JP4591829B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4591829B2
JP4591829B2 JP2005280220A JP2005280220A JP4591829B2 JP 4591829 B2 JP4591829 B2 JP 4591829B2 JP 2005280220 A JP2005280220 A JP 2005280220A JP 2005280220 A JP2005280220 A JP 2005280220A JP 4591829 B2 JP4591829 B2 JP 4591829B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pipe
gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005280220A
Other languages
Japanese (ja)
Other versions
JP2007093054A (en
Inventor
則彦 勝見
博己 川口
智 堀
宏幸 保下
静夫 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2005280220A priority Critical patent/JP4591829B2/en
Publication of JP2007093054A publication Critical patent/JP2007093054A/en
Application granted granted Critical
Publication of JP4591829B2 publication Critical patent/JP4591829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、室内空気を冷暖する空気調和機などに適用される冷凍装置に関する。   The present invention relates to a refrigeration apparatus applied to an air conditioner for cooling and heating indoor air.

空気調和機などに適用される冷凍装置として、冷媒の気化と液化の状態変化を繰り返す冷凍サイクルを利用して空気や水などを冷暖するものが知られている。例えば、冷凍装置は、冷媒を圧縮機により圧縮し、圧縮機から吐出される冷媒を凝縮器により凝縮し、凝縮された冷媒を減圧手段により減圧し、減圧された冷媒を蒸発器で蒸発させることにより、空気や水などを冷暖する。   As a refrigeration apparatus applied to an air conditioner or the like, one that cools and warms air, water, or the like using a refrigeration cycle that repeatedly changes the state of refrigerant vaporization and liquefaction is known. For example, the refrigeration apparatus compresses the refrigerant with a compressor, condenses the refrigerant discharged from the compressor with a condenser, decompresses the condensed refrigerant with a decompression unit, and evaporates the decompressed refrigerant with an evaporator. To cool and cool air and water.

このような冷凍装置においては、圧縮機から吐出されるガス冷媒は高圧のものになるため、その高圧のガス冷媒が冷媒配管を通流すると、通流冷媒の圧力が冷媒配管の許容圧力を超えるおそれがある。そこで、例えば、圧縮機の運転回転数を低減して通流冷媒の圧力を冷媒配管の許容圧力以下に抑えることが提案されている(例えば、特許文献1参照)。   In such a refrigeration apparatus, since the gas refrigerant discharged from the compressor is high pressure, when the high-pressure gas refrigerant flows through the refrigerant pipe, the pressure of the flowing refrigerant exceeds the allowable pressure of the refrigerant pipe. There is a fear. Thus, for example, it has been proposed to reduce the operating rotational speed of the compressor to keep the pressure of the flowing refrigerant below the allowable pressure of the refrigerant pipe (see, for example, Patent Document 1).

特開2005−49057号公報JP-A-2005-49057

しかし、特許文献1のような従前の方式では、圧縮機から吐出された冷媒の圧力を低下させるに際し、圧縮機の運転回転数を低下させるため、冷凍サイクルの冷媒の単位時間あたりの循環量が減少することになる。その結果、冷媒循環量の減少に起因して冷凍サイクルの性能が低下する場合がある。   However, in the conventional method such as Patent Document 1, when the pressure of the refrigerant discharged from the compressor is reduced, the operating speed of the compressor is reduced, so that the circulation amount of the refrigerant in the refrigeration cycle per unit time is reduced. Will be reduced. As a result, the performance of the refrigeration cycle may deteriorate due to a decrease in the refrigerant circulation rate.

本発明の課題は、圧縮機の吐出側の冷媒配管の耐圧を確保しつつ、冷凍サイクル性能の低下を抑制するのにより好適な冷凍装置を実現することにある。   An object of the present invention is to realize a refrigeration apparatus that is more suitable for suppressing the deterioration of the refrigeration cycle performance while ensuring the pressure resistance of the refrigerant pipe on the discharge side of the compressor.

上記課題を解決するために、本発明の冷凍装置は、冷媒を圧縮して吐出する圧縮機と、該圧縮機から吐出される冷媒を凝縮する凝縮器と、該凝縮器から流出される冷媒を減圧する減圧手段と、該減圧された冷媒を蒸発させる蒸発器を備えた冷凍装置において、圧縮機の吐出側の冷媒配管には、該冷媒配管を流れる冷媒を冷却する冷媒密度調整手段が設けられてなり、冷媒密度調整手段は、前記冷媒配管よりも流路断面積を大きくした容器と、蒸発器の表面で生じた凝縮水が流通され、該凝縮水と容器内の冷媒とを熱交換する冷却用熱交換器とを備え、冷却用熱交換器は、凝縮水が流れる基部管と、該基部管に連通させて該基部管から容器内に向けて立設する複数の熱交換管により形成されてなることを特徴とする。
In order to solve the above problems, a refrigeration apparatus of the present invention includes a compressor that compresses and discharges a refrigerant, a condenser that condenses the refrigerant discharged from the compressor, and a refrigerant that flows out of the condenser. In a refrigeration apparatus including a decompression means for decompressing and an evaporator for evaporating the decompressed refrigerant, a refrigerant pipe on the discharge side of the compressor is provided with a refrigerant density adjusting means for cooling the refrigerant flowing through the refrigerant pipe. The refrigerant density adjusting means is configured to circulate a container having a flow passage cross-sectional area larger than that of the refrigerant pipe and condensed water generated on the surface of the evaporator, and exchange heat between the condensed water and the refrigerant in the container. The cooling heat exchanger is formed by a base pipe through which condensed water flows, and a plurality of heat exchange pipes that are connected to the base pipe and are erected from the base pipe into the container. It is characterized by being made.

これによれば、圧縮機から吐出された高圧のガス冷媒を冷却すると、冷却された冷媒は、ガス冷媒と液冷媒が混在した気液二相状態のものになる。ここで、液状の冷媒は、ガス冷媒よりも単位体積あたりの圧力が小さい反面、単位体積あたりの冷媒量つまり冷媒密度が大きい。したがって、圧縮機から吐出されたガス冷媒を気液二相冷媒にすることにより、冷媒配管内の冷媒圧力を低下させながら、冷媒の単位時間あたりの循環量を確保できる。その結果、圧縮機の吐出側の冷媒配管の耐圧を確保しつつ、冷凍サイクル性能の低下を抑制できる。   According to this, when the high-pressure gas refrigerant discharged from the compressor is cooled, the cooled refrigerant becomes a gas-liquid two-phase state in which the gas refrigerant and the liquid refrigerant are mixed. Here, the liquid refrigerant has a smaller pressure per unit volume than the gas refrigerant, but has a larger refrigerant amount per unit volume, that is, a refrigerant density. Therefore, by making the gas refrigerant discharged from the compressor into a gas-liquid two-phase refrigerant, it is possible to secure a circulation amount of the refrigerant per unit time while lowering the refrigerant pressure in the refrigerant pipe. As a result, it is possible to suppress the deterioration of the refrigeration cycle performance while ensuring the pressure resistance of the refrigerant pipe on the discharge side of the compressor.

ここでの冷媒密度調整手段は、圧縮機から吐出された冷媒を冷却するに際し、冷却後の冷媒温度を少なくとも外気よりも高い温度にする。これにより、圧縮機から吐出された冷媒を冷却しつつ、冷媒の過剰冷却を防止できるから、冷却後の冷媒が外気から吸熱することを回避でき、冷凍サイクル性能の低下を抑制できる。   Here, the refrigerant density adjusting means makes the refrigerant temperature after cooling at least higher than the outside air when cooling the refrigerant discharged from the compressor. Thereby, excessive cooling of the refrigerant can be prevented while cooling the refrigerant discharged from the compressor, so that it is possible to prevent the cooled refrigerant from absorbing heat from the outside air, and it is possible to suppress a decrease in refrigeration cycle performance.

また、上記の冷凍装置は、前記圧縮機と前記蒸発器とを室内機に設け、前記凝縮器を室外機に設けてなり、前記冷媒配管は、前記室内機と前記室外機を接続する渡り配管として配設できる。すなわち、冷凍装置は、圧縮機を室内機側に配設するいわゆるリモートコンデンサ式に構成できる。これにより、圧縮機から吐出された冷媒が渡り配管に通流する際、冷媒が冷却されることから、冷媒圧力を渡り配管の許容圧力以下に低下させながら、冷媒の単位時間あたりの循環量を確保できる。   In the above refrigeration apparatus, the compressor and the evaporator are provided in an indoor unit, the condenser is provided in an outdoor unit, and the refrigerant pipe is a connecting pipe that connects the indoor unit and the outdoor unit. It can arrange as. That is, the refrigeration apparatus can be configured as a so-called remote condenser type in which the compressor is disposed on the indoor unit side. As a result, when the refrigerant discharged from the compressor flows through the crossover pipe, the refrigerant is cooled. Therefore, while reducing the refrigerant pressure below the allowable pressure of the crossover pipe, the amount of refrigerant per unit time is reduced. It can be secured.

また、冷凍装置がリモートコンデンサ式に構成される場合、冷媒密度調整手段は、前記蒸発器の表面に発生した水で前記圧縮機から吐出された冷媒を冷却できる。これにより、圧縮機の吐出側の冷媒配管内の冷媒を冷却するための水を簡単に確保できるし、また冷却水用の新たな水源を準備するよりも装置構成を簡素にできる。   When the refrigeration apparatus is configured as a remote condenser type, the refrigerant density adjusting unit can cool the refrigerant discharged from the compressor with water generated on the surface of the evaporator. Thereby, it is possible to easily secure water for cooling the refrigerant in the refrigerant pipe on the discharge side of the compressor, and it is possible to simplify the apparatus configuration as compared with preparing a new water source for cooling water.

また、冷媒密度調整手段は、内部に冷却用熱交換器を備え、前記蒸発器で蒸発した冷媒を前記冷却用熱交換器に導き、該冷却用熱交換器から排出した冷媒を前記圧縮機に渡すものとし、前記圧縮機から吐出される冷媒を前記冷却用熱交換器の冷媒で冷却できる。すなわち、圧縮機の吐出側の冷媒配管内の冷媒を冷却するための流体として、蒸発器から蒸発した冷媒を利用する。これにより、冷媒配管内の冷媒を簡単に冷却できるし、冷却用流体のための新たな配管などを設けずに済むため、装置構成を簡素にできる。   The refrigerant density adjusting means includes a cooling heat exchanger therein, guides the refrigerant evaporated in the evaporator to the cooling heat exchanger, and discharges the refrigerant discharged from the cooling heat exchanger to the compressor. The refrigerant discharged from the compressor can be cooled by the refrigerant of the cooling heat exchanger. That is, the refrigerant evaporated from the evaporator is used as a fluid for cooling the refrigerant in the refrigerant piping on the discharge side of the compressor. Thereby, the refrigerant in the refrigerant pipe can be easily cooled, and it is not necessary to provide a new pipe or the like for the cooling fluid, so that the apparatus configuration can be simplified.

また、本発明の冷凍装置は、上記の冷媒密度調整手段に代えて、圧縮機の吐出側の冷媒配管が並列に複数設けることができる。これによれば、圧縮機から吐出されたガス冷媒の通流路の容積が冷媒配管の数に応じて増大する。したがって、その冷媒配管の数を必要に応じて増やすことにより、各冷媒配管内の冷媒圧力を低下させながら、全体の冷媒の単位時間あたりの循環量を確保できる。その結果、圧縮機の吐出側の冷媒配管の耐圧を確保しつつ、冷凍サイクル性能の低下を抑制できる。   Further, in the refrigeration apparatus of the present invention, a plurality of refrigerant pipes on the discharge side of the compressor can be provided in parallel instead of the refrigerant density adjusting means. According to this, the volume of the flow path of the gas refrigerant discharged from the compressor increases according to the number of refrigerant pipes. Therefore, by increasing the number of the refrigerant pipes as necessary, it is possible to secure the circulation amount of the whole refrigerant per unit time while lowering the refrigerant pressure in each refrigerant pipe. As a result, it is possible to suppress the deterioration of the refrigeration cycle performance while ensuring the pressure resistance of the refrigerant pipe on the discharge side of the compressor.

また、上記の冷媒密度調整手段を設けるとともに、圧縮機の吐出側の冷媒配管が並列に複数設けることができる。これによれば、各冷媒配管内の冷媒圧力を低下させることができるから、冷媒の乾き度が高まるため、冷媒密度調整器による冷媒の冷却効率が高まる。   In addition to providing the refrigerant density adjusting means, a plurality of refrigerant pipes on the discharge side of the compressor can be provided in parallel. According to this, since the refrigerant pressure in each refrigerant pipe can be lowered, the dryness of the refrigerant is increased, and the cooling efficiency of the refrigerant by the refrigerant density adjuster is increased.

本発明によれば、圧縮機の吐出側の冷媒配管の耐圧を確保しつつ、冷凍サイクル性能の低下を抑制するのにより好適な冷凍装置を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the more suitable refrigeration apparatus can be implement | achieved by suppressing the fall of refrigeration cycle performance, ensuring the pressure | voltage resistance of the refrigerant | coolant piping at the discharge side of a compressor.

(第一の実施形態)
本発明を適用した冷凍装置の第一の実施形態について図面を参照して説明する。本実施形態の冷凍装置は、いわゆるリモートコンデンサ式の空気調和機に適用した例である。図1は、本実施形態の空気調和機の構成を示す図である。
(First embodiment)
A first embodiment of a refrigeration apparatus to which the present invention is applied will be described with reference to the drawings. The refrigeration apparatus of this embodiment is an example applied to a so-called remote condenser type air conditioner. FIG. 1 is a diagram illustrating a configuration of an air conditioner according to the present embodiment.

図1に示すように、オフィスや工場などの室内空気を冷暖する空気調和機は、冷媒を圧縮して吐出する圧縮機10と、圧縮機10から吐出される冷媒を凝縮する熱源側熱交換器としての凝縮器12と、凝縮器12から流出される冷媒を減圧する減圧手段としての膨張弁14と、膨張弁14により減圧された冷媒を蒸発させる利用側熱交換器としての蒸発器16などを備えて冷凍サイクルを形成している。   As shown in FIG. 1, an air conditioner that cools and warms indoor air in an office, a factory, or the like includes a compressor 10 that compresses and discharges a refrigerant, and a heat source side heat exchanger that condenses the refrigerant discharged from the compressor 10. A condenser 12, an expansion valve 14 as a decompression means for decompressing the refrigerant flowing out of the condenser 12, an evaporator 16 as a use side heat exchanger for evaporating the refrigerant decompressed by the expansion valve 14, and the like A refrigeration cycle is formed.

そして、本実施形態の空気調和機は、圧縮機10の吐出側のガス側冷媒配管18に、通流冷媒を冷却する冷媒密度調整器20が設けられている。これにより、圧縮機10の吐出側のガス側冷媒配管18の耐圧を確保しつつ、冷凍サイクル性能の低下を抑制できる。   In the air conditioner of the present embodiment, the refrigerant density adjuster 20 that cools the flowing refrigerant is provided in the gas-side refrigerant pipe 18 on the discharge side of the compressor 10. Thereby, the fall of the refrigerating cycle performance can be suppressed, ensuring the pressure | voltage resistance of the gas side refrigerant | coolant piping 18 of the discharge side of the compressor 10. FIG.

より詳細に本実施形態の空気調和機について説明する。図1に示すように、空気調和機は、オフィスや工場などの室内に配設される室内機Aと、屋外に配設される室外機Bとを備えている。室内機Aと室外機Bは、ガス側渡り配管としてのガス側冷媒配管18及び液側渡り配管としての液側冷媒配管22を介して相互に接続されている。   The air conditioner of this embodiment will be described in more detail. As shown in FIG. 1, the air conditioner includes an indoor unit A disposed in a room such as an office or a factory, and an outdoor unit B disposed outdoors. The indoor unit A and the outdoor unit B are connected to each other via a gas side refrigerant pipe 18 as a gas side crossover pipe and a liquid side refrigerant pipe 22 as a liquid side crossover pipe.

室内機Aは、室外機Bから液側冷媒配管22を介して流入した冷媒を減圧する膨張弁14と、膨張弁14により膨張された液冷媒を蒸発させることで室内空気を冷やす蒸発器16と、蒸発器16で蒸発したガス冷媒を吸引して圧縮する圧縮機10と、圧縮機10から吐出されるガス冷媒を冷却した後にガス側冷媒配管18を介して室外機Bに渡す冷媒密度調整器20などを備えている。室外機Bは、室内機Aからガス側冷媒配管18を介して流入するガス冷媒を外気で冷やすことで液化させる凝縮器12などを備えている。すなわち、本実施形態の空気調和機は、圧縮機10が室内機A内に設けられたいわゆるリモートコンデンサ式の空気調和機である。   The indoor unit A includes an expansion valve 14 that depressurizes the refrigerant that flows from the outdoor unit B through the liquid-side refrigerant pipe 22, and an evaporator 16 that cools the indoor air by evaporating the liquid refrigerant expanded by the expansion valve 14. , A compressor 10 that sucks and compresses the gas refrigerant evaporated in the evaporator 16, and a refrigerant density adjuster that passes to the outdoor unit B through the gas-side refrigerant pipe 18 after cooling the gas refrigerant discharged from the compressor 10 20 and so on. The outdoor unit B includes a condenser 12 that liquefies the gas refrigerant flowing from the indoor unit A through the gas-side refrigerant pipe 18 by cooling it with outside air. That is, the air conditioner of this embodiment is a so-called remote condenser type air conditioner in which the compressor 10 is provided in the indoor unit A.

本実施形態の冷媒密度調整器20は、圧縮機10から吐出されるガス冷媒を冷却する冷却用熱交換器を備えている。その冷却用熱交換器は、蒸発器16の熱交換表面で生じた凝縮水(以下、ドレン水という)が通流する冷却用配管24が接続されている。冷却用配管24は、蒸発器16の例えば下縁部に配設されたドレンパンに上流側が接続し、下流側が冷媒密度調整器20の冷却用熱交換器の流路に連通している。なお、冷媒密度調整器20の位置については、室内機Aの内部でもよいし、ガス側冷媒配管18の室内機Aと室外機Bの間の管路部でもよい。要は、耐圧を考慮すべきガス側冷媒配管18の前段階に冷媒密度調整器20を配置すればよい。   The refrigerant density adjuster 20 of this embodiment includes a cooling heat exchanger that cools the gas refrigerant discharged from the compressor 10. The cooling heat exchanger is connected to a cooling pipe 24 through which condensed water (hereinafter referred to as drain water) generated on the heat exchange surface of the evaporator 16 flows. The cooling pipe 24 has an upstream side connected to a drain pan disposed at, for example, the lower edge of the evaporator 16, and a downstream side communicating with the flow path of the cooling heat exchanger of the refrigerant density adjuster 20. The position of the refrigerant density adjuster 20 may be inside the indoor unit A, or may be a pipe line portion between the indoor unit A and the outdoor unit B in the gas side refrigerant pipe 18. In short, the refrigerant density adjuster 20 may be arranged in the previous stage of the gas side refrigerant pipe 18 where pressure resistance should be considered.

図2は、冷媒密度調整器20の構成例を示す図である。まず、図2Aに示すように、冷媒密度調整器20は、冷媒が通過する容器25と、容器25内に熱交換管が配列された冷却用熱交換器26などから構成される。容器25は、圧縮機10の吐出側に連通する冷媒入口28と、ガス側冷媒配管18に連通する冷媒出口30を有する。冷媒出口30は、冷媒入口28が設けられた側壁に対向する側壁に形成されている。冷却用熱交換器26は、冷却用配管24に連通した冷却水入口32と、冷却水出口35が両端部に有する。冷却水入口32と冷却水出口35を連結する基部管は、容器25内に向けて立設した複数の熱交換管34a〜34dが形成されている。なお、ここでの冷却水として、蒸発器16の熱交換表面に付着して滴下したドレン水を用いているが、別に準備した水源から供給される水を用いてもよい。また、冷媒とドレン水との熱交換効率を高めるために、冷媒の通流方向とドレン水の通流方向を逆向きにしているが、同じ向きでもよい。   FIG. 2 is a diagram illustrating a configuration example of the refrigerant density adjuster 20. First, as shown in FIG. 2A, the refrigerant density adjuster 20 includes a container 25 through which the refrigerant passes, a cooling heat exchanger 26 in which heat exchange tubes are arranged in the container 25, and the like. The container 25 has a refrigerant inlet 28 that communicates with the discharge side of the compressor 10 and a refrigerant outlet 30 that communicates with the gas-side refrigerant pipe 18. The refrigerant outlet 30 is formed on the side wall facing the side wall provided with the refrigerant inlet 28. The cooling heat exchanger 26 has a cooling water inlet 32 communicating with the cooling pipe 24 and a cooling water outlet 35 at both ends. The base pipe connecting the cooling water inlet 32 and the cooling water outlet 35 is formed with a plurality of heat exchange pipes 34 a to 34 d erected toward the inside of the container 25. In addition, although the drain water which adhered to the heat exchange surface of the evaporator 16 and was dripped is used as cooling water here, the water supplied from the water source prepared separately may be used. Further, in order to increase the heat exchange efficiency between the refrigerant and the drain water, the flow direction of the refrigerant and the flow direction of the drain water are reversed, but they may be the same direction.

また、図2Aの形態に代えて、冷媒密度調整器20は、図2Bに示す形態でもよい。図2Bに示すように、冷媒密度調整器20は、冷媒が通過する円筒状の容器36と、容器36内に蛇腹状に配設された冷却用熱交換器38などから構成される。冷却用熱交換器38は、容器36の外表面を貫通する冷却水入口40及び冷却水出口42を備えている。   Moreover, it may replace with the form of FIG. 2A, and the form shown to FIG. 2B may be sufficient as the refrigerant density regulator 20. FIG. As shown in FIG. 2B, the refrigerant density adjuster 20 includes a cylindrical container 36 through which the refrigerant passes, a cooling heat exchanger 38 disposed in a bellows shape in the container 36, and the like. The cooling heat exchanger 38 includes a cooling water inlet 40 and a cooling water outlet 42 that penetrate the outer surface of the container 36.

また、図2A又は図2Bの形態に代えて、冷媒密度調整器20は、図2Cに示す形態でもよい。図2Cに示すように、冷媒密度調整器20は、ガス側冷媒配管18の外表面を包囲する円筒状の容器44などから構成される。容器44は、ガス側冷媒配管18と同軸に配設されている。容器44の内表面とガス側冷媒配管18の外表面との間の隙間は、冷却水が軸方向に通流する冷却用熱交換流路である。なお、冷媒密度調整器20は、図2Aないし図2Cに示した形態に限られず、要は、圧縮機10から吐出されるガス冷媒を冷却可能な形態であればよい。   Moreover, it may replace with the form of FIG. 2A or FIG. 2B, and the form shown to FIG. 2C may be sufficient as the refrigerant density adjuster 20. FIG. As shown in FIG. 2C, the refrigerant density adjuster 20 includes a cylindrical container 44 that surrounds the outer surface of the gas-side refrigerant pipe 18. The container 44 is disposed coaxially with the gas side refrigerant pipe 18. The gap between the inner surface of the container 44 and the outer surface of the gas-side refrigerant pipe 18 is a cooling heat exchange channel through which cooling water flows in the axial direction. The refrigerant density adjuster 20 is not limited to the form shown in FIGS. 2A to 2C, and may be any form that can cool the gas refrigerant discharged from the compressor 10.

このように構成される空気調和機の冷房運転の動作について説明する。室内機Aと室内機Bとの間で循環する冷媒は、気化と液化の状態変化を繰り返すことによって二次冷媒(例えば、室内空気)を冷やす。より具体的には、圧縮機10に吸引されたガス冷媒は、圧縮機10により圧縮される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒密度調整器20を通過した後、凝縮器12により外気に放熱して凝縮する。凝縮した冷媒は、膨張弁14により減圧される。減圧された冷媒は、蒸発器16で室内空気の熱により蒸発する。この蒸発過程で、蒸発器16の熱交換表面を通気する室内空気が冷やされる。   The operation of the cooling operation of the air conditioner configured as described above will be described. The refrigerant that circulates between the indoor unit A and the indoor unit B cools the secondary refrigerant (for example, room air) by repeatedly changing the state of vaporization and liquefaction. More specifically, the gas refrigerant sucked into the compressor 10 is compressed by the compressor 10. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant density adjuster 20 and then dissipates heat to the outside air and condenses. The condensed refrigerant is decompressed by the expansion valve 14. The decompressed refrigerant is evaporated by the heat of the room air in the evaporator 16. During this evaporation process, the room air that passes through the heat exchange surface of the evaporator 16 is cooled.

ここで、本実施形態では、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒密度調整器20により冷却される。より具体的には、圧縮機10から吐出されたガス冷媒は、冷媒密度調整器20の冷却用熱交換器で冷却用配管24内の比較的低温のドレン水と熱交換することによって冷却される。冷却された冷媒は、ガス冷媒と液冷媒が混在した気液二相状態のものになる。液状の冷媒は、ガス冷媒よりも単位体積あたりの圧力が小さい反面、単位体積あたりの冷媒量つまり冷媒密度が大きい。したがって、圧縮機10から吐出されたガス冷媒を冷媒密度調整器20により気液二相冷媒にすることにより、ガス側冷媒配管18内の冷媒圧力を低下させながら、冷媒の単位時間あたりの循環量を確保できる。その結果、圧縮機10の吐出側のガス側冷媒配管18の耐圧を確保しつつ、冷凍サイクル性能の低下を抑制できるので、空気調和機の運転を安定に維持できる。   Here, in the present embodiment, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 is cooled by the refrigerant density adjuster 20. More specifically, the gas refrigerant discharged from the compressor 10 is cooled by exchanging heat with the relatively low-temperature drain water in the cooling pipe 24 by the cooling heat exchanger of the refrigerant density adjuster 20. . The cooled refrigerant becomes a gas-liquid two-phase state in which a gas refrigerant and a liquid refrigerant are mixed. The liquid refrigerant has a smaller pressure per unit volume than the gas refrigerant, but has a larger refrigerant amount per unit volume, that is, a refrigerant density. Accordingly, the gas refrigerant discharged from the compressor 10 is converted into a gas-liquid two-phase refrigerant by the refrigerant density adjuster 20, thereby reducing the refrigerant pressure in the gas-side refrigerant pipe 18 and circulating the refrigerant per unit time. Can be secured. As a result, it is possible to suppress the deterioration of the refrigeration cycle performance while securing the pressure resistance of the gas-side refrigerant pipe 18 on the discharge side of the compressor 10, and thus the operation of the air conditioner can be stably maintained.

また、冷媒密度調整器20は、圧縮機10から吐出された冷媒を冷却するに際し、冷却後の冷媒温度を外気よりも高い温度にする。これにより、圧縮機10から吐出された冷媒を冷却しつつ、冷媒の過剰冷却が防止されるから、冷却後の冷媒が外気から吸熱することを回避でき、冷凍サイクル性能の低下を抑制できる。   In addition, when the refrigerant density adjuster 20 cools the refrigerant discharged from the compressor 10, the refrigerant temperature after cooling is set to a temperature higher than that of the outside air. Thereby, since the refrigerant | coolant discharged from the compressor 10 is cooled, excessive cooling of a refrigerant | coolant is prevented, Therefore It can avoid that the refrigerant | coolant after cooling absorbs heat from outside air, and can suppress the fall of refrigeration cycle performance.

また、本実施形態の冷媒は、オゾン層の保護などの観点から、例えば410Aに代表されるHFC冷媒が適用される。HFC冷媒は、R22に代表されるHCFC冷媒よりも冷媒圧力が比較的高いものになる。この点、本実施形態によれば、ガス側冷媒配管18内の冷媒圧力を低下させることができる。したがって、冷媒としてHFC冷媒を使用する際、ガス側冷媒配管18がHCFC冷媒用のものであっても、そのガス側冷媒配管18を利用できる。例えば、HCFC冷媒対応の空気調和機からHFC冷媒対応のものにリプレースする場合、ガス側冷媒配管18や液側冷媒配管22については、既設のものをそのまま継続して利用できるため、リプレースの据付作業が簡単になる。しかも、本実施形態によれば、ガス側冷媒配管18内の冷媒圧力を低下させながら、冷媒の単位時間あたりの循環量を確保できるため、冷凍サイクル性能の低下を抑制できる。   Further, as the refrigerant of the present embodiment, for example, an HFC refrigerant represented by 410A is applied from the viewpoint of protecting the ozone layer. The HFC refrigerant has a relatively higher refrigerant pressure than the HCFC refrigerant represented by R22. In this regard, according to the present embodiment, the refrigerant pressure in the gas side refrigerant pipe 18 can be reduced. Therefore, when the HFC refrigerant is used as the refrigerant, even if the gas side refrigerant pipe 18 is for HCFC refrigerant, the gas side refrigerant pipe 18 can be used. For example, when replacing an air conditioner compatible with HCFC refrigerant with one compatible with HFC refrigerant, the existing gas-side refrigerant pipe 18 and liquid-side refrigerant pipe 22 can be used as they are. Becomes easier. In addition, according to the present embodiment, since the circulation amount of the refrigerant per unit time can be secured while the refrigerant pressure in the gas side refrigerant pipe 18 is reduced, it is possible to suppress the deterioration of the refrigeration cycle performance.

(第二の実施形態)
本発明を適用した冷凍装置の第二の実施形態について図面を参照して説明する。本実施形態は、ガス側冷媒配管18内の冷媒を冷却する流体として蒸発器16で蒸発した冷媒を利用する点で、蒸発器16の表面に生じたドレン水を利用する第一の実施形態と異なる。したがって、第一の実施形態と相互に対応する箇所に同一符号を付し、相違点を中心に説明する。
(Second embodiment)
A second embodiment of a refrigeration apparatus to which the present invention is applied will be described with reference to the drawings. In this embodiment, the refrigerant evaporated in the evaporator 16 is used as a fluid for cooling the refrigerant in the gas-side refrigerant pipe 18, and the drain water generated on the surface of the evaporator 16 is used. Different. Therefore, the same code | symbol is attached | subjected to the location mutually corresponding to 1st embodiment, and it demonstrates centering around difference.

図3は、本実施形態の空気調和機の構成を示す図である。図3に示すように、蒸発器16は、冷媒密度調整器20を介して圧縮機10に接続されている。また圧縮機10は、冷媒密度調整器20を介してガス側冷媒配管18に連通している。より具体的には、蒸発器16は、冷媒排出側の配管50が冷媒密度調整器20の冷却用熱交換の入側に連通している。冷媒密度調整器20は、冷却用熱交換の出側の配管52は、圧縮機10の吸引側に連通している。圧縮機10の吐出側の配管54は、冷媒密度調整器20を介してガス側冷媒配管18に連通している。要するに、本実施形態の冷媒密度調整器20は、蒸発器16で蒸発した冷媒を内部の冷却用熱交換器に導き、冷却用熱交換器から排出した冷媒を圧縮機10に渡すものとし、圧縮機10から吐出される冷媒を冷却用熱交換器内の冷媒で冷却するものである。   FIG. 3 is a diagram illustrating a configuration of the air conditioner of the present embodiment. As shown in FIG. 3, the evaporator 16 is connected to the compressor 10 via the refrigerant density adjuster 20. The compressor 10 communicates with the gas side refrigerant pipe 18 via the refrigerant density adjuster 20. More specifically, in the evaporator 16, the refrigerant discharge side pipe 50 communicates with the cooling heat exchange inlet side of the refrigerant density adjuster 20. In the refrigerant density adjuster 20, the piping 52 on the outlet side of the heat exchange for cooling communicates with the suction side of the compressor 10. The discharge side pipe 54 of the compressor 10 communicates with the gas side refrigerant pipe 18 via the refrigerant density adjuster 20. In short, the refrigerant density adjuster 20 according to the present embodiment guides the refrigerant evaporated in the evaporator 16 to the internal cooling heat exchanger, and passes the refrigerant discharged from the cooling heat exchanger to the compressor 10. The refrigerant discharged from the machine 10 is cooled by the refrigerant in the cooling heat exchanger.

本実施形態によれば、第一の実施形態の効果に加えて、冷却用配管24を省略できるため、室内機Aの装置構成を簡素にできる。また、室内の湿度に起因して蒸発器16の表面にドレン水がほとんど生じない場合でも、圧縮機10から吐出されるガス冷媒を確実に冷却できる。なお、本実施形態と第一の実施形態を組み合わせると、より一層の効果を発揮できる。   According to this embodiment, in addition to the effects of the first embodiment, the cooling pipe 24 can be omitted, so that the device configuration of the indoor unit A can be simplified. Moreover, even when drain water hardly arises on the surface of the evaporator 16 due to indoor humidity, the gas refrigerant discharged from the compressor 10 can be reliably cooled. In addition, when this embodiment and 1st embodiment are combined, a much more effect can be exhibited.

(第三の実施形態)
本発明を適用した冷凍装置の第三の実施形態について図面を参照して説明する。本実施形態は、圧縮機10の吐出側のガス側冷媒配管18が並列に複数設けられた点で、第一の実施形態と異なる。したがって、第一の実施形態と相互に対応する箇所に同一符号を付し、相違点を中心に説明する。
(Third embodiment)
A third embodiment of a refrigeration apparatus to which the present invention is applied will be described with reference to the drawings. This embodiment differs from the first embodiment in that a plurality of gas-side refrigerant pipes 18 on the discharge side of the compressor 10 are provided in parallel. Therefore, the same code | symbol is attached | subjected to the location mutually corresponding to 1st embodiment, and it demonstrates centering around difference.

図4は、本実施形態の空気調和機の構成を示す図である。図4に示すように、圧縮機10は、吐出側に冷媒密度調整器20が配設されている。冷媒密度調整器20は、第一の実施形態と同じものである。この冷媒密度調整器20は、複数のガス側冷媒配管18a〜18mを介して凝縮器12に接続している。ここでのガス側冷媒配管18a〜18mは、室内機Aと室外機Bを接続するガス側渡り配管であり、並列に配設されている。また、凝縮器12は、複数の液側冷媒配管22a〜22mを介して膨張弁14に接続している。ここでの液側冷媒配管22a〜22mも、室内機Aと室外機Bを接続する液側渡り配管である。   FIG. 4 is a diagram illustrating a configuration of the air conditioner of the present embodiment. As shown in FIG. 4, the compressor 10 is provided with a refrigerant density adjuster 20 on the discharge side. The refrigerant density adjuster 20 is the same as that in the first embodiment. The refrigerant density adjuster 20 is connected to the condenser 12 via a plurality of gas side refrigerant pipes 18a to 18m. Here, the gas side refrigerant pipes 18a to 18m are gas side transition pipes connecting the indoor unit A and the outdoor unit B, and are arranged in parallel. The condenser 12 is connected to the expansion valve 14 via a plurality of liquid side refrigerant pipes 22a to 22m. The liquid side refrigerant pipes 22a to 22m here are also liquid side connecting pipes connecting the indoor unit A and the outdoor unit B.

このような空気調和機では、圧縮機10から吐出されたガス冷媒は、冷媒密度調整器20により冷却された後、各ガス側冷媒配管18a〜18mに分岐して通流する。各ガス側冷媒配管18a〜18mを通流した冷媒は、合流して凝縮器12に流入する。また、凝縮器12から流出された冷媒は、各液側冷媒配管22a〜22mに分岐して通流する。各液側冷媒配管22a〜22mを通流した冷媒は、合流して膨張弁14に流入する。   In such an air conditioner, the gas refrigerant discharged from the compressor 10 is cooled by the refrigerant density adjuster 20, and then branched into the gas-side refrigerant pipes 18a to 18m. The refrigerant that has flowed through the gas side refrigerant pipes 18 a to 18 m merges and flows into the condenser 12. Moreover, the refrigerant | coolant which flowed out from the condenser 12 branches and flows into each liquid side refrigerant | coolant piping 22a-22m. The refrigerant that has flowed through each of the liquid side refrigerant pipes 22 a to 22 m joins and flows into the expansion valve 14.

本実施形態によれば、圧縮機10から吐出されたガス冷媒の通流路の容積がガス側冷媒配管18a〜18mの数に比例して増大する。したがって、ガス側冷媒配管18a〜18mの数を必要に応じて増やすことにより、各ガス側冷媒配管18a〜18m内の冷媒圧力を低下させながら、全体の冷媒の単位時間あたりの循環量を確保できる。その結果、ガス側渡り配管であるガス側冷媒配管18a〜18mの耐圧を確保しつつ、冷凍サイクル性能の低下を抑制できる。液側冷媒配管22a〜22mについても同様である。   According to this embodiment, the volume of the flow path of the gas refrigerant discharged from the compressor 10 increases in proportion to the number of gas side refrigerant pipes 18a to 18m. Therefore, by increasing the number of the gas side refrigerant pipes 18a to 18m as necessary, it is possible to secure the circulation amount of the whole refrigerant per unit time while reducing the refrigerant pressure in each of the gas side refrigerant pipes 18a to 18m. . As a result, it is possible to suppress a decrease in the refrigeration cycle performance while ensuring the pressure resistance of the gas side refrigerant pipes 18a to 18m that are gas side crossover pipes. The same applies to the liquid side refrigerant pipes 22a to 22m.

また、各ガス側冷媒配管18a〜18m内の冷媒圧力を低下させることにより、冷媒の乾き度が高まるため、冷媒密度調整器20による冷媒の冷却効率を高めることができる。その結果、各ガス側冷媒配管18a〜18m内の冷媒密度をより一層増大できる。   Moreover, since the dryness of a refrigerant | coolant increases by reducing the refrigerant | coolant pressure in each gas side refrigerant | coolant piping 18a-18m, the cooling efficiency of the refrigerant | coolant by the refrigerant density regulator 20 can be improved. As a result, the refrigerant density in each of the gas side refrigerant pipes 18a to 18m can be further increased.

また、建物内に既設の空気調和機を新たな空気調和機にリプレースする際、建物内にガス側冷媒配管18a〜18mや液側冷媒配管22a〜22mが既に配設されている場合がある。その場合、本実施形態によれば、既設のガス側冷媒配管18a〜18mや液側冷媒配管22a〜22mを交換せずに、そのまま継続して利用することができるため、リプレースの据付作業が簡単になる。   Moreover, when replacing the existing air conditioner in a building with a new air conditioner, the gas side refrigerant | coolant piping 18a-18m and the liquid side refrigerant | coolant piping 22a-22m may already be arrange | positioned in the building. In this case, according to the present embodiment, since the existing gas side refrigerant pipes 18a to 18m and the liquid side refrigerant pipes 22a to 22m can be used as they are without being replaced, the installation work of the replacement is easy. become.

以上、第一及び第二の実施形態によれば、冷媒を圧縮する圧縮機10を室内機A側に有するリモートコンデンサ式空気調和機においては、室内機Aと室外機Bを接続するガス側冷媒配管18は、圧力仕様の低いものでも使用可能になる。液側冷媒配管22についても同様である。そして、そのようなガス側冷媒配管18及び液側冷媒配管22を使用して冷媒循環経路を形成する場合でも、冷凍サイクルの性能低下を回避できる。   As mentioned above, according to 1st and 2nd embodiment, in the remote condenser type air conditioner which has the compressor 10 which compresses a refrigerant | coolant in the indoor unit A side, the gas side refrigerant | coolant which connects the indoor unit A and the outdoor unit B The pipe 18 can be used even with a low pressure specification. The same applies to the liquid side refrigerant pipe 22. And even when using such a gas side refrigerant | coolant piping 18 and the liquid side refrigerant | coolant piping 22 and forming a refrigerant | coolant circulation path, the performance fall of a refrigerating cycle can be avoided.

なお、第一及び第二の実施形態で本発明を適用した空気調和機を説明したが、これに限られるものではない。例えば、第一及び第二の実施形態の空気調和機は、圧縮機10が室内機Aに内蔵されたリモートコンデンサ式のものである。リモートコンデンサ式の空気調和機は、圧縮機10等の電力を確保するのが容易になるし、圧縮機10等のメンテナンスが容易になる。したがって、リモートコンデンサ式の空気調和機は、例えば高い信頼性が求められる場合に適している。このようなリモートコンデンサ式の空気調和機の冷房運転時に本発明を適用した例を説明したが、セパレート式の空気調和機の暖房運転時の場合も、本発明を適用できる。   In addition, although the air conditioner to which this invention was applied was demonstrated by 1st and 2nd embodiment, it is not restricted to this. For example, the air conditioner of the first and second embodiments is a remote condenser type in which the compressor 10 is built in the indoor unit A. In the remote condenser type air conditioner, it becomes easy to secure electric power of the compressor 10 and the like, and maintenance of the compressor 10 and the like becomes easy. Therefore, the remote condenser type air conditioner is suitable, for example, when high reliability is required. The example in which the present invention is applied during the cooling operation of such a remote condenser air conditioner has been described, but the present invention can also be applied to the heating operation of a separate air conditioner.

セパレート式の空気調和機の暖房運転時に本発明を適用する点について説明を加える。セパレート式の空気調和機は、圧縮機10が室外機Bに内蔵されたものであり、例えば室内機Aの騒音や振動の低減が求められる場合に適している。このようなセパレート式の空気調和機の暖房運転の場合も、渡り配管としてのガス側冷媒配管18に高圧ガス冷媒が通気する。したがって、セパレート式の場合も、ガス側冷媒配管18の耐圧を確保するために、室外機B内つまり圧縮機10の吐出側に冷媒密度調整器20を設けるのが望ましい。ただし、セパレート式の場合、冷媒を冷却する水に関しては、別に準備した水源から供給される水を用いればよい。また、冷媒密度調整器20を設けることに代えて又はそれとともに、ガス側冷媒配管18を並列に複数配設してもよい。   The point which applies this invention at the time of heating operation of a separate type air conditioner is added. The separate type air conditioner is one in which the compressor 10 is built in the outdoor unit B, and is suitable, for example, when reduction of noise and vibration of the indoor unit A is required. Also in the heating operation of such a separate air conditioner, the high-pressure gas refrigerant is passed through the gas-side refrigerant pipe 18 as a transition pipe. Therefore, also in the case of the separate type, it is desirable to provide the refrigerant density adjuster 20 in the outdoor unit B, that is, on the discharge side of the compressor 10 in order to ensure the pressure resistance of the gas side refrigerant pipe 18. However, in the case of a separate type, water supplied from a separately prepared water source may be used as water for cooling the refrigerant. Moreover, it may replace with providing the refrigerant | coolant density adjuster 20, or may provide multiple gas side refrigerant | coolant piping 18 in parallel with it.

要するに、圧縮機10の吐出側の冷媒配管の耐圧が問題になる場合に、その冷媒配管を通流する冷媒を冷却する冷媒密度調整器20を設ければよいし、それに代えて又はそれとともに、ガス側冷媒配管18を並列に複数配設すればよい。なお、空気調和機を例に説明したが、冷蔵庫や冷凍庫に適用した場合も本発明を適用できる。   In short, when the pressure resistance of the refrigerant pipe on the discharge side of the compressor 10 becomes a problem, the refrigerant density adjuster 20 that cools the refrigerant flowing through the refrigerant pipe may be provided, or alternatively or together with it, A plurality of gas side refrigerant pipes 18 may be arranged in parallel. Although the air conditioner has been described as an example, the present invention can also be applied when applied to a refrigerator or a freezer.

本発明を適用した空気調和機の第一の実施形態の構成を示す系統図である。1 is a system diagram showing a configuration of a first embodiment of an air conditioner to which the present invention is applied. 図1の冷媒密度調整器の構成例を示す図である。It is a figure which shows the structural example of the refrigerant density regulator of FIG. 本発明を適用した空気調和機の第二の実施形態の構成を示す系統図である。It is a systematic diagram which shows the structure of 2nd embodiment of the air conditioner to which this invention is applied. 本発明を適用した空気調和機の第三の実施形態の構成を示す系統図である。It is a systematic diagram which shows the structure of 3rd embodiment of the air conditioner to which this invention is applied.

符号の説明Explanation of symbols

10 圧縮機
12 凝縮器
14 膨張弁
16 蒸発器
18 ガス側冷媒配管
20 冷媒密度調整器
DESCRIPTION OF SYMBOLS 10 Compressor 12 Condenser 14 Expansion valve 16 Evaporator 18 Gas side refrigerant | coolant piping 20 Refrigerant density regulator

Claims (2)

冷媒を圧縮して吐出する圧縮機と、該圧縮機から吐出される冷媒を凝縮する凝縮器と、該凝縮器から流出される冷媒を減圧する減圧手段と、該減圧された冷媒を蒸発させる蒸発器を備えた冷凍装置において、
前記圧縮機の吐出側の冷媒配管には、該冷媒配管を流れる冷媒を冷却する冷媒密度調整手段が設けられてなり、
前記冷媒密度調整手段は、前記冷媒配管よりも流路断面積を大きくした容器と、前記蒸発器の表面で生じた凝縮水が流通され、該凝縮水と前記容器内の前記冷媒とを熱交換する冷却用熱交換器とを備え、
前記冷却用熱交換器は、前記凝縮水が流れる基部管と、該基部管に連通させて該基部管から前記容器内に向けて立設する複数の熱交換管により形成されてなることを特徴とする冷凍装置。
A compressor that compresses and discharges the refrigerant, a condenser that condenses the refrigerant discharged from the compressor, a decompression unit that decompresses the refrigerant that flows out of the condenser, and an evaporation that evaporates the decompressed refrigerant In a refrigeration apparatus equipped with
The refrigerant pipe on the discharge side of the compressor is provided with refrigerant density adjusting means for cooling the refrigerant flowing through the refrigerant pipe ,
In the refrigerant density adjusting means, a container having a flow path cross-sectional area larger than that of the refrigerant pipe and condensed water generated on the surface of the evaporator are circulated, and heat exchange is performed between the condensed water and the refrigerant in the container. A cooling heat exchanger
The cooling heat exchanger is formed by a base pipe through which the condensed water flows, and a plurality of heat exchange pipes standing from the base pipe toward the inside of the container so as to communicate with the base pipe. Refrigeration equipment.
前記圧縮機と前記蒸発器とを室内機に設け、前記凝縮器を室外機に設けてなり、前記冷媒配管は、前記室内機と前記室外機を接続する渡り配管として配設されてなることを特徴とする請求項1に記載の冷凍装置。   The compressor and the evaporator are provided in an indoor unit, the condenser is provided in an outdoor unit, and the refrigerant pipe is provided as a connecting pipe connecting the indoor unit and the outdoor unit. The refrigeration apparatus according to claim 1, wherein
JP2005280220A 2005-09-27 2005-09-27 Refrigeration equipment Expired - Fee Related JP4591829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280220A JP4591829B2 (en) 2005-09-27 2005-09-27 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280220A JP4591829B2 (en) 2005-09-27 2005-09-27 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2007093054A JP2007093054A (en) 2007-04-12
JP4591829B2 true JP4591829B2 (en) 2010-12-01

Family

ID=37978987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280220A Expired - Fee Related JP4591829B2 (en) 2005-09-27 2005-09-27 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4591829B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277727U (en) * 1985-11-01 1987-05-18
JPH05126358A (en) * 1991-10-31 1993-05-21 Toyotomi Co Ltd Air conditioner
JPH109644A (en) * 1996-06-25 1998-01-16 Hitachi Ltd Air conditioner
JP2000274842A (en) * 1999-03-26 2000-10-06 Sanyo Electric Co Ltd Refrigerating circuit and refrigerator using it
JP2005083732A (en) * 2003-09-05 2005-03-31 Lg Electronics Inc Piping device for air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277727U (en) * 1985-11-01 1987-05-18
JPH05126358A (en) * 1991-10-31 1993-05-21 Toyotomi Co Ltd Air conditioner
JPH109644A (en) * 1996-06-25 1998-01-16 Hitachi Ltd Air conditioner
JP2000274842A (en) * 1999-03-26 2000-10-06 Sanyo Electric Co Ltd Refrigerating circuit and refrigerator using it
JP2005083732A (en) * 2003-09-05 2005-03-31 Lg Electronics Inc Piping device for air conditioner

Also Published As

Publication number Publication date
JP2007093054A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4922669B2 (en) Air conditioner and heat exchanger for air conditioner
US8001802B2 (en) Air conditioner
US6550273B2 (en) Air conditioner using flammable refrigerant
EP2541169A1 (en) Air conditioner and air-conditioning hot-water-supplying system
US7908878B2 (en) Refrigerating apparatus
JP4118254B2 (en) Refrigeration equipment
KR20080083784A (en) Compression system and air-conditioning system using the same
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP2009133593A (en) Cooling apparatus
JP2006220318A (en) Vapor compression type refrigerating machine system
JP2007218466A (en) Secondary refrigerant type refrigerating device
JP2010169309A (en) Air conditioner
JP2012237518A (en) Air conditioner
JP4591829B2 (en) Refrigeration equipment
EP1843109A2 (en) Cooling System
JP5485602B2 (en) Refrigeration system
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP2017161164A (en) Air-conditioning hot water supply system
WO2023067807A1 (en) Binary refrigeration device
JP2018194200A (en) Refrigeration cycle device and liquid circulation device provided with the same
JP2011133132A (en) Refrigerating device
JP2008196760A (en) Refrigerating device
KR100624811B1 (en) Circulation Device For Receiver refrigerants
JP6169363B2 (en) Heat medium control device, cooling / heating system, temperature adjusting device, and method for adding cooling / heating system
KR100551770B1 (en) Airconditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees