WO2022038950A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022038950A1
WO2022038950A1 PCT/JP2021/027187 JP2021027187W WO2022038950A1 WO 2022038950 A1 WO2022038950 A1 WO 2022038950A1 JP 2021027187 W JP2021027187 W JP 2021027187W WO 2022038950 A1 WO2022038950 A1 WO 2022038950A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling
unit
circuit
compressor
Prior art date
Application number
PCT/JP2021/027187
Other languages
French (fr)
Japanese (ja)
Inventor
康太 武市
祐一 加見
憲彦 榎本
大輝 加藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022038950A1 publication Critical patent/WO2022038950A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a refrigeration cycle device configured so that the refrigerant circuit can be switched.
  • Patent Document 1 discloses a refrigerating cycle device that is applied to a vehicle air conditioner and is configured to be able to switch a refrigerant circuit.
  • the refrigeration cycle apparatus of Patent Document 1 includes a receiver in addition to heat exchangers such as an indoor condenser, an outdoor heat exchanger, and an indoor evaporator.
  • the receiver is a liquid storage unit that separates the gas and liquid of the refrigerant flowing out from the heat exchanger that functions as a condenser and stores the excess refrigerant of the cycle as a liquid phase refrigerant.
  • the outdoor heat exchanger in the cooling mode for cooling the vehicle interior, dissipates heat to the outside air and causes the condensed refrigerant to flow into the receiver. Further, the indoor evaporator switches to a refrigerant circuit that absorbs heat from the blown air blown into the vehicle interior and sucks the evaporated refrigerant into the compressor. Further, in the heating mode for heating the interior of the vehicle, the indoor condenser dissipates heat to the blown air and causes the condensed refrigerant to flow into the receiver. Further, the outdoor heat exchanger switches to a refrigerant circuit that absorbs heat from the outside air and sucks the evaporated refrigerant into the compressor.
  • the outdoor heat exchanger functions as a condenser in the cooling mode. Further, in the heating mode, the outdoor heat exchanger functions as an evaporator.
  • the liquid phase refrigerant remaining in the outdoor heat exchanger may flow out to the suction port side of the compressor. .. If the compressor sucks in the liquid phase refrigerant, the durability of the compressor will be adversely affected by liquid compression and poor lubrication.
  • an object of the present disclosure is to provide a refrigeration cycle device capable of suppressing the suction of a liquid phase refrigerant into a compressor when the refrigerant circuit is switched.
  • the refrigerating cycle apparatus includes a compressor, a heat dissipation unit, a liquid storage unit, a first decompression unit, an outdoor heat exchange unit, and a second decompression unit. , An evaporation unit and a refrigerant circuit switching unit.
  • the compressor compresses and discharges the refrigerant.
  • the heat radiating unit dissipates the refrigerant discharged from the compressor.
  • the liquid storage unit stores excess refrigerant in the cycle.
  • the first decompression section and the second decompression section depressurize the refrigerant.
  • the outdoor heat exchange unit exchanges heat between the refrigerant flowing out from the first decompression unit and the outside air.
  • the evaporating unit evaporates the refrigerant flowing out from the second decompression unit.
  • the refrigerant circuit switching unit switches the refrigerant circuit.
  • the refrigerant circuit switching unit is configured to be able to switch between the first circuit and the second circuit.
  • the refrigerant dissipated in the outdoor heat exchange section flows into the liquid storage section
  • the refrigerant flowing out of the liquid storage section flows into the second decompression section
  • the refrigerant decompressed in the second decompression section is used.
  • the refrigerant is evaporated in the evaporating section, and the refrigerant flowing out of the evaporating section is sucked into the compressor.
  • the refrigerant dissipated in the heat dissipation section flows into the liquid storage section, the refrigerant flowing out from the liquid storage section flows into the first decompression section, and the refrigerant decompressed in the first decompression section heats the room. Evaporate in the exchange section and suck the refrigerant flowing out of the outdoor heat exchange section into the compressor.
  • the refrigerant circuit switching unit has at least an outdoor unit inlet side opening / closing unit that opens / closes the inlet side of the indoor heat exchanger when it is switched to the second circuit.
  • the refrigeration cycle device stops the compressor and executes a switching preparation control for closing the opening / closing part on the inlet side of the outdoor unit.
  • the refrigerant circuit switching unit since the refrigerant circuit switching unit is provided, the first circuit and the second circuit can be switched. Further, since the switching preparation control is executed when switching from the first circuit to the second circuit, the refrigerant in the outdoor heat exchange section can be moved to the liquid storage section before switching to the second circuit.
  • the opening / closing part on the inlet side of the outdoor unit is closed, so that the high temperature and high pressure vapor phase refrigerant is not supplied to the outdoor heat exchange part.
  • the refrigerant remaining in the outdoor heat exchange section is cooled by the outside air and condensed.
  • the compressor is stopped, so that the pressure equalization in the refrigerant circuit progresses. Then, the liquid phase refrigerant condensed in the outdoor heat exchange section can be moved to the liquid storage section by the refrigerant flow generated when the pressure in the refrigerant circuit is equalized.
  • the refrigeration cycle device 10 is applied to a vehicle air conditioner 1 mounted on an electric vehicle.
  • An electric vehicle is a vehicle that obtains driving force for traveling from an electric motor.
  • the vehicle air-conditioning device 1 of the present embodiment is an air-conditioning device having an in-vehicle device cooling function that air-conditions the interior of the vehicle, which is an air-conditioning target space, and cools the battery 80, which is an in-vehicle device, in an electric vehicle.
  • the battery 80 stores electric power supplied to an in-vehicle device such as an electric motor.
  • the battery 80 is a secondary battery (in this embodiment, a lithium ion battery).
  • the battery 80 is an assembled battery formed by stacking a plurality of battery cells and electrically connecting these battery cells in series or in parallel.
  • This type of battery generates heat during operation (that is, during charging / discharging).
  • the output of a battery tends to decrease at low temperatures, and deterioration tends to progress at high temperatures. Therefore, the temperature of the battery needs to be maintained within an appropriate temperature range (in this embodiment, 15 ° C. or higher and 55 ° C. or lower). Therefore, in the vehicle air conditioner 1 of the present embodiment, the battery 80 is cooled by using the cold heat generated by the refrigerating cycle device 10.
  • the vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioner unit 40, a low temperature side heat medium circuit 60, a control device 70, and the like.
  • the refrigeration cycle device 10 adjusts the temperature of the blown air blown into the vehicle interior in the vehicle air conditioner 1. Further, the refrigeration cycle device 10 generates cold heat for cooling the battery 80. Therefore, the temperature control target of the refrigeration cycle device 10 is the blown air and the battery 80. Further, the refrigerating cycle device 10 is configured to be able to switch the refrigerant circuit according to various operation modes for air-conditioning the vehicle interior and cooling the battery 80.
  • the refrigeration cycle apparatus 10 uses an HFO-based refrigerant (specifically, R1234yf) as the refrigerant.
  • the refrigeration cycle device 10 constitutes a steam compression type subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerating machine oil (specifically, PAG oil) for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks in the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it.
  • the compressor 11 is arranged in the drive unit room on the front side of the vehicle interior.
  • the drive device room forms a space in which at least a part of a drive device (for example, an electric motor) for outputting a driving force for traveling is arranged.
  • the compressor 11 is an electric compressor in which a fixed capacity type compression mechanism having a fixed discharge capacity is rotationally driven by an electric motor.
  • the number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the control device 70 described later.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11.
  • the indoor condenser 12 is arranged in the casing 41 of the indoor air conditioning unit 40, which will be described later.
  • the indoor condenser 12 is a heat dissipation unit that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air to dissipate the heat of the high-pressure refrigerant to the blown air.
  • the indoor condenser 12 is a heating unit that heats the blown air using the high-pressure refrigerant discharged from the compressor 11 as a heat source.
  • the inlet side of the first three-way joint 13a having three inflow outlets communicating with each other is connected to the refrigerant outlet of the indoor condenser 12.
  • the three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the refrigeration cycle device 10 includes a second three-way joint 13b to an eighth three-way joint 13h, as will be described later.
  • the basic configuration of the second three-way joint 13b to the eighth three-way joint 13h is the same as that of the first three-way joint 13a.
  • the flow of the refrigerant flowing in from one inflow port is used. It can function as a branching part. Further, when two of the three inflow ports are used as the inflow port and one is used as the outflow port, the refrigerant can function as a confluence portion for merging the flows of the refrigerant flowing in from the two inflow ports.
  • the inlet side of the receiver 15 is connected to one outlet of the first three-way joint 13a via the first on-off valve 14a and the fifth three-way joint 13e.
  • the inlet side of the heating expansion valve 16a is connected to the other outlet of the first three-way joint 13a via the second on-off valve 14b and the second three-way joint 13b.
  • the first on-off valve 14a is a solenoid valve that opens and closes the passage 21a on the inlet side of the liquid storage unit from one outlet of the first three-way joint 13a to the inlet of the receiver 15.
  • the opening / closing operation of the first on-off valve 14a is controlled by the control voltage output from the control device 70.
  • the refrigeration cycle device 10 includes a third on-off valve 14c, as will be described later.
  • the basic configuration of the second on-off valve 14b and the third on-off valve 14c is the same as that of the first on-off valve 14a.
  • the first on-off valve 14a, the second on-off valve 14b, and the third on-off valve 14c can switch the refrigerant circuit by opening and closing the refrigerant passage. Therefore, the first on-off valve 14a, the second on-off valve 14b, and the third on-off valve 14c are refrigerant circuit switching portions. Further, the first on-off valve 14a is a liquid storage unit inlet-side opening / closing unit that opens and closes the liquid storage unit inlet-side passage 21a.
  • the fifth three-way joint 13e is arranged in the passage 21a on the inlet side of the liquid storage unit.
  • the outlet side of the first on-off valve 14a is connected to one inflow port of the fifth three-way joint 13e.
  • the outlet side of the second check valve 17b which will be described later, is connected to the other inflow port of the fifth three-way joint 13e.
  • the inlet side of the receiver 15 is connected to the outlet of the fifth three-way joint 13e.
  • the receiver 15 is a liquid storage unit having a gas-liquid separation function.
  • the receiver 15 separates the gas and liquid of the refrigerant flowing out from the heat exchange unit that functions as a condenser that condenses the refrigerant in the refrigeration cycle device 10. Further, the receiver 15 causes a part of the separated liquid phase refrigerant to flow out to the downstream side, and stores the remaining liquid phase refrigerant as the surplus refrigerant in the cycle.
  • the second on-off valve 14b is a solenoid valve that opens and closes the cooling / cooling passage 21c from the other outlet of the first three-way joint 13a to the one inlet of the second three-way joint 13b.
  • the outlet side of the receiver 15 is connected to the other inlet of the second three-way joint 13b.
  • a sixth three-way joint 13f and a first check valve 17a are arranged in the liquid storage unit outlet side passage 21b connecting the outlet of the receiver 15 and the other inflow port of the second three-way joint 13b.
  • the outlet side of the receiver 15 is connected to the inflow port of the 6th three-way joint 13f.
  • the inlet side of the first check valve 17a is connected to one of the outlets of the sixth three-way joint 13f.
  • the inlet side of the 7th three-way joint 13g is connected to the other outlet of the sixth three-way joint 13f.
  • the other inflow port side of the second three-way joint 13b is connected to the outlet of the first check valve 17a.
  • the refrigerant inlet side of the outdoor heat exchanger 18 is connected to the outlet of the second three-way joint 13b via the heating expansion valve 16a. Therefore, the first check valve 17a allows the refrigerant to flow from the outlet side of the receiver 15 to the heating expansion valve 16a side, and allows the refrigerant to flow from the heating expansion valve 16a side to the outlet side of the receiver 15. It is prohibited.
  • the heating expansion valve 16a is a first decompression unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side during the heating mode described later.
  • the heating expansion valve 16a is an electric type having a valve body portion 161a that changes the opening degree (that is, valve opening degree) of the throttle passage and an electric actuator (specifically, a stepping motor) that displaces the valve body portion 161a. It is a variable aperture mechanism of.
  • the operation of the heating expansion valve 16a is controlled by a control signal (specifically, a control pulse) output from the control device 70.
  • the heating expansion valve 16a has a fully open function in which the valve body portion 161a fully opens the valve opening so that the valve body portion 161a functions as a mere refrigerant passage without exerting a flow rate adjusting action and a refrigerant depressurizing action. Further, the heating expansion valve 16a has a fully closed function of closing the refrigerant passage by fully closing the valve opening of the valve body portion 161a.
  • the refrigerating cycle device 10 includes a cooling expansion valve 16b and a cooling expansion valve 16c, as will be described later.
  • the basic configuration of the cooling expansion valve 16b and the cooling expansion valve 16c is the same as that of the heating expansion valve 16a. Therefore, the cooling expansion valve 16b has a valve body portion 161b, and has a fully open function and a fully closed function.
  • the cooling expansion valve 16c has a valve body portion 161c, and has a fully open function and a fully closed function.
  • the expansion valve 16a for heating, the expansion valve 16b for cooling, and the expansion valve 16c for cooling can switch the refrigerant circuit by the above-mentioned fully closed function. Therefore, the valve body portion 161a of the heating expansion valve 16a, the valve body portion 161b of the cooling expansion valve 16b, and the valve body portion 161c of the cooling expansion valve 16c also have a function as a refrigerant circuit switching unit.
  • the valve body portion 161a of the heating expansion valve 16a opens and closes the outdoor unit inlet side passage 21e from the second three-way joint 13b to the refrigerant inlet side of the outdoor heat exchanger 18. Therefore, the valve body portion 161a of the heating expansion valve 16a is an outdoor unit inlet side opening / closing portion that opens / closes the inlet side of the outdoor heat exchanger 18 at least when the circuit is switched to the first circuit described later.
  • the heating expansion valve 16a, the cooling expansion valve 16b, and the cooling expansion valve 16c may be formed by combining a variable throttle mechanism having no fully closed function and an on-off valve.
  • the on-off valve serves as the refrigerant circuit switching unit.
  • the outdoor heat exchanger 18 is an outdoor heat exchange unit that exchanges heat between the refrigerant flowing out from the heating expansion valve 16a and the outside air blown from an outside air fan (not shown).
  • the outdoor heat exchanger 18 is arranged on the front side in the drive unit room. Therefore, when the vehicle is running, the running wind that has flowed into the drive unit room through the grill can be applied to the outdoor heat exchanger 18.
  • the inlet side of the third three-way joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 18.
  • One inflow port side of the fourth three-way joint 13d is connected to one outflow port of the third three-way joint 13c via a third on-off valve 14c.
  • the other inlet side of the fifth three-way joint 13e is connected to the other outlet of the third three-way joint 13c via the second check valve 17b.
  • the third on-off valve 14c is a solenoid valve that opens and closes the suction side passage 21d from one outlet of the third three-way joint 13c to one inlet of the fourth three-way joint 13d.
  • the suction port side of the compressor 11 is connected to the outlet of the fourth three-way joint 13d. Therefore, the third on-off valve 14c is a suction-side solenoid valve that opens and closes the refrigerant passage connecting the refrigerant outlet side of the outdoor heat exchanger 18 and the suction port side of the compressor 11.
  • the second check valve 17b allows the refrigerant to flow from the refrigerant outlet side of the outdoor heat exchanger 18 to the inlet side of the receiver 15, and the refrigerant flows from the inlet side of the receiver 15 to the refrigerant outlet side of the outdoor heat exchanger 18. It is prohibited to flow.
  • the inlet side of the 7th three-way joint 13g is connected to the other outlet of the sixth three-way joint 13f arranged in the liquid storage portion outlet side passage 21b.
  • the inlet side of the cooling expansion valve 16b is connected to one of the outlets of the 7th three-way joint 13g.
  • the inlet side of the cooling expansion valve 16c is connected to the other outlet of the 7th three-way joint 13g.
  • the cooling expansion valve 16b is a second decompression unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side during the cooling mode described later.
  • the refrigerant inlet side of the indoor evaporator 19 is connected to the outlet of the cooling expansion valve 16b.
  • the indoor evaporator 19 is arranged in the casing 41 of the indoor air conditioning unit 40.
  • the indoor evaporator 19 is an evaporation unit that evaporates the low-pressure refrigerant decompressed by the cooling expansion valve 16b by exchanging heat with the blown air blown from the indoor blower 42.
  • the indoor evaporator 19 is a cooling unit for blown air that cools blown air by evaporating a low-pressure refrigerant to exert an endothermic action.
  • One inflow port of the eighth three-way joint 13h is connected to the refrigerant outlet of the indoor evaporator 19.
  • the cooling expansion valve 16c is a second decompression unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side in the single cooling mode described later.
  • the refrigerant inlet side of the chiller 20 is connected to the outlet of the cooling expansion valve 16c.
  • the chiller 20 has a refrigerant passage through which the low-pressure refrigerant decompressed by the cooling expansion valve 16c is circulated, and a water passage through which the low-temperature side heat medium circulating in the low-temperature side heat medium circuit 60 is circulated.
  • the chiller 20 is an evaporating unit that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing through the refrigerant passage and the low-temperature side heat medium flowing through the water passage.
  • the chiller 20 is a heat medium cooling unit that cools the low temperature side heat medium by evaporating the low pressure refrigerant to exert an endothermic action.
  • the other inlet of the eighth three-way joint 13h is connected to the refrigerant outlet of the chiller 20.
  • the suction port side of the compressor 11 is connected to the outlet of the eighth three-way joint 13h via the fourth three-way joint 13d.
  • the low temperature side heat medium circuit 60 is a heat medium circulation circuit that circulates the low temperature side heat medium.
  • An ethylene glycol aqueous solution is used as the low temperature side heat medium.
  • a water passage of the chiller 20, a low temperature side heat medium pump 61, a cooling water passage 80a of the battery 80, and the like are arranged.
  • the low temperature side heat medium pump 61 is a liquid pump that pumps the low temperature side heat medium to the inlet side of the water passage of the chiller 20.
  • the low temperature side heat medium pump 61 is an electric water pump that rotationally drives an impeller (that is, an impeller) with an electric motor.
  • the rotation speed (that is, the pumping capacity) of the low temperature side heat medium pump 61 is controlled by the control voltage output from the control device 70.
  • the inlet side of the cooling water passage 80a of the battery 80 is connected to the outlet of the water passage of the chiller 20.
  • the cooling water passage 80a is formed inside a battery case that houses the battery cell of the battery 80.
  • the cooling water passage 80a has a passage configuration in which a plurality of passages are connected in parallel inside the battery case. As a result, the cooling water passage 80a can evenly cool all the battery cells.
  • the suction port side of the low temperature side heat medium pump 61 is connected to the outlet of the cooling water passage 80a.
  • the cooling unit for cooling the battery 80 for cooling the object to be cooled is configured by each component of the chiller 20 and the low temperature side heat medium circuit 60.
  • the indoor air conditioning unit 40 is a unit for blowing out blown air whose temperature has been appropriately adjusted to an appropriate place in the vehicle interior in the vehicle air-conditioning device 1.
  • the indoor air conditioning unit 40 is arranged inside the instrument panel (that is, the instrument panel) at the front of the vehicle interior.
  • the indoor air conditioning unit 40 has a casing 41 that forms an air passage for blown air.
  • An indoor blower 42, an indoor evaporator 19, an indoor condenser 12, and the like are arranged in an air passage formed in the casing 41.
  • the casing 41 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching device 43 is arranged on the most upstream side of the blast air flow of the casing 41.
  • the inside / outside air switching device 43 switches and introduces the inside air (vehicle interior air) and the outside air (vehicle interior outside air) into the casing 41.
  • the operation of the electric actuator for driving the inside / outside air switching device 43 is controlled by the control signal output from the control device 70.
  • An indoor blower 42 is arranged on the downstream side of the blower air flow of the inside / outside air switching device 43.
  • the indoor blower 42 blows the air sucked through the inside / outside air switching device 43 toward the vehicle interior.
  • the indoor blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the rotation speed (that is, the blowing capacity) of the indoor blower 42 is controlled by the control voltage output from the control device 70.
  • the indoor evaporator 19 and the indoor condenser 12 are arranged in order from the upstream side with respect to the blown air flow. That is, the indoor evaporator 19 is arranged on the upstream side of the blown air flow with respect to the indoor condenser 12.
  • a cold air bypass passage 45 is formed in the casing 41 to allow the blown air that has passed through the indoor evaporator 19 to bypass the indoor condenser 12 and flow to the downstream side.
  • the air mix door 44 is arranged on the downstream side of the blown air flow of the indoor evaporator 19 and on the upstream side of the blown air flow of the indoor condenser 12.
  • the air mix door 44 adjusts the air volume ratio between the air volume passing through the indoor condenser 12 and the air volume passing through the cold air bypass passage 45 in the air blown air after passing through the indoor evaporator 19.
  • the operation of the electric actuator for driving the air mix door is controlled by the control signal output from the control device 70.
  • the blown air heated by the indoor condenser 12 and the blown air that has passed through the cold air bypass passage 45 and are not heated by the indoor condenser 12 are mixed.
  • Space 46 is provided. Further, an opening hole (not shown) for blowing out the blown air (air-conditioned air) mixed in the mixing space 46 into the vehicle interior is arranged at the most downstream portion of the blown air flow of the casing 41.
  • the temperature of the conditioned air mixed in the mixing space 46 is adjusted by adjusting the air volume ratio between the air volume that the air mix door 44 passes through the indoor condenser 12 and the air volume that passes through the cold air bypass passage 45. Can be done. Then, the temperature of the blown air blown from each opening hole into the vehicle interior can be adjusted.
  • the opening holes As the opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided.
  • the face opening hole is an opening hole for blowing air-conditioned air toward the upper body of the occupant in the vehicle interior.
  • the foot opening hole is an opening hole for blowing air-conditioned air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing air conditioning air toward the inner side surface of the front window glass of the vehicle.
  • An outlet mode switching door (not shown) is arranged on the upstream side of these opening holes.
  • the blowing mode switching door switches the opening hole for blowing out the conditioned air by opening and closing each opening hole.
  • the operation of the electric actuator for driving the blowout mode switching door is controlled by a control signal output from the control device 70.
  • the control device 70 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
  • the control device 70 performs various calculations and processes based on the control program stored in the ROM, and various controlled devices 11, 14a to 14c, 16a to 16c, 42, 43, 44, 61 connected to the output side. Etc. are controlled.
  • the control sensor includes an inside air temperature sensor 71a, an outside air temperature sensor 71b, and an insolation amount sensor 71c. Further, the control sensor includes a high pressure pressure sensor 71d, an air conditioning air temperature sensor 71e, an evaporator temperature sensor 71f, an evaporator pressure sensor 71g, an outdoor unit temperature sensor 71h, an outdoor unit pressure sensor 71i, and a battery temperature sensor 71j. .. Further, the control sensor includes a high temperature side heat medium temperature sensor 71k and a low temperature side heat medium temperature sensor 71m.
  • the internal air temperature sensor 71a is an internal air temperature detection unit that detects the internal air temperature Tr, which is the temperature inside the vehicle.
  • the outside air temperature sensor 71b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle interior.
  • the solar radiation amount sensor 71c is a solar radiation amount detection unit that detects the solar radiation amount As irradiated to the vehicle interior.
  • the high pressure pressure sensor 71d is a high pressure pressure detecting unit that detects the high pressure pressure Pd, which is the pressure of the high pressure refrigerant discharged from the compressor 11.
  • the conditioned air temperature sensor 71e is an conditioned air temperature detecting unit that detects the air blown air temperature TAV blown out from the mixing space 46 into the vehicle interior.
  • the evaporator temperature sensor 71f is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Te in the indoor evaporator 19.
  • the evaporator temperature sensor 71f of the present embodiment specifically detects the temperature of the refrigerant on the outlet side of the indoor evaporator 19.
  • the evaporator pressure sensor 71g is an evaporator pressure detection unit that detects the refrigerant evaporation pressure Pe in the indoor evaporator 19.
  • the evaporator pressure sensor 71g of the present embodiment specifically detects the pressure of the refrigerant on the outlet side of the indoor evaporator 19.
  • the outdoor unit temperature sensor 71h is an outdoor unit temperature detection unit that detects the outdoor unit refrigerant temperature T1, which is the temperature of the refrigerant flowing through the outdoor heat exchanger 18.
  • the outdoor unit temperature sensor 71h of the present embodiment specifically detects the temperature of the refrigerant on the outlet side of the outdoor heat exchanger 18.
  • the outdoor unit pressure sensor 71i is an outdoor unit temperature detection unit that detects the outdoor unit refrigerant pressure Pout, which is the pressure of the refrigerant flowing through the outdoor heat exchanger 18.
  • the outdoor unit pressure sensor 71i of the present embodiment specifically detects the pressure of the refrigerant on the outlet side of the outdoor heat exchanger 18.
  • the battery temperature sensor 71j is a battery temperature detection unit that detects the battery temperature TB, which is the temperature of the battery 80.
  • the battery temperature sensor 71j has a plurality of temperature detection units, and detects the temperature of a plurality of points of the battery 80. Therefore, the control device 70 can also detect the temperature difference of each part of the battery 80. Further, as the battery temperature TB, the average value of the detection values of a plurality of temperature sensors is adopted.
  • the low temperature side heat medium temperature sensor 71m is a low temperature side heat medium temperature detection unit that detects the low temperature side heat medium temperature TWL of the low temperature side heat medium flowing into the cooling water passage 80a of the battery 80.
  • an operation panel 72 arranged near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device 70.
  • the operation signals of various operation switches provided on the operation panel 72 are input to the control device 70.
  • Specific examples of the various operation switches provided on the operation panel 72 include an auto switch, an air conditioner switch, an air volume setting switch, and a temperature setting switch.
  • the auto switch is an automatic control requesting unit for requesting the occupant to set or cancel the automatic control operation of the refrigeration cycle device 10.
  • the air conditioner switch is a cooling requesting unit for requiring the occupant to cool the blown air with the indoor evaporator 19.
  • the air volume setting switch is an air volume setting unit in which the occupant manually sets the air volume of the indoor blower 42.
  • the temperature setting switch is a temperature setting unit in which the occupant sets the target temperature Tset in the vehicle interior.
  • control device 70 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side of the control device 70. Therefore, a configuration (that is, hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device.
  • the configuration for controlling the rotation speed of the compressor 11 is the compressor control unit 70a.
  • the configuration for controlling the operation of the first on-off valve 14a to the third on-off valve 14c, which is the refrigerant circuit switching unit, the valve body portion 161a of the heating expansion valve 16a, and the like is the refrigerant circuit control unit 70b. Consists of.
  • the refrigerating cycle device 10 is configured so that the refrigerant circuit can be switched according to various transportation modes of the vehicle air conditioner 1 for air-conditioning the interior of the vehicle and cooling the battery 80.
  • the operation modes of the vehicle air conditioner 1 include (a) cooling mode, (b) series dehumidifying and heating mode, (c) heating mode, (d) cooling cooling mode, (e) dehumidifying and heating cooling mode, and (f) alone. There is a cooling mode.
  • control program stored in the control device 70.
  • the control program is executed when the vehicle system is started.
  • the detection signal of the sensor group and the operation signal of the operation panel 72 described above are read at each predetermined control cycle, and the vehicle air conditioner 1 is operated in an appropriate operation mode as necessary.
  • the operation mode for air conditioning is selected based on the outside air temperature Tam, the target blowout temperature TAO, and the operation signals of the auto switch and the air conditioner switch of the operation panel 72.
  • the target blowout temperature TAO is the target temperature of the blown air blown into the vehicle interior.
  • TAO Kset x Tset-Kr x Tr-Kam x Tam-Ks x Ts + C ... (F1)
  • Tset is the vehicle interior set temperature set by the temperature setting switch. Tr is the vehicle interior temperature detected by the inside air sensor. Tam is the temperature outside the vehicle interior detected by the outside air sensor. Ts is the amount of solar radiation detected by the solar radiation sensor. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • control program it is determined whether or not to cool the battery 80 based on the battery temperature TB detected by the battery temperature sensor 71j. The detailed operation of each operation mode will be described below.
  • Cooling mode is an operation mode in which the inside of the vehicle is cooled by blowing the cooled blown air into the vehicle interior without cooling the battery 80.
  • the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully open state, the cooling expansion valve 16b in a throttle state that exerts a refrigerant depressurizing action, and the cooling expansion valve 16c in a fully closed state.
  • the refrigerant discharged from the compressor 11 is used in the indoor condenser 12, the cooling cooling passage 21c, and the outdoor unit inlet side passage 21e. It is switched to a refrigerant circuit that circulates in the order of the heating expansion valve 16a, the outdoor heat exchanger 18, the receiver 15, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11.
  • the refrigerant dissipated by the outdoor heat exchanger 18 which is the outdoor heat exchange section flows into the receiver 15 which is the liquid storage section.
  • the refrigerant flowing out of the receiver 15 flows into the cooling expansion valve 16b, which is the second pressure reducing unit.
  • the refrigerant decompressed by the cooling expansion valve 16b is evaporated by the indoor evaporator 19 which is an evaporation unit.
  • the refrigerant flowing out of the indoor evaporator 19 is sucked into the compressor 11. Therefore, the cooling mode refrigerant circuit is included in the first circuit.
  • the control device 70 appropriately controls the operation of various controlled devices.
  • the control device 70 controls the refrigerant discharge capacity so that the evaporator temperature Te detected by the evaporator temperature sensor 71f approaches the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to the control map for the cooling mode previously stored in the control device 70.
  • control device 70 controls the throttle opening so that the superheat degree SH of the refrigerant on the outlet side of the indoor evaporator 19 approaches a predetermined target superheat degree KSH.
  • control device 70 controls the blower capacity based on the target blowout temperature TAO by referring to the control map stored in the control device 70 in advance.
  • the control device 70 controls the opening degree so that the blown air temperature TAV detected by the air conditioning air temperature sensor 71e approaches the target blown temperature TAO.
  • the opening degree of the air mix door 44 may be controlled so that the air mix door 44 completely closes the ventilation passage on the indoor condenser 12 side and fully opens the cold air bypass passage 45.
  • control device 70 controls the pumping capacity so as to exert a predetermined pumping capacity.
  • the indoor condenser 12 and the outdoor heat exchanger 18 function as a condenser for condensing the refrigerant
  • the indoor evaporator 19 functions as an evaporator for evaporating the refrigerant.
  • the formula refrigeration cycle is constructed.
  • the blown air cooled by the indoor evaporator 19 is adjusted to an appropriate temperature and blown out into the vehicle interior. As a result, cooling of the passenger compartment is realized.
  • the series dehumidification / heating mode is an operation mode in which the inside of the vehicle is dehumidified and heated by reheating the cooled and dehumidified blown air and blowing it into the vehicle interior without cooling the battery 80. Is.
  • the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12 and the cooling cooling passage 21c. It is switched to a refrigerant circuit that circulates in the order of the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, the receiver 15, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11. Therefore, the refrigerant circuit in the series dehumidifying / heating mode is included in the first circuit.
  • control device 70 appropriately controls the operation of various controlled devices.
  • the compressor 11 and the cooling expansion valve 16b are controlled by the control device 70 in the same manner as in the cooling mode.
  • the control device 70 controls the throttle opening degree based on the target outlet temperature TAO with reference to the control map for the series dehumidifying / heating mode stored in the control device 70 in advance. ..
  • the throttle opening of the heating expansion valve 16a is reduced as the target outlet temperature TAO rises.
  • the throttle opening degree of the heating expansion valve 16a is adjusted within a range in which the temperature of the refrigerant flowing into the outdoor heat exchanger 18 becomes higher than the outside air temperature.
  • the control device 70 controls in the same manner as in the cooling mode.
  • a steam compression type refrigerating cycle is configured in which the indoor condenser 12 and the outdoor heat exchanger 18 function as condensers and the indoor evaporator 19 functions as an evaporator. ..
  • the indoor air conditioning unit 40 in the series dehumidifying / heating mode the blown air cooled by the indoor evaporator 19 and dehumidified is reheated by the indoor condenser 12 to be adjusted to an appropriate temperature in the vehicle interior. It is blown out to. As a result, dehumidifying and heating of the vehicle interior is realized.
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 18 can be lowered by reducing the throttle opening of the heating expansion valve 16a as the target outlet temperature TAO rises. According to this, it is possible to reduce the heat dissipation amount of the refrigerant in the outdoor heat exchanger 18 and increase the heat dissipation amount of the refrigerant in the indoor condenser 12.
  • the heating capacity of the blown air in the indoor condenser 12 can be improved as compared with the cooling mode.
  • the heating mode is an operation mode in which the inside of the vehicle is heated by blowing out the heated blown air into the vehicle interior without cooling the battery 80.
  • the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a fully closed state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, and the liquid storage. It is switched to a refrigerant circuit that circulates in the order of the outlet side passage 21b, the heating expansion valve 16a, the outdoor heat exchanger 18, the suction side passage 21d, and the suction port of the compressor 11.
  • the refrigerant radiated by the indoor condenser 12 which is the heat radiating unit is made to flow into the receiver 15.
  • the refrigerant flowing out of the receiver 15 flows into the heating expansion valve 16a, which is the first decompression unit.
  • the refrigerant decompressed by the heating expansion valve 16a is evaporated by the outdoor heat exchanger 18.
  • the refrigerant flowing out of the outdoor heat exchanger 18 flows into the compressor 11. Therefore, the heating mode refrigerant circuit is included in the second circuit.
  • the control device 70 appropriately controls the operation of various controlled devices.
  • the control device 70 controls the discharge capacity so that the high pressure pressure Pd approaches the target high pressure PDO.
  • the target high pressure PDO is determined based on the target blowout temperature TAO with reference to the control map for the heating mode previously stored in the control device 70.
  • the control device 70 controls the throttle opening so that the superheat degree SH of the refrigerant on the outlet side of the outdoor heat exchanger 18 approaches the predetermined target superheat degree KSH.
  • the control device 70 controls in the same manner as in the cooling mode.
  • the opening degree of the air mix door 44 may be controlled so that the air mix door 44 fully opens the ventilation passage on the indoor condenser 12 side and fully closes the cold air bypass passage 45.
  • a steam compression type refrigerating cycle is configured in which the indoor condenser 12 functions as a condenser and the outdoor heat exchanger 18 functions as an evaporator.
  • the indoor air conditioning unit 40 in the heating mode the blown air heated by the indoor condenser 12 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
  • the cooling cooling mode is an operation mode in which the battery 80 is cooled and the passenger compartment is cooled.
  • the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, in the control device 70, the heating expansion valve 16a is set to the fully open state, the cooling expansion valve 16b is set to the throttle state, and the cooling expansion valve 16c is set to the throttle state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, and the outdoor heat exchange. It flows in the order of the vessel 18 and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11 are in that order. It can be switched to a circulating refrigerant circuit.
  • the indoor evaporator 19 and the chiller 20 are switched to the refrigerant circuit connected in parallel with the refrigerant flow.
  • the refrigerant dissipated by the outdoor heat exchanger 18 flows into the receiver 15.
  • the refrigerant flowing out of the receiver 15 flows into the cooling expansion valve 16b and the cooling expansion valve 16c, which are the second pressure reducing portions.
  • the refrigerant decompressed by the cooling expansion valve 16b is evaporated by the indoor evaporator 19 which is an evaporation unit.
  • the refrigerant decompressed by the cooling expansion valve 16c is evaporated by the chiller 20 which is an evaporation unit.
  • the refrigerant flowing out of the indoor evaporator 19 and the chiller 20 is sucked into the compressor 11. Therefore, the cooling mode refrigerant circuit is included in the first circuit.
  • the control device 70 appropriately controls the operation of various controlled devices.
  • the compressor 11 and the cooling expansion valve 16b are controlled by the control device 70 in the same manner as in the cooling mode.
  • the control device 70 controls the throttle opening so as to have a throttle opening for the cooling cooling mode defined in advance.
  • the control device 70 controls in the same manner as in the cooling mode.
  • the refrigerating cycle device 10 in the cooling / cooling mode comprises a steam compression type refrigerating cycle in which the indoor condenser 12 and the outdoor heat exchanger 18 function as condensers, and the indoor evaporator 19 and the chiller 20 function as evaporators. Will be done.
  • the indoor air conditioning unit 40 in the cooling / cooling mode the blown air cooled by the indoor evaporator 19 is adjusted to an appropriate temperature and blown out into the vehicle interior. As a result, cooling of the vehicle interior is realized as in the cooling mode.
  • the low temperature side heat medium circuit 60 in the cooling cooling mode the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
  • the dehumidifying / heating / cooling mode is an operation mode in which the battery 80 is cooled and the vehicle interior is dehumidified and heated.
  • the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in the throttle state, the cooling expansion valve 16b in the throttle state, and the cooling expansion valve 16c in the throttle state.
  • the refrigerant discharged from the compressor 11 heats the indoor condenser 12, the cooling / cooling passage 21c, and the outdoor unit inlet side passage 21e, as in the cooling / cooling mode.
  • the expansion valve 16a, the outdoor heat exchanger 18, and the receiver 15 flow in this order.
  • the refrigerant flowing out from the receiver 15 circulates in the order of the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11 are in that order. It can be switched to a circulating refrigerant circuit. Therefore, the refrigerant circuit in the dehumidifying / heating / cooling mode is included in the first circuit.
  • control device 70 appropriately controls the operation of various controlled devices.
  • the compressor 11, the heating expansion valve 16a, and the cooling expansion valve 16b are controlled by the control device 70 in the same manner as in the series dehumidifying and heating mode.
  • the control device 70 controls in the same manner as in the cooling / cooling mode.
  • a steam compression type refrigerating cycle in which the indoor condenser 12 and the outdoor heat exchanger 18 function as condensers and the indoor evaporator 19 and the chiller 20 function as evaporators is provided. It is composed.
  • the blown air cooled by the indoor evaporator 19 and dehumidified is reheated by the indoor condenser 12 to be adjusted to an appropriate temperature in the vehicle interior. It is blown out to.
  • dehumidifying and heating of the vehicle interior is realized as in the series dehumidifying and heating mode.
  • the low temperature side heat medium circuit 60 in the dehumidifying / heating / cooling mode flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
  • the single cooling mode is an operation mode in which the battery 80 is cooled without air-conditioning the vehicle interior.
  • control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully open state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, and the outdoor heat exchange. It is switched to a refrigerant circuit that circulates in the order of the vessel 18, the receiver 15, the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11.
  • the refrigerant dissipated by the outdoor heat exchanger 18 flows into the receiver 15.
  • the refrigerant flowing out of the receiver 15 flows into the cooling expansion valve 16c, which is the second pressure reducing unit.
  • the refrigerant decompressed by the cooling expansion valve 16c is evaporated by the chiller 20 which is an evaporation unit.
  • the refrigerant flowing out of the chiller 20 is sucked into the compressor 11. Therefore, the refrigerant circuit in the single cooling mode is included in the first circuit.
  • the control device 70 appropriately controls the operation of various controlled devices.
  • the control device 70 controls the discharge capacity so as to exert the discharge capacity for the predetermined single cooling mode.
  • the control device 70 controls the throttle opening so that the superheat degree SHc of the refrigerant on the outlet side of the refrigerant passage of the chiller 20 approaches the target superheat degree KSH.
  • control device 70 stops the indoor blower 42. Further, regarding the air mix door 44, the control device 70 controls the opening degree of the air mix door 44 so that the ventilation path on the indoor condenser 12 side is fully closed and the cold air bypass passage 45 is fully opened. For other controlled devices, the control device 70 controls in the same manner as in the cooling mode.
  • a steam compression type refrigerating cycle is configured in which the outdoor heat exchanger 18 functions as a condenser and the chiller 20 functions as an evaporator. Further, in the low temperature side heat medium circuit 60 in the single cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
  • the refrigerating cycle device 10 can execute the operation in various operation modes by switching the refrigerant circuit.
  • the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior while appropriately adjusting the temperature of the battery 80.
  • the outdoor heat exchanger 18 functions as a condenser. Further, when the refrigerant circuit is switched to the second circuit as in the heating mode, the outdoor heat exchanger 18 functions as an evaporator, and the refrigerant outlet of the outdoor heat exchanger 18 is connected to the suction port of the compressor 11. Connecting.
  • the liquid phase refrigerant remaining in the outdoor heat exchanger 18 flows out to the suction port side of the compressor 11. there is a possibility. If the compressor 11 sucks in the liquid phase refrigerant, the durable life of the compressor 11 is adversely affected by liquid compression and poor lubrication.
  • Liquid compression means that the compressor 11 compresses a liquid phase refrigerant which is an incompressible fluid, thereby generating an excessive pressure in the compressor 11. Further, poor lubrication occurs when the refrigerating machine oil in the compressor 11 is washed away by the liquid phase refrigerant sucked into the compressor 11.
  • the switching preparation control for suppressing the compressor 11 from sucking the liquid phase refrigerant is executed.
  • the switching preparation control is executed when the control program executed by the control device 70 determines that the operation mode executed by the first circuit is switched to the operation mode executed by the second circuit.
  • the first switching preparation control and the second switching preparation control can be executed as the switching preparation control.
  • the first switching preparation control is executed when it is determined in the control program to switch from the cooling mode to the heating mode. Specifically, in the first switching preparation control, as shown in the time chart of FIG. 4, the control device 70 stops the compressor 11 (hereinafter, referred to as compressor stop control).
  • control device 70 sets the heating expansion valve 16a in a fully closed state at the same time as the compressor stop control.
  • the valve body portion 161a of the heating expansion valve 16a closes the outdoor unit inlet side passage 21e and closes the inlet side of the outdoor heat exchanger 18 when the circuit is switched to the second circuit (hereinafter, outdoor unit). Inlet side blockage control).
  • control device 70 opens the first on-off valve 14a at the same time as the compressor stop control (hereinafter referred to as high pressure side communication control).
  • high pressure side communication control the compressor stop control
  • the control device 70 sets the throttle opening of the cooling expansion valve 16b to be equal to or greater than the throttle opening when the operation mode switching is determined (hereinafter, the second pressure reducing portion opening). Control). That is, the throttle opening of the cooling expansion valve 16b is set to be equal to or larger than the throttle opening immediately before the first switching preparation control is executed. In the present embodiment, as shown in FIG. 4, the throttle opening of the cooling expansion valve 16b is maintained at the throttle opening in the cooling mode.
  • the first switching preparation control is executed from the time when the switching of the operation mode is determined until the elapse of the predetermined reference time KTp1.
  • the reference time KTp1 is determined so that the pressure difference ⁇ P1 obtained by subtracting the refrigerant pressure on the suction side of the compressor 11 from the refrigerant pressure in the outdoor heat exchanger 18 is equal to or less than a predetermined reference pressure difference K ⁇ P1.
  • the reference time KTp1 can be determined by an experiment or the like.
  • the reference pressure difference K ⁇ P1 is such that when the third on-off valve 14c is opened, the liquid phase refrigerant on the outdoor heat exchanger 18 side does not move to the suction side of the compressor 11 via the suction side passage 21d. It is set.
  • the circuit is switched to the heating mode refrigerant circuit. That is, the control device 70 closes the second on-off valve 14b and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state and the cooling expansion valve 16b in a fully closed state. Further, the control device 70 operates the compressor 11. This completes the transition from the cooling mode to the heating mode.
  • the heating expansion valve 16a is fully closed by the outdoor unit inlet side blockage control, so that the supply of the high-temperature and high-pressure vapor-phase refrigerant to the outdoor heat exchanger 18 is cut off.
  • the refrigerant remaining in the outdoor heat exchanger 18 is cooled by the outside air and condensed.
  • the refrigerant pressure in the outdoor heat exchanger 18 may be lower than the refrigerant pressure in the receiver 15.
  • the heating expansion valve 16a is fully closed by the outdoor unit inlet side blockage control. Therefore, the refrigerant in the receiver 15 does not flow out to the refrigerant inlet side of the outdoor heat exchanger 18 through the liquid storage unit outlet side passage 21b. Further, due to the action of the second check valve 17b, the refrigerant in the receiver 15 does not flow back to the refrigerant outlet side of the outdoor heat exchanger 18.
  • the compressor 11 is stopped by the compressor stop control, so that the pressure equalization in the refrigerant circuit progresses.
  • the refrigerant in the receiver 15 moves to the suction side of the compressor 11 via the expansion valve 16b for cooling, so that the refrigerant pressure in the receiver 15 and the refrigerant pressure on the suction side of the compressor 11 are combined. Pressure equalization progresses.
  • the throttle opening of the cooling expansion valve 16b is set to be equal to or larger than the throttle opening immediately before the first switching preparation control is executed by the second pressure reducing unit opening control. Therefore, the refrigerant pressure in the receiver 15 and the refrigerant pressure on the suction side of the compressor 11 can be reliably equalized. Further, by increasing the throttle opening degree of the cooling expansion valve 16b, it is possible to promote the equalization of pressure in the refrigerant circuit.
  • the first on-off valve 14a is opened by the high-pressure side communication control. Therefore, the refrigerant pressure in the refrigerant flow path from the discharge port side of the compressor 11 to the receiver 15 via the liquid storage unit inlet side passage 21a is also equalized so as to be equal to the refrigerant pressure in the receiver 15. be able to.
  • the liquid phase refrigerant remaining in the outdoor heat exchanger 18 will flow out to the suction side of the compressor 11. It can be suppressed. That is, according to the refrigerating cycle apparatus 10 of the present embodiment, it is possible to prevent the liquid phase refrigerant from being sucked into the compressor 11 when the refrigerant circuit in the cooling mode is switched to the refrigerant circuit in the heating mode. ..
  • the second switching preparation control is executed when it is determined in the control program that the operation mode is switched from the series dehumidifying heating mode to the heating mode. Specifically, in the second switching preparation control, as shown in the time chart of FIG. 5, the control device 70 executes the compressor stop control in the same manner as the first switching preparation control.
  • control device 70 increases the throttle opening degree of the heating expansion valve 16a at the same time as the compressor stop control (hereinafter referred to as the first decompression unit opening degree control).
  • the heating expansion valve 16a is fully opened.
  • the first dehumidifying unit opening degree control is executed from the time when it is decided to switch from the series dehumidifying heating mode to the heating mode until the predetermined reference time KTp2 for the expansion valve elapses.
  • the reference time KTp2 for the expansion valve is a value determined so that the pressure difference ⁇ P2 obtained by subtracting the refrigerant pressure on the outlet side from the refrigerant pressure on the inlet side of the first on-off valve 14a is equal to or less than the predetermined reference pressure difference K ⁇ P2. be.
  • the reference time KTp2 for the expansion valve can be determined by an experiment or the like.
  • the reference pressure difference K ⁇ P2 is determined to be a pressure difference that can suppress the generation of refrigerant passing noise due to the pressure difference ⁇ P2 when the first on-off valve 14a is opened.
  • the refrigerant pressure in the indoor condenser 12 the refrigerant pressure in the outdoor heat exchanger 18, and the refrigerant pressure in the receiver 15 are equalized, and the pressure is equalized.
  • the difference ⁇ P2 is equal to or less than the reference pressure difference K ⁇ P2.
  • the control device 70 executes the outdoor unit inlet side blockage control, the high voltage side communication control, and the second decompression unit opening control as in the first switching preparation control. These controls are executed from the end of the first decompression unit opening control until the lapse of the reference time KTp1. Subsequent operations are the same as in the first switching preparation control.
  • the same effect as that of the first switching preparation control can be obtained in the second switching preparation control. That is, according to the refrigerating cycle device 10 of the present embodiment, it is possible to prevent the liquid phase refrigerant from being sucked into the compressor 11 when the refrigerant circuit in the series dehumidifying / heating mode is switched to the refrigerant circuit in the heating mode. Can be done.
  • the first decompression unit opening control is executed, so that the pressure difference ⁇ P2, which is the front-rear differential pressure of the first on-off valve 14a, becomes the reference pressure difference K ⁇ P2 when the high-pressure side communication control is performed. It can be as follows. According to this, it is possible to suppress the generation of the refrigerant passing noise when the first on-off valve 14a is opened in the high-pressure side communication control.
  • the present invention is not limited to this.
  • the refrigerant circuit is switched to the first circuit, and the refrigerant circuit is second from the operation mode in which the refrigerant pressure in the indoor condenser 12 and the refrigerant pressure in the outdoor heat exchanger 18 are equal. This is effective when transitioning to an operation mode that can be switched to a circuit.
  • the first switching preparation control may be executed when switching from the cooling cooling mode to the heating mode.
  • both the cooling expansion valve 16b and the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the first switching preparation control.
  • the first switching preparation control may be executed when switching from the independent cooling mode to the heating mode.
  • the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the first switching preparation control.
  • the present invention is not limited to this.
  • the refrigerant circuit is switched to the first circuit, and the refrigerant circuit is second from the operation mode in which the refrigerant pressure in the outdoor heat exchanger 18 is lower than the refrigerant pressure in the indoor condenser 12. This is effective when transitioning to an operation mode that can be switched to a circuit.
  • the second switching preparation control may be executed when switching from the dehumidifying / heating / cooling mode to the heating mode.
  • both the cooling expansion valve 16b and the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the second switching preparation control.
  • the first switching preparation control may be executed instead of the second switching preparation control.
  • the first three-way joint 13a, the first on-off valve 14a, and the second on-off valve 14b are abolished with respect to the refrigeration cycle device 10 described in the first embodiment. Therefore, in the refrigeration cycle device 10a, the inlet side of the three-way valve 22 is connected to the refrigerant outlet of the indoor condenser 12.
  • the three-way valve 22 has a refrigerant circuit that causes the refrigerant flowing out of the indoor condenser 12 to flow out to the receiver 15 side via the liquid storage unit inlet side passage 21a, and the cooling cooling passage 21c to the outdoor heat exchanger 18 side. It is a refrigerant circuit switching unit that switches between the refrigerant circuit to be discharged.
  • the three-way valve 22 is a three-way switching valve whose operation is controlled by a control voltage output from the control device 70.
  • a first check valve 17a and a fifth three-way joint 13e are arranged in the passage 21a on the inlet side of the liquid storage portion of the present embodiment.
  • the first check valve 17a of the present embodiment allows the refrigerant to flow from the three-way valve 22 side to the fifth three-way joint 13e side, and prohibits the refrigerant from flowing from the fifth three-way joint 13e side to the three-way valve 22 side. is doing.
  • the heating expansion valve 16a is arranged in the refrigerant passage from one outlet of the sixth three-way joint 13f to the other inlet of the second three-way joint 13b. Therefore, in the refrigerating cycle device 10a, the refrigerant passage from the outlet of the receiver 15 to the inflow port of the sixth three-way joint 13f becomes the liquid storage unit outlet side passage 21b. Further, the refrigerant passage from one outlet of the sixth three-way joint 13f to one inlet of the second three-way joint 13b becomes the outdoor unit inlet side passage 21e.
  • the inflow / outlet of the second three-way joint 13b is connected to one of the refrigerant inlet / outlet sides of the outdoor heat exchanger 18.
  • the outlet of the second three-way joint 13b is connected to the other inlet side of the fifth three-way joint 13e.
  • One of the refrigerant inlets and outlets of the outdoor heat exchanger 18 becomes a refrigerant inlet when switched to the second circuit. Further, one of the refrigerant inlets and outlets of the outdoor heat exchanger 18 becomes a refrigerant inlet when the circuit is switched to the first circuit.
  • a second check valve 17b is arranged in the refrigerant passage leading from the outlet of the second three-way joint 13b to the other inlet of the fifth three-way joint 13e.
  • the second check valve 17b of the present embodiment allows the refrigerant to flow from the second three-way joint 13b side to the fifth three-way joint 13e side, and the refrigerant flows from the fifth three-way joint 13e side to the second three-way joint 13b side. It is prohibited to flow.
  • the inflow / outlet side of the third three-way joint 13c is connected to the outlet side of the cooling / cooling passage 21c of the present embodiment.
  • the inflow / outlet of the third three-way joint 13c is connected to the other refrigerant inlet / outlet side of the outdoor heat exchanger 18.
  • Other configurations of the refrigerating cycle device 10a are the same as those of the refrigerating cycle device 10 described in the first embodiment.
  • the operation modes of the vehicle air conditioner 1 of the present embodiment include (a) cooling mode, (b) heating mode, (c) cooling cooling mode, and (d) independent cooling mode.
  • the basic operation of each operation mode is the same as that of the first embodiment. The detailed operation of each operation mode will be described below.
  • (A) Cooling mode In the cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant flowing out of the indoor condenser 12 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the outdoor heat exchanger 18, and the receiver. It is switched to a refrigerant circuit that circulates in the order of 15, the liquid storage unit outlet side passage 21b, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11.
  • the cooling mode refrigerant circuit is included in the first circuit as in the first embodiment.
  • control device 70 appropriately controls the operation of various controlled devices as in the cooling mode of the first embodiment.
  • a steam compression type refrigerating cycle is configured in which the indoor condenser 12 and the outdoor heat exchanger 18 function as a condenser and the indoor evaporator 19 functions as an evaporator. Then, in the indoor air conditioning unit 40 in the cooling mode, the blown air cooled by the indoor evaporator 19 is adjusted to an appropriate temperature and blown out into the vehicle interior. As a result, cooling of the passenger compartment is realized.
  • (B) Heating mode In the heating mode, the control device 70 switches the three-way valve 22 so that the refrigerant flowing out of the indoor condenser 12 flows out to the receiver 15. Further, the control device 70 opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a fully closed state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, and the liquid storage. It is switched to a refrigerant circuit that circulates in the order of the outlet side passage 21b, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, the suction side passage 21d, and the suction port of the compressor 11.
  • the heating mode refrigerant circuit is included in the second circuit as in the first embodiment.
  • the flow direction of the refrigerant in the outdoor heat exchanger 18 is opposite to that of the cooling mode refrigerant circuit.
  • control device 70 appropriately controls the operation of various controlled devices as in the heating mode of the first embodiment.
  • a steam compression type refrigerating cycle is configured in which the indoor condenser 12 functions as a condenser and the outdoor heat exchanger 18 functions as an evaporator. Then, in the indoor air conditioning unit 40 in the heating mode, the blown air heated by the indoor condenser 12 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
  • (C) Cooling / Cooling Mode In the cooling / cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant flowing out of the indoor condenser 12 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a throttled state.
  • the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the cooling cooling passage 21c, the outdoor heat exchanger 18, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the liquid storage section outlet side passage 21b, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the liquid storage section outlet side passage 21b is cooled. It is switched to a refrigerant circuit that circulates in the order of the expansion valve 16c, the chiller 20, and the suction port of the compressor 11.
  • the indoor evaporator 19 and the chiller 20 are switched to the refrigerant circuit connected in parallel with the refrigerant flow.
  • the cooling / cooling mode refrigerant circuit is included in the first circuit as in the first embodiment.
  • control device 70 appropriately controls the operation of various controlled devices as in the cooling / cooling mode of the first embodiment.
  • a steam compression type refrigerating cycle in which the indoor condenser 12 and the outdoor heat exchanger 18 function as condensers and the indoor evaporator 19 and the chiller 20 function as evaporators is configured. Will be done.
  • the blown air cooled by the indoor evaporator 19 is adjusted to an appropriate temperature and blown out into the vehicle interior.
  • cooling of the vehicle interior is realized as in the cooling mode.
  • the low temperature side heat medium circuit 60 in the cooling cooling mode the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
  • (D) Single cooling mode In the single cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant flowing out of the indoor condenser 12 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the outdoor heat exchanger 18, the receiver 15, and the liquid storage unit outlet side passage 21b.
  • the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order.
  • the refrigerant circuit in the single cooling mode is included in the first circuit as in the first embodiment.
  • control device 70 appropriately controls the operation of various controlled devices as in the single cooling mode of the first embodiment.
  • a steam compression type refrigerating cycle is configured in which the indoor condenser 12 and the outdoor heat exchanger 18 function as a condenser and the chiller 20 functions as an evaporator. Further, in the low temperature side heat medium circuit 60 in the single cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
  • the refrigerating cycle device 10a can execute the operation in various operation modes by switching the refrigerant circuit.
  • the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior while appropriately adjusting the temperature of the battery 80.
  • the switching preparation control for suppressing the compressor 11 from sucking the liquid phase refrigerant is executed as in the first embodiment.
  • the switching preparation control is executed when the control program determines to switch from the cooling mode to the heating mode.
  • the compressor stop control and the outdoor unit inlet side blockage control are performed as in the first embodiment. Since the heating expansion valve 16a is in the fully closed state in the cooling mode of the refrigeration cycle device 10a, the heating expansion valve 16a is maintained in the fully closed state in the switching preparation control.
  • control device 70 switches the three-way valve 22 so that the refrigerant flowing out from the indoor condenser 12 flows out to the receiver 15 side at the same time as the compressor stop control.
  • Other switching preparation controls are the same as those of the first switching preparation control described in the first embodiment.
  • the same effect as that of the first switching preparation control described in the first embodiment can be obtained. That is, according to the refrigerating cycle apparatus 10a of the present embodiment, it is possible to prevent the liquid phase refrigerant from being sucked into the compressor 11 when the refrigerant circuit in the cooling mode is switched to the refrigerant circuit in the heating mode. ..
  • the switching preparation control may be executed when switching from the cooling cooling mode to the heating mode.
  • both the cooling expansion valve 16b and the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the switching preparation control.
  • the switching preparation control may be executed when switching from the independent cooling mode to the heating mode.
  • the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the switching preparation control.
  • the arrangement of the three-way valve 22 is changed with respect to the refrigeration cycle device 10a described in the second embodiment. Further, in the refrigeration cycle device 10b, the first three-way joint 13a is abolished with respect to the refrigeration cycle device 10 described in the first embodiment.
  • the discharge port side of the compressor 11 is connected to the inflow port of the three-way valve 22 of the refrigeration cycle device 10b.
  • the refrigerant inlet side of the outdoor heat exchanger 18 is connected to one outlet of the three-way valve 22 via a cooling cooling passage 21c and a second three-way joint 13b.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the other outlet of the three-way valve 22.
  • a passage 21a on the inlet side of the liquid storage unit is connected to the refrigerant outlet of the indoor condenser 12.
  • a first check valve 17a and a fifth three-way joint 13e are arranged in the passage 21a on the inlet side of the liquid storage portion of the present embodiment.
  • the first check valve 17a of the present embodiment allows the refrigerant to flow from the indoor condenser 12 side to the fifth three-way joint 13e side, and allows the refrigerant to flow from the fifth three-way joint 13e side to the indoor condenser 12 side. Is prohibited.
  • the heating expansion valve 16a is arranged in the refrigerant passage from one outlet of the sixth three-way joint 13f to the other inlet of the second three-way joint 13b. Therefore, in the refrigerating cycle device 10b, the refrigerant passage from the outlet of the receiver 15 to the inflow port of the sixth three-way joint 13f becomes the liquid storage unit outlet side passage 21b. Further, the refrigerant passage from one outlet of the sixth three-way joint 13f to one inlet of the second three-way joint 13b becomes the outdoor unit inlet side passage 21e.
  • the configuration of the other refrigeration cycle device 10b is the same as that of the refrigeration cycle device 10 described in the first embodiment.
  • the operation modes of the vehicle air conditioner 1 of the present embodiment include (a) cooling mode, (b) heating mode, (c) cooling cooling mode, and (d) independent cooling mode.
  • the basic operation of each operation mode is the same as that of the first embodiment. The detailed operation of each operation mode will be described below.
  • (A) Cooling mode In the cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant discharged from the compressor 11 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
  • the refrigerant discharged from the compressor 11 is the cooling cooling passage 21c, the outdoor heat exchanger 18, the receiver 15, and the liquid storage unit. It is switched to a refrigerant circuit that circulates in the order of the outlet side passage 21b, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11.
  • the cooling mode refrigerant circuit is included in the first circuit as in the first embodiment.
  • control device 70 appropriately controls the operation of various controlled devices as in the cooling mode of the first embodiment.
  • a steam compression type refrigerating cycle is configured in which the outdoor heat exchanger 18 functions as a condenser and the indoor evaporator 19 functions as an evaporator. Then, in the indoor air conditioning unit 40 in the cooling mode, the blown air cooled by the indoor evaporator 19 is blown into the vehicle interior. As a result, cooling of the passenger compartment is realized.
  • (B) Heating mode In the cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant discharged from the compressor 11 flows out to the indoor condenser 12 side. Further, the control device 70 opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a fully closed state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, and the outdoor unit. It is switched to a refrigerant circuit that circulates in the order of the heating expansion valve 16a of the inlet side passage 21e, the outdoor heat exchanger 18, the suction side passage 21d, and the suction port of the compressor 11.
  • the heating mode refrigerant circuit is included in the second circuit as in the first embodiment.
  • control device 70 appropriately controls the operation of various controlled devices as in the heating mode of the first embodiment.
  • a steam compression type refrigerating cycle is configured in which the indoor condenser 12 functions as a condenser and the outdoor heat exchanger 18 functions as an evaporator. Then, in the indoor air conditioning unit 40 in the heating mode, the blown air heated by the indoor condenser 12 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
  • (C) Cooling cooling mode In the cooling cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant discharged from the compressor 11 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a throttled state.
  • the refrigerant discharged from the compressor 11 flows in the order of the cooling cooling passage 21c, the outdoor heat exchanger 18, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the liquid storage section outlet side passage 21b, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the liquid storage section outlet side passage 21b is cooled. It is switched to a refrigerant circuit that circulates in the order of the expansion valve 16c, the chiller 20, and the suction port of the compressor 11.
  • the indoor evaporator 19 and the chiller 20 are switched to the refrigerant circuit connected in parallel with the refrigerant flow.
  • the cooling / cooling mode refrigerant circuit is included in the first circuit as in the first embodiment.
  • control device 70 appropriately controls the operation of various controlled devices as in the cooling / cooling mode of the first embodiment.
  • a steam compression type refrigerating cycle is configured in which the outdoor heat exchanger 18 functions as a condenser and the indoor evaporator 19 and the chiller 20 function as an evaporator.
  • the blown air cooled by the indoor evaporator 19 is blown into the vehicle interior.
  • cooling of the vehicle interior is realized as in the cooling mode.
  • the low temperature side heat medium circuit 60 in the cooling cooling mode the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
  • (D) Single cooling mode In the single cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant discharged from the compressor 11 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
  • the refrigerant discharged from the compressor 11 is the cooling cooling passage 21c, the outdoor heat exchanger 18, the receiver 15, the liquid storage unit outlet side passage 21b, and the cooling expansion valve. It is switched to a refrigerant circuit that circulates in the order of 16c, the chiller 20, and the suction port of the compressor 11.
  • the refrigerant circuit in the single cooling mode is included in the first circuit as in the first embodiment.
  • control device 70 appropriately controls the operation of various controlled devices as in the single cooling mode of the first embodiment.
  • a steam compression type refrigerating cycle is configured in which the outdoor heat exchanger 18 functions as a condenser and the chiller 20 functions as an evaporator. Further, in the low temperature side heat medium circuit 60 in the single cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
  • the refrigerating cycle device 10b can be operated in various operation modes by switching the refrigerant circuit.
  • the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior while appropriately adjusting the temperature of the battery 80.
  • the switching preparation control for suppressing the compressor 11 from sucking the liquid phase refrigerant is executed as in the first embodiment.
  • the switching preparation control is executed when the control program determines to switch from the cooling mode to the heating mode.
  • the compressor stop control and the outdoor unit inlet side blockage control are performed as in the first embodiment.
  • the heating expansion valve 16a is fully closed when the circuit is switched to the first circuit. Therefore, in the outdoor unit inlet side blockage control of the refrigeration cycle device 10b, the heating expansion valve 16a is maintained in a fully closed state.
  • control device 70 is a three-way valve so as to cause the refrigerant discharged from the compressor 11 to flow out to the indoor condenser 12 side as a control corresponding to the high-pressure side communication control of the first embodiment at the same time as the compressor stop control.
  • Switch 22 Other switching preparation controls are the same as those of the first switching preparation control described in the first embodiment.
  • the same effect as that of the first switching preparation control described in the first embodiment can be obtained. That is, according to the refrigerating cycle apparatus 10b of the present embodiment, it is possible to prevent the liquid phase refrigerant from being sucked into the compressor 11 when the refrigerant circuit in the cooling mode is switched to the refrigerant circuit in the heating mode. ..
  • switching preparation control may be executed when switching from the cooling cooling mode to the heating mode.
  • the switching preparation control may be executed when switching from the independent cooling mode to the heating mode.
  • the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the switching preparation control.
  • the refrigerating cycle devices 10, 10a and 10b according to the present disclosure are applied to the vehicle air-conditioning device 1 mounted on an electric vehicle, but the application of the refrigerating cycle devices 10 ... 10b is the same. Not limited to.
  • it may be applied to a vehicle air conditioner 1 mounted on a so-called hybrid vehicle, which obtains a driving force for traveling a vehicle from both an internal combustion engine and an electric motor.
  • an example of cooling the battery 80 as an in-vehicle device to be a temperature control target of the refrigeration cycle device 10 has been described, but the present invention is not limited to this.
  • an in-vehicle device that generates heat during operation such as a motor generator, an inverter, a PCU, a transaxle, and a control device for ADAS, may be a temperature control target.
  • the motor generator has a function as a motor that outputs a driving force for traveling and a function as a generator.
  • the inverter supplies electric power to the motor generator and the like.
  • the PCU is a power control unit that performs substation and power distribution.
  • the transaxle is a power transmission mechanism that integrates a transmission, a differential gear, and the like.
  • the control device for ADAS is a control device for an advanced driver assistance system.
  • the application of the refrigeration cycle device 10 is not limited to that for vehicles.
  • it may be applied to a stationary air conditioner that air-conditions a computer server room.
  • the computer server may be the object to be cooled.
  • the configuration of the refrigeration cycle apparatus 10 ... 10b is not limited to that disclosed in the above-described embodiment.
  • the indoor condenser 12 is used as a heating unit for heating the blown air using a high-pressure refrigerant as a heat source
  • the present invention is not limited to this.
  • the indoor condenser 12 may be abolished, and the heating unit may be formed by the water-refrigerant heat exchanger and each component device arranged in the high-pressure side heat medium circuit.
  • the high temperature side heat medium circuit is a heat medium circulation circuit that circulates the high temperature side heat medium.
  • the high temperature side heat medium the same fluid as the low temperature side heat medium can be adopted.
  • a water passage of a water refrigerant heat exchanger, a high temperature side heat medium pump, a heater core, and the like are arranged.
  • the water refrigerant heat exchanger is a heat dissipation unit that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the high-temperature side heat medium to dissipate the heat of the high-pressure refrigerant to the blown air.
  • the high temperature side heat medium pump is an electric water pump that pumps the high temperature side heat medium flowing out of the heater core to the water refrigerant heat exchanger.
  • the basic configuration of the high temperature side heat medium pump is the same as that of the low temperature side heat medium pump.
  • the heater core is a heating heat exchange unit that heats the blown air by exchanging heat between the high temperature side heat medium flowing out of the water refrigerant heat exchanger and the blown air.
  • the heater core may be arranged in the indoor air conditioning unit 40 in the same manner as the indoor condenser 12.
  • a cooling unit for cooling the battery 80 is configured by each component device arranged in the chiller 20 and the low temperature side heat medium circuit 60
  • the cooling unit is not limited thereto. ..
  • the chiller 20 and the low-temperature side heat medium circuit 60 may be abolished, and the low-pressure refrigerant decompressed by the cooling expansion valve 16c may be directly circulated by using the cooling water passage 80a of the battery 80 as a cooling unit.
  • the cooling water passage 80a becomes the evaporation part.
  • a rear seat expansion valve and a rear seat indoor evaporator may be added to the refrigeration cycle devices 10 ... 10b.
  • the rear seat expansion valve is a second pressure reducing unit having the same configuration as the cooling expansion valve 16b.
  • the rear-seat indoor evaporator is an evaporation unit that evaporates the low-pressure refrigerant decompressed by the rear-seat expansion valve by exchanging heat with the blown air blown toward the rear-seat side of the passenger compartment.
  • the blown air cooled by the indoor evaporator 19 is blown toward the front seat side in the vehicle interior.
  • the rear seat expansion valve and the rear seat indoor evaporator may be connected in parallel to the cooling expansion valve 16b and the indoor evaporator 19, and the cooling expansion valve 16c and the chiller 20.
  • a refrigerant circuit that causes at least the outdoor heat exchanger 18 to function as a condenser and at least one of the indoor evaporator 19, the chiller 20, and the rear seat indoor evaporator is included in the first circuit. Is done.
  • R1234yf is adopted as the refrigerant of the refrigeration cycle device 10
  • the present invention is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C and the like may be adopted.
  • a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
  • an ethylene glycol aqueous solution is used as the low-temperature side heat medium
  • the present invention is not limited to this.
  • a solution containing dimethylpolysiloxane or a nanofluid or the like, an antifreeze solution, an aqueous liquid medium containing alcohol or the like, a liquid medium containing oil or the like may be adopted.
  • the operation mode of the refrigeration cycle device 10 is not limited to that disclosed in the above-described embodiment.
  • the series chiller endothermic heating mode may be executed.
  • the series chiller heat absorption heating mode is an operation mode in which the blown air is heated by the indoor condenser 12 using the heat absorbed by the refrigerant from the low temperature side heat medium in the chiller 20 as a heat source.
  • the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully open or throttled state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, and the outdoor heat exchanger. It is switched to a refrigerant circuit that circulates in the order of 18, the receiver 15, the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11.
  • the series chiller endothermic heating mode refrigerant circuit is included in the first circuit.
  • the refrigeration cycle device 10 may execute the parallel dehumidification / heating mode.
  • the parallel dehumidifying / heating mode the blown air cooled and dehumidified by the indoor evaporator 19 is used as the heat source by the refrigerant absorbed from the outside air by the outdoor heat exchanger 18 without cooling the battery 80, and the room is used as a heat source.
  • This is an operation mode in which the condenser 12 reheats.
  • the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
  • the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the liquid storage unit inlet side passage 21a, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in this order in the order of the liquid storage unit outlet side passage 21b, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, and the suction port of the compressor 11, and also cools. It is switched to a refrigerant circuit that circulates in the order of the expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11. The refrigerant circuit in the parallel dehumidifying / heating mode is included in the second circuit.
  • the refrigerating cycle device 10 may execute the outside air chiller endothermic heating mode.
  • the outside air chiller heat absorption heating mode the blown air is heated by the indoor condenser 12 using the heat absorbed by the refrigerant from the outside air in the outdoor heat exchanger 18 and the heat absorbed by the refrigerant from the low temperature side heat medium in the chiller 20 as heat sources. It is an operation mode to be performed.
  • the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in the throttled state, the cooling expansion valve 16b in the fully closed state, and the cooling expansion valve 16c in the throttled state.
  • the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the liquid storage unit inlet side passage 21a, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the liquid storage unit outlet side passage 21b, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, and the suction port of the compressor 11, and is cooled. It is switched to a refrigerant circuit that circulates in the order of the expansion valve 16c, the chiller 20, and the suction port of the compressor 11.
  • the outside air chiller endothermic heating mode refrigerant circuit is included in the second circuit.
  • the refrigeration cycle device 10 may execute the outside air chiller endothermic dehumidification / heating mode.
  • the outside air chiller heat absorption / dehumidification / heating mode the battery 80 is cooled, and the blown air cooled and dehumidified by the indoor evaporator 19 is transferred to the heat absorbed by the refrigerant from the outside air and the chiller 20 by the outdoor heat exchanger 18.
  • the heat absorbed by the refrigerant from the low temperature side heat medium is used as a heat source and reheated by the indoor condenser 12.
  • the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in the throttle state, the cooling expansion valve 16b in the throttle state, and the cooling expansion valve 16c in the throttle state.
  • the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the liquid storage unit inlet side passage 21a, and the receiver 15.
  • the refrigerant flowing out from the receiver 15 circulates in this order in the order of the liquid storage unit outlet side passage 21b, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, and the suction port of the compressor 11, and the cooling expansion valve.
  • the refrigeration cycle device 10 may execute the chiller endothermic heating mode.
  • the chiller heat absorption heating mode is an operation mode in which the blown air is heated by the indoor condenser 12 using the heat absorbed by the refrigerant from the low temperature side heat medium in the chiller 20 as a heat source.
  • the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, the cooling expansion valve 16c, the chiller 20, and the compressor 11. It can be switched to a refrigerant circuit that circulates in the order of the suction port.
  • the refrigerant circuit in the chiller endothermic heating mode is included in the third circuit in which the refrigerant is not circulated to the outdoor heat exchanger 18.
  • the refrigerating cycle device 10 may execute the evaporator independent dehumidifying / heating mode.
  • the blown air cooled and dehumidified by the indoor evaporator 19 is re-heated by the indoor condenser 12 using the heat absorbed by the refrigerant from the blown air in the indoor evaporator 19. It is an operation mode to heat.
  • the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
  • the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, the cooling expansion valve 16b, the indoor evaporator 19, and the like. It is switched to the refrigerant circuit that circulates in the order of the suction port of the compressor 11.
  • the refrigerant circuit of the evaporator single dehumidifying heating mode is included in the third circuit.
  • the refrigeration cycle device 10 may execute the chiller endothermic dehumidification / heating mode.
  • the chiller endothermic dehumidifying / heating mode the blown air cooled and dehumidified by the indoor evaporator 19 is endothermic from the blown air by the refrigerant in the indoor evaporator 19, and the refrigerant is sent from the low temperature side heat medium by the chiller 20.
  • This is an operation mode in which the heat absorbed is used as a heat source and reheated by the indoor condenser 12.
  • the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a throttled state.
  • the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the liquid storage unit inlet side passage 21a, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11 are in that order. It can be switched to a circulating refrigerant circuit.
  • the refrigerant circuit of the chiller endothermic dehumidification heating mode is included in the third circuit.
  • the switching preparation control may be executed when the operation mode in which the refrigerant circuit is switched to the first circuit is changed to the operation mode in which the refrigerant circuit is switched to the third circuit. According to this, when switching the operation mode, the liquid phase refrigerant remaining in the outdoor heat exchanger 18 can be moved into the receiver 15. Therefore, it is possible to prevent the liquid phase refrigerant from staying in the outdoor heat exchanger 18 and causing a refrigerant shortage.

Abstract

A refrigeration cycle device provided with refrigerant circuit switching units (14a-14c, 161a-161c, 22) for switching refrigerant circuits. The refrigerant circuit switching units (14a-14c, 161a-161c, 22) switch between: a first circuit for causing a refrigerant that has been made to release heat in an outdoor heat exchanger (18) to flow into a liquid storage part (15), causing the refrigerant that has flowed out from the liquid storage part (15) to be decompressed in a second decompression unit (16b), and causing the refrigerant that has evaporated in evaporators (19, 20) to be drawn into a compressor (11); and a second circuit for causing the refrigerant that has been made to release heat in a heat dissipation unit (12) to flow into the liquid storage part (15), causing the refrigerant that flowed out from the liquid storage part (15) to to be decompressed in a first decompression unit (16a), and causing the refrigerant that evaporated in the outdoor heat exchanger (18) to be drawn into the compressor (11). When a switch is made from the first circuit to the second circuit, the compressor (11) is stopped, and an outdoor unit inlet-side opening/closing part (161a) for opening/closing the inlet side of the outdoor heat exchanger (18) is closed.

Description

冷凍サイクル装置Refrigeration cycle device 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年8月17日に出願された日本特許出願2020-137341号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2020-137341 filed on August 17, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、冷媒回路を切替可能に構成された冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device configured so that the refrigerant circuit can be switched.
 従来、特許文献1に、車両用空調装置に適用されて、冷媒回路を切替可能に構成された冷凍サイクル装置が開示されている。特許文献1の冷凍サイクル装置は、室内凝縮器、室外熱交換器、室内蒸発器といった熱交換器に加えて、レシーバを備えている。レシーバは、凝縮器として機能する熱交換器から流出した冷媒の気液を分離して、サイクルの余剰冷媒を液相冷媒として蓄える貯液部である。 Conventionally, Patent Document 1 discloses a refrigerating cycle device that is applied to a vehicle air conditioner and is configured to be able to switch a refrigerant circuit. The refrigeration cycle apparatus of Patent Document 1 includes a receiver in addition to heat exchangers such as an indoor condenser, an outdoor heat exchanger, and an indoor evaporator. The receiver is a liquid storage unit that separates the gas and liquid of the refrigerant flowing out from the heat exchanger that functions as a condenser and stores the excess refrigerant of the cycle as a liquid phase refrigerant.
 そして、特許文献1の冷凍サイクル装置では、車室内を冷房する冷房モード時には、室外熱交換器にて外気へ放熱して凝縮した冷媒をレシーバへ流入させる。さらに、室内蒸発器にて車室内へ送風される送風空気から吸熱して蒸発した冷媒を圧縮機へ吸入させる冷媒回路に切り替える。また、車室内を暖房する暖房モード時には、室内凝縮器にて送風空気へ放熱して凝縮した冷媒をレシーバへ流入させる。さらに、室外熱交換器にて外気から吸熱して蒸発した冷媒を圧縮機へ吸入させる冷媒回路に切り替える。 Then, in the refrigerating cycle device of Patent Document 1, in the cooling mode for cooling the vehicle interior, the outdoor heat exchanger dissipates heat to the outside air and causes the condensed refrigerant to flow into the receiver. Further, the indoor evaporator switches to a refrigerant circuit that absorbs heat from the blown air blown into the vehicle interior and sucks the evaporated refrigerant into the compressor. Further, in the heating mode for heating the interior of the vehicle, the indoor condenser dissipates heat to the blown air and causes the condensed refrigerant to flow into the receiver. Further, the outdoor heat exchanger switches to a refrigerant circuit that absorbs heat from the outside air and sucks the evaporated refrigerant into the compressor.
特開平9-240247号公報Japanese Unexamined Patent Publication No. 9-24247
 ところで、特許文献1の冷凍サイクル装置では、冷房モード時に、室外熱交換器を凝縮器として機能させている。さらに、暖房モード時に、室外熱交換器を蒸発器として機能させている。 By the way, in the refrigeration cycle apparatus of Patent Document 1, the outdoor heat exchanger functions as a condenser in the cooling mode. Further, in the heating mode, the outdoor heat exchanger functions as an evaporator.
 このため、冷房モードの冷媒回路から暖房モードの冷媒回路へ切り替えた際に、室外熱交換器内に残存している液相冷媒が、圧縮機の吸入口側へ流出してしまう可能性がある。そして、圧縮機が液相冷媒を吸入してしまうと、液圧縮や潤滑不良によって圧縮機の耐久寿命に悪影響を与えてしまう。 Therefore, when switching from the cooling mode refrigerant circuit to the heating mode refrigerant circuit, the liquid phase refrigerant remaining in the outdoor heat exchanger may flow out to the suction port side of the compressor. .. If the compressor sucks in the liquid phase refrigerant, the durability of the compressor will be adversely affected by liquid compression and poor lubrication.
 本開示は、上記点に鑑み、冷媒回路を切り替えた際に、圧縮機に液相冷媒が吸入されてしまうことを抑制可能な冷凍サイクル装置を提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide a refrigeration cycle device capable of suppressing the suction of a liquid phase refrigerant into a compressor when the refrigerant circuit is switched.
 上記目的を達成するため、本開示の第1の態様の冷凍サイクル装置は、圧縮機と、放熱部と、貯液部と、第1減圧部と、室外熱交換部と、第2減圧部と、蒸発部と、冷媒回路切替部と、を備える。 In order to achieve the above object, the refrigerating cycle apparatus according to the first aspect of the present disclosure includes a compressor, a heat dissipation unit, a liquid storage unit, a first decompression unit, an outdoor heat exchange unit, and a second decompression unit. , An evaporation unit and a refrigerant circuit switching unit.
 圧縮機は、冷媒を圧縮して吐出する。放熱部は、圧縮機から吐出された冷媒を放熱させる。貯液部は、サイクル内の余剰冷媒を蓄える。第1減圧部および第2減圧部は、冷媒を減圧させる。室外熱交換部は、第1減圧部から流出した冷媒と外気とを熱交換させる。蒸発部は、第2減圧部から流出した冷媒を蒸発させる。冷媒回路切替部は、冷媒回路を切り替える。 The compressor compresses and discharges the refrigerant. The heat radiating unit dissipates the refrigerant discharged from the compressor. The liquid storage unit stores excess refrigerant in the cycle. The first decompression section and the second decompression section depressurize the refrigerant. The outdoor heat exchange unit exchanges heat between the refrigerant flowing out from the first decompression unit and the outside air. The evaporating unit evaporates the refrigerant flowing out from the second decompression unit. The refrigerant circuit switching unit switches the refrigerant circuit.
 冷媒回路切替部は、第1回路と第2回路とを切替可能に構成されている。第1回路は、室外熱交換部にて放熱させた冷媒を貯液部へ流入させ、貯液部から流出した冷媒を第2減圧部へ流入させ、第2減圧部にて減圧された冷媒を蒸発部にて蒸発させ、蒸発部から流出した冷媒を圧縮機へ吸入させる。第2回路は、放熱部にて放熱させた冷媒を貯液部へ流入させ、貯液部から流出した冷媒を第1減圧部へ流入させ、第1減圧部にて減圧された冷媒を室内熱交換部にて蒸発させ、室外熱交換部から流出した冷媒を圧縮機へ吸入させる。 The refrigerant circuit switching unit is configured to be able to switch between the first circuit and the second circuit. In the first circuit, the refrigerant dissipated in the outdoor heat exchange section flows into the liquid storage section, the refrigerant flowing out of the liquid storage section flows into the second decompression section, and the refrigerant decompressed in the second decompression section is used. The refrigerant is evaporated in the evaporating section, and the refrigerant flowing out of the evaporating section is sucked into the compressor. In the second circuit, the refrigerant dissipated in the heat dissipation section flows into the liquid storage section, the refrigerant flowing out from the liquid storage section flows into the first decompression section, and the refrigerant decompressed in the first decompression section heats the room. Evaporate in the exchange section and suck the refrigerant flowing out of the outdoor heat exchange section into the compressor.
 冷媒回路切替部は、少なくとも前記第2回路に切り替えられた際の室内熱交換器の入口側を開閉する室外器入口側開閉部を有している。 The refrigerant circuit switching unit has at least an outdoor unit inlet side opening / closing unit that opens / closes the inlet side of the indoor heat exchanger when it is switched to the second circuit.
 そして、冷凍サイクル装置は、第1回路から第2回路へ切り替える際に、圧縮機を停止させ、室外器入口側開閉部を閉じる切替準備制御を実行する。 Then, when switching from the first circuit to the second circuit, the refrigeration cycle device stops the compressor and executes a switching preparation control for closing the opening / closing part on the inlet side of the outdoor unit.
 これによれば、冷媒回路切替部を備えているので、第1回路と第2回路とを切り替えることができる。さらに、第1回路から第2回路へ切り替える際に、切替準備制御を実行するので、第2回路に切り替える前に、室外熱交換部内の冷媒を貯液部へ移動させることができる。 According to this, since the refrigerant circuit switching unit is provided, the first circuit and the second circuit can be switched. Further, since the switching preparation control is executed when switching from the first circuit to the second circuit, the refrigerant in the outdoor heat exchange section can be moved to the liquid storage section before switching to the second circuit.
 より詳細には、切替準備制御では、室外器入口側開閉部を閉じるので、室外熱交換部へ高温高圧の気相冷媒が供給されなくなる。これにより、室外熱交換部内に残存している冷媒は、外気によって冷却されて凝縮する。 More specifically, in the switching preparation control, the opening / closing part on the inlet side of the outdoor unit is closed, so that the high temperature and high pressure vapor phase refrigerant is not supplied to the outdoor heat exchange part. As a result, the refrigerant remaining in the outdoor heat exchange section is cooled by the outside air and condensed.
 さらに、切替準備制御では、圧縮機を停止させるので、冷媒回路内の均圧化が進行する。そして、冷媒回路内を均圧化させる際に生じる冷媒流れによって、室外熱交換部で凝縮した液相冷媒を貯液部へ移動させることができる。 Furthermore, in the switching preparation control, the compressor is stopped, so that the pressure equalization in the refrigerant circuit progresses. Then, the liquid phase refrigerant condensed in the outdoor heat exchange section can be moved to the liquid storage section by the refrigerant flow generated when the pressure in the refrigerant circuit is equalized.
 従って、切替準備制御の実行後に、第1回路から第2回路へ切り替えることで、室外熱交換部に残存している液相冷媒が圧縮機の吸入側へ流出してしまうことを抑制することができる。すなわち、第1の態様の冷凍サイクル装置によれば、冷媒回路を切り替えた際に、圧縮機に液相冷媒が吸入されてしまうことを抑制することができる。 Therefore, by switching from the first circuit to the second circuit after the execution of the switching preparation control, it is possible to prevent the liquid phase refrigerant remaining in the outdoor heat exchange section from flowing out to the suction side of the compressor. can. That is, according to the refrigerating cycle device of the first aspect, it is possible to prevent the liquid phase refrigerant from being sucked into the compressor when the refrigerant circuit is switched.
第1実施形態の冷凍サイクル装置の全体構成図である。It is an overall block diagram of the refrigeration cycle apparatus of 1st Embodiment. 第1実施形態の室内空調ユニットの模式的な構成図である。It is a schematic block diagram of the room air-conditioning unit of 1st Embodiment. 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the air-conditioning apparatus for a vehicle of 1st Embodiment. 第1実施形態の第1切替準備制御のタイムチャートである。It is a time chart of the 1st switching preparation control of 1st Embodiment. 第1実施形態の第2切替準備制御のタイムチャートである。It is a time chart of the 2nd switching preparation control of 1st Embodiment. 第2実施形態の冷凍サイクル装置の全体構成図である。It is an overall block diagram of the refrigerating cycle apparatus of 2nd Embodiment. 第2実施形態の切替準備制御のタイムチャートである。It is a time chart of the switching preparation control of the 2nd Embodiment. 第3実施形態の冷凍サイクル装置の全体構成図である。It is an overall block diagram of the refrigerating cycle apparatus of 3rd Embodiment. 第3実施形態の切替準備制御のタイムチャートである。It is a time chart of the switching preparation control of the 3rd embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, the same reference numerals may be given to the parts corresponding to the matters described in the preceding embodiments, and duplicate explanations may be omitted. When only a part of the configuration is described in each embodiment, other embodiments described above can be applied to the other parts of the configuration. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the partial combination of the embodiments even if the combination is not specified if there is no problem in the combination. Is also possible.
 (第1実施形態)
 図1~図5を用いて、本開示に係る冷凍サイクル装置10の第1実施形態を説明する。冷凍サイクル装置10は、電気自動車に搭載された車両用空調装置1に適用されている。電気自動車は、電動モータから走行用の駆動力を得る車両である。本実施形態の車両用空調装置1は、電気自動車において、空調対象空間である車室内の空調を行うとともに、車載機器であるバッテリ80を冷却する車載機器冷却機能付きの空調装置である。
(First Embodiment)
A first embodiment of the refrigeration cycle apparatus 10 according to the present disclosure will be described with reference to FIGS. 1 to 5. The refrigeration cycle device 10 is applied to a vehicle air conditioner 1 mounted on an electric vehicle. An electric vehicle is a vehicle that obtains driving force for traveling from an electric motor. The vehicle air-conditioning device 1 of the present embodiment is an air-conditioning device having an in-vehicle device cooling function that air-conditions the interior of the vehicle, which is an air-conditioning target space, and cools the battery 80, which is an in-vehicle device, in an electric vehicle.
 バッテリ80は、電動モータ等の車載機器へ供給される電力を蓄える。バッテリ80は、二次電池(本実施形態では、リチウムイオン電池)である。バッテリ80は、複数の電池セルを積層配置し、これらの電池セルを電気的に直列あるいは並列に接続することによって形成された組電池である。 The battery 80 stores electric power supplied to an in-vehicle device such as an electric motor. The battery 80 is a secondary battery (in this embodiment, a lithium ion battery). The battery 80 is an assembled battery formed by stacking a plurality of battery cells and electrically connecting these battery cells in series or in parallel.
 この種のバッテリは、作動時(すなわち、充放電時)に発熱する。バッテリは、低温になると出力が低下しやすく、高温になると劣化が進行しやすい。このため、バッテリの温度は、適切な温度範囲内(本実施形態では、15℃以上、かつ、55℃以下)に維持されている必要がある。このため、本実施形態の車両用空調装置1では、冷凍サイクル装置10が生成した冷熱を利用して、バッテリ80を冷却している。 This type of battery generates heat during operation (that is, during charging / discharging). The output of a battery tends to decrease at low temperatures, and deterioration tends to progress at high temperatures. Therefore, the temperature of the battery needs to be maintained within an appropriate temperature range (in this embodiment, 15 ° C. or higher and 55 ° C. or lower). Therefore, in the vehicle air conditioner 1 of the present embodiment, the battery 80 is cooled by using the cold heat generated by the refrigerating cycle device 10.
 車両用空調装置1は、冷凍サイクル装置10、室内空調ユニット40、低温側熱媒体回路60、制御装置70等を備えている。 The vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioner unit 40, a low temperature side heat medium circuit 60, a control device 70, and the like.
 冷凍サイクル装置10は、車両用空調装置1において、車室内へ送風される送風空気の温度を調整する。さらに、冷凍サイクル装置10は、バッテリ80を冷却する冷熱を生成する。従って、冷凍サイクル装置10の温度調整対象物は、送風空気およびバッテリ80となる。また、冷凍サイクル装置10は、車室内の空調およびバッテリ80の冷却を行うための各種運転モードに応じて、冷媒回路を切替可能に構成されている。 The refrigeration cycle device 10 adjusts the temperature of the blown air blown into the vehicle interior in the vehicle air conditioner 1. Further, the refrigeration cycle device 10 generates cold heat for cooling the battery 80. Therefore, the temperature control target of the refrigeration cycle device 10 is the blown air and the battery 80. Further, the refrigerating cycle device 10 is configured to be able to switch the refrigerant circuit according to various operation modes for air-conditioning the vehicle interior and cooling the battery 80.
 冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。冷凍サイクル装置10は、圧縮機11から吐出された高圧冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑するための冷凍機油(具体的には、PAGオイル)が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The refrigeration cycle apparatus 10 uses an HFO-based refrigerant (specifically, R1234yf) as the refrigerant. The refrigeration cycle device 10 constitutes a steam compression type subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Refrigerating machine oil (specifically, PAG oil) for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 圧縮機11は、冷凍サイクル装置10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方側の駆動装置室内に配置されている。駆動装置室は、走行用の駆動力を出力するための駆動用装置(例えば、電動モータ)の少なくとも一部が配置される空間を形成している。 The compressor 11 sucks in the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it. The compressor 11 is arranged in the drive unit room on the front side of the vehicle interior. The drive device room forms a space in which at least a part of a drive device (for example, an electric motor) for outputting a driving force for traveling is arranged.
 圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する制御装置70から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 is an electric compressor in which a fixed capacity type compression mechanism having a fixed discharge capacity is rotationally driven by an electric motor. The number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the control device 70 described later.
 圧縮機11の吐出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する室内空調ユニット40のケーシング41内に配置されている。室内凝縮器12は、圧縮機11から吐出された高圧冷媒と送風空気とを熱交換させて、高圧冷媒の有する熱を送風空気へ放熱させる放熱部である。換言すると、室内凝縮器12は、圧縮機11から吐出された高圧冷媒を熱源として送風空気を加熱する加熱部である。 The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11. The indoor condenser 12 is arranged in the casing 41 of the indoor air conditioning unit 40, which will be described later. The indoor condenser 12 is a heat dissipation unit that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air to dissipate the heat of the high-pressure refrigerant to the blown air. In other words, the indoor condenser 12 is a heating unit that heats the blown air using the high-pressure refrigerant discharged from the compressor 11 as a heat source.
 室内凝縮器12の冷媒出口には、互いに連通する3つの流入出口を有する第1三方継手13aの流入口側が接続されている。三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The inlet side of the first three-way joint 13a having three inflow outlets communicating with each other is connected to the refrigerant outlet of the indoor condenser 12. As the three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 さらに、冷凍サイクル装置10は、後述するように、第2三方継手13b~第8三方継手13hを備えている。第2三方継手13b~第8三方継手13hの基本的構成は、いずれも第1三方継手13aと同様である。 Further, the refrigeration cycle device 10 includes a second three-way joint 13b to an eighth three-way joint 13h, as will be described later. The basic configuration of the second three-way joint 13b to the eighth three-way joint 13h is the same as that of the first three-way joint 13a.
 第1三方継手13a~第8三方継手13hは、3つの流入出口のうち1つが流入口として用いられ、2つが流出口として用いられた際には、1つの流入口から流入した冷媒の流れを分岐する分岐部として機能させることができる。また、3つの流入出口のうち2つが流入口として用いられ、1つが流出口として用いられた際には、2つの流入口から流入した冷媒の流れを合流させる合流部として機能させることができる。 In the first three-way joint 13a to the eighth three-way joint 13h, when one of the three inflow outlets is used as the inflow port and two are used as the outflow ports, the flow of the refrigerant flowing in from one inflow port is used. It can function as a branching part. Further, when two of the three inflow ports are used as the inflow port and one is used as the outflow port, the refrigerant can function as a confluence portion for merging the flows of the refrigerant flowing in from the two inflow ports.
 第1三方継手13aの一方の流出口には、第1開閉弁14aおよび第5三方継手13eを介して、レシーバ15の入口側が接続されている。第1三方継手13aの他方の流出口には、第2開閉弁14bおよび第2三方継手13bを介して、暖房用膨張弁16aの入口側が接続されている。 The inlet side of the receiver 15 is connected to one outlet of the first three-way joint 13a via the first on-off valve 14a and the fifth three-way joint 13e. The inlet side of the heating expansion valve 16a is connected to the other outlet of the first three-way joint 13a via the second on-off valve 14b and the second three-way joint 13b.
 第1開閉弁14aは、第1三方継手13aの一方の流出口からレシーバ15の入口へ至る貯液部入口側通路21aを開閉する電磁弁である。第1開閉弁14aは、制御装置70から出力される制御電圧によって、その開閉作動が制御される。さらに、冷凍サイクル装置10は、後述するように、第3開閉弁14cを備えている。第2開閉弁14bおよび第3開閉弁14cの基本的構成は、第1開閉弁14aと同様である。 The first on-off valve 14a is a solenoid valve that opens and closes the passage 21a on the inlet side of the liquid storage unit from one outlet of the first three-way joint 13a to the inlet of the receiver 15. The opening / closing operation of the first on-off valve 14a is controlled by the control voltage output from the control device 70. Further, the refrigeration cycle device 10 includes a third on-off valve 14c, as will be described later. The basic configuration of the second on-off valve 14b and the third on-off valve 14c is the same as that of the first on-off valve 14a.
 第1開閉弁14a、第2開閉弁14bおよび第3開閉弁14cは、冷媒通路を開閉することによって、冷媒回路を切り替えることができる。従って、第1開閉弁14a、第2開閉弁14bおよび第3開閉弁14cは、冷媒回路切替部である。さらに、第1開閉弁14aは、貯液部入口側通路21aを開閉する貯液部入口側開閉部である。 The first on-off valve 14a, the second on-off valve 14b, and the third on-off valve 14c can switch the refrigerant circuit by opening and closing the refrigerant passage. Therefore, the first on-off valve 14a, the second on-off valve 14b, and the third on-off valve 14c are refrigerant circuit switching portions. Further, the first on-off valve 14a is a liquid storage unit inlet-side opening / closing unit that opens and closes the liquid storage unit inlet-side passage 21a.
 第5三方継手13eは、貯液部入口側通路21aに配置されている。第5三方継手13eの一方の流入口には、第1開閉弁14aの出口側が接続されている。第5三方継手13eの他方の流入口には、後述する第2逆止弁17bの出口側が接続されている。第5三方継手13eの流出口には、レシーバ15の入口側が接続されている。 The fifth three-way joint 13e is arranged in the passage 21a on the inlet side of the liquid storage unit. The outlet side of the first on-off valve 14a is connected to one inflow port of the fifth three-way joint 13e. The outlet side of the second check valve 17b, which will be described later, is connected to the other inflow port of the fifth three-way joint 13e. The inlet side of the receiver 15 is connected to the outlet of the fifth three-way joint 13e.
 レシーバ15は、気液分離機能を有する貯液部である。レシーバ15は、冷凍サイクル装置10において、冷媒を凝縮させる凝縮器として機能する熱交換部から流出した冷媒の気液を分離する。さらに、レシーバ15は、分離された液相冷媒の一部を下流側に流出させ、残余の液相冷媒をサイクル内の余剰冷媒として蓄える。 The receiver 15 is a liquid storage unit having a gas-liquid separation function. The receiver 15 separates the gas and liquid of the refrigerant flowing out from the heat exchange unit that functions as a condenser that condenses the refrigerant in the refrigeration cycle device 10. Further, the receiver 15 causes a part of the separated liquid phase refrigerant to flow out to the downstream side, and stores the remaining liquid phase refrigerant as the surplus refrigerant in the cycle.
 第2開閉弁14bは、第1三方継手13aの他方の流出口から第2三方継手13bの一方の流入口へ至る冷房冷却用通路21cを開閉する電磁弁である。第2三方継手13bの他方の流入口には、レシーバ15の出口側が接続されている。レシーバ15の出口と第2三方継手13bの他方の流入口とを接続する貯液部出口側通路21bには、第6三方継手13fおよび第1逆止弁17aが配置されている。 The second on-off valve 14b is a solenoid valve that opens and closes the cooling / cooling passage 21c from the other outlet of the first three-way joint 13a to the one inlet of the second three-way joint 13b. The outlet side of the receiver 15 is connected to the other inlet of the second three-way joint 13b. A sixth three-way joint 13f and a first check valve 17a are arranged in the liquid storage unit outlet side passage 21b connecting the outlet of the receiver 15 and the other inflow port of the second three-way joint 13b.
 第6三方継手13fの流入口には、レシーバ15の出口側が接続されている。第6三方継手13fの一方の流出口には、第1逆止弁17aの入口側が接続されている。第6三方継手13fの他方の流出口には、第7三方継手13gの流入口側が接続されている。第1逆止弁17aの出口には、第2三方継手13bの他方の流入口側が接続されている。 The outlet side of the receiver 15 is connected to the inflow port of the 6th three-way joint 13f. The inlet side of the first check valve 17a is connected to one of the outlets of the sixth three-way joint 13f. The inlet side of the 7th three-way joint 13g is connected to the other outlet of the sixth three-way joint 13f. The other inflow port side of the second three-way joint 13b is connected to the outlet of the first check valve 17a.
 第2三方継手13bの流出口には、暖房用膨張弁16aを介して、室外熱交換器18の冷媒入口側が接続されている。このため、第1逆止弁17aは、レシーバ15の出口側から暖房用膨張弁16a側へ冷媒が流れることを許容し、暖房用膨張弁16a側からレシーバ15の出口側へ冷媒が流れることを禁止している。 The refrigerant inlet side of the outdoor heat exchanger 18 is connected to the outlet of the second three-way joint 13b via the heating expansion valve 16a. Therefore, the first check valve 17a allows the refrigerant to flow from the outlet side of the receiver 15 to the heating expansion valve 16a side, and allows the refrigerant to flow from the heating expansion valve 16a side to the outlet side of the receiver 15. It is prohibited.
 暖房用膨張弁16aは、後述する暖房モード時等に、レシーバ15から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する第1減圧部である。 The heating expansion valve 16a is a first decompression unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side during the heating mode described later.
 暖房用膨張弁16aは、絞り通路の開度(すなわち、弁開度)を変化させる弁体部161a、および弁体部161aを変位させる電動アクチュエータ(具体的には、ステッピングモータ)を有する電動式の可変絞り機構である。暖房用膨張弁16aは、制御装置70から出力される制御信号(具体的には、制御パルス)によって、その作動が制御される。 The heating expansion valve 16a is an electric type having a valve body portion 161a that changes the opening degree (that is, valve opening degree) of the throttle passage and an electric actuator (specifically, a stepping motor) that displaces the valve body portion 161a. It is a variable aperture mechanism of. The operation of the heating expansion valve 16a is controlled by a control signal (specifically, a control pulse) output from the control device 70.
 暖房用膨張弁16aは、弁体部161aが弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。また、暖房用膨張弁16aは、弁体部161aが弁開度を全閉にすることで、冷媒通路を閉塞する全閉機能を有している。 The heating expansion valve 16a has a fully open function in which the valve body portion 161a fully opens the valve opening so that the valve body portion 161a functions as a mere refrigerant passage without exerting a flow rate adjusting action and a refrigerant depressurizing action. Further, the heating expansion valve 16a has a fully closed function of closing the refrigerant passage by fully closing the valve opening of the valve body portion 161a.
 さらに、冷凍サイクル装置10は、後述するように、冷房用膨張弁16bおよび冷却用膨張弁16cを備えている。冷房用膨張弁16bおよび冷却用膨張弁16cの基本的構成は、暖房用膨張弁16aと同様である。従って、冷房用膨張弁16bは、弁体部161bを有し、全開機能および全閉機能を有している。冷却用膨張弁16cは、弁体部161cを有し、全開機能および全閉機能を有している。 Further, the refrigerating cycle device 10 includes a cooling expansion valve 16b and a cooling expansion valve 16c, as will be described later. The basic configuration of the cooling expansion valve 16b and the cooling expansion valve 16c is the same as that of the heating expansion valve 16a. Therefore, the cooling expansion valve 16b has a valve body portion 161b, and has a fully open function and a fully closed function. The cooling expansion valve 16c has a valve body portion 161c, and has a fully open function and a fully closed function.
 暖房用膨張弁16a、冷房用膨張弁16bおよび冷却用膨張弁16cは、上述した全閉機能によって、冷媒回路を切り替えることができる。従って、暖房用膨張弁16aの弁体部161a、冷房用膨張弁16bの弁体部161b、および冷却用膨張弁16cの弁体部161cは、冷媒回路切替部としての機能を兼ね備えている。 The expansion valve 16a for heating, the expansion valve 16b for cooling, and the expansion valve 16c for cooling can switch the refrigerant circuit by the above-mentioned fully closed function. Therefore, the valve body portion 161a of the heating expansion valve 16a, the valve body portion 161b of the cooling expansion valve 16b, and the valve body portion 161c of the cooling expansion valve 16c also have a function as a refrigerant circuit switching unit.
 暖房用膨張弁16aの弁体部161aは、第2三方継手13bから室外熱交換器18の冷媒入口側へ至る室外器入口側通路21eを開閉する。従って、暖房用膨張弁16aの弁体部161aは、少なくとも後述する第1回路に切り替えられている際の室外熱交換器18の入口側を開閉する室外器入口側開閉部である。 The valve body portion 161a of the heating expansion valve 16a opens and closes the outdoor unit inlet side passage 21e from the second three-way joint 13b to the refrigerant inlet side of the outdoor heat exchanger 18. Therefore, the valve body portion 161a of the heating expansion valve 16a is an outdoor unit inlet side opening / closing portion that opens / closes the inlet side of the outdoor heat exchanger 18 at least when the circuit is switched to the first circuit described later.
 暖房用膨張弁16a、冷房用膨張弁16bおよび冷却用膨張弁16cは、全閉機能を有していない可変絞り機構と開閉弁とを組み合わせて形成されていてもよい。この場合は、開閉弁が冷媒回路切替部となる。 The heating expansion valve 16a, the cooling expansion valve 16b, and the cooling expansion valve 16c may be formed by combining a variable throttle mechanism having no fully closed function and an on-off valve. In this case, the on-off valve serves as the refrigerant circuit switching unit.
 室外熱交換器18は、暖房用膨張弁16aから流出した冷媒と、図示しない外気ファンから送風された外気とを熱交換させる室外熱交換部である。室外熱交換器18は、駆動装置室内の前方側に配置されている。このため、車両走行時には、グリルを介して駆動装置室へ流入した走行風を室外熱交換器18に当てることができる。 The outdoor heat exchanger 18 is an outdoor heat exchange unit that exchanges heat between the refrigerant flowing out from the heating expansion valve 16a and the outside air blown from an outside air fan (not shown). The outdoor heat exchanger 18 is arranged on the front side in the drive unit room. Therefore, when the vehicle is running, the running wind that has flowed into the drive unit room through the grill can be applied to the outdoor heat exchanger 18.
 室外熱交換器18の冷媒出口には、第3三方継手13cの流入口側が接続されている。第3三方継手13cの一方の流出口には、第3開閉弁14cを介して、第4三方継手13dの一方の流入口側が接続されている。第3三方継手13cの他方の流出口には、第2逆止弁17bを介して、第5三方継手13eの他方の流入口側が接続されている。 The inlet side of the third three-way joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 18. One inflow port side of the fourth three-way joint 13d is connected to one outflow port of the third three-way joint 13c via a third on-off valve 14c. The other inlet side of the fifth three-way joint 13e is connected to the other outlet of the third three-way joint 13c via the second check valve 17b.
 第3開閉弁14cは、第3三方継手13cの一方の流出口から第4三方継手13dの一方の流入口へ至る吸入側通路21dを開閉する電磁弁である。第4三方継手13dの流出口には、圧縮機11の吸入口側が接続されている。従って、第3開閉弁14cは、室外熱交換器18の冷媒出口側と圧縮機11の吸入口側とを接続する冷媒通路を開閉する吸入側電磁弁である。 The third on-off valve 14c is a solenoid valve that opens and closes the suction side passage 21d from one outlet of the third three-way joint 13c to one inlet of the fourth three-way joint 13d. The suction port side of the compressor 11 is connected to the outlet of the fourth three-way joint 13d. Therefore, the third on-off valve 14c is a suction-side solenoid valve that opens and closes the refrigerant passage connecting the refrigerant outlet side of the outdoor heat exchanger 18 and the suction port side of the compressor 11.
 第2逆止弁17bは、室外熱交換器18の冷媒出口側からレシーバ15の入口側へ冷媒が流れることを許容し、レシーバ15の入口側から室外熱交換器18の冷媒出口側へ冷媒が流れることを禁止している。 The second check valve 17b allows the refrigerant to flow from the refrigerant outlet side of the outdoor heat exchanger 18 to the inlet side of the receiver 15, and the refrigerant flows from the inlet side of the receiver 15 to the refrigerant outlet side of the outdoor heat exchanger 18. It is prohibited to flow.
 前述の如く、貯液部出口側通路21bに配置された第6三方継手13fの他方の流出口には、第7三方継手13gの流入口側が接続されている。第7三方継手13gの一方の流出口には、冷房用膨張弁16bの入口側が接続されている。第7三方継手13gの他方の流出口には、冷却用膨張弁16cの入口側が接続されている。 As described above, the inlet side of the 7th three-way joint 13g is connected to the other outlet of the sixth three-way joint 13f arranged in the liquid storage portion outlet side passage 21b. The inlet side of the cooling expansion valve 16b is connected to one of the outlets of the 7th three-way joint 13g. The inlet side of the cooling expansion valve 16c is connected to the other outlet of the 7th three-way joint 13g.
 冷房用膨張弁16bは、後述する冷房モード時等に、レシーバ15から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する第2減圧部である。 The cooling expansion valve 16b is a second decompression unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side during the cooling mode described later.
 冷房用膨張弁16bの出口には、室内蒸発器19の冷媒入口側が接続されている。室内蒸発器19は、室内空調ユニット40のケーシング41内に配置されている。室内蒸発器19は、冷房用膨張弁16bにて減圧された低圧冷媒を、室内送風機42から送風された送風空気と熱交換させて蒸発させる蒸発部である。 The refrigerant inlet side of the indoor evaporator 19 is connected to the outlet of the cooling expansion valve 16b. The indoor evaporator 19 is arranged in the casing 41 of the indoor air conditioning unit 40. The indoor evaporator 19 is an evaporation unit that evaporates the low-pressure refrigerant decompressed by the cooling expansion valve 16b by exchanging heat with the blown air blown from the indoor blower 42.
 換言すると、室内蒸発器19は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する送風空気用冷却部である。室内蒸発器19の冷媒出口には、第8三方継手13hの一方の流入口が接続されている。 In other words, the indoor evaporator 19 is a cooling unit for blown air that cools blown air by evaporating a low-pressure refrigerant to exert an endothermic action. One inflow port of the eighth three-way joint 13h is connected to the refrigerant outlet of the indoor evaporator 19.
 冷却用膨張弁16cは、後述する単独冷却モード時等に、レシーバ15から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する第2減圧部である。 The cooling expansion valve 16c is a second decompression unit that reduces the pressure of the refrigerant flowing out from the receiver 15 and adjusts the flow rate of the refrigerant flowing out to the downstream side in the single cooling mode described later.
 冷却用膨張弁16cの出口には、チラー20の冷媒入口側が接続されている。チラー20は、冷却用膨張弁16cにて減圧された低圧冷媒を流通させる冷媒通路と、低温側熱媒体回路60を循環する低温側熱媒体を流通させる水通路とを有している。チラー20は、冷媒通路を流通する低圧冷媒と水通路を流通する低温側熱媒体とを熱交換させて、低圧冷媒を蒸発させる蒸発部である。 The refrigerant inlet side of the chiller 20 is connected to the outlet of the cooling expansion valve 16c. The chiller 20 has a refrigerant passage through which the low-pressure refrigerant decompressed by the cooling expansion valve 16c is circulated, and a water passage through which the low-temperature side heat medium circulating in the low-temperature side heat medium circuit 60 is circulated. The chiller 20 is an evaporating unit that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing through the refrigerant passage and the low-temperature side heat medium flowing through the water passage.
 換言すると、チラー20は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって低温側熱媒体を冷却する熱媒体用冷却部である。チラー20の冷媒出口には、第8三方継手13hの他方の流入口が接続されている。第8三方継手13hの流出口には、第4三方継手13dを介して、圧縮機11の吸入口側が接続されている。 In other words, the chiller 20 is a heat medium cooling unit that cools the low temperature side heat medium by evaporating the low pressure refrigerant to exert an endothermic action. The other inlet of the eighth three-way joint 13h is connected to the refrigerant outlet of the chiller 20. The suction port side of the compressor 11 is connected to the outlet of the eighth three-way joint 13h via the fourth three-way joint 13d.
 次に、低温側熱媒体回路60について説明する。低温側熱媒体回路60は、低温側熱媒体を循環させる熱媒体循環回路である。低温側熱媒体としては、エチレングリコール水溶液が採用されている。低温側熱媒体回路60には、チラー20の水通路、低温側熱媒体ポンプ61、バッテリ80の冷却水通路80a等が配置されている。 Next, the low temperature side heat medium circuit 60 will be described. The low temperature side heat medium circuit 60 is a heat medium circulation circuit that circulates the low temperature side heat medium. An ethylene glycol aqueous solution is used as the low temperature side heat medium. In the low temperature side heat medium circuit 60, a water passage of the chiller 20, a low temperature side heat medium pump 61, a cooling water passage 80a of the battery 80, and the like are arranged.
 低温側熱媒体ポンプ61は、低温側熱媒体をチラー20の水通路の入口側へ圧送する液体ポンプである。低温側熱媒体ポンプ61は、羽根車(すなわち、インペラ)を電動モータにて回転駆動する電動水ポンプである。低温側熱媒体ポンプ61は、制御装置70から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される。チラー20の水通路の出口には、バッテリ80の冷却水通路80aの入口側が接続されている。 The low temperature side heat medium pump 61 is a liquid pump that pumps the low temperature side heat medium to the inlet side of the water passage of the chiller 20. The low temperature side heat medium pump 61 is an electric water pump that rotationally drives an impeller (that is, an impeller) with an electric motor. The rotation speed (that is, the pumping capacity) of the low temperature side heat medium pump 61 is controlled by the control voltage output from the control device 70. The inlet side of the cooling water passage 80a of the battery 80 is connected to the outlet of the water passage of the chiller 20.
 冷却水通路80aは、バッテリ80の電池セルを収容する電池用ケースの内部に形成されている。冷却水通路80aは、電池用ケースの内部で複数の通路を並列的に接続した通路構成となっている。これにより、冷却水通路80aは、全ての電池セルを均等に冷却できるようになっている。冷却水通路80aの出口には、低温側熱媒体ポンプ61の吸入口側が接続されている。 The cooling water passage 80a is formed inside a battery case that houses the battery cell of the battery 80. The cooling water passage 80a has a passage configuration in which a plurality of passages are connected in parallel inside the battery case. As a result, the cooling water passage 80a can evenly cool all the battery cells. The suction port side of the low temperature side heat medium pump 61 is connected to the outlet of the cooling water passage 80a.
 本実施形態では、チラー20および低温側熱媒体回路60の各構成機器によって、冷却対象物を冷却するバッテリ80を冷却する冷却部が構成されている。 In the present embodiment, the cooling unit for cooling the battery 80 for cooling the object to be cooled is configured by each component of the chiller 20 and the low temperature side heat medium circuit 60.
 次に、図2を用いて、室内空調ユニット40について説明する。室内空調ユニット40は、車両用空調装置1において、適切に温度調整された送風空気を車室内の適切な箇所へ吹き出すためのユニットである。室内空調ユニット40は、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 40 will be described with reference to FIG. The indoor air-conditioning unit 40 is a unit for blowing out blown air whose temperature has been appropriately adjusted to an appropriate place in the vehicle interior in the vehicle air-conditioning device 1. The indoor air conditioning unit 40 is arranged inside the instrument panel (that is, the instrument panel) at the front of the vehicle interior.
 室内空調ユニット40は、送風空気の空気通路を形成するケーシング41を有している。ケーシング41内に形成された空気通路には、室内送風機42、室内蒸発器19、室内凝縮器12等が配置されている。ケーシング41は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて形成されている。 The indoor air conditioning unit 40 has a casing 41 that forms an air passage for blown air. An indoor blower 42, an indoor evaporator 19, an indoor condenser 12, and the like are arranged in an air passage formed in the casing 41. The casing 41 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 ケーシング41の送風空気流れ最上流側には、内外気切替装置43が配置されている。内外気切替装置43は、ケーシング41内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。内外気切替装置43の駆動用の電動アクチュエータは、制御装置70から出力される制御信号によって、その作動が制御される。 An inside / outside air switching device 43 is arranged on the most upstream side of the blast air flow of the casing 41. The inside / outside air switching device 43 switches and introduces the inside air (vehicle interior air) and the outside air (vehicle interior outside air) into the casing 41. The operation of the electric actuator for driving the inside / outside air switching device 43 is controlled by the control signal output from the control device 70.
 内外気切替装置43の送風空気流れ下流側には、室内送風機42が配置されている。室内送風機42は、内外気切替装置43を介して吸入した空気を車室内へ向けて送風する。室内送風機42は、遠心多翼ファンを電動モータにて駆動する電動送風機である。室内送風機42は、制御装置70から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 An indoor blower 42 is arranged on the downstream side of the blower air flow of the inside / outside air switching device 43. The indoor blower 42 blows the air sucked through the inside / outside air switching device 43 toward the vehicle interior. The indoor blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The rotation speed (that is, the blowing capacity) of the indoor blower 42 is controlled by the control voltage output from the control device 70.
 室内送風機42の送風空気流れ下流側には、室内蒸発器19と室内凝縮器12が、送風空気流れに対して、上流側から順に配置されている。つまり、室内蒸発器19は、室内凝縮器12よりも、送風空気流れ上流側に配置されている。ケーシング41内には、室内蒸発器19を通過した送風空気を、室内凝縮器12を迂回させて下流側へ流す冷風バイパス通路45が形成されている。 On the downstream side of the blown air flow of the indoor blower 42, the indoor evaporator 19 and the indoor condenser 12 are arranged in order from the upstream side with respect to the blown air flow. That is, the indoor evaporator 19 is arranged on the upstream side of the blown air flow with respect to the indoor condenser 12. A cold air bypass passage 45 is formed in the casing 41 to allow the blown air that has passed through the indoor evaporator 19 to bypass the indoor condenser 12 and flow to the downstream side.
 室内蒸発器19の送風空気流れ下流側であって、かつ、室内凝縮器12の送風空気流れ上流側には、エアミックスドア44が配置されている。エアミックスドア44は、室内蒸発器19を通過後の送風空気のうち、室内凝縮器12を通過させる風量と冷風バイパス通路45を通過させる風量との風量割合を調整する。エアミックスドア駆動用の電動アクチュエータは、制御装置70から出力される制御信号によって、その作動が制御される。 The air mix door 44 is arranged on the downstream side of the blown air flow of the indoor evaporator 19 and on the upstream side of the blown air flow of the indoor condenser 12. The air mix door 44 adjusts the air volume ratio between the air volume passing through the indoor condenser 12 and the air volume passing through the cold air bypass passage 45 in the air blown air after passing through the indoor evaporator 19. The operation of the electric actuator for driving the air mix door is controlled by the control signal output from the control device 70.
 室内凝縮器12の送風空気流れ下流側には、室内凝縮器12にて加熱された送風空気と冷風バイパス通路45を通過して室内凝縮器12にて加熱されていない送風空気とを混合させる混合空間46が設けられている。さらに、ケーシング41の送風空気流れ最下流部には、混合空間46にて混合された送風空気(空調風)を、車室内へ吹き出す図示しない開口穴が配置されている。 On the downstream side of the blown air flow of the indoor condenser 12, the blown air heated by the indoor condenser 12 and the blown air that has passed through the cold air bypass passage 45 and are not heated by the indoor condenser 12 are mixed. Space 46 is provided. Further, an opening hole (not shown) for blowing out the blown air (air-conditioned air) mixed in the mixing space 46 into the vehicle interior is arranged at the most downstream portion of the blown air flow of the casing 41.
 従って、エアミックスドア44が室内凝縮器12を通過させる風量と冷風バイパス通路45を通過させる風量との風量割合を調整することによって、混合空間46にて混合される空調風の温度を調整することができる。そして、各開口穴から車室内へ吹き出される送風空気の温度を調整することができる。 Therefore, the temperature of the conditioned air mixed in the mixing space 46 is adjusted by adjusting the air volume ratio between the air volume that the air mix door 44 passes through the indoor condenser 12 and the air volume that passes through the cold air bypass passage 45. Can be done. Then, the temperature of the blown air blown from each opening hole into the vehicle interior can be adjusted.
 開口穴としては、フェイス開口穴、フット開口穴、及びデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 As the opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided. The face opening hole is an opening hole for blowing air-conditioned air toward the upper body of the occupant in the vehicle interior. The foot opening hole is an opening hole for blowing air-conditioned air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing air conditioning air toward the inner side surface of the front window glass of the vehicle.
 これらの開口穴の上流側には、図示しない吹出モード切替ドアが配置されている。吹出モード切替ドアは、各開口穴を開閉することによって、空調風を吹き出す開口穴を切り替える。吹出モード切替ドア駆動用の電動アクチュエータは、制御装置70から出力される制御信号によって、その作動が制御される。 An outlet mode switching door (not shown) is arranged on the upstream side of these opening holes. The blowing mode switching door switches the opening hole for blowing out the conditioned air by opening and closing each opening hole. The operation of the electric actuator for driving the blowout mode switching door is controlled by a control signal output from the control device 70.
 次に、図3を用いて、車両用空調装置1の電気制御部の概要について説明する。制御装置70は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置70は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、14a~14c、16a~16c、42、43、44、61等の作動を制御する。 Next, the outline of the electric control unit of the vehicle air conditioner 1 will be described with reference to FIG. The control device 70 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof. The control device 70 performs various calculations and processes based on the control program stored in the ROM, and various controlled devices 11, 14a to 14c, 16a to 16c, 42, 43, 44, 61 connected to the output side. Etc. are controlled.
 制御装置70の入力側には、図3に示すように、制御用の各種センサが接続されている。制御用センサには、内気温センサ71a、外気温センサ71b、日射量センサ71cが含まれる。また、制御用センサには、高圧圧力センサ71d、空調風温度センサ71e、蒸発器温度センサ71f、蒸発器圧力センサ71g、室外器温度センサ71h、室外器圧力センサ71i、バッテリ温度センサ71jが含まれる。また、制御用センサには、高温側熱媒体温度センサ71k、低温側熱媒体温度センサ71mが含まれる。 As shown in FIG. 3, various control sensors are connected to the input side of the control device 70. The control sensor includes an inside air temperature sensor 71a, an outside air temperature sensor 71b, and an insolation amount sensor 71c. Further, the control sensor includes a high pressure pressure sensor 71d, an air conditioning air temperature sensor 71e, an evaporator temperature sensor 71f, an evaporator pressure sensor 71g, an outdoor unit temperature sensor 71h, an outdoor unit pressure sensor 71i, and a battery temperature sensor 71j. .. Further, the control sensor includes a high temperature side heat medium temperature sensor 71k and a low temperature side heat medium temperature sensor 71m.
 内気温センサ71aは、車室内の温度である内気温Trを検出する内気温検出部である。外気温センサ71bは、車室外の温度である外気温Tamを検出する外気温検出部である。日射量センサ71cは、車室内へ照射される日射量Asを検出する日射量検出部である。 The internal air temperature sensor 71a is an internal air temperature detection unit that detects the internal air temperature Tr, which is the temperature inside the vehicle. The outside air temperature sensor 71b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle interior. The solar radiation amount sensor 71c is a solar radiation amount detection unit that detects the solar radiation amount As irradiated to the vehicle interior.
 高圧圧力センサ71dは、圧縮機11から吐出された高圧冷媒の圧力である高圧圧力Pdを検出する高圧圧力検出部である。空調風温度センサ71eは、混合空間46から車室内へ吹き出される吹出空気温度TAVを検出する空調風温度検出部である。 The high pressure pressure sensor 71d is a high pressure pressure detecting unit that detects the high pressure pressure Pd, which is the pressure of the high pressure refrigerant discharged from the compressor 11. The conditioned air temperature sensor 71e is an conditioned air temperature detecting unit that detects the air blown air temperature TAV blown out from the mixing space 46 into the vehicle interior.
 蒸発器温度センサ71fは、室内蒸発器19における冷媒蒸発温度(蒸発器温度)Teを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ71fは、具体的に、室内蒸発器19の出口側冷媒の温度を検出している。 The evaporator temperature sensor 71f is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Te in the indoor evaporator 19. The evaporator temperature sensor 71f of the present embodiment specifically detects the temperature of the refrigerant on the outlet side of the indoor evaporator 19.
 蒸発器圧力センサ71gは、室内蒸発器19における冷媒蒸発圧力Peを検出する蒸発器圧力検出部である。本実施形態の蒸発器圧力センサ71gは、具体的に、室内蒸発器19の出口側冷媒の圧力を検出している。 The evaporator pressure sensor 71g is an evaporator pressure detection unit that detects the refrigerant evaporation pressure Pe in the indoor evaporator 19. The evaporator pressure sensor 71g of the present embodiment specifically detects the pressure of the refrigerant on the outlet side of the indoor evaporator 19.
 室外器温度センサ71hは、室外熱交換器18を流通する冷媒の温度である室外器冷媒温度T1を検出する室外器温度検出部である。本実施形態の室外器温度センサ71hは、具体的に、室外熱交換器18の出口側冷媒の温度を検出している。 The outdoor unit temperature sensor 71h is an outdoor unit temperature detection unit that detects the outdoor unit refrigerant temperature T1, which is the temperature of the refrigerant flowing through the outdoor heat exchanger 18. The outdoor unit temperature sensor 71h of the present embodiment specifically detects the temperature of the refrigerant on the outlet side of the outdoor heat exchanger 18.
 室外器圧力センサ71iは、室外熱交換器18を流通する冷媒の圧力である室外器冷媒圧力Poutを検出する室外器温度検出部である。本実施形態の室外器圧力センサ71iは、具体的に、室外熱交換器18の出口側冷媒の圧力を検出している。 The outdoor unit pressure sensor 71i is an outdoor unit temperature detection unit that detects the outdoor unit refrigerant pressure Pout, which is the pressure of the refrigerant flowing through the outdoor heat exchanger 18. The outdoor unit pressure sensor 71i of the present embodiment specifically detects the pressure of the refrigerant on the outlet side of the outdoor heat exchanger 18.
 バッテリ温度センサ71jは、バッテリ80の温度であるバッテリ温度TBを検出するバッテリ温度検出部である。バッテリ温度センサ71jは、複数の温度検出部を有し、バッテリ80の複数の箇所の温度を検出している。このため、制御装置70では、バッテリ80の各部の温度差を検出することもできる。さらに、バッテリ温度TBとしては、複数の温度センサの検出値の平均値を採用している。 The battery temperature sensor 71j is a battery temperature detection unit that detects the battery temperature TB, which is the temperature of the battery 80. The battery temperature sensor 71j has a plurality of temperature detection units, and detects the temperature of a plurality of points of the battery 80. Therefore, the control device 70 can also detect the temperature difference of each part of the battery 80. Further, as the battery temperature TB, the average value of the detection values of a plurality of temperature sensors is adopted.
 低温側熱媒体温度センサ71mは、バッテリ80の冷却水通路80aへ流入する低温側熱媒体の低温側熱媒体温度TWLを検出する低温側熱媒体温度検出部である。 The low temperature side heat medium temperature sensor 71m is a low temperature side heat medium temperature detection unit that detects the low temperature side heat medium temperature TWL of the low temperature side heat medium flowing into the cooling water passage 80a of the battery 80.
 さらに、制御装置70の入力側には、車室内前部の計器盤付近に配置された操作パネル72が接続されている。制御装置70には、操作パネル72に設けられた各種操作スイッチの操作信号が入力される。操作パネル72に設けられた各種操作スイッチとしては、具体的に、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ等がある。 Further, an operation panel 72 arranged near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device 70. The operation signals of various operation switches provided on the operation panel 72 are input to the control device 70. Specific examples of the various operation switches provided on the operation panel 72 include an auto switch, an air conditioner switch, an air volume setting switch, and a temperature setting switch.
 オートスイッチは、乗員が冷凍サイクル装置10の自動制御運転を設定あるいは解除することを要求するための自動制御要求部である。エアコンスイッチは、乗員が室内蒸発器19で送風空気の冷却を行うことを要求するための冷却要求部である。風量設定スイッチは、乗員が室内送風機42の風量をマニュアル設定する風量設定部である。温度設定スイッチは、乗員が車室内の目標温度Tsetを設定する温度設定部である。 The auto switch is an automatic control requesting unit for requesting the occupant to set or cancel the automatic control operation of the refrigeration cycle device 10. The air conditioner switch is a cooling requesting unit for requiring the occupant to cool the blown air with the indoor evaporator 19. The air volume setting switch is an air volume setting unit in which the occupant manually sets the air volume of the indoor blower 42. The temperature setting switch is a temperature setting unit in which the occupant sets the target temperature Tset in the vehicle interior.
 また、本実施形態の制御装置70は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。従って、それぞれの制御対象機器の作動を制御する構成(すなわち、ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 Further, the control device 70 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side of the control device 70. Therefore, a configuration (that is, hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device.
 例えば、制御装置70のうち、圧縮機11の回転数を制御する構成は、圧縮機制御部70aである。また、制御装置70のうち、冷媒回路切替部である第1開閉弁14a~第3開閉弁14c、暖房用膨張弁16aの弁体部161a等の作動を制御する構成は、冷媒回路制御部70bを構成している。 For example, in the control device 70, the configuration for controlling the rotation speed of the compressor 11 is the compressor control unit 70a. Further, among the control devices 70, the configuration for controlling the operation of the first on-off valve 14a to the third on-off valve 14c, which is the refrigerant circuit switching unit, the valve body portion 161a of the heating expansion valve 16a, and the like is the refrigerant circuit control unit 70b. Consists of.
 次に、上記構成の本実施形態の車両用空調装置1の作動について説明する。冷凍サイクル装置10は、車室内の空調およびバッテリ80の冷却を行うための車両用空調装置1の各種運モードに応じて、冷媒回路を切替可能に構成されている。車両用空調装置1の運転モードとしては、(a)冷房モード、(b)直列除湿暖房モード、(c)暖房モード、(d)冷房冷却モード、(e)除湿暖房冷却モード、(f)単独冷却モードがある。 Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described. The refrigerating cycle device 10 is configured so that the refrigerant circuit can be switched according to various transportation modes of the vehicle air conditioner 1 for air-conditioning the interior of the vehicle and cooling the battery 80. The operation modes of the vehicle air conditioner 1 include (a) cooling mode, (b) series dehumidifying and heating mode, (c) heating mode, (d) cooling cooling mode, (e) dehumidifying and heating cooling mode, and (f) alone. There is a cooling mode.
 これらの運転モードの切り替えは、制御装置70に記憶されている制御プログラムが実行されることによって行われる。制御プログラムは、車両システムを起動すると実行される。制御プログラムでは、所定の制御周期毎に、上述したセンサ群の検出信号および操作パネル72の操作信号を読み込み、必要に応じて車両用空調装置1を適切な運転モードで作動させる。 These operation modes are switched by executing the control program stored in the control device 70. The control program is executed when the vehicle system is started. In the control program, the detection signal of the sensor group and the operation signal of the operation panel 72 described above are read at each predetermined control cycle, and the vehicle air conditioner 1 is operated in an appropriate operation mode as necessary.
 より具体的には、制御プログラムでは、外気温Tam、目標吹出温度TAO、操作パネル72のオートスイッチやエアコンスイッチの操作信号に基づいて、空調用の運転モードを選択する。目標吹出温度TAOは、車室内へ送風される送風空気の目標温度である。 More specifically, in the control program, the operation mode for air conditioning is selected based on the outside air temperature Tam, the target blowout temperature TAO, and the operation signals of the auto switch and the air conditioner switch of the operation panel 72. The target blowout temperature TAO is the target temperature of the blown air blown into the vehicle interior.
 目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内設定温度である。Trは内気センサによって検出された車室内温度である。Tamは外気センサによって検出された車室外温度である。Tsは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
The target blowout temperature TAO is calculated by the following formula F1.
TAO = Kset x Tset-Kr x Tr-Kam x Tam-Ks x Ts + C ... (F1)
In addition, Tset is the vehicle interior set temperature set by the temperature setting switch. Tr is the vehicle interior temperature detected by the inside air sensor. Tam is the temperature outside the vehicle interior detected by the outside air sensor. Ts is the amount of solar radiation detected by the solar radiation sensor. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 また、制御プログラムでは、バッテリ温度センサ71jによって検出されたバッテリ温度TBに基づいて、バッテリ80の冷却を行うか否かを判定する。以下に、各運転モードの詳細作動について説明する。 Further, in the control program, it is determined whether or not to cool the battery 80 based on the battery temperature TB detected by the battery temperature sensor 71j. The detailed operation of each operation mode will be described below.
 (a)冷房モード
 冷房モードは、バッテリ80の冷却を行うことなく、冷却された送風空気を車室内へ吹き出すことによって車室内の冷房を行う運転モードである。
(A) Cooling mode The cooling mode is an operation mode in which the inside of the vehicle is cooled by blowing the cooled blown air into the vehicle interior without cooling the battery 80.
 冷房モードでは、制御装置70が、第1開閉弁14aを閉じ、第2開閉弁14bを開き、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全開状態とし、冷房用膨張弁16bを冷媒減圧作用を発揮する絞り状態とし、冷却用膨張弁16cを全閉状態とする。 In the cooling mode, the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully open state, the cooling expansion valve 16b in a throttle state that exerts a refrigerant depressurizing action, and the cooling expansion valve 16c in a fully closed state.
 これにより、冷房モードの冷凍サイクル装置10では、図1の実線矢印に示すように、圧縮機11から吐出された冷媒が、室内凝縮器12、冷房冷却用通路21c、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、レシーバ15、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 As a result, in the refrigerating cycle device 10 in the cooling mode, as shown by the solid line arrow in FIG. 1, the refrigerant discharged from the compressor 11 is used in the indoor condenser 12, the cooling cooling passage 21c, and the outdoor unit inlet side passage 21e. It is switched to a refrigerant circuit that circulates in the order of the heating expansion valve 16a, the outdoor heat exchanger 18, the receiver 15, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11.
 冷房モードの冷媒回路では、室外熱交換部である室外熱交換器18にて放熱させた冷媒を貯液部であるレシーバ15へ流入させる。レシーバ15から流出した冷媒を第2減圧部である冷房用膨張弁16bへ流入させる。冷房用膨張弁16bにて減圧された冷媒を蒸発部である室内蒸発器19にて蒸発させる。室内蒸発器19から流出した冷媒を圧縮機11へ吸入させる。従って、冷房モードの冷媒回路は、第1回路に含まれる。 In the cooling mode refrigerant circuit, the refrigerant dissipated by the outdoor heat exchanger 18 which is the outdoor heat exchange section flows into the receiver 15 which is the liquid storage section. The refrigerant flowing out of the receiver 15 flows into the cooling expansion valve 16b, which is the second pressure reducing unit. The refrigerant decompressed by the cooling expansion valve 16b is evaporated by the indoor evaporator 19 which is an evaporation unit. The refrigerant flowing out of the indoor evaporator 19 is sucked into the compressor 11. Therefore, the cooling mode refrigerant circuit is included in the first circuit.
 上記の回路構成で、制御装置70は、各種制御対象機器の作動を適宜制御する。例えば、圧縮機11については、制御装置70は、蒸発器温度センサ71fによって検出された蒸発器温度Teが目標蒸発器温度TEOに近づくように冷媒吐出能力を制御する。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め制御装置70に記憶されている冷房モード用の制御マップを参照して決定される。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices. For example, for the compressor 11, the control device 70 controls the refrigerant discharge capacity so that the evaporator temperature Te detected by the evaporator temperature sensor 71f approaches the target evaporator temperature TEO. The target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to the control map for the cooling mode previously stored in the control device 70.
 また、冷房用膨張弁16bについては、制御装置70は、室内蒸発器19の出口側冷媒の過熱度SHeが、予め定めた目標過熱度KSHに近づくように絞り開度を制御する。 Regarding the cooling expansion valve 16b, the control device 70 controls the throttle opening so that the superheat degree SH of the refrigerant on the outlet side of the indoor evaporator 19 approaches a predetermined target superheat degree KSH.
 また、室内送風機42については、制御装置70は、目標吹出温度TAOに基づいて、予め制御装置70に記憶されている制御マップを参照して送風能力を制御する。 For the indoor blower 42, the control device 70 controls the blower capacity based on the target blowout temperature TAO by referring to the control map stored in the control device 70 in advance.
 また、エアミックスドア44については、制御装置70は、空調風温度センサ71eによって検出された吹出空気温度TAVが目標吹出温度TAOに近づくように開度を制御する。なお、冷房モードでは、エアミックスドア44が室内凝縮器12側の通風路を全閉とし、冷風バイパス通路45を全開させるように、エアミックスドア44の開度を制御してもよい。 For the air mix door 44, the control device 70 controls the opening degree so that the blown air temperature TAV detected by the air conditioning air temperature sensor 71e approaches the target blown temperature TAO. In the cooling mode, the opening degree of the air mix door 44 may be controlled so that the air mix door 44 completely closes the ventilation passage on the indoor condenser 12 side and fully opens the cold air bypass passage 45.
 また、低温側熱媒体ポンプ61については、制御装置70は、予め定めた圧送能力を発揮するように圧送能力を制御する。 Further, for the low temperature side heat medium pump 61, the control device 70 controls the pumping capacity so as to exert a predetermined pumping capacity.
 従って、冷房モードの冷凍サイクル装置10では、室内凝縮器12および室外熱交換器18を、冷媒を凝縮させる凝縮器として機能させ、室内蒸発器19を、冷媒を蒸発させる蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the cooling mode, the indoor condenser 12 and the outdoor heat exchanger 18 function as a condenser for condensing the refrigerant, and the indoor evaporator 19 functions as an evaporator for evaporating the refrigerant. The formula refrigeration cycle is constructed.
 そして、冷房モードの室内空調ユニット40では、室内蒸発器19にて冷却された送風空気が、適切な温度に調整されて車室内へ吹き出される。これにより、車室内の冷房が実現される。 Then, in the indoor air conditioning unit 40 in the cooling mode, the blown air cooled by the indoor evaporator 19 is adjusted to an appropriate temperature and blown out into the vehicle interior. As a result, cooling of the passenger compartment is realized.
 (b)直列除湿暖房モード
 直列除湿暖房モードは、バッテリ80の冷却を行うことなく、冷却されて除湿された送風空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。
(B) Series dehumidification / heating mode The series dehumidification / heating mode is an operation mode in which the inside of the vehicle is dehumidified and heated by reheating the cooled and dehumidified blown air and blowing it into the vehicle interior without cooling the battery 80. Is.
 直列除湿暖房モードでは、制御装置70が、第1開閉弁14aを閉じ、第2開閉弁14bを開き、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを絞り状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを全閉状態とする。 In the series dehumidifying / heating mode, the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
 これにより、直列除湿暖房モードの冷凍サイクル装置10では、冷房モードと同様に、図1の実線矢印に示すように、圧縮機11から吐出された冷媒が、室内凝縮器12、冷房冷却用通路21c、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、レシーバ15、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。従って、直列除湿暖房モードの冷媒回路は、第1回路に含まれる。 As a result, in the refrigerating cycle device 10 in the series dehumidifying / heating mode, as in the cooling mode, as shown by the solid line arrow in FIG. 1, the refrigerant discharged from the compressor 11 is the indoor condenser 12 and the cooling cooling passage 21c. It is switched to a refrigerant circuit that circulates in the order of the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, the receiver 15, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11. Therefore, the refrigerant circuit in the series dehumidifying / heating mode is included in the first circuit.
 上記の回路構成で、制御装置70は、各種制御対象機器の作動を適宜制御する。例えば、圧縮機11および冷房用膨張弁16bについては、制御装置70は、冷房モードと同様に制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices. For example, the compressor 11 and the cooling expansion valve 16b are controlled by the control device 70 in the same manner as in the cooling mode.
 また、暖房用膨張弁16aについては、制御装置70は、目標吹出温度TAOに基づいて、予め制御装置70に記憶されている直列除湿暖房モード用の制御マップを参照して絞り開度を制御する。直列除湿暖房モード用の制御マップでは、目標吹出温度TAOの上昇に伴って、暖房用膨張弁16aの絞り開度を縮小させる。さらに、暖房用膨張弁16aの絞り開度は、室外熱交換器18へ流入する冷媒の温度が外気温よりも高くなる範囲で調整される。その他の制御対象機器については、制御装置70は、冷房モードと同様に制御する。 Further, for the heating expansion valve 16a, the control device 70 controls the throttle opening degree based on the target outlet temperature TAO with reference to the control map for the series dehumidifying / heating mode stored in the control device 70 in advance. .. In the control map for the series dehumidifying and heating mode, the throttle opening of the heating expansion valve 16a is reduced as the target outlet temperature TAO rises. Further, the throttle opening degree of the heating expansion valve 16a is adjusted within a range in which the temperature of the refrigerant flowing into the outdoor heat exchanger 18 becomes higher than the outside air temperature. For other controlled devices, the control device 70 controls in the same manner as in the cooling mode.
 従って、直列除湿暖房モードの冷凍サイクル装置10では、室内凝縮器12および室外熱交換器18を凝縮器として機能させ、室内蒸発器19を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the series dehumidifying and heating mode, a steam compression type refrigerating cycle is configured in which the indoor condenser 12 and the outdoor heat exchanger 18 function as condensers and the indoor evaporator 19 functions as an evaporator. ..
 そして、直列除湿暖房モードの室内空調ユニット40では、室内蒸発器19にて冷却されて除湿された送風空気が、室内凝縮器12にて再加熱されることによって適切な温度に調整されて車室内へ吹き出される。これにより、車室内の除湿暖房が実現される。 Then, in the indoor air conditioning unit 40 in the series dehumidifying / heating mode, the blown air cooled by the indoor evaporator 19 and dehumidified is reheated by the indoor condenser 12 to be adjusted to an appropriate temperature in the vehicle interior. It is blown out to. As a result, dehumidifying and heating of the vehicle interior is realized.
 さらに、直列除湿暖房モードでは、目標吹出温度TAOの上昇に伴って、暖房用膨張弁16aの絞り開度を縮小させることによって、室外熱交換器18における冷媒の飽和温度を低下させることができる。これによれば、室外熱交換器18における冷媒の放熱量を減少させて、室内凝縮器12における冷媒の放熱量を増加させることができる。 Further, in the series dehumidifying / heating mode, the saturation temperature of the refrigerant in the outdoor heat exchanger 18 can be lowered by reducing the throttle opening of the heating expansion valve 16a as the target outlet temperature TAO rises. According to this, it is possible to reduce the heat dissipation amount of the refrigerant in the outdoor heat exchanger 18 and increase the heat dissipation amount of the refrigerant in the indoor condenser 12.
 従って、直列除湿暖房モードでは、冷房モードよりも、室内凝縮器12における送風空気の加熱能力を向上させることができる。 Therefore, in the series dehumidifying and heating mode, the heating capacity of the blown air in the indoor condenser 12 can be improved as compared with the cooling mode.
 (c)暖房モード
 暖房モードは、バッテリ80の冷却を行うことなく、加熱された送風空気を車室内へ吹き出すことによって車室内の暖房を行う運転モードである。
(C) Heating mode The heating mode is an operation mode in which the inside of the vehicle is heated by blowing out the heated blown air into the vehicle interior without cooling the battery 80.
 暖房モードでは、制御装置70が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを開く。また、制御装置70は、暖房用膨張弁16aを絞り状態とし、冷房用膨張弁16bを全閉状態とし、冷却用膨張弁16cを全閉状態とする。 In the heating mode, the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a fully closed state.
 これにより、暖房モードの冷凍サイクル装置10は、図1の破線矢印に示すように、圧縮機11から吐出された冷媒が、室内凝縮器12、貯液部入口側通路21a、レシーバ15、貯液部出口側通路21b、暖房用膨張弁16a、室外熱交換器18、吸入側通路21d、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 As a result, in the refrigerating cycle device 10 in the heating mode, as shown by the broken line arrow in FIG. 1, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, and the liquid storage. It is switched to a refrigerant circuit that circulates in the order of the outlet side passage 21b, the heating expansion valve 16a, the outdoor heat exchanger 18, the suction side passage 21d, and the suction port of the compressor 11.
 暖房モードの冷媒回路では、放熱部である室内凝縮器12にて放熱させた冷媒をレシーバ15へ流入させる。レシーバ15から流出した冷媒を第1減圧部である暖房用膨張弁16aへ流入させる。暖房用膨張弁16aにて減圧された冷媒を室外熱交換器18にて蒸発させる。室外熱交換器18から流出した冷媒を圧縮機11へ流入させる。従って、暖房モードの冷媒回路は、第2回路に含まれる。 In the refrigerant circuit in the heating mode, the refrigerant radiated by the indoor condenser 12 which is the heat radiating unit is made to flow into the receiver 15. The refrigerant flowing out of the receiver 15 flows into the heating expansion valve 16a, which is the first decompression unit. The refrigerant decompressed by the heating expansion valve 16a is evaporated by the outdoor heat exchanger 18. The refrigerant flowing out of the outdoor heat exchanger 18 flows into the compressor 11. Therefore, the heating mode refrigerant circuit is included in the second circuit.
 上記の回路構成で、制御装置70は、各種制御対象機器の作動を適宜制御する。例えば、圧縮機11については、制御装置70は、高圧圧力Pdが目標高圧PDOに近づくように吐出能力を制御する。目標高圧PDOは、目標吹出温度TAOに基づいて、予め制御装置70に記憶されている暖房モード用の制御マップを参照して決定される。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices. For example, for the compressor 11, the control device 70 controls the discharge capacity so that the high pressure pressure Pd approaches the target high pressure PDO. The target high pressure PDO is determined based on the target blowout temperature TAO with reference to the control map for the heating mode previously stored in the control device 70.
 また、暖房用膨張弁16aについては、制御装置70は、室外熱交換器18の出口側冷媒の過熱度SHoが、予め定めた目標過熱度KSHに近づくように絞り開度を制御する。その他の制御対象機器については、制御装置70は、冷房モードと同様に制御する。なお、暖房モードでは、エアミックスドア44が室内凝縮器12側の通風路を全開とし、冷風バイパス通路45を全閉させるように、エアミックスドア44の開度を制御してもよい。 Regarding the heating expansion valve 16a, the control device 70 controls the throttle opening so that the superheat degree SH of the refrigerant on the outlet side of the outdoor heat exchanger 18 approaches the predetermined target superheat degree KSH. For other controlled devices, the control device 70 controls in the same manner as in the cooling mode. In the heating mode, the opening degree of the air mix door 44 may be controlled so that the air mix door 44 fully opens the ventilation passage on the indoor condenser 12 side and fully closes the cold air bypass passage 45.
 従って、暖房モードの冷凍サイクル装置10では、室内凝縮器12を凝縮器として機能させ、室外熱交換器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the heating mode, a steam compression type refrigerating cycle is configured in which the indoor condenser 12 functions as a condenser and the outdoor heat exchanger 18 functions as an evaporator.
 そして、暖房モードの室内空調ユニット40では、室内凝縮器12にて加熱された送風空気が、車室内へ吹き出される。これにより、車室内の暖房が実現される。 Then, in the indoor air conditioning unit 40 in the heating mode, the blown air heated by the indoor condenser 12 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
 (d)冷房冷却モード
 冷房冷却モードは、バッテリ80の冷却を行うとともに、車室内の冷房を行う運転モードである。
(D) Cooling cooling mode The cooling cooling mode is an operation mode in which the battery 80 is cooled and the passenger compartment is cooled.
 冷房冷却モードでは、制御装置70が、第1開閉弁14aを閉じ、第2開閉弁14bを開き、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全開状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを絞り状態とする。 In the cooling / cooling mode, the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, in the control device 70, the heating expansion valve 16a is set to the fully open state, the cooling expansion valve 16b is set to the throttle state, and the cooling expansion valve 16c is set to the throttle state.
 これにより、冷房冷却モードの冷凍サイクル装置10は、圧縮機11から吐出された冷媒が、室内凝縮器12、冷房冷却用通路21c、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、レシーバ15の順に流れる。さらに、レシーバ15から流出した冷媒が、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環するとともに、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 As a result, in the refrigerating cycle device 10 in the cooling cooling mode, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, and the outdoor heat exchange. It flows in the order of the vessel 18 and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11 are in that order. It can be switched to a circulating refrigerant circuit.
 つまり、冷房冷却モードでは、室内蒸発器19およびチラー20が、冷媒流れに対して並列的に接続される冷媒回路に切り替えられる。 That is, in the cooling / cooling mode, the indoor evaporator 19 and the chiller 20 are switched to the refrigerant circuit connected in parallel with the refrigerant flow.
 冷房冷却モードの冷媒回路では、室外熱交換器18にて放熱させた冷媒をレシーバ15へ流入させる。レシーバ15から流出した冷媒を第2減圧部である冷房用膨張弁16bおよび冷却用膨張弁16cへ流入させる。冷房用膨張弁16bにて減圧された冷媒を蒸発部である室内蒸発器19にて蒸発させる。冷却用膨張弁16cにて減圧された冷媒を蒸発部であるチラー20にて蒸発させる。室内蒸発器19およびチラー20から流出した冷媒を圧縮機11へ吸入させる。従って、冷房モードの冷媒回路は、第1回路に含まれる。 In the cooling mode refrigerant circuit, the refrigerant dissipated by the outdoor heat exchanger 18 flows into the receiver 15. The refrigerant flowing out of the receiver 15 flows into the cooling expansion valve 16b and the cooling expansion valve 16c, which are the second pressure reducing portions. The refrigerant decompressed by the cooling expansion valve 16b is evaporated by the indoor evaporator 19 which is an evaporation unit. The refrigerant decompressed by the cooling expansion valve 16c is evaporated by the chiller 20 which is an evaporation unit. The refrigerant flowing out of the indoor evaporator 19 and the chiller 20 is sucked into the compressor 11. Therefore, the cooling mode refrigerant circuit is included in the first circuit.
 上記の回路構成で、制御装置70は、各種制御対象機器の作動を適宜制御する。例えば、圧縮機11および冷房用膨張弁16bについては、制御装置70は、冷房モードと同様に制御する。また、冷却用膨張弁16cについては、制御装置70は、予め定めた冷房冷却モード用の絞り開度となるように絞り開度を制御する。その他の制御対象機器については、制御装置70は、冷房モードと同様に制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices. For example, the compressor 11 and the cooling expansion valve 16b are controlled by the control device 70 in the same manner as in the cooling mode. Further, for the cooling expansion valve 16c, the control device 70 controls the throttle opening so as to have a throttle opening for the cooling cooling mode defined in advance. For other controlled devices, the control device 70 controls in the same manner as in the cooling mode.
 従って、冷房冷却モードの冷凍サイクル装置10では、室内凝縮器12および室外熱交換器18を凝縮器として機能させ、室内蒸発器19およびチラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, the refrigerating cycle device 10 in the cooling / cooling mode comprises a steam compression type refrigerating cycle in which the indoor condenser 12 and the outdoor heat exchanger 18 function as condensers, and the indoor evaporator 19 and the chiller 20 function as evaporators. Will be done.
 そして、冷房冷却モードの室内空調ユニット40では、室内蒸発器19にて冷却された送風空気が、適切な温度に調整されて車室内へ吹き出される。これにより、冷房モードと同様に、車室内の冷房が実現される。 Then, in the indoor air conditioning unit 40 in the cooling / cooling mode, the blown air cooled by the indoor evaporator 19 is adjusted to an appropriate temperature and blown out into the vehicle interior. As a result, cooling of the vehicle interior is realized as in the cooling mode.
 さらに、冷房冷却モードの低温側熱媒体回路60では、チラー20にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aへ流入する。これにより、バッテリ80が冷却される。 Further, in the low temperature side heat medium circuit 60 in the cooling cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
 (e)除湿暖房冷却モード
 除湿暖房冷却モードは、バッテリ80の冷却を行うとともに、車室内の除湿暖房を行う運転モードである。
(E) Dehumidifying / heating / cooling mode The dehumidifying / heating / cooling mode is an operation mode in which the battery 80 is cooled and the vehicle interior is dehumidified and heated.
 除湿暖房冷却モードでは、制御装置70が、第1開閉弁14aを閉じ、第2開閉弁14bを開き、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを絞り状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを絞り状態とする。 In the dehumidifying / heating / cooling mode, the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in the throttle state, the cooling expansion valve 16b in the throttle state, and the cooling expansion valve 16c in the throttle state.
 これにより、除湿暖房冷却モードの冷凍サイクル装置10では、冷房冷却モードと同様に、圧縮機11から吐出された冷媒が、室内凝縮器12、冷房冷却用通路21c、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、レシーバ15の順に流れる。さらに、レシーバ15から流出した冷媒が、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環するとともに、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。従って、除湿暖房冷却モードの冷媒回路は、第1回路に含まれる。 As a result, in the refrigerating cycle device 10 in the dehumidifying / heating / cooling mode, the refrigerant discharged from the compressor 11 heats the indoor condenser 12, the cooling / cooling passage 21c, and the outdoor unit inlet side passage 21e, as in the cooling / cooling mode. The expansion valve 16a, the outdoor heat exchanger 18, and the receiver 15 flow in this order. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11 are in that order. It can be switched to a circulating refrigerant circuit. Therefore, the refrigerant circuit in the dehumidifying / heating / cooling mode is included in the first circuit.
 上記の回路構成で、制御装置70は、各種制御対象機器の作動を適宜制御する。例えば、圧縮機11、暖房用膨張弁16aおよび冷房用膨張弁16bについては、制御装置70は、直列除湿暖房モードと同様に制御する。その他の制御対象機器については、制御装置70は、冷房冷却モードと同様に制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices. For example, the compressor 11, the heating expansion valve 16a, and the cooling expansion valve 16b are controlled by the control device 70 in the same manner as in the series dehumidifying and heating mode. For other controlled devices, the control device 70 controls in the same manner as in the cooling / cooling mode.
 従って、除湿暖房冷却モードの冷凍サイクル装置10では、室内凝縮器12および室外熱交換器18を凝縮器として機能させ、室内蒸発器19およびチラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the dehumidifying / heating / cooling mode, a steam compression type refrigerating cycle in which the indoor condenser 12 and the outdoor heat exchanger 18 function as condensers and the indoor evaporator 19 and the chiller 20 function as evaporators is provided. It is composed.
 そして、除湿暖房冷却モードの室内空調ユニット40では、室内蒸発器19にて冷却されて除湿された送風空気が、室内凝縮器12にて再加熱されることによって適切な温度に調整されて車室内へ吹き出される。これにより、直列除湿暖房モードと同様に、車室内の除湿暖房が実現される。 Then, in the indoor air conditioning unit 40 in the dehumidifying / heating / cooling mode, the blown air cooled by the indoor evaporator 19 and dehumidified is reheated by the indoor condenser 12 to be adjusted to an appropriate temperature in the vehicle interior. It is blown out to. As a result, dehumidifying and heating of the vehicle interior is realized as in the series dehumidifying and heating mode.
 さらに、除湿暖房冷却モードの低温側熱媒体回路60では、チラー20にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aへ流入する。これにより、バッテリ80が冷却される。 Further, in the low temperature side heat medium circuit 60 in the dehumidifying / heating / cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
 (f)単独冷却モード
 単独冷却モードは、車室内の空調を行うことなく、バッテリ80の冷却を行う運転モードである。
(F) Single cooling mode The single cooling mode is an operation mode in which the battery 80 is cooled without air-conditioning the vehicle interior.
 単独冷却モードでは、制御装置70が、第1開閉弁14aを閉じ、第2開閉弁14bを開き、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全開状態とし、冷房用膨張弁16bを全閉状態とし、冷却用膨張弁16cを絞り状態とする。 In the independent cooling mode, the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully open state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
 これにより、単独冷却モードの冷凍サイクル装置10は、圧縮機11から吐出された冷媒が、室内凝縮器12、冷房冷却用通路21c、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、レシーバ15、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 As a result, in the refrigerating cycle device 10 in the single cooling mode, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, and the outdoor heat exchange. It is switched to a refrigerant circuit that circulates in the order of the vessel 18, the receiver 15, the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11.
 単独冷却モードの冷媒回路では、室外熱交換器18にて放熱させた冷媒をレシーバ15へ流入させる。レシーバ15から流出した冷媒を第2減圧部である冷却用膨張弁16cへ流入させる。冷却用膨張弁16cにて減圧された冷媒を蒸発部であるチラー20にて蒸発させる。チラー20から流出した冷媒を圧縮機11へ吸入させる。従って、単独冷却モードの冷媒回路は、第1回路に含まれる。 In the refrigerant circuit in the independent cooling mode, the refrigerant dissipated by the outdoor heat exchanger 18 flows into the receiver 15. The refrigerant flowing out of the receiver 15 flows into the cooling expansion valve 16c, which is the second pressure reducing unit. The refrigerant decompressed by the cooling expansion valve 16c is evaporated by the chiller 20 which is an evaporation unit. The refrigerant flowing out of the chiller 20 is sucked into the compressor 11. Therefore, the refrigerant circuit in the single cooling mode is included in the first circuit.
 上記の回路構成で、制御装置70は、各種制御対象機器の作動を適宜制御する。例えば、圧縮機11については、制御装置70は、予め定めた単独冷却モード用の吐出能力を発揮するように吐出能力を制御する。また、冷却用膨張弁16cについては、制御装置70は、チラー20の冷媒通路の出口側冷媒の過熱度SHcが、目標過熱度KSHに近づくように絞り開度を制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices. For example, for the compressor 11, the control device 70 controls the discharge capacity so as to exert the discharge capacity for the predetermined single cooling mode. For the cooling expansion valve 16c, the control device 70 controls the throttle opening so that the superheat degree SHc of the refrigerant on the outlet side of the refrigerant passage of the chiller 20 approaches the target superheat degree KSH.
 また、制御装置70は、室内送風機42を停止させる。また、エアミックスドア44については、制御装置70は、室内凝縮器12側の通風路を全閉とし、冷風バイパス通路45を全開させるように、エアミックスドア44の開度を制御する。その他の制御対象機器については、制御装置70は、冷房モードと同様に制御する。 Further, the control device 70 stops the indoor blower 42. Further, regarding the air mix door 44, the control device 70 controls the opening degree of the air mix door 44 so that the ventilation path on the indoor condenser 12 side is fully closed and the cold air bypass passage 45 is fully opened. For other controlled devices, the control device 70 controls in the same manner as in the cooling mode.
 従って、単独冷却モードの冷凍サイクル装置10では、室外熱交換器18を凝縮器として機能させ、チラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。さらに、単独冷却モードの低温側熱媒体回路60では、チラー20にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aへ流入する。これにより、バッテリ80が冷却される。 Therefore, in the refrigerating cycle device 10 in the single cooling mode, a steam compression type refrigerating cycle is configured in which the outdoor heat exchanger 18 functions as a condenser and the chiller 20 functions as an evaporator. Further, in the low temperature side heat medium circuit 60 in the single cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
 以上の如く、本実施形態の車両用空調装置1では、冷凍サイクル装置10が冷媒回路を切り替えることによって、各種運転モードでの運転を実行することができる。これにより、車両用空調装置1では、バッテリ80の温度を適切に調整しつつ、車室内の快適な空調を実現することができる。 As described above, in the vehicle air conditioner 1 of the present embodiment, the refrigerating cycle device 10 can execute the operation in various operation modes by switching the refrigerant circuit. As a result, the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior while appropriately adjusting the temperature of the battery 80.
 ところで、冷凍サイクル装置10では、冷房モード時のように冷媒回路が第1回路に切り替えられた際には、室外熱交換器18を凝縮器として機能させる。また、暖房モード時のように冷媒回路が第2回路に切り替えられた際には、室外熱交換器18を蒸発器として機能させ、室外熱交換器18の冷媒出口を圧縮機11の吸入口へ接続する。 By the way, in the refrigeration cycle device 10, when the refrigerant circuit is switched to the first circuit as in the cooling mode, the outdoor heat exchanger 18 functions as a condenser. Further, when the refrigerant circuit is switched to the second circuit as in the heating mode, the outdoor heat exchanger 18 functions as an evaporator, and the refrigerant outlet of the outdoor heat exchanger 18 is connected to the suction port of the compressor 11. Connecting.
 このため、例えば、冷房モードの冷媒回路から暖房モードの冷媒回路へ切り替えた際に、室外熱交換器18内に残存している液相冷媒が、圧縮機11の吸入口側へ流出してしまう可能性がある。そして、圧縮機11が液相冷媒を吸入してしまうと、液圧縮や潤滑不良によって圧縮機11の耐久寿命に悪影響を与えてしまう。 Therefore, for example, when the refrigerant circuit in the cooling mode is switched to the refrigerant circuit in the heating mode, the liquid phase refrigerant remaining in the outdoor heat exchanger 18 flows out to the suction port side of the compressor 11. there is a possibility. If the compressor 11 sucks in the liquid phase refrigerant, the durable life of the compressor 11 is adversely affected by liquid compression and poor lubrication.
 液圧縮とは、圧縮機11が非圧縮性流体である液相冷媒を圧縮することによって、圧縮機11内に過大な圧力を発生させてしまうことである。また、潤滑不良は、圧縮機11に吸入された液相冷媒によって圧縮機11内の冷凍機油が洗い流されてしまうことによって生じる。 Liquid compression means that the compressor 11 compresses a liquid phase refrigerant which is an incompressible fluid, thereby generating an excessive pressure in the compressor 11. Further, poor lubrication occurs when the refrigerating machine oil in the compressor 11 is washed away by the liquid phase refrigerant sucked into the compressor 11.
 これに対して、冷凍サイクル装置10では、冷媒回路を切り替える際に、圧縮機11が液相冷媒を吸入してしまうことを抑制するための切替準備制御を実行する。切替準備制御は、制御装置70が実行する制御プログラムにおいて、第1回路で実行される運転モードから第2回路で実行される運転モードへの切り替えが決定された際に実行される。 On the other hand, in the refrigeration cycle device 10, when the refrigerant circuit is switched, the switching preparation control for suppressing the compressor 11 from sucking the liquid phase refrigerant is executed. The switching preparation control is executed when the control program executed by the control device 70 determines that the operation mode executed by the first circuit is switched to the operation mode executed by the second circuit.
 さらに、本実施形態の冷凍サイクル装置10では、切替準備制御として、第1切替準備制御および第2切替準備制御を実行することができる。 Further, in the refrigerating cycle apparatus 10 of the present embodiment, the first switching preparation control and the second switching preparation control can be executed as the switching preparation control.
 第1切替準備制御は、制御プログラムにおいて、冷房モードから暖房モードへ切り替えることが決定された際に実行される。具体的には、第1切替準備制御では、図4のタイムチャートに示すように、制御装置70が、圧縮機11を停止させる(以下、圧縮機停止制御という)。 The first switching preparation control is executed when it is determined in the control program to switch from the cooling mode to the heating mode. Specifically, in the first switching preparation control, as shown in the time chart of FIG. 4, the control device 70 stops the compressor 11 (hereinafter, referred to as compressor stop control).
 また、制御装置70は、圧縮機停止制御と同時に、暖房用膨張弁16aを全閉状態とする。換言すると、暖房用膨張弁16aの弁体部161aによって、室外器入口側通路21eを閉じて、第2回路へ切り替えられた際の室外熱交換器18の入口側を閉塞する(以下、室外器入口側閉塞制御という)。 Further, the control device 70 sets the heating expansion valve 16a in a fully closed state at the same time as the compressor stop control. In other words, the valve body portion 161a of the heating expansion valve 16a closes the outdoor unit inlet side passage 21e and closes the inlet side of the outdoor heat exchanger 18 when the circuit is switched to the second circuit (hereinafter, outdoor unit). Inlet side blockage control).
 また、制御装置70は、圧縮機停止制御と同時に、第1開閉弁14aを開く(以下、高圧側連通制御という)。これにより、第1切替準備制御では、室内凝縮器12の冷媒出口側とレシーバ15の入口側とを連通させる。 Further, the control device 70 opens the first on-off valve 14a at the same time as the compressor stop control (hereinafter referred to as high pressure side communication control). As a result, in the first switching preparation control, the refrigerant outlet side of the indoor condenser 12 and the inlet side of the receiver 15 are communicated with each other.
 また、制御装置70は、圧縮機停止制御と同時に、冷房用膨張弁16bの絞り開度を、運転モードの切り替えが決定された際の絞り開度以上とする(以下、第2減圧部開度制御という)。つまり、冷房用膨張弁16bの絞り開度を、第1切替準備制御を実行する直前の絞り開度以上とする。本実施形態では、図4に示すように、冷房用膨張弁16bの絞り開度を、冷房モード時の絞り開度に維持している。 Further, at the same time as the compressor stop control, the control device 70 sets the throttle opening of the cooling expansion valve 16b to be equal to or greater than the throttle opening when the operation mode switching is determined (hereinafter, the second pressure reducing portion opening). Control). That is, the throttle opening of the cooling expansion valve 16b is set to be equal to or larger than the throttle opening immediately before the first switching preparation control is executed. In the present embodiment, as shown in FIG. 4, the throttle opening of the cooling expansion valve 16b is maintained at the throttle opening in the cooling mode.
 第1切替準備制御は、運転モードの切り替えが決定された際から予め定めた基準時間KTp1が経過するまで実行される。 The first switching preparation control is executed from the time when the switching of the operation mode is determined until the elapse of the predetermined reference time KTp1.
 基準時間KTp1は、室外熱交換器18内の冷媒圧力から圧縮機11の吸入側の冷媒圧力を減算した圧力差ΔP1が予め定めた基準圧力差KΔP1以下になるように決定されている。基準時間KTp1は、実験等で決定することができる。基準圧力差KΔP1は、第3開閉弁14cを開いた際に、室外熱交換器18側の液相冷媒が、吸入側通路21dを介して圧縮機11の吸入側へ移動しない程度の圧力差に設定されている。 The reference time KTp1 is determined so that the pressure difference ΔP1 obtained by subtracting the refrigerant pressure on the suction side of the compressor 11 from the refrigerant pressure in the outdoor heat exchanger 18 is equal to or less than a predetermined reference pressure difference KΔP1. The reference time KTp1 can be determined by an experiment or the like. The reference pressure difference KΔP1 is such that when the third on-off valve 14c is opened, the liquid phase refrigerant on the outdoor heat exchanger 18 side does not move to the suction side of the compressor 11 via the suction side passage 21d. It is set.
 そして、基準時間KTp1の経過後、第1切替準備制御が終了すると、暖房モードの冷媒回路に切り替えられる。すなわち、制御装置70が、第2開閉弁14bを閉じ、第3開閉弁14cを開く。また、制御装置70は、暖房用膨張弁16aを絞り状態とし、冷房用膨張弁16bを全閉状態とする。さらに、制御装置70は、圧縮機11を作動させる。これにより、冷房モードから暖房モードへの遷移が完了する。 Then, after the lapse of the reference time KTp1, when the first switching preparation control is completed, the circuit is switched to the heating mode refrigerant circuit. That is, the control device 70 closes the second on-off valve 14b and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state and the cooling expansion valve 16b in a fully closed state. Further, the control device 70 operates the compressor 11. This completes the transition from the cooling mode to the heating mode.
 以上の如く、第1切替準備制御では、室外器入口側閉塞制御によって、暖房用膨張弁16aを全閉状態とするので、室外熱交換器18への高温高圧の気相冷媒の供給が遮断される。室外熱交換器18内に残存している冷媒は、外気によって冷却されて凝縮する。この際、室外熱交換器18内の冷媒の凝縮によって、室外熱交換器18内の冷媒圧力がレシーバ15内の冷媒圧力よりも低下してしまうことがある。 As described above, in the first switching preparation control, the heating expansion valve 16a is fully closed by the outdoor unit inlet side blockage control, so that the supply of the high-temperature and high-pressure vapor-phase refrigerant to the outdoor heat exchanger 18 is cut off. To. The refrigerant remaining in the outdoor heat exchanger 18 is cooled by the outside air and condensed. At this time, due to the condensation of the refrigerant in the outdoor heat exchanger 18, the refrigerant pressure in the outdoor heat exchanger 18 may be lower than the refrigerant pressure in the receiver 15.
 これに対して、第1切替準備制御では、室外器入口側閉塞制御によって、暖房用膨張弁16aが全閉状態となっている。従って、レシーバ15内の冷媒が、貯液部出口側通路21bを介して、室外熱交換器18の冷媒入口側へ流出してしまうことがない。また、第2逆止弁17bの作用によって、レシーバ15内の冷媒が、室外熱交換器18の冷媒出口側へ逆流してしまうこともない。 On the other hand, in the first switching preparation control, the heating expansion valve 16a is fully closed by the outdoor unit inlet side blockage control. Therefore, the refrigerant in the receiver 15 does not flow out to the refrigerant inlet side of the outdoor heat exchanger 18 through the liquid storage unit outlet side passage 21b. Further, due to the action of the second check valve 17b, the refrigerant in the receiver 15 does not flow back to the refrigerant outlet side of the outdoor heat exchanger 18.
 さらに、第1切替準備制御では、圧縮機停止制御によって、圧縮機11を停止させるので、冷媒回路内の均圧化が進行する。具体的には、レシーバ15内の冷媒が、冷房用膨張弁16bを介して、圧縮機11の吸入側へ移動することによって、レシーバ15内の冷媒圧力と圧縮機11の吸入側の冷媒圧力との均圧化が進行する。 Further, in the first switching preparation control, the compressor 11 is stopped by the compressor stop control, so that the pressure equalization in the refrigerant circuit progresses. Specifically, the refrigerant in the receiver 15 moves to the suction side of the compressor 11 via the expansion valve 16b for cooling, so that the refrigerant pressure in the receiver 15 and the refrigerant pressure on the suction side of the compressor 11 are combined. Pressure equalization progresses.
 この際、本実施形態では、第2減圧部開度制御によって、冷房用膨張弁16bの絞り開度を、第1切替準備制御を実行する直前の絞り開度以上としている。従って、レシーバ15内の冷媒圧力と圧縮機11の吸入側の冷媒圧力とを確実に均圧化させることができる。さらに、冷房用膨張弁16bの絞り開度を増加させることによって、冷媒回路内の均圧化を促進することができる。 At this time, in the present embodiment, the throttle opening of the cooling expansion valve 16b is set to be equal to or larger than the throttle opening immediately before the first switching preparation control is executed by the second pressure reducing unit opening control. Therefore, the refrigerant pressure in the receiver 15 and the refrigerant pressure on the suction side of the compressor 11 can be reliably equalized. Further, by increasing the throttle opening degree of the cooling expansion valve 16b, it is possible to promote the equalization of pressure in the refrigerant circuit.
 また、本実施形態では、高圧側連通制御によって、第1開閉弁14aを開いている。従って、圧縮機11の吐出口側から貯液部入口側通路21aを介してレシーバ15へ至る冷媒流路内の冷媒圧力についても、レシーバ15内の冷媒圧力と同等となるように均圧化させることができる。 Further, in the present embodiment, the first on-off valve 14a is opened by the high-pressure side communication control. Therefore, the refrigerant pressure in the refrigerant flow path from the discharge port side of the compressor 11 to the receiver 15 via the liquid storage unit inlet side passage 21a is also equalized so as to be equal to the refrigerant pressure in the receiver 15. be able to.
 そして、冷媒回路内の均圧化によって、レシーバ15内の冷媒圧力が室外熱交換器18内の冷媒圧力よりも低下すると、室外熱交換器18の出口側からレシーバ15へ流れる冷媒流れが生じる。これにより、室外熱交換器18で凝縮した液相冷媒をレシーバ15内へ移動させることができる。 Then, when the refrigerant pressure in the receiver 15 is lower than the refrigerant pressure in the outdoor heat exchanger 18 due to the pressure equalization in the refrigerant circuit, a refrigerant flow flowing from the outlet side of the outdoor heat exchanger 18 to the receiver 15 is generated. As a result, the liquid phase refrigerant condensed by the outdoor heat exchanger 18 can be moved into the receiver 15.
 その後、基準時間KTp1の経過を待って、暖房モードの冷媒回路へ切り替える。この際、基準時間KTp1の経過を待つことによって、圧力差ΔP1が基準圧力差KΔP1以下になっている。従って、第3開閉弁14cを開いて、暖房モードの冷媒回路へ切り替えても、室外熱交換器18側の液相冷媒が、吸入側通路21dを介して、圧縮機11の吸入側へ移動してしまうことがない。 After that, wait for the passage of the reference time KTp1 and switch to the refrigerant circuit in the heating mode. At this time, by waiting for the passage of the reference time KTp1, the pressure difference ΔP1 becomes equal to or less than the reference pressure difference KΔP1. Therefore, even if the third on-off valve 14c is opened and the refrigerant circuit is switched to the heating mode, the liquid phase refrigerant on the outdoor heat exchanger 18 side moves to the suction side of the compressor 11 via the suction side passage 21d. It never ends up.
 従って、冷房モードの冷媒回路から暖房モードの冷媒回路への切り替えが完了した際に、室外熱交換器18に残存している液相冷媒が、圧縮機11の吸入側へ流出してしまうことを抑制することができる。すなわち、本実施形態の冷凍サイクル装置10によれば、冷房モードの冷媒回路から暖房モードの冷媒回路へ切り替えた際に、液相冷媒が圧縮機11に吸入されてしまうことを抑制することができる。 Therefore, when the switching from the cooling mode refrigerant circuit to the heating mode refrigerant circuit is completed, the liquid phase refrigerant remaining in the outdoor heat exchanger 18 will flow out to the suction side of the compressor 11. It can be suppressed. That is, according to the refrigerating cycle apparatus 10 of the present embodiment, it is possible to prevent the liquid phase refrigerant from being sucked into the compressor 11 when the refrigerant circuit in the cooling mode is switched to the refrigerant circuit in the heating mode. ..
 次に、第2切替準備制御は、制御プログラムにおいて、運転モードを直列除湿暖房モードから暖房モードへ切り替えることが決定された際に実行される。具体的には、第2切替準備制御では、図5のタイムチャートに示すように、制御装置70が、第1切替準備制御と同様に、圧縮機停止制御を実行する。 Next, the second switching preparation control is executed when it is determined in the control program that the operation mode is switched from the series dehumidifying heating mode to the heating mode. Specifically, in the second switching preparation control, as shown in the time chart of FIG. 5, the control device 70 executes the compressor stop control in the same manner as the first switching preparation control.
 また、制御装置70は、圧縮機停止制御と同時に、暖房用膨張弁16aの絞り開度を増加させる(以下、第1減圧部開度制御という)。本実施形態では、暖房用膨張弁16aを全開状態とする。第1減圧部開度制御は、図5に示すように、直列除湿暖房モードから暖房モードへ切り替えることが決定された際から予め定めた膨張弁用基準時間KTp2が経過するまで実行される。 Further, the control device 70 increases the throttle opening degree of the heating expansion valve 16a at the same time as the compressor stop control (hereinafter referred to as the first decompression unit opening degree control). In the present embodiment, the heating expansion valve 16a is fully opened. As shown in FIG. 5, the first dehumidifying unit opening degree control is executed from the time when it is decided to switch from the series dehumidifying heating mode to the heating mode until the predetermined reference time KTp2 for the expansion valve elapses.
 膨張弁用基準時間KTp2は、第1開閉弁14aの入口側の冷媒圧力から出口側の冷媒圧力を減算した圧力差ΔP2が、予め定めた基準圧力差KΔP2以下になるように決定された値である。膨張弁用基準時間KTp2は、実験等で決定することができる。基準圧力差KΔP2は、第1開閉弁14aを開く際に、圧力差ΔP2によって冷媒通過音が発生してしまうことを抑制できる程度の圧力差に決定されている。 The reference time KTp2 for the expansion valve is a value determined so that the pressure difference ΔP2 obtained by subtracting the refrigerant pressure on the outlet side from the refrigerant pressure on the inlet side of the first on-off valve 14a is equal to or less than the predetermined reference pressure difference KΔP2. be. The reference time KTp2 for the expansion valve can be determined by an experiment or the like. The reference pressure difference KΔP2 is determined to be a pressure difference that can suppress the generation of refrigerant passing noise due to the pressure difference ΔP2 when the first on-off valve 14a is opened.
 従って、第1減圧部開度制御が実行されることによって、室内凝縮器12内の冷媒圧力、室外熱交換器18内の冷媒圧力、およびレシーバ15内の冷媒圧力が均圧化されて、圧力差ΔP2が基準圧力差KΔP2以下となる。 Therefore, by executing the first decompression unit opening control, the refrigerant pressure in the indoor condenser 12, the refrigerant pressure in the outdoor heat exchanger 18, and the refrigerant pressure in the receiver 15 are equalized, and the pressure is equalized. The difference ΔP2 is equal to or less than the reference pressure difference KΔP2.
 第1減圧部開度制御の終了後、制御装置70は、第1切替準備制御と同様に、室外器入口側閉塞制御、高圧側連通制御、および第2減圧部開度制御を実行する。これらの制御は、第1減圧部開度制御が終了してから基準時間KTp1が経過するまで実行される。以降の作動は、第1切替準備制御と同様である。 After the completion of the first decompression unit opening control, the control device 70 executes the outdoor unit inlet side blockage control, the high voltage side communication control, and the second decompression unit opening control as in the first switching preparation control. These controls are executed from the end of the first decompression unit opening control until the lapse of the reference time KTp1. Subsequent operations are the same as in the first switching preparation control.
 従って、第2切替準備制御においても、第1切替準備制御と同様の効果を得ることができる。すなわち、本実施形態の冷凍サイクル装置10によれば、直列除湿暖房モードの冷媒回路から暖房モードの冷媒回路へ切り替えた際に、液相冷媒が圧縮機11に吸入されてしまうことを抑制することができる。 Therefore, the same effect as that of the first switching preparation control can be obtained in the second switching preparation control. That is, according to the refrigerating cycle device 10 of the present embodiment, it is possible to prevent the liquid phase refrigerant from being sucked into the compressor 11 when the refrigerant circuit in the series dehumidifying / heating mode is switched to the refrigerant circuit in the heating mode. Can be done.
 さらに、第2切替準備制御では、第1減圧部開度制御を実行するので、高圧側連通制御を行う際に、第1開閉弁14aの前後差圧である圧力差ΔP2が、基準圧力差KΔP2以下とすることができる。これによれば、高圧側連通制御において第1開閉弁14aを開く際に、冷媒通過音が生じてしまうことを抑制することができる。 Further, in the second switching preparation control, the first decompression unit opening control is executed, so that the pressure difference ΔP2, which is the front-rear differential pressure of the first on-off valve 14a, becomes the reference pressure difference KΔP2 when the high-pressure side communication control is performed. It can be as follows. According to this, it is possible to suppress the generation of the refrigerant passing noise when the first on-off valve 14a is opened in the high-pressure side communication control.
 なお、上記の説明では、冷房モードから暖房モードへ切り替える際に、第1切替準備制御を実行した例を説明したが、これに限定されない。第1切替準備制御は、冷媒回路が第1回路に切り替えられており、室内凝縮器12における冷媒圧力と室外熱交換器18における冷媒圧力が同等となっている運転モードから、冷媒回路が第2回路に切り替えられる運転モードへ遷移させる際に有効である。 In the above explanation, an example in which the first switching preparation control is executed when switching from the cooling mode to the heating mode has been described, but the present invention is not limited to this. In the first switching preparation control, the refrigerant circuit is switched to the first circuit, and the refrigerant circuit is second from the operation mode in which the refrigerant pressure in the indoor condenser 12 and the refrigerant pressure in the outdoor heat exchanger 18 are equal. This is effective when transitioning to an operation mode that can be switched to a circuit.
 例えば、第1切替準備制御は、冷房冷却モードから暖房モードへ切り替える際に実行してもよい。この場合は、冷房用膨張弁16bおよび冷却用膨張弁16cの双方を、第1切替準備制御における冷房用膨張弁16bと同様に制御すればよい。さらに、第1切替準備制御は、単独冷却モードから暖房モードへ切り替える際に実行してもよい。この場合は、冷却用膨張弁16cを、第1切替準備制御における冷房用膨張弁16bと同様に制御すればよい。 For example, the first switching preparation control may be executed when switching from the cooling cooling mode to the heating mode. In this case, both the cooling expansion valve 16b and the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the first switching preparation control. Further, the first switching preparation control may be executed when switching from the independent cooling mode to the heating mode. In this case, the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the first switching preparation control.
 また、上記の説明では、直列除湿暖房モードから暖房モードへ切り替える際に、第2切替準備制御を実行した例を説明したが、これに限定されない。第2切替準備制御は、冷媒回路が第1回路に切り替えられており、室内凝縮器12における冷媒圧力よりも室外熱交換器18における冷媒圧力が低くなっている運転モードから、冷媒回路が第2回路に切り替えられる運転モードへ遷移させる際に有効である。 Further, in the above description, an example in which the second switching preparation control is executed when switching from the series dehumidifying heating mode to the heating mode has been described, but the present invention is not limited to this. In the second switching preparation control, the refrigerant circuit is switched to the first circuit, and the refrigerant circuit is second from the operation mode in which the refrigerant pressure in the outdoor heat exchanger 18 is lower than the refrigerant pressure in the indoor condenser 12. This is effective when transitioning to an operation mode that can be switched to a circuit.
 例えば、第2切替準備制御は、除湿暖房冷却モードから暖房モードへ切り替える際に実行してもよい。この場合は、冷房用膨張弁16bおよび冷却用膨張弁16cの双方を、第2切替準備制御における冷房用膨張弁16bと同様に制御すればよい。さらに、第1開閉弁14aを開く際の冷媒通過音の発生を抑制する必要のない冷凍サイクル装置では、第2切替準備制御に代えて、第1切替準備制御を実行してもよい。 For example, the second switching preparation control may be executed when switching from the dehumidifying / heating / cooling mode to the heating mode. In this case, both the cooling expansion valve 16b and the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the second switching preparation control. Further, in the refrigeration cycle apparatus that does not need to suppress the generation of the refrigerant passing sound when the first on-off valve 14a is opened, the first switching preparation control may be executed instead of the second switching preparation control.
 (第2実施形態)
 本実施形態では、図6の全体構成図に示す冷凍サイクル装置10aについて説明する。冷凍サイクル装置10aは、第1実施形態と同様の車両用空調装置1に適用されている。
(Second Embodiment)
In this embodiment, the refrigeration cycle apparatus 10a shown in the overall configuration diagram of FIG. 6 will be described. The refrigeration cycle device 10a is applied to the vehicle air conditioner 1 similar to the first embodiment.
 冷凍サイクル装置10aでは、第1実施形態で説明した冷凍サイクル装置10に対して、第1三方継手13a、第1開閉弁14aおよび第2開閉弁14bが廃止されている。このため、冷凍サイクル装置10aでは、室内凝縮器12の冷媒出口に、三方弁22の流入口側が接続されている。 In the refrigeration cycle device 10a, the first three-way joint 13a, the first on-off valve 14a, and the second on-off valve 14b are abolished with respect to the refrigeration cycle device 10 described in the first embodiment. Therefore, in the refrigeration cycle device 10a, the inlet side of the three-way valve 22 is connected to the refrigerant outlet of the indoor condenser 12.
 三方弁22は、室内凝縮器12から流出した冷媒を、貯液部入口側通路21aを介してレシーバ15側へ流出させる冷媒回路と、冷房冷却用通路21cを介して室外熱交換器18側へ流出させる冷媒回路とを切り替える冷媒回路切替部である。三方弁22は、制御装置70から出力される制御電圧によって、その作動が制御される三方式の切替弁である。 The three-way valve 22 has a refrigerant circuit that causes the refrigerant flowing out of the indoor condenser 12 to flow out to the receiver 15 side via the liquid storage unit inlet side passage 21a, and the cooling cooling passage 21c to the outdoor heat exchanger 18 side. It is a refrigerant circuit switching unit that switches between the refrigerant circuit to be discharged. The three-way valve 22 is a three-way switching valve whose operation is controlled by a control voltage output from the control device 70.
 本実施形態の貯液部入口側通路21aには、第1逆止弁17aおよび第5三方継手13eが配置されている。本実施形態の第1逆止弁17aは、三方弁22側から第5三方継手13e側へ冷媒が流れることを許容し、第5三方継手13e側から三方弁22側へ冷媒が流れることを禁止している。 A first check valve 17a and a fifth three-way joint 13e are arranged in the passage 21a on the inlet side of the liquid storage portion of the present embodiment. The first check valve 17a of the present embodiment allows the refrigerant to flow from the three-way valve 22 side to the fifth three-way joint 13e side, and prohibits the refrigerant from flowing from the fifth three-way joint 13e side to the three-way valve 22 side. is doing.
 また、本実施形態では、第6三方継手13fの一方の流出口から第2三方継手13bの他方の流入口へ至る冷媒通路に暖房用膨張弁16aが配置されている。従って、冷凍サイクル装置10aでは、レシーバ15の出口から第6三方継手13fの流入口へ至る冷媒通路が貯液部出口側通路21bとなる。また、第6三方継手13fの一方の流出口から第2三方継手13bの一方の流入口へ至る冷媒通路が、室外器入口側通路21eとなる。 Further, in the present embodiment, the heating expansion valve 16a is arranged in the refrigerant passage from one outlet of the sixth three-way joint 13f to the other inlet of the second three-way joint 13b. Therefore, in the refrigerating cycle device 10a, the refrigerant passage from the outlet of the receiver 15 to the inflow port of the sixth three-way joint 13f becomes the liquid storage unit outlet side passage 21b. Further, the refrigerant passage from one outlet of the sixth three-way joint 13f to one inlet of the second three-way joint 13b becomes the outdoor unit inlet side passage 21e.
 第2三方継手13bの流入出口は、室外熱交換器18の一方の冷媒出入口側に接続されている。第2三方継手13bの流出口は、第5三方継手13eの他方の流入口側に接続されている。室外熱交換器18の一方の冷媒出入口は、第2回路に切り替えられた際に冷媒入口となる。また、室外熱交換器18の一方の冷媒出入口は、第1回路に切り替えられた際に冷媒入口となる。 The inflow / outlet of the second three-way joint 13b is connected to one of the refrigerant inlet / outlet sides of the outdoor heat exchanger 18. The outlet of the second three-way joint 13b is connected to the other inlet side of the fifth three-way joint 13e. One of the refrigerant inlets and outlets of the outdoor heat exchanger 18 becomes a refrigerant inlet when switched to the second circuit. Further, one of the refrigerant inlets and outlets of the outdoor heat exchanger 18 becomes a refrigerant inlet when the circuit is switched to the first circuit.
 第2三方継手13bの流出口から第5三方継手13eの他方の流入口へ至れる冷媒通路には、第2逆止弁17bが配置されている。本実施形態の第2逆止弁17bは、第2三方継手13b側から第5三方継手13e側へ冷媒が流れることを許容し、第5三方継手13e側から第2三方継手13b側へ冷媒が流れることを禁止している。 A second check valve 17b is arranged in the refrigerant passage leading from the outlet of the second three-way joint 13b to the other inlet of the fifth three-way joint 13e. The second check valve 17b of the present embodiment allows the refrigerant to flow from the second three-way joint 13b side to the fifth three-way joint 13e side, and the refrigerant flows from the fifth three-way joint 13e side to the second three-way joint 13b side. It is prohibited to flow.
 また、本実施形態の冷房冷却用通路21cの出口側には第3三方継手13cの流入出口側が接続されている。第3三方継手13cの流入出口には、室外熱交換器18の他方の冷媒出入口側に接続されている。その他の冷凍サイクル装置10aの構成は、第1実施形態で説明した冷凍サイクル装置10と同様である。 Further, the inflow / outlet side of the third three-way joint 13c is connected to the outlet side of the cooling / cooling passage 21c of the present embodiment. The inflow / outlet of the third three-way joint 13c is connected to the other refrigerant inlet / outlet side of the outdoor heat exchanger 18. Other configurations of the refrigerating cycle device 10a are the same as those of the refrigerating cycle device 10 described in the first embodiment.
 次に、冷凍サイクル装置10aが適用された本実施形態の車両用空調装置1の作動について説明する。本実施形態の車両用空調装置1の運転モードとしては、(a)冷房モード、(b)暖房モード、(c)冷房冷却モード、(d)単独冷却モードがある。各運転モードの基本的作動は、第1実施形態と同様である。以下に、各運転モードの詳細作動について説明する。 Next, the operation of the vehicle air conditioner 1 of the present embodiment to which the refrigeration cycle device 10a is applied will be described. The operation modes of the vehicle air conditioner 1 of the present embodiment include (a) cooling mode, (b) heating mode, (c) cooling cooling mode, and (d) independent cooling mode. The basic operation of each operation mode is the same as that of the first embodiment. The detailed operation of each operation mode will be described below.
 (a)冷房モード
 冷房モードでは、制御装置70が、室内凝縮器12から流出した冷媒を室外熱交換器18側へ流出させるように三方弁22を切り替える。また、制御装置70は、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全閉状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを全閉状態とする。
(A) Cooling mode In the cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant flowing out of the indoor condenser 12 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
 これにより、冷房モードの冷凍サイクル装置10aでは、図6の実線矢印に示すように、圧縮機11から吐出された冷媒が、室内凝縮器12、冷房冷却用通路21c、室外熱交換器18、レシーバ15、貯液部出口側通路21b、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。冷房モードの冷媒回路は、第1実施形態と同様に、第1回路に含まれる。 As a result, in the refrigerating cycle device 10a in the cooling mode, as shown by the solid line arrow in FIG. 6, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the outdoor heat exchanger 18, and the receiver. It is switched to a refrigerant circuit that circulates in the order of 15, the liquid storage unit outlet side passage 21b, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11. The cooling mode refrigerant circuit is included in the first circuit as in the first embodiment.
 上記の回路構成で、制御装置70は、第1実施形態の冷房モードと同様に、各種制御対象機器の作動を適宜制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices as in the cooling mode of the first embodiment.
 従って、冷房モードの冷凍サイクル装置10aでは、室内凝縮器12および室外熱交換器18を凝縮器として機能させ、室内蒸発器19を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。そして、冷房モードの室内空調ユニット40では、室内蒸発器19にて冷却された送風空気が、適切な温度に調整されて車室内へ吹き出される。これにより、車室内の冷房が実現される。 Therefore, in the refrigerating cycle device 10a in the cooling mode, a steam compression type refrigerating cycle is configured in which the indoor condenser 12 and the outdoor heat exchanger 18 function as a condenser and the indoor evaporator 19 functions as an evaporator. Then, in the indoor air conditioning unit 40 in the cooling mode, the blown air cooled by the indoor evaporator 19 is adjusted to an appropriate temperature and blown out into the vehicle interior. As a result, cooling of the passenger compartment is realized.
 (b)暖房モード
 暖房モードでは、制御装置70が、室内凝縮器12から流出した冷媒をレシーバ15側へ流出させるように三方弁22を切り替える。また、制御装置70は、第3開閉弁14cを開く。また、制御装置70は、暖房用膨張弁16aを絞り状態とし、冷房用膨張弁16bを全閉状態とし、冷却用膨張弁16cを全閉状態とする。
(B) Heating mode In the heating mode, the control device 70 switches the three-way valve 22 so that the refrigerant flowing out of the indoor condenser 12 flows out to the receiver 15. Further, the control device 70 opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a fully closed state.
 これにより、暖房モードの冷凍サイクル装置10は、図6の破線矢印に示すように、圧縮機11から吐出された冷媒が、室内凝縮器12、貯液部入口側通路21a、レシーバ15、貯液部出口側通路21b、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、吸入側通路21d、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。暖房モードの冷媒回路は、第1実施形態と同様に、第2回路に含まれる。 As a result, in the refrigerating cycle device 10 in the heating mode, as shown by the broken line arrow in FIG. 6, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, and the liquid storage. It is switched to a refrigerant circuit that circulates in the order of the outlet side passage 21b, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, the suction side passage 21d, and the suction port of the compressor 11. The heating mode refrigerant circuit is included in the second circuit as in the first embodiment.
 冷凍サイクル装置10aの暖房モードの冷媒回路では、室外熱交換器18における冷媒の流れ方向が、冷房モードの冷媒回路に対して逆方向になる。 In the cooling mode refrigerant circuit of the refrigeration cycle device 10a, the flow direction of the refrigerant in the outdoor heat exchanger 18 is opposite to that of the cooling mode refrigerant circuit.
 上記の回路構成で、制御装置70は、第1実施形態の暖房モードと同様に、各種制御対象機器の作動を適宜制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices as in the heating mode of the first embodiment.
 従って、暖房モードの冷凍サイクル装置10aでは、室内凝縮器12を凝縮器として機能させ、室外熱交換器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。そして、暖房モードの室内空調ユニット40では、室内凝縮器12にて加熱された送風空気が、車室内へ吹き出される。これにより、車室内の暖房が実現される。 Therefore, in the refrigerating cycle device 10a in the heating mode, a steam compression type refrigerating cycle is configured in which the indoor condenser 12 functions as a condenser and the outdoor heat exchanger 18 functions as an evaporator. Then, in the indoor air conditioning unit 40 in the heating mode, the blown air heated by the indoor condenser 12 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
 (c)冷房冷却モード
 冷房冷却モードでは、制御装置70が、室内凝縮器12から流出した冷媒を室外熱交換器18側へ流出させるように三方弁22を切り替える。また、制御装置70は、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全閉状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを絞り状態とする。
(C) Cooling / Cooling Mode In the cooling / cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant flowing out of the indoor condenser 12 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a throttled state.
 これにより、冷房冷却モードの冷凍サイクル装置10aでは、圧縮機11から吐出された冷媒が、室内凝縮器12、冷房冷却用通路21c、室外熱交換器18、レシーバ15の順に流れる。さらに、レシーバ15から流出した冷媒が、貯液部出口側通路21b、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環するとともに、貯液部出口側通路21b、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 As a result, in the refrigerating cycle device 10a in the cooling cooling mode, the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the cooling cooling passage 21c, the outdoor heat exchanger 18, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the liquid storage section outlet side passage 21b, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the liquid storage section outlet side passage 21b is cooled. It is switched to a refrigerant circuit that circulates in the order of the expansion valve 16c, the chiller 20, and the suction port of the compressor 11.
 つまり、冷房冷却モードでは、室内蒸発器19およびチラー20が、冷媒流れに対して並列的に接続される冷媒回路に切り替えられる。冷房冷却モードの冷媒回路は、第1実施形態と同様に、第1回路に含まれる。 That is, in the cooling / cooling mode, the indoor evaporator 19 and the chiller 20 are switched to the refrigerant circuit connected in parallel with the refrigerant flow. The cooling / cooling mode refrigerant circuit is included in the first circuit as in the first embodiment.
 上記の回路構成で、制御装置70は、第1実施形態の冷房冷却モードと同様に、各種制御対象機器の作動を適宜制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices as in the cooling / cooling mode of the first embodiment.
 従って、冷房冷却モードの冷凍サイクル装置10aでは、室内凝縮器12および室外熱交換器18を凝縮器として機能させ、室内蒸発器19およびチラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10a in the cooling / cooling mode, a steam compression type refrigerating cycle in which the indoor condenser 12 and the outdoor heat exchanger 18 function as condensers and the indoor evaporator 19 and the chiller 20 function as evaporators is configured. Will be done.
 そして、冷房冷却モードの室内空調ユニット40では、室内蒸発器19にて冷却された送風空気が、適切な温度に調整されて車室内へ吹き出される。これにより、冷房モードと同様に、車室内の冷房が実現される。さらに、冷房冷却モードの低温側熱媒体回路60では、チラー20にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aへ流入する。これにより、バッテリ80が冷却される。 Then, in the indoor air conditioning unit 40 in the cooling / cooling mode, the blown air cooled by the indoor evaporator 19 is adjusted to an appropriate temperature and blown out into the vehicle interior. As a result, cooling of the vehicle interior is realized as in the cooling mode. Further, in the low temperature side heat medium circuit 60 in the cooling cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
 (d)単独冷却モード
 単独冷却モードでは、制御装置70が、室内凝縮器12から流出した冷媒を室外熱交換器18側へ流出させるように三方弁22を切り替える。また、制御装置70は、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全閉状態とし、冷房用膨張弁16bを全閉状態とし、冷却用膨張弁16cを絞り状態とする。
(D) Single cooling mode In the single cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant flowing out of the indoor condenser 12 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
 これにより、単独冷却モードの冷凍サイクル装置10aでは、圧縮機11から吐出された冷媒が、室内凝縮器12、冷房冷却用通路21c、室外熱交換器18、レシーバ15、貯液部出口側通路21b、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。単独冷却モードの冷媒回路は、第1実施形態と同様に、第1回路に含まれる。 As a result, in the refrigerating cycle device 10a in the single cooling mode, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the outdoor heat exchanger 18, the receiver 15, and the liquid storage unit outlet side passage 21b. , The cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11 are switched to a refrigerant circuit that circulates in this order. The refrigerant circuit in the single cooling mode is included in the first circuit as in the first embodiment.
 上記の回路構成で、制御装置70は、第1実施形態の単独冷却モードと同様に、各種制御対象機器の作動を適宜制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices as in the single cooling mode of the first embodiment.
 従って、単独冷却モードの冷凍サイクル装置10aでは、室内凝縮器12および室外熱交換器18を凝縮器として機能させ、チラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。さらに、単独冷却モードの低温側熱媒体回路60では、チラー20にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aへ流入する。これにより、バッテリ80が冷却される。 Therefore, in the refrigerating cycle device 10a in the single cooling mode, a steam compression type refrigerating cycle is configured in which the indoor condenser 12 and the outdoor heat exchanger 18 function as a condenser and the chiller 20 functions as an evaporator. Further, in the low temperature side heat medium circuit 60 in the single cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
 以上の如く、本実施形態の車両用空調装置1では、冷凍サイクル装置10aが冷媒回路を切り替えることによって、各種運転モードでの運転を実行することができる。これにより、車両用空調装置1では、バッテリ80の温度を適切に調整しつつ、車室内の快適な空調を実現することができる。 As described above, in the vehicle air conditioner 1 of the present embodiment, the refrigerating cycle device 10a can execute the operation in various operation modes by switching the refrigerant circuit. As a result, the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior while appropriately adjusting the temperature of the battery 80.
 さらに、冷凍サイクル装置10aでは、冷媒回路を切り替える際に、第1実施形態と同様に、圧縮機11が液相冷媒を吸入してしまうことを抑制するための切替準備制御を実行する。切替準備制御は、制御プログラムにおいて、冷房モードから暖房モードへ切り替えることが決定された際に実行される。 Further, in the refrigerating cycle device 10a, when the refrigerant circuit is switched, the switching preparation control for suppressing the compressor 11 from sucking the liquid phase refrigerant is executed as in the first embodiment. The switching preparation control is executed when the control program determines to switch from the cooling mode to the heating mode.
 冷凍サイクル装置10aの切替準備制御では、図7のタイムチャートに示すように、第1実施形態と同様に、圧縮機停止制御、および室外器入口側閉塞制御を行う。なお、冷凍サイクル装置10aの冷房モードでは、暖房用膨張弁16aを全閉状態としているので、切替準備制御では、暖房用膨張弁16aの全閉状態が維持される。 In the switching preparation control of the refrigeration cycle device 10a, as shown in the time chart of FIG. 7, the compressor stop control and the outdoor unit inlet side blockage control are performed as in the first embodiment. Since the heating expansion valve 16a is in the fully closed state in the cooling mode of the refrigeration cycle device 10a, the heating expansion valve 16a is maintained in the fully closed state in the switching preparation control.
 また、制御装置70は、圧縮機停止制御と同時に、室内凝縮器12から流出した冷媒をレシーバ15側へ流出させるように三方弁22を切り替える。その他の切替準備制御は、第1実施形態で説明した第1切替準備制御と同様である。 Further, the control device 70 switches the three-way valve 22 so that the refrigerant flowing out from the indoor condenser 12 flows out to the receiver 15 side at the same time as the compressor stop control. Other switching preparation controls are the same as those of the first switching preparation control described in the first embodiment.
 従って、本実施形態の切替準備制御においても、第1実施形態で説明した第1切替準備制御と同様の効果を得ることができる。すなわち、本実施形態の冷凍サイクル装置10aによれば、冷房モードの冷媒回路から暖房モードの冷媒回路へ切り替えた際に、液相冷媒が圧縮機11に吸入されてしまうことを抑制することができる。 Therefore, in the switching preparation control of the present embodiment, the same effect as that of the first switching preparation control described in the first embodiment can be obtained. That is, according to the refrigerating cycle apparatus 10a of the present embodiment, it is possible to prevent the liquid phase refrigerant from being sucked into the compressor 11 when the refrigerant circuit in the cooling mode is switched to the refrigerant circuit in the heating mode. ..
 なお、上記の説明では、冷房モードから暖房モードへ切り替える際に、切替準備制御を実行した例を説明したが、これに限定されない。 In the above explanation, an example in which switching preparation control is executed when switching from the cooling mode to the heating mode has been described, but the present invention is not limited to this.
 例えば、切替準備制御は、冷房冷却モードから暖房モードへ切り替える際に実行してもよい。この場合は、冷房用膨張弁16bおよび冷却用膨張弁16cの双方を、切替準備制御における冷房用膨張弁16bと同様に制御すればよい。さらに、切替準備制御は、単独冷却モードから暖房モードへ切り替える際に実行してもよい。この場合は、冷却用膨張弁16cを切替準備制御における冷房用膨張弁16bと同様に制御すればよい。 For example, the switching preparation control may be executed when switching from the cooling cooling mode to the heating mode. In this case, both the cooling expansion valve 16b and the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the switching preparation control. Further, the switching preparation control may be executed when switching from the independent cooling mode to the heating mode. In this case, the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the switching preparation control.
 (第3実施形態)
 本実施形態では、図8の全体構成図に示す冷凍サイクル装置10bについて説明する。冷凍サイクル装置10bは、第1実施形態と同様の車両用空調装置1に適用されている。
(Third Embodiment)
In this embodiment, the refrigeration cycle apparatus 10b shown in the overall configuration diagram of FIG. 8 will be described. The refrigeration cycle device 10b is applied to the vehicle air conditioner 1 similar to the first embodiment.
 冷凍サイクル装置10bでは、第2実施形態で説明した冷凍サイクル装置10aに対して、三方弁22の配置が変更されている。さらに、冷凍サイクル装置10bでは、第1実施形態で説明した冷凍サイクル装置10に対して、第1三方継手13aが廃止されている。 In the refrigeration cycle device 10b, the arrangement of the three-way valve 22 is changed with respect to the refrigeration cycle device 10a described in the second embodiment. Further, in the refrigeration cycle device 10b, the first three-way joint 13a is abolished with respect to the refrigeration cycle device 10 described in the first embodiment.
 具体的には、冷凍サイクル装置10bの三方弁22の流入口には、圧縮機11の吐出口側が接続されている。三方弁22の一方の流出口には、冷房冷却用通路21cおよび第2三方継手13bを介して室外熱交換器18の冷媒入口側が接続されている。三方弁22に他方の流出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12の冷媒出口には、貯液部入口側通路21aが接続されている。 Specifically, the discharge port side of the compressor 11 is connected to the inflow port of the three-way valve 22 of the refrigeration cycle device 10b. The refrigerant inlet side of the outdoor heat exchanger 18 is connected to one outlet of the three-way valve 22 via a cooling cooling passage 21c and a second three-way joint 13b. The refrigerant inlet side of the indoor condenser 12 is connected to the other outlet of the three-way valve 22. A passage 21a on the inlet side of the liquid storage unit is connected to the refrigerant outlet of the indoor condenser 12.
 本実施形態の貯液部入口側通路21aには、第1逆止弁17aおよび第5三方継手13eが配置されている。本実施形態の第1逆止弁17aは、室内凝縮器12側から第5三方継手13e側へ冷媒が流れることを許容し、第5三方継手13e側から室内凝縮器12側へ冷媒が流れることを禁止している。 A first check valve 17a and a fifth three-way joint 13e are arranged in the passage 21a on the inlet side of the liquid storage portion of the present embodiment. The first check valve 17a of the present embodiment allows the refrigerant to flow from the indoor condenser 12 side to the fifth three-way joint 13e side, and allows the refrigerant to flow from the fifth three-way joint 13e side to the indoor condenser 12 side. Is prohibited.
 また、本実施形態では、第6三方継手13fの一方の流出口から第2三方継手13bの他方の流入口へ至る冷媒通路に暖房用膨張弁16aが配置されている。従って、冷凍サイクル装置10bでは、レシーバ15の出口から第6三方継手13fの流入口へ至る冷媒通路が貯液部出口側通路21bとなる。また、第6三方継手13fの一方の流出口から第2三方継手13bの一方の流入口へ至る冷媒通路が、室外器入口側通路21eとなる。 Further, in the present embodiment, the heating expansion valve 16a is arranged in the refrigerant passage from one outlet of the sixth three-way joint 13f to the other inlet of the second three-way joint 13b. Therefore, in the refrigerating cycle device 10b, the refrigerant passage from the outlet of the receiver 15 to the inflow port of the sixth three-way joint 13f becomes the liquid storage unit outlet side passage 21b. Further, the refrigerant passage from one outlet of the sixth three-way joint 13f to one inlet of the second three-way joint 13b becomes the outdoor unit inlet side passage 21e.
 その他の冷凍サイクル装置10bの構成は、第1実施形態で説明した冷凍サイクル装置10と同様である。 The configuration of the other refrigeration cycle device 10b is the same as that of the refrigeration cycle device 10 described in the first embodiment.
 次に、冷凍サイクル装置10bが適用された本実施形態の車両用空調装置1の作動について説明する。本実施形態の車両用空調装置1の運転モードとしては、(a)冷房モード、(b)暖房モード、(c)冷房冷却モード、(d)単独冷却モードがある。各運転モードの基本的作動は、第1実施形態と同様である。以下に、各運転モードの詳細作動について説明する。 Next, the operation of the vehicle air conditioner 1 of the present embodiment to which the refrigeration cycle device 10b is applied will be described. The operation modes of the vehicle air conditioner 1 of the present embodiment include (a) cooling mode, (b) heating mode, (c) cooling cooling mode, and (d) independent cooling mode. The basic operation of each operation mode is the same as that of the first embodiment. The detailed operation of each operation mode will be described below.
 (a)冷房モード
 冷房モードでは、制御装置70が、圧縮機11から吐出された冷媒を室外熱交換器18側へ流出させるように三方弁22を切り替える。また、制御装置70は、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全閉状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを全閉状態とする。
(A) Cooling mode In the cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant discharged from the compressor 11 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
 これにより、冷房モードの冷凍サイクル装置10bでは、図8の実線矢印に示すように、圧縮機11から吐出された冷媒が、冷房冷却用通路21c、室外熱交換器18、レシーバ15、貯液部出口側通路21b、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。冷房モードの冷媒回路は、第1実施形態と同様に、第1回路に含まれる。 As a result, in the refrigerating cycle device 10b in the cooling mode, as shown by the solid line arrow in FIG. 8, the refrigerant discharged from the compressor 11 is the cooling cooling passage 21c, the outdoor heat exchanger 18, the receiver 15, and the liquid storage unit. It is switched to a refrigerant circuit that circulates in the order of the outlet side passage 21b, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11. The cooling mode refrigerant circuit is included in the first circuit as in the first embodiment.
 上記の回路構成で、制御装置70は、第1実施形態の冷房モードと同様に、各種制御対象機器の作動を適宜制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices as in the cooling mode of the first embodiment.
 従って、冷房モードの冷凍サイクル装置10bでは、室外熱交換器18を凝縮器として機能させ、室内蒸発器19を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。そして、冷房モードの室内空調ユニット40では、室内蒸発器19にて冷却された送風空気が車室内へ吹き出される。これにより、車室内の冷房が実現される。 Therefore, in the refrigerating cycle device 10b in the cooling mode, a steam compression type refrigerating cycle is configured in which the outdoor heat exchanger 18 functions as a condenser and the indoor evaporator 19 functions as an evaporator. Then, in the indoor air conditioning unit 40 in the cooling mode, the blown air cooled by the indoor evaporator 19 is blown into the vehicle interior. As a result, cooling of the passenger compartment is realized.
 (b)暖房モード
 冷房モードでは、制御装置70が、圧縮機11から吐出された冷媒を室内凝縮器12側へ流出させるように三方弁22を切り替える。また、制御装置70は、第3開閉弁14cを開く。また、制御装置70は、暖房用膨張弁16aを絞り状態とし、冷房用膨張弁16bを全閉状態とし、冷却用膨張弁16cを全閉状態とする。
(B) Heating mode In the cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant discharged from the compressor 11 flows out to the indoor condenser 12 side. Further, the control device 70 opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a fully closed state.
 これにより、暖房モードの冷凍サイクル装置10bでは、図8の破線矢印に示すように、圧縮機11から吐出された冷媒が、室内凝縮器12、貯液部入口側通路21a、レシーバ15、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、吸入側通路21d、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。暖房モードの冷媒回路は、第1実施形態と同様に、第2回路に含まれる。 As a result, in the refrigerating cycle device 10b in the heating mode, as shown by the broken line arrow in FIG. 8, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, and the outdoor unit. It is switched to a refrigerant circuit that circulates in the order of the heating expansion valve 16a of the inlet side passage 21e, the outdoor heat exchanger 18, the suction side passage 21d, and the suction port of the compressor 11. The heating mode refrigerant circuit is included in the second circuit as in the first embodiment.
 上記の回路構成で、制御装置70は、第1実施形態の暖房モードと同様に、各種制御対象機器の作動を適宜制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices as in the heating mode of the first embodiment.
 従って、暖房モードの冷凍サイクル装置10bでは、室内凝縮器12を凝縮器として機能させ、室外熱交換器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。そして、暖房モードの室内空調ユニット40では、室内凝縮器12にて加熱された送風空気が、車室内へ吹き出される。これにより、車室内の暖房が実現される。 Therefore, in the refrigerating cycle device 10b in the heating mode, a steam compression type refrigerating cycle is configured in which the indoor condenser 12 functions as a condenser and the outdoor heat exchanger 18 functions as an evaporator. Then, in the indoor air conditioning unit 40 in the heating mode, the blown air heated by the indoor condenser 12 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
 (c)冷房冷却モード
 冷房冷却モードでは、制御装置70が、圧縮機11から吐出された冷媒を室外熱交換器18側へ流出させるように三方弁22を切り替える。また、制御装置70は、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全閉状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを絞り状態とする。
(C) Cooling cooling mode In the cooling cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant discharged from the compressor 11 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a throttled state.
 これにより、冷房冷却モードの冷凍サイクル装置10bでは、圧縮機11から吐出された冷媒が、冷房冷却用通路21c、室外熱交換器18、レシーバ15の順に流れる。さらに、レシーバ15から流出した冷媒が、貯液部出口側通路21b、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環するとともに、貯液部出口側通路21b、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。 As a result, in the refrigerating cycle device 10b in the cooling cooling mode, the refrigerant discharged from the compressor 11 flows in the order of the cooling cooling passage 21c, the outdoor heat exchanger 18, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the liquid storage section outlet side passage 21b, the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the liquid storage section outlet side passage 21b is cooled. It is switched to a refrigerant circuit that circulates in the order of the expansion valve 16c, the chiller 20, and the suction port of the compressor 11.
 つまり、冷房冷却モードでは、室内蒸発器19およびチラー20が、冷媒流れに対して並列的に接続される冷媒回路に切り替えられる。冷房冷却モードの冷媒回路は、第1実施形態と同様に、第1回路に含まれる。 That is, in the cooling / cooling mode, the indoor evaporator 19 and the chiller 20 are switched to the refrigerant circuit connected in parallel with the refrigerant flow. The cooling / cooling mode refrigerant circuit is included in the first circuit as in the first embodiment.
 上記の回路構成で、制御装置70は、第1実施形態の冷房冷却モードと同様に、各種制御対象機器の作動を適宜制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices as in the cooling / cooling mode of the first embodiment.
 従って、冷房冷却モードの冷凍サイクル装置10bでは、室外熱交換器18を凝縮器として機能させ、室内蒸発器19およびチラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10b in the cooling / cooling mode, a steam compression type refrigerating cycle is configured in which the outdoor heat exchanger 18 functions as a condenser and the indoor evaporator 19 and the chiller 20 function as an evaporator.
 そして、冷房冷却モードの室内空調ユニット40では、室内蒸発器19にて冷却された送風空気が車室内へ吹き出される。これにより、冷房モードと同様に、車室内の冷房が実現される。さらに、冷房冷却モードの低温側熱媒体回路60では、チラー20にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aへ流入する。これにより、バッテリ80が冷却される。 Then, in the indoor air conditioning unit 40 in the cooling / cooling mode, the blown air cooled by the indoor evaporator 19 is blown into the vehicle interior. As a result, cooling of the vehicle interior is realized as in the cooling mode. Further, in the low temperature side heat medium circuit 60 in the cooling cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
 (d)単独冷却モード
 単独冷却モードでは、制御装置70が、圧縮機11から吐出された冷媒を室外熱交換器18側へ流出させるように三方弁22を切り替える。また、制御装置70は、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全閉状態とし、冷房用膨張弁16bを全閉状態とし、冷却用膨張弁16cを絞り状態とする。
(D) Single cooling mode In the single cooling mode, the control device 70 switches the three-way valve 22 so that the refrigerant discharged from the compressor 11 flows out to the outdoor heat exchanger 18 side. Further, the control device 70 closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
 これにより、単独冷却モードの冷凍サイクル装置10bでは、圧縮機11から吐出された冷媒が、冷房冷却用通路21c、室外熱交換器18、レシーバ15、貯液部出口側通路21b、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。単独冷却モードの冷媒回路は、第1実施形態と同様に、第1回路に含まれる。 As a result, in the refrigerating cycle device 10b in the single cooling mode, the refrigerant discharged from the compressor 11 is the cooling cooling passage 21c, the outdoor heat exchanger 18, the receiver 15, the liquid storage unit outlet side passage 21b, and the cooling expansion valve. It is switched to a refrigerant circuit that circulates in the order of 16c, the chiller 20, and the suction port of the compressor 11. The refrigerant circuit in the single cooling mode is included in the first circuit as in the first embodiment.
 上記の回路構成で、制御装置70は、第1実施形態の単独冷却モードと同様に、各種制御対象機器の作動を適宜制御する。 With the above circuit configuration, the control device 70 appropriately controls the operation of various controlled devices as in the single cooling mode of the first embodiment.
 従って、単独冷却モードの冷凍サイクル装置10bでは、室外熱交換器18を凝縮器として機能させ、チラー20を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。さらに、単独冷却モードの低温側熱媒体回路60では、チラー20にて冷却された低温側熱媒体がバッテリ80の冷却水通路80aへ流入する。これにより、バッテリ80が冷却される。 Therefore, in the refrigerating cycle device 10b in the independent cooling mode, a steam compression type refrigerating cycle is configured in which the outdoor heat exchanger 18 functions as a condenser and the chiller 20 functions as an evaporator. Further, in the low temperature side heat medium circuit 60 in the single cooling mode, the low temperature side heat medium cooled by the chiller 20 flows into the cooling water passage 80a of the battery 80. This cools the battery 80.
 以上の如く、本実施形態の車両用空調装置1では、冷凍サイクル装置10bが冷媒回路を切り替えることによって、各種運転モードでの運転を実行することができる。これにより、車両用空調装置1では、バッテリ80の温度を適切に調整しつつ、車室内の快適な空調を実現することができる。 As described above, in the vehicle air conditioner 1 of the present embodiment, the refrigerating cycle device 10b can be operated in various operation modes by switching the refrigerant circuit. As a result, the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior while appropriately adjusting the temperature of the battery 80.
 さらに、冷凍サイクル装置10bでは、冷媒回路を切り替える際に、第1実施形態と同様に、圧縮機11が液相冷媒を吸入してしまうことを抑制するための切替準備制御を実行する。切替準備制御は、制御プログラムにおいて、冷房モードから暖房モードへ切り替えることが決定された際に実行される。 Further, in the refrigerating cycle device 10b, when the refrigerant circuit is switched, the switching preparation control for suppressing the compressor 11 from sucking the liquid phase refrigerant is executed as in the first embodiment. The switching preparation control is executed when the control program determines to switch from the cooling mode to the heating mode.
 具体的には、冷凍サイクル装置10bの切替準備制御では、図9のタイムチャートに示すように、第1実施形態と同様に、圧縮機停止制御、および室外器入口側閉塞制御を行う。なお、冷凍サイクル装置10bでは、第1回路に切り替えられている際に、暖房用膨張弁16aが全閉状態になる。従って、冷凍サイクル装置10bの室外器入口側閉塞制御では、暖房用膨張弁16aが全閉状態が維持されることになる。 Specifically, in the switching preparation control of the refrigeration cycle device 10b, as shown in the time chart of FIG. 9, the compressor stop control and the outdoor unit inlet side blockage control are performed as in the first embodiment. In the refrigeration cycle device 10b, the heating expansion valve 16a is fully closed when the circuit is switched to the first circuit. Therefore, in the outdoor unit inlet side blockage control of the refrigeration cycle device 10b, the heating expansion valve 16a is maintained in a fully closed state.
 また、制御装置70は、圧縮機停止制御と同時に、第1実施形態の高圧側連通制御に対応する制御として、圧縮機11から吐出された冷媒を室内凝縮器12側へ流出させるように三方弁22を切り替える。その他の切替準備制御は、第1実施形態で説明した第1切替準備制御と同様である。 Further, the control device 70 is a three-way valve so as to cause the refrigerant discharged from the compressor 11 to flow out to the indoor condenser 12 side as a control corresponding to the high-pressure side communication control of the first embodiment at the same time as the compressor stop control. Switch 22. Other switching preparation controls are the same as those of the first switching preparation control described in the first embodiment.
 従って、本実施形態の切替準備制御においても、第1実施形態で説明した第1切替準備制御と同様の効果を得ることができる。すなわち、本実施形態の冷凍サイクル装置10bによれば、冷房モードの冷媒回路から暖房モードの冷媒回路へ切り替えた際に、液相冷媒が圧縮機11に吸入されてしまうことを抑制することができる。 Therefore, in the switching preparation control of the present embodiment, the same effect as that of the first switching preparation control described in the first embodiment can be obtained. That is, according to the refrigerating cycle apparatus 10b of the present embodiment, it is possible to prevent the liquid phase refrigerant from being sucked into the compressor 11 when the refrigerant circuit in the cooling mode is switched to the refrigerant circuit in the heating mode. ..
 なお、上記の説明では、冷房モードから暖房モードへ切り替える際に、切替準備制御を実行した例を説明したが、これに限定されない。例えば、第2実施形態と同様に、切替準備制御は、冷房冷却モードから暖房モードへ切り替える際に実行してもよい。切替準備制御は、単独冷却モードから暖房モードへ切り替える際に実行してもよい。この場合は、冷却用膨張弁16cを切替準備制御における冷房用膨張弁16bと同様に制御すればよい。 In the above explanation, an example in which switching preparation control is executed when switching from the cooling mode to the heating mode has been described, but the present invention is not limited to this. For example, as in the second embodiment, the switching preparation control may be executed when switching from the cooling cooling mode to the heating mode. The switching preparation control may be executed when switching from the independent cooling mode to the heating mode. In this case, the cooling expansion valve 16c may be controlled in the same manner as the cooling expansion valve 16b in the switching preparation control.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、本開示に係る冷凍サイクル装置10、10a、10bを電気自動車に搭載された車両用空調装置1に適用した例を説明したが、冷凍サイクル装置10…10bの適用は、これに限定されない。例えば、内燃機関および電動モータの双方から車両走行用の駆動力を得る、いわゆるハイブリッド車両搭載された車両用空調装置1に適用してもよい。 In the above-described embodiment, an example in which the refrigerating cycle devices 10, 10a and 10b according to the present disclosure are applied to the vehicle air-conditioning device 1 mounted on an electric vehicle has been described, but the application of the refrigerating cycle devices 10 ... 10b is the same. Not limited to. For example, it may be applied to a vehicle air conditioner 1 mounted on a so-called hybrid vehicle, which obtains a driving force for traveling a vehicle from both an internal combustion engine and an electric motor.
 また、上述の実施形態では、冷凍サイクル装置10の温度調整対象物となる車載機器として、バッテリ80を冷却する例を説明したが、これに限定されない。例えば、モータジェネレータ、インバータ、PCU、トランスアクスル、ADAS用の制御装置等のように、作動時に発熱する車載機器を温度調整対象物としてもよい。 Further, in the above-described embodiment, an example of cooling the battery 80 as an in-vehicle device to be a temperature control target of the refrigeration cycle device 10 has been described, but the present invention is not limited to this. For example, an in-vehicle device that generates heat during operation, such as a motor generator, an inverter, a PCU, a transaxle, and a control device for ADAS, may be a temperature control target.
 モータジェネレータは、走行用の駆動力を出力するモータとしての機能および発電機としての機能を有する。インバータは、モータジェネレータ等に電力を供給する。PCUは、変電や電力分配を行う電力制御ユニットである。トランスアクスルは、トランスミッションやディファレンシャルギア等を一体化させた動力伝達機構である。ADAS用の制御装置は、先進運転支援システム用の制御装置である。 The motor generator has a function as a motor that outputs a driving force for traveling and a function as a generator. The inverter supplies electric power to the motor generator and the like. The PCU is a power control unit that performs substation and power distribution. The transaxle is a power transmission mechanism that integrates a transmission, a differential gear, and the like. The control device for ADAS is a control device for an advanced driver assistance system.
 また、冷凍サイクル装置10の適用は、車両用に限定されない。例えば、上述の実施形態では、コンピュータサーバルームの空調を行う定置型の空調装置に適用してもよい。この場合は、コンピュータサーバを冷却対象物とすればよい。 Further, the application of the refrigeration cycle device 10 is not limited to that for vehicles. For example, in the above-described embodiment, it may be applied to a stationary air conditioner that air-conditions a computer server room. In this case, the computer server may be the object to be cooled.
 冷凍サイクル装置10…10bの構成は、上述の実施形態に開示されたものに限定されない。 The configuration of the refrigeration cycle apparatus 10 ... 10b is not limited to that disclosed in the above-described embodiment.
 例えば、上述の実施形態では、高圧冷媒を熱源として送風空気を加熱する加熱部として室内凝縮器12を採用した例を説明したが、これに限定されない。例えば、室内凝縮器12を廃止して、水冷媒熱交換器および高圧側熱媒体回路に配置された各構成機器によって、加熱部を形成してもよい。 For example, in the above-described embodiment, an example in which the indoor condenser 12 is used as a heating unit for heating the blown air using a high-pressure refrigerant as a heat source has been described, but the present invention is not limited to this. For example, the indoor condenser 12 may be abolished, and the heating unit may be formed by the water-refrigerant heat exchanger and each component device arranged in the high-pressure side heat medium circuit.
 高温側熱媒体回路は、高温側熱媒体を循環させる熱媒体循環回路である。高温側熱媒体として、低温側熱媒体と同じ流体を採用することができる。高温側熱媒体回路には、水冷媒熱交換器の水通路、高温側熱媒体ポンプ、ヒータコア等が配置されている。 The high temperature side heat medium circuit is a heat medium circulation circuit that circulates the high temperature side heat medium. As the high temperature side heat medium, the same fluid as the low temperature side heat medium can be adopted. In the high temperature side heat medium circuit, a water passage of a water refrigerant heat exchanger, a high temperature side heat medium pump, a heater core, and the like are arranged.
 水冷媒熱交換器は、圧縮機11から吐出された高圧冷媒と、高温側熱媒体とを熱交換させて、高圧冷媒の有する熱を送風空気へ放熱させる放熱部である。 The water refrigerant heat exchanger is a heat dissipation unit that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the high-temperature side heat medium to dissipate the heat of the high-pressure refrigerant to the blown air.
 高温側熱媒体ポンプは、ヒータコアから流出した高温側熱媒体を水冷媒熱交換器へ圧送する電動水ポンプである。高温側熱媒体ポンプの基本的構成は、低温側熱媒体ポンプと同様である。 The high temperature side heat medium pump is an electric water pump that pumps the high temperature side heat medium flowing out of the heater core to the water refrigerant heat exchanger. The basic configuration of the high temperature side heat medium pump is the same as that of the low temperature side heat medium pump.
 ヒータコアは、水冷媒熱交換器から流出した高温側熱媒体と送風空気とを熱交換させて、送風空気を加熱する加熱用の熱交換部である。ヒータコアは、室内空調ユニット40内に室内凝縮器12と同様に配置すればよい。 The heater core is a heating heat exchange unit that heats the blown air by exchanging heat between the high temperature side heat medium flowing out of the water refrigerant heat exchanger and the blown air. The heater core may be arranged in the indoor air conditioning unit 40 in the same manner as the indoor condenser 12.
 また、上述の実施形態では、チラー20および低温側熱媒体回路60に配置された各構成機器によって、バッテリ80を冷却する冷却部を構成した例を説明したが、冷却部は、これに限定されない。例えば、チラー20および低温側熱媒体回路60を廃止して、バッテリ80の冷却水通路80aを冷却部として、冷却用膨張弁16cにて減圧された低圧冷媒を直接流通させるようにしてもよい。この場合は、冷却水通路80aが蒸発部となる。 Further, in the above-described embodiment, an example in which a cooling unit for cooling the battery 80 is configured by each component device arranged in the chiller 20 and the low temperature side heat medium circuit 60 has been described, but the cooling unit is not limited thereto. .. For example, the chiller 20 and the low-temperature side heat medium circuit 60 may be abolished, and the low-pressure refrigerant decompressed by the cooling expansion valve 16c may be directly circulated by using the cooling water passage 80a of the battery 80 as a cooling unit. In this case, the cooling water passage 80a becomes the evaporation part.
 また、冷凍サイクル装置10…10bに対して、後席用膨張弁および後席用室内蒸発器を追加してもよい。 Further, a rear seat expansion valve and a rear seat indoor evaporator may be added to the refrigeration cycle devices 10 ... 10b.
 後席用膨張弁は、冷房用膨張弁16bと同様の構成の第2減圧部である。後席用室内蒸発器は、後席用膨張弁にて減圧された低圧冷媒を、車室内後席側へ向けて送風される送風空気と熱交換させて蒸発させる蒸発部である。室内蒸発器19にて冷却された送風空気は車室内前席側へ向けて送風される。後席用膨張弁および後席用室内蒸発器は、冷房用膨張弁16bおよび室内蒸発器19、並びに、冷却用膨張弁16cおよびチラー20に対して、並列に接続すればよい。 The rear seat expansion valve is a second pressure reducing unit having the same configuration as the cooling expansion valve 16b. The rear-seat indoor evaporator is an evaporation unit that evaporates the low-pressure refrigerant decompressed by the rear-seat expansion valve by exchanging heat with the blown air blown toward the rear-seat side of the passenger compartment. The blown air cooled by the indoor evaporator 19 is blown toward the front seat side in the vehicle interior. The rear seat expansion valve and the rear seat indoor evaporator may be connected in parallel to the cooling expansion valve 16b and the indoor evaporator 19, and the cooling expansion valve 16c and the chiller 20.
 これによれば、バッテリ80の冷却を行うとともに、車室内の前席側、および車室内の後席側のそれぞれに適切に冷却された送風空気を吹き出すことができる。そして、少なくとも室外熱交換器18を凝縮器として機能させ、室内蒸発器19、チラー20、および後席用室内蒸発器の少なくとも1つ蒸発器として機能させる冷媒回路は、いずれも第1回路に含まれる。 According to this, it is possible to cool the battery 80 and blow out appropriately cooled blown air to each of the front seat side in the vehicle interior and the rear seat side in the vehicle interior. A refrigerant circuit that causes at least the outdoor heat exchanger 18 to function as a condenser and at least one of the indoor evaporator 19, the chiller 20, and the rear seat indoor evaporator is included in the first circuit. Is done.
 また、上述の実施形態では、冷凍サイクル装置10の冷媒として、R1234yfを採用した例を説明したが、これに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C等を採用してもよい。または、これらのうち複数の冷媒を混合させた混合冷媒等を採用してもよい。 Further, in the above-described embodiment, an example in which R1234yf is adopted as the refrigerant of the refrigeration cycle device 10 has been described, but the present invention is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C and the like may be adopted. Alternatively, a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
 また、上述の実施形態では、低温側熱媒体として、エチレングリコール水溶液を採用した例を説明したが、これに限定されない。例えば、低温側熱媒体および高温側熱媒体として、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液媒体、オイル等を含む液媒体を採用してもよい。 Further, in the above-described embodiment, an example in which an ethylene glycol aqueous solution is used as the low-temperature side heat medium has been described, but the present invention is not limited to this. For example, as the low temperature side heat medium and the high temperature side heat medium, a solution containing dimethylpolysiloxane or a nanofluid or the like, an antifreeze solution, an aqueous liquid medium containing alcohol or the like, a liquid medium containing oil or the like may be adopted.
 冷凍サイクル装置10の運転モードは、上述の実施形態に開示されたものに限定されない。 The operation mode of the refrigeration cycle device 10 is not limited to that disclosed in the above-described embodiment.
 例えば、冷凍サイクル装置10では、直列チラー吸熱暖房モードを実行してもよい。直列チラー吸熱暖房モードは、チラー20にて冷媒が低温側熱媒体から吸熱した熱を熱源として、室内凝縮器12にて送風空気を加熱する運転モードである。 For example, in the refrigeration cycle device 10, the series chiller endothermic heating mode may be executed. The series chiller heat absorption heating mode is an operation mode in which the blown air is heated by the indoor condenser 12 using the heat absorbed by the refrigerant from the low temperature side heat medium in the chiller 20 as a heat source.
 直列チラー吸熱暖房モードでは、制御装置70が、第1開閉弁14aを閉じ、第2開閉弁14bを開き、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全開または絞り状態とし、冷房用膨張弁16bを全閉状態とし、冷却用膨張弁16cを絞り状態とする。 In the series chiller endothermic heating mode, the control device 70 closes the first on-off valve 14a, opens the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully open or throttled state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
 直列チラー吸熱暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、冷房冷却用通路21c、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、レシーバ15、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。直列チラー吸熱暖房モードの冷媒回路は、第1回路に含まれる。 In the refrigerating cycle device 10 in the series chiller heat absorption heating mode, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the cooling cooling passage 21c, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, and the outdoor heat exchanger. It is switched to a refrigerant circuit that circulates in the order of 18, the receiver 15, the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11. The series chiller endothermic heating mode refrigerant circuit is included in the first circuit.
 また、冷凍サイクル装置10は、並列除湿暖房モードを実行してもよい。並列除湿暖房モードは、バッテリ80の冷却を行うことなく、室内蒸発器19にて冷却されて除湿された送風空気を、室外熱交換器18にて冷媒が外気から吸熱した熱を熱源として、室内凝縮器12にて再加熱する運転モードである。 Further, the refrigeration cycle device 10 may execute the parallel dehumidification / heating mode. In the parallel dehumidifying / heating mode, the blown air cooled and dehumidified by the indoor evaporator 19 is used as the heat source by the refrigerant absorbed from the outside air by the outdoor heat exchanger 18 without cooling the battery 80, and the room is used as a heat source. This is an operation mode in which the condenser 12 reheats.
 並列除湿暖房モードでは、制御装置70が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを開く。また、制御装置70は、暖房用膨張弁16aを絞り状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを全閉状態とする。 In the parallel dehumidifying / heating mode, the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a throttled state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
 並列除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、貯液部入口側通路21a、レシーバ15の順に流れる。さらに、レシーバ15から流出した冷媒が、貯液部出口側通路21b、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、圧縮機11の吸入口の順に循環するとともに、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。並列除湿暖房モードの冷媒回路は、第2回路に含まれる。 In the refrigerating cycle device 10 in the parallel dehumidifying / heating mode, the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the liquid storage unit inlet side passage 21a, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in this order in the order of the liquid storage unit outlet side passage 21b, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, and the suction port of the compressor 11, and also cools. It is switched to a refrigerant circuit that circulates in the order of the expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11. The refrigerant circuit in the parallel dehumidifying / heating mode is included in the second circuit.
 また、冷凍サイクル装置10は、外気チラー吸熱暖房モードを実行してもよい。外気チラー吸熱暖房モードは、室外熱交換器18にて冷媒が外気から吸熱した熱およびチラー20にて冷媒が低温側熱媒体から吸熱した熱を熱源として、室内凝縮器12にて送風空気を加熱する運転モードである。 Further, the refrigerating cycle device 10 may execute the outside air chiller endothermic heating mode. In the outside air chiller heat absorption heating mode, the blown air is heated by the indoor condenser 12 using the heat absorbed by the refrigerant from the outside air in the outdoor heat exchanger 18 and the heat absorbed by the refrigerant from the low temperature side heat medium in the chiller 20 as heat sources. It is an operation mode to be performed.
 外気チラー吸熱暖房モードでは、制御装置70が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを開く。また、制御装置70は、暖房用膨張弁16aを絞り状態とし、冷房用膨張弁16bを全閉状態とし、冷却用膨張弁16cを絞り状態とする。 In the outside air chiller endothermic heating mode, the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in the throttled state, the cooling expansion valve 16b in the fully closed state, and the cooling expansion valve 16c in the throttled state.
 外気チラー吸熱暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、貯液部入口側通路21a、レシーバ15の順に流れる。さらに、レシーバ15から流出した冷媒が、貯液部出口側通路21b、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、圧縮機11の吸入口の順に循環するとともに、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。外気チラー吸熱暖房モードの冷媒回路は、第2回路に含まれる。 In the refrigerating cycle device 10 in the outside air chiller endothermic heating mode, the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the liquid storage unit inlet side passage 21a, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the liquid storage unit outlet side passage 21b, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, and the suction port of the compressor 11, and is cooled. It is switched to a refrigerant circuit that circulates in the order of the expansion valve 16c, the chiller 20, and the suction port of the compressor 11. The outside air chiller endothermic heating mode refrigerant circuit is included in the second circuit.
 また、冷凍サイクル装置10は、外気チラー吸熱除湿暖房モードを実行してもよい。外気チラー吸熱除湿暖房モードは、バッテリ80の冷却を行うとともに、室内蒸発器19にて冷却されて除湿された送風空気を、室外熱交換器18にて冷媒が外気から吸熱した熱およびチラー20にて冷媒が低温側熱媒体から吸熱した熱を熱源として、室内凝縮器12にて再加熱する運転モードである。 Further, the refrigeration cycle device 10 may execute the outside air chiller endothermic dehumidification / heating mode. In the outside air chiller heat absorption / dehumidification / heating mode, the battery 80 is cooled, and the blown air cooled and dehumidified by the indoor evaporator 19 is transferred to the heat absorbed by the refrigerant from the outside air and the chiller 20 by the outdoor heat exchanger 18. In this operation mode, the heat absorbed by the refrigerant from the low temperature side heat medium is used as a heat source and reheated by the indoor condenser 12.
 外気チラー吸熱除湿暖房モードでは、制御装置70が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを開く。また、制御装置70は、暖房用膨張弁16aを絞り状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを絞り状態とする。 In the outside air chiller endothermic dehumidification / heating mode, the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and opens the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in the throttle state, the cooling expansion valve 16b in the throttle state, and the cooling expansion valve 16c in the throttle state.
 外気チラー吸熱除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、貯液部入口側通路21a、レシーバ15の順に流れる。レシーバ15から流出した冷媒が、貯液部出口側通路21b、室外器入口側通路21eの暖房用膨張弁16a、室外熱交換器18、圧縮機11の吸入口の順に循環し、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環し、さらに、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。外気チラー吸熱除湿暖房モードの冷媒回路は、第2回路に含まれる。 In the refrigeration cycle device 10 in the outside air chiller endothermic dehumidification / heating mode, the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the liquid storage unit inlet side passage 21a, and the receiver 15. The refrigerant flowing out from the receiver 15 circulates in this order in the order of the liquid storage unit outlet side passage 21b, the heating expansion valve 16a of the outdoor unit inlet side passage 21e, the outdoor heat exchanger 18, and the suction port of the compressor 11, and the cooling expansion valve. It is switched to a refrigerant circuit that circulates in the order of 16b, the indoor evaporator 19, and the suction port of the compressor 11, and further circulates in the order of the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11. The refrigerant circuit of the outside air chiller endothermic dehumidification heating mode is included in the second circuit.
 また、冷凍サイクル装置10は、チラー吸熱暖房モードを実行してもよい。チラー吸熱暖房モードは、チラー20にて冷媒が低温側熱媒体から吸熱した熱を熱源として、室内凝縮器12にて送風空気を加熱する運転モードである。 Further, the refrigeration cycle device 10 may execute the chiller endothermic heating mode. The chiller heat absorption heating mode is an operation mode in which the blown air is heated by the indoor condenser 12 using the heat absorbed by the refrigerant from the low temperature side heat medium in the chiller 20 as a heat source.
 チラー吸熱暖房モードでは、制御装置70が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全閉状態とし、冷房用膨張弁16bを全閉状態とし、冷却用膨張弁16cを絞り状態とする。 In the chiller endothermic heating mode, the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 puts the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a fully closed state, and the cooling expansion valve 16c in a throttled state.
 チラー吸熱暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、貯液部入口側通路21a、レシーバ15、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。チラー吸熱暖房モードの冷媒回路は、室外熱交換器18に冷媒を流通させない第3回路に含まれる。 In the refrigerating cycle device 10 in the chiller heat absorption heating mode, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, the cooling expansion valve 16c, the chiller 20, and the compressor 11. It can be switched to a refrigerant circuit that circulates in the order of the suction port. The refrigerant circuit in the chiller endothermic heating mode is included in the third circuit in which the refrigerant is not circulated to the outdoor heat exchanger 18.
 また、冷凍サイクル装置10は、蒸発器単独除湿暖房モードを実行してもよい。蒸発器単独除湿暖房モードは、室内蒸発器19にて冷却されて除湿された送風空気を、室内蒸発器19にて冷媒が送風空気をから吸熱した熱を熱源として、室内凝縮器12にて再加熱する運転モードである。 Further, the refrigerating cycle device 10 may execute the evaporator independent dehumidifying / heating mode. In the evaporator independent dehumidifying / heating mode, the blown air cooled and dehumidified by the indoor evaporator 19 is re-heated by the indoor condenser 12 using the heat absorbed by the refrigerant from the blown air in the indoor evaporator 19. It is an operation mode to heat.
 蒸発器単独除湿暖房モードでは、制御装置70が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全閉状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを全閉状態とする。 In the evaporator single dehumidifying / heating mode, the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a fully closed state.
 蒸発器単独除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、貯液部入口側通路21a、レシーバ15、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。蒸発器単独除湿暖房モードの冷媒回路は、第3回路に含まれる。 In the refrigerating cycle device 10 in the evaporator single dehumidifying and heating mode, the refrigerant discharged from the compressor 11 is the indoor condenser 12, the liquid storage unit inlet side passage 21a, the receiver 15, the cooling expansion valve 16b, the indoor evaporator 19, and the like. It is switched to the refrigerant circuit that circulates in the order of the suction port of the compressor 11. The refrigerant circuit of the evaporator single dehumidifying heating mode is included in the third circuit.
 また、冷凍サイクル装置10は、チラー吸熱除湿暖房モードを実行してもよい。チラー吸熱除湿暖房モードは、室内蒸発器19にて冷却されて除湿された送風空気を、室内蒸発器19にて冷媒が送風空気をから吸熱した熱およびチラー20にて冷媒が低温側熱媒体から吸熱した熱を熱源として、室内凝縮器12にて再加熱する運転モードである。 Further, the refrigeration cycle device 10 may execute the chiller endothermic dehumidification / heating mode. In the chiller endothermic dehumidifying / heating mode, the blown air cooled and dehumidified by the indoor evaporator 19 is endothermic from the blown air by the refrigerant in the indoor evaporator 19, and the refrigerant is sent from the low temperature side heat medium by the chiller 20. This is an operation mode in which the heat absorbed is used as a heat source and reheated by the indoor condenser 12.
 チラー吸熱除湿暖房モードでは、制御装置70が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを閉じる。また、制御装置70は、暖房用膨張弁16aを全閉状態とし、冷房用膨張弁16bを絞り状態とし、冷却用膨張弁16cを絞り状態とする。 In the chiller endothermic dehumidification / heating mode, the control device 70 opens the first on-off valve 14a, closes the second on-off valve 14b, and closes the third on-off valve 14c. Further, the control device 70 sets the heating expansion valve 16a in a fully closed state, the cooling expansion valve 16b in a throttled state, and the cooling expansion valve 16c in a throttled state.
 チラー吸熱除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒が、室内凝縮器12、貯液部入口側通路21a、レシーバ15の順に流れる。さらに、レシーバ15から流出した冷媒が、冷房用膨張弁16b、室内蒸発器19、圧縮機11の吸入口の順に循環するとともに、冷却用膨張弁16c、チラー20、圧縮機11の吸入口の順に循環する冷媒回路に切り替えられる。チラー吸熱除湿暖房モードの冷媒回路は、第3回路に含まれる。 In the refrigeration cycle device 10 in the chiller endothermic dehumidification / heating mode, the refrigerant discharged from the compressor 11 flows in the order of the indoor condenser 12, the liquid storage unit inlet side passage 21a, and the receiver 15. Further, the refrigerant flowing out from the receiver 15 circulates in the order of the cooling expansion valve 16b, the indoor evaporator 19, and the suction port of the compressor 11, and the cooling expansion valve 16c, the chiller 20, and the suction port of the compressor 11 are in that order. It can be switched to a circulating refrigerant circuit. The refrigerant circuit of the chiller endothermic dehumidification heating mode is included in the third circuit.
 そして、冷媒回路が第1回路に切り替えられている運転モードから、冷媒回路が第3回路に切り替えられる運転モードへ遷移させる際に、切替準備制御を実行してもよい。これによれば、運転モードを切り替える際に、室外熱交換器18に残存している液相冷媒をレシーバ15内へ移動させることができる。従って、室外熱交換器18に液相冷媒が滞留して冷媒不足が生じてしまうことを抑制することができる。 Then, the switching preparation control may be executed when the operation mode in which the refrigerant circuit is switched to the first circuit is changed to the operation mode in which the refrigerant circuit is switched to the third circuit. According to this, when switching the operation mode, the liquid phase refrigerant remaining in the outdoor heat exchanger 18 can be moved into the receiver 15. Therefore, it is possible to prevent the liquid phase refrigerant from staying in the outdoor heat exchanger 18 and causing a refrigerant shortage.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (6)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱部(12)と、
     サイクル内の余剰冷媒を蓄える貯液部(15)と、
     前記冷媒を減圧させる第1減圧部(16a)と、
     前記第1減圧部から流出した前記冷媒と外気とを熱交換させる室外熱交換部(18)と、
     前記冷媒を減圧させる第2減圧部(16b、16c)と、
     前記第2減圧部にて減圧された前記冷媒を蒸発させる蒸発部(19、20)と、
     冷媒回路を切り替える冷媒回路切替部(14a~14c、161a~161c、22)と、を備え、
     前記冷媒回路切替部は、
      前記室外熱交換部にて放熱させた前記冷媒を前記貯液部へ流入させ、前記貯液部から流出した前記冷媒を前記第2減圧部へ流入させ、前記第2減圧部にて減圧された前記冷媒を前記蒸発部にて蒸発させ、前記蒸発部から流出した前記冷媒を前記圧縮機へ吸入させる第1回路と、
      前記放熱部にて放熱させた前記冷媒を前記貯液部へ流入させ、前記貯液部から流出した前記冷媒を前記第1減圧部へ流入させ、前記第1減圧部にて減圧された前記冷媒を前記室外熱交換部にて蒸発させ、前記室外熱交換部から流出した前記冷媒を前記圧縮機へ吸入させる第2回路と、を切替可能に構成されており、
     前記冷媒回路切替部は、少なくとも前記第2回路に切り替えられた際の前記室外熱交換部(18)の入口側を開閉する室外器入口側開閉部(161a)を有し、
     前記第1回路から前記第2回路へ切り替える際に、前記圧縮機を停止させ、前記室外器入口側開閉部を閉じる切替準備制御を実行する冷凍サイクル装置。
    A compressor (11) that compresses and discharges the refrigerant,
    A heat radiating unit (12) that dissipates heat from the refrigerant discharged from the compressor, and
    The liquid storage unit (15) that stores the excess refrigerant in the cycle,
    The first decompression unit (16a) for depressurizing the refrigerant and
    An outdoor heat exchange unit (18) that exchanges heat between the refrigerant flowing out of the first decompression unit and the outside air.
    The second decompression unit (16b, 16c) for depressurizing the refrigerant and
    An evaporation unit (19, 20) for evaporating the refrigerant decompressed by the second decompression unit, and
    A refrigerant circuit switching unit (14a to 14c, 161a to 161c, 22) for switching the refrigerant circuit is provided.
    The refrigerant circuit switching unit is
    The refrigerant dissipated in the outdoor heat exchange section was made to flow into the liquid storage section, the refrigerant flowing out of the liquid storage section was made to flow into the second decompression section, and the pressure was reduced in the second decompression section. A first circuit that evaporates the refrigerant in the evaporating section and sucks the refrigerant flowing out of the evaporating section into the compressor.
    The refrigerant radiated by the heat radiating section flows into the liquid storage section, the refrigerant flowing out of the liquid storage section flows into the first decompression section, and the refrigerant is decompressed by the first decompression section. Is evaporated in the outdoor heat exchange section, and the refrigerant flowing out of the outdoor heat exchange section is sucked into the compressor.
    The refrigerant circuit switching unit has at least an outdoor unit inlet side opening / closing unit (161a) that opens / closes the inlet side of the outdoor heat exchange unit (18) when the circuit is switched to the second circuit.
    A refrigeration cycle device that performs switching preparation control for stopping the compressor and closing the opening / closing portion on the inlet side of the outdoor unit when switching from the first circuit to the second circuit.
  2.  前記切替準備制御では、前記第2減圧部の絞り開度を、前記切替準備制御を実行する直前の絞り開度以上とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1, wherein in the switching preparation control, the throttle opening of the second decompression unit is equal to or greater than the throttle opening immediately before the switching preparation control is executed.
  3.  前記切替準備制御は、前記室外熱交換部内の冷媒圧力から前記圧縮機の吸入側の冷媒圧力を減算した圧力差(ΔP1)が予め定めた基準圧力差(KΔP1)以下となるまで実行される請求項1または2に記載の冷凍サイクル装置。 The switching preparation control is executed until the pressure difference (ΔP1) obtained by subtracting the refrigerant pressure on the suction side of the compressor from the refrigerant pressure in the outdoor heat exchange unit becomes equal to or less than a predetermined reference pressure difference (KΔP1). Item 2. The refrigeration cycle apparatus according to Item 1 or 2.
  4.  前記切替準備制御は、予め定めた基準時間(KTp1)が経過するまで実行される請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 3, wherein the switching preparation control is executed until a predetermined reference time (KTp1) elapses.
  5.  前記冷媒回路切替部は、前記放熱部の冷媒出口側と前記貯液部の入口側とを接続する貯液部入口側通路(21a)を開閉する貯液部入口側開閉部(14a)を有し、
     前記切替準備制御では、前記貯液部入口側開閉部を開く請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。
    The refrigerant circuit switching unit has a liquid storage unit inlet side opening / closing unit (14a) that opens / closes a liquid storage unit inlet side passage (21a) connecting the refrigerant outlet side of the heat dissipation unit and the inlet side of the liquid storage unit. death,
    The refrigerating cycle apparatus according to any one of claims 1 to 4, wherein in the switching preparation control, the opening / closing section on the inlet side of the liquid storage section is opened.
  6.  少なくとも前記第2回路に切り替えられた際の前記第1減圧部の入口側と前記貯液部入口側開閉部(14a)の入口側は連通しており、
     前記切替準備制御では、前記第1減圧部の絞り開度を増加させた後に、前記貯液部入口側開閉部を開く請求項5に記載の冷凍サイクル装置。
    At least the inlet side of the first decompression section and the inlet side of the liquid storage section inlet side opening / closing section (14a) when switched to the second circuit are in communication with each other.
    The refrigerating cycle apparatus according to claim 5, wherein in the switching preparation control, the opening / closing portion on the inlet side of the liquid storage portion is opened after the throttle opening of the first decompression portion is increased.
PCT/JP2021/027187 2020-08-17 2021-07-20 Refrigeration cycle device WO2022038950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-137341 2020-08-17
JP2020137341A JP7472714B2 (en) 2020-08-17 2020-08-17 Refrigeration Cycle Equipment

Publications (1)

Publication Number Publication Date
WO2022038950A1 true WO2022038950A1 (en) 2022-02-24

Family

ID=80350344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027187 WO2022038950A1 (en) 2020-08-17 2021-07-20 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7472714B2 (en)
WO (1) WO2022038950A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166951A1 (en) * 2022-03-04 2023-09-07 株式会社デンソー Refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250708A (en) * 2012-09-19 2012-12-20 Denso Corp Vehicle air conditioning apparatus
WO2015111116A1 (en) * 2014-01-21 2015-07-30 株式会社デンソー Heat pump cycle apparatus
WO2018016219A1 (en) * 2016-07-18 2018-01-25 株式会社デンソー Ejector-type refrigeration cycle
JP2019045034A (en) * 2017-08-31 2019-03-22 株式会社デンソー Refrigeration cycle device
JP2020076546A (en) * 2018-11-08 2020-05-21 株式会社デンソー Refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250708A (en) * 2012-09-19 2012-12-20 Denso Corp Vehicle air conditioning apparatus
WO2015111116A1 (en) * 2014-01-21 2015-07-30 株式会社デンソー Heat pump cycle apparatus
WO2018016219A1 (en) * 2016-07-18 2018-01-25 株式会社デンソー Ejector-type refrigeration cycle
JP2019045034A (en) * 2017-08-31 2019-03-22 株式会社デンソー Refrigeration cycle device
JP2020076546A (en) * 2018-11-08 2020-05-21 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2022033453A (en) 2022-03-02
JP7472714B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
US20190111756A1 (en) Refrigeration cycle device
US11718156B2 (en) Refrigeration cycle device
JP6794964B2 (en) Refrigeration cycle equipment
JP6015636B2 (en) Heat pump system
JP6838518B2 (en) Refrigeration cycle equipment
US11506404B2 (en) Refrigeration cycle device
US20210190389A1 (en) Refrigeration cycle device
WO2020158423A1 (en) Refrigeration cycle device
US20210101451A1 (en) Refrigeration cycle device
WO2019194027A1 (en) Battery cooling device
JP2019217947A (en) Air conditioner
WO2019116781A1 (en) Heating device for vehicles
JP2020040429A (en) Refrigeration cycle device
WO2021220661A1 (en) Vehicle air conditioning device
WO2021095338A1 (en) Refrigeration cycle device
US20230382195A1 (en) Air conditioner
JP2020040430A (en) Refrigeration cycle device
WO2022038950A1 (en) Refrigeration cycle device
WO2021157286A1 (en) Refrigeration cycle device
WO2023199912A1 (en) Heat pump cycle device
WO2024101061A1 (en) Heat pump cycle device
WO2021176846A1 (en) Heat management system
WO2023248868A1 (en) Heat pump cycle apparatus
WO2024070703A1 (en) Heat pump cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858099

Country of ref document: EP

Kind code of ref document: A1