JP2011252662A - Heat transfer tube for refrigerant, and heat exchanger - Google Patents

Heat transfer tube for refrigerant, and heat exchanger Download PDF

Info

Publication number
JP2011252662A
JP2011252662A JP2010126871A JP2010126871A JP2011252662A JP 2011252662 A JP2011252662 A JP 2011252662A JP 2010126871 A JP2010126871 A JP 2010126871A JP 2010126871 A JP2010126871 A JP 2010126871A JP 2011252662 A JP2011252662 A JP 2011252662A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
heat
tube
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010126871A
Other languages
Japanese (ja)
Inventor
Masaru Horiguchi
賢 堀口
Mamoru Hofuku
守 法福
Hironori Kitajima
寛規 北嶋
Masao Takano
将男 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010126871A priority Critical patent/JP2011252662A/en
Priority to CN2011101520724A priority patent/CN102269538A/en
Publication of JP2011252662A publication Critical patent/JP2011252662A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat transfer tube for refrigerant, which is a hydrothermal exchanging of a heat pump type water heater using a carbon dioxide as refrigerant, capable of suppressing an increase of a pressure loss and effectively improving a heat transfer performance, and to provide a heat exchanger with the same.SOLUTION: The heat transfer tube 20 is used for the heat exchanger of the heat pump water heater 10 using the carbon dioxide as the refrigerant, and includes: a main tube with an inner circumferential surface 20a; a plurality of fins 200 provided at the inner circumferential surface 20a; and a plurality of grooves between the plurality of fins 200. The plurality of grooves has a first groove 210 with a first width WA and a second groove 212 with a second width WB different from the first width WA.

Description

本発明は、冷媒用伝熱管及び熱交換器に関する。特に、本発明は、冷媒として二酸化炭素を用いたヒートポンプ給湯機が備える熱交換器用の冷媒用伝熱管及び当該冷媒用伝熱管を有する熱交換器に関する。   The present invention relates to a refrigerant heat transfer tube and a heat exchanger. In particular, the present invention relates to a refrigerant heat transfer tube for a heat exchanger provided in a heat pump water heater using carbon dioxide as a refrigerant, and a heat exchanger having the refrigerant heat transfer tube.

ヒートポンプとは、外部の大気、地下水、海水等の安価かつ豊富に存在する資源である熱源からの熱を、圧縮機(すなわち、コンプレッサ)を利用して移動させるシステムをいう。例えば、電動ヒートポンプでは、電気エネルギーを熱エネルギーに直接変換するのではなく、熱を移動させる動力源として電気エネルギーを利用することにより、消費電力(消費エネルギー)の3倍近くの熱エネルギーが利用できる。これは、石油等の化石燃料を燃焼させて熱エネルギーにするシステムに比べて効率がよく、環境への負荷が小さいシステムである。このことから、ヒートポンプ式熱交換機器が近年広く利用されている。   A heat pump refers to a system that moves heat from a heat source, which is an inexpensive and abundant resource, such as external air, groundwater, seawater, and the like, using a compressor (that is, a compressor). For example, in an electric heat pump, electric energy is not directly converted into heat energy, but by using electric energy as a power source for moving heat, heat energy nearly three times as much as power consumption (energy consumption) can be used. . This is a system that is more efficient and less burdensome on the environment than a system that uses fossil fuels such as oil to burn it into thermal energy. For this reason, heat pump heat exchange devices have been widely used in recent years.

一方、冷凍サイクルを利用した一般的な熱交換機器(空調機、冷蔵庫、冷凍機、給湯機等)には、旧来、フロン系の冷媒が使用されていた。しかし、フロン系の冷媒は地球温暖化への影響が懸念される等の理由から、環境への負荷が小さい自然冷媒、特に二酸化炭素が代わりに利用されている。そして、経済的、環境的理由により、例えば、エコキュート及びカーエアコン用として、上述のヒートポンプと組み合わせた自然冷媒(特に、二酸化炭素)ヒートポンプ式熱交換機器への期待が急速に高まっている。   On the other hand, chlorofluorocarbon refrigerants have been conventionally used for general heat exchange devices (such as air conditioners, refrigerators, refrigerators, and water heaters) that use a refrigeration cycle. However, chlorofluorocarbon-based refrigerants are used instead of natural refrigerants, particularly carbon dioxide, which have a low environmental impact because of concerns about the impact on global warming. For economic and environmental reasons, for example, expectations for a natural refrigerant (particularly carbon dioxide) heat pump heat exchange device combined with the above-described heat pump are increasing rapidly, for example, for eco-cutes and car air conditioners.

二酸化炭素冷媒を用いたヒートポンプ式熱交換機器には、一般的に、熱交換器として、ガスクーラ(放熱器)と蒸発器(吸熱器)とが用いられており、それら熱交換器に使用される冷媒用伝熱管として、ガスクーラ用冷媒管及び蒸発器用冷媒管が使用されている。特に二酸化炭素冷媒を用いたヒートポンプ式給湯機においては、上記2種類の伝熱管に加え、冷媒と熱媒体との間で熱交換をさせる別の伝熱管(ガスクーラ用水管)も利用される。そして、これら伝熱管(ガスクーラ用水管、ガスクーラ用冷媒管、及び蒸発器用冷媒管)に要求される技術的仕様はそれぞれで異なっている。以下、二酸化炭素冷媒を用いたヒートポンプ式給湯機のガスクーラを水熱交換器と称する。このような水熱交換器用冷媒管としては、特許文献1及び特許文献2に示す内面溝付管が知られている。   In heat pump heat exchange equipment using carbon dioxide refrigerant, a gas cooler (heat radiator) and an evaporator (heat absorber) are generally used as heat exchangers, and these heat exchangers are used. As the refrigerant heat transfer pipe, a gas cooler refrigerant pipe and an evaporator refrigerant pipe are used. In particular, in a heat pump type water heater using a carbon dioxide refrigerant, in addition to the two types of heat transfer tubes, another heat transfer tube (gas cooler water tube) that exchanges heat between the refrigerant and the heat medium is also used. The technical specifications required for these heat transfer tubes (water tube for gas cooler, refrigerant tube for gas cooler, and refrigerant tube for evaporator) are different from each other. Hereinafter, the gas cooler of the heat pump type water heater using the carbon dioxide refrigerant is referred to as a water heat exchanger. As such a refrigerant pipe for a water heat exchanger, an internally grooved pipe shown in Patent Document 1 and Patent Document 2 is known.

特許文献1に記載の内面溝付管は、空調機で実績のある内面溝付管を水熱交換器用冷媒管として用いることで、水熱交換器の性能を向上させ得る。   The inner surface grooved tube described in Patent Literature 1 can improve the performance of the water heat exchanger by using the inner surface grooved tube, which has been proven in air conditioners, as the water heat exchanger refrigerant tube.

特開2006−105525号公報JP 2006-105525 A 特開2007−178115号公報JP 2007-178115 A

しかしながら、特許文献1に記載の内面溝付管においては、冷媒管内を流れる二酸化炭素冷媒に、冷凍サイクルの圧縮機用の潤滑剤である圧縮機潤滑油が混入することにより、伝熱管の熱交換が阻害される重大な問題がある。これは、二酸化炭素冷媒と圧縮機潤滑油との相溶性が良くないためと考えられている。また、このような問題は、従来のフロン系冷媒にはなかった課題である。   However, in the internally grooved tube described in Patent Document 1, heat exchange of the heat transfer tube is caused by mixing compressor lubricating oil, which is a lubricant for the compressor of the refrigeration cycle, into the carbon dioxide refrigerant flowing in the refrigerant tube. There is a serious problem that hinders. This is considered because the compatibility between the carbon dioxide refrigerant and the compressor lubricating oil is not good. Moreover, such a problem is a problem that was not found in conventional fluorocarbon refrigerants.

また、特許文献2に記載の内面溝付管においては、放熱性能、すなわち熱伝達率の向上に対し、圧力損失の増加については検討されていない。特に、水熱交換器においては、二酸化炭素冷媒の圧力損失が増大すると同じ熱交換量でも冷媒温度が低下するので、水と冷媒との温度差が確保できず、熱交換ができない領域(すなわち、ピンチポイント)が発生する。この現象は、フロン系冷媒を用いた空調機で発生することはなく、超臨界域でガスクールする二酸化炭素の熱と水の熱とを熱交換することで生じるものであり、特に冷媒の圧損が大きい場合に発生する。   In addition, in the internally grooved tube described in Patent Document 2, an increase in pressure loss is not studied for improving heat dissipation performance, that is, heat transfer coefficient. In particular, in a water heat exchanger, if the pressure loss of the carbon dioxide refrigerant increases, the refrigerant temperature decreases even with the same heat exchange amount. Therefore, a temperature difference between water and the refrigerant cannot be ensured and heat exchange is not possible (i.e., Pinch point) occurs. This phenomenon does not occur in air conditioners using chlorofluorocarbon refrigerants, but is caused by heat exchange between the heat of carbon dioxide and water heat that is gas-cooled in the supercritical region. Occurs when is large.

また、冷媒の温度は冷媒の圧力とエンタルピーとで決定され、伝熱管の熱交換量は冷媒流量とエンタルピー差との積で算出される。ここで、エンタルピーが同じであれば、冷媒の圧力が小さいほど温度は低くなる。すなわち、冷媒の圧力損失が増大すると冷媒の温度が低下するので、伝熱管の熱交換量が低下する。   The refrigerant temperature is determined by the refrigerant pressure and enthalpy, and the heat exchange amount of the heat transfer tube is calculated by the product of the refrigerant flow rate and the enthalpy difference. Here, if the enthalpy is the same, the temperature decreases as the refrigerant pressure decreases. That is, when the pressure loss of the refrigerant increases, the temperature of the refrigerant decreases, so the heat exchange amount of the heat transfer tubes decreases.

以上より、水熱交換器においては、冷媒管の圧力損失増大が伝熱性能の向上に見合う程度に抑制される必要がある。   From the above, in the water heat exchanger, it is necessary to suppress the increase in pressure loss of the refrigerant pipe to an extent commensurate with the improvement in heat transfer performance.

したがって、本発明の目的は、二酸化炭素を冷媒としたヒートポンプ式給湯機の水熱交であって、圧力損失の増大を抑制できると共に、伝熱性能を効果的に向上させることができる冷媒用伝熱管及び熱交換器を提供することにある。   Accordingly, an object of the present invention is hydrothermal exchange of a heat pump water heater using carbon dioxide as a refrigerant, and can suppress an increase in pressure loss and effectively improve heat transfer performance. It is to provide a heat pipe and a heat exchanger.

(1)本発明は、上記目的を達成するため、冷媒として二酸化炭素を用いたヒートポンプ給湯機の熱交換器に用いられる冷媒用伝熱管であって、内周面を有する主管と、前記内周面に設けられる複数のフィンと、前記複数のフィンの間の複数の溝部とを備え、前記複数の溝部が、第1の幅を有する第1の溝部と、前記第1の幅とは異なる幅の第2の幅を有する第2の溝部とを有する冷媒用伝熱管が提供される。   (1) In order to achieve the above object, the present invention is a refrigerant heat transfer tube used in a heat exchanger of a heat pump water heater using carbon dioxide as a refrigerant, the main tube having an inner peripheral surface, and the inner periphery A plurality of fins provided on the surface, and a plurality of groove portions between the plurality of fins, wherein the plurality of groove portions have a first groove portion having a first width and a width different from the first width. A refrigerant heat transfer tube having a second groove portion having the second width is provided.

(2)また、上記冷媒用伝熱管において、前記第2の溝部が、前記内周面に周期的に設けられることが好ましい。   (2) In the refrigerant heat transfer tube, it is preferable that the second groove is periodically provided on the inner peripheral surface.

(3)また、上記冷媒用伝熱管において、前記複数のフィンそれぞれが0.15mm以上の高さを有することが好ましい。   (3) Moreover, in the said heat exchanger tube for refrigerant | coolants, it is preferable that each of these fins has a height of 0.15 mm or more.

(4)また、上記冷媒用伝熱管において、前記複数のフィンそれぞれが、0°以上3°以下のねじれ角を有することが好ましい。   (4) In the refrigerant heat transfer tube, each of the plurality of fins preferably has a twist angle of 0 ° to 3 °.

(5)また、本発明は、上記目的を達成するため、上記(1)〜(4)のいずれか1つに記載の冷媒用伝熱管を備える熱交換器が提供される。   (5) Moreover, in order to achieve the said objective, this invention provides a heat exchanger provided with the heat exchanger tube for refrigerant | coolants as described in any one of said (1)-(4).

本発明に係る冷媒用伝熱管及び熱交換器によれば、二酸化炭素を冷媒としたヒートポンプ式給湯機の水熱交であって、圧力損失の増大を抑制できると共に、伝熱性能を効果的に向上させることができる冷媒用伝熱管及び熱交換器を提供できる。   According to the refrigerant heat transfer tube and the heat exchanger according to the present invention, it is a hydrothermal exchange of a heat pump type water heater using carbon dioxide as a refrigerant, and an increase in pressure loss can be suppressed and heat transfer performance can be effectively improved. A heat transfer tube for a refrigerant and a heat exchanger that can be improved can be provided.

本発明の第1の実施の形態に係るヒートポンプ式給湯機の構成の概要図である。It is a schematic diagram of the structure of the heat pump type hot water heater which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る冷媒用伝熱管の断面図である。It is sectional drawing of the heat exchanger tube for refrigerant | coolants which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る冷媒用伝熱管の断面図である。It is sectional drawing of the heat exchanger tube for refrigerant | coolants which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る水熱交換器の構造の概要図である。It is a schematic diagram of the structure of the water heat exchanger which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る水熱交換器の構造の概要図である。It is a schematic diagram of the structure of the water heat exchanger which concerns on the 5th Embodiment of this invention. 伝熱性能を評価するための二重管式熱交換器の模式図である。It is a schematic diagram of the double-pipe heat exchanger for evaluating heat transfer performance. 油濃度が5.0%のとき、実施例1、比較例1(内面溝付管)について平均冷媒温度と、管内熱伝達率平滑管比(比較例4に対する比)と圧力損失平滑管比との比(以下性能圧損比と称する)との関係を示した評価結果を示す図である。When the oil concentration is 5.0%, for Example 1 and Comparative Example 1 (inner grooved tube), the average refrigerant temperature, the in-tube heat transfer coefficient smooth tube ratio (ratio to Comparative Example 4), and the pressure loss smooth tube ratio It is a figure which shows the evaluation result which showed the relationship with ratio (henceforth a performance pressure loss ratio).

[実施の形態の要約]
冷媒として二酸化炭素を用いたヒートポンプ給湯機の熱交換器に用いられる冷媒用伝熱管において、内周面を有する主管と、前記内周面に設けられる複数のフィンと、前記複数のフィンの間の複数の溝部とを備え、前記複数の溝部が、第1の幅を有する第1の溝部と、前記第1の幅とは異なる幅の第2の幅を有する第2の溝部とを有する冷媒用伝熱管が提供される。
[Summary of embodiment]
In a heat transfer pipe for a refrigerant used in a heat exchanger of a heat pump water heater using carbon dioxide as a refrigerant, a main pipe having an inner peripheral surface, a plurality of fins provided on the inner peripheral surface, and between the plurality of fins A plurality of groove portions, wherein the plurality of groove portions have a first groove portion having a first width and a second groove portion having a second width different from the first width. A heat transfer tube is provided.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る冷媒用伝熱管を用いて構成されるヒートポンプ式給湯機の構成の概要を示す。
[First Embodiment]
FIG. 1: shows the outline | summary of a structure of the heat pump type water heater comprised using the heat exchanger tube for refrigerant | coolants which concerns on the 1st Embodiment of this invention.

第1の実施の形態に係るヒートポンプ式給湯機10は、二酸化炭素を冷媒として用いる二酸化炭素冷媒ヒートポンプ式給湯機としてのヒートポンプ式給湯機10である。ヒートポンプ式給湯機10は、圧縮機11と、後述する冷媒用伝熱管20を有する熱交換器としての水熱交換器12と、膨張弁13と、吸熱器(蒸発器)14とを備える。そして、圧縮機11と水熱交換器12とが配管15で互いに接続され、水熱交換器12と膨張弁13とが配管15aで互いに接続され、膨張弁13と吸熱器14とが配管15bで互いに接続され、吸熱器14と圧縮機11とが配管15cで互いに接続されることにより冷凍サイクルが構成される。二酸化炭素の冷媒は、当該冷凍サイクル内に封入されている。ここで、圧縮機11の吐出部から水熱交換器12を経て膨張弁13の入口部までの領域は、冷媒が超臨界状態(すなわち、臨界圧力を超える状態)になっている。なお、圧縮機11の潤滑油としては、例えば、ポリアルキレングリコール油(PAG油)を用いることができる。   The heat pump type hot water heater 10 according to the first embodiment is a heat pump type hot water heater 10 as a carbon dioxide refrigerant heat pump type hot water heater using carbon dioxide as a refrigerant. The heat pump type water heater 10 includes a compressor 11, a water heat exchanger 12 as a heat exchanger having a refrigerant heat transfer tube 20 described later, an expansion valve 13, and a heat absorber (evaporator) 14. The compressor 11 and the water heat exchanger 12 are connected to each other by a pipe 15, the water heat exchanger 12 and the expansion valve 13 are connected to each other by a pipe 15a, and the expansion valve 13 and the heat absorber 14 are connected to each other by a pipe 15b. The refrigeration cycle is configured by connecting the heat absorber 14 and the compressor 11 to each other via a pipe 15c. The carbon dioxide refrigerant is enclosed in the refrigeration cycle. Here, in the region from the discharge part of the compressor 11 to the inlet part of the expansion valve 13 through the water heat exchanger 12, the refrigerant is in a supercritical state (that is, a state exceeding the critical pressure). In addition, as lubricating oil of the compressor 11, polyalkylene glycol oil (PAG oil) can be used, for example.

(ヒートポンプ式給湯機10の動作)
次に、ヒートポンプ式給湯機10の動作について説明する。まず、圧縮機11において冷媒としての二酸化炭素冷媒が圧縮される。そして、圧縮された二酸化炭素冷媒は、臨界圧力(約7.4MPa)を超える状態(超臨界状態)で圧縮機11からガスクーラ(水熱交換器)12に導入される。なお、本実施の形態では、圧縮機11において、例えば、約10MPaに冷媒は圧縮される。
(Operation of the heat pump type water heater 10)
Next, the operation of the heat pump type water heater 10 will be described. First, the carbon dioxide refrigerant as the refrigerant is compressed in the compressor 11. The compressed carbon dioxide refrigerant is introduced from the compressor 11 to the gas cooler (water heat exchanger) 12 in a state (supercritical state) exceeding the critical pressure (about 7.4 MPa). In the present embodiment, the refrigerant is compressed to, for example, about 10 MPa in the compressor 11.

超臨界状態の二酸化炭素冷媒は液化せず(つまり、気液二相状態にならず)、高温高圧の状態になる。そして、超臨界状態の二酸化炭素冷媒は、ガスクーラ(水熱交換器)12において水等との間で熱交換する(すなわち、冷媒から放熱される)。その後、二酸化炭素冷媒は膨張弁(減圧器)13で減圧されて低圧の気液二相状態になり、吸熱器14に導入される。なお、本実施の形態では、膨張弁13において二酸化炭素冷媒は、例えば、約3.5MPa程度の圧力にまで減圧される。   The supercritical carbon dioxide refrigerant is not liquefied (that is, not in a gas-liquid two-phase state) and becomes a high-temperature and high-pressure state. The supercritical carbon dioxide refrigerant exchanges heat with water or the like in the gas cooler (water heat exchanger) 12 (that is, dissipates heat from the refrigerant). Thereafter, the carbon dioxide refrigerant is decompressed by an expansion valve (decompressor) 13 to be in a low-pressure gas-liquid two-phase state and introduced into the heat absorber 14. In the present embodiment, the carbon dioxide refrigerant in the expansion valve 13 is reduced to a pressure of about 3.5 MPa, for example.

気液二相状態になった二酸化炭素冷媒は、吸熱器14において、空気(大気)から吸熱してガス状態(つまり、気相の単相状態)になり、圧縮機11に再び吸入される。このようなサイクルを繰り返すことにより、水熱交換器12における冷媒からの放熱による加熱作用、及び吸熱器14における冷媒の吸熱による冷却作用が継続される。   The carbon dioxide refrigerant in the gas-liquid two-phase state absorbs heat from the air (atmosphere) in the heat absorber 14 to be in a gas state (that is, a gas phase single-phase state), and is sucked into the compressor 11 again. By repeating such a cycle, the heating action by the heat radiation from the refrigerant in the water heat exchanger 12 and the cooling action by the heat absorption of the refrigerant in the heat absorber 14 are continued.

[第2の実施の形態]
図2は、本発明の第2の実施の形態に係る冷媒用伝熱管の断面の概要を示す。
[Second Embodiment]
FIG. 2: shows the outline | summary of the cross section of the heat exchanger tube for refrigerant | coolants which concerns on the 2nd Embodiment of this invention.

第2の実施の形態に係る冷媒用伝熱管20は、銅等の金属材料から形成され、内周面20a及び外周面20bを有する主管と、内周面20aに設けられる複数のフィン200と、複数のフィン200の間に複数の溝部とを備える。そして、複数の溝部は、第1の幅「WA」を有する第1の溝部210と、第1の幅「WA」とは異なる幅の第2の幅「WB」を有する第2の溝部212とを有する。本実施の形態においては、第1の幅「WA」より第2の幅「WB」の方が幅が広く形成される。   The refrigerant heat transfer tube 20 according to the second embodiment is formed of a metal material such as copper, and includes a main tube having an inner peripheral surface 20a and an outer peripheral surface 20b, and a plurality of fins 200 provided on the inner peripheral surface 20a. A plurality of grooves are provided between the plurality of fins 200. The plurality of groove portions include a first groove portion 210 having a first width “WA” and a second groove portion 212 having a second width “WB” different from the first width “WA”. Have In the present embodiment, the second width “WB” is formed wider than the first width “WA”.

冷媒用伝熱管20は以下のようにして製造することができる。まず、銅管を準備する。そして、銅管の内部の引き抜き側(前方)に溝付プラグを配すると共に後方にフローティングプラグを配する。続いて、溝付プラグが位置する銅管の外面に、自公転するボールを押圧しつつ銅管を引き抜く。これにより、銅管の内表面に溝付プラグの溝が転造され、内面に複数の溝が形成された内面溝付管である冷媒用伝熱管が製造される。ここで、本実施の形態に係る冷媒用伝熱管20は、円周方向に所定の間隔ごとに溝が設けられていない形態の溝付プラグを用いることにより製造することができる。例えば、円周方向に4個置きに溝が設けられていない形態の溝付プラグを用いることができる。   The refrigerant heat transfer tube 20 can be manufactured as follows. First, a copper tube is prepared. Then, a grooved plug is arranged on the drawing side (front side) inside the copper tube, and a floating plug is arranged on the rear side. Subsequently, the copper tube is pulled out while pressing the ball revolving on the outer surface of the copper tube where the grooved plug is located. Thereby, the groove | channel of the grooved plug is rolled on the inner surface of a copper pipe, and the heat exchanger tube for refrigerant | coolants which is an inner surface grooved pipe | tube with which the several groove | channel was formed in the inner surface is manufactured. Here, the refrigerant heat transfer tube 20 according to the present embodiment can be manufactured by using a grooved plug in which grooves are not provided at predetermined intervals in the circumferential direction. For example, a grooved plug in which every fourth groove is not provided in the circumferential direction can be used.

また、内表面20aに形成される複数のフィン200のねじれ角を0°以上3°以下、好ましくは概略0°にする。なお、「ねじれ角」とは、内面溝付管における管中心軸方向と溝方向とのなす角である。   Further, the twist angle of the plurality of fins 200 formed on the inner surface 20a is set to 0 ° or more and 3 ° or less, preferably approximately 0 °. The “twist angle” is an angle formed by the tube center axis direction and the groove direction in the internally grooved tube.

(第1及び第2の実施の形態の効果)
第1及び第2の実施の形態によれば、二酸化炭素を冷媒として用いるヒートポンプ給湯機10の水熱交換器12において、性能圧損比に優れた冷媒用伝熱管20を提供することができ、水熱交換器12の熱交換効率を向上させることができる。すなわち、冷媒用伝熱管20内に設ける複数のフィン200の間に第1の溝部210より幅広である複数の第2の溝部212を周期的に設けたので、圧縮機11の潤滑油が配管15内に混入したとしても、混入した潤滑油を冷媒用伝熱管20内において溝部212に沿って管外へ流れやすくすることができる。これにより、潤滑油の冷媒用伝熱管20内への混入に起因する圧力損失を減少させることができる。したがって、潤滑油の混入に起因する冷媒用伝熱管20の圧力損失の増大及び伝熱阻害の影響より、冷媒用伝熱管20内の熱伝達率向上の効果の方を増大させることができる。
(Effects of the first and second embodiments)
According to the first and second embodiments, in the water heat exchanger 12 of the heat pump water heater 10 using carbon dioxide as a refrigerant, the refrigerant heat transfer tube 20 having an excellent performance pressure loss ratio can be provided. The heat exchange efficiency of the heat exchanger 12 can be improved. That is, since the plurality of second groove portions 212 wider than the first groove portion 210 are periodically provided between the plurality of fins 200 provided in the refrigerant heat transfer tube 20, the lubricating oil of the compressor 11 is supplied to the pipe 15. Even if mixed in, the mixed lubricating oil can easily flow outside the tube along the groove 212 in the refrigerant heat transfer tube 20. Thereby, the pressure loss resulting from mixing of the lubricating oil into the refrigerant heat transfer tube 20 can be reduced. Therefore, the effect of improving the heat transfer coefficient in the refrigerant heat transfer tube 20 can be increased more than the increase in pressure loss of the refrigerant heat transfer tube 20 and the influence of heat transfer inhibition due to the mixing of the lubricating oil.

[第3の実施の形態]
図3は、本発明の第3の実施の形態に係る冷媒用伝熱管の断面の概要を示す。
[Third Embodiment]
FIG. 3: shows the outline | summary of the cross section of the heat exchanger tube for refrigerant | coolants which concerns on the 3rd Embodiment of this invention.

第3の実施の形態に係る冷媒用伝熱管30は、複数のフィン300の間隔を除き、第2の実施の形態に係る冷媒用伝熱管20と略同一の構成、機能を備える。したがって、相違点を除き詳細な説明は省略する。   The refrigerant heat transfer tube 30 according to the third embodiment has substantially the same configuration and function as the refrigerant heat transfer tube 20 according to the second embodiment except for the interval between the plurality of fins 300. Therefore, a detailed description is omitted except for differences.

冷媒用伝熱管30においては、第1の幅「WA」より幅広である第2の幅「WB」を有する溝部が内表面の一部に設けられる。また、冷媒用伝熱管30は、第2の実施の形態に係る冷媒用伝熱管20と同様に、溝が部分的に形成されていない溝付プラグを用いて製造される。   In the refrigerant heat transfer tube 30, a groove portion having a second width “WB” wider than the first width “WA” is provided in a part of the inner surface. Moreover, the refrigerant | coolant heat exchanger tube 30 is manufactured using the grooved plug in which the groove | channel is not formed partially similarly to the refrigerant | coolant heat exchanger tube 20 which concerns on 2nd Embodiment.

[第4の実施の形態]
図4は、本発明の第4の実施の形態に係る水熱交換器の構造の概要を示す。
[Fourth Embodiment]
FIG. 4 shows an outline of the structure of the water heat exchanger according to the fourth embodiment of the present invention.

第4の実施の形態に係る熱交換器400は、水用伝熱管に第2の実施の形態に係る冷媒用伝熱管20が巻き付けられて構成される。なお、必要に応じて、水用伝熱管外面と冷媒用伝熱管20とをろう付け等で固着することもできる。熱交換器400においては、水用伝熱管41内を流れる水と、伝熱管41の外周に接触する冷媒用伝熱管20内を流れる冷媒との間で熱交換される。なお、第4の実施の形態においては、水用伝熱管41に巻き付ける冷媒用伝熱管20が1本の例を示したが、使用条件に応じて冷媒用伝熱管20を複数本にすることもできる。また、水用伝熱管41はコルゲート管の例を示した。図示したコルゲート管は、平滑管の外周面にコルゲート溝としての螺旋状の凹溝を形成することにより、内周面に螺旋状の凸部を設ける。より具体的には、コルゲート溝は、コルゲート形成用の円盤状のディスクを、平滑管すなわち管軸に対して垂直に切ったときの内周面の断面が真円である管からなる平滑管の中心軸に垂直な方向に対して傾斜をつけた状態で、平滑管に連続的に押し付けながら回転させつつ、平滑管の周囲に公転させるとともに、平滑管を所定の速度で移動させることにより形成する。すなわち、例示したコルゲート管は、管外へ向けて若干凸の形状とはなっているものの、実質平滑な部分が多く残っており、第1の冷媒用伝熱管をコルゲート溝に沿って巻きつけたのち、第2の冷媒用伝熱管を第1の冷媒用伝熱管に沿って、巻きつけることができる。なお、コルゲート溝の幅は、製造方法に用いた円盤状ディスクの幅と略同一であり、平滑管の表面での測定において、0.5mm〜1.5mmである。また、水用伝熱管41はコルゲート管の例を示したが、使用条件に応じて平滑管、内面溝付管、又は内面溝付コルゲート管にすることもできる。   The heat exchanger 400 according to the fourth embodiment is configured by winding the refrigerant heat transfer tube 20 according to the second embodiment around a water heat transfer tube. If necessary, the outer surface of the water heat transfer tube and the refrigerant heat transfer tube 20 can be fixed together by brazing or the like. In the heat exchanger 400, heat is exchanged between the water flowing in the water heat transfer tube 41 and the refrigerant flowing in the refrigerant heat transfer tube 20 in contact with the outer periphery of the heat transfer tube 41. In the fourth embodiment, one example of the refrigerant heat transfer tube 20 wound around the water heat transfer tube 41 is shown. However, a plurality of refrigerant heat transfer tubes 20 may be provided depending on use conditions. it can. Further, the water heat transfer tube 41 is an example of a corrugated tube. The corrugated pipe shown in the drawing forms a spiral convex groove on the inner peripheral surface by forming a spiral concave groove as a corrugated groove on the outer peripheral surface of the smooth pipe. More specifically, the corrugated groove is a smooth tube made of a corrugated disk-shaped disk made of a smooth tube, i.e. a tube whose inner peripheral surface is a perfect circle when cut perpendicular to the tube axis. It is formed by revolving around the smooth tube and moving the smooth tube at a predetermined speed while rotating while pressing continuously on the smooth tube while being inclined with respect to the direction perpendicular to the central axis. . That is, although the illustrated corrugated tube has a slightly convex shape toward the outside of the tube, many substantially smooth portions remain, and the first refrigerant heat transfer tube is wound along the corrugated groove. Thereafter, the second refrigerant heat transfer tube can be wound along the first refrigerant heat transfer tube. In addition, the width | variety of a corrugated groove | channel is substantially the same as the width | variety of the disk shaped disk used for the manufacturing method, and is 0.5 mm-1.5 mm in the measurement on the surface of a smooth tube. Moreover, although the heat-transfer pipe | tube 41 for water showed the example of the corrugated pipe | tube, it can also be set as a smooth pipe | tube, an inner surface grooved tube, or an inner surface grooved corrugated tube according to use conditions.

[第5の実施の形態]
図5は、本発明の第5の実施の形態に係る水熱交換器の構造の概要を示す。
[Fifth Embodiment]
FIG. 5 shows an outline of the structure of the water heat exchanger according to the fifth embodiment of the present invention.

第5の実施の形態に係る熱交換器500は、水用伝熱管と、第3の実施の形態の冷媒用伝熱管30とを平行に接触させて構成される。なお、必要に応じて、水用伝熱管外面と冷媒用伝熱管30とをろう付け等で固着することもできる。熱交換器500においては、水用伝熱管51内を流れる水と、伝熱管51の外周に接触する冷媒用伝熱管30内を流れる冷媒との間で熱交換される。なお、水用伝熱管と冷媒用伝熱管30とを平行に接触させた状態のまま、円筒形状、楕円形状、概略四角形形状に巻くことでコンパクトにすることができる。また、第5の実施の形態においては、水用伝熱管41に接触させる冷媒用伝熱管30が1本の例を示したが、使用条件に応じて冷媒用伝熱管30を複数本にすることもできる。更に、水用伝熱管51はコルゲート管の例を示したが、使用条件に応じて平滑管、内面溝付管、又は内面溝付コルゲート管を用いることもできる。なお、図示したような、実質的に平滑な部分を多く有する管の場合、接触面積を大きくすること、あるいは、管同士の距離を短くすることができ、熱交換率を高めることができる。   The heat exchanger 500 according to the fifth embodiment is configured by bringing a water heat transfer tube and the refrigerant heat transfer tube 30 of the third embodiment in parallel contact with each other. If necessary, the outer surface of the water heat transfer tube and the refrigerant heat transfer tube 30 can be fixed together by brazing or the like. In the heat exchanger 500, heat is exchanged between the water flowing in the water heat transfer tube 51 and the refrigerant flowing in the refrigerant heat transfer tube 30 in contact with the outer periphery of the heat transfer tube 51. The water heat transfer tube and the refrigerant heat transfer tube 30 can be made compact by winding them in a cylindrical shape, an elliptical shape, or a substantially square shape while keeping the water heat transfer tube 30 in parallel contact. In the fifth embodiment, an example in which the refrigerant heat transfer tube 30 is brought into contact with the water heat transfer tube 41 is shown. However, a plurality of refrigerant heat transfer tubes 30 may be used depending on the use conditions. You can also. Furthermore, although the example of the corrugated pipe | tube was shown as the heat transfer pipe | tube 51 for water, according to use conditions, a smooth pipe, an inner surface grooved pipe | tube, or an inner surface grooved corrugated pipe | tube can also be used. In the case of a tube having many substantially smooth portions as shown in the figure, the contact area can be increased, or the distance between the tubes can be shortened, and the heat exchange rate can be increased.

図6は、伝熱性能を評価するための二重管式熱交換器の模式図を示す。   FIG. 6 shows a schematic diagram of a double-pipe heat exchanger for evaluating heat transfer performance.

図6に示すように、冷媒用伝熱管60を内管とし、該内管の外側に冷媒から熱を除去する水を環状(ジャケット状)に流すための水管61を有した二重管式熱交換器62を構成した。なお、図6において、「Gr」は冷媒質量流量(kg/h)、「Pr1」は冷媒入口圧力(MPa)、「Tr1」は冷媒入口温度(℃)、「Pr2」は冷媒出口圧力(MPa)、「Tr2」は冷媒出口温度(℃)、「G」は水質量流量(m/s)、「Tw1」は水出口温度(℃)、「Tw2」は水入口温度(℃)を示す。 As shown in FIG. 6, a double pipe heat having a refrigerant heat transfer pipe 60 as an inner pipe and a water pipe 61 for flowing water for removing heat from the refrigerant in an annular shape (jacket shape) outside the inner pipe. An exchanger 62 was configured. In FIG. 6, “Gr” is the refrigerant mass flow rate (kg / h), “Pr1” is the refrigerant inlet pressure (MPa), “T r1 ” is the refrigerant inlet temperature (° C.), and “Pr2” is the refrigerant outlet pressure ( MPa), “T r2 ” is the refrigerant outlet temperature (° C.), “G w ” is the water mass flow rate (m 3 / s), “T w1 ” is the water outlet temperature (° C.), and “T w2 ” is the water inlet temperature. (° C.).

表1に、評価した冷媒用伝熱管の仕様を示す。   Table 1 shows the specifications of the evaluated refrigerant heat transfer tubes.

Figure 2011252662
Figure 2011252662

実施例1及び実施例2においては、第2の実施の形態に係る伝熱管を用い、実施例3においては、第3の実施に係る伝熱管を用いた。   In Example 1 and Example 2, the heat transfer tube according to the second embodiment was used, and in Example 3, the heat transfer tube according to the third embodiment was used.

具体的に、実施例1及び実施例2において用いた伝熱管は、第2の実施の形態に係る冷媒用伝熱管20のように、3つのフィン200により2つの第1の溝部210(いずれも、第1の幅WAを有する)が形成され、当該3つのフィンをフィン領域とした場合に、当該フィン領域に続き第2の幅の第2の溝部212が形成されている。そして、フィン領域と第2の溝部212とをペアとして、当該ペアが繰り返し伝熱管の内表面に形成されている。実施例3において用いた伝熱管は、第3の実施の形態に係る冷媒用伝熱管30のように、複数のフィン200が均等の間隔(つまり、第1の幅WA)で内表面に配置されており、内表面の一か所にのみ第2の幅の第2の溝部212が形成されている。   Specifically, the heat transfer tube used in Example 1 and Example 2 is composed of two first grooves 210 (both of which are formed by three fins 200, like the refrigerant heat transfer tube 20 according to the second embodiment). , Having a first width WA), and when the three fins are used as fin regions, a second groove 212 having a second width is formed following the fin regions. And the fin area | region and the 2nd groove part 212 are made into a pair, and the said pair is formed in the inner surface of a heat exchanger tube repeatedly. In the heat transfer tube used in Example 3, like the refrigerant heat transfer tube 30 according to the third embodiment, the plurality of fins 200 are arranged on the inner surface at equal intervals (that is, the first width WA). The second groove 212 having the second width is formed only at one position on the inner surface.

一方、比較例1〜3は、従来の溝付プラグを用いて転造加工により作製した内面溝付管を用いた。比較例1〜3において用いた伝熱管は、第2の溝部212を有しておらず、各伝熱管の内表面に第1の幅WAの間隔で複数のフィンが均等に配列されている。また、比較例4に係る伝熱管としては平滑管を用いた。なお、溝部幅WAは、フィンとフィンとの間の溝部の幅のうち狭い方を示し、溝部幅WBは、溝部の幅の広い方を示す。   On the other hand, Comparative Examples 1-3 used the internally grooved pipe | tube produced by the rolling process using the conventional grooved plug. The heat transfer tubes used in Comparative Examples 1 to 3 do not have the second groove 212, and a plurality of fins are evenly arranged on the inner surface of each heat transfer tube at intervals of the first width WA. A smooth tube was used as the heat transfer tube according to Comparative Example 4. The groove width WA indicates the narrower width of the groove between the fins, and the groove width WB indicates the wider groove width.

表1に示した各冷媒用伝熱管の伝熱性能を測定した。表2に、伝熱性能測定における測定条件を示す。なお、伝熱性能として管内熱伝達率を評価した。   The heat transfer performance of each refrigerant heat transfer tube shown in Table 1 was measured. Table 2 shows the measurement conditions in the heat transfer performance measurement. The heat transfer coefficient in the tube was evaluated as the heat transfer performance.

Figure 2011252662
Figure 2011252662

ここで、熱流束による影響を抑制するために、冷媒温度範囲(測定温度範囲)を調整しながら測定した(すなわち、冷媒入口温度から冷媒出口温度までを3領域に分割し、各領域での熱流束が同等になるように水の流量を調整して測定した)。   Here, in order to suppress the influence of the heat flux, measurement was performed while adjusting the refrigerant temperature range (measured temperature range) (that is, the refrigerant inlet temperature to the refrigerant outlet temperature were divided into three areas, and the heat flow in each area was measured. Measured by adjusting the water flow rate so that the bundles were equal).

また、冷媒中の潤滑油濃度(PAG油濃度)は、サイクルを流通している冷媒を二重管式熱交換器の冷媒入口の手前でサンプリング容器に採取し、サンプリング容器の容積と採取した冷媒の質量とから、いわゆる重量法により算出した。なお、測定条件における精度(制御・測定誤差)は、それぞれ表2の数値(数値は平均値)に対して、温度が±0.3℃程度、圧力が±0.1%程度、冷媒質量速度が±0.4%程度、PAG油濃度が±0.1質量%程度である。   In addition, the lubricating oil concentration (PAG oil concentration) in the refrigerant is obtained by collecting the refrigerant circulating in the cycle in the sampling container before the refrigerant inlet of the double-pipe heat exchanger, and the volume of the sampling container and the collected refrigerant. The mass was calculated by the so-called weight method. The accuracy (control / measurement error) under the measurement conditions is about ± 0.3 ° C., pressure is about ± 0.1%, and the refrigerant mass velocity is relative to the values in Table 2 (the values are average values). Is about ± 0.4%, and the PAG oil concentration is about ± 0.1% by mass.

次に、管内熱伝達率αは、以下のようにして算出した。   Next, the in-tube heat transfer coefficient α was calculated as follows.

まず、二重管式熱交換器における冷媒温度範囲ごとの冷媒入口温度Tr2[単位:K]、冷媒出口温度Tr1[単位:K]、水管の入口温度Tw1[単位:K]、水管の出口温度Tw2[単位:K]、及び水の質量流量G[単位:kg/s]を計測した。そして、水の入口/出口温度から算出される代表温度(平均温度T[単位:K])から測定区間の水の定圧比熱Cpを算出し、次式(1)、(2)の関係から熱流速q[単位:kW/m]及び対数平均温度差ΔT[単位:K]を算出した。 First, refrigerant inlet temperature T r2 [unit: K], refrigerant outlet temperature T r1 [unit: K], water pipe inlet temperature T w1 [unit: K], water pipe for each refrigerant temperature range in the double-pipe heat exchanger outlet temperature T w2 [unit: K], and the mass flow rate G w [unit: kg / s] of water was measured. Then, the representative temperature calculated from the water inlet / outlet temperatures (average temperature T w [unit: K]) to calculate the specific heat at constant pressure Cp w of water on the measuring path from the following equation (1), the relationship (2) From the above, the heat flow rate q [unit: kW / m 2 ] and the logarithm average temperature difference ΔT L [unit: K] were calculated.

Figure 2011252662
Figure 2011252662

式(1)において「A」は熱交換面積(すなわち、二重管式熱交換器において、水に接する冷媒用伝熱管の表面積)[単位:m2]である。 In the formula (1), “A” is a heat exchange area (that is, a surface area of a heat transfer tube for refrigerant in contact with water in a double tube heat exchanger) [unit: m 2 ].

Figure 2011252662
Figure 2011252662

ここで、式(3)及び式(4)は以下のとおりである。   Here, Formula (3) and Formula (4) are as follows.

Figure 2011252662
Figure 2011252662

Figure 2011252662
Figure 2011252662

また、熱流速qを対数平均温度差ΔTで除すことにより、二重管式熱交換器の熱通過率K[単位:kW/(mK)]を次式(5)から算出した。 Further, by dividing the heat flux q in logarithmic average temperature difference [Delta] T L, the heat transfer coefficient of the double-pipe heat exchanger K [Unit: kW / (m 2 K) ] was calculated from the following equation (5) .

Figure 2011252662
Figure 2011252662

一方、水管の入口/出口温度から算出した代表温度(平均温度T)から、その温度における水の各物性値(密度、比熱、粘度、熱伝導率λ)を定め、プラントル数Prを算出した。また、水の物性値と質量流量とによりレイノルズ数Reを算出し、次式(6)の関係により、水の熱伝達率α[単位:kW/(mK)]を算出した。 On the other hand, from the representative temperature (average temperature T w ) calculated from the inlet / outlet temperature of the water pipe, each physical property value (density, specific heat, viscosity, thermal conductivity λ w ) at that temperature is determined, and the Prandtl number Pr is calculated. did. Further, the Reynolds number Re was calculated from the physical property value of water and the mass flow rate, and the heat transfer coefficient α w [unit: kW / (m 2 K)] of water was calculated according to the relationship of the following equation (6).

Figure 2011252662
Figure 2011252662

ここで、dは水の環状流通部分の相当直径(流路面積の4倍を濡れ縁長さで除したもの)[単位:m]、dは水管の内径[単位:m]、ODは冷媒用伝熱管の外径[単位:m]である。 Here, d e is (a value obtained by dividing 4 times the flow area at the wetted perimeter) equivalent diameter of the annular flow of the water [unit: m], d i is the inner diameter of the water pipe [unit: m], OD is It is the outer diameter [unit: m] of the heat transfer tube for refrigerant.

管内熱伝達率α[単位:kW/(mK)]は、熱通過率Kと水の熱伝達率α及び冷媒用伝熱管の外径OD、冷媒用伝熱管の内径ID[単位:m]を用いて、次式(7)のように算出した。 The heat transfer coefficient α in the tube [unit: kW / (m 2 K)] is the heat transfer coefficient K, the heat transfer coefficient α w of water, the outer diameter OD of the refrigerant heat transfer tube, and the inner diameter ID of the refrigerant heat transfer tube [unit: m] was used to calculate the following equation (7).

Figure 2011252662
Figure 2011252662

図7は、油濃度が5.0%のとき、実施例1、比較例1(内面溝付管)について平均冷媒温度と、管内熱伝達率平滑管比(比較例4に対する比)と圧力損失平滑管比との比(以下性能圧損比と称する)との関係を示した評価結果を示す。   FIG. 7 shows that when the oil concentration is 5.0%, the average refrigerant temperature, the in-tube heat transfer coefficient smooth tube ratio (compared to Comparative Example 4), and the pressure loss for Example 1 and Comparative Example 1 (inner grooved tube). The evaluation result which showed the relationship with ratio (henceforth a performance pressure loss ratio) with a smooth tube ratio is shown.

図7において、平均冷媒温度とは、表2に示した冷媒入口温度から冷媒出口温度までを3領域に分割した各温度領域における平均温度(つまり、当該温度領域の冷媒入口温度と冷媒出口温度との平均)である。   In FIG. 7, the average refrigerant temperature is an average temperature in each temperature region obtained by dividing the refrigerant inlet temperature to the refrigerant outlet temperature shown in Table 2 into three regions (that is, the refrigerant inlet temperature and the refrigerant outlet temperature in the temperature region). Average).

実施例1〜3、比較例1〜3について、図7のように平均冷媒温度と性能圧損比とを算出し、各油濃度において、平均冷媒温度ごとの性能圧損比を平均した結果を表3に示す。   For Examples 1 to 3 and Comparative Examples 1 to 3, the average refrigerant temperature and the performance pressure loss ratio were calculated as shown in FIG. 7, and the results of averaging the performance pressure loss ratio for each average refrigerant temperature at each oil concentration are shown in Table 3. Shown in

Figure 2011252662
Figure 2011252662

実施例1及び比較例1は、内表面積増加率が同一であるだけではなく、フィン高さ、及びフィン数も同一である。このとき、油濃度が0.3%、5.0%のいずれにおいても、本発明の第2の実施の形態に係る伝熱管(つまり、実施例1の伝熱管)は性能圧損比が高いことが示された。   In Example 1 and Comparative Example 1, not only the inner surface area increase rate is the same, but also the fin height and the number of fins are the same. At this time, regardless of whether the oil concentration is 0.3% or 5.0%, the heat transfer tube according to the second embodiment of the present invention (that is, the heat transfer tube of Example 1) has a high performance pressure loss ratio. It has been shown.

実施例2及び比較例2は、フィン高さは互いに同一であるものの、フィン数が異なる(すなわち、実施例2に係る伝熱管の方が少ない)ため、内表面積増加率が比較例2の方が大きい。油濃度が0.3%では本発明の第2の実施の形態に係る伝熱管(つまり、実施例2の伝熱管)は性能圧損比が高いが、油濃度が5.0%では比較例2と同等であった。   Although Example 2 and Comparative Example 2 have the same fin height, the number of fins is different (that is, the number of heat transfer tubes according to Example 2 is smaller). Is big. When the oil concentration is 0.3%, the heat transfer tube according to the second embodiment of the present invention (that is, the heat transfer tube of Example 2) has a high performance pressure loss ratio, but when the oil concentration is 5.0%, Comparative Example 2 is used. It was equivalent.

実施例3及び比較例3は、内表面積増加率は同一であるものの、フィン高さとフィン数とが互いに異なる。油濃度が0.3%では本発明の第3の実施の形態の伝熱管(つまり、実施例3の伝熱管)は性能圧損比が高いが、油濃度が5.0%では比較例3より低くなった。   In Example 3 and Comparative Example 3, the inner surface area increase rate is the same, but the fin height and the number of fins are different from each other. When the oil concentration is 0.3%, the heat transfer tube of the third embodiment of the present invention (that is, the heat transfer tube of Example 3) has a high performance pressure loss ratio, but when the oil concentration is 5.0%, it is higher than that of Comparative Example 3. It became low.

フィン高さが同一である実施例1と比較例3とを比較すると、内表面積は比較例3の方が大きいが、油濃度が0.3%、5.0%のいずれも実施例1の性能圧損比の方が大きくなった。また、実施例1は比較例3に対してフィン数が3/4しかないため、重量低減の効果も大きいことが示された。   When Example 1 and Comparative Example 3 having the same fin height are compared, the inner surface area is larger in Comparative Example 3, but both the oil concentration is 0.3% and 5.0%. The performance pressure loss ratio became larger. Moreover, since Example 1 had only 3/4 the number of fins compared with Comparative Example 3, it was shown that the effect of weight reduction was also great.

以上より、油濃度が0.3%のときは、実施例1〜3のいずれも効果があることから、フィン高さを0.15mm以上にすることが好ましい。なお、フィン高さが0.15mm未満の場合、油がフィンの表面を覆うので、伝熱管の熱交換率は平滑管程度になる。一方、油濃度5.0%のときは、実施例2及び実施例3における結果から、フィン高さを0.24mm以上にすることが好ましい。   From the above, when the oil concentration is 0.3%, since all of Examples 1 to 3 are effective, the fin height is preferably 0.15 mm or more. When the fin height is less than 0.15 mm, the oil covers the surface of the fin, so that the heat exchange rate of the heat transfer tube is about a smooth tube. On the other hand, when the oil concentration is 5.0%, the fin height is preferably 0.24 mm or more based on the results in Example 2 and Example 3.

以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

10 ヒートポンプ式給湯機
11 圧縮機
12 水熱交換器
13 膨張弁
14 吸熱器
15、15a、15b、15c 配管
20 冷媒用伝熱管
20a 内表面
20b 外表面
30 冷媒用伝熱管
41 水管
51 水管
60 冷媒用伝熱管
61 水管
62 二重管熱交換器
200 フィン
210 第1の溝部
212 第2の溝部
300 フィン
400 熱交換器
500 熱交換器
DESCRIPTION OF SYMBOLS 10 Heat pump type hot water heater 11 Compressor 12 Water heat exchanger 13 Expansion valve 14 Heat absorber 15, 15a, 15b, 15c Pipe 20 Heat transfer pipe for refrigerant 20a Inner surface 20b Outer surface 30 Heat transfer pipe for refrigerant 41 Water pipe 51 Water pipe 60 For refrigerant Heat transfer tube 61 Water tube 62 Double tube heat exchanger 200 Fin 210 First groove 212 Second groove 300 Fin 400 Heat exchanger 500 Heat exchanger

Claims (5)

冷媒として二酸化炭素を用いたヒートポンプ給湯機の熱交換器に用いられる冷媒用伝熱管であって、
内周面を有する主管と、
前記内周面に設けられる複数のフィンと、
前記複数のフィンの間の複数の溝部と
を備え、
前記複数の溝部が、第1の幅を有する第1の溝部と、前記第1の幅とは異なる幅の第2の幅を有する第2の溝部とを有する冷媒用伝熱管。
A refrigerant heat transfer tube used in a heat exchanger of a heat pump water heater using carbon dioxide as a refrigerant,
A main pipe having an inner peripheral surface;
A plurality of fins provided on the inner peripheral surface;
A plurality of grooves between the plurality of fins,
The refrigerant heat transfer tube, wherein the plurality of groove portions include a first groove portion having a first width and a second groove portion having a second width different from the first width.
前記第2の溝部が、前記内周面に周期的に設けられる請求項1に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to claim 1, wherein the second groove portion is periodically provided on the inner peripheral surface. 前記複数のフィンそれぞれが0.15mm以上の高さを有する請求項2に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to claim 2, wherein each of the plurality of fins has a height of 0.15 mm or more. 前記複数のフィンそれぞれが、0°以上3°以下のねじれ角を有する請求項3に記載の冷媒用伝熱管。   The refrigerant heat transfer tube according to claim 3, wherein each of the plurality of fins has a twist angle of 0 ° to 3 °. 請求項1〜4のいずれか1項に記載の冷媒用伝熱管を備える熱交換器。   A heat exchanger provided with the heat exchanger tube for refrigerant according to any one of claims 1 to 4.
JP2010126871A 2010-06-02 2010-06-02 Heat transfer tube for refrigerant, and heat exchanger Pending JP2011252662A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010126871A JP2011252662A (en) 2010-06-02 2010-06-02 Heat transfer tube for refrigerant, and heat exchanger
CN2011101520724A CN102269538A (en) 2010-06-02 2011-06-01 Heat transfer tube for refrigerant and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126871A JP2011252662A (en) 2010-06-02 2010-06-02 Heat transfer tube for refrigerant, and heat exchanger

Publications (1)

Publication Number Publication Date
JP2011252662A true JP2011252662A (en) 2011-12-15

Family

ID=45051911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126871A Pending JP2011252662A (en) 2010-06-02 2010-06-02 Heat transfer tube for refrigerant, and heat exchanger

Country Status (2)

Country Link
JP (1) JP2011252662A (en)
CN (1) CN102269538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546848A (en) * 2015-12-30 2016-05-04 赵炜 Solar water heater with collector pipe with inner fins with competitively-changed heights
CN105571165A (en) * 2015-12-30 2016-05-11 赵炜 Solar water heater provided with height axially variable inner fins

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11852386B2 (en) * 2018-11-22 2023-12-26 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
KR102530063B1 (en) * 2021-04-16 2023-05-08 태성전기(주) Suction pipe for refrigerator with groove

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546848A (en) * 2015-12-30 2016-05-04 赵炜 Solar water heater with collector pipe with inner fins with competitively-changed heights
CN105571165A (en) * 2015-12-30 2016-05-11 赵炜 Solar water heater provided with height axially variable inner fins
CN105546848B (en) * 2015-12-30 2017-05-10 赵炜 Solar water heater with collector pipe with inner fins with competitively-changed heights
CN105571165B (en) * 2015-12-30 2017-11-17 佛山市顺德区北滘镇信威电器有限公司 A kind of inner rib plate height Axial changes solar water heater

Also Published As

Publication number Publication date
CN102269538A (en) 2011-12-07

Similar Documents

Publication Publication Date Title
CN204063687U (en) Heat exchanger and freezing cycle device
JP2011252662A (en) Heat transfer tube for refrigerant, and heat exchanger
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP2007309533A (en) Fin tube heat exchanger
JP2010096372A (en) Internal heat exchanger for carbon dioxide refrigerant
JP2009186130A (en) Heat transfer tube for radiator with inner face fin
JP2007147221A (en) Heat exchanger with fin
JP2009174832A (en) Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same
JP5646257B2 (en) Refrigeration cycle equipment
JP2011106770A (en) Heat exchanger and refrigerating cycle device
JPH04260793A (en) Heat transfer tube with inner surface groove
CN112212719B (en) Bypass type low-temperature negative pressure heat exchanger for pre-cooling JT (joint temperature) refrigerating machine and design method
JP4897968B2 (en) Heat transfer tube and method of manufacturing heat transfer tube
JP2003314927A (en) Heat exchanger and refrigerating cycle device using the same
JP2012122692A (en) Heat transfer tube with grooved inner surface
WO2016075851A1 (en) Heat pump apparatus
JP2009052870A (en) Internal heat exchanger for carbon dioxide refrigerant
JP5566001B2 (en) Internally grooved heat transfer tube for gas coolers using carbon dioxide refrigerant
CN102112839B (en) Grooved tube for heat exchanger
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP4948136B2 (en) Heat transfer tube and radiator
JP6177195B2 (en) Heat transfer tube for supercooled double tube heat exchanger
CN215337806U (en) Air-cooled condenser