JP2006064311A - Inner helically-grooved heat transfer pipe for evaporator - Google Patents

Inner helically-grooved heat transfer pipe for evaporator Download PDF

Info

Publication number
JP2006064311A
JP2006064311A JP2004248723A JP2004248723A JP2006064311A JP 2006064311 A JP2006064311 A JP 2006064311A JP 2004248723 A JP2004248723 A JP 2004248723A JP 2004248723 A JP2004248723 A JP 2004248723A JP 2006064311 A JP2006064311 A JP 2006064311A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
refrigerant
transfer tube
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004248723A
Other languages
Japanese (ja)
Other versions
JP4386813B2 (en
Inventor
Soubu Ri
相武 李
Chikara Saeki
主税 佐伯
Hiroharu Ogawa
弘晴 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2004248723A priority Critical patent/JP4386813B2/en
Publication of JP2006064311A publication Critical patent/JP2006064311A/en
Application granted granted Critical
Publication of JP4386813B2 publication Critical patent/JP4386813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inner helically-grooved heat transfer pipe for an evaporator not increasing pressure loss even when a carbon dioxide refrigerant including refrigerating machine oil is used, and having superior evaporating heat-transferring performance. <P>SOLUTION: In this inner helically-grooved heat transfer pipe 21 for the evaporator, provided with a spiral groove 22 on its inner face, an outer diameter is 3-7 mm, a height h of a fin is 0.14-0.27 mm, further a helix angle θ is 2-25 degrees, when carbon dioxide including refrigerating machine oil of 0.1-1.5 mass% is used as the refrigerant, or a cross-sectional area S of the groove part is 0.020-0.053 mm<SP>2</SP>when carbon dioxide including refrigerating machine oil of 1.5-5.0 mass%, non-inclusive of 1.5, is used as the refrigerant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は熱交換器の蒸発器用内面溝付伝熱管に関し、特に、冷凍機油を含有する二酸化炭素冷媒を使用する蒸発器用内面溝付伝熱管に関する。   The present invention relates to an inner grooved heat transfer tube for an evaporator of a heat exchanger, and more particularly to an inner grooved heat transfer tube for an evaporator using a carbon dioxide refrigerant containing refrigeration oil.

従来、空調機、カーエアコン、冷蔵庫、冷凍機、給湯器及び自動販売機等に設けられている熱交換器にはフロン系の溶媒が使用されていたが、フロン系の溶媒は地球温暖化への影響が懸念されており、近時、毒性及び可燃性がなく安全で、安価で、更に環境への付加が小さい自然冷媒が注目されている。   Conventionally, chlorofluorocarbon solvents have been used for heat exchangers installed in air conditioners, car air conditioners, refrigerators, refrigerators, water heaters, vending machines, etc. Recently, natural refrigerants that are safe, inexpensive, and have little addition to the environment are attracting attention because they are not toxic and flammable.

このような自然冷媒の1種である二酸化炭素(CO)は、熱特性に大きく影響を与える液定圧比熱及び液熱伝導率が高く、フロン系冷媒(R22、R134a、R410A)よりも伝熱性能が優れている。また、二酸化炭素は、表面張力が小さいため、フロン系冷媒よりも気泡が発生しやすく、核沸騰が促進されるため、冷媒として二酸化炭素を使用すると、フロン系冷媒を使用した場合に比べて伝熱性能が向上する。更に、二酸化炭素はフロン系冷媒よりも液粘性率及び密度が小さいため、圧力損失が小さい。更にまた、二酸化炭素には、蒸気密度及び潜熱が大きく、単位排除容積あたりの冷凍効果がフロン系冷媒よりも大きいという特徴がある。 Carbon dioxide (CO 2 ), which is one of such natural refrigerants, has higher liquid constant pressure specific heat and liquid thermal conductivity that greatly affect the thermal characteristics, and heat transfer is higher than that of fluorocarbon refrigerants (R22, R134a, R410A). Excellent performance. Also, since carbon dioxide has a low surface tension, bubbles are more likely to be generated than chlorofluorocarbon refrigerants, and nucleate boiling is promoted. Therefore, when carbon dioxide is used as the refrigerant, it is transmitted compared to the case where chlorofluorocarbon refrigerant is used. Thermal performance is improved. Furthermore, since carbon dioxide has a smaller liquid viscosity and density than a chlorofluorocarbon refrigerant, the pressure loss is small. Furthermore, carbon dioxide has a feature that the vapor density and latent heat are large, and the refrigeration effect per unit excluded volume is larger than that of the fluorocarbon refrigerant.

一方、二酸化炭素には、冷房及び暖房の単純サイクルにおける理論性能が低いという問題点がある。このため、二酸化炭素を冷媒として使用する場合は、冷媒が通流する伝熱管に高い伝熱性能が求められるが、従来、CO冷媒を使用した熱交換器においては、蒸発器用伝熱管に、熱伝達率が低い平滑管が使用されていたため(非特許文献1参照)、大きな蒸発性能を得るためには、蒸発器を大きくしなければならなかった。そこで、管内面に複数の溝を形成した内面溝付伝熱管を使用した蒸発器が提案されている(特許文献1参照。)。特許文献1に記載の蒸発器においては、伝熱管の内壁に管の長手方向に延びる複数個の突起部を設けることにより、伝熱面積を拡大して伝熱管の熱伝達率を向上させている。 On the other hand, carbon dioxide has a problem of low theoretical performance in a simple cycle of cooling and heating. For this reason, when carbon dioxide is used as a refrigerant, high heat transfer performance is required for the heat transfer tube through which the refrigerant flows. Conventionally, in a heat exchanger using a CO 2 refrigerant, Since a smooth tube having a low heat transfer coefficient was used (see Non-Patent Document 1), the evaporator had to be enlarged in order to obtain a large evaporation performance. Therefore, an evaporator using an internally grooved heat transfer tube in which a plurality of grooves are formed on the tube inner surface has been proposed (see Patent Document 1). In the evaporator described in Patent Document 1, by providing a plurality of protrusions extending in the longitudinal direction of the tube on the inner wall of the heat transfer tube, the heat transfer area is expanded and the heat transfer rate of the heat transfer tube is improved. .

特開2003−343942号公報JP 2003-343492 A Masafumi KATSUYA、外3名,「A STUDY EVAPORATOR OF CO2 REFRIGERANT CYCLE -Characteristics of heat transfer coefficient and pressure drop on mixing CO2 and oil (PAG)-」,Proceeding of the Asian Conference on Refrigeration and Air Conditioning 2002,2002年11月4日,A2−3,p.67−74Masafumi KATSUYA, 3 others, “A STUDY EVAPORATOR OF CO2 REFRIGERANT CYCLE -Characteristics of heat transfer coefficient and pressure drop on mixing CO2 and oil (PAG)-”, Proceeding of the Asian Conference on Refrigeration and Air Conditioning 2002, November 2011 April 4, A2-3, p. 67-74

しかしながら、前述の従来の技術には以下に示す問題点がある。即ち、通常、伝熱管内を通流するCO冷媒中には、圧縮機用の潤滑剤である冷凍機油が含まれており、単に伝熱管の内面に溝を形成しただけでは、蒸発性能が向上しないという問題点がある。このため、従来フロン系冷媒で使用されている内面溝付伝熱管をCO冷媒用として使用しても、十分な伝熱性能は得られない。また、特許文献1においては、伝熱管の通路長さと平均内径との関係を規定しているだけで、具体的な溝形状は規定されていないため、この特許文献1に記載されている内面溝付伝熱管も同様に、冷凍機油を含んだCO冷媒を使用した場合、圧力損失が増加して、十分な蒸発性能が得られない。このような圧力損失の増加は、CO冷媒中の冷凍機油含有量が高い程著しい。 However, the conventional techniques described above have the following problems. That is, normally, the CO 2 refrigerant flowing through the heat transfer tube contains refrigeration oil, which is a lubricant for the compressor, and evaporating performance can be achieved simply by forming a groove on the inner surface of the heat transfer tube. There is a problem that it does not improve. For this reason, sufficient heat transfer performance cannot be obtained even if the internally grooved heat transfer tube used in the conventional chlorofluorocarbon refrigerant is used for CO 2 refrigerant. Further, in Patent Document 1, since only the relationship between the passage length of the heat transfer tube and the average inner diameter is defined, and the specific groove shape is not defined, the inner surface groove described in Patent Document 1 Similarly, when a CO 2 refrigerant containing refrigeration oil is used for the attached heat transfer tube, the pressure loss increases and sufficient evaporation performance cannot be obtained. Such an increase in pressure loss is more significant as the refrigeration oil content in the CO 2 refrigerant is higher.

更に、CO冷媒を使用する場合、伝熱管内の圧力が高くなるため、フロン系冷媒を使用する場合よりも伝熱管の厚さを厚くしなければならない。このため、伝熱管の内面に溝を形成する場合は、その溝深さが制限されるという問題点もある。 Furthermore, when using a CO 2 refrigerant, the pressure in the heat transfer tube increases, so the thickness of the heat transfer tube must be made thicker than when using a fluorocarbon refrigerant. For this reason, when forming a groove | channel in the inner surface of a heat exchanger tube, there also exists a problem that the groove depth is restrict | limited.

本発明はかかる問題点に鑑みてなされたものであって、冷凍機油を含む二酸化炭素冷媒を使用する場合でも、圧力損失が増加せず、蒸発伝熱性能が優れた蒸発器用内面溝付伝熱管を提供することを目的とする。   The present invention has been made in view of such problems, and even when a carbon dioxide refrigerant containing refrigeration oil is used, the pressure loss does not increase and the inner surface grooved heat transfer tube for an evaporator has excellent evaporation heat transfer performance. The purpose is to provide.

本願第1発明に係る蒸発器用内面溝付伝熱管は、冷凍機油含有量が0.1乃至1.5質量%である二酸化炭素を冷媒として使用する熱交換器の蒸発器用内面溝付伝熱管であって、外径が3乃至7mmであり、管内面には深さが0.14乃至0.27mmである螺旋状の溝が形成されており、管内面における管軸方向に平行な直線と前記溝が延びる方向とがなす角度が2乃至25°であることを特徴とする。   An internally grooved heat transfer tube for an evaporator according to the first invention of the present application is an internally grooved heat transfer tube for an evaporator of a heat exchanger that uses carbon dioxide having a refrigerator oil content of 0.1 to 1.5 mass% as a refrigerant. A spiral groove having an outer diameter of 3 to 7 mm and a depth of 0.14 to 0.27 mm is formed on the inner surface of the tube. The angle formed by the direction in which the groove extends is 2 to 25 °.

本発明においては、外径を3乃至7mm、溝深さを0.14乃至0.27mm、管内面における管軸方向に平行な直線と溝が延びる方向とがなす角度を2乃至25°としているため、冷凍機油含有量が0.1乃至1.5質量%である二酸化炭素を冷媒として使用した場合に、圧力損失を増加させずに、熱伝達率を向上させることができ、蒸発伝熱性能が優れた伝熱管を得ることができる。   In the present invention, the outer diameter is 3 to 7 mm, the groove depth is 0.14 to 0.27 mm, and the angle formed by the straight line parallel to the tube axis direction on the tube inner surface and the direction in which the groove extends is 2 to 25 °. Therefore, when carbon dioxide having a refrigerator oil content of 0.1 to 1.5% by mass is used as a refrigerant, the heat transfer rate can be improved without increasing the pressure loss, and the evaporation heat transfer performance However, an excellent heat transfer tube can be obtained.

この蒸発器用内面溝付伝熱管は、管軸方向に対して垂直な断面における前記溝部の断面積が0.01乃至0.06mmであってもよい。これにより、蒸発伝熱性能をより向上させることができる。 The evaporator inner grooved heat transfer tube may have a cross-sectional area of 0.01 to 0.06 mm 2 in the cross section perpendicular to the tube axis direction. Thereby, evaporation heat transfer performance can be improved more.

本願第2発明に係る蒸発器用内面溝付伝熱管は、冷凍機油含有量が1.5質量%を超え5.0質量%以下である二酸化炭素を冷媒として使用する熱交換器の蒸発器用内面溝付伝熱管であって、外径が3乃至7mmであり、管内面には深さが0.14乃至0.27mmである螺旋状の溝が形成されており、管軸方向に対して垂直な断面における前記溝部の面積が0.020乃至0.053mmであることを特徴とする。 The inner grooved heat transfer tube for an evaporator according to the second invention of the present application is an inner groove for an evaporator of a heat exchanger that uses carbon dioxide having a refrigerator oil content of more than 1.5% by mass and not more than 5.0% by mass as a refrigerant. A heat transfer tube having an outer diameter of 3 to 7 mm, and a spiral groove having a depth of 0.14 to 0.27 mm is formed on the inner surface of the tube, and is perpendicular to the tube axis direction. The area of the groove in the cross section is 0.020 to 0.053 mm 2 .

本発明においては、外径を3乃至7mm、溝深さを0.14乃至0.27mm、溝が延びる方向に対して垂直な断面における溝部の面積が0.020乃至0.053mmとしているため、冷凍機油含有量が1.5質量%を超え5.0質量%以下である二酸化炭素を冷媒として使用した場合に、圧力損失を増加させずに、熱伝達率を向上させることができ、蒸発伝熱性能が優れた伝熱管を得ることができる。 In the present invention, the outer diameter is 3 to 7 mm, the groove depth is 0.14 to 0.27 mm, and the area of the groove in the cross section perpendicular to the direction in which the groove extends is 0.020 to 0.053 mm 2. When carbon dioxide with a refrigeration oil content of more than 1.5% by mass and less than 5.0% by mass is used as a refrigerant, the heat transfer rate can be improved without increasing the pressure loss, and evaporation A heat transfer tube with excellent heat transfer performance can be obtained.

この蒸発器用内面溝付伝熱管は、管内面における管軸方向に平行な直線と溝が延びる方向とがなす角度を5乃至20°にしてもよい。これにより、蒸発伝熱性能をより向上させることができる。   In this inner surface grooved heat transfer tube for an evaporator, the angle formed by the straight line parallel to the tube axis direction on the inner surface of the tube and the direction in which the groove extends may be 5 to 20 °. Thereby, evaporation heat transfer performance can be improved more.

本発明によれば、CO冷媒の冷凍機油含有量に応じて、フィン高さ、ねじれ角及び溝部断面積を最適化しているため、従来使用されていた平滑管に比べて、圧力損失を増加させずに、蒸発伝熱性能を向上させることができる。 According to the present invention, the fin height, torsion angle, and groove cross-sectional area are optimized according to the refrigeration oil content of the CO 2 refrigerant, so that the pressure loss is increased compared to the conventionally used smooth tube. Without evaporating, it is possible to improve the evaporation heat transfer performance.

以下、本発明の実施の形態に係る蒸発器用内面溝付伝熱管について、添付の図面を参照して具体的に説明する。先ず、本発明の第1の実施形態に係る内面溝付伝熱管について説明する。図1(a)は本実施形態の内面溝付伝熱管における管軸方向に垂直な断面を示す断面図であり、図1(b)は管軸方向と平行な断面を示す断面図である。図1(a)及び(b)に示すように、本実施形態の内面溝付伝熱管21は、銅又は銅合金等の金属材料からなり、管内面には相互に平行な複数の螺旋状の溝22が一定の間隔で形成され、隣り合う溝22間は山形状のフィン23となっている。この内面溝付伝熱管1の外径は3乃至7mmであり、溝22の深さ、即ち、フィン23の高さhは0.14乃至0.27mmであり、管内面における管軸方向に平行な直線と溝22が延びる方向とがなす角度、即ち、ねじれ角θは2乃至25°である。   Hereinafter, an internal grooved heat transfer tube for an evaporator according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. First, an internal grooved heat transfer tube according to the first embodiment of the present invention will be described. Fig.1 (a) is sectional drawing which shows a cross section perpendicular | vertical to a pipe-axis direction in the heat transfer tube with an inner surface groove | channel of this embodiment, FIG.1 (b) is sectional drawing which shows a cross section parallel to a pipe-axis direction. As shown in FIGS. 1A and 1B, the inner surface grooved heat transfer tube 21 of the present embodiment is made of a metal material such as copper or a copper alloy, and a plurality of spiral shapes parallel to each other are formed on the inner surface of the tube. Grooves 22 are formed at regular intervals, and between adjacent grooves 22 are mountain-shaped fins 23. The inner diameter grooved heat transfer tube 1 has an outer diameter of 3 to 7 mm, the depth of the groove 22, that is, the height h of the fin 23 is 0.14 to 0.27 mm, and is parallel to the tube axis direction on the inner surface of the tube. The angle between the straight line and the direction in which the groove 22 extends, that is, the twist angle θ is 2 to 25 °.

この内面溝付伝熱管21は、冷凍機油を0.1乃至1.5質量%含有するCO冷媒を使用する熱交換器の蒸発器に組み込まれる。図2は本実施形態の内面溝付伝熱管21が組み込まれた蒸発器を備えた熱交換器の構成を示す図である。図2に示すように、熱交換器30には、CO冷媒を蒸発させ、その際の気化熱により空気及び水等を冷却する蒸発器31と、蒸発器31から排出されたCO冷媒を圧縮し、高温にして凝縮器33に供給する圧縮機32と、CO冷媒の熱により空気及び水等を加熱する凝縮器33と、凝縮器33から排出されたCO冷媒を膨張させ、低温にして蒸発器31に供給する膨張弁34とが設けられている。そして、本実施形態の内面溝付伝熱管21は、蒸発器31に組み込まれ、その内部には冷凍機油を0.1乃至1.5質量%含有するCO冷媒が流される。 This inner surface grooved heat transfer tube 21 is incorporated in an evaporator of a heat exchanger using a CO 2 refrigerant containing 0.1 to 1.5% by mass of refrigeration oil. FIG. 2 is a view showing a configuration of a heat exchanger including an evaporator in which the inner surface grooved heat transfer tube 21 of the present embodiment is incorporated. As shown in FIG. 2, the heat exchanger 30 evaporates the CO 2 refrigerant and cools the air, water, and the like by the heat of vaporization at that time, and the CO 2 refrigerant discharged from the evaporator 31. compressed, the compressor 32 supplies the condenser 33 with a high temperature, a condenser 33 for heating air and water or the like by the heat of the CO 2 refrigerant, expanding the CO 2 refrigerant discharged from the condenser 33, low temperature And an expansion valve 34 for supplying to the evaporator 31. Then, the inner surface grooved heat transfer tube 21 of the present embodiment is incorporated in the evaporator 31, CO 2 refrigerant containing refrigerating machine oil 0.1 to 1.5 wt% is made to flow therein.

次に、本実施形態の内面溝付伝熱管21における数値限定理由について説明する。   Next, the reason for the numerical limitation in the inner surface grooved heat transfer tube 21 of the present embodiment will be described.

外径:3乃至7mm
外径が3mm未満であると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、結果として蒸発伝熱性能及び圧力損失により求められる蒸発性能が低下する。一方、外径が7mmを超えると、伝熱管内の圧力が高くなり、伝熱管の厚さを厚くしなければならない。よって、本実施形態の内面溝付伝熱管21においては、外径を3乃至7mmとする。
Outer diameter: 3-7mm
When the outer diameter is less than 3 mm, the amount of increase in pressure loss is larger than the amount of increase in heat transfer coefficient, and as a result, the evaporation performance required by evaporation heat transfer performance and pressure loss is reduced. On the other hand, if the outer diameter exceeds 7 mm, the pressure in the heat transfer tube increases, and the thickness of the heat transfer tube must be increased. Therefore, in the inner surface grooved heat transfer tube 21 of the present embodiment, the outer diameter is 3 to 7 mm.

フィン高さ:0.14乃至0.27mm
本実施形態の内面溝付伝熱管21においては、フィン高さhが高い程、その熱伝達率も高くなる。しかしながら、フィン高さhが0.27mmを超えると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、結果として、蒸発性能が低下する。一方、フィン高さhが0.14mm未満の場合、熱伝達率が向上しない。よって、本実施形態の内面溝付伝熱管21においては、フィン高さhを0.14乃至0.27mmとする。
Fin height: 0.14 to 0.27 mm
In the inner surface grooved heat transfer tube 21 of the present embodiment, the heat transfer coefficient increases as the fin height h increases. However, if the fin height h exceeds 0.27 mm, the amount of increase in pressure loss is greater than the amount of increase in heat transfer coefficient, resulting in a decrease in evaporation performance. On the other hand, when the fin height h is less than 0.14 mm, the heat transfer coefficient is not improved. Therefore, in the inner surface grooved heat transfer tube 21 of the present embodiment, the fin height h is set to 0.14 to 0.27 mm.

ねじれ角:2乃至25°
冷凍機油含有量が0.1乃至1.5質量%であるCO冷媒を使用する場合、内面溝付伝熱管の蒸発性能には、図1(b)に示すねじれ角θによる影響が大きい。このねじれ角θとは、管内面における管軸方向に平行な直線と溝22が延びる方向とがなす角度である。但し、ねじれ角θが2°未満の場合、従来使用されていた平滑管と同等の蒸発性能しか得られない。一方、ねじれ角θが25°を超えると、フィン3の頂部へ移動する冷凍機油の量が多くなり、フィン頂部まで冷凍機油に覆われてしまい蒸発性能が低下する。更に、ねじれ角θが25°を超えると、圧力損失が増加するため、蒸発性能を向上させる効果も得られない。よって、本実施形態の内面溝付伝熱管21におけるねじれ角は、2乃至25°とする。
Twist angle: 2 to 25 °
When a CO 2 refrigerant having a refrigerator oil content of 0.1 to 1.5 mass% is used, the evaporation performance of the internally grooved heat transfer tube is greatly influenced by the twist angle θ shown in FIG. The twist angle θ is an angle formed by a straight line parallel to the tube axis direction on the inner surface of the tube and a direction in which the groove 22 extends. However, when the twist angle θ is less than 2 °, only the evaporation performance equivalent to that of the conventionally used smooth tube can be obtained. On the other hand, when the twist angle θ exceeds 25 °, the amount of refrigerating machine oil moving to the top of the fin 3 increases, and the top of the fin is covered with the refrigerating machine oil, resulting in a reduction in evaporation performance. Furthermore, when the twist angle θ exceeds 25 °, the pressure loss increases, and thus the effect of improving the evaporation performance cannot be obtained. Therefore, the twist angle in the internally grooved heat transfer tube 21 of the present embodiment is 2 to 25 °.

CO 冷媒中の冷凍機油含有量:0.1乃至1.5質量%
通常、伝熱管内を通流するCO冷媒中には、ポリアルキレングリコール系油等の冷凍機油が含まれている。この冷凍機油は、圧縮機用の潤滑剤であり、ベアリング及びシリンダ等の可動部の潤滑性を向上させると共に、摩擦により発生する熱を吸収することにより可動部を冷却して、圧縮機を良好に稼働させるものである。しかしながら、CO冷媒中の冷凍機油含有量が0.1質量%未満であると、内面溝付伝熱管の蒸発性能は、ねじれ角θ及び管軸方向に垂直な断面における溝部22の面積(以下、溝部断面積という)Sよりも、伝熱面積に影響されるようになり、ねじれ角θを上述の範囲にしても十分な蒸発性能が得られない。また、CO冷媒中の冷凍機油含有量が1.5質量%を超えると、内面溝付伝熱管の蒸発性能は、ねじれ角θよりも溝部断面積Sに影響されるようになり、ねじれ角θを上述の範囲にしても十分な蒸発性能が得られない。よって、本実施形態の内面溝付伝熱管21内に通流させるCO冷媒の冷凍機油含有量は、0.1乃至1.5質量%とする。
Refrigerating machine oil content in CO 2 refrigerant: 0.1 to 1.5% by mass
Usually, the CO 2 refrigerant flowing through the heat transfer tube contains refrigerating machine oil such as polyalkylene glycol oil. This refrigerating machine oil is a lubricant for compressors, improves the lubricity of moving parts such as bearings and cylinders, and cools moving parts by absorbing heat generated by friction, making the compressor better It is intended to operate. However, when the refrigeration oil content in the CO 2 refrigerant is less than 0.1% by mass, the evaporation performance of the internally grooved heat transfer tube is determined by the area of the groove portion 22 in the cross section perpendicular to the torsion angle θ and the tube axis direction (hereinafter referred to as “below”). (Referred to as a cross-sectional area of the groove portion) is more influenced by the heat transfer area, and sufficient evaporation performance cannot be obtained even if the twist angle θ is in the above range. When the refrigeration oil content in the CO 2 refrigerant exceeds 1.5% by mass, the evaporation performance of the internally grooved heat transfer tube is affected by the groove cross-sectional area S rather than the twist angle θ, and the twist angle Even if θ is in the above range, sufficient evaporation performance cannot be obtained. Therefore, the refrigerating machine oil content of the CO 2 refrigerant to be passed through the inner surface grooved heat transfer tube 21 of the present embodiment is 0.1 to 1.5 mass%.

また、本実施形態の内面溝付伝熱管21においては、溝部断面積Sが0.01乃至0.06mmであることが好ましい。これにより、伝熱面積が増加し、蒸発伝熱性能がより向上する。なお、内面溝付伝熱管21の外面には、フィン又は突起が形成されていてもよい。 Moreover, in the inner surface grooved heat transfer tube 21 of the present embodiment, the groove cross-sectional area S is preferably 0.01 to 0.06 mm 2 . Thereby, a heat transfer area increases and evaporation heat transfer performance improves more. Note that fins or protrusions may be formed on the outer surface of the internally grooved heat transfer tube 21.

次に、本発明の第2の実施形態の内面溝付伝熱管について説明する。本実施形態の内面溝付伝熱管は、銅又は銅合金等の金属材料からなり、冷凍機油を1.5質量%を超え5.0質量%以下含有するCO冷媒を使用する熱交換器の蒸発器用の伝熱管である。また、本実施形態の内面溝付伝熱管は、図1に示す内面溝付伝熱管21と同様に、内面溝付伝熱管の外径が3乃至7mmであり、その内面には、相互に平行な複数の螺旋状の溝が一定の間隔で形成されており、隣り合う溝間は山形状のフィンになっている。そして、溝の深さ、即ち、フィン高さhは0.14乃至0.27mmであり、溝部断面積Sが0.020乃至0.053mmである。このように、本実施形態の内面溝付伝熱管と、前述の第1の実施形態の内面溝付伝熱管21とは、使用するCO冷媒の冷凍機油含有量が異なっている。なお、本実施形態の内面溝付伝熱管は、熱交換器の蒸発器に組み込まれ、その内部には、冷凍機油を1.5質量%を超え5.0質量%以下含有するCO冷媒が流される。 Next, the inner surface grooved heat transfer tube of the second embodiment of the present invention will be described. The internally grooved heat transfer tube of this embodiment is made of a metal material such as copper or a copper alloy, and is a heat exchanger that uses a CO 2 refrigerant containing refrigeration oil exceeding 1.5 mass% and not exceeding 5.0 mass%. This is a heat transfer tube for an evaporator. Further, the inner surface grooved heat transfer tube of the present embodiment has an outer diameter of 3 to 7 mm as in the inner surface grooved heat transfer tube 21 shown in FIG. 1, and the inner surfaces thereof are parallel to each other. A plurality of spiral grooves are formed at regular intervals, and the adjacent grooves are mountain-shaped fins. The depth of the groove, that is, the fin height h is 0.14 to 0.27 mm, and the groove cross-sectional area S is 0.020 to 0.053 mm 2 . As described above, the inner grooved heat transfer tube 21 of the present embodiment and the inner grooved heat transfer tube 21 of the first embodiment described above differ in the refrigeration oil content of the CO 2 refrigerant used. Note that the internally grooved heat transfer tube of the present embodiment is incorporated in the evaporator of the heat exchanger, and inside thereof is a CO 2 refrigerant containing refrigeration oil exceeding 1.5 mass% and not more than 5.0 mass%. Washed away.

次に、本実施形態の内面溝付伝熱管における数値限定理由について説明する。   Next, the reason for the numerical limitation in the inner surface grooved heat transfer tube of this embodiment will be described.

直径:3乃至7mm
外径が3mm未満であると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、結果として蒸発性能が低下する。一方、外径が7mmを超えると、伝熱管内の圧力が高くなり、伝熱管の厚さを厚くしなければならない。よって、本実施形態の内面溝付伝熱管においては、前述の第1の実施形態の内面溝付管21と同様に、外径を3乃至7mmとする。
Diameter: 3-7mm
If the outer diameter is less than 3 mm, the amount of increase in pressure loss is greater than the amount of increase in heat transfer coefficient, resulting in a decrease in evaporation performance. On the other hand, if the outer diameter exceeds 7 mm, the pressure in the heat transfer tube increases, and the thickness of the heat transfer tube must be increased. Therefore, in the inner surface grooved heat transfer tube of the present embodiment, the outer diameter is set to 3 to 7 mm similarly to the inner surface grooved tube 21 of the first embodiment described above.

フィン高さ:0.14乃至0.27mm
前述の第1の実施形態の内面溝付伝熱管21と同様に、本実施形態の内面溝付伝熱管においても、フィン高さhが高い程、熱伝達率が高くなる。しかしながら、フィン高さhが0.27mmを超えると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、蒸発性能が低下する。一方、フィン高さhが0.14mm未満の場合、熱伝達率を向上させる効果が得られない。よって、本実施形態の内面溝付伝熱管においては、フィン高さhを0.15乃至0.27mmとする。
Fin height: 0.14 to 0.27 mm
Similarly to the inner surface grooved heat transfer tube 21 of the first embodiment described above, the heat transfer coefficient increases as the fin height h increases in the inner surface grooved heat transfer tube of the present embodiment. However, if the fin height h exceeds 0.27 mm, the amount of increase in pressure loss is greater than the amount of increase in heat transfer coefficient, and the evaporation performance is degraded. On the other hand, when the fin height h is less than 0.14 mm, the effect of improving the heat transfer coefficient cannot be obtained. Therefore, in the inner surface grooved heat transfer tube of the present embodiment, the fin height h is set to 0.15 to 0.27 mm.

溝部断面積:0.020乃至0.053mm
冷凍機油含有量が1.5質量%を超え5.0質量%以下であるCO冷媒を使用する場合、内面溝付伝熱管の蒸発性能には、溝部断面積Sによる影響が大きい。溝部断面積Sが0.020mm未満の場合、溝幅が狭くなり、溝から冷凍機油が溢れてフィン頂部まで冷凍機油に覆われてしまうため、蒸発性能が低下する。一方、溝部断面積Sが0.053mmを超えると、溝の数が少なくなるため、伝熱面積が減少し、蒸発性能が低下する。よって、本実施形態の内面溝付伝熱管における溝部断面積Sは0.020乃至0.053mmとする。
Groove cross-sectional area: 0.020 to 0.053 mm 2
When a CO 2 refrigerant having a refrigerating machine oil content of more than 1.5% by mass and 5.0% by mass or less is used, the groove section cross-sectional area S has a great influence on the evaporation performance of the internally grooved heat transfer tube. When the groove cross-sectional area S is less than 0.020 mm 2 , the groove width becomes narrow and the refrigerating machine oil overflows from the groove and is covered with the refrigerating machine oil up to the fin top, so that the evaporation performance decreases. On the other hand, if the groove cross-sectional area S exceeds 0.053 mm 2 , the number of grooves is reduced, so that the heat transfer area is reduced and the evaporation performance is reduced. Therefore, the groove cross-sectional area S in the internally grooved heat transfer tube of the present embodiment is 0.020 to 0.053 mm 2 .

CO 冷媒中の冷凍機油含有量:1.5質量%を超え5.0質量%以下
CO冷媒中の冷凍機油含有量が1.5質量%以下の場合、伝熱管の蒸発性能は、溝部断面積Sよりも、ねじれθに影響されるようになり、溝部断面積Sを上述の範囲にしても十分な蒸発性能が得られない。また、CO冷媒中の冷凍機油含有量が5.0質量%を超えると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、蒸発性能が低下する。よって、本実施形態の内面溝付伝熱管内に通流させるCO冷媒の冷凍機油含有量は、1.5質量%を超え5.0質量%以下とする。
Refrigerating machine oil content in the CO 2 refrigerant: more than 1.5% by mass and 5.0% by mass or less When the refrigerating machine oil content in the CO 2 refrigerant is 1.5% by mass or less, the evaporation performance of the heat transfer tube is the groove It becomes more influenced by the twist θ than the cross-sectional area S, and even if the groove cross-sectional area S is in the above range, sufficient evaporation performance cannot be obtained. In addition, when the refrigeration oil content in the CO 2 refrigerant exceeds 5.0 mass%, the amount of increase in pressure loss is larger than the amount of increase in heat transfer coefficient, and the evaporation performance decreases. Therefore, the refrigerating machine oil content of the CO 2 refrigerant to be flown into the inner surface grooved heat transfer tube of the present embodiment is more than 1.5 mass% and 5.0 mass% or less.

また、本実施形態の内面溝付伝熱管におけるねじれ角θは、5乃至20°であることが好ましい。冷凍機油含有量が1.5質量%以下のCO冷媒を使用する場合、蒸発性能におけるねじれ角θの影響は小さいが、ねじれ角θを5乃至20°にすることにより、フィン頂部へ移動する冷凍機油の量が少なくなり、蒸発伝熱性能をより向上させることができる。なお、本実施形態の内面溝付伝熱管の外面には、フィン又は突起が形成されていてもよい。 Moreover, it is preferable that the twist angle θ in the internally grooved heat transfer tube of the present embodiment is 5 to 20 °. When using a CO 2 refrigerant having a refrigerating machine oil content of 1.5 mass% or less, the effect of the twist angle θ on the evaporation performance is small, but by moving the twist angle θ to 5 to 20 °, it moves to the top of the fin. The amount of refrigerating machine oil is reduced, and the evaporation heat transfer performance can be further improved. Note that fins or protrusions may be formed on the outer surface of the internally grooved heat transfer tube of the present embodiment.

以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。先ず、本発明の第1実施例として、外径が6mm、フィン高さhが0.15mm、ねじれ角θが5°、15°及び25°である実施例1乃至3の内面溝付伝熱管を作製した。また、本発明の比較例として、外径が6mm、フィン高さhが0.15mm、ねじれ角θが夫々0°及び30°である比較例1及び2の内面溝付伝熱管を作製した。なお、各内面溝付伝熱管における溝部断面積Sは、実施例1が0.034mm、実施例2が0.034mm、実施例3が0.033mm、比較例1が0.034mm、比較例2が0.032mmであった。 Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. First, as a first embodiment of the present invention, the inner surface grooved heat transfer tube of Embodiments 1 to 3 having an outer diameter of 6 mm, a fin height h of 0.15 mm, and a twist angle θ of 5 °, 15 ° and 25 °. Was made. Further, as comparative examples of the present invention, the internally grooved heat transfer tubes of Comparative Examples 1 and 2 having an outer diameter of 6 mm, a fin height h of 0.15 mm, and a twist angle θ of 0 ° and 30 ° were prepared. In addition, as for groove part cross-sectional area S in each inner surface grooved heat exchanger tube, Example 1 is 0.034 mm < 2 >, Example 2 is 0.034 mm < 2 >, Example 3 is 0.033 mm < 2 >, Comparative Example 1 is 0.034 mm < 2 >. Comparative Example 2 was 0.032 mm 2 .

次に、実施例1乃至3並びに比較例1及び2の内面溝付伝熱管の熱伝達率及び圧力損失を測定した。図3は熱伝達率及び圧力損失の測定に使用した装置の構成を示す図であり、図4はその蒸発器の構成を示す図である。図3に示すように、本実施例で使用した測定装置には、CO冷媒を圧縮することにより高温にする圧縮機2と、凝縮器であるガス冷却器4と、CO冷媒を膨張させて低温にする膨張弁7と、試験部である蒸発器1が設けられている。この蒸発器1の出入口には、夫々、CO冷媒を加熱する予熱機8及び過熱器9が設けられている。また、圧縮機2の出口には、冷媒中の冷凍機油を分離するオイルセパレータ3aが設けられており、更に、圧縮機2の入口及びガス冷却器4の出口には、夫々冷媒の脈動をなくすアキュームレータ5a及び5bが設けられている。 Next, the heat transfer coefficient and pressure loss of the inner surface grooved heat transfer tubes of Examples 1 to 3 and Comparative Examples 1 and 2 were measured. FIG. 3 is a diagram showing a configuration of an apparatus used for measurement of heat transfer coefficient and pressure loss, and FIG. 4 is a diagram showing a configuration of the evaporator. As shown in FIG. 3, the measuring apparatus used in this embodiment includes a compressor 2 to a high temperature by compressing a CO 2 refrigerant, the gas cooler 4 is a condenser, expands the CO 2 refrigerant An expansion valve 7 for lowering the temperature and an evaporator 1 as a test part are provided. A preheater 8 and a superheater 9 for heating the CO 2 refrigerant are respectively provided at the entrance and exit of the evaporator 1. An oil separator 3a that separates refrigeration oil in the refrigerant is provided at the outlet of the compressor 2, and further, pulsation of the refrigerant is eliminated at the inlet of the compressor 2 and the outlet of the gas cooler 4, respectively. Accumulator 5a and 5b are provided.

本実施例においては、圧縮器2用の冷凍機油としてポリアルキレングリコール系油を使用した。そして、蒸発器1の出口に設けたオイルセパレータ3bによってCO冷媒中の冷凍機油を分離し、この分離した冷凍機油をオイル冷却器10で冷却した後、オイルポンプ11及び流量計12を経由して再度CO冷媒中に添加することにより、蒸発器1の直前の部分における冷凍機油含有量を調節した。なお、CO冷媒中の冷凍機油含有量は、予熱器8の直前のサンプリングポート14においてCO冷媒を採取し、精密化学天秤によりその質量を測定することにより求めた。また、蒸発器1に熱源水を供給している間は、ガス冷却器4及びオイル冷却器10に冷却水を供給した。更に、予熱器8及び過熱器9には、直流電流を供給した。 In this example, polyalkylene glycol oil was used as the refrigerating machine oil for the compressor 2. Then, the refrigeration oil in the CO 2 refrigerant is separated by the oil separator 3 b provided at the outlet of the evaporator 1, and the separated refrigeration oil is cooled by the oil cooler 10, and then passes through the oil pump 11 and the flow meter 12. Then, the refrigerating machine oil content in the portion immediately before the evaporator 1 was adjusted by adding it again into the CO 2 refrigerant. Incidentally, the refrigerating machine oil content of CO 2 in the refrigerant, the CO 2 refrigerant is collected in the sampling port 14 immediately before the preheater 8, was determined by measuring its mass by a precision analytical balance. Further, while supplying heat source water to the evaporator 1, cooling water was supplied to the gas cooler 4 and the oil cooler 10. Further, a direct current was supplied to the preheater 8 and the superheater 9.

本実施例においては、ガス冷却器4と膨張弁7との間に、精度が±0.4%のマイクロモーション型質量流量計6を設け、この流量計6により冷媒の流量を測定した。また、蒸発器1と過熱器9との間、オイルセパレータ3bとコンプレッサー2との間、コンプレッサー2とガス冷却器4との間、ガス冷却器4とアキュームレータ5bとの間、流量計6と膨張弁7との間には、夫々冷媒混合室18a乃至18eが設けられている。そして、冷媒の温度及び圧力は、夫々、冷媒混合室18a乃至18e内に備えられた直径が0.5mmクロメル−アルメル被覆熱電対19a乃至19e及び精度が0.02MPaの圧力変換器20a乃至20eにより測定した。その際、熱電対19a乃至19eは、予め誤差が±0.05K以内になるように校正した。   In this example, a micro motion type mass flow meter 6 with an accuracy of ± 0.4% was provided between the gas cooler 4 and the expansion valve 7, and the flow rate of the refrigerant was measured by this flow meter 6. Further, between the evaporator 1 and the superheater 9, between the oil separator 3b and the compressor 2, between the compressor 2 and the gas cooler 4, between the gas cooler 4 and the accumulator 5b, and the flow meter 6 and expansion. Refrigerant mixing chambers 18a to 18e are provided between the valves 7 respectively. The temperature and pressure of the refrigerant are respectively determined by the 0.5 mm chromel-alumel-coated thermocouples 19a to 19e and the pressure transducers 20a to 20e having an accuracy of 0.02 MPa provided in the refrigerant mixing chambers 18a to 18e. It was measured. At that time, the thermocouples 19a to 19e were calibrated in advance so that the error was within ± 0.05K.

また、図4に示すように、蒸発器1には、直径が18mmで、内径が12mmの外管の内部に、実施例又は比較例の内面溝付伝熱管が配置された3本の二重管15a乃至15cが、直列に接続されている。なお、これらの二重管15a乃至15cは、長さが0.688mであり、有効熱伝達長さが0.5mである。そして、実施例1又は比較例1の伝熱管の内部にはCO冷媒を通流させ、これらの伝熱管と外管との間には冷却水を通流させた。その際、CO冷媒の通流方向と冷却水の通流方向とが相互に逆になるようにした。 As shown in FIG. 4, the evaporator 1 has three duplex tubes in which the inner-grooved heat transfer tube of the example or the comparative example is arranged inside the outer tube having a diameter of 18 mm and an inner diameter of 12 mm. Tubes 15a to 15c are connected in series. These double tubes 15a to 15c have a length of 0.688 m and an effective heat transfer length of 0.5 m. Then, CO 2 refrigerant was passed through the heat transfer tubes of Example 1 or Comparative Example 1, and cooling water was passed between these heat transfer tubes and the outer tube. At that time, the flow direction of the CO 2 refrigerant and the flow direction of the cooling water were made opposite to each other.

この蒸発器1には、熱源13が設けられており、冷却水の流量は、この熱源13内に設けられた精度が±0.5%のギア式流量計により測定した。また、二重管15a乃至15cの両端部には、夫々熱源水混合室16a乃至16fが設けられており、冷却水の温度は、この熱源水混合室16a乃至16fに設置された外径が2.0mmの抵抗温度計により測定した。その際、各抵抗温度計は、誤差が±0.02K以内になるように校正した。更に、二重管15a乃至15c間の圧力差は、精度が±0.25%の差圧変換器17a乃至17dにより測定した。更にまた、各伝熱管の外壁の温度は、外径が0.1mmの銅線及びコンスタンタン線により形成されている銅−コンスタンタン熱電対を、伝熱管の外面の上下左右に配置して測定した。その際、これらの熱電対は、誤差が±0.05K以内になるように校正した。更にまた、蒸発器1の冷媒出口付近には冷媒混合室18aが設けられており、この冷媒混合室18aに設けられた熱電対19a及び圧力変換器20aにより、冷媒の温度及び圧力を測定した。   The evaporator 1 is provided with a heat source 13, and the flow rate of the cooling water was measured with a gear type flow meter with an accuracy of ± 0.5% provided in the heat source 13. Further, heat source water mixing chambers 16a to 16f are provided at both ends of the double pipes 15a to 15c, respectively, and the temperature of the cooling water is 2 outside diameters installed in the heat source water mixing chambers 16a to 16f. Measured with a resistance thermometer of 0 mm. At that time, each resistance thermometer was calibrated so that the error was within ± 0.02K. Furthermore, the pressure difference between the double tubes 15a to 15c was measured by differential pressure transducers 17a to 17d with an accuracy of ± 0.25%. Furthermore, the temperature of the outer wall of each heat transfer tube was measured by placing copper-constantan thermocouples formed of a copper wire and a constantan wire having an outer diameter of 0.1 mm on the top, bottom, left and right of the outer surface of the heat transfer tube. At that time, these thermocouples were calibrated so that the error was within ± 0.05K. Furthermore, a refrigerant mixing chamber 18a is provided in the vicinity of the refrigerant outlet of the evaporator 1, and the temperature and pressure of the refrigerant were measured by a thermocouple 19a and a pressure converter 20a provided in the refrigerant mixing chamber 18a.

各伝熱管の内壁の温度Twiは、下記数式1から求めた。 The temperature T wi of the inner wall of each heat transfer tube was determined from the following formula 1.

Figure 2006064311
Figure 2006064311

なお、上記数式1におけるTwoは伝熱管の外壁の温度であり、λは伝熱管の熱伝導率であり、dwi及びdwoは夫々伝熱管の内径及び外径であり、Qは二重管15a乃至15cの熱伝導率であり、Δzは二重管15a乃至15cの有効熱伝達長さである。 In the above formula 1, T wo is the temperature of the outer wall of the heat transfer tube, λ w is the heat conductivity of the heat transfer tube, d wi and d wo are the inner diameter and outer diameter of the heat transfer tube, respectively, and Q is 2 The thermal conductivity of the heavy pipes 15a to 15c, and Δz is the effective heat transfer length of the double pipes 15a to 15c.

また、全熱収支、即ち、冷却水による熱量の増加と冷媒による熱量の損失との比は5%未満とし、二酸化炭素の熱力学的性質及び移送性能は、REFPROP Ver.7.0(M. O. McLinden、外2名,2002,Peskin AP,NIST thermodynamic properties of refrigerants and refrigerant mixtures database (REFPROP),Ver.7.0)を使用して計算した。   Further, the total heat balance, that is, the ratio of the increase in the amount of heat due to the cooling water to the loss of the amount of heat due to the refrigerant is less than 5%, and the thermodynamic properties and transfer performance of carbon dioxide are REFPROP Ver. 7.0 (M. O. McLinden, 2 others, 2002, Peskin AP, NIST thermodynamic properties of reactants and refrigerant mixtures database (REFPROP), Ver. 7.0) was used for calculation.

更に、伝熱管の局所熱伝達率αは、下記数式2から求めた。   Further, the local heat transfer coefficient α of the heat transfer tube was obtained from the following formula 2.

Figure 2006064311
Figure 2006064311

ここで、上記数式2におけるTは二重管15a乃至15cにおける標準圧力時のCO冷媒の温度である。また、qは二重管15a乃至15cにおける熱流束であり、下記数式3により求められる。 Here, T b in the above equation 2 is the temperature of the CO 2 refrigerant during normal pressure in double tube 15a to 15c. Further, q is a heat flux in the double tubes 15a to 15c, and is obtained by the following mathematical formula 3.

Figure 2006064311
Figure 2006064311

なお、上記数式2により求められる局所熱伝達率αの不確実性は10%未満であり、上記数式3により求められる熱流束qの不確実性は6%未満である。   Note that the uncertainty of the local heat transfer coefficient α obtained by Equation 2 is less than 10%, and the uncertainty of the heat flux q obtained by Equation 3 is less than 6%.

そして、上述した方法により、冷凍機油含有量を1.0質量%、冷媒圧力を4MPa、冷媒流速を360kg/msとして測定した各内面溝付管の熱伝達率及び圧力損失から、下記数式4により定義される性能比を求めた。この性能比は、平滑管の蒸発性能に対して内面溝付管の蒸発性能を評価したものであり、内面溝付管の熱伝達率と平滑管の熱伝達率が同じ値で、且つ内面溝付管の圧力損失と平滑管の圧力損失が同じ値である場合、即ち、内面溝付管の蒸発性能と平滑管の蒸発性能とが同じである場合、性能比の値は1となる。その際、平滑管の熱伝達率及び圧力損失は、内面に溝を形成していない外径が6mmの平滑管を使用し、前述の実施例及び比較例の内面溝付伝熱管と同様の方法及び条件により測定した値を使用した。以上の結果を下記表1にまとめて示す。なお、下記表1には、従来例として、外径が6mmの平滑管の性能比も併せて示す。 From the heat transfer coefficient and pressure loss of each internally grooved tube measured by the above-described method with the refrigerating machine oil content of 1.0 mass%, the refrigerant pressure of 4 MPa, and the refrigerant flow rate of 360 kg / m 2 s, The performance ratio defined by 4 was determined. This performance ratio is obtained by evaluating the evaporation performance of the internally grooved tube with respect to the evaporation performance of the smooth tube. The heat transfer coefficient of the internally grooved tube and the heat transfer coefficient of the smooth tube are the same value, and the internal groove When the pressure loss of the attached tube and the pressure loss of the smooth tube are the same value, that is, when the evaporation performance of the inner grooved tube and the evaporation performance of the smooth tube are the same, the value of the performance ratio is 1. At that time, the heat transfer coefficient and the pressure loss of the smooth tube are the same as those of the above-described embodiment and comparative example inner surface grooved heat transfer tube using a smooth tube having an outer diameter of 6 mm with no grooves formed on the inner surface. The value measured according to the conditions was used. The above results are summarized in Table 1 below. Table 1 below also shows the performance ratio of a smooth tube having an outer diameter of 6 mm as a conventional example.

Figure 2006064311
Figure 2006064311

Figure 2006064311
Figure 2006064311

上記表1に示すように、本発明の範囲内で作製した実施例1乃至3の内面溝付伝熱管は、性能比が1を超えており、従来の平滑管よりも蒸発性能が向上していた。一方、ねじれ角θが本発明の範囲よりも小さい比較例1の内面溝付伝熱管は性能比が0.92であり、またねじれ角θが本発明の範囲よりも大きい比較例2の内面溝付伝熱管は性能比が0.94であり、共に平滑管に比べて優位性が低かった。   As shown in Table 1, the inner surface grooved heat transfer tubes of Examples 1 to 3 manufactured within the scope of the present invention have a performance ratio exceeding 1, and the evaporation performance is improved as compared with the conventional smooth tube. It was. On the other hand, the inner grooved heat transfer tube of Comparative Example 1 whose twist angle θ is smaller than the range of the present invention has a performance ratio of 0.92, and the inner groove of Comparative Example 2 whose twist angle θ is larger than the range of the present invention. The attached heat transfer tube had a performance ratio of 0.94, both of which were less superior than the smooth tube.

次に、本発明の第2実施例として、外径が6mm、フィン高さhが0.18mm、ねじれ角θが25°であり、溝部断面積Sが夫々0.026mm及び0.039mmである実施例4及び5の内面溝付伝熱管を作製した。また、本発明の比較例として、外径が6mm、フィン高さhが0.18mm、ねじれ角θが25°、溝部断面積Sが夫々0.019mm及び0.064mmである比較例3及び4の内面溝付伝熱管を作製した。そして、これら実施例4及び5並びに比較例3及び4の内面溝付伝熱管について、冷凍機油含有量が3.0質量%であるCO冷媒を使用し、それ以外は前述の第1実施例と同様の方法で性能比を求めた。その結果を下記表2にまとめて示す。なお、下記表2には、従来例として、外径が6mmの平滑管の性能比も併せて示す。 Next, a second embodiment of the present invention, an outer diameter of 6 mm, fin height h is 0.18 mm, the twist angle θ is 25 °, the groove cross-sectional area S is respectively 0.026 mm 2 and 0.039 mm 2 The inner surface grooved heat transfer tubes of Examples 4 and 5 were prepared. As a comparative example of the present invention, a comparative example 3 having an outer diameter of 6 mm, a fin height h of 0.18 mm, a twist angle θ of 25 °, and a groove section area S of 0.019 mm 2 and 0.064 mm 2 , respectively. And 4 internally grooved heat transfer tubes. Then, for these Examples 4 and 5 and Comparative Examples 3 and an inner surface grooved heat transfer tube 4, the refrigerating machine oil content using CO 2 refrigerant is 3.0 mass%, the above-described first embodiment except that The performance ratio was obtained in the same manner as in Example 1. The results are summarized in Table 2 below. In Table 2, the performance ratio of a smooth tube having an outer diameter of 6 mm is also shown as a conventional example.

Figure 2006064311
Figure 2006064311

上記表2に示すように、本発明の範囲内で作製した実施例4及び5の内面溝付伝熱管は、性能比が1.00を超えており、従来の平滑管よりも蒸発性能が向上していた。一方、溝部断面積Sの値が本発明の範囲よりも小さい比較例3の内面溝付伝熱管は、性能比が0.95であり、従来の平滑管に比べて、優位性が低かった。また、溝部断面積Sの値が本発明の範囲よりも大きい比較例4の内面溝付伝熱管は、性能比が0.59であり、平滑管と同等の性能しか得られなかった。   As shown in Table 2, the inner surface grooved heat transfer tubes of Examples 4 and 5 manufactured within the scope of the present invention have a performance ratio exceeding 1.00, and the evaporation performance is improved over the conventional smooth tube. Was. On the other hand, the internally grooved heat transfer tube of Comparative Example 3 in which the value of the groove cross-sectional area S is smaller than the range of the present invention has a performance ratio of 0.95, which is lower than the conventional smooth tube. In addition, the inner surface grooved heat transfer tube of Comparative Example 4 in which the value of the groove section sectional area S was larger than the range of the present invention had a performance ratio of 0.59, and only a performance equivalent to that of a smooth tube was obtained.

次に、本発明の第3実施例として、外径を6mm、ねじれ角θを25°とし、フィン高さhを変えて複数の内面溝付伝熱管を作製し、冷凍機油含有量が1.0質量%であるCO冷媒を使用し、それ以外は前述の第1実施例と同様の方法でその性能比を求めた。なお、各内面溝付伝熱管の溝部断面積Sは、0.02乃至0.06mmであった。図5は横軸にフィン高さhをとり、縦軸に性能比をとって、フィン高さhと性能比との関係を示すグラフ図である。図5に示すように、内面溝付伝熱管の性能比は、フィン高さhが高くなるに従い増加したが、フィン高さhが2.0mm程度を超えると低下した。これは、フィン高さhが2.0mm程度を超えると、熱伝達率の増加率よりも圧力損失の増加率の方が多くなったためである。しかしながら、フィン高さhが0.14乃至0.27mmと、本発明の範囲内である内面溝付伝熱管は、性能比が1を超え、従来の平滑管よりも蒸発性能が向上した。 Next, as a third embodiment of the present invention, an outer diameter is 6 mm, a twist angle θ is 25 °, a plurality of internally grooved heat transfer tubes are manufactured by changing the fin height h, and the refrigerator oil content is 1. The CO 2 refrigerant of 0% by mass was used, and the performance ratio was determined by the same method as in the first example described above. In addition, the groove part sectional area S of each internally grooved heat transfer tube was 0.02 to 0.06 mm 2 . FIG. 5 is a graph showing the relationship between the fin height h and the performance ratio, with the horizontal axis representing the fin height h and the vertical axis representing the performance ratio. As shown in FIG. 5, the performance ratio of the internally grooved heat transfer tube increased as the fin height h increased, but decreased when the fin height h exceeded about 2.0 mm. This is because when the fin height h exceeds about 2.0 mm, the rate of increase in pressure loss is greater than the rate of increase in heat transfer coefficient. However, the inner grooved heat transfer tube having a fin height h of 0.14 to 0.27 mm within the range of the present invention has a performance ratio exceeding 1, and the evaporation performance is improved over the conventional smooth tube.

次に、本発明の第4実施例として、外径を6mm、フィン高さhを0.15mm、溝部断面積Sを0.034mmとし、ねじれ角θを変えて複数の内面溝付伝熱管を作製した。そして、これらの内面溝付伝熱管について、冷凍機油含有量が1.0質量%及び3.0質量%であるCO冷媒を使用し、それ以外は前述の第1実施例と同様の方法でその性能比を求めた。 Next, as a fourth embodiment of the present invention, the outer diameter is 6 mm, the fin height h is 0.15 mm, the groove cross-sectional area S is 0.034 mm 2 , and the torsion angle θ is changed to change a plurality of internally grooved heat transfer tubes. Was made. For these internally grooved heat transfer tubes, a CO 2 refrigerant having a refrigerating machine oil content of 1.0 mass% and 3.0 mass% is used, and the other methods are the same as in the first embodiment. The performance ratio was determined.

図6は横軸にねじれ角θをとり、縦軸に性能比をとって、ねじれ角θと性能比との関係を示すグラフ図である。図6に示すように、冷凍機油含有量が1.0質量%の場合では、ねじれ角θが10乃至15°程度で性能比が最大となり、これよりもねじれ角θが小さく又は大きくなるに従い性能比は低下した。更に、ねじれ角θが本発明の範囲から外れ、2°よりも小さくなると、性能比が1よりも小さくなり、平滑管に対する優位性がなくなった。同様に、ねじれ角θが本発明の範囲から外れて25°よりも大きくなると、性能比が1よりも小さくなり、平滑管に対する優位性がなくなった。一方、冷凍機油含有量が3.0質量%の場合では、ねじれ角θが5°よりも小さくなると、性能比が1よりも小さくなり、平滑管に対する優位性がなくなった。同様に、ねじれ角θが本発明の範囲から外れて20°よりも大きくなると、性能比が1よりも小さくなり、平滑管に対する優位性がなくなった。   FIG. 6 is a graph showing the relationship between the twist angle θ and the performance ratio with the twist angle θ on the horizontal axis and the performance ratio on the vertical axis. As shown in FIG. 6, when the refrigerating machine oil content is 1.0 mass%, the performance ratio becomes maximum when the twist angle θ is about 10 to 15 °, and the performance becomes smaller as the twist angle θ becomes smaller or larger than this. The ratio declined. Further, when the twist angle θ is out of the range of the present invention and becomes smaller than 2 °, the performance ratio becomes smaller than 1 and the superiority to the smooth tube is lost. Similarly, when the twist angle θ is out of the range of the present invention and becomes larger than 25 °, the performance ratio becomes smaller than 1 and the superiority to the smooth tube is lost. On the other hand, when the refrigerating machine oil content was 3.0 mass%, when the twist angle θ was smaller than 5 °, the performance ratio was smaller than 1, and the superiority over the smooth tube was lost. Similarly, when the twist angle θ is out of the range of the present invention and becomes larger than 20 °, the performance ratio becomes smaller than 1 and the superiority to the smooth tube is lost.

次に、本発明の第5実施例として、外径を6mm、フィン高さhを0.18mm、ねじれ角θを25°とし、溝部断面積Sを変えて複数の内面溝付伝熱管を作製した。そして、これらの内面溝付伝熱管について、冷凍機油含有量が1.0質量%及び3.0質量%であるCO冷媒を使用し、それ以外は前述の第1実施例と同様の方法でその性能比を求めた。 Next, as a fifth embodiment of the present invention, the outer diameter is 6 mm, the fin height h is 0.18 mm, the twist angle θ is 25 °, and the groove cross-sectional area S is changed to produce a plurality of internally grooved heat transfer tubes. did. For these internally grooved heat transfer tubes, a CO 2 refrigerant having a refrigerating machine oil content of 1.0 mass% and 3.0 mass% is used, and the other methods are the same as in the first embodiment. The performance ratio was determined.

図7は横軸に溝部断面積Sをとり、縦軸に性能比をとって、溝部断面積Sと性能比との関係を示すグラフ図である。図7に示すように、冷凍機油含有量が3.0質量%の場合では、溝部断面積Sが0.03乃至0.04mm程度で性能比が最大となり、これよりも溝部断面積Sが小さく又は大きくなるに従い性能比は低下した。更に、溝部断面積Sが本発明の範囲から外れ、0.02mmよりも小さくなると、性能比が1よりも小さくなり、平滑管に対する優位性がなくなった。同様に、溝部断面積Sが本発明の範囲から外れて0.053mmよりも大きくなると、性能比が1よりも小さくなり、平滑管に対する優位性がなくなった。一方、冷凍機油含有量が1.0質量%の場合では、溝部断面積Sを変化させても性能比は大きく変化しないが、溝部断面積Sが0.03mm程度で性能比が最大になった。 FIG. 7 is a graph showing the relationship between the groove section sectional area S and the performance ratio, with the groove section sectional area S on the horizontal axis and the performance ratio on the vertical axis. As shown in FIG. 7, when the refrigeration oil content is 3.0% by mass, the groove section sectional area S is about 0.03 to 0.04 mm 2 , and the performance ratio becomes maximum, and the groove section sectional area S is larger than this. The performance ratio decreased as it became smaller or larger. Furthermore, when the groove cross-sectional area S is out of the scope of the present invention and becomes smaller than 0.02 mm 2 , the performance ratio becomes smaller than 1 and the superiority to the smooth tube is lost. Similarly, when the groove cross-sectional area S is out of the scope of the present invention and becomes larger than 0.053 mm 2 , the performance ratio becomes smaller than 1 and the superiority to the smooth tube is lost. On the other hand, when the refrigerating machine oil content is 1.0% by mass, the performance ratio does not change greatly even if the groove cross-sectional area S is changed, but the performance ratio becomes maximum when the groove cross-sectional area S is about 0.03 mm 2. It was.

次に、本発明の第6実施例として、外径が6mm、フィン高さhが0.15mm、ねじれ角θが15°、溝部断面積Sが0.034mmである内面溝付伝熱管を作製した。そして、この内面溝付伝熱管(実施例)及び外径が6mmの平滑管(従来例)について、冷凍機油含有量を変えたCO冷媒を使用して、それ以外は前述の第1実施例と同様の方法及び条件でその性能比を求めた。 Next, as a sixth embodiment of the present invention, there is provided an internally grooved heat transfer tube having an outer diameter of 6 mm, a fin height h of 0.15 mm, a twist angle θ of 15 °, and a groove section area S of 0.034 mm 2. Produced. And about this inner surface grooved heat transfer tube (Example) and a smooth tube (conventional example) having an outer diameter of 6 mm, a CO 2 refrigerant having a different refrigeration oil content is used. The performance ratio was determined by the same method and conditions.

図8は横軸にCO冷媒中の冷凍機油量をとり、縦軸に伝熱性能低下率をとって、冷凍機油含有量と伝熱性能との関係を示すグラフ図である。なお、図8に示す伝熱性能低下率は、実施例の内面溝付伝熱管における冷凍機油含有量が0%である場合の伝熱性能を100%としたときの値である。図8に示すように、実施例の内面溝付伝熱管は、冷凍機油含有量が増加したときの伝熱性能低下率は従来例の平滑管に比べて大きいが、伝熱性能は全ての範囲において従来の平滑管よりも高かった。 FIG. 8 is a graph showing the relationship between the refrigeration oil content and the heat transfer performance, with the horizontal axis representing the amount of refrigerating machine oil in the CO 2 refrigerant and the vertical axis representing the heat transfer performance reduction rate. In addition, the heat-transfer performance fall rate shown in FIG. 8 is a value when the heat-transfer performance in case the refrigerator oil content in the heat transfer tube with an inner surface groove of an Example is 0% is set to 100%. As shown in FIG. 8, the heat transfer performance reduction rate when the refrigeration oil content is increased in the inner surface grooved heat transfer tube of the embodiment is larger than that of the smooth tube of the conventional example, but the heat transfer performance is in the entire range. It was higher than the conventional smooth tube.

(a)は本発明の第1の実施形態の内面溝付伝熱管における管軸方向に垂直な断面を示す断面図であり、(b)は管軸方向と平行な断面を示す断面図である。(A) is sectional drawing which shows a cross section perpendicular | vertical to a pipe-axis direction in the heat transfer tube with an inner surface groove | channel of the 1st Embodiment of this invention, (b) is sectional drawing which shows a cross section parallel to a pipe-axis direction. . 本発明の第1実施形態の内面溝付伝熱管が組み込まれた蒸発器を備えた熱交換器の構成を示す図である。It is a figure which shows the structure of the heat exchanger provided with the evaporator with which the heat transfer tube with an inner surface groove | channel of 1st Embodiment of this invention was integrated. 熱伝達率及び圧力損失の測定に使用した装置の構成を示す図である。It is a figure which shows the structure of the apparatus used for the measurement of a heat transfer rate and a pressure loss. 図3に示す蒸発器の構成を示す図である。It is a figure which shows the structure of the evaporator shown in FIG. 横軸にフィン高さhをとり、縦軸に性能比をとって、フィン高さhと性能比との関係を示すグラフ図である。It is a graph which shows the relationship between fin height h and a performance ratio by taking fin height h on a horizontal axis and taking a performance ratio on a vertical axis | shaft. 横軸にねじれ角θをとり、縦軸に性能比をとって、ねじれ角θと性能比との関係を示すグラフ図である。FIG. 5 is a graph showing the relationship between the twist angle θ and the performance ratio, with the twist angle θ on the horizontal axis and the performance ratio on the vertical axis. 横軸に溝部断面積Sをとり、縦軸に性能比をとって、溝部断面積Sと性能比との関係を示すグラフ図である。It is a graph which shows the relationship between groove part cross-sectional area S and a performance ratio, taking a groove part cross-sectional area S on a horizontal axis and taking a performance ratio on a vertical axis | shaft. 横軸にCO冷媒中の冷凍機油量をとり、縦軸に伝熱性能低下率をとって、冷凍機油含有量と伝熱性能との関係を示すグラフ図である。Take the refrigeration oil of CO 2 refrigerant in the horizontal axis, the vertical axis represents the heat transfer performance degradation rate is a graph showing the relationship between the refrigerating machine oil content and the heat transfer performance.

符号の説明Explanation of symbols

1、31;蒸発器
2、32;圧縮機
3a、3b;オイルセパレータ
4;ガス冷却器
5a、5b;アキュームレータ
6、12;流量計
7、34;膨張弁
8;予熱器
9;過熱器
10;オイル冷却器
11;オイルポンプ
13;熱源
14;サンプリングポート
15a〜15c;二重管
16a〜16f;熱源水混合室
17a〜17d;差圧変換器
18a〜18f;冷媒混合室
19a〜19f;熱電対
20a〜20f;圧力変換器
21;内面溝付伝熱管
22;溝
23;フィン
30;熱交換器
33;凝縮器
h;フィン高さ
S;溝部断面積
θ;ねじれ角
1, 31; Evaporator 2, 32; Compressor 3a, 3b; Oil separator 4; Gas cooler 5a, 5b; Accumulator 6, 12; Flow meter 7, 34; Expansion valve 8; Preheater 9; Oil cooler 11; Oil pump 13; Heat source 14; Sampling port 15a-15c; Double pipe 16a-16f; Heat source water mixing chamber 17a-17d; Differential pressure converter 18a-18f; Refrigerant mixing chamber 19a-19f; 20a to 20f; pressure transducer 21; inner surface grooved heat transfer tube 22; groove 23; fin 30; heat exchanger 33; condenser h; fin height S;

Claims (4)

冷凍機油含有量が0.1乃至1.5質量%である二酸化炭素を冷媒として使用する熱交換器の蒸発器用内面溝付伝熱管であって、外径が3乃至7mmであり、管内面には深さが0.14乃至0.27mmである螺旋状の溝が形成されており、管内面における管軸方向に平行な直線と前記溝が延びる方向とがなす角度が2乃至25°であることを特徴とする蒸発器用内面溝付伝熱管。 An internal grooved heat transfer tube for an evaporator of a heat exchanger that uses carbon dioxide having a refrigerating machine oil content of 0.1 to 1.5% by mass as a refrigerant, having an outer diameter of 3 to 7 mm, Is formed with a spiral groove having a depth of 0.14 to 0.27 mm, and an angle formed between a straight line parallel to the tube axis direction on the inner surface of the tube and a direction in which the groove extends is 2 to 25 °. An internally grooved heat transfer tube for an evaporator. 管軸方向に対して垂直な断面における前記溝部の面積が0.01乃至0.06mmであることを特徴とする請求項1に記載の蒸発器用内面溝付伝熱管。 2. The inner grooved heat transfer tube for an evaporator according to claim 1, wherein an area of the groove portion in a cross section perpendicular to the tube axis direction is 0.01 to 0.06 mm 2 . 冷凍機油含有量が1.5質量%を超え5.0質量%以下である二酸化炭素を冷媒として使用する熱交換器の蒸発器用内面溝付伝熱管であって、外径が3乃至7mmであり、管内面には深さが0.14乃至0.27mmである螺旋状の溝が形成されており、管軸方向に対して垂直な断面における前記溝部の面積が0.020乃至0.053mmであることを特徴とする蒸発器用内面溝付伝熱管。 An internal grooved heat transfer tube for an evaporator of a heat exchanger that uses carbon dioxide having a refrigerator oil content of more than 1.5 mass% and not more than 5.0 mass% as a refrigerant, and has an outer diameter of 3 to 7 mm A spiral groove having a depth of 0.14 to 0.27 mm is formed on the inner surface of the tube, and the area of the groove in a cross section perpendicular to the tube axis direction is 0.020 to 0.053 mm 2. An internally grooved heat transfer tube for an evaporator, characterized in that 管内面における管軸方向に平行な直線と前記溝が延びる方向とがなす角度が5乃至20°であることを特徴とする請求項3に記載の蒸発器用内面溝付伝熱管。 4. The inner grooved heat transfer tube for an evaporator according to claim 3, wherein an angle formed by a straight line parallel to the tube axis direction on the inner surface of the tube and a direction in which the groove extends is 5 to 20 degrees.
JP2004248723A 2004-08-27 2004-08-27 Heat transfer tube with inner groove for evaporator Active JP4386813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248723A JP4386813B2 (en) 2004-08-27 2004-08-27 Heat transfer tube with inner groove for evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248723A JP4386813B2 (en) 2004-08-27 2004-08-27 Heat transfer tube with inner groove for evaporator

Publications (2)

Publication Number Publication Date
JP2006064311A true JP2006064311A (en) 2006-03-09
JP4386813B2 JP4386813B2 (en) 2009-12-16

Family

ID=36110944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248723A Active JP4386813B2 (en) 2004-08-27 2004-08-27 Heat transfer tube with inner groove for evaporator

Country Status (1)

Country Link
JP (1) JP4386813B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271220A (en) * 2006-03-31 2007-10-18 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner groove for gas cooler
JP2008002796A (en) * 2006-06-26 2008-01-10 Denso Corp Ejector type refrigeration cycle
JP2008020166A (en) * 2006-07-14 2008-01-31 Kobelco & Materials Copper Tube Inc Inner surface grooved heat-transfer tube for evaporator
JP2008249294A (en) * 2007-03-30 2008-10-16 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner surface groove for gas cooler using carbon dioxide refrigerant
US7490658B2 (en) 2004-12-02 2009-02-17 Sumitomo Light Metal Industries, Ltd. Internally grooved heat transfer tube for high-pressure refrigerant
JP2009228929A (en) * 2008-03-19 2009-10-08 Kobelco & Materials Copper Tube Inc Internally-grooved heat transfer pipe for evaporator
JP2010078289A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the same
WO2010038403A1 (en) * 2008-09-30 2010-04-08 ダイキン工業株式会社 Air conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855690B (en) * 2017-11-17 2019-10-01 徐州华显凯星信息科技有限公司 A kind of construction taper pile top welding preheating device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7490658B2 (en) 2004-12-02 2009-02-17 Sumitomo Light Metal Industries, Ltd. Internally grooved heat transfer tube for high-pressure refrigerant
JP2007271220A (en) * 2006-03-31 2007-10-18 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner groove for gas cooler
JP2008002796A (en) * 2006-06-26 2008-01-10 Denso Corp Ejector type refrigeration cycle
JP4591413B2 (en) * 2006-06-26 2010-12-01 株式会社デンソー Ejector refrigeration cycle
JP2008020166A (en) * 2006-07-14 2008-01-31 Kobelco & Materials Copper Tube Inc Inner surface grooved heat-transfer tube for evaporator
JP2008249294A (en) * 2007-03-30 2008-10-16 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner surface groove for gas cooler using carbon dioxide refrigerant
JP2009228929A (en) * 2008-03-19 2009-10-08 Kobelco & Materials Copper Tube Inc Internally-grooved heat transfer pipe for evaporator
JP2010078289A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the same
WO2010038403A1 (en) * 2008-09-30 2010-04-08 ダイキン工業株式会社 Air conditioning device
JP2010085029A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Air conditioner

Also Published As

Publication number Publication date
JP4386813B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
Cavallini et al. Condensation inside and outside smooth and enhanced tubes—a review of recent research
Ito et al. Boiling heat transfer and pressure drop in internal spiral-grooved tubes
Ammar et al. Condensing heat transfer coefficients of R134a in smooth and grooved multiport flat tubes of automotive heat exchanger: an experimental investigation
Dang et al. Effect of lubricating oil on the flow and heat-transfer characteristics of supercritical carbon dioxide
Zhong et al. In-tube performance evaluation of an air-cooled condenser with liquid–vapor separator
Mauro et al. Flow pattern, condensation and boiling inside and outside smooth and enhanced surfaces of propane (R290). State of the art review
JP4386813B2 (en) Heat transfer tube with inner groove for evaporator
Gao et al. Experiments on flow boiling heat transfer of almost pure CO2 and CO2-oil mixtures in horizontal smooth and microfin tubes
Mastrullo et al. Flow boiling of carbon dioxide: Heat transfer for smooth and enhanced geometries and effect of oil. state of the art review
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
Morrow et al. Flow condensation heat transfer and pressure drop of R134a alternative refrigerants R513A and R450A in 0.95-mm diameter minichannels
JP4119836B2 (en) Internal grooved heat transfer tube
Hoehne et al. Charge minimization in systems and components using hydrocarbons as a refrigerant
Kumar et al. Parametric variation studies of experimental flow boiling heat transfer phenomena using R407c inside an enhanced tube
JP2007271220A (en) Heat transfer tube with inner groove for gas cooler
Kondou et al. Condensation and evaporation of R744/R32/R1234ze (E) flow in horizontal microfin tubes
JP2009243722A (en) Internally grooved pipe
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
Cavallini et al. Condensation heat transfer and pressure drop inside channels for AC/HP application
Zeng et al. Experimental investigation on oil transport, heat transfer and distribution performances of R32/oil mixture in microchannel evaporators
Kim et al. Condensation heat transfer and pressure drop of R-404A in 7.0 mm OD smooth and microfin tube at low mass fluxes
Ebisu et al. Heat transfer characteristics and heat exchanger performances for R407C using herringbone heat transfer tube
JP2012122692A (en) Heat transfer tube with grooved inner surface
Yatim et al. Measurements of oil retention in a microchannel condenser for AC systems
JP5566001B2 (en) Internally grooved heat transfer tube for gas coolers using carbon dioxide refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

R150 Certificate of patent or registration of utility model

Ref document number: 4386813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250