected at this time is called the standard outside air temperature KTam. Similarly, the vehicle speed V and the rotation speed Nc of the compressor 11 detected in step S2 are referred to as a reference vehicle speed KV and a reference rotation speed KNc, respectively.
 又、ステップS2では、複合型熱交換器21における吸熱部21bの初期状態を示す指標として、第3熱媒体温度センサ73cで検出される熱媒体温度Twが取得される。以下の説明では、ステップS2で取得した熱媒体温度Twを基準熱媒体温度KTwという。 Further, in step S2, the heat medium temperature Tw detected by the third heat medium temperature sensor 73c is acquired as an index indicating the initial state of the endothermic unit 21b in the composite heat exchanger 21. In the following description, the heat medium temperature Tw acquired in step S2 is referred to as the reference heat medium temperature KTw.
 そして、ステップS2において、基準外気温KTam、基準車速KV、基準回転数KNc、基準熱媒体温度KTwを取得した後、図5に示すように、暖房蓄熱モードでの作動制御が行われる。 Then, in step S2, after acquiring the non-standard air temperature KTam, the reference vehicle speed KV, the reference rotation speed KNc, and the reference heat medium temperature KTw, the operation control in the heating heat storage mode is performed as shown in FIG.
 ステップS3においては、発熱機器51に対する熱の影響を示す指標である機器温度Twdが予め定められた保護温度KTpよりも低いか否かが判定される。機器温度Twdとして、発熱機器51の熱媒体通路51aの流出口を通過する熱媒体温度が採用され、第5熱媒体温度センサ73eで検出される。 In step S3, it is determined whether or not the device temperature Twd, which is an index showing the influence of heat on the heat generating device 51, is lower than the predetermined protection temperature KTp. As the device temperature Twd, the heat medium temperature passing through the outlet of the heat medium passage 51a of the heat generating device 51 is adopted, and is detected by the fifth heat medium temperature sensor 73e.
 そして、保護温度KTpは、発熱機器51を正常に利用できる温度の上限値を示している。保護温度KTpは、例えば、発熱機器51が複数の機器で構成されていた場合、各機器における使用温度範囲の上限値の内、最も低い温度に定められる。ステップS3では、機器側熱媒体回路50の発熱機器51の使用環境が適正に利用できる範囲であるか否かを判定しているということができる。 The protection temperature KTp indicates the upper limit of the temperature at which the heat generating device 51 can be used normally. For example, when the heat generating device 51 is composed of a plurality of devices, the protection temperature KTp is set to the lowest temperature among the upper limit values of the operating temperature range in each device. In step S3, it can be said that it is determined whether or not the usage environment of the heat generating device 51 of the device side heat medium circuit 50 is within an appropriately usable range.
 機器温度Twdが保護温度KTpよりも低い場合、発熱機器51を正常に利用可能な状態である為、暖房蓄熱モードを維持したまま、ステップS4に移行する。ステップS4では、複合型熱交換器21の吸熱部21bに対する除霜が必要であるか否かを精度よく判定する為の判定補正値Cvを決定する。判定補正値Cvの決定については、後に詳細に説明する。 When the device temperature Twd is lower than the protection temperature KTp, since the heat generating device 51 can be used normally, the process proceeds to step S4 while maintaining the heating heat storage mode. In step S4, a determination correction value Cv for accurately determining whether or not defrosting is required for the endothermic portion 21b of the composite heat exchanger 21 is determined. The determination of the determination correction value Cv will be described in detail later.
 一方、機器温度Twdが保護温度KTpよりも低くない場合には、機器側熱媒体回路50における熱媒体の温度上昇を抑制する為に、ステップS5に進む。機器温度Twdが保護温度KTpよりも高い場合、発熱機器51が過度に高温な環境にあると判断できる。この場合、発熱機器51の動作に、高温環境による影響がでることが想定される。 On the other hand, if the device temperature Twd is not lower than the protection temperature KTp, the process proceeds to step S5 in order to suppress the temperature rise of the heat medium in the device side heat medium circuit 50. When the device temperature Twd is higher than the protection temperature KTp, it can be determined that the heat generating device 51 is in an excessively high temperature environment. In this case, it is assumed that the operation of the heat generating device 51 is affected by the high temperature environment.
 この為、ステップS5では、制御装置70は、機器側三方弁53の作動を制御して、発熱機器51の熱媒体通路51aから流出した熱媒体が複合型熱交換器21の吸熱部21bに流入するように、熱媒体の流路を切り替える。 Therefore, in step S5, the control device 70 controls the operation of the device-side three-way valve 53, and the heat medium flowing out from the heat medium passage 51a of the heat generating device 51 flows into the heat absorbing portion 21b of the composite heat exchanger 21. The flow path of the heat medium is switched so as to do so.
 即ち、車両用空調装置1の運転モードは、暖房蓄熱モードから暖房放熱モードに切り替えられる。これにより、機器側熱媒体回路50では、熱媒体の有する熱が複合型熱交換器21にて外気OAに放熱される為、発熱機器51を通過する熱媒体の温度を低下させることができる。 That is, the operation mode of the vehicle air conditioner 1 can be switched from the heating heat storage mode to the heating heat dissipation mode. As a result, in the device-side heat medium circuit 50, the heat contained in the heat medium is radiated to the outside air OA by the composite heat exchanger 21, so that the temperature of the heat medium passing through the heat generating device 51 can be lowered.
 ステップS6においては、機器側熱媒体回路50の熱媒体温度である機器温度Twdが保護温度KTpよりも低い放熱完了温度KTrよりも低いか否かを判断する。つまり、機器側熱媒体回路50にて、発熱機器51の温度環境が標準的な状態に戻ったか否かが判定されている。 In step S6, it is determined whether or not the device temperature Twd, which is the heat medium temperature of the device side heat medium circuit 50, is lower than the heat dissipation completion temperature KTr, which is lower than the protection temperature KTp. That is, the device side heat medium circuit 50 determines whether or not the temperature environment of the heat generating device 51 has returned to the standard state.
 機器温度Twdが放熱完了温度KTrよりも低い場合には、機器側三方弁53を制御して、機器側熱媒体回路50の熱媒体に対する蓄熱を再開させると共に、ステップS3に戻る。つまり、ステップS3に戻る場合、車両用空調装置1の運転モードは、暖房放熱モードから、図5に示す暖房蓄熱モードに切り替えられる。 When the device temperature Twd is lower than the heat dissipation completion temperature KTr, the device side three-way valve 53 is controlled to restart the heat storage of the device side heat medium circuit 50 for the heat medium, and the process returns to step S3. That is, when returning to step S3, the operation mode of the vehicle air conditioner 1 is switched from the heating / radiating mode to the heating / heat storage mode shown in FIG.
 一方、機器温度Twdが放熱完了温度KTrよりも低くない場合、処理を待機する。即ち、車両用空調装置1は、暖房放熱モードのまま作動し続ける為、機器側熱媒体回路50の熱媒体から外気OAへの放熱が継続される。 On the other hand, if the device temperature Twd is not lower than the heat dissipation completion temperature KTr, the process is waited for. That is, since the vehicle air conditioner 1 continues to operate in the heating / radiating mode, heat dissipation from the heat medium of the device-side heat medium circuit 50 to the outside air OA is continued.
 上述したように、ステップS4では、複合型熱交換器21の除霜判定に関する判定補正値Cvを決定する。判定補正値Cvの決定には、ステップS2で取得した基準外気温KTam、基準車速KV、基準回転数KNcが用いられる。 As described above, in step S4, the determination correction value Cv regarding the defrost determination of the composite heat exchanger 21 is determined. The non-reference temperature KTam, the reference vehicle speed KV, and the reference rotation speed KNc acquired in step S2 are used to determine the determination correction value Cv.
 具体的に説明すると、先ず、現時点における外気温Tam、車速、圧縮機11の回転数Ncが取得される。次に、現時点における外気温Tamと基準外気温KTamの差分値、現時点の車速Vと基準車速KVの差分値、現時点における圧縮機11の回転数Ncと基準回転数KNcとの差分値を算出する。 Specifically, first, the current outside air temperature Tam, vehicle speed, and rotation speed Nc of the compressor 11 are acquired. Next, the difference value between the current outside air temperature Tam and the standard non-standard air temperature KTam, the difference value between the current vehicle speed V and the reference vehicle speed KV, and the difference value between the current compressor 11 rotation speed Nc and the reference rotation speed KNc are calculated. ..
 続いて、外気温Tam、車速V、回転数Ncに係る差分値と、それぞれに対応付けて作成された制御マップが参照されて、判定補正値Cvが決定される。従って、判定補正値Cvは、外気温Tam、車速V、圧縮機11の回転数Ncの観点で、ステップS2の時点から現時点までの環境の変化に対応する数値に決定される。判定補正値Cvを決定した後、ステップS7に移行する。 Subsequently, the determination correction value Cv is determined by referring to the difference values related to the outside air temperature Tam, the vehicle speed V, and the rotation speed Nc, and the control map created in association with each of them. Therefore, the determination correction value Cv is determined to be a numerical value corresponding to the change in the environment from the time of step S2 to the present time from the viewpoint of the outside air temperature Tam, the vehicle speed V, and the rotation speed Nc of the compressor 11. After determining the determination correction value Cv, the process proceeds to step S7.
 ステップS7では、基準熱媒体温度KTwから判定補正値Cv及び判定低下代Mを減算した値よりも現時点の熱媒体温度Twが高い状態が予め定められた所定期間継続しているか否かが判定される。以下、ステップS7で判定される条件を除霜条件という。 In step S7, it is determined whether or not the current state where the heat medium temperature Tw is higher than the value obtained by subtracting the determination correction value Cv and the determination lowering allowance M from the reference heat medium temperature KTw continues for a predetermined predetermined period. To. Hereinafter, the condition determined in step S7 is referred to as a defrosting condition.
 そして、判定低下代Mは、複合型熱交換器21の吸熱部21bの着霜によって生じる熱媒体温度Twに対する影響の大きさを示しており、実験等によって予め定められているものである。 Then, the determination lowering allowance M indicates the magnitude of the influence on the heat medium temperature Tw caused by the frost formation of the endothermic portion 21b of the composite heat exchanger 21, and is predetermined by an experiment or the like.
 ステップS7の除霜条件において、基準熱媒体温度KTwは、特定物理量によって定められる基準値の一例である。又、基準熱媒体温度KTwから減算させる値は、判定補正値Cvと判定低下代Mの合計値であり、環境に応じて定められる変動値の一例である。 In the defrosting conditions of step S7, the reference heat medium temperature KTw is an example of a reference value determined by a specific physical quantity. Further, the value to be subtracted from the reference heat medium temperature KTw is the total value of the judgment correction value Cv and the judgment reduction allowance M, which is an example of the fluctuation value determined according to the environment.
 ステップS7にて除霜条件を満たすと判定された場合、複合型熱交換器21の吸熱部21bの着霜が進行しており、複合型熱交換器21の除霜が必要であることを意味する。従って、除霜条件を満たすと判定された場合は、ステップS8に進めて、車室内の暖房と並行して、複合型熱交換器21の除霜を行う。一方、そうでない場合には、ステップS3に処理を戻す。 When it is determined in step S7 that the defrosting condition is satisfied, it means that the heat absorbing portion 21b of the composite heat exchanger 21 is frosted and the composite heat exchanger 21 needs to be defrosted. To do. Therefore, if it is determined that the defrosting condition is satisfied, the process proceeds to step S8 to defrost the composite heat exchanger 21 in parallel with the heating of the vehicle interior. On the other hand, if not, the process returns to step S3.
 ここで、暖房蓄熱モードの運転に伴う熱媒体温度Twの変化について、図7を参照して説明する。上述したように、暖房蓄熱モードで運転を開始した場合、複合型熱交換器21の吸熱部21bには、チラー15で冷却された熱媒体が流通する。この為、第3熱媒体温度センサ73cで検出される熱媒体温度Twは、車両用空調装置1のウォームアップと共に低下していき、機器の作動が安定することによって温度変動が小さくなっていく。基準熱媒体温度KTwは、機器の作動が安定した状態のステップS2で取得される。 Here, the change in the heat medium temperature Tw accompanying the operation in the heating heat storage mode will be described with reference to FIG. 7. As described above, when the operation is started in the heating heat storage mode, the heat medium cooled by the chiller 15 flows through the heat absorbing portion 21b of the composite heat exchanger 21. Therefore, the heat medium temperature Tw detected by the third heat medium temperature sensor 73c decreases as the vehicle air conditioner 1 warms up, and the temperature fluctuation becomes smaller as the operation of the device becomes stable. The reference heat medium temperature KTw is acquired in step S2 in a state where the operation of the device is stable.
 暖房蓄熱モードの運転を継続していくと、熱媒体温度Twは、図7に示すように、外気温Tam等の変動に伴って低下していく。複合型熱交換器21の吸熱対象は外気OAである為、外気温Tamは、第3熱媒体温度センサ73cで検出される熱媒体温度Twに影響を及ぼす。 As the operation of the heating heat storage mode is continued, the heat medium temperature Tw decreases as the outside air temperature Tam and the like fluctuate, as shown in FIG. Since the heat absorption target of the composite heat exchanger 21 is the outside air OA, the outside air temperature Tam affects the heat medium temperature Tw detected by the third heat medium temperature sensor 73c.
 そして、外気OAは、電気自動車の走行に伴って複合型熱交換器21を流通する為、車速Vは、第3熱媒体温度センサ73cで検出される熱媒体温度Twに影響を及ぼす。又、圧縮機11の回転数Ncは、チラー15の冷却性能に相関を有している為、第3熱媒体温度センサ73cで検出される熱媒体温度Twに影響を及ぼす。即ち、判定補正値Cvは、複合型熱交換器21の吸熱部21bから流出する熱媒体温度Twに対して、複合型熱交換器21の着霜を除いた外的要因の影響の大きさを示している。 Then, since the outside air OA circulates through the composite heat exchanger 21 as the electric vehicle travels, the vehicle speed V affects the heat medium temperature Tw detected by the third heat medium temperature sensor 73c. Further, since the rotation speed Nc of the compressor 11 has a correlation with the cooling performance of the chiller 15, it affects the heat medium temperature Tw detected by the third heat medium temperature sensor 73c. That is, the determination correction value Cv determines the magnitude of the influence of external factors other than frost formation on the composite heat exchanger 21 on the heat medium temperature Tw flowing out from the endothermic portion 21b of the composite heat exchanger 21. Shown.
 外気温Tam等の変動によって熱媒体温度Twが低下していくと、複合型熱交換器21の吸熱部21bの表面は、外気OAからの吸熱に伴って着霜していく。吸熱部21bの着霜が進行すると、吸熱部21bにおける熱媒体と外気OAとの熱交換性能が低下する為、熱媒体温度Twは大きく低下していく。 When the heat medium temperature Tw decreases due to fluctuations in the outside air temperature Tam or the like, the surface of the endothermic portion 21b of the composite heat exchanger 21 becomes frosted as the heat is absorbed from the outside air OA. As the frost formation of the endothermic section 21b progresses, the heat exchange performance between the heat medium and the outside air OA in the endothermic section 21b deteriorates, so that the heat medium temperature Tw drops significantly.
 上述したように、ステップS7の除霜条件には、基準熱媒体温度KTwから判定補正値Cv及び判定低下代Mを減算した値よりも現時点の熱媒体温度Twが高いか否かという条件が含まれている。換言すると、現時点の熱媒体温度Twが、基準熱媒体温度KTwに対して、判定補正値Cv及び判定低下代Mの合計値で定められる変動値よりも大きく乖離しているか否かという条件を含んでいる。 As described above, the defrosting condition in step S7 includes the condition that the current heat medium temperature Tw is higher than the value obtained by subtracting the judgment correction value Cv and the judgment lowering allowance M from the reference heat medium temperature KTw. It has been. In other words, it includes the condition that the current heat medium temperature Tw deviates from the reference heat medium temperature KTw more than the fluctuation value defined by the total value of the judgment correction value Cv and the judgment reduction allowance M. I'm out.
 この条件は、ステップS2と現時点で検出された値の差分値を利用している為、外気温センサ72b等のセンサの誤差を含むことはなく、精度よく、複合型熱交換器21が着霜し除霜が必要であるか否かを判定することができる。 Since this condition uses the difference value between step S2 and the value detected at the present time, it does not include an error of a sensor such as the outside air temperature sensor 72b, and the composite heat exchanger 21 frosts with high accuracy. It is possible to determine whether defrosting is necessary.
 再び、図6を参照して、ステップS8以後の処理について説明する。ステップS8においては、機器温度Twdが予め定められた除霜許可温度KTdsよりも高いか否かが判定される。ステップS8は、ステップS7で行われた判定の結果、複合型熱交換器21の除霜動作の実行を許容するか否かを判定する判定処理である。 The processing after step S8 will be described again with reference to FIG. In step S8, it is determined whether or not the device temperature Twd is higher than the predetermined defrosting permission temperature KTds. Step S8 is a determination process for determining whether or not the execution of the defrosting operation of the composite heat exchanger 21 is permitted as a result of the determination performed in step S7.
 除霜許可温度KTdsは、発熱機器51を構成する各機器の使用温度範囲に従って定められており、複合型熱交換器21の除霜に伴って、各機器の動作に対する影響が少なくなるように定められている。 The defrosting permitted temperature KTds is determined according to the operating temperature range of each device constituting the heat generating device 51, and is set so that the defrosting of the composite heat exchanger 21 reduces the influence on the operation of each device. Has been done.
 機器温度Twdが除霜許可温度KTdsよりも高い場合、複合型熱交換器21の除霜を行う為に、ステップS9に進んで除霜動作を行う。一方、機器温度Twdが除霜許可温度KTdsよりも高くない場合、ステップS3に処理を戻す。 When the equipment temperature Twd is higher than the defrosting permitted temperature KTds, the process proceeds to step S9 to perform the defrosting operation in order to defrost the composite heat exchanger 21. On the other hand, if the equipment temperature Twd is not higher than the defrosting permitted temperature KTds, the process is returned to step S3.
 ステップS9の除霜動作においては、制御装置70は、予め定められた順番で各構成機器の作動を制御して、暖房蓄熱モードから暖房除霜モードへ切り替える。具体的に説明すると、先ず、制御装置70は、バッテリ温度センサ72hで検出されるバッテリ温度に基づいて、バッテリ45の冷却が必要であるか否かを判定する。 In the defrosting operation of step S9, the control device 70 controls the operation of each component device in a predetermined order to switch from the heating heat storage mode to the heating defrosting mode. Specifically, first, the control device 70 determines whether or not the battery 45 needs to be cooled based on the battery temperature detected by the battery temperature sensor 72h.
 例えば、バッテリ温度が予め定められている基準バッテリ温度よりも高い場合には、バッテリ45の冷却が必要であると判定して、車室内の暖房と並行して、複合型熱交換器21の除霜及びバッテリ45の冷却を行う。この場合の運転モードを暖房除霜モードのバッテリ冷却態様という。 For example, when the battery temperature is higher than the predetermined reference battery temperature, it is determined that the battery 45 needs to be cooled, and the combined heat exchanger 21 is removed in parallel with the heating of the vehicle interior. Frost and cool the battery 45. The operation mode in this case is referred to as a battery cooling mode of the heating / defrosting mode.
 一方、バッテリ温度が基準バッテリ温度よりも高くない場合には、バッテリ45の冷却は不要であると判定して、車室内の暖房と並行して、複合型熱交換器21の除霜を行う。この場合の運転モードについては、暖房除霜モードの通常態様という。 On the other hand, if the battery temperature is not higher than the reference battery temperature, it is determined that cooling of the battery 45 is unnecessary, and the composite heat exchanger 21 is defrosted in parallel with the heating of the vehicle interior. The operation mode in this case is referred to as a normal mode of the heating / defrosting mode.
 暖房蓄熱モードから暖房除霜モードの通常態様に切り替える際の除霜動作について、図8を参照して説明する。図8は、暖房除霜モードの通常態様における作動状態を示している。図8では、図5と同様に、冷媒又は熱媒体が流動している部分を太線で示している。 The defrosting operation when switching from the heating heat storage mode to the normal mode of heating defrosting mode will be described with reference to FIG. FIG. 8 shows an operating state in a normal mode of the heating defrost mode. In FIG. 8, similarly to FIG. 5, the portion where the refrigerant or the heat medium is flowing is shown by a thick line.
 先ず、暖房蓄熱モードにおける運転状態について説明する。図5に示すように、暖房蓄熱モードにおける冷凍サイクル10の冷媒は、圧縮機11、水冷媒熱交換器12、冷媒分岐部13a、第1膨張弁14a、チラー15、冷媒合流部13b、圧縮機11の順で循環している。 First, the operating state in the heating heat storage mode will be described. As shown in FIG. 5, the refrigerant of the refrigerating cycle 10 in the heating heat storage mode is the compressor 11, the water refrigerant heat exchanger 12, the refrigerant branch 13a, the first expansion valve 14a, the chiller 15, the refrigerant confluence 13b, and the compressor. It circulates in the order of 11.
 又、暖房蓄熱モードにおける高温側熱媒体回路20の熱媒体は、高温側ポンプ27、水冷媒熱交換器12、電気ヒータ26、分岐部24、第2電磁弁30b、ヒータコア22、合流部25、第1リザーブタンク28、高温側ポンプ27の順で循環している。 The heat medium of the high temperature side heat medium circuit 20 in the heating heat storage mode is the high temperature side pump 27, the water refrigerant heat exchanger 12, the electric heater 26, the branch portion 24, the second solenoid valve 30b, the heater core 22, the confluence portion 25, and the like. The first reserve tank 28 and the high temperature side pump 27 circulate in this order.
 そして、暖房蓄熱モードにおける低温側熱媒体回路40の熱媒体は、低温側ポンプ41、チラー15、開閉弁43b、複合型熱交換器21の吸熱部21b、第2リザーブタンク29、低温側ポンプ41の順で循環している。 The heat medium of the low temperature side heat medium circuit 40 in the heating heat storage mode is the low temperature side pump 41, the chiller 15, the on-off valve 43b, the heat absorbing portion 21b of the composite heat exchanger 21, the second reserve tank 29, and the low temperature side pump 41. It circulates in the order of.
 更に、暖房蓄熱モードにおける機器側熱媒体回路50の熱媒体は、機器側ポンプ52、発熱機器51、機器側三方弁53、バイパス流路54、機器側ポンプ52の順で循環している。 Further, the heat medium of the device side heat medium circuit 50 in the heating heat storage mode circulates in the order of the device side pump 52, the heat generating device 51, the device side three-way valve 53, the bypass flow path 54, and the device side pump 52.
 図5に示す暖房蓄熱モードから、図8に示す暖房除霜モードの通常態様へと切り替える場合、制御装置70は、先ず、複数の事前動作を実行する。事前動作の一つとして、制御装置70は、圧縮機11の作動を停止して冷凍サイクル10の運転を停止する。 When switching from the heating heat storage mode shown in FIG. 5 to the normal mode of the heating defrosting mode shown in FIG. 8, the control device 70 first executes a plurality of pre-operations. As one of the preliminary operations, the control device 70 stops the operation of the compressor 11 and stops the operation of the refrigeration cycle 10.
 又、暖房除霜モードの通常態様へ切り替える為の事前動作の一つとして、制御装置70は、シャッター装置31の動作を制御して、複合型熱交換器21へ流入する外気OAの流量が最も少なくなるように調整する。これにより、複合型熱交換器21における外気OAと熱媒体との熱交換性能を、外気OAの流量の観点から低下させることができる。 Further, as one of the preliminary operations for switching to the normal mode of the heating / defrosting mode, the control device 70 controls the operation of the shutter device 31, and the flow rate of the outside air OA flowing into the composite heat exchanger 21 is the largest. Adjust so that it is less. As a result, the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be reduced from the viewpoint of the flow rate of the outside air OA.
 更に、事前動作の一つとして、低温側ポンプ41の作動を停止する。これにより、低温側熱媒体回路40における熱媒体の循環が停止される。これにより、チラー15から流出した熱媒体に関して、複合型熱交換器21の吸熱部21bを通過する流量を減少させることができる。即ち、複合型熱交換器21における外気OAと熱媒体との熱交換性能を、低温側熱媒体回路40の熱媒体流量の観点から低下させることができる。 Furthermore, as one of the preliminary operations, the operation of the low temperature side pump 41 is stopped. As a result, the circulation of the heat medium in the low temperature side heat medium circuit 40 is stopped. As a result, it is possible to reduce the flow rate of the heat medium flowing out of the chiller 15 through the endothermic portion 21b of the composite heat exchanger 21. That is, the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be reduced from the viewpoint of the heat medium flow rate of the low temperature side heat medium circuit 40.
 これらの事前動作を終了すると、暖房除霜モードの通常態様における除霜実行動作が行われる。この場合の除霜実行動作では、機器側熱媒体回路50における熱媒体の流路構成が切り替えられる。 When these pre-operations are completed, the defrosting execution operation in the normal mode of the heating defrosting mode is performed. In the defrosting execution operation in this case, the flow path configuration of the heat medium in the device side heat medium circuit 50 is switched.
 具体的には、制御装置70は、機器側三方弁53の作動を制御して、複合型熱交換器21における吸熱部21bの流入口側と、発熱機器51における熱媒体通路51aの流出口側とを連通させる。この時、機器側三方弁53におけるバイパス流路54側の流入出口は閉塞される。 Specifically, the control device 70 controls the operation of the device-side three-way valve 53 to enter the heat absorbing portion 21b of the composite heat exchanger 21 and the outlet side of the heat medium passage 51a of the heat generating device 51. To communicate with. At this time, the inflow outlet on the bypass flow path 54 side of the device-side three-way valve 53 is closed.
 このように機器側三方弁53を切り替えることで、機器側熱媒体回路50の熱媒体は、機器側ポンプ52、発熱機器51、機器側三方弁53、複合型熱交換器21の吸熱部21b、第2リザーブタンク29、機器側ポンプ52の順に流れる。 By switching the device-side three-way valve 53 in this way, the heat medium of the device-side heat medium circuit 50 becomes the device-side pump 52, the heat-generating device 51, the device-side three-way valve 53, and the endothermic portion 21b of the composite heat exchanger 21. The second reserve tank 29 and the equipment side pump 52 flow in this order.
 この結果、機器側熱媒体回路50の熱媒体は、複合型熱交換器21を介して循環する。機器側熱媒体回路50の熱媒体は、暖房蓄熱モードで、発熱機器51の排熱を蓄熱している為、複合型熱交換器21の吸熱部21b通過する際に、吸熱部21bに付着している霜を除去することができる。 As a result, the heat medium of the device side heat medium circuit 50 circulates through the composite heat exchanger 21. Since the heat medium of the device-side heat medium circuit 50 stores the exhaust heat of the heat generating device 51 in the heating heat storage mode, it adheres to the heat absorbing section 21b when passing through the heat absorbing section 21b of the composite heat exchanger 21. The frost that is forming can be removed.
 上述のように、事前動作及び除霜実行動作を行うことで、車両用空調装置1は、暖房蓄熱モードから暖房除霜モードの通常態様に切り替わる。暖房除霜モードの通常態様に切り替える場合、事前動作及び除霜実行動作を行って、図8に示す作動状態になると、制御装置70は、ステップS9を終了して、ステップS10に進む。 As described above, the vehicle air conditioner 1 switches from the heating heat storage mode to the normal mode of the heating defrosting mode by performing the pre-operation and the defrosting execution operation. When switching to the normal mode of the heating defrosting mode, the control device 70 ends step S9 and proceeds to step S10 when the pre-operation and the defrosting execution operation are performed and the operating state shown in FIG. 8 is reached.
 ここで、図5、図8を比較してわかるように、暖房除霜モードの通常態様では、冷凍サイクル10における冷媒の循環及び低温側熱媒体回路40における熱媒体の循環は停止している。 Here, as can be seen by comparing FIGS. 5 and 8, in the normal mode of the heating defrosting mode, the circulation of the refrigerant in the refrigeration cycle 10 and the circulation of the heat medium in the low temperature side heat medium circuit 40 are stopped.
 そして、高温側熱媒体回路20の熱媒体は、高温側ポンプ27、水冷媒熱交換器12、電気ヒータ26、分岐部24、第2電磁弁30b、ヒータコア22、合流部25、第1リザーブタンク28、高温側ポンプ27の順で循環し続けている。 The heat medium of the high temperature side heat medium circuit 20 is the high temperature side pump 27, the water refrigerant heat exchanger 12, the electric heater 26, the branch portion 24, the second solenoid valve 30b, the heater core 22, the merging portion 25, and the first reserve tank. 28, the high temperature side pump 27 continues to circulate in this order.
 従って、暖房除霜モードの通常態様によれば、高温側熱媒体回路20の熱媒体に蓄えられた熱を利用して、送風空気Wの加熱を継続することができ、車室内の暖房を実現することができる。 Therefore, according to the normal mode of the heating / defrosting mode, the heating of the blown air W can be continued by utilizing the heat stored in the heat medium of the high temperature side heat medium circuit 20, and the heating of the vehicle interior is realized. can do.
 暖房蓄熱モードから暖房除霜モードの通常態様への切り替えに際し、冷凍サイクル10の停止、シャッター装置31の動作制御、低温側ポンプ41の停止といった事前動作を行った後に、除霜実行動作として、機器側三方弁53の切替動作が行われる。 When switching from the heating heat storage mode to the heating defrosting mode, after performing pre-operations such as stopping the refrigeration cycle 10, controlling the operation of the shutter device 31, and stopping the low-temperature side pump 41, the device is used as the defrosting execution operation. The switching operation of the side three-way valve 53 is performed.
 機器側三方弁53の切替動作に対する事前動作として、複合型熱交換器21を通過する外気OAの風量が制限されている。この為、複合型熱交換器21において、機器側熱媒体回路50の熱媒体が有する熱から外気OAに放熱される放熱量が少ない状態で、機器側三方弁53の切替動作を行うことができる。つまり、機器側熱媒体回路50の熱媒体が有する熱に関して、外気OAへの漏えいを抑制して、複合型熱交換器21の除霜に有効に利用できる。 As a preliminary operation for the switching operation of the three-way valve 53 on the device side, the air volume of the outside air OA passing through the composite heat exchanger 21 is restricted. Therefore, in the composite heat exchanger 21, the device-side three-way valve 53 can be switched in a state where the amount of heat radiated from the heat of the device-side heat medium circuit 50 to the outside air OA is small. .. That is, the heat contained in the heat medium of the device-side heat medium circuit 50 can be effectively used for defrosting the composite heat exchanger 21 by suppressing leakage to the outside air OA.
 又、機器側三方弁53の切替動作に対する事前動作として、低温側ポンプ41の作動を停止して、複合型熱交換器21の吸熱部21bに対して、チラー15を経由した熱媒体の流入が制限されている。 Further, as a preliminary operation for the switching operation of the device-side three-way valve 53, the operation of the low-temperature side pump 41 is stopped, and the heat medium flows into the heat absorbing portion 21b of the composite heat exchanger 21 via the chiller 15. It is restricted.
 従って、事前動作の実行によって、複合型熱交換器21において、機器側熱媒体回路50の熱媒体が有する熱から、チラー15を経由した熱媒体に放熱される放熱量を少なくすることができる。即ち、機器側熱媒体回路50の熱媒体が有する熱に関し、低温側熱媒体回路40の熱媒体への熱の漏えいを抑制して、複合型熱交換器21の除霜に有効に利用することができる。 Therefore, by executing the pre-operation, the amount of heat radiated from the heat of the heat medium of the device-side heat medium circuit 50 to the heat medium via the chiller 15 can be reduced in the composite heat exchanger 21. That is, with respect to the heat contained in the heat medium of the device side heat medium circuit 50, the heat leakage to the heat medium of the low temperature side heat medium circuit 40 is suppressed, and the heat is effectively used for defrosting the composite heat exchanger 21. Can be done.
 更に、機器側三方弁の切替動作に対する事前動作として、圧縮機11の作動を停止することで、冷凍サイクル10の運転が停止される。複合型熱交換器21の除霜に際して、冷凍サイクル10の運転を停止することで、圧縮機11の作動に伴う消費エネルギ等を低減させることができる。これにより、エネルギ効率の良い状態で、車室内の暖房と、複合型熱交換器21の除霜を両立させることができる。 Further, as a preliminary operation for the switching operation of the three-way valve on the device side, the operation of the refrigeration cycle 10 is stopped by stopping the operation of the compressor 11. By stopping the operation of the refrigeration cycle 10 when defrosting the composite heat exchanger 21, it is possible to reduce the energy consumption and the like associated with the operation of the compressor 11. As a result, it is possible to achieve both heating of the vehicle interior and defrosting of the composite heat exchanger 21 in an energy-efficient state.
 次に、暖房蓄熱モードから暖房除霜モードのバッテリ冷却態様に切り替える際の除霜動作について、図9を参照して説明する。図9は、暖房除霜モードのバッテリ冷却態様における作動状態を示している。 Next, the defrosting operation when switching from the heating heat storage mode to the heating defrosting mode battery cooling mode will be described with reference to FIG. FIG. 9 shows an operating state in the battery cooling mode of the heating / defrosting mode.
 暖房除霜モードのバッテリ冷却態様は、ステップS9に移行した際に、バッテリ45の冷却が必要であると判定された場合に実行される暖房除霜モードの一態様である。暖房蓄熱モードから暖房除霜モードのバッテリ冷却態様へと切り替える場合についても、制御装置70は、複数の事前動作を実行する。 The battery cooling mode of the heating / defrosting mode is one aspect of the heating / defrosting mode that is executed when it is determined that the battery 45 needs to be cooled when the process proceeds to step S9. The control device 70 also executes a plurality of pre-operations when switching from the heating heat storage mode to the battery cooling mode of the heating defrost mode.
 暖房除霜モードのバッテリ冷却態様に切り替える際の事前動作としては、事前動作の一つとして、制御装置70は、圧縮機11の作動を停止して冷凍サイクル10の運転を停止する。 As one of the pre-operations when switching to the battery cooling mode of the heating / defrosting mode, the control device 70 stops the operation of the compressor 11 and stops the operation of the refrigeration cycle 10.
 又、事前動作の一つとして、制御装置70は、シャッター装置31の動作を制御して、複合型熱交換器21へ流入する外気OAの流量が最も少なくなるように調整する。冷凍サイクル10の運転停止、シャッター装置31の動作制御については、暖房除霜モードの通常態様に切り替える際の事前動作と同様である。 Further, as one of the preliminary operations, the control device 70 controls the operation of the shutter device 31 and adjusts so that the flow rate of the outside air OA flowing into the composite heat exchanger 21 is minimized. The operation stop of the refrigeration cycle 10 and the operation control of the shutter device 31 are the same as the pre-operation when switching to the normal mode of the heating / defrosting mode.
 そして、暖房除霜モードのバッテリ冷却態様に切り替える際の事前動作には、通常態様の場合における低温側ポンプ41の停止に替えて、低温側切替部43の動作制御が含まれている。従って、暖房除霜モードのバッテリ冷却態様では、低温側熱媒体回路40における熱媒体の循環は継続される。 Then, the pre-operation when switching to the battery cooling mode of the heating / defrosting mode includes the operation control of the low temperature side switching unit 43 instead of stopping the low temperature side pump 41 in the normal mode. Therefore, in the battery cooling mode of the heating / defrosting mode, the circulation of the heat medium in the low temperature side heat medium circuit 40 is continued.
 具体的に説明すると、暖房除霜モードのバッテリ冷却態様に切り替える際の事前動作として、制御装置70は、低温側切替部43の開閉弁43bを全閉状態にすると共に、低温側三方弁43aの作動を制御する。 Specifically, as a preliminary operation when switching to the battery cooling mode of the heating / defrosting mode, the control device 70 sets the on-off valve 43b of the low-temperature side switching unit 43 to the fully closed state and the low-temperature side three-way valve 43a. Control the operation.
 これにより、暖房除霜モードのバッテリ冷却態様では、低温側熱媒体回路40の熱媒体は、低温側ポンプ41、チラー15の熱媒体通路、バッテリ45の熱媒体通路45a、低温側三方弁43a、低温側ポンプ41の順に流れて循環する。この場合の低温側熱媒体回路40における熱媒体の流れは、第2態様の流路構成の一例である。 As a result, in the battery cooling mode of the heating / defrosting mode, the heat medium of the low temperature side heat medium circuit 40 is the low temperature side pump 41, the heat medium passage of the chiller 15, the heat medium passage 45a of the battery 45, the low temperature side three-way valve 43a, and the like. It flows in the order of the low temperature side pump 41 and circulates. The flow of the heat medium in the low temperature side heat medium circuit 40 in this case is an example of the flow path configuration of the second aspect.
 図9に示すように、暖房除霜モードのバッテリ冷却態様によれば、チラー15で冷却された熱媒体を、バッテリ45の熱媒体通路45aを介して循環させることができるので、バッテリ45を冷却することができる。 As shown in FIG. 9, according to the battery cooling mode of the heating / defrosting mode, the heat medium cooled by the chiller 15 can be circulated through the heat medium passage 45a of the battery 45, so that the battery 45 is cooled. can do.
 そして、事前動作として、低温側切替部43の動作制御を行った場合、低温側切替部43が切り替えられている為、複合型熱交換器21の吸熱部21bに対して、チラー15を経由した熱媒体が流入することはない。即ち、低温側熱媒体回路40の熱媒体に関し、複合型熱交換器21の吸熱部21bを通過する流量を減少させることができる。従って、複合型熱交換器21における外気OAと熱媒体との熱交換性能を、低温側熱媒体回路40の熱媒体流量の観点から低下させることができる。 Then, when the operation of the low temperature side switching unit 43 is controlled as a preliminary operation, since the low temperature side switching unit 43 is switched, the heat absorbing unit 21b of the composite heat exchanger 21 is passed through the chiller 15. No heat medium flows in. That is, with respect to the heat medium of the low temperature side heat medium circuit 40, the flow rate passing through the endothermic portion 21b of the composite heat exchanger 21 can be reduced. Therefore, the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be reduced from the viewpoint of the heat medium flow rate of the low temperature side heat medium circuit 40.
 これらの事前動作を終了すると、暖房除霜モードのバッテリ冷却態様における除霜実行動作が行われる。除霜実行動作では、暖房除霜モードの通常態様の場合と同様に、機器側熱媒体回路50における熱媒体の流路構成を切り替えられる。 When these pre-operations are completed, the defrosting execution operation in the battery cooling mode of the heating defrosting mode is performed. In the defrosting execution operation, the flow path configuration of the heat medium in the device side heat medium circuit 50 can be switched as in the case of the normal mode of the heating defrosting mode.
 具体的には、図9に示すように、機器側熱媒体回路50の熱媒体は、機器側ポンプ52、発熱機器51、機器側三方弁53、複合型熱交換器21の吸熱部21b、第2リザーブタンク29、機器側ポンプ52の順に流れる。 Specifically, as shown in FIG. 9, the heat medium of the device-side heat medium circuit 50 includes the device-side pump 52, the heat-generating device 51, the device-side three-way valve 53, and the endothermic portion 21b of the composite heat exchanger 21. 2 The reserve tank 29 and the equipment side pump 52 flow in this order.
 この結果、機器側熱媒体回路50の熱媒体は、複合型熱交換器21を介して循環する。機器側熱媒体回路50の熱媒体は、暖房蓄熱モードで、発熱機器51の排熱を蓄熱している為、複合型熱交換器21の吸熱部21bを通過する際に、吸熱部21bに付着している霜を除去することができる。 As a result, the heat medium of the device side heat medium circuit 50 circulates through the composite heat exchanger 21. Since the heat medium of the device-side heat medium circuit 50 stores the exhaust heat of the heat generating device 51 in the heating heat storage mode, it adheres to the heat absorbing section 21b when passing through the heat absorbing section 21b of the composite heat exchanger 21. The frost that is forming can be removed.
 上述のように、事前動作及び除霜実行動作を行うことで、車両用空調装置1は、暖房蓄熱モードから暖房除霜モードのバッテリ冷却態様に切り替わる。暖房除霜モードのバッテリ冷却態様に切り替える場合、事前動作及び除霜実行動作を行って、図9に示す作動状態になると、制御装置70は、ステップS9を終了して、ステップS10に進む。 As described above, the vehicle air conditioner 1 switches from the heating heat storage mode to the heating defrosting mode battery cooling mode by performing the pre-operation and the defrosting execution operation. When switching to the battery cooling mode of the heating / defrosting mode, the control device 70 ends step S9 and proceeds to step S10 when the pre-operation and the defrosting execution operation are performed and the operating state shown in FIG. 9 is reached.
 これにより、暖房除霜モードのバッテリ冷却態様によれば、車室内の暖房と複合型熱交換器21の除霜と同時に、低温側熱媒体回路40の熱媒体の循環によるバッテリ45の冷却を行うことができる。 As a result, according to the battery cooling mode of the heating defrost mode, the battery 45 is cooled by circulating the heat medium of the low temperature side heat medium circuit 40 at the same time as heating the vehicle interior and defrosting the composite heat exchanger 21. be able to.
 暖房蓄熱モードから暖房除霜モードのバッテリ冷却態様への切り替えに際しても、事前動作によって、複合型熱交換器21を通過する外気OAの風量が制限されている。これにより、暖房除霜モードのバッテリ冷却態様に切り替える場合においても、暖房除霜モードの通常態様に切り替える場合と同様の効果を発揮する。 Even when switching from the heating heat storage mode to the battery cooling mode of the heating defrost mode, the air volume of the outside air OA passing through the composite heat exchanger 21 is restricted by the preliminary operation. As a result, even when switching to the battery cooling mode of the heating / defrosting mode, the same effect as that of switching to the normal mode of the heating / defrosting mode is exhibited.
 即ち、暖房除霜モードのバッテリ冷却態様においても、機器側熱媒体回路50の熱媒体が有する熱に関して、外気OAへの漏えいを抑制して、複合型熱交換器21の除霜に有効に利用できる。 That is, even in the battery cooling mode of the heating defrost mode, the heat contained in the heat medium of the device side heat medium circuit 50 is suppressed from leaking to the outside air OA and effectively used for defrosting the composite heat exchanger 21. it can.
 又、暖房除霜モードのバッテリ冷却態様への切り替えに際して、事前動作として、圧縮機11の作動を停止することで、冷凍サイクル10の運転が停止される。これにより、暖房除霜モードの通常態様に切り替える場合と同様に、エネルギ効率の良い状態で、車室内の暖房と、複合型熱交換器21の除霜を両立させることができる。 Further, when switching to the battery cooling mode of the heating / defrosting mode, the operation of the refrigeration cycle 10 is stopped by stopping the operation of the compressor 11 as a preliminary operation. As a result, it is possible to achieve both heating of the vehicle interior and defrosting of the composite heat exchanger 21 in an energy-efficient state, as in the case of switching to the normal mode of the heating defrosting mode.
 更に、暖房除霜モードのバッテリ冷却態様の切り替えに際して、事前動作として、低温側熱媒体回路40における流路構成を、バッテリ45及びチラー15を介して循環する構成に切り替える。 Further, when switching the battery cooling mode of the heating / defrosting mode, as a preliminary operation, the flow path configuration in the low temperature side heat medium circuit 40 is switched to a configuration that circulates via the battery 45 and the chiller 15.
 これにより、チラー15で冷却された熱媒体がバッテリ45の熱媒体通路45aを通過して循環する為、バッテリ45の冷却を実現することができる。又、低温側熱媒体回路40における流路構成を切り替えたことで、複合型熱交換器21の吸熱部21bに対して、チラー15を経由した熱媒体の流入が制限されている。 As a result, the heat medium cooled by the chiller 15 circulates through the heat medium passage 45a of the battery 45, so that the battery 45 can be cooled. Further, by switching the flow path configuration in the low temperature side heat medium circuit 40, the inflow of the heat medium through the chiller 15 is restricted to the endothermic portion 21b of the composite heat exchanger 21.
 即ち、暖房除霜モードのバッテリ冷却態様においても、機器側熱媒体回路50の熱媒体が有する熱に関して、低温側熱媒体回路40の熱媒体への熱の漏えいを抑制して、複合型熱交換器21の除霜に有効に利用することができる。 That is, even in the battery cooling mode of the heating / defrosting mode, the heat of the heat medium of the device side heat medium circuit 50 is suppressed from leaking to the heat medium of the low temperature side heat medium circuit 40, and the combined heat exchange is performed. It can be effectively used for defrosting the vessel 21.
 暖房除霜モードの通常態様又はバッテリ冷却態様に移行すると、ステップS10の判定処理が行われる。ステップS10では、第3熱媒体温度センサ73cで検出される熱媒体温度Twが予め定められた結露保護温度KTcよりも低いか否かが判定される。ここで、結露保護温度KTcは、発熱機器51の熱媒体通路51aを通過する熱媒体の温度との関係で、発熱機器51に結露が生じない上限値を意味する。 When shifting to the normal mode of heating / defrosting mode or the battery cooling mode, the determination process of step S10 is performed. In step S10, it is determined whether or not the heat medium temperature Tw detected by the third heat medium temperature sensor 73c is lower than the predetermined dew condensation protection temperature KTc. Here, the dew condensation protection temperature KTc means an upper limit value at which dew condensation does not occur in the heat generating device 51 in relation to the temperature of the heat medium passing through the heat medium passage 51a of the heat generating device 51.
 熱媒体温度Twが結露保護温度KTcよりも低い場合、発熱機器51が内部に発生した結露の影響を受ける虞がある。熱媒体温度Twが結露保護温度KTcよりも低いことは結露条件の一例である。この場合、発熱機器51の結露を抑制する為に、複合型熱交換器21の除霜を完了していない状態でも、ステップS12に移行して、暖房蓄熱モードへ復帰させる。 When the heat medium temperature Tw is lower than the dew condensation protection temperature KTc, the heat generating device 51 may be affected by the dew condensation generated inside. The fact that the heat medium temperature Tw is lower than the dew condensation protection temperature KTc is an example of dew condensation conditions. In this case, in order to suppress dew condensation on the heat generating device 51, even if the defrosting of the composite heat exchanger 21 has not been completed, the process proceeds to step S12 to return to the heating heat storage mode.
 一方、熱媒体温度Twが結露保護温度KTcよりも低くない場合は、複合型熱交換器21の吸熱部21bの除霜に際して、発熱機器51に結露が生じていないと考えられる為、ステップS11に進む。 On the other hand, when the heat medium temperature Tw is not lower than the dew condensation protection temperature KTc, it is considered that dew condensation has not occurred on the heat generating device 51 when the heat absorbing portion 21b of the composite heat exchanger 21 is defrosted. move on.
 ステップS11では、暖房除霜モードにおいて、除霜完了条件を満たすか否かが判定される。除霜完了条件は、複合型熱交換器21における吸熱部21bの除霜によって、熱交換性能が回復したと考えられる条件を意味する。 In step S11, it is determined whether or not the defrosting completion condition is satisfied in the heating defrosting mode. The defrosting completion condition means a condition in which the heat exchange performance is considered to have been restored by defrosting the heat absorbing portion 21b in the composite heat exchanger 21.
 除霜完了条件としては、例えば、熱媒体温度Twが予め定められた基準値よりも高いことや、ステップS9の除霜動作の開始から予め定められた期間を経過していること等を挙げることができる。又、熱媒体温度Twに替わる物理量として、チラー15の熱媒体通路を通過する熱媒体の温度、発熱機器51の熱媒体通路51aを通過する熱媒体の温度を採用することも可能である。除霜完了条件を満たした場合、暖房除霜モードから暖房蓄熱モードに復帰させる為に、ステップS12に進む。 As the defrosting completion condition, for example, the heat medium temperature Tw is higher than the predetermined reference value, the predetermined period has passed from the start of the defrosting operation in step S9, and the like. Can be done. Further, as the physical quantity instead of the heat medium temperature Tw, the temperature of the heat medium passing through the heat medium passage of the chiller 15 and the temperature of the heat medium passing through the heat medium passage 51a of the heat generating device 51 can be adopted. When the defrosting completion condition is satisfied, the process proceeds to step S12 in order to return from the heating defrosting mode to the heating heat storage mode.
 ステップS12の復帰動作では、制御装置70は、予め定められた順番で各構成機器の作動を制御して、暖房除霜モードから暖房蓄熱モードへ切り替える。上述したように、暖房除霜モードには、通常態様とバッテリ冷却態様の二つの態様が存在している為、それぞれの態様について説明する。 In the return operation of step S12, the control device 70 controls the operation of each component device in a predetermined order to switch from the heating defrosting mode to the heating heat storage mode. As described above, since there are two modes, the normal mode and the battery cooling mode, in the heating defrost mode, each mode will be described.
 先ず、暖房除霜モードの通常態様から暖房蓄熱モードへ復帰する際の復帰動作について説明する。暖房除霜モードの通常態様からの復帰動作において、制御装置70は、先ず、切替動作を実行する。具体的には、機器側熱媒体回路50における熱媒体の流路構成が切り替えられる。 First, the return operation when returning from the normal mode of the heating defrost mode to the heating heat storage mode will be described. In the return operation from the normal mode of the heating defrost mode, the control device 70 first executes a switching operation. Specifically, the flow path configuration of the heat medium in the device side heat medium circuit 50 is switched.
 これにより、機器側熱媒体回路50の熱媒体は、機器側ポンプ52、発熱機器51の熱媒体通路51a、機器側三方弁53、バイパス流路54、機器側ポンプ52の順に流れて循環する。従って、機器側熱媒体回路50の熱媒体に対して、発熱機器51に生じた排熱の蓄熱が再開される。 As a result, the heat medium of the equipment side heat medium circuit 50 flows and circulates in the order of the equipment side pump 52, the heat medium passage 51a of the heat generating equipment 51, the equipment side three-way valve 53, the bypass flow path 54, and the equipment side pump 52. Therefore, the heat storage of the exhaust heat generated in the heat generating device 51 is restarted with respect to the heat medium of the device side heat medium circuit 50.
 暖房除霜モードの通常態様からの復帰動作において、切替動作を終了すると、制御装置70は、暖房蓄熱モードに復帰する為に、複数の復帰実行動作を行う。復帰実行動作の一つとして、制御装置70は、先ず、圧縮機11の作動を開始して、冷凍サイクル10の運転を再開する。 In the return operation from the normal mode of the heating defrost mode, when the switching operation is completed, the control device 70 performs a plurality of return execution operations in order to return to the heating heat storage mode. As one of the return execution operations, the control device 70 first starts the operation of the compressor 11 and restarts the operation of the refrigeration cycle 10.
 これにより、冷凍サイクル10の冷媒は、圧縮機11、水冷媒熱交換器12、冷媒分岐部13a、第1膨張弁14a、チラー15、冷媒合流部13b、圧縮機11の順に流れて循環する。 As a result, the refrigerant in the refrigeration cycle 10 flows and circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the refrigerant branch portion 13a, the first expansion valve 14a, the chiller 15, the refrigerant confluence portion 13b, and the compressor 11.
 次に、暖房除霜モードの通常態様からの復帰実行動作の一つとして、制御装置70は、低温側ポンプ41の作動を再開する。従って、低温側熱媒体回路40の熱媒体は、低温側ポンプ41、チラー15、開閉弁43b、複合型熱交換器21の吸熱部21b、第2リザーブタンク29、低温側ポンプ41の順に流れて循環する。 Next, as one of the return execution operations from the normal mode of the heating / defrosting mode, the control device 70 restarts the operation of the low temperature side pump 41. Therefore, the heat medium of the low temperature side heat medium circuit 40 flows in the order of the low temperature side pump 41, the chiller 15, the on-off valve 43b, the endothermic portion 21b of the composite heat exchanger 21, the second reserve tank 29, and the low temperature side pump 41. Circulate.
 これにより、復帰実行動作によって、低温側熱媒体回路40の熱媒体に関して、複合型熱交換器21の吸熱部21bを通過する流量を増大させることができる。この結果、低温側熱媒体回路40の熱媒体流量の観点において、複合型熱交換器21における外気OAと熱媒体との熱交換性能を回復させることができる。 As a result, the flow rate of the heat medium of the low temperature side heat medium circuit 40 passing through the endothermic portion 21b of the composite heat exchanger 21 can be increased by the return execution operation. As a result, the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be recovered from the viewpoint of the heat medium flow rate of the low temperature side heat medium circuit 40.
 更に、暖房除霜モードの通常態様からの復帰実行動作の一つとして、制御装置70は、シャッター装置31の動作を制御して、複合型熱交換器21へ流入する外気OAの流量が最も多くなるように調整する。これにより、外気OAの流量の観点において、複合型熱交換器21における外気OAと熱媒体との熱交換性能を回復させることができる。 Further, as one of the return execution operations from the normal mode of the heating / defrosting mode, the control device 70 controls the operation of the shutter device 31 and the flow rate of the outside air OA flowing into the composite heat exchanger 21 is the largest. Adjust so that Thereby, from the viewpoint of the flow rate of the outside air OA, the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be recovered.
 暖房除霜モードの通常態様から暖房蓄熱モードへ復帰する際の復帰動作として、切替動作及び複数の復帰実行動作を行うことで、車両用空調装置1の作動状態は、図5に示す暖房蓄熱モードの状態に復帰する。これにより、車両用空調装置1は、機器側熱媒体回路50の熱媒体に、発熱機器51の排熱を蓄熱すると共に、外気OAを熱源として利用した車室内の暖房を再度行うことができる。 As a return operation when returning from the normal mode of the heating defrost mode to the heating heat storage mode, a switching operation and a plurality of return execution operations are performed, so that the operating state of the vehicle air conditioner 1 is the heating heat storage mode shown in FIG. Return to the state of. As a result, the vehicle air conditioner 1 can store the exhaust heat of the heat generating device 51 in the heat medium of the device side heat medium circuit 50, and can reheat the vehicle interior using the outside air OA as a heat source.
 暖房除霜モードの通常態様から暖房蓄熱モードへの復帰動作に際し、機器側三方弁53の切替動作を行った後に、復帰実行動作として、冷凍サイクル10の運転再開、低温側ポンプ41の運転再開、シャッター装置31による外気OAの風量制限の解除を行う。 In the return operation from the normal mode of the heating defrost mode to the heating heat storage mode, after the switching operation of the three-way valve 53 on the device side is performed, the operation of the refrigeration cycle 10 is restarted, the operation of the low temperature side pump 41 is restarted, and the operation is restarted. The air volume restriction of the outside air OA by the shutter device 31 is released.
 従って、暖房除霜モードの通常態様からの復帰に際して、発熱機器51の熱媒体通路51aに関して、熱媒体が通過している状態を維持しておくことができる。これにより、発熱機器51に対する熱媒体の流れが停止した場合に比べて、発熱機器51が排熱によって過剰に高温になることを抑制することができる。 Therefore, when returning from the normal mode of the heating / defrosting mode, it is possible to maintain the state in which the heat medium is passing through the heat medium passage 51a of the heat generating device 51. As a result, it is possible to prevent the heat generating device 51 from becoming excessively hot due to exhaust heat, as compared with the case where the flow of the heat medium to the heat generating device 51 is stopped.
 又、複数の復帰実行動作に先んじて、機器側三方弁53の切替動作を行うことで、発熱機器51で生じた排熱が外気OAや低温側熱媒体回路40の熱媒体に漏れてしまうことを抑制できる。即ち、暖房除霜モードの通常態様からの復帰動作において、できるだけ早い段階から、機器側熱媒体回路50を循環する熱媒体に対して、発熱機器51の排熱を蓄熱しておくことができる。 Further, by performing the switching operation of the device side three-way valve 53 prior to the plurality of return execution operations, the exhaust heat generated in the heat generating device 51 leaks to the outside air OA or the heat medium of the low temperature side heat medium circuit 40. Can be suppressed. That is, in the return operation from the normal mode of the heating / defrosting mode, the exhaust heat of the heat generating device 51 can be stored in the heat medium circulating in the device side heat medium circuit 50 from the earliest possible stage.
 そして、機器側三方弁53の切替動作の後で、低温側ポンプ41の作動を再開する為、発熱機器51の熱媒体通路51aに対して、チラー15を通過した熱媒体が直接流入することはない。これにより、チラー15を通過した熱媒体によって、発熱機器51が急冷されることを防止することができ、発熱機器51の保護を図ることができる。 Then, after the switching operation of the device-side three-way valve 53, the operation of the low-temperature side pump 41 is restarted, so that the heat medium that has passed through the chiller 15 directly flows into the heat medium passage 51a of the heat-generating device 51. Absent. As a result, it is possible to prevent the heat generating device 51 from being rapidly cooled by the heat medium that has passed through the chiller 15, and it is possible to protect the heat generating device 51.
 続いて、暖房除霜モードのバッテリ冷却態様から暖房蓄熱モードへ復帰する際の復帰動作について説明する。暖房除霜モードのバッテリ冷却態様からの復帰動作において、制御装置70は、先ず、切替動作を実行する。具体的には、機器側熱媒体回路50における熱媒体の流路構成が切り替えられる。 Next, the return operation when returning from the battery cooling mode of the heating defrost mode to the heating heat storage mode will be described. In the return operation from the battery cooling mode of the heating / defrosting mode, the control device 70 first executes a switching operation. Specifically, the flow path configuration of the heat medium in the device side heat medium circuit 50 is switched.
 これにより、機器側熱媒体回路50の熱媒体は、暖房除霜モードの通常態様から復帰する場合と同様に、発熱機器51の熱媒体通路51a及びバイパス流路54を介して循環する流路構成となる。従って、機器側熱媒体回路50の熱媒体に対して、発熱機器51に生じた排熱の蓄熱が再開される。 As a result, the heat medium of the device-side heat medium circuit 50 circulates through the heat medium passage 51a and the bypass flow path 54 of the heat generating device 51, as in the case of returning from the normal mode of the heating defrost mode. It becomes. Therefore, the heat storage of the exhaust heat generated in the heat generating device 51 is restarted with respect to the heat medium of the device side heat medium circuit 50.
 暖房除霜モードのバッテリ冷却態様からの復帰動作において、切替動作を終了すると、制御装置70は、複数の復帰実行動作を行う。復帰実行動作の一つとして、制御装置70は、先ず、冷凍サイクル10の運転を再開する。 In the recovery operation from the battery cooling mode of the heating / defrost mode, when the switching operation is completed, the control device 70 performs a plurality of recovery execution operations. As one of the return execution operations, the control device 70 first restarts the operation of the refrigeration cycle 10.
 次に、暖房除霜モードのバッテリ冷却態様からの復帰実行動作の一つとして、制御装置70は、シャッター装置31の動作を制御して、複合型熱交換器21へ流入する外気OAの流量が最も多くなるように調整する。 Next, as one of the return execution operations from the battery cooling mode of the heating / defrosting mode, the control device 70 controls the operation of the shutter device 31 to reduce the flow rate of the outside air OA flowing into the composite heat exchanger 21. Adjust to the maximum.
 暖房除霜モードのバッテリ冷却態様からの復帰実行動作として、冷凍サイクル10の運転再開と、シャッター装置31の動作制御は、暖房除霜モードの通常態様からの復帰の場合と同様である。 As the return execution operation from the battery cooling mode of the heating / defrosting mode, the operation restart of the refrigeration cycle 10 and the operation control of the shutter device 31 are the same as in the case of returning from the normal mode of the heating / defrosting mode.
 そして、暖房除霜モードのバッテリ冷却態様からの復帰実行動作として、制御装置70は、低温側切替部43の作動を制御する。具体的には、制御装置70は、低温側切替部43の開閉弁43bを全開状態にすると共に、低温側三方弁43aの作動を制御する。これにより、低温側熱媒体回路40の熱媒体は、低温側ポンプ41、チラー15、開閉弁43b、複合型熱交換器21の吸熱部21b、第2リザーブタンク29、低温側ポンプ41の順に流れて循環する。 Then, as a return execution operation from the battery cooling mode of the heating / defrosting mode, the control device 70 controls the operation of the low temperature side switching unit 43. Specifically, the control device 70 sets the on-off valve 43b of the low-temperature side switching unit 43 to the fully open state, and controls the operation of the low-temperature side three-way valve 43a. As a result, the heat medium of the low temperature side heat medium circuit 40 flows in the order of the low temperature side pump 41, the chiller 15, the on-off valve 43b, the endothermic portion 21b of the composite heat exchanger 21, the second reserve tank 29, and the low temperature side pump 41. And circulate.
 従って、復帰実行動作によって、低温側熱媒体回路40の熱媒体に関して、複合型熱交換器21の吸熱部21bを通過する流量を増大させることができる。この結果、低温側熱媒体回路40の熱媒体流量の観点で、複合型熱交換器21における外気OAと熱媒体との熱交換性能を回復させることができる。 Therefore, the return execution operation can increase the flow rate of the heat medium of the low temperature side heat medium circuit 40 passing through the endothermic portion 21b of the composite heat exchanger 21. As a result, the heat exchange performance between the outside air OA and the heat medium in the composite heat exchanger 21 can be recovered from the viewpoint of the heat medium flow rate of the low temperature side heat medium circuit 40.
 図5に示すように、暖房蓄熱モードに復帰する為、低温側熱媒体回路の熱媒体は、バッテリ45を迂回するように流れて循環する。従って、暖房除霜モードのバッテリ冷却態様から復帰すると、チラー15を通過した熱媒体によって、バッテリ45が冷却されることはない。 As shown in FIG. 5, in order to return to the heating heat storage mode, the heat medium of the low temperature side heat medium circuit flows and circulates so as to bypass the battery 45. Therefore, when returning from the battery cooling mode of the heating / defrosting mode, the battery 45 is not cooled by the heat medium that has passed through the chiller 15.
 上述したように、暖房除霜モードのバッテリ冷却態様から暖房蓄熱モードへ復帰する際の復帰動作として、切替動作及び複数の復帰実行動作を行うことで、車両用空調装置1の作動状態は、図5に示す暖房蓄熱モードの状態に復帰する。これにより、車両用空調装置1は、機器側熱媒体回路50の熱媒体に、発熱機器51の排熱を蓄熱すると共に、外気OAを熱源として利用した車室内の暖房を再度行うことができる。 As described above, the operating state of the vehicle air conditioner 1 is shown by performing a switching operation and a plurality of return execution operations as the return operation when returning from the battery cooling mode of the heating defrost mode to the heating heat storage mode. It returns to the state of the heating heat storage mode shown in 5. As a result, the vehicle air conditioner 1 can store the exhaust heat of the heat generating device 51 in the heat medium of the device side heat medium circuit 50, and can reheat the vehicle interior using the outside air OA as a heat source.
 暖房除霜モードのバッテリ冷却態様からの復帰動作に際し、機器側三方弁53の切替動作を行った後に、復帰実行動作として、冷凍サイクル10の運転再開、低温側切替部43の動作制御、シャッター装置31による外気OAの風量制限の解除を行う。 In the return operation from the battery cooling mode of the heating / defrost mode, after the switching operation of the device side three-way valve 53 is performed, the operation of the refrigeration cycle 10 is restarted, the operation control of the low temperature side switching unit 43, and the shutter device are performed as the return execution operation. The air volume restriction of the outside air OA by 31 is released.
 従って、暖房除霜モードのバッテリ冷却態様からの復帰に際しても、発熱機器51の熱媒体通路51aに対する熱媒体の流通を維持しておくことができる。これにより、発熱機器51に対する熱媒体の流れが停止した場合に比べて、発熱機器51が排熱によって過剰に高温になることを抑制することができる。 Therefore, the distribution of the heat medium to the heat medium passage 51a of the heat generating device 51 can be maintained even when returning from the battery cooling mode of the heating / defrosting mode. As a result, it is possible to prevent the heat generating device 51 from becoming excessively hot due to exhaust heat, as compared with the case where the flow of the heat medium to the heat generating device 51 is stopped.
 又、複数の復帰実行動作に先んじて、機器側三方弁53の切替動作を行うことで、できるだけ早い段階から、機器側熱媒体回路50を循環する熱媒体に対して、発熱機器51の排熱を蓄熱しておくことができる。 Further, by switching the device-side three-way valve 53 prior to the plurality of return execution operations, the heat exhaust of the heat-generating device 51 is exhausted from the heat medium circulating in the device-side heat medium circuit 50 from the earliest possible stage. Can store heat.
 以上説明したように、第1実施形態に係る車両用空調装置1によれば、ステップS12の復帰動作にて、機器側三方弁53の切替動作の後に復帰実行動作を行って、低温側熱媒体回路40の熱媒体と外気OAに関する複合型熱交換器21の熱交換性能を回復させる。 As described above, according to the vehicle air conditioner 1 according to the first embodiment, in the return operation in step S12, the return execution operation is performed after the switching operation of the device side three-way valve 53, and the low temperature side heat medium. The heat exchange performance of the composite heat exchanger 21 relating to the heat medium of the circuit 40 and the outside air OA is restored.
 これにより、暖房除霜モードから暖房蓄熱モードに復帰する過程において、発熱機器51の熱媒体通路51aを流通する熱媒体の流量を確保することができる。この結果、車両用空調装置1は、暖房除霜モードから暖房蓄熱モードへ復帰させる際に、発熱機器51が過度に高温になる状態を抑制することができる。 As a result, in the process of returning from the heating defrosting mode to the heating heat storage mode, it is possible to secure the flow rate of the heat medium flowing through the heat medium passage 51a of the heat generating device 51. As a result, the vehicle air conditioner 1 can suppress a state in which the heat generating device 51 becomes excessively high in temperature when returning from the heating defrosting mode to the heating heat storage mode.
 つまり、車両用空調装置1は、発熱機器51の排熱を利用した複合型熱交換器21の除霜を実現すると共に、暖房除霜モードからの復帰時における発熱機器51の保護を図ることができる。 That is, the vehicle air conditioner 1 can defrost the composite heat exchanger 21 by utilizing the exhaust heat of the heat generating device 51, and also protect the heat generating device 51 when returning from the heating defrost mode. it can.
 機器側三方弁53の切替動作によって、機器側熱媒体回路50の熱媒体は、発熱機器51及びバイパス流路54を介して循環する状態になっている。従って、その後に、低温側熱媒体回路40の熱媒体と外気OAに関する複合型熱交換器21の熱交換性能を回復させたとしても、チラー15を通過した熱媒体が発熱機器51に直接供給されることはない。 By the switching operation of the device-side three-way valve 53, the heat medium of the device-side heat medium circuit 50 is in a state of circulating via the heat-generating device 51 and the bypass flow path 54. Therefore, even if the heat exchange performance of the composite heat exchanger 21 relating to the heat medium of the low temperature side heat medium circuit 40 and the outside air OA is restored thereafter, the heat medium that has passed through the chiller 15 is directly supplied to the heat generating device 51. There is nothing.
 従って、車両用空調装置1は、暖房除霜モードからの復帰する際に、低温側熱媒体回路40の熱媒体による発熱機器51の急冷を抑制して、発熱機器51の保護を図ることができる。 Therefore, the vehicle air conditioner 1 can protect the heat generating device 51 by suppressing the rapid cooling of the heat generating device 51 by the heat medium of the low temperature side heat medium circuit 40 when returning from the heating / defrosting mode. ..
 又、車両用空調装置1は、ステップS12にて、暖房除霜モードからの復帰動作における復帰実行動作として、先ず、冷凍サイクル10の運転再開を行う。つまり、車両用空調装置1によれば、機器側三方弁53の切替動作の後で、冷凍サイクル10の運転を再開する為、発熱機器51の保護を図りつつ、暖房蓄熱モードでの運転を再開できる。 Further, in step S12, the vehicle air conditioner 1 first restarts the operation of the refrigeration cycle 10 as a return execution operation in the return operation from the heating / defrost mode. That is, according to the vehicle air conditioner 1, in order to restart the operation of the refrigeration cycle 10 after the switching operation of the device-side three-way valve 53, the operation in the heating heat storage mode is restarted while protecting the heat generating device 51. it can.
 そして、車両用空調装置1によれば、ステップS9~ステップS12において、複合型熱交換器21の除霜が完了していない場合でも、結露条件を満たして発熱機器51の結露が想定される場合には、暖房蓄熱モードに復帰させる。暖房蓄熱モードに復帰させることにより、発熱機器51及びその周辺の温度を上昇させ、飽和水蒸気圧を上昇させることができる。 Then, according to the vehicle air conditioner 1, even if the defrosting of the composite heat exchanger 21 is not completed in steps S9 to S12, the dew condensation condition is satisfied and dew condensation of the heat generating device 51 is assumed. To return to the heating heat storage mode. By returning to the heating heat storage mode, the temperature of the heat generating device 51 and its surroundings can be raised, and the saturated water vapor pressure can be raised.
 これにより、車両用空調装置1は、複合型熱交換器21の除霜が途中であっても発熱機器51の結露が想定される場合は、暖房蓄熱モードに復帰させて、発熱機器51の結露を抑制することができる。これにより、車両用空調装置1は、複合型熱交換器21の除霜に伴う発熱機器51の結露を抑制して、発熱機器51の保護を図ることができる。 As a result, if dew condensation on the heat generating device 51 is expected even during the defrosting of the composite heat exchanger 21, the vehicle air conditioner 1 is returned to the heating heat storage mode to cause dew condensation on the heat generating device 51. Can be suppressed. As a result, the vehicle air conditioner 1 can protect the heat generating device 51 by suppressing dew condensation on the heat generating device 51 due to defrosting of the composite heat exchanger 21.
 そして、車両用空調装置1は、ステップS12における復帰実行動作の一つとして、シャッター装置31の作動を制御して、外気OAの流量が最大になるように回復させる。これにより、車両用空調装置1は、暖房蓄熱モードにおいて、低温側熱媒体回路40の熱媒体と外気OAに関する複合型熱交換器21の熱交換性能を、外気OAの流量の観点で回復させることができ、暖房蓄熱モードにおける外気OAからの吸熱量を確保できる。 Then, the vehicle air conditioner 1 controls the operation of the shutter device 31 as one of the return execution operations in step S12, and restores the outside air OA so as to maximize the flow rate. As a result, the vehicle air conditioner 1 restores the heat exchange performance of the composite heat exchanger 21 regarding the heat medium of the low temperature side heat medium circuit 40 and the outside air OA in the heating heat storage mode from the viewpoint of the flow rate of the outside air OA. It is possible to secure the amount of heat absorbed from the outside air OA in the heating heat storage mode.
 又、車両用空調装置1は、ステップS12における復帰実行動作の一つとして、暖房除霜モードの通常態様の場合は、低温側ポンプ41の運転再開を行い、暖房除霜モードのバッテリ冷却態様では、低温側切替部43の動作制御を行う。これにより、車両用空調装置1は、低温側熱媒体回路40の熱媒体と外気OAに関する複合型熱交換器21の熱交換性能を、低温側熱媒体回路40の熱媒体の流量の観点で回復させることができ、暖房蓄熱モードにおける外気OAからの吸熱量を確保できる。 Further, as one of the return execution operations in step S12, the vehicle air conditioner 1 restarts the operation of the low temperature side pump 41 in the normal mode of the heating defrost mode, and in the battery cooling mode of the heating defrost mode. , The operation of the low temperature side switching unit 43 is controlled. As a result, the vehicle air conditioner 1 recovers the heat exchange performance of the composite heat exchanger 21 relating to the heat medium of the low temperature side heat medium circuit 40 and the outside air OA from the viewpoint of the flow rate of the heat medium of the low temperature side heat medium circuit 40. It is possible to secure the amount of heat absorbed from the outside air OA in the heating heat storage mode.
 そして、車両用空調装置1は、ステップS9にて、複合型熱交換器21の除霜動作を行う際に、複数の事前動作の実行後に、機器側三方弁53による除霜実行動作を行う。つまり、機器側三方弁53による除霜実行動作は、低温側熱媒体回路40の熱媒体と外気OAに関する複合型熱交換器21の熱交換性能を低下させた後に実行され、機器側熱媒体回路50の熱媒体が複合型熱交換器21に供給される。 Then, in step S9, the vehicle air conditioner 1 performs the defrosting execution operation by the device-side three-way valve 53 after executing the plurality of pre-operations when performing the defrosting operation of the composite heat exchanger 21. That is, the defrosting execution operation by the device-side three-way valve 53 is executed after the heat exchange performance of the composite heat exchanger 21 regarding the heat medium of the low-temperature side heat medium circuit 40 and the outside air OA is lowered, and the device-side heat medium circuit. Fifty heat media are supplied to the composite heat exchanger 21.
 これにより、複合型熱交換器21の除霜に際して、発熱機器51を通過した熱媒体の熱が、外気OAや低温側熱媒体回路40の熱媒体に漏えいすることを抑制できる。即ち、車両用空調装置1は、複合型熱交換器21の除霜に関して、発熱機器51の排熱を効率良く利用することができる。 As a result, it is possible to prevent the heat of the heat medium that has passed through the heat generating device 51 from leaking to the outside air OA or the heat medium of the low temperature side heat medium circuit 40 when the composite heat exchanger 21 is defrosted. That is, the vehicle air conditioner 1 can efficiently utilize the exhaust heat of the heat generating device 51 for defrosting the composite heat exchanger 21.
 又、ステップS9の除霜動作に際して、発熱機器51を通過する熱媒体の流量を確保することができる為、発熱機器51が過度に高温になる状態を抑制することができ、発熱機器51の保護を実現することができる。 Further, during the defrosting operation in step S9, the flow rate of the heat medium passing through the heat generating device 51 can be secured, so that the state in which the heat generating device 51 becomes excessively high can be suppressed, and the heat generating device 51 is protected. Can be realized.
 車両用空調装置1は、暖房除霜モードに切り替える為の除霜動作における事前動作の一つとして、冷凍サイクル10の運転を停止する。つまり、冷凍サイクル10の運転が停止した後で、機器側三方弁53による除霜実行動作が行われる。これにより、暖房除霜モードにおける圧縮機11の消費エネルギを抑制することができ、発熱機器51の排熱を利用した複合型熱交換器21の除霜を、効率よく実行することができる。 The vehicle air conditioner 1 stops the operation of the refrigeration cycle 10 as one of the preliminary operations in the defrosting operation for switching to the heating defrosting mode. That is, after the operation of the refrigeration cycle 10 is stopped, the defrosting execution operation by the device-side three-way valve 53 is performed. As a result, the energy consumption of the compressor 11 in the heating defrost mode can be suppressed, and the defrosting of the composite heat exchanger 21 using the exhaust heat of the heat generating device 51 can be efficiently executed.
 そして、車両用空調装置1によれば、除霜条件を満たすと判定される状態であっても、発熱機器51が過度に高温になっていると判定される場合には、発熱機器51を通過した熱媒体を、複合型熱交換器21の吸熱部21bを介して循環させる。これにより、発熱機器51の排熱は、複合型熱交換器21にて外気OAへ放熱され、発熱機器51の温度上昇を抑制できる。 Then, according to the vehicle air conditioner 1, even if it is determined that the defrosting condition is satisfied, if it is determined that the heat generating device 51 is excessively hot, it passes through the heat generating device 51. The heat medium is circulated through the heat absorbing portion 21b of the composite heat exchanger 21. As a result, the exhaust heat of the heat generating device 51 is dissipated to the outside air OA by the composite heat exchanger 21, and the temperature rise of the heat generating device 51 can be suppressed.
 即ち、車両用空調装置1によれば、発熱機器51に生じた熱を用いた複合型熱交換器21の除霜を実現すると共に、発熱機器51における過度の温度上昇を抑制して発熱機器51の保護を図ることができる。 That is, according to the vehicle air conditioner 1, defrosting of the composite heat exchanger 21 using the heat generated in the heat generating device 51 is realized, and the excessive temperature rise in the heat generating device 51 is suppressed to suppress the heat generating device 51. Can be protected.
 又、車両用空調装置1によれば、ステップS7の判定処理において、除霜条件を満たすか否かを判定して、除霜条件を満たす場合には、暖房除霜モードへ切り替える為の除霜動作を実行する。ステップS7の除霜条件は、基準熱媒体温度KTwから判定補正値Cv及び判定低下代Mを減算した値よりも現時点の熱媒体温度Twが高い状態が予め定められた所定期間継続していることである。 Further, according to the vehicle air conditioner 1, in the determination process of step S7, it is determined whether or not the defrosting condition is satisfied, and if the defrosting condition is satisfied, the defrosting for switching to the heating defrosting mode is performed. Perform the action. The defrosting condition in step S7 is that the current heat medium temperature Tw is higher than the value obtained by subtracting the judgment correction value Cv and the judgment lowering allowance M from the reference heat medium temperature KTw for a predetermined period of time. Is.
 即ち、ステップS7の判定処理によれば、発熱機器51の排熱を利用した複合型熱交換器21の除霜を実行するか否かの判定基準を、環境に応じて変動する判定補正値Cvを含めて変化させることができる。 That is, according to the determination process in step S7, the determination criterion for whether or not to execute the defrosting of the composite heat exchanger 21 using the exhaust heat of the heat generating device 51 is determined by the determination correction value Cv that varies depending on the environment. Can be changed including.
 これにより、車両用空調装置1は、精度の良い除霜の実行に関する判定を行うことができ、適切なタイミングで複合型熱交換器21の除霜動作を開始することができる。又、発熱機器51に生じた熱を適切なタイミングで複合型熱交換器21の除霜に利用することができる為、発熱機器51に対する熱の影響を抑えて発熱機器51の保護を図ることができる。 As a result, the vehicle air conditioner 1 can make an accurate determination regarding the execution of defrosting, and can start the defrosting operation of the composite heat exchanger 21 at an appropriate timing. Further, since the heat generated in the heat generating device 51 can be used for defrosting the composite heat exchanger 21 at an appropriate timing, it is possible to suppress the influence of heat on the heat generating device 51 and protect the heat generating device 51. it can.
 そして、車両用空調装置1は、ステップS9における事前動作の一つとして、シャッター装置31の作動を制御して、外気OAの流量が最小にする。これにより、車両用空調装置1は、暖房除霜モードにおいて、低温側熱媒体回路40の熱媒体と外気OAに関する複合型熱交換器21の熱交換性能を、外気OAの流量の観点で低下させることができる。従って、暖房除霜モードの車両用空調装置1によれば、発熱機器51の排熱が外気OAに漏えいすることを抑制でき、複合型熱交換器21の除霜に効率よく活用することができる。 Then, the vehicle air conditioner 1 controls the operation of the shutter device 31 as one of the preliminary operations in step S9 to minimize the flow rate of the outside air OA. As a result, the vehicle air conditioner 1 reduces the heat exchange performance of the composite heat exchanger 21 regarding the heat medium of the low temperature side heat medium circuit 40 and the outside air OA in the heating / defrosting mode from the viewpoint of the flow rate of the outside air OA. be able to. Therefore, according to the vehicle air conditioner 1 in the heating / defrosting mode, it is possible to suppress the exhaust heat of the heat generating device 51 from leaking to the outside air OA, and it can be efficiently used for defrosting the composite heat exchanger 21. ..
 又、車両用空調装置1は、ステップS9における事前動作の一つとして、暖房除霜モードの通常態様に移行する場合は、低温側ポンプ41の運転を停止し、暖房除霜モードのバッテリ冷却態様に移行する場合は、低温側切替部43の動作制御を行う。 Further, when the vehicle air conditioner 1 shifts to the normal mode of the heating / defrosting mode as one of the preliminary operations in step S9, the operation of the low temperature side pump 41 is stopped and the battery cooling mode of the heating / defrosting mode is stopped. When shifting to, the operation of the low temperature side switching unit 43 is controlled.
 これにより、車両用空調装置1は、低温側熱媒体回路40の熱媒体と外気OAに関する複合型熱交換器21の熱交換性能を、低温側熱媒体回路40の熱媒体の流量の観点で低下させることができる。従って、暖房除霜モードの車両用空調装置1によれば、発熱機器51の排熱が低温側熱媒体回路40の熱媒体に漏えいすることを抑制でき、複合型熱交換器21の除霜に効率よく活用することができる。 As a result, the vehicle air conditioner 1 reduces the heat exchange performance of the composite heat exchanger 21 regarding the heat medium of the low temperature side heat medium circuit 40 and the outside air OA in terms of the flow rate of the heat medium of the low temperature side heat medium circuit 40. Can be made to. Therefore, according to the vehicle air conditioner 1 in the heating / defrosting mode, it is possible to prevent the exhaust heat of the heat generating device 51 from leaking to the heat medium of the low temperature side heat medium circuit 40, and it is possible to defrost the composite heat exchanger 21. It can be used efficiently.
 そして、車両用空調装置1は、ステップS7における判定条件を構成する基準熱媒体温度KTwや、判定補正値Cvの決定に用いられる基準外気温KTam、基準車速KV、基準回転数KNcを、車両用空調装置1における暖房蓄熱モードの運転開始後に取得する。 Then, the vehicle air conditioner 1 uses the reference heat medium temperature KTw constituting the determination condition in step S7, the non-reference temperature KTam used for determining the determination correction value Cv, the reference vehicle speed KV, and the reference rotation speed KNc for the vehicle. Acquired after the start of operation of the heating heat storage mode in the air conditioner 1.
 暖房蓄熱モードの運転開始後であるステップS2の時点で、基準熱媒体温度KTw等を取得することで、車両用空調装置1自体の状態や、車両用空調装置1を取り巻く環境を反映させることができる。これにより、車両用空調装置1は、ステップS7における除霜条件に関する判定精度を向上させることができる。 By acquiring the reference heat medium temperature KTw or the like at the time of step S2 after the start of the operation of the heating heat storage mode, it is possible to reflect the state of the vehicle air conditioner 1 itself and the environment surrounding the vehicle air conditioner 1. it can. As a result, the vehicle air conditioner 1 can improve the determination accuracy regarding the defrosting conditions in step S7.
 又、ステップS2における基準熱媒体温度KTw等の取得は、圧縮機11を予め定められた回転数Ncで所定期間作動させた後で実行される。換言すると、圧縮機11を所定の条件の下で運転し、車両用空調装置1の作動が安定した状態で、基準熱媒体温度KTw等が取得される。 Further, the acquisition of the reference heat medium temperature KTw or the like in step S2 is executed after the compressor 11 is operated at a predetermined rotation speed Nc for a predetermined period of time. In other words, the reference heat medium temperature KTw or the like is acquired while the compressor 11 is operated under predetermined conditions and the operation of the vehicle air conditioner 1 is stable.
 これにより、基準熱媒体温度KTw等に関して、車両用空調装置1の作動が不安定である状態が含まれることがなくなる為、基準熱媒体温度KTwや判定補正値Cvの信頼性を高めて、ステップS7における除霜条件の判定精度を向上させることができる。 As a result, the reference heat medium temperature KTw and the like are not included in the state where the operation of the vehicle air conditioner 1 is unstable. Therefore, the reliability of the reference heat medium temperature KTw and the judgment correction value Cv is improved, and the step The accuracy of determining the defrosting condition in S7 can be improved.
 そして、ステップS7の除霜条件を構成する判定補正値Cvは、ステップS4で決定される。具体的には、判定補正値Cvを決定する際には、現時点における外気温Tamと基準外気温KTamの差分値、現時点の車速Vと基準車速KVの差分値、現時点における圧縮機11の回転数Ncと基準回転数KNcとの差分値が算出される。 Then, the determination correction value Cv constituting the defrosting condition in step S7 is determined in step S4. Specifically, when determining the determination correction value Cv, the difference value between the current outside air temperature Tam and the non-standard air temperature KTam, the difference value between the current vehicle speed V and the reference vehicle speed KV, and the current rotation speed of the compressor 11 The difference value between Nc and the reference rotation speed KNc is calculated.
 その後、外気温Tam、車速V、回転数Ncに係る差分値と、それぞれに対応付けて作成された制御マップが参照されて、判定補正値Cvが決定される。従って、判定補正値Cvは、外気温Tam、車速V、圧縮機11の回転数Ncの観点で、ステップS2の時点から現時点までの環境の変化に対応する数値になる。 After that, the judgment correction value Cv is determined by referring to the difference values related to the outside air temperature Tam, the vehicle speed V, and the rotation speed Nc, and the control map created in association with each of them. Therefore, the determination correction value Cv is a numerical value corresponding to the change in the environment from the time of step S2 to the present time from the viewpoint of the outside air temperature Tam, the vehicle speed V, and the rotation speed Nc of the compressor 11.
 この為、ステップS7における除霜条件に、判定補正値Cvを用いることで、車両用空調装置1を取り巻く環境の変化を反映させることができ、適切なタイミングでの複合型熱交換器21の除霜を実現することができる。 Therefore, by using the determination correction value Cv for the defrosting condition in step S7, it is possible to reflect the change in the environment surrounding the vehicle air conditioner 1, and the combined heat exchanger 21 is removed at an appropriate timing. Frost can be realized.
 又、上述した差分値は、外気温センサ72b等のように同一の構成から、時期的に異なるタイミングで取得された値を用いて算出されている。従って、判定補正値Cvの決定に関して、外気温センサ72b等の構成自体が有している誤差の影響が及ぶことはない。これにより、判定補正値Cvは、車両用空調装置1を取り巻く環境の変化を純粋に反映させた値となる為、この点に関しても、ステップS7における除霜条件の判定精度を向上させることができる。 Further, the above-mentioned difference value is calculated by using values acquired at different timings from the same configuration such as the outside air temperature sensor 72b. Therefore, the determination of the determination correction value Cv is not affected by the error of the configuration itself of the outside air temperature sensor 72b or the like. As a result, the determination correction value Cv becomes a value that purely reflects the change in the environment surrounding the vehicle air conditioner 1, and thus the determination accuracy of the defrosting condition in step S7 can be improved also in this respect. ..
 そして、車両用空調装置1によれば、ステップS9における暖房除霜モードへの除霜動作に際して、バッテリ45の冷却が必要であるか否かが判定され、バッテリ45の冷却が必要であると判定された場合、暖房除霜モードのバッテリ冷却態様に切り替えられる。 Then, according to the vehicle air conditioner 1, it is determined whether or not the battery 45 needs to be cooled in the defrosting operation to the heating defrost mode in step S9, and it is determined that the battery 45 needs to be cooled. If so, the mode is switched to the battery cooling mode of the heating defrost mode.
 図9に示すように、暖房除霜モードのバッテリ冷却態様では、高温側熱媒体回路20による車室内の暖房と、機器側熱媒体回路50による複合型熱交換器21の除霜と共に、低温側熱媒体回路40によるバッテリ45の冷却が行われる。暖房除霜モードのバッテリ冷却態様の車両用空調装置1によれば、車室内の暖房と、複合型熱交換器21の除霜に加えて、バッテリ45の冷却を並行して行うことができる。 As shown in FIG. 9, in the battery cooling mode of the heating defrosting mode, the heating of the vehicle interior by the high temperature side heat medium circuit 20 and the defrosting of the composite heat exchanger 21 by the equipment side heat medium circuit 50, as well as the low temperature side. The heat medium circuit 40 cools the battery 45. According to the vehicle air conditioner 1 in the battery cooling mode of the heating / defrosting mode, in addition to heating the vehicle interior and defrosting the composite heat exchanger 21, the battery 45 can be cooled in parallel.
 又、ステップS9における暖房除霜モードへの除霜動作に際し、バッテリ45の冷却が必要でないと判定された場合、暖房除霜モードの通常態様に切り替えられる。図8に示すように、暖房除霜モードの通常態様では、高温側熱媒体回路20による車室内の暖房と、機器側熱媒体回路50による複合型熱交換器21の除霜が並行して行われる。この時、低温側ポンプ41の運転が停止され、低温側熱媒体回路40における熱媒体の循環が停止する。これにより、暖房除霜モードの通常態様の車両用空調装置1によれば、エネルギ消費を抑えた状態で、車室内暖房と複合型熱交換器21の除霜を並行して実現できる。 Further, when it is determined that the battery 45 does not need to be cooled during the defrosting operation to the heating defrosting mode in step S9, the mode is switched to the normal mode of the heating defrosting mode. As shown in FIG. 8, in the normal mode of the heating defrosting mode, the heating of the vehicle interior by the high temperature side heat medium circuit 20 and the defrosting of the composite heat exchanger 21 by the equipment side heat medium circuit 50 are performed in parallel. Will be. At this time, the operation of the low temperature side pump 41 is stopped, and the circulation of the heat medium in the low temperature side heat medium circuit 40 is stopped. As a result, according to the vehicle air conditioner 1 in the normal mode of the heating / defrosting mode, the vehicle interior heating and the defrosting of the composite heat exchanger 21 can be realized in parallel while suppressing the energy consumption.
 (第2実施形態)
 続いて、上述した第1実施形態とは異なる第2実施形態について、図10を参照して説明する。第2実施形態では、暖房モードの制御内容の内、除霜条件を満たすか否かの判定処理が第1実施形態と相違している。従って、第2実施形態に係る車両用空調装置1の基本的構成や各運転モードの作動状態等は第1実施形態と同様である。
(Second Embodiment)
Subsequently, a second embodiment different from the first embodiment described above will be described with reference to FIG. In the second embodiment, among the control contents of the heating mode, the determination process of whether or not the defrosting condition is satisfied is different from that of the first embodiment. Therefore, the basic configuration of the vehicle air conditioner 1 and the operating state of each operation mode according to the second embodiment are the same as those of the first embodiment.
 第2実施形態に係る車両用空調装置1において、操作パネル71の操作によって車両用空調装置1の暖房モードが開始されると、制御装置70は、ステップS21の処理を事項する。ステップS21は、第1実施形態のステップS1と同様の処理である。 In the vehicle air conditioner 1 according to the second embodiment, when the heating mode of the vehicle air conditioner 1 is started by the operation of the operation panel 71, the control device 70 matters the process of step S21. Step S21 is the same process as step S1 of the first embodiment.
 次に、ステップS22では、機器温度Twdが保護温度KTpより低いか否かが判定される。ステップS22は、ステップS3と同様の処理である。機器温度Twdが保護温度KTpよりも低い場合、ステップS23に進む。 Next, in step S22, it is determined whether or not the device temperature Twd is lower than the protection temperature KTp. Step S22 is the same process as step S3. If the device temperature Twd is lower than the protection temperature KTp, the process proceeds to step S23.
 一方、機器温度Twdが保護温度KTpよりも低くない場合、ステップS24,ステップS25に進む。ステップS24、ステップS25は、第1実施形態のステップS5、ステップS6と同様の処理である。従って、再度の説明は省略する。 On the other hand, if the device temperature Twd is not lower than the protection temperature KTp, the process proceeds to step S24 and step S25. Step S24 and step S25 are the same processes as steps S5 and S6 of the first embodiment. Therefore, the description will be omitted again.
 これにより、第2実施形態においても、除霜条件を満たすと判定される状態でも、発熱機器51が過度に高温になっていると判定される場合には、機器側熱媒体回路50の切り替えによって、発熱機器51の排熱を外気OAに放熱させることができる。 As a result, even in the second embodiment, if it is determined that the heat generating device 51 is excessively hot even in the state where the defrosting condition is satisfied, the device side heat medium circuit 50 is switched. The exhaust heat of the heat generating device 51 can be dissipated to the outside air OA.
 ステップS23では、第2実施形態における除霜条件を満たすか否かが判定される。第2実施形態における除霜条件は、第3熱媒体温度センサ73cで検出される熱媒体温度Twが予め定められた判定閾値KTwaよりも低いことである。 In step S23, it is determined whether or not the defrosting condition in the second embodiment is satisfied. The defrosting condition in the second embodiment is that the heat medium temperature Tw detected by the third heat medium temperature sensor 73c is lower than the predetermined determination threshold value KTwa.
 ここで、判定閾値KTwaは、複合型熱交換器21の除霜が必要な状態において、複合型熱交換器21の吸熱部21bから流出する熱媒体の温度により定められている。判定閾値KTwaは、例えば、実験値によって求められており、制御装置70のROM等に記憶されている。判定閾値KTwaは閾値の一例である。 Here, the determination threshold value KTwa is determined by the temperature of the heat medium flowing out from the endothermic portion 21b of the composite heat exchanger 21 in a state where defrosting of the composite heat exchanger 21 is required. The determination threshold value KTwa is obtained by, for example, an experimental value, and is stored in a ROM or the like of the control device 70. The determination threshold KTwa is an example of the threshold.
 熱媒体温度Twが判定閾値KTwaよりも低い場合、複合型熱交換器21の除霜が必要であると判定して、ステップS26に進む。熱媒体温度Twが判定閾値KTwaよりも低くない場合、複合型熱交換器21の除霜は不要であると判定し、ステップS22に戻る。 If the heat medium temperature Tw is lower than the determination threshold value KTwa, it is determined that defrosting of the composite heat exchanger 21 is necessary, and the process proceeds to step S26. If the heat medium temperature Tw is not lower than the determination threshold value KTwa, it is determined that defrosting of the composite heat exchanger 21 is unnecessary, and the process returns to step S22.
 ステップS26では、機器温度Twdが除霜許可温度KTdsよりも高いか否かが判定される。ステップS26は、第1実施形態のステップS8と同様の処理である。機器温度Twdが除霜許可温度KTdsよりも高い場合、ステップS27に進む。そうでない場合は、ステップS22に処理を戻す。 In step S26, it is determined whether or not the device temperature Twd is higher than the defrosting permitted temperature KTds. Step S26 is the same process as step S8 of the first embodiment. If the equipment temperature Twd is higher than the defrosting permitted temperature KTds, the process proceeds to step S27. If not, the process returns to step S22.
 ステップS27では、第2実施形態における除霜動作が行われる。ステップS27においては、第1実施形態のステップS9と同様に、先ず、バッテリ45の冷却が必要であるか否かが判定される。この判定結果に基づいて、車両用空調装置1の運転モードが、暖房除霜モードの通常態様と、暖房除霜モードのバッテリ冷却態様の何れかに決定される。 In step S27, the defrosting operation according to the second embodiment is performed. In step S27, as in step S9 of the first embodiment, it is first determined whether or not the battery 45 needs to be cooled. Based on this determination result, the operation mode of the vehicle air conditioner 1 is determined to be either a normal mode of the heating / defrosting mode or a battery cooling mode of the heating / defrosting mode.
 そして、暖房除霜モードの通常態様又は暖房除霜モードのバッテリ冷却態様の何れかに応じた複数の事前動作を実行した後で、切替動作を行う。ステップS27の処理内容は、既に説明済みである為、再度の説明を省略する。 Then, after executing a plurality of pre-operations according to either the normal mode of the heating defrosting mode or the battery cooling mode of the heating defrosting mode, the switching operation is performed. Since the processing content of step S27 has already been explained, the description will be omitted again.
 暖房除霜モードを開始した後のステップS28、ステップS29の処理内容は、第1実施形態におけるステップS10、ステップS11と同様である。これにより、第1実施形態に係る車両用空調装置1は、複合型熱交換器21の除霜が途中であっても発熱機器51の結露が想定される場合は、暖房蓄熱モードに復帰させて、発熱機器51の結露を抑制することができる。 The processing contents of steps S28 and S29 after starting the heating and defrosting mode are the same as those of steps S10 and S11 in the first embodiment. As a result, the vehicle air conditioner 1 according to the first embodiment is returned to the heating heat storage mode when dew condensation on the heat generating device 51 is expected even during the defrosting of the composite heat exchanger 21. , Condensation of the heat generating device 51 can be suppressed.
 ステップS30では、第2実施形態における復帰動作が行われる。ステップS30においては、第1実施形態のステップS12と同様に、切替動作を実行した後、複数の復帰実行動作が行われる。複数の復帰実行動作の内容は、現在の運転モードが暖房除霜モードの通常態様と、暖房除霜モードのバッテリ冷却態様の何れであるかによって決定される。ステップS30の処理内容は、既に説明済みである為、再度の説明を省略する。 In step S30, the return operation according to the second embodiment is performed. In step S30, as in step S12 of the first embodiment, after executing the switching operation, a plurality of return execution operations are performed. The content of the plurality of return execution operations is determined depending on whether the current operation mode is the normal mode of the heating defrosting mode or the battery cooling mode of the heating defrosting mode. Since the processing content of step S30 has already been explained, the description will be omitted again.
 このように、第2実施形態に係る車両用空調装置1では、ステップS23で判定される除霜条件を、熱媒体温度Twが判定閾値KTwaよりも低いことにしている。従って、第2実施形態に係る車両用空調装置1によれば、複合型熱交換器21の除霜が必要か否かの判定処理を簡便にして、制御装置70の処理負担を抑制することができる。 As described above, in the vehicle air conditioner 1 according to the second embodiment, the defrosting condition determined in step S23 is set so that the heat medium temperature Tw is lower than the determination threshold value KTwa. Therefore, according to the vehicle air conditioner 1 according to the second embodiment, it is possible to simplify the process of determining whether or not defrosting of the composite heat exchanger 21 is necessary and suppress the processing load of the control device 70. it can.
 以上説明したように、第2実施形態に係る車両用空調装置1によれば、複合型熱交換器21の除霜が必要であるかの判定内容を変更した場合であっても、第1実施形態と共通の構成及び作動から奏される作用効果を、第1実施形態と同様に得ることができる。 As described above, according to the vehicle air conditioner 1 according to the second embodiment, even when the determination content of whether or not the composite heat exchanger 21 needs to be defrosted is changed, the first implementation is performed. The action and effect produced from the configuration and operation common to the embodiment can be obtained in the same manner as in the first embodiment.
 又、第2実施形態に係る車両用空調装置1によれば、第3熱媒体温度センサ73cによる熱媒体温度Twと、予め定められた判定閾値KTwaの比較によって、除霜条件の判定が行われる。これにより、車両用空調装置1は、複合型熱交換器21の除霜に関する判定の簡便化を図ることができ、制御装置70の処理負担を低減することができる。 Further, according to the vehicle air conditioner 1 according to the second embodiment, the defrosting condition is determined by comparing the heat medium temperature Tw by the third heat medium temperature sensor 73c with the predetermined determination threshold value KTwa. .. As a result, the vehicle air conditioner 1 can simplify the determination regarding defrosting of the composite heat exchanger 21, and can reduce the processing load of the control device 70.
 本開示は上述した実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述した実施形態では、冷凍サイクル10における第1膨張弁14a、第2膨張弁14bとして、電気式膨張弁を採用していたが、この態様に限定されるものではない。冷凍サイクル10において、高圧冷媒を減圧することができれば、種々の態様を採用することができる。例えば、第1膨張弁14aを電気式膨張弁としたまま、第2膨張弁14bを温度式膨張弁に変更しても良い。 In the above-described embodiment, the electric expansion valve is adopted as the first expansion valve 14a and the second expansion valve 14b in the refrigeration cycle 10, but the present invention is not limited to this embodiment. In the refrigeration cycle 10, various aspects can be adopted as long as the high-pressure refrigerant can be depressurized. For example, the second expansion valve 14b may be changed to a thermal expansion valve while the first expansion valve 14a is an electric expansion valve.
 又、上述した実施形態においては、水冷媒熱交換器12として、サブクール型の凝縮器を採用していたが、この態様に限定されるものではない。水冷媒熱交換器12として、レシーバ部12b、過冷却部12cを有しておらず、凝縮部12aで構成された態様を採用しても良い。 Further, in the above-described embodiment, the subcool type condenser is adopted as the water refrigerant heat exchanger 12, but the present invention is not limited to this mode. As the water-refrigerant heat exchanger 12, an embodiment in which the receiver unit 12b and the supercooling unit 12c are not provided and the water refrigerant heat exchanger 12 is composed of the condensing unit 12a may be adopted.
 そして、上述した実施形態においては、送風空気Wを加熱する為の加熱部の構成として、水冷媒熱交換器12及びヒータコア22を含む高温側熱媒体回路20を採用していたが、この態様に限定されるものではない。例えば、上述した実施形態におけるヒータコア22の位置に室内凝縮器を配置して、冷凍サイクル10の高圧冷媒の熱で送風空気Wを加熱する構成を採用しても良い。 Then, in the above-described embodiment, the high temperature side heat medium circuit 20 including the water refrigerant heat exchanger 12 and the heater core 22 is adopted as the configuration of the heating unit for heating the blown air W. It is not limited. For example, a configuration may be adopted in which the indoor condenser is arranged at the position of the heater core 22 in the above-described embodiment and the blown air W is heated by the heat of the high-pressure refrigerant in the refrigeration cycle 10.
 上述した実施形態においては、空気熱媒体熱交換器として、複合型熱交換器21を採用していたが、この態様に限定されるものではない。低温側熱媒体回路の熱媒体又は機器側熱媒体回路50の熱媒体と、外気OAとの熱交換が可能な熱交換器であれば、空気熱媒体熱交換器として採用することができる。 In the above-described embodiment, the composite heat exchanger 21 has been adopted as the air heat medium heat exchanger, but the present invention is not limited to this embodiment. Any heat exchanger capable of heat exchange between the heat medium of the low temperature side heat medium circuit or the heat medium of the device side heat medium circuit 50 and the outside air OA can be adopted as an air heat medium heat exchanger.
 従って、複合型熱交換器21の吸熱部21bに替えて、外気熱交換器を配置した構成としても良い。この時、複合型熱交換器21の放熱部21aに替えて、高温側ラジエータを配置しても良いし、他の態様を採用しても良い。 Therefore, the outside air heat exchanger may be arranged instead of the heat absorbing portion 21b of the composite heat exchanger 21. At this time, instead of the heat radiating portion 21a of the composite heat exchanger 21, a high temperature side radiator may be arranged, or another embodiment may be adopted.
 そして、上述した実施形態においては、高温側熱媒体回路20における高温側切替部30を、第1電磁弁30a及び第2電磁弁30bにて構成していたが、この態様に限定されるものではない。高温側切替部30としては、分岐部24の一方の流出口側における熱媒体の流量と、分岐部24の他方の流出口側における熱媒体の流量とを調整可能であれば、種々の態様を採用できる。例えば、高温側切替部30を、分岐部24の位置に配置された三方弁によって構成しても良い。 In the above-described embodiment, the high-temperature side switching unit 30 in the high-temperature side heat medium circuit 20 is composed of the first solenoid valve 30a and the second solenoid valve 30b, but the present invention is not limited to this embodiment. Absent. As the high temperature side switching unit 30, various modes can be used as long as the flow rate of the heat medium on one outlet side of the branch portion 24 and the flow rate of the heat medium on the other outlet side of the branch portion 24 can be adjusted. Can be adopted. For example, the high temperature side switching portion 30 may be configured by a three-way valve arranged at the position of the branch portion 24.
 又、低温側切替部43は、低温側三方弁43a及び開閉弁43bによって構成していたが、この態様に限定されるものではない。低温側三方弁43aに替えて、迂回流路42とバッテリ接続流路44の接続部分が間に位置するように、迂回流路42上に配置された2つの開閉弁で構成しても良い。 Further, the low temperature side switching unit 43 is composed of the low temperature side three-way valve 43a and the on-off valve 43b, but the present invention is not limited to this mode. Instead of the low temperature side three-way valve 43a, it may be composed of two on-off valves arranged on the bypass flow path 42 so that the connection portion between the bypass flow path 42 and the battery connection flow path 44 is located between them.
 又、上述した実施形態においては、発熱機器51として、インバータ、モータジェネレータ、トランスアクスル装置を含むパワーコントロールユニットを採用していたが、この態様に限定されるものではない。発熱機器51としては、車両に搭載されており、予め定められた機能を発揮する為の作動に伴い副次的に発熱する機器であれば、種々の機器を採用することができる。例えば、先進運転支援システムの構成機器を採用することも可能である。 Further, in the above-described embodiment, the power control unit including the inverter, the motor generator, and the transaxle device is adopted as the heat generating device 51, but the present invention is not limited to this mode. As the heat generating device 51, various devices can be adopted as long as they are mounted on the vehicle and generate heat secondarily as the operation for exerting a predetermined function is performed. For example, it is also possible to adopt the components of the advanced driver assistance system.
 そして、上述した実施形態における除霜条件の判定においては、複合型熱交換器21の吸熱部から流出する熱媒体温度Tw及び基準熱媒体温度KTwを用いていたが、この態様に限定されるものではない。複合型熱交換器21の吸熱部21bにおける着霜と相関を有する物理量であれば、他の物理量を採用してもよい。例えば、チラー15の熱媒体通路における熱媒体温度、チラー15の冷媒通路における冷媒温度、チラー15の冷媒通路における冷媒圧力等を、除霜条件に採用しても良い。又、複合型熱交換器21の吸熱部21bを通過する光量、吸熱部21bを通過する前後の風量、圧縮機11の回転数Nc等を採用することも可能である。 In the determination of the defrosting conditions in the above-described embodiment, the heat medium temperature Tw and the reference heat medium temperature KTw flowing out from the endothermic portion of the composite heat exchanger 21 are used, but the present invention is limited to this embodiment. is not. Other physical quantities may be adopted as long as they are physical quantities that correlate with frost formation in the endothermic portion 21b of the composite heat exchanger 21. For example, the heat medium temperature in the heat medium passage of the chiller 15, the refrigerant temperature in the refrigerant passage of the chiller 15, the refrigerant pressure in the refrigerant passage of the chiller 15, and the like may be adopted as the defrosting conditions. It is also possible to adopt the amount of light passing through the heat absorbing portion 21b of the composite heat exchanger 21, the amount of air before and after passing through the heat absorbing portion 21b, the rotation speed Nc of the compressor 11, and the like.
 又、上述した実施形態におけるステップS6等では、機器温度Twdと放熱完了温度KTrの比較により、発熱機器51の放熱が完了したか否かを判定していたが、この態様に限定されるものではない。例えば、ステップS5において、発熱機器51の排熱を外気OAに対して放熱した時点からの経過時間によって、発熱機器51の放熱が完了したか否かを判定しても良い。 Further, in step S6 and the like in the above-described embodiment, it is determined whether or not the heat dissipation of the heat generating device 51 is completed by comparing the device temperature Twd and the heat dissipation completion temperature KTr, but the present invention is not limited to this embodiment. Absent. For example, in step S5, it may be determined whether or not the heat dissipation of the heat generating device 51 is completed based on the elapsed time from the time when the exhaust heat of the heat generating device 51 is dissipated to the outside air OA.
 更に、上述した実施形態におけるステップS10においては、第3熱媒体温度センサ73cで検出された熱媒体温度Twと、結露保護温度KTcとの比較によって、発熱機器51における結露に関する判定を行っている。この点、発熱機器51における結露の判定する為の物理量として、第5熱媒体温度センサ73eで検出される機器温度Twdを採用しても良い。 Further, in step S10 in the above-described embodiment, the dew condensation in the heat generating device 51 is determined by comparing the heat medium temperature Tw detected by the third heat medium temperature sensor 73c with the dew condensation protection temperature KTc. In this regard, the device temperature Twd detected by the fifth heat medium temperature sensor 73e may be adopted as the physical quantity for determining dew condensation in the heat generating device 51.
 そして、車両用空調装置1における冷凍サイクル10、高温側熱媒体回路20、低温側熱媒体回路40、機器側熱媒体回路50は、上述の実施形態に開示されたものに限定されるものではない。 The refrigeration cycle 10, the high temperature side heat medium circuit 20, the low temperature side heat medium circuit 40, and the device side heat medium circuit 50 in the vehicle air conditioner 1 are not limited to those disclosed in the above-described embodiment. ..
 冷凍サイクル10の冷媒として、例えば、R134a、R600a、R410A、R404A、R32、R407C等を採用してもよい。または、これらのうち複数の冷媒を混合させた混合冷媒等を採用してもよい。 As the refrigerant of the refrigeration cycle 10, for example, R134a, R600a, R410A, R404A, R32, R407C and the like may be adopted. Alternatively, a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
 高温側熱媒体回路20、低温側熱媒体回路40及び機器側熱媒体回路50の熱媒体として、例えば、ジメチルポリシロキサン、或いはナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液冷媒、オイル等を含む液媒体等を採用してもよい。 As the heat medium of the high temperature side heat medium circuit 20, the low temperature side heat medium circuit 40 and the device side heat medium circuit 50, for example, a solution containing dimethylpolysiloxane or nanofluid, an antifreeze liquid, an aqueous liquid refrigerant containing alcohol or the like, A liquid medium or the like containing oil or the like may be adopted.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (20)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、前記圧縮機にて圧縮された高圧冷媒の熱を熱源として空調対象空間へ送風される送風空気を加熱する加熱部(12、20)と、前記加熱部から流出した高圧冷媒を減圧させる減圧部(14a)と、前記減圧部にて減圧された低圧冷媒を蒸発させて吸熱する吸熱器(15)と、を有する冷凍サイクル(10)と、
     車室外の外気と熱媒体とを熱交換させる空気熱媒体熱交換器(21)を有すると共に、前記吸熱器にて前記低圧冷媒に吸熱させて冷却するように前記熱媒体を循環させる低温側熱媒体回路(40)と、
     前記空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する発熱機器(51)と、前記発熱機器を流通した前記熱媒体が前記空気熱媒体熱交換器を迂回するように接続されたバイパス流路(54)と、前記発熱機器を流通する前記熱媒体の流れを少なくとも前記バイパス流路の側と前記空気熱媒体熱交換器の側の何れかに切り替える切替部(53)と、を有すると共に、前記発熱機器と前記熱媒体が熱交換するように前記熱媒体を循環させる機器側熱媒体回路(50)と、
     制御部(70)と、を有し、
     前記制御部は、前記発熱機器を流通した前記熱媒体の熱によって前記空気熱媒体熱交換器の除霜を行う除霜動作を終了して、前記除霜動作の前の運転状態に復帰させる復帰動作に際して、前記吸熱器を通過した前記熱媒体と前記外気に関する前記空気熱媒体熱交換器の熱交換性能を回復させる前に、前記発熱機器を流通した前記熱媒体が前記発熱機器及び前記バイパス流路を介して前記機器側熱媒体回路を循環するように、前記切替部の作動を制御する車両用空調装置。
    A compressor (11) that compresses and discharges the refrigerant, and heating units (12, 20) that heat the blown air blown to the air-conditioned space using the heat of the high-pressure refrigerant compressed by the compressor as a heat source. A refrigeration cycle (10) having a decompression unit (14a) for reducing the pressure of the high-pressure refrigerant flowing out of the heating unit and a heat absorber (15) for evaporating the low-pressure refrigerant decompressed by the decompression unit to absorb heat.
    It has an air heat medium heat exchanger (21) that exchanges heat between the outside air outside the vehicle interior and the heat medium, and the low-temperature side heat that circulates the heat medium so that the low-pressure refrigerant absorbs heat with the heat absorber to cool it. The medium circuit (40) and
    A heat generating device (51) that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates, and the heat medium that has passed through the heat generating device bypass the air heat medium heat exchanger. A switching unit (53) that switches the flow of the connected bypass flow path (54) and the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side. The device-side heat medium circuit (50) that circulates the heat medium so that the heat generating device and the heat medium exchange heat with each other.
    It has a control unit (70) and
    The control unit terminates the defrosting operation of defrosting the air heat medium heat exchanger by the heat of the heat medium flowing through the heat generating device, and returns to the operating state before the defrosting operation. In operation, the heat medium that has passed through the heat generating device is the heat generating device and the bypass flow before the heat exchange performance of the heat medium that has passed through the heat absorber and the air heat medium heat exchanger with respect to the outside air is restored. A vehicle air conditioner that controls the operation of the switching unit so as to circulate through the device-side heat medium circuit via a path.
  2.  前記制御部は、前記復帰動作に際して、前記冷凍サイクルの運転を再開させた後に、前記吸熱器を通過した前記熱媒体と前記外気に関する前記空気熱媒体熱交換器の熱交換性能を回復させる請求項1に記載の車両用空調装置。 A claim that the control unit recovers the heat exchange performance of the air heat medium heat exchanger with respect to the heat medium passing through the heat absorber and the outside air after restarting the operation of the refrigeration cycle in the return operation. The vehicle air conditioner according to 1.
  3.  前記制御部は、
     前記発熱機器の熱を用いた前記空気熱媒体熱交換器の除霜に際して、前記発熱機器に結露が発生する結露条件を満たすか否かを判定する機器結露判定部(70c)と、
     前記発熱機器の熱を用いた前記空気熱媒体熱交換器の除霜が完了したか否かを判定する除霜完了判定部(70d)と、を有し、
     前記除霜完了判定部にて前記空気熱媒体熱交換器の除霜が完了していないと判定される状態で、前記機器結露判定部にて前記結露条件を満たすと判定された場合には、前記復帰動作を実行して、前記空気熱媒体熱交換器の除霜を実行する前の運転状態に復帰させる請求項1又は2に記載の車両用空調装置。
    The control unit
    When defrosting the air heat medium heat exchanger using the heat of the heat generating device, a device dew condensation determination unit (70c) for determining whether or not the dew condensation condition in which dew condensation occurs in the heat generating device is satisfied.
    It has a defrosting completion determination unit (70d) for determining whether or not defrosting of the air heat medium heat exchanger using the heat of the heat generating device has been completed.
    When the defrosting completion determination unit determines that the defrosting of the air heat medium heat exchanger has not been completed, and the equipment dew condensation determination unit determines that the dew condensation condition is satisfied, The vehicle air conditioner according to claim 1 or 2, wherein the return operation is executed to return to the operating state before the defrosting of the air heat medium heat exchanger is performed.
  4.  前記制御部は、前記空気熱媒体熱交換器を通過する前記外気の風量の制限を解除することによって、前記吸熱器を通過した前記熱媒体と前記外気に関する前記空気熱媒体熱交換器の熱交換性能を回復させる請求項1ないし3の何れか1つに記載の車両用空調装置。 The control unit releases the restriction on the air volume of the outside air passing through the air heat medium heat exchanger to exchange heat between the heat medium passing through the heat absorber and the air heat medium heat exchanger with respect to the outside air. The vehicle air conditioner according to any one of claims 1 to 3, which restores the performance.
  5.  前記制御部は、前記吸熱器を通過した前記熱媒体が前記空気熱媒体熱交換器を通過する流量を増大させることによって、前記吸熱器を通過した前記熱媒体と前記外気に関する前記空気熱媒体熱交換器の熱交換性能を回復させる請求項1ないし4の何れか1つに記載の車両用空調装置。 The control unit increases the flow rate of the heat medium passing through the heat absorber through the air heat medium heat exchanger to increase the heat of the heat medium passing through the heat absorber and the heat of the air heat medium with respect to the outside air. The vehicle air conditioner according to any one of claims 1 to 4, which recovers the heat exchange performance of the exchanger.
  6.  冷媒を圧縮して吐出する圧縮機(11)と、前記圧縮機にて圧縮された高圧冷媒の熱を熱源として空調対象空間へ送風される送風空気を加熱する加熱部(12、20)と、前記加熱部から流出した高圧冷媒を減圧させる減圧部(14a)と、前記減圧部にて減圧された低圧冷媒を蒸発させて吸熱する吸熱器(15)と、を有する冷凍サイクル(10)と、
     車室外の外気と熱媒体とを熱交換させる空気熱媒体熱交換器(21)を有すると共に、前記吸熱器にて前記低圧冷媒に吸熱させて冷却するように前記熱媒体を循環させる低温側熱媒体回路(40)と、
     前記空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する発熱機器(51)と、前記発熱機器を流通した前記熱媒体が前記空気熱媒体熱交換器を迂回するように接続されたバイパス流路(54)と、前記発熱機器を流通する前記熱媒体の流れを少なくとも前記バイパス流路の側と前記空気熱媒体熱交換器の側の何れかに切り替える切替部(53)と、を有すると共に、前記発熱機器と前記熱媒体が熱交換するように前記熱媒体を循環させる機器側熱媒体回路(50)と、
     制御部(70)と、を有し、
     前記制御部は、
     前記発熱機器の熱を用いた前記空気熱媒体熱交換器の除霜に際して、前記発熱機器に結露が発生する結露条件を満たすか否かを判定する機器結露判定部(70c)と、
     前記発熱機器の熱を用いた前記空気熱媒体熱交換器の除霜が完了したか否かを判定する除霜完了判定部(70d)と、を有し、
     前記除霜完了判定部にて前記空気熱媒体熱交換器の除霜が完了していないと判定される状態で、前記機器結露判定部にて前記結露条件を満たすと判定された場合には、復帰動作を実行して、前記空気熱媒体熱交換器の除霜を実行する前の運転状態に復帰させる車両用空調装置。
    A compressor (11) that compresses and discharges the refrigerant, and heating units (12, 20) that heat the blown air blown to the air-conditioned space using the heat of the high-pressure refrigerant compressed by the compressor as a heat source. A refrigeration cycle (10) having a decompression unit (14a) for reducing the pressure of the high-pressure refrigerant flowing out of the heating unit, and a heat absorber (15) for evaporating the low-pressure refrigerant decompressed by the decompression unit to absorb heat.
    It has an air heat medium heat exchanger (21) that exchanges heat between the outside air outside the vehicle interior and the heat medium, and the low-temperature side heat that circulates the heat medium so that the low-pressure refrigerant absorbs heat with the heat absorber to cool it. The medium circuit (40) and
    A heat generating device (51) that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates, and the heat medium that has passed through the heat generating device bypass the air heat medium heat exchanger. A switching unit (53) that switches the flow of the connected bypass flow path (54) and the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side. The device-side heat medium circuit (50) that circulates the heat medium so that the heat generating device and the heat medium exchange heat with each other.
    It has a control unit (70) and
    The control unit
    When defrosting the air heat medium heat exchanger using the heat of the heat generating device, a device dew condensation determination unit (70c) for determining whether or not the dew condensation condition in which dew condensation occurs in the heat generating device is satisfied.
    It has a defrosting completion determination unit (70d) for determining whether or not defrosting of the air heat medium heat exchanger using the heat of the heat generating device has been completed.
    When the defrosting completion determination unit determines that the defrosting of the air heat medium heat exchanger has not been completed, and the equipment dew condensation determination unit determines that the dew condensation condition is satisfied, A vehicle air conditioner that executes a return operation to return to the operating state before defrosting the air heat medium heat exchanger.
  7.  冷媒を圧縮して吐出する圧縮機(11)と、前記圧縮機にて圧縮された高圧冷媒の熱を熱源として空調対象空間へ送風される送風空気を加熱する加熱部(12、20)と、前記加熱部から流出した高圧冷媒を減圧させる減圧部(14a)と、前記減圧部にて減圧された低圧冷媒を蒸発させて吸熱する吸熱器(15)と、を有する冷凍サイクル(10)と、
     車室外の外気と熱媒体とを熱交換させる空気熱媒体熱交換器(21)を有すると共に、前記吸熱器にて前記低圧冷媒に吸熱させて冷却するように前記熱媒体を循環させる低温側熱媒体回路(40)と、
     前記空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する発熱機器(51)と、前記発熱機器を流通した前記熱媒体が前記空気熱媒体熱交換器を迂回するように接続されたバイパス流路(54)と、前記発熱機器を流通する前記熱媒体の流れを少なくとも前記バイパス流路の側と前記空気熱媒体熱交換器の側の何れかに切り替える切替部(53)と、を有すると共に、前記発熱機器と前記熱媒体が熱交換するように前記熱媒体を循環させる機器側熱媒体回路(50)と、
     制御部(70)と、を有し、
     前記制御部は、前記発熱機器を流通した前記熱媒体の熱によって前記空気熱媒体熱交換器の除霜を行う除霜動作に際して、前記吸熱器を通過した前記熱媒体と前記外気に関する前記空気熱媒体熱交換器の熱交換性能を低下させた後に、前記発熱機器を流通した前記熱媒体が前記空気熱媒体熱交換器を通過するように、前記切替部の作動を制御する車両用空調装置。
    A compressor (11) that compresses and discharges the refrigerant, and heating units (12, 20) that heat the blown air blown to the air-conditioned space using the heat of the high-pressure refrigerant compressed by the compressor as a heat source. A refrigeration cycle (10) having a decompression unit (14a) for reducing the pressure of the high-pressure refrigerant flowing out of the heating unit, and a heat absorber (15) for evaporating the low-pressure refrigerant decompressed by the decompression unit to absorb heat.
    It has an air heat medium heat exchanger (21) that exchanges heat between the outside air outside the vehicle interior and the heat medium, and the low-temperature side heat that circulates the heat medium so that the low-pressure refrigerant absorbs heat with the heat absorber to cool it. The medium circuit (40) and
    A heat generating device (51) that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates, and the heat medium that has passed through the heat generating device bypass the air heat medium heat exchanger. A switching unit (53) that switches the flow of the connected bypass flow path (54) and the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side. The device-side heat medium circuit (50) that circulates the heat medium so that the heat generating device and the heat medium exchange heat with each other.
    It has a control unit (70) and
    The control unit defrosts the air heat medium heat exchanger by the heat of the heat medium flowing through the heat generating device, and the air heat related to the heat medium and the outside air passing through the heat absorber. A vehicle air conditioner that controls the operation of the switching unit so that the heat medium that has passed through the heat generating device passes through the air heat medium heat exchanger after the heat exchange performance of the medium heat exchanger is lowered.
  8.  前記制御部は、前記発熱機器を流通した前記熱媒体が前記空気熱媒体熱交換器を通過するように前記切替部の作動を制御する前に、前記冷凍サイクルの運転を停止する請求項7に記載の車両用空調装置。 7. The control unit stops the operation of the refrigeration cycle before controlling the operation of the switching unit so that the heat medium flowing through the heat generating device passes through the air heat medium heat exchanger. The vehicle air conditioner described.
  9.  前記制御部は、
     前記発熱機器に生じた熱の放熱が必要であるか否かを判定する放熱要否判定部(70a)と、
     前記空気熱媒体熱交換器の除霜が必要であるか否かを判定する除霜判定部(70b)と、を有し、
     前記除霜判定部で前記空気熱媒体熱交換器の除霜が必要でないと判定された状態で、前記放熱要否判定部で前記発熱機器に生じた熱の放熱が必要と判定された場合には、前記発熱機器を流通した前記熱媒体の熱を前記空気熱媒体熱交換器にて前記外気に放熱させる請求項7又は8に記載の車両用空調装置。
    The control unit
    A heat dissipation necessity determination unit (70a) for determining whether or not heat generated in the heat generating device needs to be dissipated, and
    It has a defrosting determination unit (70b) for determining whether or not defrosting of the air heat medium heat exchanger is necessary.
    When the defrosting determination unit determines that defrosting of the air heat medium heat exchanger is not necessary, and the heat dissipation necessity determination unit determines that the heat generated in the heat generating device needs to be dissipated. The vehicle air conditioner according to claim 7 or 8, wherein the heat of the heat medium that has passed through the heat generating device is dissipated to the outside air by the air heat medium heat exchanger.
  10.  前記空気熱媒体熱交換器を通過する前記熱媒体の温度に相関を有する特定物理量を検出する検出部(73c)を有し、
     前記除霜判定部は、前記特定物理量によって予め定められた閾値よりも前記検出部にて検出された前記特定物理量が小さい場合に、前記空気熱媒体熱交換器の除霜が必要であると判定する請求項9に記載の車両用空調装置。
    It has a detection unit (73c) for detecting a specific physical quantity having a correlation with the temperature of the heat medium passing through the air heat medium heat exchanger.
    The defrost determination unit determines that defrosting of the air heat medium heat exchanger is necessary when the specific physical quantity detected by the detection unit is smaller than the threshold value predetermined by the specific physical quantity. The vehicle air conditioner according to claim 9.
  11.  前記空気熱媒体熱交換器を通過する前記熱媒体の温度に相関を有する特定物理量を検出する検出部(73c)を有し、
     前記除霜判定部は、予め前記検出部で検出された前記特定物理量によって定められる基準値に対して、前記検出部にて現時点で検出された前記特定物理量が環境に応じて定められる変動値よりも大きく乖離していた場合に、前記空気熱媒体熱交換器の除霜が必要であると判定する請求項9に記載の車両用空調装置。
    It has a detection unit (73c) for detecting a specific physical quantity having a correlation with the temperature of the heat medium passing through the air heat medium heat exchanger.
    The defrost determination unit is based on a fluctuation value in which the specific physical quantity currently detected by the detection unit is determined according to the environment, with respect to a reference value previously determined by the specific physical quantity detected by the detection unit. The vehicle air conditioner according to claim 9, wherein it is determined that defrosting of the air heat medium heat exchanger is necessary when there is a large deviation.
  12.  前記制御部は、前記空気熱媒体熱交換器を通過する前記外気の風量を制限することによって、前記吸熱器を通過した前記熱媒体と前記外気に関する前記空気熱媒体熱交換器の熱交換性能を低下させる請求項7ないし11の何れか1つに記載の車両用空調装置。 By limiting the air volume of the outside air passing through the air heat medium heat exchanger, the control unit determines the heat exchange performance of the air heat medium heat exchanger with respect to the heat medium passing through the heat absorber and the outside air. The vehicle air conditioner according to any one of claims 7 to 11.
  13.  前記制御部は、前記吸熱器を通過した前記熱媒体が前記空気熱媒体熱交換器を通過する流量を減少させることによって、前記吸熱器を通過した前記熱媒体と前記外気に関する前記空気熱媒体熱交換器の熱交換性能を低下させる請求項7ないし12の何れか1つに記載の車両用空調装置。 The control unit reduces the flow rate of the heat medium that has passed through the heat absorber through the air heat medium heat exchanger, thereby reducing the heat of the heat medium that has passed through the heat absorber and the heat of the air heat medium with respect to the outside air. The vehicle air conditioner according to any one of claims 7 to 12, which reduces the heat exchange performance of the exchanger.
  14.  冷媒を圧縮して吐出する圧縮機(11)と、前記圧縮機にて圧縮された高圧冷媒の熱を熱源として空調対象空間へ送風される送風空気を加熱する加熱部(12、20)と、前記加熱部から流出した高圧冷媒を減圧させる減圧部(14a)と、前記減圧部にて減圧された低圧冷媒を蒸発させて吸熱する吸熱器(15)と、を有する冷凍サイクル(10)と、
     車室外の外気と熱媒体とを熱交換させる空気熱媒体熱交換器(21)を有すると共に、前記吸熱器にて前記低圧冷媒に吸熱させて冷却するように前記熱媒体を循環させる低温側熱媒体回路(40)と、
     前記空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する発熱機器(51)と、前記発熱機器を流通した前記熱媒体が前記空気熱媒体熱交換器を迂回するように接続されたバイパス流路(54)と、前記発熱機器を流通する前記熱媒体の流れを少なくとも前記バイパス流路の側と前記空気熱媒体熱交換器の側の何れかに切り替える切替部(53)と、を有すると共に、前記発熱機器と前記熱媒体が熱交換するように前記熱媒体を循環させる機器側熱媒体回路(50)と、
     前記空気熱媒体熱交換器を通過する前記熱媒体の温度に相関を有する特定物理量を検出する検出部(73c)と、
     制御部(70)と、を有し、
     前記制御部は、
     前記検出部にて現時点で検出された前記特定物理量が、予め前記検出部で検出された前記特定物理量によって定められる基準値に対して、環境に応じて定められる変動値よりも大きく乖離していた場合に、前記空気熱媒体熱交換器に対する除霜動作を行う車両用空調装置。
    A compressor (11) that compresses and discharges the refrigerant, and heating units (12, 20) that heat the blown air blown to the air-conditioned space using the heat of the high-pressure refrigerant compressed by the compressor as a heat source. A refrigeration cycle (10) having a decompression unit (14a) for reducing the pressure of the high-pressure refrigerant flowing out of the heating unit, and a heat absorber (15) for evaporating the low-pressure refrigerant decompressed by the decompression unit to absorb heat.
    It has an air heat medium heat exchanger (21) that exchanges heat between the outside air outside the vehicle interior and the heat medium, and the low-temperature side heat that circulates the heat medium so that the low-pressure refrigerant absorbs heat with the heat absorber to cool it. The medium circuit (40) and
    A heat generating device (51) that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates, and the heat medium that has passed through the heat generating device bypass the air heat medium heat exchanger. A switching unit (53) that switches the flow of the connected bypass flow path (54) and the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side. The device-side heat medium circuit (50) that circulates the heat medium so that the heat generating device and the heat medium exchange heat with each other.
    A detection unit (73c) for detecting a specific physical quantity having a correlation with the temperature of the heat medium passing through the air heat medium heat exchanger.
    It has a control unit (70) and
    The control unit
    The specific physical quantity detected at the present time by the detection unit deviates more than a fluctuation value determined according to the environment with respect to the reference value determined in advance by the specific physical quantity detected by the detection unit. In this case, a vehicle air conditioner that performs a defrosting operation on the air heat medium heat exchanger.
  15.  前記制御部は、前記空気熱媒体熱交換器にて前記外気から前記熱媒体へ吸熱させる空調動作を開始した後に、前記検出部で検出した前記特定物理量を前記基準値に決定する請求項14に記載の車両用空調装置。 According to claim 14, the control unit determines the specific physical quantity detected by the detection unit as the reference value after starting an air conditioning operation in which the air heat medium heat exchanger absorbs heat from the outside air to the heat medium. The vehicle air conditioner described.
  16.  前記制御部は、前記空調動作に伴って作動する前記車両用空調装置の構成機器の動作が安定した状態にて、前記検出部で検出した前記特定物理量を前記基準値に決定する請求項15に記載の車両用空調装置。 15. The control unit determines the specific physical quantity detected by the detection unit as the reference value in a state where the operation of the component equipment of the vehicle air conditioner that operates in association with the air conditioning operation is stable. The vehicle air conditioner described.
  17.  前記制御部は、前記基準値を取得した際と現時点における車速の変動と、前記基準値を取得した際と現時点における前記圧縮機の回転数の変動と、前記基準値を取得した際と現時点における前記外気の温度の変動と、を用いて、現時点における前記変動値を決定する請求項14ないし16の何れか1つに記載の車両用空調装置。 The control unit changes the vehicle speed when the reference value is acquired and at the present time, changes in the rotation speed of the compressor when the reference value is acquired and at the present time, and when the reference value is acquired and at the present time. The vehicle air conditioner according to any one of claims 14 to 16, wherein the fluctuation value of the temperature of the outside air is used to determine the fluctuation value at the present time.
  18.  前記低温側熱媒体回路は、
     前記吸熱器及び前記空気熱媒体熱交換器に対して並列に接続され、前記吸熱器を通過した前記熱媒体によって冷却可能な冷却対象物(45)と、
     前記低温側熱媒体回路における前記熱媒体の流れを、少なくとも、前記吸熱器及び前記空気熱媒体熱交換器を介して循環する第1態様と、前記空気熱媒体熱交換器を迂回すると共に前記吸熱器及び前記冷却対象物を介して循環する第2態様に切り替える低温側切替部(43)と、を有し、
     前記制御部は、
     前記冷却対象物を冷却する必要があるか否かを判定する冷却要否判定部(70e)を有し、
     前記除霜動作を行う際に、前記冷却要否判定部によって前記冷却対象物を冷却する必要があると判定された場合に、前記低温側熱媒体回路における前記熱媒体の流れを前記第2態様に切り替えることで、前記吸熱器を通過した前記熱媒体と前記外気に関する前記空気熱媒体熱交換器の熱交換性能を低下させる請求項7ないし17の何れか1つに記載の車両用空調装置。
    The low temperature side heat medium circuit
    A cooling object (45) connected in parallel to the heat absorber and the air heat medium heat exchanger and coolable by the heat medium that has passed through the heat exchanger.
    The first aspect in which the flow of the heat medium in the low temperature side heat medium circuit is circulated through at least the heat absorber and the air heat medium heat exchanger, and the heat absorption while bypassing the air heat medium heat exchanger. It has a low temperature side switching unit (43) for switching to the second mode, which circulates through the vessel and the object to be cooled.
    The control unit
    It has a cooling necessity determination unit (70e) for determining whether or not it is necessary to cool the object to be cooled.
    When the cooling necessity determination unit determines that it is necessary to cool the object to be cooled when performing the defrosting operation, the flow of the heat medium in the low temperature side heat medium circuit is the second aspect. The vehicle air conditioner according to any one of claims 7 to 17, wherein by switching to, the heat exchange performance of the heat medium passing through the heat absorber and the air heat medium heat exchanger with respect to the outside air is lowered.
  19.  前記制御部は、前記除霜動作を行う際に、前記冷却要否判定部によって前記冷却対象物を冷却する必要がないと判定された場合に、前記低温側熱媒体回路における前記熱媒体の循環を停止することで、前記吸熱器を通過した前記熱媒体と前記外気に関する前記空気熱媒体熱交換器の熱交換性能を低下させる請求項18に記載の車両用空調装置。 When the control unit determines that it is not necessary to cool the object to be cooled by the cooling necessity determination unit when performing the defrosting operation, the control unit circulates the heat medium in the low temperature side heat medium circuit. The vehicle air conditioner according to claim 18, wherein the heat exchange performance of the air heat medium heat exchanger with respect to the heat medium and the outside air that has passed through the heat absorber is reduced by stopping the heat exchanger.
  20.  冷媒を圧縮して吐出する圧縮機(11)と、前記圧縮機にて圧縮された高圧冷媒の熱を熱源として空調対象空間へ送風される送風空気を加熱する加熱部(12、20)と、前記加熱部から流出した高圧冷媒を減圧させる減圧部(14a)と、前記減圧部にて減圧された低圧冷媒を蒸発させて吸熱する吸熱器(15)と、を有する冷凍サイクル(10)と、
     車室外の外気と熱媒体とを熱交換させる空気熱媒体熱交換器(21)を有すると共に、前記吸熱器にて前記低圧冷媒に吸熱させて冷却するように前記熱媒体を循環させる低温側熱媒体回路(40)と、
     前記空気熱媒体熱交換器に対して並列に接続され、作動に伴って発熱する発熱機器(51)と、前記発熱機器を流通した前記熱媒体が前記空気熱媒体熱交換器を迂回するように接続されたバイパス流路(54)と、前記発熱機器を流通する前記熱媒体の流れを少なくとも前記バイパス流路の側と前記空気熱媒体熱交換器の側の何れかに切り替える切替部(53)と、を有すると共に、前記発熱機器と前記熱媒体が熱交換するように前記熱媒体を循環させる機器側熱媒体回路と、
     制御部(70)と、を有し、
     前記制御部は、
     前記発熱機器に生じた熱の放熱が必要であるか否かを判定する放熱要否判定部(70a)と、
     前記空気熱媒体熱交換器の除霜が必要であるか否かを判定する除霜判定部(70b)と、を有し、
     前記除霜判定部で前記空気熱媒体熱交換器の除霜が必要でないと判定された状態で、前記放熱要否判定部で前記発熱機器に生じた熱の放熱が必要と判定された場合には、前記発熱機器を流通した前記熱媒体の熱を前記空気熱媒体熱交換器にて前記外気に放熱させる車両用空調装置。
    A compressor (11) that compresses and discharges the refrigerant, and heating units (12, 20) that heat the blown air blown to the air-conditioned space using the heat of the high-pressure refrigerant compressed by the compressor as a heat source. A refrigeration cycle (10) having a decompression unit (14a) for reducing the pressure of the high-pressure refrigerant flowing out of the heating unit and a heat absorber (15) for evaporating the low-pressure refrigerant decompressed by the decompression unit to absorb heat.
    It has an air heat medium heat exchanger (21) that exchanges heat between the outside air outside the vehicle interior and the heat medium, and the low-temperature side heat that circulates the heat medium so that the low-pressure refrigerant absorbs heat with the heat absorber to cool it. The medium circuit (40) and
    A heat generating device (51) that is connected in parallel to the air heat medium heat exchanger and generates heat as it operates, and the heat medium that has passed through the heat generating device bypass the air heat medium heat exchanger. A switching unit (53) that switches the flow of the connected bypass flow path (54) and the heat medium flowing through the heat generating device to at least one of the bypass flow path side and the air heat medium heat exchanger side. A device-side heat medium circuit that circulates the heat medium so that the heat generating device and the heat medium exchange heat with each other.
    It has a control unit (70) and
    The control unit
    A heat dissipation necessity determination unit (70a) for determining whether or not heat generated in the heat generating device needs to be dissipated, and
    It has a defrosting determination unit (70b) for determining whether or not defrosting of the air heat medium heat exchanger is necessary.
    When the defrosting determination unit determines that defrosting of the air heat medium heat exchanger is not necessary, and the heat dissipation necessity determination unit determines that the heat generated in the heat generating device needs to be dissipated. Is a vehicle air conditioner that dissipates the heat of the heat medium that has passed through the heat generating device to the outside air by the air heat medium heat exchanger.
PCT/JP2020/021884 2019-06-10 2020-06-03 Vehicle air conditioner WO2020250764A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-107955 2019-06-10
JP2019107955A JP7415339B2 (en) 2019-06-10 2019-06-10 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2020250764A1 true WO2020250764A1 (en) 2020-12-17

Family

ID=73743716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021884 WO2020250764A1 (en) 2019-06-10 2020-06-03 Vehicle air conditioner

Country Status (2)

Country Link
JP (1) JP7415339B2 (en)
WO (1) WO2020250764A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023132720A (en) * 2022-03-11 2023-09-22 株式会社デンソー Composite type heat exchanger and heat exchange system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017056A (en) * 2010-07-09 2012-01-26 Nippon Soken Inc Temperature adjustment system for vehicle
JP2017081530A (en) * 2015-10-29 2017-05-18 株式会社デンソー Heat pump system
JP2019026111A (en) * 2017-07-31 2019-02-21 株式会社デンソー Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017056A (en) * 2010-07-09 2012-01-26 Nippon Soken Inc Temperature adjustment system for vehicle
JP2017081530A (en) * 2015-10-29 2017-05-18 株式会社デンソー Heat pump system
JP2019026111A (en) * 2017-07-31 2019-02-21 株式会社デンソー Air conditioner

Also Published As

Publication number Publication date
JP2020199870A (en) 2020-12-17
JP7415339B2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US10406889B2 (en) Heat pump system
US7152422B2 (en) Vapor compression refrigerator
US10168079B2 (en) Refrigeration cycle device
US20160116197A1 (en) Refrigeration cycle device
JP7176405B2 (en) temperature controller
CN108973587B (en) Automobile heat pump air conditioning system and control method
US20220011006A1 (en) Air conditioner
WO2014002411A1 (en) Vehicular air-conditioning unit
JP7458205B2 (en) Vehicle air conditioner
US20220402336A1 (en) Vehicle air conditioner
WO2021100409A1 (en) Refrigeration cycle device
CN112739562B (en) Refrigeration cycle device
WO2020213537A1 (en) Refrigeration cycle device
JP2020176824A (en) Refrigeration cycle device
US20230091458A1 (en) Refrigeration cycle device
WO2020050040A1 (en) Refrigeration cycle device
WO2022158153A1 (en) Heat management system
WO2021220661A1 (en) Vehicle air conditioning device
WO2020250764A1 (en) Vehicle air conditioner
JP2022068466A (en) Air conditioner
WO2022181110A1 (en) Air conditioning device
WO2020250765A1 (en) Vehicular heat management system
JP4213535B2 (en) Air conditioner for vehicles
WO2023276626A1 (en) Heat pump cycle apparatus
JP7497857B2 (en) Vehicle air temperature control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822524

Country of ref document: EP

Kind code of ref document: A1