JP2010169309A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2010169309A
JP2010169309A JP2009011863A JP2009011863A JP2010169309A JP 2010169309 A JP2010169309 A JP 2010169309A JP 2009011863 A JP2009011863 A JP 2009011863A JP 2009011863 A JP2009011863 A JP 2009011863A JP 2010169309 A JP2010169309 A JP 2010169309A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
unit
outdoor unit
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009011863A
Other languages
Japanese (ja)
Other versions
JP5186398B2 (en
Inventor
Takanori Onishi
孝典 大西
Yoshiki Hata
良樹 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009011863A priority Critical patent/JP5186398B2/en
Publication of JP2010169309A publication Critical patent/JP2010169309A/en
Application granted granted Critical
Publication of JP5186398B2 publication Critical patent/JP5186398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the amount of a refrigerant in a refrigerating cycle and improve cooling capacity without increasing the size of an intermediate unit and cost in an air conditioner. <P>SOLUTION: In the air conditioner, an outdoor unit A is connected to a plurality of indoor units B2a-B2b which have no expansion valves via the intermediate unit C including an expansion valve. The intermediate unit C includes: a bypass pipe C3 for interconnecting refrigerant piping C1 on the outdoor unit side of an intermediate liquid side branch pipe 10b and refrigerant piping C2 on the outdoor unit side of an intermediate gas side branch pipe 14b; the refrigerant cooling expansion valve 12 provided in the bypass piping C3; and a refrigerant cooling heat exchanger 13 performing heat exchange between the bypass pipe C3 and the refrigerant piping C1 on the outdoor unit side of the intermediate liquid side branch pipe 10b. A control device E controls the refrigerant cooling expansion valve 12 to cool a refrigerant of gas-liquid two phases made to flow in from the outdoor unit A side by the refrigerant cooling heat exchanger 13 and make the refrigerant in the state of a liquid single phase flow in to an intermediate expansion valve 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、室外ユニットと複数台の室内ユニットとを備える空気調和機に係り、特に、室外ユニットと膨張弁を有しない複数台の室内ユニットとを膨張弁を有する中間ユニットを介して接続する空気調和機に好適なものである。   The present invention relates to an air conditioner including an outdoor unit and a plurality of indoor units, and in particular, air connecting an outdoor unit and a plurality of indoor units having no expansion valve via an intermediate unit having an expansion valve. It is suitable for a harmony machine.

従来のこの種の空気調和機としては、特開平2−213639号公報(特許文献1)に示された多室用空気調和機がある。   As this type of conventional air conditioner, there is a multi-room air conditioner disclosed in Japanese Patent Laid-Open No. Hei 2-213039 (Patent Document 1).

この多室用空気調和機は、圧縮機、四方弁及び室外熱交換器を備えた1台の室外機(室外ユニット)に、室内熱交換器を備え且つ室内膨張弁を備えない複数台の室内機(室内ユニット)を、分岐ユニット(中間ユニット)を介して接続することにより構成されている。そして、分岐ユニットは、液側配管を複数に分岐する液側分岐配管と、ガス側配管を複数に分岐するガス側分岐配管と、液側配管とガス側配管とを相互に熱交換する熱交換器と、液側分岐配管に接続された膨張弁とを備えている。   This multi-room air conditioner includes a plurality of indoor units that include an indoor heat exchanger and no indoor expansion valve in one outdoor unit (outdoor unit) that includes a compressor, a four-way valve, and an outdoor heat exchanger. A machine (indoor unit) is connected through a branch unit (intermediate unit). The branch unit is a heat exchange that exchanges heat between the liquid side branch pipe that branches the liquid side pipe into a plurality, the gas side branch pipe that branches the gas side pipe into a plurality, and the liquid side pipe and the gas side pipe. And an expansion valve connected to the liquid side branch pipe.

この多室用空気調和機では、冷房運転時に、圧縮機から吐き出された高温高圧の冷媒ガスは、室外熱交換器で凝縮されて高圧の液冷媒となり、室外機から液側主連絡配管を通して分岐ユニットに送られる。分岐ユニット入った液冷媒は、分岐ユニット内の熱交換器でサブクールされた後に、分岐ユニット内の各膨張弁により減圧されて気液二相冷媒となり、液側分岐連絡配管を通して各室内機に分配される。ここで、各室内機への冷媒の分配は、各室内機の運転状態に応じて制御手段が各膨張弁を制御することにより行われる。室内機へ分配された冷媒は、室内熱交換器で蒸発されてガス冷媒となり、ガス側分岐連絡配管を通して分岐ユニットに送られる。分岐ユニットに入ったガス冷媒は、分岐ユニット内の熱交換器で湿り状態にされた後に、ガス側主連絡配管を通して室外機内の圧縮機に送られる。この多室用空気調和機では、膨張弁を搭載した分岐ユニットを使用して、膨張弁を有しない複数台の室内機を室外機に接続することを可能にしている。   In this multi-room air conditioner, the high-temperature and high-pressure refrigerant gas discharged from the compressor during cooling operation is condensed in the outdoor heat exchanger to become high-pressure liquid refrigerant, and branches from the outdoor unit through the liquid-side main connection pipe. Sent to the unit. The liquid refrigerant in the branch unit is subcooled by the heat exchanger in the branch unit, and then decompressed by each expansion valve in the branch unit to become a gas-liquid two-phase refrigerant, and is distributed to each indoor unit through the liquid side branch connection pipe. Is done. Here, the distribution of the refrigerant to each indoor unit is performed by the control means controlling each expansion valve in accordance with the operating state of each indoor unit. The refrigerant distributed to the indoor unit is evaporated in the indoor heat exchanger to become a gas refrigerant, and is sent to the branch unit through the gas side branch connecting pipe. The gas refrigerant that has entered the branch unit is wetted by the heat exchanger in the branch unit, and then sent to the compressor in the outdoor unit through the gas-side main communication pipe. In this multi-room air conditioner, it is possible to connect a plurality of indoor units having no expansion valve to an outdoor unit using a branch unit equipped with an expansion valve.

特開平2−213639号公報Japanese Laid-Open Patent Publication No. 2-213039

しかし、上述した特許文献1の多室用空気調和機では、冷房運転時に、室外熱交換器で凝縮された液冷媒が液側主連絡配管を通して分岐ユニットに送られるため、冷凍サイクル中の冷媒量が多く必要となる、という課題があった。   However, in the multi-room air conditioner of Patent Document 1 described above, the liquid refrigerant condensed in the outdoor heat exchanger is sent to the branch unit through the liquid-side main connection pipe during the cooling operation, so the amount of refrigerant in the refrigeration cycle There was a problem that a lot was needed.

そこで、冷凍サイクル中の冷媒量を減らす目的で、室外機から分岐ユニットへ気液二相冷媒の状態として送ることが考えられる。あるいは、室外ユニットから分岐ユニットまでの配管長が長い、または細い場合、圧力損失によって分岐ユニットでは気液二相冷媒の状態になることが考えられる。その場合には、分岐ユニット内の膨張弁で気液二相冷媒を減圧させる必要があるため、小容量の膨張弁での対応ができず、大容量の膨張弁を適用せざるを得ないこととなる。膨張弁の大型化に伴い、分岐ユニットの大型化やコストアップを招く、という新たな課題が生じていた。または、室外ユニットから分岐ユニットまでの配管長を短く制御しなければならないという課題を生じていた。   Therefore, for the purpose of reducing the amount of refrigerant in the refrigeration cycle, it is conceivable to send the state of gas-liquid two-phase refrigerant from the outdoor unit to the branch unit. Alternatively, when the pipe length from the outdoor unit to the branch unit is long or thin, it is considered that the branch unit is in a gas-liquid two-phase refrigerant state due to pressure loss. In that case, it is necessary to depressurize the gas-liquid two-phase refrigerant with the expansion valve in the branch unit, so it is not possible to cope with the small capacity expansion valve, and a large capacity expansion valve must be applied. It becomes. Along with the increase in the size of the expansion valve, there has been a new problem of increasing the size and cost of the branch unit. Or the subject that the piping length from an outdoor unit to a branch unit had to be controlled short occurred.

本発明の目的は、中間ユニットの大型化やコストアップを招くことなく、冷凍サイクル中の冷媒量を少量化及び冷房能力の向上、そして室外ユニットから分岐ユニットまでの配管長の延長を図ることができる空気調和機を提供することにある。   An object of the present invention is to reduce the amount of refrigerant in the refrigeration cycle, improve the cooling capacity, and extend the piping length from the outdoor unit to the branch unit without increasing the size and cost of the intermediate unit. The object is to provide an air conditioner that can be used.

前述の目的を達成するために、本発明では、圧縮機及び室外熱交換器を有する室外ユニットと、室内熱交換器を有し且つ室内膨張弁を有しない複数台の室内ユニットと、前記室外ユニットと前記複数の室内ユニットとを連絡する液側連絡配管及びガス側連絡配管と、前記液側連絡配管の途中に介在される中間液側分岐管、前記ガス側連絡配管の途中に介在される中間ガス側分岐管、及び前記中間液側分岐管の室内ユニット側の冷媒配管に設けられた中間膨張弁を有する中間ユニットと、前記中間膨張弁を制御する制御装置と、を備えた空気調和機において、前記中間ユニットは、前記中間液側分岐管の室外ユニット側の冷媒配管と前記中間ガス側分岐管の室外ユニット側の冷媒配管とを接続するバイパス管と、前記バイパス管に設けられた冷媒冷却用膨張弁と、前記バイパス管と前記中間液側分岐管の室外ユニット側の冷媒配管とを相互に熱交換する冷媒冷却用熱交換器と、を備え、前記制御装置は、冷房運転時に、室外ユニット側から流入する気液二相となった冷媒を前記冷媒冷却用熱交換器で冷却して液単相状態で前記中間膨張弁に流入するように、前記冷媒冷却用膨張弁を制御する構成にしたことにある。   In order to achieve the above object, in the present invention, an outdoor unit having a compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger and having no indoor expansion valve, and the outdoor unit A liquid side communication pipe and a gas side communication pipe that communicate with the plurality of indoor units, an intermediate liquid side branch pipe that is interposed in the middle of the liquid side connection pipe, and an intermediate that is interposed in the middle of the gas side communication pipe In an air conditioner comprising: a gas side branch pipe; an intermediate unit having an intermediate expansion valve provided in a refrigerant pipe on the indoor unit side of the intermediate liquid side branch pipe; and a control device that controls the intermediate expansion valve. The intermediate unit includes a bypass pipe connecting the refrigerant pipe on the outdoor unit side of the intermediate liquid side branch pipe and the refrigerant pipe on the outdoor unit side of the intermediate gas side branch pipe, and a cooling pipe provided in the bypass pipe. A cooling expansion valve, and a refrigerant cooling heat exchanger that exchanges heat between the bypass pipe and the refrigerant pipe on the outdoor unit side of the intermediate liquid side branch pipe, and the control device, during cooling operation, The refrigerant cooling expansion valve is controlled so that the refrigerant that has become a gas-liquid two-phase flowing from the outdoor unit side is cooled by the refrigerant cooling heat exchanger and flows into the intermediate expansion valve in a liquid single-phase state. It is in the configuration.

係る本発明のより好ましい具体的な構成例は次の通りである。
(1)前記室外ユニットは室外膨張弁を備え、前記制御装置は冷房運転時に室外ユニット側から流出する冷媒が気液二相となるように制御すること。
(2)前記中間ユニットは前記室外ユニットに接続された複数の中間ユニットで構成され、前記各中間ユニットは前記中間液側分岐管の室外ユニット側の冷媒配管及び前記中間ガス側分岐管の室外ユニット側の冷媒配管に電磁弁を備え、前記室内ユニットは前記室外ユニットの運転によって運転できる台数または合計容量以上の室内ユニットが備えられ、前記制御装置は、運転されない前記中間ユニットがある場合、冷媒量不足の冷凍サイクル状態とならないように前記電磁弁を制御して冷媒回収運転を行うこと。
A more preferable specific configuration example of the present invention is as follows.
(1) The outdoor unit includes an outdoor expansion valve, and the control device controls the refrigerant flowing out from the outdoor unit side during cooling operation to be in a gas-liquid two-phase.
(2) The intermediate unit includes a plurality of intermediate units connected to the outdoor unit, and each of the intermediate units includes a refrigerant pipe on the outdoor unit side of the intermediate liquid side branch pipe and an outdoor unit of the intermediate gas side branch pipe. When a refrigerant valve on the side is provided with a solenoid valve, the indoor unit is provided with the number of indoor units that can be operated by the operation of the outdoor unit or a total capacity or more, and the control device includes the intermediate unit that is not operated, The refrigerant recovery operation is performed by controlling the solenoid valve so as not to be in an insufficient refrigeration cycle state.

係る本発明の空気調和機によれば、中間ユニットの大型化やコストアップを招くことなく、冷凍サイクル中の冷媒量を少量化及び冷房能力の向上、そして配管長の延長を図ることができる。   According to the air conditioner of the present invention, the amount of refrigerant in the refrigeration cycle can be reduced, the cooling capacity can be improved, and the pipe length can be extended without increasing the size and cost of the intermediate unit.

以下、本発明の複数の実施形態について図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

(第1実施形態)
本発明の第1実施形態の空気調和機を図1を用いて説明する。図1は本発明の第1実施形態の空気調和機の冷凍サイクル系統図である。
(First embodiment)
The air conditioner of 1st Embodiment of this invention is demonstrated using FIG. FIG. 1 is a refrigeration cycle diagram of an air conditioner according to a first embodiment of the present invention.

まず、本実施形態の空気調和機の構成に関して説明する。   First, the structure of the air conditioner of this embodiment is demonstrated.

本実施形態の空気調和機は、1台の室外ユニットAと、複数台の室内ユニットBと、1台の中間ユニットCと、室外ユニットA、複数の室内ユニットB及び中間ユニットCを連結する連絡配管Dと、制御装置Eを備えて構成されている。連絡配管Dにより一つの冷凍サイクル系統が構成される。   In the air conditioner of the present embodiment, one outdoor unit A, a plurality of indoor units B, one intermediate unit C, and the outdoor unit A, the plurality of indoor units B, and the intermediate unit C are connected. A pipe D and a control device E are provided. One refrigeration cycle system is constituted by the communication pipe D.

室外ユニットAは、圧縮機21、四方弁22、室外熱交換器23、室外膨張弁24、室外送風機25、室外ガス側阻止弁1及び室外液側阻止弁2を有している。圧縮機21、四方弁22、室外熱交換器23及び室外膨張弁24は、冷凍サイクルの一部を構成するように、室外ガス側阻止弁1と室外液側阻止弁2との間に冷媒配管を介して順に接続されている。   The outdoor unit A includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an outdoor blower 25, an outdoor gas side blocking valve 1, and an outdoor liquid side blocking valve 2. The compressor 21, the four-way valve 22, the outdoor heat exchanger 23, and the outdoor expansion valve 24 are refrigerant pipes between the outdoor gas side blocking valve 1 and the outdoor liquid side blocking valve 2 so as to constitute a part of the refrigeration cycle. Are connected in order.

圧縮機21は、低温低圧のガス冷媒を吸い込んで圧縮し、高温高圧のガス冷媒として吐出する。この圧縮機21は、インバータで駆動され、回転数制御される。   The compressor 21 sucks and compresses the low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant. The compressor 21 is driven by an inverter and the rotational speed is controlled.

四方弁22は、圧縮機21の吸込み側及び吐出側の冷媒配管の冷媒の流れを切り換えて冷房サイクルと暖房サイクルとを形成させるためのものである。冷房サイクルは、冷房運転時に構成される冷凍サイクルであり、図1の実線矢印のように冷媒が流れる。暖房サイクルは、暖房運転時に構成される冷凍サイクルであり、図1の破線矢印のように冷媒が流れる。   The four-way valve 22 switches the refrigerant flow in the refrigerant piping on the suction side and discharge side of the compressor 21 to form a cooling cycle and a heating cycle. The cooling cycle is a refrigeration cycle configured during cooling operation, and the refrigerant flows as indicated by solid line arrows in FIG. A heating cycle is a refrigerating cycle comprised at the time of heating operation, and a refrigerant | coolant flows like the broken-line arrow of FIG.

室外熱交換器23は、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。室外送風機25は、室外空気を室外熱交換器23に送り、室外空気と室外熱交換器23を流れる冷媒とを熱交換させる。   The outdoor heat exchanger 23 functions as a condenser during the cooling operation, and functions as an evaporator during the heating operation. The outdoor blower 25 sends outdoor air to the outdoor heat exchanger 23 to exchange heat between the outdoor air and the refrigerant flowing through the outdoor heat exchanger 23.

室内ユニットBは、室内膨張弁5を内蔵している室内ユニットB1a〜B1bの第1群と、室内膨張弁を内蔵していない室内ユニットB2a〜B2bの第2群とから構成されている。本実施形態では、第1群の室内ユニットB1a〜B1bは2台であるが、それ以外の台数であってもよく、また、第2群の室内ユニットB2a〜B2bは2台であるが、3台以上であってもよい。   The indoor unit B is composed of a first group of indoor units B1a to B1b having a built-in indoor expansion valve 5, and a second group of indoor units B2a to B2b having no built-in indoor expansion valve. In the present embodiment, the number of indoor units B1a to B1b in the first group is two, but the number may be other than that, and the number of indoor units B2a to B2b in the second group is two. It may be more than one.

但し、室内ユニットBの台数または合計容量は、室外ユニットAの運転によって室内ユニットBが運転できる台数または合計容量に制限されている。この制限によって、室外熱交換容量に対し室内熱交換容量が過大となり、サイクルバランスがとれず、冷媒量不足の冷凍サイクル状態となることを防止できる。換言すれば、1台の室外ユニットに組み合わせられる室内ユニットを規定台数以上または規定合計容量以上の接続を行った場合は、室外熱交換容量に対し室内熱交換容量が過大となりサイクルバランスがとれず、冷媒量不足の冷凍サイクル状態となるためである。この冷媒量不足の冷凍サイクル状態では、圧縮機21に内蔵された電動機の冷却不足による絶縁劣化、吐出ガス温度上昇による冷凍機油及び冷媒の劣化、冷媒循環量の減少による冷凍能力低下などの悪影響を及ぼす。そのために冷媒量を追加封入すれば、冷媒量不足の冷凍サイクル状態は解消されるが、圧縮機21の容量や冷媒受液タンク及び補器等の容量に対し冷媒量が過大となるため、蒸発器(冷房時の室内熱交換器、暖房時の室外熱交換器)で完全に蒸発しきれなかった液冷媒が圧縮機21に戻るリキットバック運転となり、冷凍機油の粘度低下、圧縮機21の潤滑不良による軸受磨耗、圧縮機21の故障などの信頼性低下を招く。   However, the number or total capacity of the indoor units B is limited to the number or total capacity that the indoor units B can be operated by the operation of the outdoor unit A. By this restriction, it is possible to prevent the indoor heat exchange capacity from being excessive with respect to the outdoor heat exchange capacity, resulting in a cycle balance not being achieved, and a refrigeration cycle state having an insufficient refrigerant amount. In other words, when connecting more than the specified number of indoor units combined with one outdoor unit or more than the specified total capacity, the indoor heat exchange capacity is excessive with respect to the outdoor heat exchange capacity, and cycle balance cannot be achieved. It is because it will be in the refrigerating cycle state with insufficient refrigerant quantity. In this refrigeration cycle state where the amount of refrigerant is insufficient, adverse effects such as insulation deterioration due to insufficient cooling of the motor built in the compressor 21, deterioration of refrigeration oil and refrigerant due to an increase in discharge gas temperature, and reduction in refrigeration capacity due to a decrease in refrigerant circulation amount, etc. Effect. For this reason, if the refrigerant amount is additionally sealed, the refrigeration cycle state in which the refrigerant amount is insufficient is eliminated, but the refrigerant amount becomes excessive with respect to the capacity of the compressor 21 and the capacity of the refrigerant liquid receiving tank and auxiliary equipment. Liquid refrigerant that could not be completely evaporated in the cooler (indoor heat exchanger during cooling, outdoor heat exchanger during heating) is returned to the compressor 21, thereby reducing the viscosity of the refrigerating machine oil and lubricating the compressor 21. Deterioration of reliability such as bearing wear due to defects and failure of the compressor 21 is caused.

第1群の室内ユニットB1a〜B1bは、室内送風機3、室内熱交換器4及び室内膨張弁5を内蔵して有しており、中間ユニットCを介することなく連絡配管Dを介して室外ユニットAに連通されている。   The first group of indoor units B1a to B1b includes an indoor blower 3, an indoor heat exchanger 4, and an indoor expansion valve 5. The outdoor unit A is not connected to the outdoor unit A via the connecting pipe D without the intermediate unit C. It is communicated to.

室内熱交換器4は、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能する。室内送風機3は、室内空気を室内熱交換器4に送り、室内空気と室内熱交換器4を流れる冷媒とを熱交換させる。室内膨張弁5は、冷房運転時には絞り機能を有し、暖房運転時には全開されて絞り機能を有しないように、制御装置Eにより制御される。   The indoor heat exchanger 4 functions as an evaporator during the cooling operation and functions as a condenser during the heating operation. The indoor blower 3 sends room air to the indoor heat exchanger 4 to exchange heat between the room air and the refrigerant flowing through the indoor heat exchanger 4. The indoor expansion valve 5 is controlled by the control device E so as to have a throttling function during the cooling operation and to be fully opened and not have a throttling function during the heating operation.

第2群の室内ユニットB2a〜B2bは、室内送風機3及び室内熱交換器4を内蔵して有しており、連絡配管D及び中間ユニットCを介して室外ユニットAに連通されている。室内ユニットB2a〜B2bは、室内膨張弁5を有していない点で第1群の室内ユニットB1a〜B1bと異なるが、その他の基本的な構成で第1群の室内ユニットB1a〜B1bと同じである。   The second group of indoor units B2a to B2b includes an indoor blower 3 and an indoor heat exchanger 4, and communicates with the outdoor unit A via a communication pipe D and an intermediate unit C. The indoor units B2a to B2b differ from the first group of indoor units B1a to B1b in that they do not have the indoor expansion valve 5, but are the same as the first group of indoor units B1a to B1b in other basic configurations. is there.

連絡配管Dは液側連絡配管D1とガス側連絡配管D2とから構成されている。液側連絡配管D1の途中には複数の液側分岐管7a〜7bが設けられている。そして、液側連絡配管D1は、室外液側阻止弁2から液側分岐管7aに延びる冷媒配管D11と、各液側分岐管7a〜7b間を接続する冷媒配管D12と、各液側分岐管7a〜7bから分岐して第1群の室内ユニットB1a〜B1bに延びる冷媒配管D131と、液側分岐管7bから分岐して第2群の室内ユニットB2a〜B2bに延びる冷媒配管D132とから構成されている。   The connecting pipe D is composed of a liquid side connecting pipe D1 and a gas side connecting pipe D2. A plurality of liquid side branch pipes 7a to 7b are provided in the middle of the liquid side communication pipe D1. The liquid side communication pipe D1 includes a refrigerant pipe D11 extending from the outdoor liquid side blocking valve 2 to the liquid side branch pipe 7a, a refrigerant pipe D12 connecting the liquid side branch pipes 7a to 7b, and each liquid side branch pipe. A refrigerant pipe D131 branched from the first group of indoor units B1a to B1b and a refrigerant pipe D132 branched from the liquid side branch pipe 7b and extended to the second group of indoor units B2a to B2b. ing.

ガス側連絡配管D2の途中には複数のガス側分岐管6a〜6bが設けられている。そして、連絡配管D2は、室外ガス側阻止弁1からガス側分岐管6aに延びる冷媒配管D21と、各ガス側分岐管6a〜6b間を接続する冷媒配管D22と、各ガス側分岐管6a〜6bから分岐して第1群の室内ユニットB1a〜B1bに延びる冷媒配管D231と、ガス側分岐管6bから分岐して第2群のB2a〜B2bに延びる冷媒配管D232とから構成されている。   A plurality of gas side branch pipes 6a to 6b are provided in the middle of the gas side communication pipe D2. The communication pipe D2 includes a refrigerant pipe D21 extending from the outdoor gas side blocking valve 1 to the gas side branch pipe 6a, a refrigerant pipe D22 connecting the gas side branch pipes 6a to 6b, and the gas side branch pipes 6a to 6a. A refrigerant pipe D231 branched from 6b and extending to the first group of indoor units B1a to B1b and a refrigerant pipe D232 branched from the gas side branch pipe 6b and extended to the second group of B2a to B2b.

中間ユニットCは、室外ユニットAと複数の室内ユニットBとを連絡する連絡配管Dの途中に介在して設けられている。具体的には、中間ユニットCは、液側分岐管7b及びガス側分岐管6bと第2群の室内ユニットB2a〜B2bとを連絡する冷媒配管D132、D232の途中に介在して設けられている。   The intermediate unit C is provided in the middle of a connecting pipe D that connects the outdoor unit A and the plurality of indoor units B. Specifically, the intermediate unit C is provided in the middle of the refrigerant pipes D132 and D232 connecting the liquid side branch pipe 7b and the gas side branch pipe 6b and the second group of indoor units B2a to B2b. .

中間ユニットCの冷媒配管は、液側連絡配管D1(具体的には、冷媒配管D132)の途中に介在される液側冷媒配管C1と、ガス側連絡配管D2(具体的には、冷媒配管D232)の途中に介在されるガス側冷媒配管C2と、液側冷媒配管C1とガス側冷媒配管C2とを接続するバイパス管C3と、を有する。   The refrigerant pipe of the intermediate unit C includes a liquid side refrigerant pipe C1 interposed in the middle of the liquid side communication pipe D1 (specifically, refrigerant pipe D132) and a gas side communication pipe D2 (specifically, refrigerant pipe D232). ) And a bypass pipe C3 connecting the liquid side refrigerant pipe C1 and the gas side refrigerant pipe C2.

液側冷媒配管C1の途中には、バイパス回路分岐用の中間液側分岐管10a、室内ユニット分岐用の中間液側分岐管10bが設けられている。ガス側冷媒配管C2の途中には、バイパス回路分岐用の中間ガス側分岐管14a、室内ユニット分岐用の中間ガス側分岐管14bが設けられている。   In the middle of the liquid side refrigerant pipe C1, an intermediate liquid side branch pipe 10a for branching the bypass circuit and an intermediate liquid side branch pipe 10b for branching the indoor unit are provided. In the middle of the gas side refrigerant pipe C2, an intermediate gas side branch pipe 14a for bypass circuit branching and an intermediate gas side branch pipe 14b for indoor unit branching are provided.

液側冷媒配管C1は、室外側の冷媒配管D132から中間液側分岐管10aへ延びる冷媒配管C11と、中間液側分岐管10a、10b間を接続する冷媒配管C12と、中間液側分岐管10bから分岐して第2群の室内ユニットB2a〜B2bに延びる冷媒配管C13と、から構成されている。   The liquid side refrigerant pipe C1 includes a refrigerant pipe C11 extending from the outdoor side refrigerant pipe D132 to the intermediate liquid side branch pipe 10a, a refrigerant pipe C12 connecting the intermediate liquid side branch pipes 10a and 10b, and the intermediate liquid side branch pipe 10b. And a refrigerant pipe C13 extending from the second group of indoor units B2a to B2b.

ガス側冷媒配管C2は、室外側の冷媒配管D232から中間ガス側分岐管14aへ延びる冷媒配管C21と、中間ガス側分岐管14a、14b間を接続する冷媒配管C22と、ガス側分岐管14bから分岐して第2群の室内ユニットB2a〜B2bに延びる冷媒配管C23と、から構成されている。   The gas side refrigerant pipe C2 includes a refrigerant pipe C21 extending from the outdoor side refrigerant pipe D232 to the intermediate gas side branch pipe 14a, a refrigerant pipe C22 connecting the intermediate gas side branch pipes 14a and 14b, and a gas side branch pipe 14b. The refrigerant pipe C23 is branched and extends to the second group of indoor units B2a to B2b.

冷媒配管C11には液側電磁弁9が設けられ、冷媒配管C21にはガス側電磁弁8が設けられている。液側電磁弁9、ガス側電磁弁8とも第2群の室内ユニットB2a〜B2bが使用されない時に閉じられる。各冷媒配管C13には室内ユニット用の中間膨張弁15が設けられている。   A liquid side solenoid valve 9 is provided in the refrigerant pipe C11, and a gas side solenoid valve 8 is provided in the refrigerant pipe C21. Both the liquid side solenoid valve 9 and the gas side solenoid valve 8 are closed when the second group of indoor units B2a to B2b are not used. Each refrigerant pipe C13 is provided with an intermediate expansion valve 15 for an indoor unit.

バイパス管C3は、冷房運転時に、冷媒配管C12、C13、室内ユニットB2a、B2b、冷媒配管C23、C22をバイパスして冷媒を流すバイパス回路を構成する。バイパス管C3の一部と冷媒配管C12の一部とが相互に熱交換する冷媒冷却用熱交換器13が設けられている。バイパス管C3には冷媒冷却用膨張弁12が設けられている。この冷媒冷却用膨張弁12は、中間液側分岐管10aと冷媒冷却用熱交換器13との間に位置している。   The bypass pipe C3 configures a bypass circuit that bypasses the refrigerant pipes C12 and C13, the indoor units B2a and B2b, and the refrigerant pipes C23 and C22 and flows the refrigerant during the cooling operation. A refrigerant cooling heat exchanger 13 for exchanging heat between a part of the bypass pipe C3 and a part of the refrigerant pipe C12 is provided. The bypass pipe C3 is provided with an expansion valve 12 for cooling the refrigerant. The refrigerant cooling expansion valve 12 is located between the intermediate liquid side branch pipe 10 a and the refrigerant cooling heat exchanger 13.

制御装置Eは、ガス側電磁弁8、液側電磁弁9、冷媒冷却用膨張弁12及び中間膨張弁15などを制御するものである。なお、図1では、冷媒冷却用膨張弁12及び中間膨張弁15の制御を強調するために、制御装置Eと冷媒冷却用膨張弁12及び中間膨張弁15とを一点鎖線の矢印で結んである。また、制御装置Eは、一箇所に集中して配置するようにしてもよく、或いは各ユニットに分散して配置するようにしてもよい。   The control device E controls the gas side solenoid valve 8, the liquid side solenoid valve 9, the refrigerant cooling expansion valve 12, the intermediate expansion valve 15, and the like. In FIG. 1, in order to emphasize the control of the refrigerant cooling expansion valve 12 and the intermediate expansion valve 15, the control device E and the refrigerant cooling expansion valve 12 and the intermediate expansion valve 15 are connected by a dashed line arrow. . Further, the control device E may be arranged in a concentrated manner, or may be distributed in each unit.

次に、本実施形態の空気調和機の冷房運転時の動作を説明する。冷房運転時には、四方弁22が冷房サイクルを構成するように切り換えられ、図1の実線矢印のように冷媒が流れる。   Next, the operation | movement at the time of the cooling operation of the air conditioner of this embodiment is demonstrated. During the cooling operation, the four-way valve 22 is switched so as to constitute a cooling cycle, and the refrigerant flows as indicated by solid line arrows in FIG.

即ち、圧縮機21で圧縮されて高温高圧となったガス冷媒は、室外熱交換器23で室外空気に放熱されることにより、凝縮されて液冷媒とされる。この液冷媒は、室外膨張弁24で若干減圧されることにより、気液二相冷媒とされる。   That is, the gas refrigerant compressed to high temperature and high pressure by the compressor 21 is radiated to the outdoor air by the outdoor heat exchanger 23 to be condensed and converted into liquid refrigerant. This liquid refrigerant is made into a gas-liquid two-phase refrigerant by being slightly decompressed by the outdoor expansion valve 24.

この気液二相冷媒は、室外液側阻止弁2から液側連絡配管D1に流出され、液側分岐管7a、7bにより分岐されて室内膨張弁5を有する室内ユニットB1a〜B1b及び中間膨張弁15を有する中間ユニットCに流入される。ここで、室外ユニットAと室内ユニットB1a〜B1b及び中間ユニットCとを連絡する冷媒配管D11、D12、D131、D132には、気液二相冷媒が流れるので、従来技術の液冷媒が流れる場合に比較して、冷凍サイクル中の冷媒量を少量化することが可能である。   This gas-liquid two-phase refrigerant flows out from the outdoor liquid side blocking valve 2 to the liquid side communication pipe D1, and is branched by the liquid side branch pipes 7a and 7b to have the indoor units B1a to B1b and the intermediate expansion valve having the indoor expansion valve 5. 15 into the intermediate unit C. Here, since the gas-liquid two-phase refrigerant flows through the refrigerant pipes D11, D12, D131, and D132 that connect the outdoor unit A, the indoor units B1a to B1b, and the intermediate unit C, when the liquid refrigerant of the prior art flows. In comparison, the amount of refrigerant in the refrigeration cycle can be reduced.

室内ユニットB1a〜B1bに流入された気液二相冷媒は、室内膨張弁5により減圧され、室内熱交換器4で室内空気から吸熱する(室内を冷房する)ことにより蒸発されてガス冷媒となる。このガス冷媒は、冷媒配管D231、D22、D21を通して室外ガス側阻止弁1から室外ユニットAに流入され、四方弁22を介して圧縮機21に流入される。   The gas-liquid two-phase refrigerant that has flowed into the indoor units B1a to B1b is depressurized by the indoor expansion valve 5 and is evaporated by absorbing heat from the indoor air (cooling the room) by the indoor heat exchanger 4 to become a gas refrigerant. . This gas refrigerant flows from the outdoor gas side blocking valve 1 into the outdoor unit A through the refrigerant pipes D231, D22, and D21, and flows into the compressor 21 through the four-way valve 22.

一方、中間ユニットCに流入された気液二相冷媒は、冷媒配管C1を通り、中間液側分岐管10aでバイバス管C3と冷媒配管C12とに分岐される。   On the other hand, the gas-liquid two-phase refrigerant that has flowed into the intermediate unit C passes through the refrigerant pipe C1 and is branched into the bypass pipe C3 and the refrigerant pipe C12 by the intermediate liquid side branch pipe 10a.

バイバス管C3へ分岐された気液二相冷媒は、冷媒冷却用膨張弁12により減圧されて低温低圧の気液二相冷媒とされた後に、冷媒冷却用熱交換器13で蒸発されてガス冷媒となる。このガス冷媒は、中間ガス側分岐管14aで室内ユニットB2a〜B2bからの冷媒と合流され、圧縮機21に戻される。   The gas-liquid two-phase refrigerant branched to the bypass pipe C3 is decompressed by the refrigerant cooling expansion valve 12 to be a low-temperature low-pressure gas-liquid two-phase refrigerant, and then evaporated by the refrigerant cooling heat exchanger 13 to be gas refrigerant. It becomes. This gas refrigerant is merged with refrigerant from the indoor units B2a to B2b in the intermediate gas side branch pipe 14a and returned to the compressor 21.

冷媒配管C12へ分岐された気液二相冷媒は、冷媒冷却用熱交換器13で冷却されて液単相の冷媒とされる。これによって、冷凍サイクル上の比エンタルピ差をより多く取れるため、少ない冷媒量を維持したまま冷房能力を向上させることが可能となる。   The gas-liquid two-phase refrigerant branched to the refrigerant pipe C12 is cooled by the refrigerant cooling heat exchanger 13 to be a liquid single-phase refrigerant. As a result, a larger specific enthalpy difference on the refrigeration cycle can be obtained, so that the cooling capacity can be improved while maintaining a small amount of refrigerant.

この液冷媒は、中間液側分岐管10bで複数の冷媒配管C13に分岐され、各冷媒配管C13に設けられた中間膨張弁15により減圧される。このように、中間膨張弁15は、流入される液冷媒を減圧することとなるため、小容量膨張弁で減圧対応が可能となり、容量が大きい室内ユニットでも小容量膨張弁が使用可能となる。   The liquid refrigerant is branched into a plurality of refrigerant pipes C13 by the intermediate liquid side branch pipe 10b, and the pressure is reduced by the intermediate expansion valve 15 provided in each refrigerant pipe C13. Thus, since the intermediate expansion valve 15 depressurizes the liquid refrigerant that flows in, the intermediate expansion valve 15 can be depressurized with a small-capacity expansion valve, and the small-capacity expansion valve can be used even in an indoor unit with a large capacity.

中間膨張弁15により減圧された気液二相冷媒は、室内熱交換器4で室内空気から吸熱する(室内を冷房する)ことにより蒸発されてガス冷媒となる。このガス冷媒は、冷媒配管C23を通って中間ガス側分岐管14bで合流され、さらに冷媒配管C22を通って中間ガス側分岐管14aでバイバス管C3の冷媒と合流された後、冷媒配管D232、D22、D21を通して室外ガス側阻止弁1から室外ユニットAに流入され、四方弁22を介して圧縮機21に戻される。   The gas-liquid two-phase refrigerant decompressed by the intermediate expansion valve 15 is vaporized by absorbing heat from room air (cooling the room) by the indoor heat exchanger 4 and becomes gas refrigerant. This gas refrigerant is merged in the intermediate gas side branch pipe 14b through the refrigerant pipe C23, and further merged with the refrigerant in the bypass pipe C3 in the intermediate gas side branch pipe 14a through the refrigerant pipe C22, and then the refrigerant pipe D232, It flows into the outdoor unit A from the outdoor gas side blocking valve 1 through D22 and D21, and returns to the compressor 21 through the four-way valve 22.

本実施形態によれば、中間ユニットCは、中間液側分岐管10bの室外ユニット側の冷媒配管C1(C11またはC12)と中間ガス側分岐管14bの室外ユニット側の冷媒配管C2(C21またはC22)とを接続するバイパス管C3と、このバイパス管C3に設けられた冷媒冷却用膨張弁12と、バイパス管C3と中間液側分岐管10bの室外ユニット側の冷媒配管C1(C12)とを相互に熱交換する冷媒冷却用熱交換器13と、を備え、制御装置Eは、冷房運転時に、室外ユニットA側から流入する気液二相となった冷媒を冷媒冷却用熱交換器13で冷却して液単相状態で中間膨張弁15に流入するように、冷媒冷却用膨張弁12を制御する構成としているので、中間ユニットCの大型化やコストアップを招くことなく、冷凍サイクル中の冷媒量を少量化及び冷房能力の向上を図れる空気調和機を提供できる。   According to this embodiment, the intermediate unit C includes the refrigerant pipe C1 (C11 or C12) on the outdoor unit side of the intermediate liquid side branch pipe 10b and the refrigerant pipe C2 (C21 or C22) on the outdoor unit side of the intermediate gas side branch pipe 14b. ), A refrigerant cooling expansion valve 12 provided in the bypass pipe C3, and the bypass pipe C3 and the refrigerant pipe C1 (C12) on the outdoor unit side of the intermediate liquid side branch pipe 10b. And the refrigerant cooling heat exchanger 13 that exchanges heat with the refrigerant. The control device E cools the refrigerant that has become a gas-liquid two-phase flowing in from the outdoor unit A side by the refrigerant cooling heat exchanger 13 during the cooling operation. Thus, the refrigerant cooling expansion valve 12 is controlled so as to flow into the intermediate expansion valve 15 in the liquid single phase state, so that the refrigeration cycle can be performed without increasing the size and cost of the intermediate unit C. The refrigerant amount can be provided an air conditioner can be improved minor reduction and cooling capacity in.

(第2実施形態)
次に、本発明の第2実施形態の空気調和機について図2を用いて説明する。図2は本発明の第2実施形態の空気調和機の冷凍サイクル系統図である。この第2実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
(Second Embodiment)
Next, the air conditioner of 2nd Embodiment of this invention is demonstrated using FIG. FIG. 2 is a refrigeration cycle system diagram of an air conditioner according to a second embodiment of the present invention. The second embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第2実施形態では、1台の室外ユニットAに複数台の中間ユニットCを接続し、各中間ユニットCに室内膨張弁を有しない複数の室内ユニットB2a〜B2n、B3a〜B3nを接続している。換言すれば、室外ユニットAの運転によって室内ユニットBが運転できる台数または合計容量以上の室内ユニットBが接続されている。   In the second embodiment, a plurality of intermediate units C are connected to one outdoor unit A, and a plurality of indoor units B2a to B2n and B3a to B3n not having an indoor expansion valve are connected to each intermediate unit C. Yes. In other words, the number of indoor units B that can be operated by the operation of the outdoor unit A or the indoor units B that are greater than the total capacity are connected.

制御装置Eは、追加した中間ユニットCのガス側電磁弁8、液側電磁弁9、冷媒冷却用膨張弁12及び中間膨張弁15も制御する。そして、制御装置Eは、冷房運転時、1台の中間ユニットCが運転されない場合(即ち、当該中間ユニットCに接続された複数の室内ユニット、例えば室内ユニットB2a〜B2nを全て運転しない場合)には、当該中間ユニットCの液側電磁弁9を全閉とした後、所定時間だけ室内ユニットB2a〜B2n内の冷媒を回収運転させ、所定時間経過後にガス側電磁弁8を全閉とさせる。また、制御装置Eは、暖房運転時、1台の中間ユニットCが運転されない場合(即ち、当該中間ユニットCに接続された複数の室内ユニット、例えば室内ユニットB2a〜B2nを全て運転しない場合)には、当該中間ユニットCのガス側電磁弁8を全閉とした後、所定時間だけ室内ユニットB2a〜B2n内の冷媒を回収運転させ、所定時間経過後に液側電磁弁9を全閉とさせる。これにより、運転しない室内ユニットB2a〜B2nには冷媒が流れず、冷媒量不足の冷凍サイクル状態にならない。従って、1台の室外ユニットAに組み合わせられる室内ユニットBは規定台数以上または規定合計容量以上の接続が可能である。   The control device E also controls the gas side solenoid valve 8, the liquid side solenoid valve 9, the refrigerant cooling expansion valve 12 and the intermediate expansion valve 15 of the added intermediate unit C. And the control apparatus E is the case where one intermediate | middle unit C is not drive | operated at the time of air_conditionaing | cooling operation (namely, when not operating all the indoor units connected to the said intermediate | middle unit C, for example, indoor unit B2a-B2n). After fully closing the liquid side electromagnetic valve 9 of the intermediate unit C, the refrigerant in the indoor units B2a to B2n is recovered for a predetermined time, and the gas side electromagnetic valve 8 is fully closed after a predetermined time has elapsed. Moreover, the control apparatus E is in the case of heating operation, when one intermediate unit C is not operated (that is, when a plurality of indoor units connected to the intermediate unit C, for example, all the indoor units B2a to B2n are not operated). After the gas side electromagnetic valve 8 of the intermediate unit C is fully closed, the refrigerant in the indoor units B2a to B2n is recovered for a predetermined time, and the liquid side electromagnetic valve 9 is fully closed after the predetermined time has elapsed. As a result, the refrigerant does not flow through the indoor units B2a to B2n that are not in operation, and the refrigeration cycle state in which the refrigerant amount is insufficient is not achieved. Therefore, the indoor unit B combined with one outdoor unit A can be connected in a specified number or more or a specified total capacity.

本発明の第1実施形態の空気調和機の冷凍サイクル系統図である。It is a refrigerating cycle system diagram of the air harmony machine of a 1st embodiment of the present invention. 本発明の第2実施形態の空気調和機の冷凍サイクル系統図である。It is a refrigeration cycle system diagram of the air conditioner of the second embodiment of the present invention.

1…室外ガス側阻止弁、2…室外液側阻止弁、3…室内送風機、4…室内熱交換器、5…室内膨張弁、6a〜6b…ガス側分岐管、7a〜7b…液側分岐管、8…ガス側電磁弁、9…液側電磁弁、10a…中間液側分岐管(バイパス回路分岐用)、10b…中間液側分岐管(室内ユニット分岐用)、12…冷媒冷却用膨張弁、13…冷媒冷却用熱交換器、14a…中間ガス側分岐管(バイパス回路分岐用)、14b…中間ガス側分岐管(室内ユニット分岐用)、15…中間膨張弁(各室内ユニット用)、21…圧縮機、22…四方弁、23…室外熱交換器、24…室外膨張弁、25…室外送風機、A…室外ユニット、B…室内ユニット、B1a〜B1b…室内ユニット(第1群の室内ユニット)、B2a〜B2b…室内ユニット(第2群の室内ユニット)、C…中間ユニット、C1…液側冷媒配管、C2…ガス側冷媒配管、C3…バイパス回路、D…連絡配管、D1…液側連絡配管、D2…ガス側連絡配管、E…制御装置。   DESCRIPTION OF SYMBOLS 1 ... Outdoor gas side blocking valve, 2 ... Outdoor liquid side blocking valve, 3 ... Indoor fan, 4 ... Indoor heat exchanger, 5 ... Indoor expansion valve, 6a-6b ... Gas side branch pipe, 7a-7b ... Liquid side branch Pipe 8, Gas side solenoid valve, 9 Liquid side solenoid valve, 10 a Intermediate liquid side branch pipe (for bypass circuit branch), 10 b Intermediate liquid side branch pipe (for indoor unit branch), 12 Expansion for refrigerant cooling Valve, 13 ... Heat exchanger for cooling refrigerant, 14a ... Intermediate gas side branch pipe (for bypass circuit branch), 14b ... Intermediate gas side branch pipe (for indoor unit branch), 15 ... Intermediate expansion valve (for each indoor unit) , 21 ... compressor, 22 ... four-way valve, 23 ... outdoor heat exchanger, 24 ... outdoor expansion valve, 25 ... outdoor blower, A ... outdoor unit, B ... indoor unit, B1a-B1b ... indoor unit (first group Indoor unit), B2a to B2b ... Indoor unit (second group of rooms) Unit), C ... intermediate unit, C1 ... liquid side refrigerant piping, C2 ... gas side refrigerant piping, C3 ... bypass circuit, D ... communication piping, D1 ... liquid side communication piping, D2 ... gas side communication piping, E ... control device .

Claims (3)

圧縮機及び室外熱交換器を有する室外ユニットと、
室内熱交換器を有し且つ室内膨張弁を有しない複数台の室内ユニットと、
前記室外ユニットと前記複数の室内ユニットとを連絡する液側連絡配管及びガス側連絡配管と、
前記液側連絡配管の途中に介在される中間液側分岐管、前記ガス側連絡配管の途中に介在される中間ガス側分岐管、及び前記中間液側分岐管の室内ユニット側の冷媒配管に設けられた中間膨張弁を有する中間ユニットと、
前記中間膨張弁を制御する制御装置と、を備えた空気調和機において、
前記中間ユニットは、前記中間液側分岐管の室外ユニット側の冷媒配管と前記中間ガス側分岐管の室外ユニット側の冷媒配管とを接続するバイパス管と、前記バイパス管に設けられた冷媒冷却用膨張弁と、前記バイパス管と前記中間液側分岐管の室外ユニット側の冷媒配管とを相互に熱交換する冷媒冷却用熱交換器と、を備え、
前記制御装置は、冷房運転時に、室外ユニット側から流入する気液二相となった冷媒を前記冷媒冷却用熱交換器で冷却して液単相状態で前記中間膨張弁に流入するように、前記冷媒冷却用膨張弁を制御する
ことを特徴とする空気調和機。
An outdoor unit having a compressor and an outdoor heat exchanger;
A plurality of indoor units having an indoor heat exchanger and not having an indoor expansion valve;
A liquid side connecting pipe and a gas side connecting pipe that connect the outdoor unit and the plurality of indoor units;
Provided in the intermediate liquid side branch pipe interposed in the middle of the liquid side communication pipe, the intermediate gas side branch pipe interposed in the middle of the gas side communication pipe, and the refrigerant pipe on the indoor unit side of the intermediate liquid side branch pipe An intermediate unit having an intermediate expansion valve,
In an air conditioner comprising a control device for controlling the intermediate expansion valve,
The intermediate unit includes a bypass pipe connecting the refrigerant pipe on the outdoor unit side of the intermediate liquid side branch pipe and the refrigerant pipe on the outdoor unit side of the intermediate gas side branch pipe, and for cooling the refrigerant provided in the bypass pipe An expansion valve; and a refrigerant cooling heat exchanger that exchanges heat between the bypass pipe and the refrigerant pipe on the outdoor unit side of the intermediate liquid side branch pipe.
In the cooling operation, the control device cools the refrigerant that has become a gas-liquid two-phase flowing from the outdoor unit side with the refrigerant cooling heat exchanger and flows into the intermediate expansion valve in a liquid single-phase state. The air conditioner characterized by controlling the expansion valve for cooling the refrigerant.
請求項1において、前記室外ユニットは室外膨張弁を備え、前記制御装置は冷房運転時に室外ユニット側から流出する冷媒が気液二相となるように制御することを特徴とする空気調和機。   2. The air conditioner according to claim 1, wherein the outdoor unit includes an outdoor expansion valve, and the control device controls the refrigerant flowing out from the outdoor unit side during cooling operation so as to be in a gas-liquid two-phase. 請求項1において、前記中間ユニットは前記室外ユニットに接続された複数の中間ユニットで構成され、前記各中間ユニットは前記中間液側分岐管の室外ユニット側の冷媒配管及び前記中間ガス側分岐管の室外ユニット側の冷媒配管に電磁弁を備え、前記室内ユニットは前記室外ユニットの運転によって運転できる台数または合計容量以上の室内ユニットが備えられ、前記制御装置は、運転されない前記中間ユニットがある場合、冷媒量不足の冷凍サイクル状態とならないように前記電磁弁を制御して冷媒回収運転を行うことを特徴とする空気調和機。   2. The intermediate unit according to claim 1, wherein the intermediate unit includes a plurality of intermediate units connected to the outdoor unit, and each of the intermediate units includes a refrigerant pipe on an outdoor unit side of the intermediate liquid side branch pipe and a refrigerant pipe on the intermediate gas side branch pipe. When the refrigerant pipe on the outdoor unit side is provided with a solenoid valve, the indoor unit is provided with the number of indoor units that can be operated by the operation of the outdoor unit or the total capacity or more, and the control device has the intermediate unit that is not operated, An air conditioner that performs a refrigerant recovery operation by controlling the electromagnetic valve so as not to be in a refrigeration cycle state in which a refrigerant amount is insufficient.
JP2009011863A 2009-01-22 2009-01-22 Air conditioner Expired - Fee Related JP5186398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011863A JP5186398B2 (en) 2009-01-22 2009-01-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011863A JP5186398B2 (en) 2009-01-22 2009-01-22 Air conditioner

Publications (2)

Publication Number Publication Date
JP2010169309A true JP2010169309A (en) 2010-08-05
JP5186398B2 JP5186398B2 (en) 2013-04-17

Family

ID=42701634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011863A Expired - Fee Related JP5186398B2 (en) 2009-01-22 2009-01-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP5186398B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112622A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device
WO2017195294A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Refrigeration cycle device
WO2018062184A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
WO2018062177A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
US11199342B2 (en) 2015-06-18 2021-12-14 Daikin Industries, Ltd. Air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121234U (en) * 1984-07-10 1986-02-07 ダイキン工業株式会社 Multi-room air conditioner
JPS62125265A (en) * 1985-11-25 1987-06-06 株式会社東芝 Air conditioner
JPH02133744A (en) * 1988-11-11 1990-05-22 Daikin Ind Ltd Air conditioner
JPH02223756A (en) * 1989-02-27 1990-09-06 Toshiba Corp Air conditioner
JPH1114195A (en) * 1998-06-29 1999-01-22 Hitachi Ltd Air conditioner
JP2007139265A (en) * 2005-11-16 2007-06-07 Mitsubishi Heavy Ind Ltd Operation control method and program for multiple type air conditioner
JP2007309538A (en) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp Air conditioner
JP2008180422A (en) * 2007-01-23 2008-08-07 Daikin Ind Ltd Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121234U (en) * 1984-07-10 1986-02-07 ダイキン工業株式会社 Multi-room air conditioner
JPS62125265A (en) * 1985-11-25 1987-06-06 株式会社東芝 Air conditioner
JPH02133744A (en) * 1988-11-11 1990-05-22 Daikin Ind Ltd Air conditioner
JPH02223756A (en) * 1989-02-27 1990-09-06 Toshiba Corp Air conditioner
JPH1114195A (en) * 1998-06-29 1999-01-22 Hitachi Ltd Air conditioner
JP2007139265A (en) * 2005-11-16 2007-06-07 Mitsubishi Heavy Ind Ltd Operation control method and program for multiple type air conditioner
JP2007309538A (en) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp Air conditioner
JP2008180422A (en) * 2007-01-23 2008-08-07 Daikin Ind Ltd Air conditioner

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112622A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device
US11199342B2 (en) 2015-06-18 2021-12-14 Daikin Industries, Ltd. Air conditioner
JPWO2017195294A1 (en) * 2016-05-11 2018-11-22 三菱電機株式会社 Refrigeration cycle equipment
WO2017195294A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Refrigeration cycle device
CN109804209A (en) * 2016-09-30 2019-05-24 大金工业株式会社 Air-conditioning device
JP2018054237A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
WO2018062177A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
CN109791007A (en) * 2016-09-30 2019-05-21 大金工业株式会社 Air-conditioning device
JP2018054238A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
AU2017338192B2 (en) * 2016-09-30 2019-06-06 Daikin Industries, Ltd. Air conditioning apparatus
EP3521732A4 (en) * 2016-09-30 2019-08-07 Daikin Industries, Ltd. Air conditioner
EP3521719A4 (en) * 2016-09-30 2019-10-16 Daikin Industries, Ltd. Air conditioner
CN109804209B (en) * 2016-09-30 2020-05-12 大金工业株式会社 Air conditioner
US10670282B2 (en) 2016-09-30 2020-06-02 Daikin Industries, Ltd. Air conditioning apparatus
US11022354B2 (en) 2016-09-30 2021-06-01 Daikin Industries, Ltd. Air conditioner
WO2018062184A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP5186398B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5239824B2 (en) Refrigeration equipment
US7805961B2 (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
JP2008096093A (en) Refrigerating device
EP2541169A1 (en) Air conditioner and air-conditioning hot-water-supplying system
JP6067178B2 (en) Heat source side unit and air conditioner
JP2008249219A (en) Refrigerating air conditioner
JP2008170063A (en) Multiple type air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP5186398B2 (en) Air conditioner
JP2010112579A (en) Refrigerating device
JP5277854B2 (en) Air conditioner
JP2017101854A (en) Air conditioning system
KR102122510B1 (en) An air conditioning system
JP5216557B2 (en) Refrigeration cycle equipment
JP2010112582A (en) Refrigerating device
JP4273588B2 (en) Air conditioner refrigerant circuit
JP6021943B2 (en) Air conditioner
JP7469621B2 (en) Air Conditioning Equipment
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
JP6042037B2 (en) Refrigeration cycle equipment
JP2013139935A (en) Refrigerating device
JP2004332961A (en) Air conditioner
JP5525906B2 (en) Refrigeration cycle equipment
JP2006300507A (en) Refrigeration device
JP2004309088A (en) Refrigerating or air-conditioning system and its replacement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees