US20110168369A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
US20110168369A1
US20110168369A1 US12/987,473 US98747311A US2011168369A1 US 20110168369 A1 US20110168369 A1 US 20110168369A1 US 98747311 A US98747311 A US 98747311A US 2011168369 A1 US2011168369 A1 US 2011168369A1
Authority
US
United States
Prior art keywords
pipe
heat exchanger
exchanger according
vibration preventing
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/987,473
Inventor
Hongseong KIM
Sangyeul Lee
Yongcheol SA
Hanchoon Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Kim, Hongseong, Lee, Hanchoon, Lee, Sangyeul, Sa, Yongcheol
Publication of US20110168369A1 publication Critical patent/US20110168369A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/30Safety or protection arrangements; Arrangements for preventing malfunction for preventing vibrations

Definitions

  • a heat exchanger is disclosed herein.
  • Heat exchangers are known. However, they suffer from various disadvantages.
  • FIG. 1 is a front view of a heat exchanger
  • FIG. 2 is a front view of a heat exchanger according to an embodiment
  • FIG. 3 is a front view of a heat exchanger according to another embodiment
  • FIG. 4 is a front view of the heat exchanger according to another embodiment
  • FIG. 5 is a sectional side view taken along line V-V of FIG. 4 ;
  • FIG. 6 is a front view of a heat exchanger according to another embodiment.
  • FIG. 7 is a sectional view taken along line of FIG. 6 .
  • a heat exchanger is an apparatus that reduces a temperature of a high temperature fluid and increases a temperature of a low temperature fluid by transferring thermal energy from the high temperature fluid to the low temperature fluid.
  • a heat exchanger may be used in a heater, a cooler, an evaporator, or a condenser, for example.
  • a heat transfer medium used to transfer heat to a target fluid is referred to as a heat medium
  • a heat transfer medium used to take heat from a target fluid is referred to as a refrigerant.
  • the fluid used as the heat medium or refrigerant may be, for example, air or a liquid.
  • a double-pipe heat exchanger is one example of a heat exchanger and includes an internal pipe through which a first fluid passes, and an external pipe that encloses the internal pipe and through which a second fluid passes. Heat exchange is performed between first and second fluids using a side wall of the internal pipe acting as a heat transfer wall.
  • a typical double-pipe heat exchanger may be a straight-type double-pipe heat exchanger or a helical-type double-pipe heat exchanger.
  • the straight-type double-pipe heat exchanger has a problem in that there is a vibration phenomenon in which the internal pipe vibrates and may contact the external pipe when fluid is circulated through the pipe in a case where the heat exchanger is long in a longitudinal direction. Further, because of the vibration phenomenon described above, there are problems in that the pipe is continuously worn out, noise occurs, and welding portions may experience metal fatigue failure. Furthermore, because of this vibration phenomenon, there occurs a limitation on length when designing the heat exchanger.
  • FIG. 1 is a front view of a heat exchanger.
  • the heat exchanger 1 is a double-pipe heat exchanger, in which a first pipe 10 and a second pipe 20 , whose diameters are different each other, may be arranged with a concentric axis.
  • a second fluid path formed by the second pipe 20 and a first fluid path formed by an external wall of the second pipe 20 and an internal wall of the first pipe 10 may be independent with each other.
  • the heat exchanger may receive different temperature fluids introduced into a first fluid inlet 11 formed in the first pipe 10 and a second fluid inlet 21 formed in the second pipe 20 , respectively, to perform a heat exchange due to the temperature difference between the two fluids.
  • FIG. 2 is a front view of a heat exchanger according to an embodiment.
  • FIG. 3 is a front view of a heat exchanger according to another embodiment.
  • the heat exchanger 2 A, 2 B may include a first pipe 100 A, 100 B and a second pipe 200 A, 200 B.
  • a first fluid may be introduced into and circulated in the first pipe 100 A, 100 B, while a second fluid may be introduced into and circulated in the second pipe 200 A, 200 B, which may be arranged in the first pipe 200 A, 200 B in the form of a double-pipe type heat exchanger.
  • the first fluid may be introduced into the first pipe 100 A, 100 B through a first fluid inlet 110 formed in one end of the first pipe 100 A, 100 B, and may be discharged through a first fluid outlet 120 formed in the other end of the first pipe 100 .
  • the second fluid may be introduced into the second pipe 200 A, 200 B through a second fluid inlet 210 formed in one end of the second pipe 200 A, 200 B, and may be discharged through a second fluid outlet 220 formed in the other end of the second pipe 200 A, 200 B.
  • the first and second fluids circulating in the first and second pipes 100 A, 100 B and 200 A, 200 B may have different temperatures from each other and a heat exchange may be made utilizing the temperature difference between two fluids. That is, a higher temperature one of the two fluids may be cooled and a lower temperature one of the two fluids heated.
  • the first pipe 100 A of the heat exchanger 2 A may be as a straight pipe of a cylindrical shape
  • the second pipe 200 A may be formed in a wave shape in which a convex portion 230 and a concave portion 240 may be repeatedly formed.
  • the convex portion 230 of the second pipe 200 A may contact an internal surface of the first pipe 100 A and may be fixed thereto. That is, vibration occurring when the fluid is circulated may be prevented by making the second pipe 200 not a straight type pipe but a wave type pipe, and an external surface of the second pipe 200 A may contact the internal surface of the first pipe 100 A.
  • vibration occurring when the fluid is circulated may be prevented by forming the second pipe 200 A in a structure in which the convex portion 230 and concave portion 240 are repeatedly formed, and then making the convex portion 230 contact the internal surface of the first pipe 100 A.
  • the first pipe 100 B may be formed in a wave shape, in which a convex portion 130 and a concave portion 140 may be repeatedly formed and the second pipe 200 B formed in a straight shape. That is, the concave portion 140 of the first pipe 100 B may contact an external surface of the second pipe 200 B, so that vibration occurring when the fluid is circulated may be prevented.
  • the first pipe 100 B may be formed in a wave shape, and the second pipe 200 B formed in a straight line shape so as to contact an internal surface of the first pipe 100 B and may be fixed thereto.
  • FIG. 4 is a front view of a heat exchanger in accordance with another embodiment
  • FIG. 5 is a sectional side view of the heat exchanger of FIG. 4 , taken along line V-V of FIG. 4 .
  • a heat exchanger 2 C in accordance with this embodiment may include a first pipe 100 C, into which a first fluid may be introduced and flow, a second pipe 200 C inserted into the first pipe 100 C so as to form concentric circles therewith and into which a second fluid may be introduced and flow, and one or more vibration preventing member(s) 300 installed between the first and second pipes 100 C and 200 C, so as to prevent vibration occurring when the fluid is circulated.
  • the first and second pipes 100 C and 200 C are each formed as a straight pipe having a cylindrical shape.
  • the vibration preventing member(s) 300 may be formed in a hemisphere shape and may be fixed to an internal surface of the first pipe 100 C, such that a convex surface thereof may contact an external surface of the second pipe 200 C.
  • a plurality of vibration preventing members 300 may be provided on the internal surface of the first pipe 100 C in a circumferential direction with a predetermined space therebetween along a longitudinal direction of the first pipe 100 C.
  • three vibration preventing members 300 may be arranged with a space therebetween in the circumferential direction of the first pipe 100 so that three convex projections 310 may contact the external surface of the second pipe 200 C.
  • a central angle ⁇ formed by two projections 310 of the three projections 300 may range from approximately 100° to approximately 140°.
  • a distance L between the vibration preventing members 300 disposed with the space therebetween in the longitudinal direction of the first pipe 100 C may be approximately 20 to approximately 40 times an external diameter of the second pipe 200 C.
  • FIG. 6 is a front view of a heat exchanger in accordance with another embodiment
  • FIG. 7 is a sectional side view of the heat exchanger of FIG. 6 taken along line VII-VII.
  • the heat exchanger 2 D in accordance with this embodiment may be similar in construction to the heat exchanger 2 C of the previous embodiment, except that the vibration preventing member(s) 400 may be formed in a pin shape.
  • the vibration preventing member(s) 400 of the heat exchanger 2 D in accordance with this embodiment may be fixed to and through the first pipe 100 D with a predetermined space therebetween, and ends of the vibration preventing member(s) 400 may contact an external surface of the second pipe 200 D so as to support the second pipe 200 D.
  • the vibration preventing member(s) 400 may pass through the first pipe 100 D and may be fixed to the first pipe 100 D using a method, such as, for example, welding, and ends thereof may contact the external surface of the second pipe 200 D.
  • a plurality of vibration preventing members 400 may be provided with a predetermined space therebetween in a longitudinal direction of the first pipe 100 D, and may be disposed on an internal surface of the first pipe 100 D in a circumferential direction of the first pipe 100 D.
  • the vibration preventing members 400 may be pins arranged with a space therebetween in the circumferential direction of the first pipe 100 D, so that ends of the pins, which may be formed in a tapered shape, may contact the external surface of the second pipe 200 D.
  • a central angle ⁇ 1 formed between two pins of the three pins of the vibration preventing members 400 may range from approximately 100° to approximately 140°. Further, a distance M between the vibration preventing members 400 disposed with the space along the longitudinal direction of the first pipe 100 D may be approximately 20 to approximately 40 times an external diameter of the second pipe 200 D.
  • Embodiments disclosed herein provide a heat exchanger capable of preventing a vibration phenomenon of an internal pipe when fluid is circulated therein, by including a vibration preventing structure in a straight-type double pipe heat exchanger.
  • Embodiments disclosed herein provide a heat exchanger which may include a first pipe, through which a first fluid may pass, and a second pipe disposed in the first pipe, through which a second fluid may pass, wherein the first and second pipes may touch each other so that the second pipe may be prevented from vibrating.
  • first pipe may be formed in a cylindrical shape
  • second pipe may be formed in a wave shape, so that a convex portion of the second pipe contacts an internal surface of the first pipe.
  • first pipe may be formed in a wave shape
  • second pipe may be formed in a cylindrical shape, so that a concave portion of the first pipe contacts an external surface of the second pipe.
  • first and second pipes may be formed in a cylindrical shape, and a vibration preventing member may be included between the first and second pipes in order to prevent the second pipe from vibrating.
  • the vibration preventing member may be formed in a hemisphere shape and fixed to the internal surface of the first pipe. A convex portion of the vibration preventing member may contact the external surface of the second pipe.
  • a plurality of the vibration preventing members may be arranged across a space along a longitudinal direction of the first pipe, and may be radially and circumferentially disposed on the internal surface of the first pipe.
  • three vibration preventing members may be circumferentially arranged across a space, and a central angle formed by two of the three vibration preventing members may range from approximately 100° to 140°.
  • a distance between the vibration preventing members arranged in the longitudinal direction of the first pipe may be approximately 20 to 40 times an external diameter of the second pipe.
  • the vibration preventing member may be formed in a pin shape, so that the member may be fixed through the first pipe and an end of the member may be brought into contact with the external surface of the second pipe.
  • any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc. means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention.
  • the appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment.
  • the heat exchanger disclosed herein may be used, for example, as a heater, cooler, evaporator and/or condenser in various appliances and devices disclosed in, e.g., U.S. Pat. Nos. 7,793,551, 7,454,921, 7,856,840, 7,726,141, 7,677,681, 7,347,009, 7,721,559, 7,322,199, 6,843,066, 6,735,975, 6,354,095, 7,726,141, 7,540,169, 7,347,009, 7,716,942, and 7,621,138, whose entire disclosures are incorporated herein by reference.

Abstract

A heat exchanger is provided which may include a first pipe, into which a first fluid may be introduced and flow, and a second pipe disposed in the first pipe, into which a second fluid may be introduced and flow. The first and second pipes may contact each other, to prevent the second pipe from vibrating.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • Pursuant to 35 U.S.C. §119 (a), this application claims priority to Korean Patent Application No. 10-2010-0002373, filed in Korea on Jan. 11, 2010, the contents of which are hereby incorporated by reference in their entirety.
  • BACKGROUND
  • 1. Field
  • A heat exchanger is disclosed herein.
  • 2. Background
  • Heat exchangers are known. However, they suffer from various disadvantages.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements, wherein:
  • FIG. 1 is a front view of a heat exchanger;
  • FIG. 2 is a front view of a heat exchanger according to an embodiment;
  • FIG. 3 is a front view of a heat exchanger according to another embodiment;
  • FIG. 4 is a front view of the heat exchanger according to another embodiment;
  • FIG. 5 is a sectional side view taken along line V-V of FIG. 4;
  • FIG. 6 is a front view of a heat exchanger according to another embodiment; and
  • FIG. 7 is a sectional view taken along line of FIG. 6.
  • DETAILED DESCRIPTION
  • Hereinafter, embodiments will be described with reference to the accompanying drawings. In this disclosure, the size and shape of components shown in the drawings may be exaggerated for the sake of clarity and convenience. Further, terms that are specifically defined in consideration of the construction and operation of embodiments may be changed according to operator's intention or custom. Definition of such items should be made on the basis of the entire contents of the disclosure.
  • Generally, a heat exchanger is an apparatus that reduces a temperature of a high temperature fluid and increases a temperature of a low temperature fluid by transferring thermal energy from the high temperature fluid to the low temperature fluid. Such a heat exchanger may be used in a heater, a cooler, an evaporator, or a condenser, for example.
  • For example, in such a heater, a heat transfer medium used to transfer heat to a target fluid is referred to as a heat medium, and a heat transfer medium used to take heat from a target fluid is referred to as a refrigerant. The fluid used as the heat medium or refrigerant may be, for example, air or a liquid.
  • A double-pipe heat exchanger is one example of a heat exchanger and includes an internal pipe through which a first fluid passes, and an external pipe that encloses the internal pipe and through which a second fluid passes. Heat exchange is performed between first and second fluids using a side wall of the internal pipe acting as a heat transfer wall. A typical double-pipe heat exchanger may be a straight-type double-pipe heat exchanger or a helical-type double-pipe heat exchanger.
  • The straight-type double-pipe heat exchanger has a problem in that there is a vibration phenomenon in which the internal pipe vibrates and may contact the external pipe when fluid is circulated through the pipe in a case where the heat exchanger is long in a longitudinal direction. Further, because of the vibration phenomenon described above, there are problems in that the pipe is continuously worn out, noise occurs, and welding portions may experience metal fatigue failure. Furthermore, because of this vibration phenomenon, there occurs a limitation on length when designing the heat exchanger.
  • FIG. 1 is a front view of a heat exchanger. Referring to FIG. 1, the heat exchanger 1 is a double-pipe heat exchanger, in which a first pipe 10 and a second pipe 20, whose diameters are different each other, may be arranged with a concentric axis. A second fluid path formed by the second pipe 20 and a first fluid path formed by an external wall of the second pipe 20 and an internal wall of the first pipe 10 may be independent with each other. The heat exchanger may receive different temperature fluids introduced into a first fluid inlet 11 formed in the first pipe 10 and a second fluid inlet 21 formed in the second pipe 20, respectively, to perform a heat exchange due to the temperature difference between the two fluids.
  • In a case that such a heat exchanger is sufficiently long in a longitudinal direction, when the fluid is circulated through the pipes, the second pipe 20 may vibrate and contact the first pipe 10, so that there occurs continuous wear, noise, and metal fatigue failure at a welding portion(s). Accordingly, in order to prevent such problems from occurring, a heat exchanger having a vibration preventing structure is provided.
  • FIG. 2 is a front view of a heat exchanger according to an embodiment. FIG. 3 is a front view of a heat exchanger according to another embodiment.
  • Referring to FIGS. 2 and 3, the heat exchanger 2A, 2B according to embodiments may include a first pipe 100A, 100B and a second pipe 200A, 200B. A first fluid may be introduced into and circulated in the first pipe 100A, 100B, while a second fluid may be introduced into and circulated in the second pipe 200A, 200B, which may be arranged in the first pipe 200A, 200B in the form of a double-pipe type heat exchanger.
  • The first fluid may be introduced into the first pipe 100A, 100B through a first fluid inlet 110 formed in one end of the first pipe 100A, 100B, and may be discharged through a first fluid outlet 120 formed in the other end of the first pipe 100. The second fluid may be introduced into the second pipe 200A, 200B through a second fluid inlet 210 formed in one end of the second pipe 200A, 200B, and may be discharged through a second fluid outlet 220 formed in the other end of the second pipe 200A, 200B.
  • The first and second fluids circulating in the first and second pipes 100A, 100B and 200A, 200B may have different temperatures from each other and a heat exchange may be made utilizing the temperature difference between two fluids. That is, a higher temperature one of the two fluids may be cooled and a lower temperature one of the two fluids heated.
  • Meanwhile, as shown in FIG. 2, the first pipe 100A of the heat exchanger 2A may be as a straight pipe of a cylindrical shape, and the second pipe 200A may be formed in a wave shape in which a convex portion 230 and a concave portion 240 may be repeatedly formed. The convex portion 230 of the second pipe 200A may contact an internal surface of the first pipe 100A and may be fixed thereto. That is, vibration occurring when the fluid is circulated may be prevented by making the second pipe 200 not a straight type pipe but a wave type pipe, and an external surface of the second pipe 200A may contact the internal surface of the first pipe 100A.
  • As such, in the heat exchanger according to this embodiment, vibration occurring when the fluid is circulated may be prevented by forming the second pipe 200A in a structure in which the convex portion 230 and concave portion 240 are repeatedly formed, and then making the convex portion 230 contact the internal surface of the first pipe 100A.
  • Alternatively, as shown in FIG. 3, the first pipe 100B may be formed in a wave shape, in which a convex portion 130 and a concave portion 140 may be repeatedly formed and the second pipe 200B formed in a straight shape. That is, the concave portion 140 of the first pipe 100B may contact an external surface of the second pipe 200B, so that vibration occurring when the fluid is circulated may be prevented. The first pipe 100B may be formed in a wave shape, and the second pipe 200B formed in a straight line shape so as to contact an internal surface of the first pipe 100B and may be fixed thereto.
  • FIG. 4 is a front view of a heat exchanger in accordance with another embodiment, and FIG. 5 is a sectional side view of the heat exchanger of FIG. 4, taken along line V-V of FIG. 4.
  • Referring to FIGS. 4 and 5, a heat exchanger 2C in accordance with this embodiment may include a first pipe 100C, into which a first fluid may be introduced and flow, a second pipe 200C inserted into the first pipe 100C so as to form concentric circles therewith and into which a second fluid may be introduced and flow, and one or more vibration preventing member(s) 300 installed between the first and second pipes 100C and 200C, so as to prevent vibration occurring when the fluid is circulated. In this embodiment, the first and second pipes 100C and 200C are each formed as a straight pipe having a cylindrical shape.
  • The vibration preventing member(s) 300 may be formed in a hemisphere shape and may be fixed to an internal surface of the first pipe 100C, such that a convex surface thereof may contact an external surface of the second pipe 200C. A plurality of vibration preventing members 300 may be provided on the internal surface of the first pipe 100C in a circumferential direction with a predetermined space therebetween along a longitudinal direction of the first pipe 100C.
  • For example, three vibration preventing members 300 may be arranged with a space therebetween in the circumferential direction of the first pipe 100 so that three convex projections 310 may contact the external surface of the second pipe 200C. For example, a central angle θ formed by two projections 310 of the three projections 300 may range from approximately 100° to approximately 140°.
  • Further, a distance L between the vibration preventing members 300 disposed with the space therebetween in the longitudinal direction of the first pipe 100C may be approximately 20 to approximately 40 times an external diameter of the second pipe 200C.
  • FIG. 6 is a front view of a heat exchanger in accordance with another embodiment, and FIG. 7 is a sectional side view of the heat exchanger of FIG. 6 taken along line VII-VII.
  • Referring to FIGS. 6 and 7, the heat exchanger 2D in accordance with this embodiment may be similar in construction to the heat exchanger 2C of the previous embodiment, except that the vibration preventing member(s) 400 may be formed in a pin shape.
  • The vibration preventing member(s) 400 of the heat exchanger 2D in accordance with this embodiment may be fixed to and through the first pipe 100D with a predetermined space therebetween, and ends of the vibration preventing member(s) 400 may contact an external surface of the second pipe 200D so as to support the second pipe 200D.
  • The vibration preventing member(s) 400 may pass through the first pipe 100D and may be fixed to the first pipe 100D using a method, such as, for example, welding, and ends thereof may contact the external surface of the second pipe 200D.
  • A plurality of vibration preventing members 400 may be provided with a predetermined space therebetween in a longitudinal direction of the first pipe 100D, and may be disposed on an internal surface of the first pipe 100D in a circumferential direction of the first pipe 100D.
  • Moreover, the vibration preventing members 400 may be pins arranged with a space therebetween in the circumferential direction of the first pipe 100D, so that ends of the pins, which may be formed in a tapered shape, may contact the external surface of the second pipe 200D.
  • A central angle θ1 formed between two pins of the three pins of the vibration preventing members 400 may range from approximately 100° to approximately 140°. Further, a distance M between the vibration preventing members 400 disposed with the space along the longitudinal direction of the first pipe 100D may be approximately 20 to approximately 40 times an external diameter of the second pipe 200D.
  • Embodiments disclosed herein provide a heat exchanger capable of preventing a vibration phenomenon of an internal pipe when fluid is circulated therein, by including a vibration preventing structure in a straight-type double pipe heat exchanger.
  • Embodiments disclosed herein provide a heat exchanger which may include a first pipe, through which a first fluid may pass, and a second pipe disposed in the first pipe, through which a second fluid may pass, wherein the first and second pipes may touch each other so that the second pipe may be prevented from vibrating.
  • Further, the first pipe may be formed in a cylindrical shape, and the second pipe may be formed in a wave shape, so that a convex portion of the second pipe contacts an internal surface of the first pipe. Alternatively, the first pipe may be formed in a wave shape, and the second pipe may be formed in a cylindrical shape, so that a concave portion of the first pipe contacts an external surface of the second pipe.
  • Also, the first and second pipes may be formed in a cylindrical shape, and a vibration preventing member may be included between the first and second pipes in order to prevent the second pipe from vibrating. The vibration preventing member may be formed in a hemisphere shape and fixed to the internal surface of the first pipe. A convex portion of the vibration preventing member may contact the external surface of the second pipe.
  • A plurality of the vibration preventing members may be arranged across a space along a longitudinal direction of the first pipe, and may be radially and circumferentially disposed on the internal surface of the first pipe. For example, three vibration preventing members may be circumferentially arranged across a space, and a central angle formed by two of the three vibration preventing members may range from approximately 100° to 140°.
  • Further, a distance between the vibration preventing members arranged in the longitudinal direction of the first pipe may be approximately 20 to 40 times an external diameter of the second pipe.
  • The vibration preventing member may be formed in a pin shape, so that the member may be fixed through the first pipe and an end of the member may be brought into contact with the external surface of the second pipe.
  • Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
  • Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
  • The heat exchanger disclosed herein may be used, for example, as a heater, cooler, evaporator and/or condenser in various appliances and devices disclosed in, e.g., U.S. Pat. Nos. 7,793,551, 7,454,921, 7,856,840, 7,726,141, 7,677,681, 7,347,009, 7,721,559, 7,322,199, 6,843,066, 6,735,975, 6,354,095, 7,726,141, 7,540,169, 7,347,009, 7,716,942, and 7,621,138, whose entire disclosures are incorporated herein by reference.

Claims (20)

1. A heat exchanger comprising:
a first pipe into which a first fluid is introduced and flows; and
a second pipe disposed in the first pipe, into which a second fluid is introduced and flows, wherein the first and second pipes contact each other so that the second pipe is prevented from vibrating.
2. The heat exchanger according to claim 1, wherein the first pipe is formed in a cylindrical shape, and the second pipe is formed in a wave shape so that a convex portion of the second pipe contacts an internal surface of the first pipe.
3. The heat exchanger according to claim 1, wherein the first pipe is formed in a wave shape, and the second pipe is formed in a cylindrical shape so that a concave portion of the first pipe contacts an external surface of the second pipe.
4. The heat exchanger according to claim 1, wherein the first and second pipes are formed in a cylindrical shape, and a vibration preventing member is provided between the first and second pipes to prevent the second pipe from vibrating.
5. The heat exchanger according to claim 4, wherein the vibration preventing member is formed in a hemisphere shape and fixed to an internal surface of the first pipe, a convex portion of the vibration preventing member contacting an external surface of the second pipe.
6. The heat exchanger according to claim 5, wherein a plurality of vibration preventing members is arranged along a longitudinal direction of the first pipe, and radially and circumferentially disposed on the internal surface of the first pipe.
7. The heat exchanger according to claim 5, wherein three vibration preventing members are circumferentially arranged on the first pipe, and a central angle formed between any two of the three vibration preventing members ranges from approximately 100° to approximately 140°.
8. The heat exchanger according to claim 5, wherein a distance between the vibration preventing members arranged in the longitudinal direction of the first pipe is approximately 20 to approximately 40 times an external diameter of the second pipe.
9. The heat exchanger according to claim 4, wherein the vibration preventing member is formed in a pin shape so that the vibration preventing member is fixed through the first pipe and an end of the member contacts an external surface of the second pipe.
10. The heat exchanger according to claim 9, wherein a plurality of vibration preventing members are arranged along a longitudinal direction of the first pipe, and are circumferentially arranged on the internal surface of the first pipe with a predetermined space therebetween.
11. The heat exchanger according to claim 10, wherein three vibration preventing members are circumferentially fixed to the internal surface of the first pipe, and an angle formed between two of the three vibration preventing members ranges from approximately 100° to approximately 140°.
12. The heat exchanger according to claim 10, wherein a distance between the plurality of vibration preventing members arranged in the longitudinal direction of the first pipe is approximately 20 to approximately 40 times an external diameter of the second pipe.
13. The heat exchanger according to claim 1, wherein at least one of the first pipe or second pipe is shaped different from the other of the first pipe or second pipe, so as to prevent the respective pipe from vibrating.
14. A heater comprising the heat exchanger according to claim 1.
15. A cooler comprising the heat exchanger according to claim 1.
16. An evaporator comprising the heat exchanger according to claim 1.
17. A condenser comprising the heat exchanger according to claim 1.
18. A heat exchanger comprising:
a first pipe into which a first fluid is introduced and flows; and
a second pipe disposed in the first pipe, into which a second fluid is introduced and flows, wherein at least one of the first pipe or second pipe is shaped different from the other of the first or second pipe, so as to prevent the respective pipe from vibrating.
19. The heat exchanger according to claim 18, wherein the first pipe is formed in a cylindrical shape, and the second pipe is formed in a wave shape so that a convex portion of the second pipe contacts an internal surface of the first pipe.
20. The heat exchanger according to claim 18, wherein the first pipe is formed in a wave shape, and the second pipe is formed in a cylindrical shape so that a concave portion of the first pipe contacts an external surface of the second pipe
US12/987,473 2010-01-11 2011-01-10 Heat exchanger Abandoned US20110168369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0002373 2010-01-11
KR1020100002373A KR101608996B1 (en) 2010-01-11 2010-01-11 Heat exchanger

Publications (1)

Publication Number Publication Date
US20110168369A1 true US20110168369A1 (en) 2011-07-14

Family

ID=43858793

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/987,473 Abandoned US20110168369A1 (en) 2010-01-11 2011-01-10 Heat exchanger

Country Status (4)

Country Link
US (1) US20110168369A1 (en)
EP (1) EP2351978A3 (en)
KR (1) KR101608996B1 (en)
CN (1) CN102121800B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043055A1 (en) * 2010-08-18 2012-02-23 Halla Climate Control Corp. Double Pipe Type Heat Exchanger and Method for Manufacturing the Same
CN102778150A (en) * 2012-07-18 2012-11-14 梅州市志浩电子科技有限公司 Chemical deposition temperature control system and temperature regulation method thereof
US20140060785A1 (en) * 2012-08-28 2014-03-06 Denso International America, Inc. Quieter ihx design
US20140083660A1 (en) * 2012-09-25 2014-03-27 John McDermott Heat recovery system
US20140202167A1 (en) * 2013-01-18 2014-07-24 Mitsubishi Heavy Industries, Ltd. Power generation system
US20150114611A1 (en) * 2013-10-28 2015-04-30 Honeywell International Inc. Counter-flow heat exchange systems
US20150140190A1 (en) * 2013-11-19 2015-05-21 Nestec Sa Concentric symmetrical branched heat exchanger system
US20150168074A1 (en) * 2013-12-12 2015-06-18 Penn Aluminum International LLC Concentric Tube Heat Exchanger and Method
US20170030652A1 (en) * 2015-07-30 2017-02-02 Senior Uk Limited Finned coaxial cooler
US20170198952A1 (en) * 2014-07-16 2017-07-13 Valeo Systemes Thermiques Condenser cylinder adapted for use in an air-conditioning circuit, more specifically the air-conditioning circuit of an automobile
US9752835B2 (en) 2013-06-06 2017-09-05 Honeywell International Inc. Unitary heat exchangers having integrally-formed compliant heat exchanger tubes and heat exchange systems including the same
US11067340B2 (en) * 2016-10-05 2021-07-20 HS R & A Co., Ltd Double pipe heat exchanger and method for manufacturing the same
US11441850B2 (en) * 2020-01-24 2022-09-13 Hamilton Sundstrand Corporation Integral mounting arm for heat exchanger
US11453160B2 (en) 2020-01-24 2022-09-27 Hamilton Sundstrand Corporation Method of building a heat exchanger
US11460252B2 (en) 2020-01-24 2022-10-04 Hamilton Sundstrand Corporation Header arrangement for additively manufactured heat exchanger
US11608795B2 (en) * 2019-05-21 2023-03-21 General Electric Company Constant density heat exchanger and system for energy conversion
US11644252B2 (en) * 2019-03-28 2023-05-09 Ngk Insulators, Ltd. Flow path structure of heat exchanger, and heat exchanger
US11703283B2 (en) 2020-01-24 2023-07-18 Hamilton Sundstrand Corporation Radial configuration for heat exchanger core
US11719489B2 (en) * 2019-03-27 2023-08-08 Ngk Insulators, Ltd. Heat exchanger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102406146A (en) * 2011-11-10 2012-04-11 厦门市柏绿食品有限公司 Device and method for quickly cooling processed oyster juice
CN107673360A (en) * 2017-11-13 2018-02-09 浙江工业大学上虞研究院有限公司 For preparing the chemical industry equipment of trichlorosilane
CN107720758A (en) * 2017-11-13 2018-02-23 浙江工业大学上虞研究院有限公司 Chemical industry production system
CN108267031B (en) * 2018-01-25 2023-10-13 浙江旺能环保有限公司 Heat exchange device for improving air inlet temperature of boiler by utilizing continuous-discharge or drainage waste heat energy
IT201800004827A1 (en) * 2018-04-24 2019-10-24 DOUBLE PIPE HEAT EXCHANGER AND ITS MANUFACTURING METHOD
DE202019102689U1 (en) * 2019-05-13 2019-06-17 Konvekta Aktiengesellschaft Heat exchanger and circulation system for tempering
CN112413764A (en) * 2020-12-03 2021-02-26 合肥上华工程设计有限公司 Central vacuum heat exchange process and device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR362995A (en) * 1906-02-05 1906-07-18 Paul Determes Double finned tubes for heating or cooling liquids
GB725075A (en) * 1952-07-09 1955-03-02 Mannesmann Ag Improvements in or relating to tubes for heat exchangers
DE917009C (en) * 1952-07-10 1954-08-23 Mannesmann Ag Double pipe
JPS51142660A (en) * 1975-06-03 1976-12-08 Matsushita Electric Ind Co Ltd Method of mounting resisting element* slider and terminal in variable* resistor
JPS52124346U (en) * 1976-03-19 1977-09-21
FR2497937B1 (en) * 1981-01-13 1986-03-07 Stein Industrie TUBE BEAM HEAT EXCHANGE DEVICE WITH EXPANSION LYRES SUBTRACTED TO VIBRATION
JPS5893677U (en) * 1981-12-17 1983-06-24 カルソニックカンセイ株式会社 Double pipe oil cooler with built-in radiator
FR2540984A1 (en) * 1983-02-11 1984-08-17 Trepaud Pierre Heat-exchanger apparatus, in particular steam generator
FR2608264B3 (en) * 1986-12-09 1989-03-17 Bracon Daniel MONOTUBULAR COAXIAL EXCHANGER
DE19624030A1 (en) * 1996-06-17 1997-12-18 Kme Schmoele Gmbh Method for producing a coiled tube for a heat exchanger and a heat exchanger having a coaxial tube
JP3811123B2 (en) * 2002-12-10 2006-08-16 松下電器産業株式会社 Double tube heat exchanger
JP4494049B2 (en) * 2004-03-17 2010-06-30 株式会社ティラド Method for manufacturing double tube heat exchanger and double tube heat exchanger by the method
CN100460794C (en) * 2004-11-09 2009-02-11 株式会社电装 Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same
DE602005019787D1 (en) * 2005-01-21 2010-04-15 T Rad Co Ltd DOUBLE PIPE HEAT EXCHANGERS AND MANUFACTURING METHOD THEREFOR
CA2499865C (en) * 2005-03-24 2012-06-12 Milan Rybak Improved recuperator of flue gas heat
DE202007010274U1 (en) * 2007-07-24 2007-09-27 BSH Bosch und Siemens Hausgeräte GmbH Heat exchanger and refrigeration unit
JP5003968B2 (en) * 2008-03-06 2012-08-22 日立電線株式会社 Heat exchanger tube for subcooler and method for manufacturing the same
JP2009270802A (en) * 2008-04-08 2009-11-19 Tgk Co Ltd Internal heat exchanger
JP2012007767A (en) 2010-06-23 2012-01-12 Sumitomo Light Metal Ind Ltd Double tube for heat exchanger

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043055A1 (en) * 2010-08-18 2012-02-23 Halla Climate Control Corp. Double Pipe Type Heat Exchanger and Method for Manufacturing the Same
US9091487B2 (en) * 2010-08-18 2015-07-28 Halla Visteon Climate Control Corporation Double pipe type heat exchanger and method for manufacturing the same
CN102778150A (en) * 2012-07-18 2012-11-14 梅州市志浩电子科技有限公司 Chemical deposition temperature control system and temperature regulation method thereof
US9568249B2 (en) * 2012-08-28 2017-02-14 Denso International America, Inc. Heat exchanger
US20140060785A1 (en) * 2012-08-28 2014-03-06 Denso International America, Inc. Quieter ihx design
US20140083660A1 (en) * 2012-09-25 2014-03-27 John McDermott Heat recovery system
US20140202167A1 (en) * 2013-01-18 2014-07-24 Mitsubishi Heavy Industries, Ltd. Power generation system
US9752835B2 (en) 2013-06-06 2017-09-05 Honeywell International Inc. Unitary heat exchangers having integrally-formed compliant heat exchanger tubes and heat exchange systems including the same
US20150114611A1 (en) * 2013-10-28 2015-04-30 Honeywell International Inc. Counter-flow heat exchange systems
US9764435B2 (en) * 2013-10-28 2017-09-19 Honeywell International Inc. Counter-flow heat exchange systems
US20150140190A1 (en) * 2013-11-19 2015-05-21 Nestec Sa Concentric symmetrical branched heat exchanger system
RU2663676C1 (en) * 2013-11-19 2018-08-08 Нестек Са Concentric symmetric system of heat exchangers with branched surface
US20150168074A1 (en) * 2013-12-12 2015-06-18 Penn Aluminum International LLC Concentric Tube Heat Exchanger and Method
US20170198952A1 (en) * 2014-07-16 2017-07-13 Valeo Systemes Thermiques Condenser cylinder adapted for use in an air-conditioning circuit, more specifically the air-conditioning circuit of an automobile
US20170030652A1 (en) * 2015-07-30 2017-02-02 Senior Uk Limited Finned coaxial cooler
US11029095B2 (en) * 2015-07-30 2021-06-08 Senior Uk Limited Finned coaxial cooler
US11067340B2 (en) * 2016-10-05 2021-07-20 HS R & A Co., Ltd Double pipe heat exchanger and method for manufacturing the same
US11719489B2 (en) * 2019-03-27 2023-08-08 Ngk Insulators, Ltd. Heat exchanger
US11644252B2 (en) * 2019-03-28 2023-05-09 Ngk Insulators, Ltd. Flow path structure of heat exchanger, and heat exchanger
US11608795B2 (en) * 2019-05-21 2023-03-21 General Electric Company Constant density heat exchanger and system for energy conversion
US11460252B2 (en) 2020-01-24 2022-10-04 Hamilton Sundstrand Corporation Header arrangement for additively manufactured heat exchanger
US11453160B2 (en) 2020-01-24 2022-09-27 Hamilton Sundstrand Corporation Method of building a heat exchanger
US11703283B2 (en) 2020-01-24 2023-07-18 Hamilton Sundstrand Corporation Radial configuration for heat exchanger core
US11441850B2 (en) * 2020-01-24 2022-09-13 Hamilton Sundstrand Corporation Integral mounting arm for heat exchanger
US11752691B2 (en) 2020-01-24 2023-09-12 Hamilton Sundstrand Corporation Method of building a heat exchanger

Also Published As

Publication number Publication date
CN102121800B (en) 2014-03-12
KR20110082411A (en) 2011-07-19
CN102121800A (en) 2011-07-13
KR101608996B1 (en) 2016-04-05
EP2351978A2 (en) 2011-08-03
EP2351978A3 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
US20110168369A1 (en) Heat exchanger
US20110174469A1 (en) Double-pipe heat exchanger
JP6032585B2 (en) Triple tube structure and heat exchanger
US20150136367A1 (en) Heat exchanger having a plurality of heat exchange tubes
US20130146262A1 (en) Double pipe heat exchanger having multi-directional connector and air conditioner for vehicle including the same
JP2010210139A (en) Water-cooled condenser and refrigerating cycle device
JP2009216309A (en) Heat exchanger
EP3581868A1 (en) Water heat exchanger and gas cooler
JP2010038429A (en) Heat exchanger
JP2009264644A (en) Heat exchanger
JP3845565B2 (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2008267631A (en) Heat exchanger
CN211120757U (en) Heat exchanger
JP5533328B2 (en) Heat exchanger
KR102010156B1 (en) shell in a shell and plate heat exchanger, and shell and plate heat exchanger having the same
JP2010210137A (en) Heat exchanger
KR20060023299A (en) A heat exchanger
KR101321989B1 (en) A fin heat exchanger by heat transfer between spiral channel and double pipe
KR20130117898A (en) Heat exchange pipe and heat exchanger having the same
KR100740698B1 (en) Header pipe for heat exchanger
JP2010255980A (en) Heat exchanger and heat pump water heater using the same
JP2010032183A (en) Heat exchanger
JP4552567B2 (en) Heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, HONGSEONG;LEE, SANGYEUL;SA, YONGCHEOL;AND OTHERS;REEL/FRAME:025610/0272

Effective date: 20110103

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION