JP7012204B2 - Heat exchanger and water heater equipped with it - Google Patents

Heat exchanger and water heater equipped with it Download PDF

Info

Publication number
JP7012204B2
JP7012204B2 JP2018228788A JP2018228788A JP7012204B2 JP 7012204 B2 JP7012204 B2 JP 7012204B2 JP 2018228788 A JP2018228788 A JP 2018228788A JP 2018228788 A JP2018228788 A JP 2018228788A JP 7012204 B2 JP7012204 B2 JP 7012204B2
Authority
JP
Japan
Prior art keywords
fluid
heat exchanger
inner pipe
protrusion
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018228788A
Other languages
Japanese (ja)
Other versions
JP2020091072A (en
Inventor
和彦 町田
一貴 小石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018228788A priority Critical patent/JP7012204B2/en
Publication of JP2020091072A publication Critical patent/JP2020091072A/en
Application granted granted Critical
Publication of JP7012204B2 publication Critical patent/JP7012204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、熱交換器に関するものである。 The present invention relates to a heat exchanger.

従来、この種のヒートポンプ給湯機に用いられる熱交換器においては、水通路を構成する内管と、内管の外周に螺旋状に巻き付けられて冷媒通路を構成する外管とからなり、水通路を流れる水を、冷媒通路を流れる冷媒により加熱する構成が開示されている(例えば、特許文献1参照)。 Conventionally, in a heat exchanger used in this type of heat pump water heater, the heat exchanger consists of an inner pipe that constitutes a water passage and an outer pipe that is spirally wound around the outer circumference of the inner pipe to form a refrigerant passage. Disclosed is a configuration in which the water flowing through the water is heated by the refrigerant flowing through the refrigerant passage (see, for example, Patent Document 1).

図8は、この従来の熱交換器の構成を示すものである。 FIG. 8 shows the configuration of this conventional heat exchanger.

熱交換器101は、内管102と、内管102の外周に所定のピッチで螺旋状に巻き付けた外管103とから構成されている。 The heat exchanger 101 is composed of an inner tube 102 and an outer tube 103 spirally wound around the outer circumference of the inner tube 102 at a predetermined pitch.

内管102の内部を流れる水の流れと、外管103の内部を流れる冷媒の流れとが、対向して流れることで熱交換するものである。そして、内管102の外周に1本以上の外管103を巻付け、内管102の内部に伝熱促進手段として、ねじりテープ形状の挿入体104を挿入している。 The flow of water flowing inside the inner pipe 102 and the flow of the refrigerant flowing inside the outer pipe 103 face each other to exchange heat. Then, one or more outer tubes 103 are wound around the outer periphery of the inner tube 102, and a twisted tape-shaped inserter 104 is inserted inside the inner tube 102 as a heat transfer promoting means.

以上のように構成された熱交換器101は、内管102の内部を流れる低温の水と、外管103の内部を流れる高温の二酸化炭素とを対向に流して熱交換させるもので、例えば、約9℃の水を約90℃まで沸き上げることが可能である。 In the heat exchanger 101 configured as described above, low-temperature water flowing inside the inner pipe 102 and high-temperature carbon dioxide flowing inside the outer pipe 103 flow in opposite directions to exchange heat, for example. It is possible to boil water at about 9 ° C to about 90 ° C.

この時、内管102を流れる水は、挿入体104のらせん面に沿って旋回攪拌されることで伝熱が促進され、効率よく熱交換される。 At this time, the water flowing through the inner pipe 102 is swirled and agitated along the spiral surface of the insert body 104 to promote heat transfer and efficiently exchange heat.

このように、冷媒として二酸化炭素を用いたヒートポンプ式給湯機は、非常に高い温度の湯を生成することができるものである。 As described above, the heat pump type water heater using carbon dioxide as a refrigerant can generate hot water having a very high temperature.

特開2005-221172号公報Japanese Unexamined Patent Publication No. 2005-221172

しかしながら、前記従来における構成では、その組み立て時、挿入体104の内管102への挿入性を良くするため、挿入体104の外径は、内管102の内径に対して一定の隙間を有する。 However, in the conventional configuration, the outer diameter of the insert body 104 has a certain gap with respect to the inner diameter of the inner tube 102 in order to improve the insertability of the insert body 104 into the inner tube 102 at the time of assembling.

そのため、隙間を軸方向に流れる水流が発生してしまい、挿入体104のらせん面に沿って旋回攪拌される水流量が減少し、伝熱促進効果が小さくなるという課題を有していた。 Therefore, there is a problem that a water flow flowing in the axial direction is generated in the gap, the flow rate of water swirling and agitated along the spiral surface of the insert 104 is reduced, and the heat transfer promoting effect is reduced.

本発明は、前記従来の課題を解決するもので、組み立て性と熱交換性能の両立を実現した熱交換器を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a heat exchanger that achieves both assemblability and heat exchange performance.

上記従来の課題を解決するために、本発明の熱交換器は、第1流体が流れる内管と、軸部と前記軸部の外面に形成された突部とを有し、前記内管内に挿入されている挿入体と、前記内管の内面と前記軸部の外面と前記突部の側面とで形成される前記第1流体の流路と、を備え、前記第1流体が加熱されていない場合には、前記突部の先端部と前記内管の内面との隙間は、前記第1流体の入口側よりも前記第1流体の出口側の方が大きいことを特徴とするものである。 In order to solve the above-mentioned conventional problems, the heat exchanger of the present invention has an inner pipe through which the first fluid flows, a shaft portion, and a protrusion formed on the outer surface of the shaft portion, and the heat exchanger has the inner pipe. The inserted body is provided with an insert body, a flow path of the first fluid formed by an inner surface of the inner tube, an outer surface of the shaft portion, and a side surface of the protrusion, and the first fluid is heated. If not, the gap between the tip of the protrusion and the inner surface of the inner pipe is characterized in that it is larger on the outlet side of the first fluid than on the inlet side of the first fluid. ..

これにより、熱交換器の組み立て時を含む第1流体が加熱されていない場合には、突部の先端部と内管の内面との隙間は、第1流体出口側の方が大きいので、挿入体の挿入性を容易し、かつ、第1流体の流路からの空気抜き性能を良くすることができる。 As a result, when the first fluid is not heated, including when the heat exchanger is assembled, the gap between the tip of the protrusion and the inner surface of the inner pipe is larger on the outlet side of the first fluid, so that it is inserted. It is possible to facilitate the insertion of the body and improve the air bleeding performance from the flow path of the first fluid.

一方、第1流体が加熱された場合には、第1流体の出口側の方が第1流体の入口側より高温となり、挿入体の第1流体出口側の方が、挿入体の第1流体入口側より大きく熱膨張するので、突部の先端部と内管の内面との隙間は、第1流体の流路全般にわたって小さくなり、隙間を流れる水流を減少させることができ、熱交換性能を向上することができる。 On the other hand, when the first fluid is heated, the temperature on the outlet side of the first fluid is higher than that on the inlet side of the first fluid, and the temperature on the outlet side of the first fluid of the insert is higher than that of the first fluid of the insert. Since the heat expands more than the inlet side, the gap between the tip of the protrusion and the inner surface of the inner pipe becomes smaller over the entire flow path of the first fluid, and the water flow through the gap can be reduced, improving heat exchange performance. Can be improved.

本発明によれば、組み立て性と熱交換性能の両立を実現した熱交換器を提供できる。 According to the present invention, it is possible to provide a heat exchanger that achieves both assembleability and heat exchange performance.

本発明の実施の形態1における熱交換器の一部断面図Partial sectional view of the heat exchanger according to the first embodiment of the present invention. 同熱交換器の第1流体非加熱時のA部の構成を示す断面図Sectional drawing which shows the structure of the part A when the 1st fluid is not heated of the same heat exchanger. 同熱交換器の組み立て時のA部の構成を示す断面図Sectional drawing which shows the structure of the part A at the time of assembling the same heat exchanger 同熱交換器の第1流体加熱時のA部の構成を示す断面図Sectional drawing which shows the structure of the part A at the time of the 1st fluid heating of the same heat exchanger 同熱交換器の温度分布特性を示す図The figure which shows the temperature distribution characteristic of the same heat exchanger 同熱交換器の挿入体の膨張寸法の変化を示す図The figure which shows the change of the expansion dimension of the insert body of the same heat exchanger 同熱交換器の挿入体の設計外径の変化を示す図The figure which shows the change of the design outer diameter of the insert body of the same heat exchanger 従来の熱交換器の挿入体とその周辺を示す構成図Configuration diagram showing the insert of a conventional heat exchanger and its surroundings

第1の発明は、第1流体が流れる内管と、軸部と前記軸部の外面に形成された突部とを有し、前記内管内に挿入されている挿入体と、前記内管の内面と前記軸部の外面と前記突部の側面とで形成される前記第1流体の流路と、を備え、前記第1流体が加熱されていない場合には、前記突部の先端部と前記内管の内面との隙間は、前記第1流体の入口側よりも前記第1流体の出口側の方が大きいことを特徴とする熱交換器である。 The first invention has an inner tube through which a first fluid flows, a shaft portion, and an insert body having a protrusion formed on an outer surface of the shaft portion, and is inserted into the inner tube, and the inner tube. A flow path of the first fluid formed by an inner surface, an outer surface of the shaft portion, and a side surface of the protrusion, and when the first fluid is not heated, the tip portion of the protrusion. The heat exchanger is characterized in that the gap between the inner surface and the inner surface of the inner pipe is larger on the outlet side of the first fluid than on the inlet side of the first fluid.

これにより、熱交換器の組み立て時を含む第1流体が加熱されていない場合には、突部の先端部と内管の内面との隙間は、第1流体出口側の方が大きいので、挿入体の挿入性を容易し、かつ、第1流体の流路からの空気抜き性能を良くすることができる。 As a result, when the first fluid is not heated, including when the heat exchanger is assembled, the gap between the tip of the protrusion and the inner surface of the inner pipe is larger on the outlet side of the first fluid, so that it is inserted. It is possible to easily insert the body and improve the air bleeding performance from the flow path of the first fluid.

一方、第1流体が加熱された場合には、第1流体の出口側の方が第1流体の入口側より高温となり、挿入体の第1流体出口側の方が、挿入体の第1流体入口側より大きく熱膨張するので、突部の先端部と内管の内面との隙間は、第1流体の流路全般にわたって小さくなり、隙間を流れる水流を減少させることができ、熱交換性能を向上することができる。 On the other hand, when the first fluid is heated, the temperature on the outlet side of the first fluid is higher than that on the inlet side of the first fluid, and the temperature on the outlet side of the first fluid of the insert is higher than that of the first fluid of the insert. Since the heat expands more than the inlet side, the gap between the tip of the protrusion and the inner surface of the inner pipe becomes smaller over the entire flow path of the first fluid, and the water flow through the gap can be reduced, improving heat exchange performance. Can be improved.

第2の発明は、特に第1の発明において、前記軸部の外径は、前記第1流体の入口側よりも前記第1流体の出口側の方が小さいことを特徴とするものである。すなわち、前記挿入体の外径を、前記第1流体の入口側から前記第1流体の出口側に向けて小さくなるように徐変するものである。 The second invention is characterized in that, particularly in the first invention, the outer diameter of the shaft portion is smaller on the outlet side of the first fluid than on the inlet side of the first fluid. That is, the outer diameter of the insert is gradually changed from the inlet side of the first fluid toward the outlet side of the first fluid.

これにより、挿入体の挿入性を容易にできる。また、第1流体の加熱時には、第1流体の入口側から第1流体の出口側にかけて、第1流体の温度は徐々に高くなるため、第1流体が加熱され温度が上昇したときに、膨張する寸法を挿入体の外径の事前に考慮し反映しておくことで、第1流体の加熱時における突部の先端部と内管の内面との隙間を全域に亘り最小化でき、熱交換性能を更に向上することができる。 This makes it easy to insert the insert. Further, when the first fluid is heated, the temperature of the first fluid gradually rises from the inlet side of the first fluid to the outlet side of the first fluid, so that it expands when the first fluid is heated and the temperature rises. By considering and reflecting the outer diameter of the insert in advance, the gap between the tip of the protrusion and the inner surface of the inner tube during heating of the first fluid can be minimized over the entire area, and heat exchange can be performed. The performance can be further improved.

第3の発明は、特に第1または第2の発明において、前記挿入体を形成する材料の線膨張係数は、前記内管を形成する材料の線膨張係数よりも大きいことを特徴とするものである。 The third invention, particularly in the first or second invention, is characterized in that the linear expansion coefficient of the material forming the insert is larger than the linear expansion coefficient of the material forming the inner tube. be.

これにより、第1流体の加熱時には、挿入体の膨張割合が内管よりも大きいため、突部の先端部と内管の内面との隙間をより小さくでき、第1流体の加熱時に隙間を流れる水流をより小さくでき、熱交換器の性能をできる。 As a result, when the first fluid is heated, the expansion ratio of the insert is larger than that of the inner tube, so that the gap between the tip of the protrusion and the inner surface of the inner tube can be made smaller, and the gap flows when the first fluid is heated. The water flow can be made smaller and the performance of the heat exchanger can be improved.

第4の発明は、特に第1~第3のいずれかの発明において、前記内管の外面に第2流体が流れる外管を備え、前記第1流体を前記第2流体が加熱する構成としたことを特徴とするものである。 In the fourth invention, particularly in any one of the first to third inventions, an outer pipe through which a second fluid flows is provided on the outer surface of the inner pipe, and the first fluid is heated by the second fluid. It is characterized by that.

これにより、低温の第1流体を高温の第2流体で加熱することで、高温の第1流体を生成することができる。 Thereby, the high temperature first fluid can be generated by heating the low temperature first fluid with the high temperature second fluid.

第5の発明は、第1流体が水で、第2流体が冷媒である第4の発明の熱交換器を備えたヒートポンプ給湯機である。 The fifth invention is a heat pump water heater provided with the heat exchanger of the fourth invention in which the first fluid is water and the second fluid is a refrigerant.

これにより、内管の外面に設けられた外管を流れる高温の冷媒が、水を加熱して、高温の湯を生成するヒートポンプ給湯機を提供できる。 This makes it possible to provide a heat pump water heater in which a high-temperature refrigerant flowing through an outer pipe provided on the outer surface of the inner pipe heats water to generate hot water.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は、本発明の第1の実施の形態における熱交換器の一部断面図である。図2は、同熱交換器の第1流体非加熱時のA部の構成を示す断面図である。図3は、同熱交換器の組み立て時のA部の構成を示す断面図である。図4は、同熱交換器の第1流体加熱時のA部の構成を示す断面図である。図5は、同熱交換器の温度分布特性を示す図である。図6は、同熱交換器の挿入体の膨張寸法の変化を示す図である。図7は、同熱交換器の挿入体の設計外径の変化を示す図である。
(Embodiment 1)
FIG. 1 is a partial cross-sectional view of a heat exchanger according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the configuration of part A of the heat exchanger when the first fluid is not heated. FIG. 3 is a cross-sectional view showing the configuration of part A at the time of assembling the heat exchanger. FIG. 4 is a cross-sectional view showing the configuration of part A when the first fluid of the heat exchanger is heated. FIG. 5 is a diagram showing the temperature distribution characteristics of the heat exchanger. FIG. 6 is a diagram showing changes in the expansion dimension of the insert body of the heat exchanger. FIG. 7 is a diagram showing changes in the design outer diameter of the insert body of the heat exchanger.

図1において、熱交換器1は、内部を第1流体(例えば、水)が流れる内管2と、内管2の内部に挿入された挿入体3と、内部を第2流体(例えば、二酸化炭素冷媒)が流れ、内管2の外周に密着する少なくとも1本以上の外管4とから構成されている。 In FIG. 1, the heat exchanger 1 has an inner pipe 2 through which a first fluid (for example, water) flows, an inserter 3 inserted inside the inner pipe 2, and a second fluid (for example, carbon dioxide) inside. It is composed of at least one outer pipe 4 through which a carbon refrigerant) flows and is in close contact with the outer periphery of the inner pipe 2.

そして、低温の第1流体と、高温の第2流体とが対向に流れて熱交換し、第1流体を加熱し高温にするものである。 Then, the low-temperature first fluid and the high-temperature second fluid flow in opposition to exchange heat, and heat the first fluid to a high temperature.

熱交換器1は、給湯機(例えば、冷媒を二酸化炭素としたヒートポンプ給湯機)に搭載されており、ヒートポンプ装置にて高温高圧に圧縮された第2流体(例えば、二酸化炭素冷媒)は外管4の内部を流れる。 The heat exchanger 1 is mounted on a water heater (for example, a heat pump water heater using carbon dioxide as a refrigerant), and a second fluid (for example, a carbon dioxide refrigerant) compressed to a high temperature and high pressure by the heat pump device is an outer pipe. It flows inside 4.

そして、熱交換器1にて、外管4の内部を流れる高温高圧に圧縮された第2流体は、内管2の内部を流れる低温の水である第1流体と対向に流れることで熱交換する。 Then, in the heat exchanger 1, the second fluid compressed to a high temperature and high pressure flowing inside the outer pipe 4 flows in opposition to the first fluid, which is low-temperature water flowing inside the inner pipe 2, to exchange heat. do.

このように、水である第1流体が、外管4の内部を流れるヒートポンプ装置にて高温高圧に圧縮された第2流体によって加熱されて高温湯となる加熱運転が行なわれ、生成された高温水が給湯に使用される。 In this way, the first fluid, which is water, is heated by the second fluid compressed to high temperature and high pressure by the heat pump device flowing inside the outer pipe 4, and the heating operation of hot water is performed to generate high temperature. Water is used for hot water supply.

なお、外管4は、内管2の外周に所定のピッチで、螺旋状に巻き付けられており、内管2と挿入体3の間には水が流れる流路7が形成されている。 The outer pipe 4 is spirally wound around the outer circumference of the inner pipe 2 at a predetermined pitch, and a flow path 7 through which water flows is formed between the inner pipe 2 and the insert body 3.

挿入体3は、軸部5とその軸部5の外面に螺旋状に形成された突部6とを含み、第1流体は、内管2の内面と軸部5の外面と突部6の側面とで形成される螺旋状の流路7を流れる。 The insert 3 includes a shaft portion 5 and a protrusion 6 formed spirally on the outer surface of the shaft portion 5, and the first fluid is an inner surface of the inner pipe 2 and an outer surface of the shaft portion 5 and a protrusion portion 6. It flows through the spiral flow path 7 formed by the side surface.

図2、図3に示すように、挿入体3は、外径の一端が大口径Din1で、他端が小口径Dout1なる異径形状であり、第1流体の内管2の入口側に挿入体3の大口径Din1側が、第1流体の内管2の出口側に挿入体3の小口径Dout1側が位置するように、挿入体3が内管2内に挿入され配置されている。 As shown in FIGS. 2 and 3, the insert body 3 has a different diameter shape in which one end of the outer diameter is a large diameter Din1 and the other end is a small diameter Dout1 and is inserted into the inlet side of the inner pipe 2 of the first fluid. The insert body 3 is inserted and arranged in the inner tube 2 so that the large-diameter Din1 side of the body 3 is located on the outlet side of the inner tube 2 of the first fluid and the small-diameter Dout1 side of the insert body 3 is located.

そして、内管2は内径D0で一定の管であり、第1流体の内管2の出口部おける内管2の内面と突部6の先端との間の隙間Cout1は、第1流体の内管2の入口部おける内管2の内面と突部6の先端との間の隙間Cin1よりも大きい構成となっている。 The inner pipe 2 is a pipe having an inner diameter D0 and is constant, and the gap Cout1 between the inner surface of the inner pipe 2 and the tip of the protrusion 6 at the outlet portion of the inner pipe 2 of the first fluid is inside the first fluid. The structure is larger than the gap Cin1 between the inner surface of the inner pipe 2 and the tip of the protrusion 6 at the inlet portion of the pipe 2.

ここで、熱交換器1の組み立て時を含む第1流体が加熱運転にて加熱されていない場合の、挿入体3の第1流体の内管2の入口部おける外径をDin1、挿入体3の第1流体の内管2の出口部おける外径をDout1としている。 Here, when the first fluid including the time of assembling the heat exchanger 1 is not heated by the heating operation, the outer diameter of the inner tube 2 of the first fluid of the insert body 3 is set to Din1 and the insert body 3 is set. The outer diameter at the outlet of the inner pipe 2 of the first fluid is Dout1.

また、内管2の内面と突部6の先端との間の第1流体の内管2の入口部おける隙間をCin1、内管2の内面と突部6の先端との間の第1流体の内管2の出口部おける隙間をCout1と記している。 Further, the gap between the inner surface of the inner pipe 2 and the tip of the protrusion 6 at the inlet of the inner pipe 2 of the first fluid is Cin1, and the gap between the inner surface of the inner pipe 2 and the tip of the protrusion 6 is the first fluid. The gap at the outlet of the inner pipe 2 of the above is described as Cout1.

一方、図4に示すように、第1流体が加熱運転にて加熱されている場合の、挿入体3の第1流体の内管2の入口部おける外径をDin2、挿入体3の第1流体の内管2の出口部おける外径をDout2としている。 On the other hand, as shown in FIG. 4, when the first fluid is heated by the heating operation, the outer diameter at the inlet portion of the inner tube 2 of the first fluid of the insert body 3 is set to Din2 and the first of the insert body 3. The outer diameter at the outlet of the fluid inner pipe 2 is Dout2.

さらに、内管2の内面と突部6の先端との間の第1流体の内管2の入口部おける隙間をCin2、内管2の内面と突部6の先端との間の第1流体の内管2の出口部おける隙間をCout2と記す。 Further, the gap between the inner surface of the inner pipe 2 and the tip of the protrusion 6 at the inlet of the inner pipe 2 of the first fluid is Cin2, and the gap between the inner surface of the inner pipe 2 and the tip of the protrusion 6 is the first fluid. The gap at the outlet of the inner pipe 2 is referred to as Cout2.

ヒートポンプ給湯機においては、熱交換器1にて、外管4の内部を流れる高温高圧に圧縮された第2流体は、内管2の内部を流れる低温の水である第1流体と対向に流れることで熱交換し、第1流体である水が、外管4の内部を流れる高温の第2流体(例えば、二酸化炭素冷媒)によって加熱され、高温湯となる加熱運転が行なわれる。 In the heat pump water supply machine, in the heat exchanger 1, the second fluid compressed to high temperature and high pressure flowing inside the outer pipe 4 flows in opposition to the first fluid which is low temperature water flowing inside the inner pipe 2. As a result, heat is exchanged, and water, which is the first fluid, is heated by a high-temperature second fluid (for example, a carbon dioxide refrigerant) flowing inside the outer pipe 4, and a heating operation of hot water is performed.

以下に、熱交換器1の組み立て時を含む第1流体が加熱運転にて加熱されていない場合の、熱交換器1の特性について説明する。 Hereinafter, the characteristics of the heat exchanger 1 when the first fluid including the time of assembling the heat exchanger 1 is not heated by the heating operation will be described.

図2、図3に示すように、挿入体3の外径は、第1流体の入口側が、第1流体の出口側よりも大きい。すなわち、Din1>Dout1となるように、挿入体3の外径は、第1流体の入口側から、第1流体の出口側に向けて徐々に径が小さくなる形状となっている。 As shown in FIGS. 2 and 3, the outer diameter of the insert 3 is larger on the inlet side of the first fluid than on the outlet side of the first fluid. That is, the outer diameter of the insert 3 gradually decreases from the inlet side of the first fluid toward the outlet side of the first fluid so that Din1> Dout1.

このため、内管2は内径D0で一定の管であり、第1流体の内管2の出口部における内管2の内面と突部6の先端との間の隙間Cout1は、第1流体の内管2の入口部における内管2の内面と突部6の先端との間の隙間Cin1よりも大きく、かつ、内管2の内面と突部6の先端との間の隙間は、第1流体の入口側から、第1流体の出口側に向けて徐々に隙間が大きくなる形状となっている。 Therefore, the inner pipe 2 is a pipe having an inner diameter D0 and is constant, and the gap Cout1 between the inner surface of the inner pipe 2 and the tip of the protrusion 6 at the outlet portion of the inner pipe 2 of the first fluid is the first fluid. The gap between the inner surface of the inner pipe 2 and the tip of the protrusion 6 at the inlet of the inner pipe 2 is larger than Cin1, and the gap between the inner surface of the inner pipe 2 and the tip of the protrusion 6 is the first. The shape is such that the gap gradually increases from the inlet side of the fluid toward the outlet side of the first fluid.

従って、図3に示すように、熱交換器1の組み立て時に、内管2内へ挿入体3をスムーズに挿入でき、挿入作業効率が良くなり、組み立て性を向上できる。 Therefore, as shown in FIG. 3, when assembling the heat exchanger 1, the insertion body 3 can be smoothly inserted into the inner tube 2, the insertion work efficiency is improved, and the assembling property can be improved.

また、内管2の内面と軸部5の外面と突部6の側面とで形成され、第1流体(例えば、水)が流れる螺旋状の流路7からの空気抜き性が良くなる効果もある。 Further, it is formed by the inner surface of the inner pipe 2, the outer surface of the shaft portion 5, and the side surface of the protrusion 6, and has an effect of improving the air bleeding property from the spiral flow path 7 through which the first fluid (for example, water) flows. ..

以下に、第1流体(例えば、水)が加熱運転にて加熱され高温状態の場合の、熱交換器1の特性について説明する。 Hereinafter, the characteristics of the heat exchanger 1 when the first fluid (for example, water) is heated by the heating operation and is in a high temperature state will be described.

第1流体が加熱運転にて加熱された場合には、挿入体3の外径は、熱膨張により、Dout2>Dout1となる。さらに、第1流体の内管2の出口側が、第1流体の内管2の入口側よりも高温になるので、挿入体3の第1流体の出口側の方が、挿入体3の第1流体の入口側よりも大きく熱膨張する。 When the first fluid is heated by the heating operation, the outer diameter of the insert 3 becomes Dout2> Dout1 due to thermal expansion. Further, since the outlet side of the inner tube 2 of the first fluid has a higher temperature than the inlet side of the inner tube 2 of the first fluid, the outlet side of the first fluid of the insert 3 is the first of the insert 3. It expands more thermally than the inlet side of the fluid.

このため、図4に示すように、第1流体が加熱運転にて加熱されている場合の、第1流体の内管2の出口部おける内管2の内面と突部6の先端との間の隙間Cout2が、熱交換器1の組み立て時を含む第1流体が加熱運転にて加熱されていない場合の、第1流体の内管2の出口部おける内管2の内面と突部6の先端との間の隙間Cout1よりも小さくなり、かつ、突部6の先端部と内管2の内面との隙間は、第1流体の流路7全般にわたって小さくなるため、その隙間を挿入体3の軸方向に流れる水流が減少し、熱交換性能が向上する。 Therefore, as shown in FIG. 4, when the first fluid is heated by the heating operation, between the inner surface of the inner pipe 2 and the tip of the protrusion 6 at the outlet portion of the inner pipe 2 of the first fluid. When the first fluid including the time of assembling the heat exchanger 1 is not heated by the heating operation, the gap Cout2 of the inner surface of the inner pipe 2 and the protrusion 6 at the outlet of the inner pipe 2 of the first fluid The gap between the tip and the tip is smaller than Cout 1, and the gap between the tip of the protrusion 6 and the inner surface of the inner pipe 2 is smaller over the entire flow path 7 of the first fluid. The water flow in the axial direction of is reduced, and the heat exchange performance is improved.

以下に具体的に、第2流体である二酸化炭素冷媒により、第1流体である水が加熱される長さが400mmの熱交換器1を、一例として説明する。 Specifically, a heat exchanger 1 having a length of 400 mm in which water, which is the first fluid, is heated by the carbon dioxide refrigerant which is the second fluid will be described as an example.

図5に示すように、所定の条件で加熱された熱交換器1を流れる第1流体である水の温度は、内管2の水入口側の20℃から、内管2の水出口側に向けて60℃まで徐々に上昇する。この時、温度上昇の影響で、PPS樹脂(強化タイプ:線膨張係数4E-5/K)からなる挿入体3の外径は、図6に示すように、内管2の水出口側では、+0.06mm程度まで膨張することが判る。 As shown in FIG. 5, the temperature of water, which is the first fluid flowing through the heat exchanger 1 heated under predetermined conditions, is from 20 ° C. on the water inlet side of the inner pipe 2 to the water outlet side of the inner pipe 2. The temperature gradually rises to 60 ° C. At this time, due to the influence of the temperature rise, the outer diameter of the insert 3 made of PPS resin (reinforced type: linear expansion coefficient 4E-5 / K) is, as shown in FIG. 6, on the water outlet side of the inner pipe 2. It can be seen that it expands to about +0.06 mm.

図6に示されるような挿入体3の膨張を予め想定しておくことで、図7に示すように、熱交換器1の組み立て時を含む第1流体が加熱運転にて加熱されていない場合には、挿入体3の水出口側に向けて、挿入体3の外径を膨張する分だけ小さく設計しておくことができる。 By assuming the expansion of the insert 3 as shown in FIG. 6 in advance, as shown in FIG. 7, when the first fluid including the time of assembling the heat exchanger 1 is not heated by the heating operation. The outer diameter of the insert 3 can be designed to be smaller by the amount of expansion toward the water outlet side of the insert 3.

すなわち、突部6の先端部と内管2の内面との隙間は、第1流体の入口側よりも第1流体の出口側の方が大きく形成されているため、熱交換器1の組み立て時を含む第1流体が加熱運転にて加熱されていない低温の状態では、熱交換器1の組み立て時には、挿入体3の挿入性を容易にする。 That is, since the gap between the tip of the protrusion 6 and the inner surface of the inner pipe 2 is larger on the outlet side of the first fluid than on the inlet side of the first fluid, when the heat exchanger 1 is assembled. In a low temperature state where the first fluid containing the above is not heated by the heating operation, the insertability of the insert 3 is facilitated at the time of assembling the heat exchanger 1.

そして、第1流体を加熱する加熱運転を行い、高温の状態に変化させていくと、第1流体の内管2の出口側が、第1流体の内管2の入口側よりも高温になるので、挿入体3の第1流体の出口側の方が、挿入体3の第1流体の入口側よりも大きく熱膨張するため、突部6の先端部と内管2の内面との隙間は、第1流体の流路7全般にわたって小さくなるため、第1流体が加熱された場合には、隙間を挿入体3の軸方向に流れる水流が減少し、熱交換性能を向上することができる。 Then, when the heating operation for heating the first fluid is performed to change the temperature to a high temperature state, the outlet side of the inner pipe 2 of the first fluid becomes higher than the inlet side of the inner pipe 2 of the first fluid. Since the outlet side of the first fluid of the insert body 3 thermally expands more than the inlet side of the first fluid of the insert body 3, the gap between the tip portion of the protrusion 6 and the inner surface of the inner tube 2 is formed. Since the size is reduced over the entire flow path 7 of the first fluid, when the first fluid is heated, the water flow flowing in the axial direction of the insert 3 through the gap is reduced, and the heat exchange performance can be improved.

このように、挿入体3の第1流体の入口側から、第1流体の出口側にかけて、徐々に上昇する水温を予め予測し、そこから計算される膨張寸法を挿入体3の外径寸法に、第1流体の出口側(高温側)をより小径化させるように反映することで、第1流体の流路7全般にわたって、突部6の先端部と内管2の内面との隙間を最小化でき、熱交換性能を更に向上できる。 In this way, the water temperature that gradually rises from the inlet side of the first fluid of the insert body 3 to the outlet side of the first fluid is predicted in advance, and the expansion dimension calculated from the prediction is used as the outer diameter dimension of the insert body 3. By reflecting so that the outlet side (high temperature side) of the first fluid is made smaller in diameter, the gap between the tip portion of the protrusion 6 and the inner surface of the inner pipe 2 is minimized over the entire flow path 7 of the first fluid. The heat exchange performance can be further improved.

また、内管2を形成している材料である銅(線膨張係数16.8E-6/K)のよりも、線膨張係数が大きい材料であるPPS樹脂(強化タイプ:線膨張係数4E-5/K)で挿入体3を形成すると、第1流体(例えば、水)が加熱運転にて加熱されている場合の、内管2の内面と突部6の先端との間の隙間をいっそう小さくでき、さらに熱交換性能を向上できる。 Further, PPS resin (reinforced type: linear expansion coefficient 4E-5), which is a material having a larger linear expansion coefficient than copper (linear expansion coefficient 16.8E-6 / K), which is a material forming the inner tube 2, is used. When the insert 3 is formed with / K), the gap between the inner surface of the inner tube 2 and the tip of the protrusion 6 when the first fluid (for example, water) is heated by the heating operation is made smaller. It is possible to further improve the heat exchange performance.

本実施の形態1では、外管4内を流れる流体を二酸化炭素としたが、ハイドロカーボン系やHFC系(R410A、R32等)の冷媒、あるいは、これらの代替冷媒とすることも同様の作用効果が期待できる。 In the first embodiment, carbon dioxide is used as the fluid flowing in the outer pipe 4, but it is also possible to use a hydrocarbon-based or HFC-based (R410A, R32, etc.) refrigerant or an alternative refrigerant thereof. Can be expected.

また、内管2と挿入体3の材質として、銅とPPSを引用したが、材料の線膨張係数に同様の差があれば同様の効果を有するため、種類については特に限定しない。 Further, although copper and PPS are cited as the materials of the inner tube 2 and the insert body 3, if there is a similar difference in the linear expansion coefficient of the materials, the same effect is obtained, so the type is not particularly limited.

以上のように、本発明にかかる熱交換器は、組み立て性と熱交換性能の両立を実現した熱交換器を提供できるので、水等の流体間で熱交換を行う熱交換器を搭載した機器に適用できる。 As described above, the heat exchanger according to the present invention can provide a heat exchanger that achieves both assemblability and heat exchange performance. Therefore, a device equipped with a heat exchanger that exchanges heat between fluids such as water. Can be applied to.

1 熱交換器
2 内管
3 挿入体
4 外管
5 軸部
6 突部
7 流路
1 Heat exchanger 2 Inner pipe 3 Insert 4 Outer pipe 5 Shaft 6 Protrusion 7 Flow path

Claims (5)

第1流体が流れる内管と、
軸部と前記軸部の外面に形成された突部とを有し、前記内管内に挿入されている挿入体と、
前記内管の内面と前記軸部の外面と前記突部の側面とで形成される前記第1流体の流路と、
を備え、
前記第1流体が加熱されていない場合には、
前記突部の先端部と前記内管の内面との隙間は、前記第1流体の入口側よりも前記第1流体の出口側の方が大きく、
前記第1流体が加熱されている場合には、
前記突部の先端部と前記内管の前記内面との前記隙間は、前記第1流体の流路全般にわたって小さい、
ことを特徴とする熱交換器。
The inner pipe through which the first fluid flows and
An insert body having a shaft portion and a protrusion formed on the outer surface of the shaft portion and inserted into the inner tube, and
The flow path of the first fluid formed by the inner surface of the inner pipe, the outer surface of the shaft portion, and the side surface of the protrusion portion, and the flow path of the first fluid.
Equipped with
If the first fluid is not heated,
The gap between the tip of the protrusion and the inner surface of the inner pipe is larger on the outlet side of the first fluid than on the inlet side of the first fluid.
If the first fluid is heated,
The gap between the tip of the protrusion and the inner surface of the inner tube is small over the entire flow path of the first fluid.
A heat exchanger characterized by that.
前記軸部の外径は、前記第1流体の入口側よりも前記第1流体の出口側の方が小さいことを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the outer diameter of the shaft portion is smaller on the outlet side of the first fluid than on the inlet side of the first fluid. 前記挿入体を形成する材料の線膨張係数は、前記内管を形成する材料の線膨張係数よりも大きいことを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the linear expansion coefficient of the material forming the insert is larger than the linear expansion coefficient of the material forming the inner tube. 前記内管の外面に第2流体が流れる外管を備え、前記第1流体を前記第2流体が加熱する構成としたことを特徴とする請求項1~3のいずれか1項に記載の熱交換器。 The heat according to any one of claims 1 to 3, wherein an outer tube through which a second fluid flows is provided on the outer surface of the inner tube, and the first fluid is heated by the second fluid. Exchanger. 第1流体が水で、第2流体が冷媒である請求項4に記載の熱交換器を備えたヒートポンプ給湯機。 The heat pump water heater provided with the heat exchanger according to claim 4, wherein the first fluid is water and the second fluid is a refrigerant.
JP2018228788A 2018-12-06 2018-12-06 Heat exchanger and water heater equipped with it Active JP7012204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228788A JP7012204B2 (en) 2018-12-06 2018-12-06 Heat exchanger and water heater equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228788A JP7012204B2 (en) 2018-12-06 2018-12-06 Heat exchanger and water heater equipped with it

Publications (2)

Publication Number Publication Date
JP2020091072A JP2020091072A (en) 2020-06-11
JP7012204B2 true JP7012204B2 (en) 2022-01-28

Family

ID=71012649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228788A Active JP7012204B2 (en) 2018-12-06 2018-12-06 Heat exchanger and water heater equipped with it

Country Status (1)

Country Link
JP (1) JP7012204B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339631A (en) 1966-07-13 1967-09-05 James A Mcgurty Heat exchanger utilizing vortex flow
JP2016020765A (en) 2014-07-14 2016-02-04 大豊工業株式会社 Heat exchanger
WO2016174826A1 (en) 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same
JP2018066482A (en) 2016-10-17 2018-04-26 パナソニックIpマネジメント株式会社 Heat exchanger and water heater including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339631A (en) 1966-07-13 1967-09-05 James A Mcgurty Heat exchanger utilizing vortex flow
JP2016020765A (en) 2014-07-14 2016-02-04 大豊工業株式会社 Heat exchanger
WO2016174826A1 (en) 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same
JP2018066482A (en) 2016-10-17 2018-04-26 パナソニックIpマネジメント株式会社 Heat exchanger and water heater including the same

Also Published As

Publication number Publication date
JP2020091072A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
KR101608996B1 (en) Heat exchanger
KR20040050853A (en) Double-pipe heat exchanger
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP2005133999A (en) Heat pump type hot-water supplier
JP2013053804A (en) Structure of triple pipe, and heat exchanger
JP4572662B2 (en) Heat exchanger
JP7012204B2 (en) Heat exchanger and water heater equipped with it
JP2005083667A (en) Heat exchanger
JP2004093037A (en) Double-pipe heat exchanger
JP2009216309A (en) Heat exchanger
JP7199842B2 (en) water heat exchanger, gas cooler
JP4075732B2 (en) Heat exchanger for heat pump water heater
JP2010038429A (en) Heat exchanger
JP2008190787A (en) Spiral tube and heat exchanger using the same
JP4947162B2 (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2004340455A (en) Heat exchanger
JP2004085166A (en) Heat exchanger, its manufacturing method, and bath water heating system and floor heating system using the heat exchanger
JP2008267631A (en) Heat exchanger
JP6471353B2 (en) Heat exchanger and heat pump water heater using the same
JP2007271194A (en) Heat exchanger
JP7129602B2 (en) Heat exchanger and refrigeration cycle device provided with the same
JP2010112565A (en) Heat exchanger
JP2012007771A (en) Heat exchanger
JP2010210137A (en) Heat exchanger

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R151 Written notification of patent or utility model registration

Ref document number: 7012204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151