JP2013053804A - Structure of triple pipe, and heat exchanger - Google Patents

Structure of triple pipe, and heat exchanger Download PDF

Info

Publication number
JP2013053804A
JP2013053804A JP2011192168A JP2011192168A JP2013053804A JP 2013053804 A JP2013053804 A JP 2013053804A JP 2011192168 A JP2011192168 A JP 2011192168A JP 2011192168 A JP2011192168 A JP 2011192168A JP 2013053804 A JP2013053804 A JP 2013053804A
Authority
JP
Japan
Prior art keywords
tube
pipe
triple
medium
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011192168A
Other languages
Japanese (ja)
Other versions
JP6032585B2 (en
Inventor
Akio Kurihara
明夫 栗原
Kishin Tachibana
紀伸 橘
Isao Katano
伊佐雄 片野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIYAMA SEISAKUSHO CO Ltd
Original Assignee
NISHIYAMA SEISAKUSHO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIYAMA SEISAKUSHO CO Ltd filed Critical NISHIYAMA SEISAKUSHO CO Ltd
Priority to JP2011192168A priority Critical patent/JP6032585B2/en
Publication of JP2013053804A publication Critical patent/JP2013053804A/en
Application granted granted Critical
Publication of JP6032585B2 publication Critical patent/JP6032585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure of a triple pipe, and a heat exchanger capable of improving heat exchanger effectiveness and being miniaturized.SOLUTION: In the structure of the triple pipe and the heat exchanger of the embodiment, three pipes are fitted in a state of being overlapped to each other, and an outer pipe, an intermediate pipe and an inner pipe are successively overlapped from an outer side. The intermediate pipe is shaped into the waveform in which peak sections and trough sections are alternately disposed in the circumferential direction of the intermediate pipe, the peak sections are formed in a state of being kept into contact with the outer pipe, and the trough sections are formed in a state of being kept into contact with the inner pipe.

Description

本発明の実施形態は、三つの管が互いに重なるように嵌め合わせられ、当該重なる順番に外側から外管、中間管、及び、内管を有する三重管の構造及び熱交換器に関する。   Embodiments of the present invention relate to a triple-tube structure and a heat exchanger in which three tubes are fitted to overlap each other and have an outer tube, an intermediate tube, and an inner tube from the outside in the overlapping order.

例えば、浴槽の水を加熱するための熱交換器に三重管が用いられている。この三重管の内管と外管とは接続路によって互いに接続され、内管から入った浴槽の水が外管を通って再び浴槽に戻る(循環する)ようになっている。一方、中間管には温水が循環するようになっている。それにより、中間管内の温水の熱が内管及び外管に伝達され、浴槽の水が内管及び外管を通るときに加熱される。このようにして浴槽の水が循環することで、温度上昇するようになっている(例えば、特許文献1)。   For example, a triple pipe is used for a heat exchanger for heating water in a bathtub. The inner pipe and the outer pipe of the triple pipe are connected to each other by a connection path so that the water in the bathtub that has entered from the inner pipe returns (circulates) back to the bathtub through the outer pipe. On the other hand, warm water circulates in the intermediate pipe. Thereby, the heat of the warm water in the intermediate pipe is transmitted to the inner pipe and the outer pipe, and the water in the bathtub is heated when passing through the inner pipe and the outer pipe. As the water in the bathtub circulates in this manner, the temperature rises (for example, Patent Document 1).

一般に、三重管において、各管内の媒体相互の伝熱効果を向上させるためには各管が互いに重なり合う面積(伝熱面積)を広くする必要がある。伝熱面積を広くする一例として、重なり合う所を長くする方法がある。また、他の例として、三つの管の径を大きくする方法がある。   Generally, in a triple tube, in order to improve the heat transfer effect between the media in each tube, it is necessary to widen the area (heat transfer area) where the tubes overlap each other. As an example of increasing the heat transfer area, there is a method of lengthening the overlapping portion. As another example, there is a method of increasing the diameters of three tubes.

特開平6−229617号公報JP-A-6-229617

しかしながら、三つの管が重なり合う所を長くする方法、及び、三つの管の径を太くする方法では、三重管が大きくなり、その三重管を収容する熱交換器も大型になるという問題点がある。   However, in the method of lengthening the place where the three tubes overlap and the method of increasing the diameter of the three tubes, there is a problem that the triple tube becomes large and the heat exchanger that accommodates the triple tube becomes large. .

また、上記特許文献に記載された技術では、内管と外管とを接続するための接続路を設ける分だけ、三重管が大きくなるという問題点があった。   Moreover, in the technique described in the said patent document, there existed a problem that a triple pipe became large by the part which provided the connection path for connecting an inner pipe and an outer pipe.

この実施形態は、上記の問題を解決するものであり、媒体相互の伝熱効果を向上させる、小型にすることが可能な三重管の構造及び熱交換器を提供することを目的とする。   This embodiment solves the above-described problems, and an object thereof is to provide a triple-pipe structure and a heat exchanger that can improve the heat transfer effect between the media and can be reduced in size.

上記課題を解決するために、実施形態の三重管の構造は、三つの管が互いに重なるように嵌め合わせられ、当該重なる順番に外側から外管、中間管、及び、内管を有し、前記中間管は、中間管の周方向に山部と谷部とが交互に配された波形に形成され、前記山部は前記外管に接するように形成され、前記谷部は前記内管に接するように形成されることを特徴とする。   In order to solve the above-mentioned problem, the triple-pipe structure of the embodiment has three pipes fitted together so as to overlap each other, and has an outer pipe, an intermediate pipe, and an inner pipe from the outside in the overlapping order, The intermediate pipe is formed in a waveform in which crests and troughs are alternately arranged in the circumferential direction of the intermediate pipe, the crests are formed so as to contact the outer pipe, and the troughs are in contact with the inner pipe It is formed as follows.

中間管が波形に形成されるので、中間管が内管内及び外管内の媒体に接触する面積が広くなり、媒体相互の伝熱効果を向上させ、小型にすることが可能な三重管となる。また、中間管が波形に形成されるので、三重管の断面積、断面二次モーメントが大きくなり、弾性率、曲げ剛性及びねじり剛性を上げることが可能となる。   Since the intermediate tube is formed in a corrugated shape, the area in which the intermediate tube contacts the medium in the inner tube and the outer tube is widened, so that the heat transfer effect between the media is improved and the triple tube can be reduced in size. Further, since the intermediate tube is formed in a corrugated shape, the cross-sectional area and the secondary moment of the triple tube are increased, and the elastic modulus, bending rigidity and torsional rigidity can be increased.

第1の実施形態に係る三重管の正面図である。It is a front view of the triple pipe which concerns on 1st Embodiment. 三重管の部分拡大断面図である。It is a partial expanded sectional view of a triple pipe. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 第2の実施形態に係る三重管の断面図である。It is sectional drawing of the triple tube which concerns on 2nd Embodiment. 第2の実施形態の変形例に係る三重管の断面図である。It is sectional drawing of the triple tube which concerns on the modification of 2nd Embodiment.

[第1の実施形態]
この発明の第1の実施形態に係る三重管の構造について図1から図3を参照して説明する。ここで、三重管の構造とは、三以上の管が互いに重なるように嵌め合わされる構造において、重なり方向で隣接する三つの管を組み合わせる構造をいう。
[First Embodiment]
The structure of the triple tube according to the first embodiment of the present invention will be described with reference to FIGS. Here, the triple-pipe structure refers to a structure in which three or more pipes adjacent to each other in the overlapping direction are combined in a structure in which three or more pipes are fitted to each other.

図1は三重管の正面図である。図1に示すように、三つの管が互いに重なるように嵌め合わされた三重管の構造は、重なる順番に外側から外管10、中間管20及び内管30を有している。三重管の構造は、浴槽の水を加熱するための熱交換器に用いられる他に、例えば、媒体によって熱交換が行われる給湯器及び空気調和器等の熱交換器に用いられる。   FIG. 1 is a front view of a triple tube. As shown in FIG. 1, the triple tube structure in which three tubes are fitted together so as to overlap each other has an outer tube 10, an intermediate tube 20, and an inner tube 30 from the outside in the overlapping order. The triple pipe structure is used for a heat exchanger such as a water heater and an air conditioner in which heat is exchanged by a medium, in addition to being used for a heat exchanger for heating water in a bathtub.

外管10、中間管20及び内管30の中には、気体、液体及び固体のいずれかの媒体が入る。どのような媒体が入るかは熱交換器の用途による。また、管内の温度または圧力等により気体から液体に、反対に液体から気体に変わる媒体もある。   Any medium of gas, liquid, and solid enters the outer tube 10, the intermediate tube 20, and the inner tube 30. It depends on the application of the heat exchanger what kind of medium enters. There are also media that change from gas to liquid and vice versa, depending on the temperature or pressure in the tube.

熱交換においては、高温の媒体の熱を低温の媒体に移動させることにより、高温の媒体から熱が奪われて温度低下させ、低温の媒体を加熱して温度上昇させる。   In the heat exchange, the heat of the high-temperature medium is moved to the low-temperature medium, so that the heat is taken away from the high-temperature medium to lower the temperature, and the low-temperature medium is heated to raise the temperature.

次に、熱交換器に用いられる三重管の構造の一例について図1〜図3を参照して説明する。図2は三重管の部分拡大断面図である。図2に示すように、外管10は中空軸であって、外管10の両端部11は縮径されて中間管20の両端部21に密着されている。外管10の上流側の端部11には連結管12が設けられ、下流側の端部11には連結管13が設けられている。例えばT1[℃]の媒体(温水)Aが連結管12から外管10内に流入し、連結管13から流出する。   Next, an example of the structure of the triple tube used for the heat exchanger will be described with reference to FIGS. FIG. 2 is a partially enlarged sectional view of the triple tube. As shown in FIG. 2, the outer tube 10 is a hollow shaft, and both end portions 11 of the outer tube 10 are reduced in diameter and are in close contact with both end portions 21 of the intermediate tube 20. A connecting tube 12 is provided at the upstream end 11 of the outer tube 10, and a connecting tube 13 is provided at the downstream end 11. For example, T1 [° C.] medium (warm water) A flows into the outer tube 10 from the connecting tube 12 and flows out from the connecting tube 13.

中間管20は中空であって、中間管20の両端部21は、縮径されて内管30の両端部31に密着されている。中間管20の上流側の端部21には連結管22が設けられ、下流側の端部21には連結管23が設けられている。例えば、T2(<T1)[℃]の媒体(水道水)Bが連結管21から中間管20内に流入し、連結管23から流出する。   The intermediate tube 20 is hollow, and both end portions 21 of the intermediate tube 20 are reduced in diameter and are in close contact with both end portions 31 of the inner tube 30. A connecting pipe 22 is provided at the upstream end 21 of the intermediate pipe 20, and a connecting pipe 23 is provided at the downstream end 21. For example, a medium (tap water) B of T2 (<T1) [° C.] flows into the intermediate pipe 20 from the connecting pipe 21 and flows out from the connecting pipe 23.

図3は図1のA−A線断面図である。図3に示すように、中間管20は、中間管20の周方向に波形に山部25と谷部26とを交互に配することにより波形に形成されている。山部25及び谷部26は同数であって、中間管20の周方向に等間隔で2個以上設けられている。山部25及び谷部の数は4から6個(この実施形態では5個)であることが好ましい。山部25は中間管20の周壁27を外方に突出させることにより外管10の周方向に等間隔に5カ所で接するように形成されている。谷部26は中間管20の周壁27を内方に凹ませることにより内管30の周方向に等間隔に5ヵ所で接するように形成されている。中間管20の山部25が外管10に接しているため、外管10内の媒体Aは、隣接する山部25の間の谷部26を流れるようになる。   3 is a cross-sectional view taken along line AA of FIG. As shown in FIG. 3, the intermediate tube 20 is formed in a waveform by alternately arranging peaks 25 and valleys 26 in the waveform in the circumferential direction of the intermediate tube 20. The crests 25 and the troughs 26 are the same number, and two or more are provided at equal intervals in the circumferential direction of the intermediate tube 20. The number of peaks 25 and valleys is preferably 4 to 6 (5 in this embodiment). The ridges 25 are formed so as to be in contact with each other at five locations at equal intervals in the circumferential direction of the outer tube 10 by projecting the peripheral wall 27 of the intermediate tube 20 outward. The trough portions 26 are formed so as to be in contact at five locations at equal intervals in the circumferential direction of the inner tube 30 by denting the peripheral wall 27 of the intermediate tube 20 inward. Since the peak portion 25 of the intermediate tube 20 is in contact with the outer tube 10, the medium A in the outer tube 10 flows through the valley portion 26 between the adjacent peak portions 25.

山部25が外管10に接し、谷部26が内管30に接しているため、外管10、中間管20及び内管30が単に嵌め合わされている三重管と比べてその剛性を上げることが可能となる。また、三重管の外から伝わる振動等、あるいは、三重管の内部で生じる振動等による異音の発生を防止することが可能となる。   Since the peak portion 25 is in contact with the outer tube 10 and the valley portion 26 is in contact with the inner tube 30, its rigidity is increased as compared with the triple tube in which the outer tube 10, the intermediate tube 20 and the inner tube 30 are simply fitted together. Is possible. Further, it is possible to prevent the generation of abnormal noise due to vibration transmitted from outside the triple tube or vibration generated inside the triple tube.

山部25及び谷部26の個数は2から15であることが好ましい。ただし、個数が多いほど、熱交換時の伝熱効果を向上させ、曲げ剛性やねじり剛性を上げることが可能となる。なお、曲げ剛性やねじり剛性が上がる理由の説明は後述する。   The number of peaks 25 and valleys 26 is preferably 2 to 15. However, the larger the number, the higher the heat transfer effect during heat exchange, and the higher the bending rigidity and torsional rigidity. The reason why the bending rigidity and torsional rigidity are increased will be described later.

中間管20は、中間管20の軸28回りにねじれるように形成されている。中間管20を軸28回りにねじることにより、山部25及び谷部26は螺旋状にカーブする。   The intermediate tube 20 is formed to be twisted around the axis 28 of the intermediate tube 20. By twisting the intermediate tube 20 around the axis 28, the crests 25 and the troughs 26 are spirally curved.

山部25及び谷部26が螺旋状にカーブすることにより、媒体Bの流れもカーブする。このとき、媒体Bはカーブの外側(谷部26の外側)の領域に集まるように流れるため、カーブの内側(谷部26の内側)の領域で媒体Bに乱流が発生しやすくなる。中間管20のねじれる角度(ねじれ角)は、媒体の乱流が発生する角度から流れに支障を来す角度の範囲の間であればどのような角度であってもよい。中間管20のねじれ角の一例としては、2度から45度であることが好ましい。ここで、ねじれ角とは、山部25の頂または谷部の底の螺旋と、その上の一点を通る軸28に平行な直線とがなす角である。   Since the peak portion 25 and the valley portion 26 are spirally curved, the flow of the medium B is also curved. At this time, the medium B flows so as to gather in a region outside the curve (outside the valley portion 26), so that turbulence is likely to occur in the medium B in a region inside the curve (inside the valley portion 26). The twisting angle (twisting angle) of the intermediate tube 20 may be any angle as long as it is between the range in which the turbulent flow of the medium is generated and the angle that hinders the flow. An example of the twist angle of the intermediate tube 20 is preferably 2 to 45 degrees. Here, the twist angle is an angle formed by a spiral at the top of the peak portion 25 or the bottom of the valley portion and a straight line parallel to the axis 28 passing through a point on the top.

ここで、例えば、媒体AはT1[℃]の温水、媒体BはT2(<T1)[℃]の水道水とすると、媒体Aの熱が中間管20に移動し、さらに、中間管20の熱が媒体Bに移動する。このようにして、中間管20と媒体Bとの熱交換が行われるが、媒体Bの流れが乱流なので、媒体内での熱移動が活発に行われるため、中間管20の内側と媒体Bとの熱交換は活発に行われることとなり、媒体Aの熱により特に中間管20の内側を介して媒体Bを効果的に加熱することができ、伝熱効果を向上させることが可能となる。   For example, if the medium A is T1 [° C.] hot water and the medium B is T2 (<T1) [° C.] tap water, the heat of the medium A moves to the intermediate pipe 20, Heat is transferred to medium B. In this way, the heat exchange between the intermediate tube 20 and the medium B is performed. However, since the flow of the medium B is turbulent, heat transfer is actively performed in the medium. Therefore, the medium B can be effectively heated by the heat of the medium A, particularly through the inside of the intermediate tube 20, and the heat transfer effect can be improved.

次に、三重管の製造方法の一例を説明する。   Next, an example of a method for manufacturing a triple tube will be described.

三重管を構成する外管10、中間管20及び内管30の材料として、例えば、銅、アルミニウム、黄銅、タングステン鋼、クロム鋼、マンガン鋼、炭素鋼のような熱伝導率の高い金属製の管が用いられる。   As a material of the outer tube 10, the intermediate tube 20, and the inner tube 30 constituting the triple tube, for example, a metal made of a metal having high thermal conductivity such as copper, aluminum, brass, tungsten steel, chromium steel, manganese steel, carbon steel, etc. A tube is used.

金属製の管の直径及び厚さは熱交換器の用途に応じて異なる。一例としては、外管10には直径約20[mm]、中間管20には直径約30[mm]、内管30には直径約10[mm]の金属製の管が用いられる。また、各金属製の管の厚さは、0.5[mm]から1.2[mm]が用いられる。   The diameter and thickness of the metal tube varies depending on the application of the heat exchanger. As an example, a metal tube having a diameter of about 20 [mm] is used for the outer tube 10, a diameter of about 30 [mm] is used for the intermediate tube 20, and a metal tube of about 10 [mm] is used for the inner tube 30. In addition, the thickness of each metal tube is 0.5 [mm] to 1.2 [mm].

各管の製造方法の一例として、金型(ダイス)で形成された先細の穴に金属管を通して引き抜くことにより、所定の断面形状に成形される引き抜き加工が用いられる。   As an example of a manufacturing method of each pipe, a drawing process is used in which a metal pipe is drawn through a tapered hole formed by a die (die) so as to have a predetermined cross-sectional shape.

以上に説明した三重管の構造は例えば熱交換器に用いられ、また、建築材料として用いられる。   The triple-pipe structure described above is used, for example, in a heat exchanger and as a building material.

次に、三重管の構造を熱交換器に用いたときの作用について説明する。   Next, the operation when the triple tube structure is used in a heat exchanger will be described.

熱交換器の用途によって、外管10内の媒体A、中間管20内の媒体B及び内管30内の媒体Cをどの程度の温度にするかが決められる。例えば、外管10内に60[℃]の媒体Aを流すことで、中間管20内の15[℃]の媒体Bを40[℃]に加熱して浴槽のお湯として利用し、内管30内の15[℃]の媒体Cを30[℃]に加熱して台所の温水として利用することが可能となる。媒体Aと媒体Bとは中間管20の周壁27を介して接触することで熱交換をし、媒体Bと媒体Cとは内管30の周壁27を介して接触することで熱交換をする。熱交換を効果的に行うためには、媒体と周壁27との接触する面積を広くし、接触する時間を長くする必要がある。   The temperature of the medium A in the outer tube 10, the medium B in the intermediate tube 20, and the medium C in the inner tube 30 is determined depending on the use of the heat exchanger. For example, by flowing a medium A of 60 [° C.] through the outer pipe 10, the medium B of 15 [° C.] in the intermediate pipe 20 is heated to 40 [° C.] and used as hot water for the bath, and the inner pipe 30 Among them, the medium C of 15 [° C.] can be heated to 30 [° C.] and used as hot water in the kitchen. The medium A and the medium B exchange heat by contacting through the peripheral wall 27 of the intermediate tube 20, and the medium B and medium C exchange heat by contacting through the peripheral wall 27 of the inner tube 30. In order to effectively perform heat exchange, it is necessary to increase the contact area between the medium and the peripheral wall 27 and to increase the contact time.

外管10の外径を大きくすることなく、周壁27を長くするために、中間管20に山部25及び谷部26を設ける。それによって、周壁27が長くても山部25及び谷部26を設けることにより、流路を確保し、媒体と中間管20とが接触する面積を広くすることができる。さらに山部25を外管10に当接させることで熱伝導により、熱が伝わり、媒体Aと媒体Bとの熱交換を効果的に行うことが可能となる。また、谷部26を内管30に当接させることにより、熱が伝わりやすくなり、媒体Bと媒体Cとの熱交換を効果的に行うことが可能となる。   In order to lengthen the peripheral wall 27 without increasing the outer diameter of the outer tube 10, a peak portion 25 and a valley portion 26 are provided in the intermediate tube 20. Thereby, even if the peripheral wall 27 is long, by providing the peak portion 25 and the valley portion 26, the flow path can be secured and the area where the medium and the intermediate tube 20 contact can be widened. Furthermore, heat is transmitted by heat conduction by bringing the peak portion 25 into contact with the outer tube 10, and heat exchange between the medium A and the medium B can be performed effectively. Further, by bringing the valley portion 26 into contact with the inner tube 30, heat is easily transmitted, and heat exchange between the medium B and the medium C can be performed effectively.

さらに、山部25及び谷部26を螺旋状にカーブするように形成することにより、中間管の内・外で媒体の流れに乱流を発生させやすくする。媒体の乱流によって、中間管の内・外側で媒体の熱移動が活発に行われることとなり、媒体Aと媒体Bとの熱交換を効果的に行うことが可能となる。   Furthermore, by forming the peak portions 25 and the valley portions 26 so as to be spirally curved, it is easy to generate turbulent flow in the medium flow inside and outside the intermediate tube. Due to the turbulent flow of the medium, the heat transfer of the medium is actively performed inside and outside the intermediate tube, and the heat exchange between the medium A and the medium B can be effectively performed.

また、熱交換器の用途に応じて、媒体A、B、Cの流れる方向をどのようにするかが決められる。すなわち、媒体A、B、Cの流れる方向を共に同じにする場合、媒体A、B、Cのうちのいずれか一つの媒体の流れと他の二つの媒体との流れる方向を逆にする場合とがある。   In addition, depending on the application of the heat exchanger, it is determined how to flow the media A, B, and C. That is, when the flow directions of the media A, B, and C are all the same, the flow direction of any one of the media A, B, and C and the flow direction of the other two media are reversed. There is.

図2に媒体の流れを矢印で示すように、媒体同士の流れる方向を逆にした場合、区間において、区間の始点と終点とで媒体同士の温度差が大きくなるため、熱交換の量は大きくなる。また、媒体同士の温度を逆転(媒体Aの温度T1と媒体Bの温度T2(<T1)が出口において逆転、T1<T2)させることができる。   As shown by arrows in FIG. 2, when the flow direction of the media is reversed, the temperature difference between the media at the start point and the end point of the interval increases in the interval, so the amount of heat exchange is large. Become. Further, the temperatures of the media can be reversed (the temperature T1 of the medium A and the temperature T2 (<T1) of the medium B are reversed at the outlet, T1 <T2).

媒体同士の流れる方向を同じにした場合、平行して流れる区間において、区間の始点から終点にかけて熱交換の量は少なくなっていき、終点において媒体同士の温度差は小さくなる。   When the flow directions of the media are the same, in the section flowing in parallel, the amount of heat exchange decreases from the start point to the end point of the section, and the temperature difference between the media decreases at the end point.

次に、三重管の構造を建築材料として用いたときについて説明する。   Next, the case where the triple tube structure is used as a building material will be described.

三重管の断面二次モーメントは、三つの管を単に嵌め合わせたときと比べて、中間管20に山部25及び谷部26を設けることにより増加するため、曲げ剛性、ねじり剛性を上げることが可能となる。   The cross-sectional second moment of the triple pipe is increased by providing the peak part 25 and the valley part 26 in the intermediate pipe 20 as compared with the case where the three pipes are simply fitted together, so that the bending rigidity and the torsional rigidity can be increased. It becomes possible.

また、山部25を外管10に当接させ、谷部26を内管30に当接させることにより、三重管に対して中間管20の軸28の方向に外力を作用させたとき、当接させた部分に摩擦力が発生するため、その外力に十分な力で対抗することが可能となる。   In addition, when an external force is applied to the triple pipe in the direction of the axis 28 of the intermediate pipe 20 by bringing the peak 25 into contact with the outer pipe 10 and the valley 26 in contact with the inner pipe 30, Since a frictional force is generated at the contacted portion, it is possible to counteract the external force with a sufficient force.

さらに、複数の山部25を外管10に等間隔で当接させ、複数谷部26を内管30に等間隔で当接させることにより、圧縮力を三重管に対して中間管20の軸28と直交する方向に作用させたときにも、十分な力で対抗することが可能となる。   Further, the plurality of peak portions 25 are brought into contact with the outer tube 10 at equal intervals, and the plurality of valley portions 26 are brought into contact with the inner tube 30 at equal intervals, thereby compressing the compressive force with respect to the triple tube. Even when acting in a direction perpendicular to 28, it is possible to counteract with a sufficient force.

また、三重管の断面積は、中間管20に山部25及び谷部26を設けることにより増加するため、弾性率を上げることが可能となる。それにより、軸28方向の大きな圧縮力や引っ張り力に対して十分に対抗することが可能な三重管となる。   Moreover, since the cross-sectional area of the triple pipe is increased by providing the peak part 25 and the valley part 26 in the intermediate pipe 20, the elastic modulus can be increased. Thereby, a triple tube capable of sufficiently resisting a large compressive force or tensile force in the direction of the shaft 28 is obtained.

[第2の実施形態]
次に、この発明の第2の実施形態に係る三重管の構造ついて図4を参照して説明する。
[Second Embodiment]
Next, a triple tube structure according to a second embodiment of the present invention will be described with reference to FIG.

なお、第2の実施形態において、第1の実施形態と同じ構成のものは同一番号を付し、その説明を省略する。   In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図4は三重管の断面図である。図4に示すように、内管30は、中間管20の隣接する谷部26の間に進入するように形成される凸部35を有している。凸部35は、谷部26(山部25とも)と同数であって、内管30の周方向に等間隔で2個以上設けられている。凸部35は、4から6個であることが好ましい。なお、凸部35は、山部25および谷部26の個数と同数であり、この実施形態では5個である。   FIG. 4 is a cross-sectional view of the triple tube. As shown in FIG. 4, the inner tube 30 has a convex portion 35 formed so as to enter between adjacent valley portions 26 of the intermediate tube 20. The number of the convex portions 35 is the same as that of the valley portions 26 (also called the mountain portions 25), and two or more convex portions 35 are provided at equal intervals in the circumferential direction of the inner tube 30. The number of the convex portions 35 is preferably 4 to 6. Note that the number of convex portions 35 is the same as the number of peak portions 25 and trough portions 26, and in this embodiment, five.

凸部35が谷部26の間に進入する量Sは、谷部26の深さの1/10〜1/1の長さである。   The amount S that the convex portion 35 enters between the valley portions 26 is 1/10 to 1/1 of the depth of the valley portion 26.

内管30に凸部35を設けることにより、内管30の周壁37が長くなって、媒体B、C同士が内管30の壁部を介して接する面積を広くすることができる。それにより、媒体B、C同士の熱交換を効率的に行うことが可能となる。   By providing the convex portion 35 on the inner tube 30, the peripheral wall 37 of the inner tube 30 becomes longer, and the area where the media B and C are in contact with each other through the wall portion of the inner tube 30 can be increased. Thereby, heat exchange between the media B and C can be performed efficiently.

次に、三重管の変形例について図5を参照して説明する。   Next, a modification of the triple tube will be described with reference to FIG.

図5は、変形例に係る三重管をその軸と直交する方向に破断した横断面図である。図5に示すように、内管30は、内管30の軸38回りにねじれるように形成されている。さらに、中間管20と内管30とは、相互に逆方向にねじれている。例えば、図5において中間管20が時計回りにねじれているのに対し、内管20が反時計回りにねじれている。内管30のねじれ角は、流れの中に乱流が発生する角度から流れに支障を来す角度の範囲(たとえば、2度から45度)であることが好ましい。ここで、ねじれ角とは、中間管20のねじれ角と同様に、凸部35の頂の螺旋と、その上の一点を通る軸38に平行な直線とがなす角である。   FIG. 5 is a cross-sectional view in which the triple tube according to the modification is broken in a direction perpendicular to the axis. As shown in FIG. 5, the inner tube 30 is formed to be twisted around the axis 38 of the inner tube 30. Further, the intermediate tube 20 and the inner tube 30 are twisted in opposite directions. For example, in FIG. 5, the intermediate tube 20 is twisted clockwise while the inner tube 20 is twisted counterclockwise. The twist angle of the inner tube 30 is preferably in the range of an angle that hinders the flow from the angle at which turbulent flow occurs in the flow (for example, 2 to 45 degrees). Here, like the torsion angle of the intermediate tube 20, the torsion angle is an angle formed by a spiral at the top of the convex portion 35 and a straight line parallel to the axis 38 passing through one point thereon.

隣接する凸部35同士の間には、内管30の軸38側に凹入する凹部36が形成されている。   A recess 36 that is recessed toward the shaft 38 of the inner tube 30 is formed between the adjacent protrusions 35.

内管30をねじるように形成したことにより、凸部35及び凹部36は螺旋状にカーブするように形成される。それにより、中間管20内での内管に接する面での流れに乱流を発生させやすくする。それにより、媒体B内での熱移動が活発に行われることになり、媒体B、C同士の熱交換が活発に行われることとなり、媒体B、C同士の伝熱効果を向上させることが可能となる。   By forming the inner tube 30 to be twisted, the convex portion 35 and the concave portion 36 are formed to be curved in a spiral shape. Thereby, it becomes easy to generate turbulent flow in the flow on the surface in contact with the inner tube in the intermediate tube 20. As a result, heat transfer in the medium B is actively performed, heat exchange between the media B and C is actively performed, and the heat transfer effect between the media B and C can be improved. It becomes.

また、内管30内の媒体Cは、凸部35に沿って流れて、カーブの外側に集まり、管内側で乱流が発生しやすくなる。媒体Cの乱流によって、媒体Cの熱移動が活発に行われることとなり、媒体B、C同士の伝熱効果を向上させることが可能となる。   Further, the medium C in the inner tube 30 flows along the convex portion 35 and gathers outside the curve, so that turbulent flow is likely to occur inside the tube. The heat transfer of the medium C is actively performed by the turbulent flow of the medium C, and the heat transfer effect between the mediums B and C can be improved.

なお、上記実施形態では、外管10、中間管20及び内管30に異なる媒体A、B、Cをそれぞれ流したが、熱交換器の用途に応じて、媒体A、B、Cのいずれか二つをおなじ媒体としてもよい。例えば、外管10及び内管30を直接的にまたは間接的に連結して、同じ媒体を流すようにしてもよい。また、媒体A、B、Cを液体としたが、気体や固体であってもよい。   In the above embodiment, different media A, B, and C are allowed to flow through the outer tube 10, the intermediate tube 20, and the inner tube 30, respectively. However, any one of the media A, B, and C is used depending on the application of the heat exchanger. The two may be the same medium. For example, the same medium may flow by connecting the outer tube 10 and the inner tube 30 directly or indirectly. Further, although the media A, B, and C are liquids, they may be gases or solids.

以上説明した実施形態は、一例として提示したものであり、発明の範囲を限定することを意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   The embodiment described above is presented as an example, and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10 外管 11 端部 12 連結管 13 連結管
20 中間管 21 端部 22 連結管 23 連結管
25 山部 26 谷部 27 周壁 28 軸
30 内管 31 端部 35 凸部 36 凹部 37 周壁 38 軸
DESCRIPTION OF SYMBOLS 10 Outer pipe 11 End part 12 Connection pipe 13 Connection pipe 20 Intermediate pipe 21 End part 22 Connection pipe 23 Connection pipe 25 Mountain part 26 Valley part 27 Peripheral wall 28 Axis 30 Inner pipe 31 End part 35 Convex part 36 Concave part 37 Peripheral wall 38 Axis

Claims (7)

三つの管が互いに重なるように嵌め合わせられ、当該重なる順番に外側から外管、中間管、及び、内管を有する三重管の構造において、
前記中間管は、当該中間管の周方向に山部と谷部とが交互に配された波形に形成され、
前記山部は前記外管に接するように形成され、
前記谷部は前記内管に接するように形成されることを特徴とする三重管の構造。
In a triple tube structure in which three tubes are fitted to overlap each other and have an outer tube, an intermediate tube, and an inner tube from the outside in the overlapping order,
The intermediate pipe is formed in a waveform in which peaks and valleys are alternately arranged in the circumferential direction of the intermediate pipe,
The peak is formed so as to contact the outer tube,
The triple tube structure is characterized in that the valley portion is formed in contact with the inner tube.
前記中間管は、当該中間管の軸回りにねじれるように形成されていることを特徴とする請求項1に記載の三重管の構造。   The triple pipe structure according to claim 1, wherein the intermediate pipe is formed to be twisted around an axis of the intermediate pipe. 前記内管は、隣接する前記谷部の間に進入するように形成される凸部を有することを特徴とする請求項2に記載の三重管の構造。   The triple pipe structure according to claim 2, wherein the inner pipe has a convex portion formed so as to enter between the adjacent valley portions. 前記内管は、当該内管の軸回りにねじれるように形成されていることを特徴とする請求項3に記載の三重管の構造。   The triple pipe structure according to claim 3, wherein the inner pipe is formed so as to be twisted around an axis of the inner pipe. 前記内管は、前記中間管に対し逆方向にねじれていることを特徴とする請求項4に記載の装置。   The apparatus according to claim 4, wherein the inner tube is twisted in the opposite direction with respect to the intermediate tube. 前記山部及び前記谷部並びに前記凸部は同数であって、中間管の周方向に等間隔に2個以上設けられていることを特徴とする請求項3に記載の装置。   4. The apparatus according to claim 3, wherein the number of the crests, the troughs, and the protrusions is the same, and two or more are provided at equal intervals in the circumferential direction of the intermediate tube. 請求項1から請求項6のいずれか一つに記載の三重管の構造と、前記外管、前記中間管及び前記内管にそれぞれ接続する流路とを有する熱交換器。   The heat exchanger which has the structure of the triple tube as described in any one of Claims 1-6, and the flow path respectively connected to the said outer tube, the said intermediate tube, and the said inner tube.
JP2011192168A 2011-09-03 2011-09-03 Triple tube structure and heat exchanger Active JP6032585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192168A JP6032585B2 (en) 2011-09-03 2011-09-03 Triple tube structure and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192168A JP6032585B2 (en) 2011-09-03 2011-09-03 Triple tube structure and heat exchanger

Publications (2)

Publication Number Publication Date
JP2013053804A true JP2013053804A (en) 2013-03-21
JP6032585B2 JP6032585B2 (en) 2016-11-30

Family

ID=48130952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192168A Active JP6032585B2 (en) 2011-09-03 2011-09-03 Triple tube structure and heat exchanger

Country Status (1)

Country Link
JP (1) JP6032585B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010758A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015010757A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015025577A (en) * 2013-07-24 2015-02-05 岩谷マテリアル株式会社 Method of manufacturing triple tube type heat exchanger
JP2017096513A (en) * 2015-11-18 2017-06-01 日産自動車株式会社 Heat exchanger
JP2019052849A (en) * 2013-03-22 2019-04-04 日本碍子株式会社 Heat exchanger
KR102086833B1 (en) * 2019-08-02 2020-03-09 고민정 Triple tube heat exchanger
JP2021071278A (en) * 2019-10-31 2021-05-06 株式会社西山製作所 Multiple pipe structure and passage device
CN114001568A (en) * 2021-10-29 2022-02-01 中南大学 Jet-type supercritical CO2Double-pipe heat exchanger

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1274618A (en) * 1960-09-15 1961-10-27 heat exchanger and components for its construction, applicable in particular to the cooling of uranium hexafluoride
JPS504293Y1 (en) * 1970-07-01 1975-02-04
JPS56162475U (en) * 1980-05-02 1981-12-03
JPS61149790A (en) * 1984-12-24 1986-07-08 Isuzu Motors Ltd Heat exchanger for vehicle mounted heater
JPS6273088A (en) * 1985-09-14 1987-04-03 ノルスク・ヒドロ・アクシエセルスカ−プ Cooler
JPS62204170U (en) * 1986-06-16 1987-12-26
JPS6380469U (en) * 1986-11-12 1988-05-27
JPS63302296A (en) * 1987-05-29 1988-12-09 Idemitsu Kosan Co Ltd Indirect type air heater
GB2261280A (en) * 1991-11-07 1993-05-12 Specialist Heat Exchangers Lim Heat exchanger
JPH1038491A (en) * 1996-07-23 1998-02-13 Toyo Radiator Co Ltd Double tube type heat exchanger
DE10213544A1 (en) * 2001-11-30 2003-07-10 Hartmut Koenig Heat transfer device has heat exchange surface formed by set of hollow bodies one inside other with fluids flowing through them
JP2007100990A (en) * 2005-09-30 2007-04-19 Matsumoto Jukogyo Kk Heat exchanger
JP2008232449A (en) * 2007-03-16 2008-10-02 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger and its manufacturing method
JP2009210195A (en) * 2008-03-04 2009-09-17 Toshiba Electric Appliance Co Ltd Water heater
EP2112451A1 (en) * 2006-01-26 2009-10-28 Nuclear Research Center-Negev Thermal energy storage apparatus
US20100175983A1 (en) * 2009-01-14 2010-07-15 Total Water Management, LLC Mutual Remediation of Effluents of Petroleum Production
US20100212874A1 (en) * 2007-06-20 2010-08-26 Halla Climate Control Corp. Cooling system for a vehicle

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1274618A (en) * 1960-09-15 1961-10-27 heat exchanger and components for its construction, applicable in particular to the cooling of uranium hexafluoride
JPS504293Y1 (en) * 1970-07-01 1975-02-04
JPS56162475U (en) * 1980-05-02 1981-12-03
JPS61149790A (en) * 1984-12-24 1986-07-08 Isuzu Motors Ltd Heat exchanger for vehicle mounted heater
JPS6273088A (en) * 1985-09-14 1987-04-03 ノルスク・ヒドロ・アクシエセルスカ−プ Cooler
JPS62204170U (en) * 1986-06-16 1987-12-26
JPS6380469U (en) * 1986-11-12 1988-05-27
JPS63302296A (en) * 1987-05-29 1988-12-09 Idemitsu Kosan Co Ltd Indirect type air heater
GB2261280A (en) * 1991-11-07 1993-05-12 Specialist Heat Exchangers Lim Heat exchanger
JPH1038491A (en) * 1996-07-23 1998-02-13 Toyo Radiator Co Ltd Double tube type heat exchanger
DE10213544A1 (en) * 2001-11-30 2003-07-10 Hartmut Koenig Heat transfer device has heat exchange surface formed by set of hollow bodies one inside other with fluids flowing through them
JP2007100990A (en) * 2005-09-30 2007-04-19 Matsumoto Jukogyo Kk Heat exchanger
EP2112451A1 (en) * 2006-01-26 2009-10-28 Nuclear Research Center-Negev Thermal energy storage apparatus
JP2008232449A (en) * 2007-03-16 2008-10-02 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger and its manufacturing method
US20100212874A1 (en) * 2007-06-20 2010-08-26 Halla Climate Control Corp. Cooling system for a vehicle
JP2009210195A (en) * 2008-03-04 2009-09-17 Toshiba Electric Appliance Co Ltd Water heater
US20100175983A1 (en) * 2009-01-14 2010-07-15 Total Water Management, LLC Mutual Remediation of Effluents of Petroleum Production

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052849A (en) * 2013-03-22 2019-04-04 日本碍子株式会社 Heat exchanger
JP2015010758A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015010757A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015025577A (en) * 2013-07-24 2015-02-05 岩谷マテリアル株式会社 Method of manufacturing triple tube type heat exchanger
JP2017096513A (en) * 2015-11-18 2017-06-01 日産自動車株式会社 Heat exchanger
KR102086833B1 (en) * 2019-08-02 2020-03-09 고민정 Triple tube heat exchanger
JP2021071278A (en) * 2019-10-31 2021-05-06 株式会社西山製作所 Multiple pipe structure and passage device
JP7432847B2 (en) 2019-10-31 2024-02-19 株式会社西山製作所 Multi-tube structure and flow path device
CN114001568A (en) * 2021-10-29 2022-02-01 中南大学 Jet-type supercritical CO2Double-pipe heat exchanger

Also Published As

Publication number Publication date
JP6032585B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6032585B2 (en) Triple tube structure and heat exchanger
US20110168369A1 (en) Heat exchanger
KR101436079B1 (en) Combustion gas pipe for heat exchange
JP2008032296A (en) Heat exchanger
JP6211313B2 (en) Triple tube heat exchanger
JP4572662B2 (en) Heat exchanger
JP2005083667A (en) Heat exchanger
JP2013113525A (en) Double tube
JP2012007773A (en) Heat exchanger
JP2020016393A (en) Heat exchanger
EP2635868B1 (en) Device for optimizing the transmission of heat in a pipe for conveying exhaust gases in a heat exchange apparatus
JP5404589B2 (en) Twisted tube heat exchanger
JP2008267631A (en) Heat exchanger
JP2019113222A (en) Double-pipe heat exchanger
JP6211330B2 (en) Manufacturing method of triple tube heat exchanger
EP1995542A2 (en) Heat exchange device
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
CN206037815U (en) Spiral baffling board for heat exchanger
JP5494017B2 (en) Heat exchanger and heat pump water heater using the same
KR20130117898A (en) Heat exchange pipe and heat exchanger having the same
KR20080099195A (en) Pipe in pipe type heat exchanger with high heat transfer
JP7012351B2 (en) Double tube heat exchanger
JP4552567B2 (en) Heat exchanger
JP5531810B2 (en) Heat exchanger
JP6254364B2 (en) Heat exchanger for heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6032585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250