JP2014224670A - Double-pipe heat exchanger - Google Patents

Double-pipe heat exchanger Download PDF

Info

Publication number
JP2014224670A
JP2014224670A JP2014083316A JP2014083316A JP2014224670A JP 2014224670 A JP2014224670 A JP 2014224670A JP 2014083316 A JP2014083316 A JP 2014083316A JP 2014083316 A JP2014083316 A JP 2014083316A JP 2014224670 A JP2014224670 A JP 2014224670A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
double
refrigerant flow
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014083316A
Other languages
Japanese (ja)
Inventor
北斗 峯
Hokuto Mine
北斗 峯
井上 晃一
Koichi Inoue
晃一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2014083316A priority Critical patent/JP2014224670A/en
Publication of JP2014224670A publication Critical patent/JP2014224670A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double-pipe heat exchanger capable of further increasing a heat transfer area between a first refrigerant flow path and a second refrigerant flow path.SOLUTION: A double-pipe heat exchanger comprises: an outer pipe 2; and an inner pipe 3 arranged in the outer pipe 2 to be distanced from the outer pipe 2, and a gap between the outer pipe 2 and the inner pipe 3 serves as a first refrigerant flow path 4 and an interior of the inner pipe 3 serves as a second refrigerant flow path 5. Along an inner circumferential surface of the inner pipe 3, a corrugated fin 15 including wave crest portions 15a; wave bottom portions 15b; and coupling portions 15c each coupling one wave crest portion 15a to one wave bottom portion 15b, with the wave crest portions 15a and the wave bottom portions 15b oriented in a refrigerant flow direction in the second refrigerant flow path 5, is arranged. The wave crest portions 15a of the fin 15 are joined to the inner circumferential surface of the inner pipe 3. Refrigerant passing holes are formed by providing a plurality of louvers 16 in the coupling portions 15c of the fin 15. All the louvers 16 provided in the coupling portions 15c are inclined in the same direction with respect to the refrigerant flow direction in the second refrigerant flow path 5.

Description

この発明は二重管式熱交換器に関し、さらに詳しくは、外管と、外管内に間隔をおいて配置された内管とを備えている二重管式熱交換器に関する。   The present invention relates to a double-tube heat exchanger, and more particularly to a double-tube heat exchanger that includes an outer tube and an inner tube that is disposed in the outer tube at intervals.

この明細書において、「コンデンサ」という用語には、通常のコンデンサの他に凝縮部および過冷却部を有するサブクールコンデンサを含むものとする。   In this specification, the term “capacitor” includes a subcool condenser having a condensing part and a supercooling part in addition to a normal condenser.

従来、カーエアコンに用いられる冷凍サイクルとして、コンプレッサ、凝縮部と過冷却部とを有するコンデンサ、エバポレータ、減圧器としての膨張弁、気液分離器、およびコンデンサとエバポレータとの間に配置され、かつコンデンサの過冷却部から出てきた高温の冷媒とエバポレータから出てきた低温の冷媒とを熱交換させる中間熱交換器を備えたものが提案されている(特許文献1参照)。特許文献1記載の冷凍サイクルにおいては、コンデンサの過冷却部において過冷却された冷媒が、中間熱交換器において、エバポレータから出てきた低温低圧の冷媒によりさらに冷却され、これによりエバポレータの冷却性能が向上させられるようになっている。   Conventionally, as a refrigeration cycle used in a car air conditioner, a compressor, a condenser having a condensing part and a supercooling part, an evaporator, an expansion valve as a decompressor, a gas-liquid separator, and a condenser and an evaporator, and An apparatus including an intermediate heat exchanger for exchanging heat between a high-temperature refrigerant coming out of a condenser supercooling section and a low-temperature refrigerant coming out of an evaporator has been proposed (see Patent Document 1). In the refrigeration cycle described in Patent Document 1, the refrigerant supercooled in the condenser supercooling section is further cooled by the low-temperature and low-pressure refrigerant that has come out of the evaporator in the intermediate heat exchanger, whereby the cooling performance of the evaporator is improved. It can be improved.

特許文献1記載の冷凍サイクルに用いられている中間熱交換器は、外管、および外管内に間隔をおいて配置された内管を備えており、内管の外周面に、管壁を変形させることにより内管の長さ方向にのびる溝が形成され、外管と内管との間の間隙がコンデンサから出てきた高温冷媒が流れる第1冷媒流路となり、内管内がエバポレータから出てきた低温の冷媒が流れる第2冷媒流路となっている二重管式熱交換器からなる。   The intermediate heat exchanger used in the refrigeration cycle described in Patent Literature 1 includes an outer tube and an inner tube arranged at intervals in the outer tube, and deforms the tube wall on the outer peripheral surface of the inner tube. As a result, a groove extending in the length direction of the inner pipe is formed, and the gap between the outer pipe and the inner pipe becomes the first refrigerant flow path through which the high-temperature refrigerant coming out of the condenser flows, and the inside of the inner pipe comes out of the evaporator. It consists of a double-pipe heat exchanger that is a second refrigerant flow path through which a low-temperature refrigerant flows.

しかしながら、特許文献1記載の中間熱交換器に用いられている二重管式熱交換器の場合、第1冷媒流路と第2冷媒流路との間の伝熱面積が小さくなり、熱交換性能が不足するという問題がある。   However, in the case of the double tube heat exchanger used in the intermediate heat exchanger described in Patent Document 1, the heat transfer area between the first refrigerant flow path and the second refrigerant flow path is reduced, and heat exchange is performed. There is a problem of insufficient performance.

そこで、本出願人は、先に、第1冷媒流路と第2冷媒流路との間の伝熱面積を増大させた二重管式熱交換器として、外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙が第1冷媒流路となるとともに、内管内が第2冷媒流路となっており、内管の内周面に、径方向内方に突出しかつ長さ方向にのびる複数の内部フィンが周方向に間隔をおいて設けられるとともに、内管の外周面に、径方向外方に突出しかつ長さ方向にのびる複数の凸条が周方向に間隔をおいて設けられ、内部フィンのフィン高さが凸条の突出高さよりも高くなっている二重管式熱交換器を提案した(特許文献2参照)。   In view of this, the present applicant firstly arranged a space between the outer pipe and the outer pipe as a double pipe heat exchanger having an increased heat transfer area between the first refrigerant flow path and the second refrigerant flow path. And the inner pipe disposed in the inner pipe has a gap between the outer pipe and the inner pipe serving as the first refrigerant flow path and the inner pipe serving as the second refrigerant flow path. In addition, a plurality of internal fins protruding inward in the radial direction and extending in the length direction are provided at intervals in the circumferential direction, and a plurality of protrusions protruding in the radial direction and extending in the length direction are provided on the outer peripheral surface of the inner tube. A double-tube heat exchanger has been proposed in which a plurality of ridges are provided at intervals in the circumferential direction, and the fin height of the internal fins is higher than the protrusion height of the ridges (see Patent Document 2).

しかしながら、最近では、第1冷媒流路を流れる冷媒と、第2冷媒流路を流れる冷媒との熱交換効率を向上させて、全体の長さを短くしうる二重管式熱交換器が求められている。   However, recently, there has been a demand for a double-pipe heat exchanger that can improve the heat exchange efficiency between the refrigerant flowing through the first refrigerant flow path and the refrigerant flowing through the second refrigerant flow path and shorten the overall length. It has been.

特開2006−162241号公報JP 2006-162241 A 特開2009−162395号公報JP 2009-162395 A

この発明の目的は、上記要求に応え、特許文献2記載の二重管式熱交換器に比較して、第1冷媒流路と第2冷媒流路との間の伝熱面積をさらに増大させることができる二重管式熱交換器を提供することにある。   The object of the present invention is to meet the above requirement and further increase the heat transfer area between the first refrigerant flow path and the second refrigerant flow path as compared with the double pipe heat exchanger described in Patent Document 2. An object of the present invention is to provide a double tube heat exchanger.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙が第1冷媒流路となるとともに内管内が第2冷媒流路となっている二重管式熱交換器であって、
内管の内周面に沿って、波頂部、波底部および波頂部と波底部とを連結する連結部からなり、かつ波頂部および波底部が第2冷媒流路での冷媒流れ方向を向いたコルゲート状フィンが配置され、フィンの波頂部が内管内周面に接合され、フィンの連結部に冷媒通過穴が形成されている二重管式熱交換器。
1) An outer pipe and an inner pipe arranged at intervals in the outer pipe, and a gap between the outer pipe and the inner pipe becomes the first refrigerant flow path, and the inner pipe has the second refrigerant flow path. A double pipe heat exchanger,
Along the inner peripheral surface of the inner tube, the wave crest portion, the wave bottom portion, and a connecting portion that connects the wave crest portion and the wave bottom portion are formed, and the wave crest portion and the wave bottom portion face the refrigerant flow direction in the second refrigerant flow path. A double-tube heat exchanger in which corrugated fins are arranged, the wave crests of the fins are joined to the inner peripheral surface of the inner tube, and a refrigerant passage hole is formed in the connecting portion of the fins.

2)フィンの連結部に、波頂部から波底部に向かう方向にのびる複数のルーバが第2冷媒流路での冷媒流れ方向に間隔をおいて設けられ、ルーバが設けられることにより連結部に冷媒通過穴が形成されている上記1)記載の二重管式熱交換器。   2) A plurality of louvers extending in the direction from the wave crest portion to the wave bottom portion are provided at intervals in the refrigerant flow direction in the second refrigerant flow path at the fin connection portion. The double pipe heat exchanger according to 1) above, wherein a passage hole is formed.

3)連結部に設けられた全てのルーバが、第2冷媒流路での冷媒流れ方向に対して同一方向に傾斜している上記2)記載の二重管式熱交換器。   3) The double-pipe heat exchanger according to 2) above, wherein all louvers provided in the connecting portion are inclined in the same direction with respect to the refrigerant flow direction in the second refrigerant flow path.

4)内管内におけるフィンよりも内管の径方向内側部分に空隙が形成されており、当該空隙内に、当該空隙内を流れる冷媒をフィン側に偏流させる偏流部材が配置されている上記1)〜3)のうちのいずれかに記載の二重管式熱交換器。   4) A gap is formed in the radially inner portion of the inner pipe with respect to the fin in the inner pipe, and a drift member for drifting the refrigerant flowing in the gap to the fin side is disposed in the gap 1) ~ Double pipe heat exchanger according to any one of 3).

5)偏流部材が、ねじり板からなる上記4)記載の二重管式熱交換器。   5) The double pipe heat exchanger according to 4) above, wherein the drift member is a twisted plate.

6)内管の内周面に、外方に凹んだ複数のスパイラル状凹溝が、内管の周壁を変形させることによって形成されており、ねじり板のねじれ方向とスパイラル状凹溝のねじれ方向とが逆向きである上記5)記載の二重管式熱交換器。   6) A plurality of spiral grooves recessed outward are formed on the inner peripheral surface of the inner tube by deforming the peripheral wall of the inner tube, and the twist direction of the torsion plate and the twist direction of the spiral groove The double-tube heat exchanger according to 5) above, wherein and are opposite directions.

7)偏流部材が、外周面にスパイラル状溝が形成された円柱状体からなる上記4)記載の二重管式熱交換器。   7) The double pipe heat exchanger according to 4) above, wherein the drift member is a cylindrical body having a spiral groove formed on the outer peripheral surface.

8)円柱状体が、両端が閉鎖された円筒からなり、円筒の周壁が変形させられてスパイラル状溝が形成されている上記7)記載の二重管式熱交換器。   8) The double-pipe heat exchanger according to 7) above, wherein the columnar body is formed of a cylinder with both ends closed, and the circumferential wall of the cylinder is deformed to form a spiral groove.

9)内管の内周面に、外方に凹んだ複数のスパイラル状凹溝が、内管の周壁を変形させることによって形成されており、偏流部材となる円柱状体の外周面のスパイラル状凹溝のねじれ方向と、内管の内周面のスパイラル状凹溝のねじれ方向とが逆向きである上記7)または8)記載の二重管式熱交換器。   9) On the inner peripheral surface of the inner tube, a plurality of spiral concave grooves recessed outward are formed by deforming the peripheral wall of the inner tube, and the spiral shape of the outer peripheral surface of the cylindrical body that becomes the drift member 7. The double pipe heat exchanger according to the above 7) or 8), wherein the twist direction of the concave groove and the twist direction of the spiral concave groove on the inner peripheral surface of the inner pipe are opposite to each other.

10)偏流部材が、横断面において前記空隙を横切るように配置された波板からなり、波板が波頂部、波底部および波頂部と波底部とを連結する連結部からなり、かつ波頂部および波底部が第2冷媒流路での冷媒流れ方向を向いている上記4)記載の二重管式熱交換器。   10) The drift member is composed of a corrugated plate arranged so as to cross the gap in the cross section, and the corrugated plate is composed of a wave crest portion, a wave bottom portion, and a connecting portion connecting the wave crest portion and the wave bottom portion, and the wave crest portion and 4. The double-pipe heat exchanger according to 4) above, wherein the wave bottom portion faces the refrigerant flow direction in the second refrigerant flow path.

11)外管の両端部に、第1冷媒流路の両端開口を塞ぐ閉鎖部材が配置されており、閉鎖部材が、外管の両端寄りの部分に外側から嵌め被せられて外管外周面にろう付された大円筒部と、内管における外管の両端寄りの部分に外側から嵌め被せられて内管外周面にろう付された小円筒部と、大円筒部における外管の長さ方向中央部側とは反対側の端部と小円筒部における内管の長さ方向中央部側の端部とを連結しかつ第1冷媒流路の両端開口を塞ぐ閉鎖部とよりなる上記1)〜10)のうちのいずれかに記載の二重管式熱交換器。   11) A closing member for closing both end openings of the first refrigerant flow path is disposed at both ends of the outer pipe, and the closing member is fitted from the outside to the portions near both ends of the outer pipe and is placed on the outer pipe outer peripheral surface. The large cylindrical portion brazed, the small cylindrical portion that is fitted on the outer tube of the inner tube near the both ends of the outer tube and brazed to the outer peripheral surface of the inner tube, and the length direction of the outer tube in the large cylindrical portion The above 1) comprising a closed portion that connects an end portion on the opposite side to the central portion side and an end portion on the central portion side in the longitudinal direction of the inner tube in the small cylindrical portion and closes both end openings of the first refrigerant flow path. To 10). The double-pipe heat exchanger according to any one of?

12)閉鎖部材が、少なくとも片面にろう材層を有するブレージングシートを用いて、大円筒部および小円筒部の内周面がろう材層に覆われるように形成されている上記11)記載の二重管式熱交換器。   12) The above-mentioned 11), wherein the closing member is formed using a brazing sheet having a brazing material layer on at least one side so that the inner peripheral surfaces of the large cylindrical portion and the small cylindrical portion are covered with the brazing material layer. Double pipe heat exchanger.

上記1)〜12)の二重管式熱交換器によれば、内管の内周面に沿って、波頂部、波底部および波頂部と波底部とを連結する連結部からなり、かつ波頂部および波底部が第2冷媒流路での冷媒流れ方向を向いたコルゲート状フィンが配置され、フィンの波頂部が内管内周面に接合されているので、第1冷媒流路と第2冷媒流路との間の伝熱面積を増大させることができる。しかも、フィンの連結部に冷媒通過穴が形成されているので、フィンの連結部に形成された冷媒通過穴の働きにより第2冷媒流路内を流れる冷媒が攪拌される。したがって、第1冷媒流路を流れる冷媒と、第2冷媒流路を流れる冷媒との熱交換効率が向上し、その結果二重管式熱交換器の全体の長さを短縮することが可能になる。   According to the double-pipe heat exchanger of 1) to 12) above, the wave top part, the wave bottom part, and the connecting part that connects the wave top part and the wave bottom part along the inner peripheral surface of the inner pipe, Since the corrugated fins having the top portion and the wave bottom portion facing the refrigerant flow direction in the second refrigerant flow path are disposed, and the wave crest portion of the fin is joined to the inner peripheral surface of the inner pipe, the first refrigerant flow path and the second refrigerant The heat transfer area between the flow paths can be increased. In addition, since the refrigerant passage hole is formed in the fin connection portion, the refrigerant flowing in the second refrigerant flow path is agitated by the action of the refrigerant passage hole formed in the fin connection portion. Therefore, the heat exchange efficiency between the refrigerant flowing through the first refrigerant flow path and the refrigerant flowing through the second refrigerant flow path is improved, and as a result, the overall length of the double-pipe heat exchanger can be shortened. Become.

上記2)の二重管式熱交換器によれば、フィンの連結部に比較的簡単に冷媒通過穴を形成することができる。   According to the double tube heat exchanger of 2) above, the refrigerant passage hole can be formed relatively easily in the connecting portion of the fin.

上記3)の二重管式熱交換器によれば、内管内の第2冷媒流路において、内管の軸線の周りの一方向に流れる冷媒の流れが生じ、第2冷媒流路内を流れる冷媒が効果的に攪拌される。   According to the double pipe heat exchanger of 3) above, in the second refrigerant flow path in the inner pipe, a refrigerant flow that flows in one direction around the axis of the inner pipe is generated and flows in the second refrigerant flow path. The refrigerant is effectively agitated.

上記4)の二重管式熱交換器によれば、次の効果を奏する。すなわち、上記1)の二重管式熱交換器のように、内管の内周面に沿って、波頂部、波底部および波頂部と波底部とを連結する連結部からなり、かつ波頂部および波底部が第2冷媒流路での冷媒流れ方向を向いたコルゲート状フィンが配置され、フィンの波頂部が内管内周面に接合されている場合、内管内におけるフィンよりも内管の径方向内側部分に空隙が形成されることになる。この場合、内管内の第2冷媒流路における前記空隙部分での通路抵抗は、フィンが存在する部分での通路抵抗に比べて小さくなるので、冷媒は、内管内の第2冷媒流路の前記空隙部分を流れやすくなって、フィンを設けたことによる第1冷媒流路を流れる冷媒と第2冷媒流路を流れる冷媒との熱交換効率向上効果が低下するおそれがある。しかしながら、上記4)の二重管式熱交換器のように、内管内におけるフィンよりも内管の径方向内側部分に形成された空隙内に、当該空隙内を流れる冷媒をフィン側に偏流させる偏流部材が配置されていると、内管内の第2冷媒流路におけるフィンが存在する部分にも多くの冷媒が流れることになり、第1冷媒流路を流れる冷媒と第2冷媒流路を流れる冷媒との熱交換効率向上効果の低下を抑制することが可能になる。   According to the double tube heat exchanger of 4), the following effects are obtained. That is, as in the double-tube heat exchanger of 1) above, the wave crest portion, the wave bottom portion, and the connecting portion that connects the wave crest portion and the wave bottom portion along the inner peripheral surface of the inner tube, and the wave crest portion. When the corrugated fins whose wave bottoms face the refrigerant flow direction in the second refrigerant flow path are arranged and the wave crests of the fins are joined to the inner peripheral surface of the inner pipe, the diameter of the inner pipe is larger than the fin in the inner pipe A void is formed in the inner portion in the direction. In this case, the passage resistance in the gap portion in the second refrigerant flow path in the inner pipe is smaller than the passage resistance in the portion where the fins are present, so that the refrigerant is the second refrigerant flow path in the inner pipe. There is a possibility that the effect of improving the heat exchange efficiency between the refrigerant flowing through the first refrigerant flow path and the refrigerant flowing through the second refrigerant flow path due to the provision of the fins tends to flow through the gap portion. However, as in the double pipe heat exchanger of 4) above, the refrigerant flowing in the gap is biased to the fin side in the gap formed in the radially inner portion of the inner pipe with respect to the fin in the inner pipe. When the drift member is arranged, a large amount of refrigerant flows through the portion of the second refrigerant channel in the inner pipe where the fins exist, and the refrigerant flows through the first refrigerant channel and the second refrigerant channel. It is possible to suppress a decrease in the effect of improving the efficiency of heat exchange with the refrigerant.

上記5)の二重管式熱交換器によれば、冷媒が、内管内の第2冷媒流路を、内管の軸線の周りに旋回しつつ流れるので、第2冷媒流路内を流れる冷媒が効果的に攪拌され、第1冷媒流路を流れる冷媒と第2冷媒流路を流れる冷媒との熱交換効率が効果的に向上する。   According to the double pipe heat exchanger of 5) above, the refrigerant flows while turning around the second refrigerant flow path in the inner pipe around the axis of the inner pipe, so that the refrigerant flowing in the second refrigerant flow path Are effectively stirred, and the heat exchange efficiency between the refrigerant flowing through the first refrigerant flow path and the refrigerant flowing through the second refrigerant flow path is effectively improved.

上記6)の二重管式熱交換器によれば、第2冷媒流路内を流れる冷媒が一層効果的に攪拌される。   According to the double pipe heat exchanger of 6), the refrigerant flowing in the second refrigerant flow path is more effectively agitated.

上記7)の二重管式熱交換器によれば、冷媒が、内管内の第2冷媒流路を、内管の軸線の周りに旋回しつつ流れるので、第2冷媒流路内を流れる冷媒が効果的に攪拌され、第1冷媒流路を流れる冷媒と第2冷媒流路を流れる冷媒との熱交換効率が効果的に向上する。   According to the double pipe heat exchanger of the above 7), the refrigerant flows while turning around the second refrigerant flow path in the inner pipe around the axis of the inner pipe, so that the refrigerant flowing in the second refrigerant flow path Are effectively stirred, and the heat exchange efficiency between the refrigerant flowing through the first refrigerant flow path and the refrigerant flowing through the second refrigerant flow path is effectively improved.

上記8)の二重管式熱交換器によれば、全体重量の増加を抑制することができる。   According to the double pipe heat exchanger of 8) above, an increase in the overall weight can be suppressed.

上記9)の二重管式熱交換器によれば、第2冷媒流路内を流れる冷媒が一層効果的に攪拌される。   According to the double pipe heat exchanger of 9), the refrigerant flowing in the second refrigerant flow path is more effectively agitated.

上記11)の二重管式熱交換器によれば、フィンを、両面にろう材層が設けられたブレージングシートを用いて形成しておくとともに、閉鎖部材を、少なくとも片面にろう材層を有するブレージングシートを用いて、大円筒部および小円筒部の内周面がろう材層に覆われるように形成しておくことによって、炉中において、フィンの波頂部と内管内周面、閉鎖部材の大円筒部内周面と外管外周面、および閉鎖部材の小円筒部内周面と内管外周面とを同時にろう付することが可能になり、二重管式熱交換器の製造作業が比較的簡単になる。   According to the double pipe heat exchanger of the above 11), the fin is formed by using a brazing sheet provided with a brazing material layer on both sides, and the closing member has a brazing material layer on at least one side. By using a brazing sheet, the inner peripheral surfaces of the large cylindrical portion and the small cylindrical portion are covered with the brazing material layer, so that the wave crest portion of the fin, the inner peripheral surface of the inner tube, and the closing member It is possible to braze the inner peripheral surface of the large cylindrical portion and the outer peripheral surface of the outer tube and the inner peripheral surface of the small cylindrical portion and the outer peripheral surface of the inner tube at the same time. It will be easy.

この発明による二重管式熱交換器の全体構成を示す長さ方向の中間部を省略した垂直縦断面図である。It is the vertical longitudinal cross-sectional view which abbreviate | omitted the intermediate part of the length direction which shows the whole structure of the double tube | pipe type heat exchanger by this invention. 図1のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 図1の二重管式熱交換器の外管および内管の構成を部分的に示す斜視図である。It is a perspective view which shows partially the structure of the outer tube | pipe and inner tube | pipe of the double tube | pipe type heat exchanger of FIG. 図2の二重管式熱交換器の内管内の第2冷媒流路に配置されるフィンの連結部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the connection part of the fin arrange | positioned at the 2nd refrigerant | coolant flow path in the inner tube | pipe of the double pipe | tube type heat exchanger of FIG. 図1の二重管式熱交換器の内管内の第2冷媒流路に配置されるねじり板を部分的に示す斜視図である。It is a perspective view which shows partially the twist plate arrange | positioned in the 2nd refrigerant | coolant flow path in the inner tube | pipe of the double tube | pipe type heat exchanger of FIG. 図1の二重管式熱交換器を中間熱交換器として用いた冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle which used the double tube | pipe type heat exchanger of FIG. 1 as an intermediate | middle heat exchanger. この発明による二重管式熱交換器の第2の実施形態を示す図2相当の図である。It is a figure equivalent to FIG. 2 which shows 2nd Embodiment of the double tube | pipe type heat exchanger by this invention. この発明による二重管式熱交換器の第2の実施形態を示す図3相当の図である。It is a figure equivalent to FIG. 3 which shows 2nd Embodiment of the double tube | pipe type heat exchanger by this invention. この発明による二重管式熱交換器の第3の実施形態を示す図3相当の図である。It is a figure equivalent to FIG. 3 which shows 3rd Embodiment of the double-pipe heat exchanger by this invention. この発明による二重管式熱交換器の第4の実施形態を示す図2相当の図である。It is a figure equivalent to FIG. 2 which shows 4th Embodiment of the double pipe | tube type heat exchanger by this invention. この発明による二重管式熱交換器の第5の実施形態を示す図1の一部分に相当する図である。It is a figure equivalent to a part of Drawing 1 showing a 5th embodiment of a double tube type heat exchanger by this invention. 図11の二重管式熱交換器の一部の構成を示す斜視図である。It is a perspective view which shows the structure of a part of double pipe type heat exchanger of FIG. この発明による二重管式熱交換器の第6の実施形態を示す図1の一部分に相当する図である。It is a figure equivalent to a part of Drawing 1 showing a 6th embodiment of a double tube type heat exchanger by this invention.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお、全図面を通じて同一部分および同一物には同一符号を付す。   In the drawings, the same parts and the same parts are denoted by the same reference numerals.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

図1はこの発明による二重管式熱交換器の全体構成を示し、図2〜図5はその要部の構成を示し、図6は図1の二重管式熱交換器を中間熱交換器として用いた冷凍サイクルを示す。   FIG. 1 shows the overall configuration of a double-pipe heat exchanger according to the present invention, FIGS. 2 to 5 show the configuration of the main part thereof, and FIG. The refrigeration cycle used as a container is shown.

図1〜図3において、二重管式熱交換器(1)は、横断面円形のアルミニウム押出形材製外管(2)、および外管(2)内に間隔をおいて同心状に挿入された横断面円形のアルミニウム押出形材製内管(3)を備えており、外管(2)と内管(3)との間の間隙が第1冷媒流路(4)となり、内管(3)内が第2冷媒流路(5)となっている。内管(3)の両端部は外管(2)の両端部よりも外側に突出しており、両突出端部にそれぞれ管継手部材(6)が接合されている。   1 to 3, the double-pipe heat exchanger (1) is inserted into the outer tube (2) made of aluminum extruded section having a circular cross section and concentrically with a space in the outer tube (2). The inner pipe (3) made of extruded aluminum with a circular cross section is provided, and the gap between the outer pipe (2) and the inner pipe (3) becomes the first refrigerant channel (4), and the inner pipe (3) The inside is the second refrigerant flow path (5). Both end portions of the inner pipe (3) protrude outward from both end portions of the outer pipe (2), and pipe joint members (6) are joined to both protruding end portions, respectively.

外管(2)の両端寄りの部分に、それぞれ第1冷媒流路(4)に通じるように拡管部(7)(8)が形成されている。外管(2)における一方の拡管部(7)の管壁には冷媒入口(9)が形成され、同他方の拡管部(8)の管壁には冷媒出口(図示略)が形成されている。冷媒入口(9)には第1冷媒流路(4)に通じるアルミニウム製高圧冷媒流入パイプ(11)の一端部が挿入されて拡管部(7)にろう付されている。また、冷媒出口には第1冷媒流路(4)に通じるアルミニウム製高圧冷媒流出パイプ(12)の一端部が挿入されて拡管部(8)にろう付されている。高圧冷媒流入パイプ(11)および高圧冷媒流出パイプ(12)の他端部には、それぞれ管継手部材(13)が接合されている。高圧冷媒流入パイプ(11)がろう付された拡管部(7)は、高圧冷媒流入パイプ(11)から送り込まれた冷媒を第1冷媒流路(4)の全周にわたって分流させる分流部となり、高圧冷媒流出パイプ(12)がろう付された拡管部(8)は、第1冷媒流路(4)を流れてきた冷媒を合流させて高圧冷媒流出パイプ(12)に送り出す合流部となっている。また、外管(2)における両拡管部(7)(8)よりも長さ方向の外側部分に縮管部(14)が形成されるとともに、当該縮管部(14)が内管(3)にろう付されており、これにより両拡管部(7)(8)の外端、すなわち第1冷媒流路(4)の両端が閉鎖されている。縮管部(14)は、両端寄りの部分に、両拡管部(7)(8)よりも長い拡管部が形成されている外管(2)を用意し、当該外管(2)内に内管(3)を挿入した後に、外管(2)における両拡管部(7)(8)となる部分よりも長さ方向の外側部分を、外周側から力を加えて塑性変形させることにより形成されたものである。   Expanded portions (7) and (8) are formed at portions near both ends of the outer tube (2) so as to communicate with the first refrigerant flow path (4), respectively. A refrigerant inlet (9) is formed on the tube wall of one expanded portion (7) in the outer tube (2), and a refrigerant outlet (not shown) is formed on the tube wall of the other expanded portion (8). Yes. One end of an aluminum high-pressure refrigerant inflow pipe (11) leading to the first refrigerant flow path (4) is inserted into the refrigerant inlet (9) and brazed to the expanded pipe (7). One end of an aluminum high-pressure refrigerant outflow pipe (12) communicating with the first refrigerant flow path (4) is inserted into the refrigerant outlet and brazed to the expanded pipe (8). Pipe joint members (13) are joined to the other ends of the high-pressure refrigerant inflow pipe (11) and the high-pressure refrigerant outflow pipe (12), respectively. The expanded pipe part (7) to which the high-pressure refrigerant inflow pipe (11) is brazed becomes a diversion part for diverting the refrigerant sent from the high-pressure refrigerant inflow pipe (11) over the entire circumference of the first refrigerant flow path (4). The expanded pipe portion (8) to which the high-pressure refrigerant outflow pipe (12) is brazed serves as a confluence section that joins the refrigerant flowing through the first refrigerant flow path (4) and sends it to the high-pressure refrigerant outflow pipe (12). Yes. In addition, a contracted tube portion (14) is formed in the outer portion of the outer tube (2) in the length direction from both expanded portions (7) and (8), and the contracted tube portion (14) is connected to the inner tube (3 ), Whereby the outer ends of both expanded portions (7) and (8), that is, both ends of the first refrigerant flow path (4) are closed. The contraction pipe part (14) is provided with an outer pipe (2) in which a pipe expansion part longer than both of the pipe expansion parts (7) and (8) is formed near the both ends. After inserting the inner pipe (3), by applying a force from the outer peripheral side to the outer part in the length direction of the outer pipe (2) in the lengthwise direction than the parts to be the both expanded parts (7) (8), It is formed.

第1冷媒流路(4)が存在する部分、すなわち外管(2)の両縮管部(14)間の部分において、内管(3)の内周面に沿ってアルミニウム製のコルゲート状フィン(15)が配置されている。フィン(15)は、両面にろう材層を有するアルミニウムブレージングシートを用いて形成されたものであって、第2冷媒流路(5)での冷媒流れ方向に延びる波頂部(15a)、第2冷媒流路(5)での冷媒流れ方向に延びる波底部(15b)および波頂部(15a)と波底部(15b)とを連結する連結部(15c)からなり、波頂部(15a)が内管(3)内周面にろう付(接合)されている。図4に示すように、フィン(15)の連結部(15c)には、波頂部(15a)から波底部(15b)に向かう方向(内管(3)の径方向)にのびる複数のルーバ(16)が第2冷媒流路(5)での冷媒流れ方向に間隔をおいて設けられており、これにより連結部(15c)に複数の冷媒通過穴(17)が形成されている。フィン(15)の連結部(15c)に設けられた全てのルーバ(16)は、第2冷媒流路(5)での冷媒流れ方向に対して同一方向に傾斜している。フィン(15)は、通常の製造方法によって、連結部(15c)が1直線上に並ぶように形成された後円筒状に丸められ、この状態で内管(3)内に配置される。   The corrugated fin made of aluminum along the inner peripheral surface of the inner pipe (3) in the portion where the first refrigerant flow path (4) exists, that is, the portion between the two contraction pipe portions (14) of the outer pipe (2). (15) is arranged. The fin (15) is formed using an aluminum brazing sheet having a brazing filler metal layer on both sides, and the wave crest (15a) extending in the refrigerant flow direction in the second refrigerant flow path (5), the second It consists of a wave bottom (15b) extending in the refrigerant flow direction in the refrigerant flow path (5) and a connecting portion (15c) connecting the wave crest (15a) and the wave bottom (15b), and the wave crest (15a) is an inner tube. (3) It is brazed (joined) to the inner peripheral surface. As shown in FIG. 4, the connecting portion (15c) of the fin (15) has a plurality of louvers (in the radial direction of the inner tube (3)) extending from the wave crest (15a) to the wave bottom (15b) ( 16) are provided at intervals in the refrigerant flow direction in the second refrigerant flow path (5), whereby a plurality of refrigerant passage holes (17) are formed in the connecting portion (15c). All the louvers (16) provided in the connecting portion (15c) of the fin (15) are inclined in the same direction with respect to the refrigerant flow direction in the second refrigerant flow path (5). The fins (15) are rounded into a cylindrical shape after the connecting portions (15c) are formed in a straight line by a normal manufacturing method, and are arranged in the inner tube (3) in this state.

内管(3)内の第2冷媒流路(5)におけるフィン(15)の波底部(15b)よりも内管(3)の径方向内側部分には空隙(18)が形成されており、当該空隙(18)内に、当該空隙(18)内を流れる冷媒をフィン(15)側に偏流させるアルミニウム製ねじり板(19)(偏流部材)が配置されている。図5に示すように、ねじり板(19)は、帯状板が、その幅方向の中心を通りかつ長さ方向にのびる中心線の周りにねじられたものである。ねじり板(19)は、フィン(15)の波底部(15b)にろう付されていてもよい。   A gap (18) is formed in the radially inner portion of the inner pipe (3) from the wave bottom (15b) of the fin (15) in the second refrigerant flow path (5) in the inner pipe (3). In the gap (18), an aluminum twist plate (19) (a drift member) that causes the refrigerant flowing in the gap (18) to drift toward the fin (15) is disposed. As shown in FIG. 5, the torsion plate (19) is obtained by twisting a belt-like plate around a center line passing through the center in the width direction and extending in the length direction. The twist plate (19) may be brazed to the wave bottom (15b) of the fin (15).

また、内管(3)の外周面には、長さ方向にのびる複数の凸条(3a)が周方向に間隔をおいて一体に設けられている。図示は省略したが、凸条(3a)における縮管部(14)と対応する部分は、外管(2)の拡管部(7)(8)に縮管部(14)を形成する際に圧潰され、縮管部(14)の内周面と内管(3)における隣り合う圧潰された凸条(3a)どうしの間の間隙がろう材で埋められている。なお、内管(3)の凸条(3a)は必ずしも必要としない。   A plurality of protrusions (3a) extending in the length direction are integrally provided on the outer peripheral surface of the inner tube (3) at intervals in the circumferential direction. Although not shown, the portion corresponding to the contracted tube portion (14) in the ridge (3a) is formed when the contracted tube portion (14) is formed in the expanded tube portions (7) and (8) of the outer tube (2). The gap between the inner peripheral surface of the contracted tube portion (14) and the adjacent crushed ridges (3a) in the inner tube (3) is filled with a brazing material. Note that the protrusion (3a) of the inner pipe (3) is not necessarily required.

なお、図示は省略したが、外管(2)および内管(3)は、全体が直線状になっている場合と、少なくとも1箇所で曲げられている場合とがある。   Although not shown, the outer tube (2) and the inner tube (3) may be entirely straight or bent at at least one location.

図6は、上述した二重管式熱交換器(1)を中間熱交換器として用いた冷凍サイクルを示す。   FIG. 6 shows a refrigeration cycle using the above-described double-tube heat exchanger (1) as an intermediate heat exchanger.

図6において、冷凍サイクルは冷媒として、たとえばフロン系の冷媒を用いるものであり、コンプレッサ(20)と、凝縮部(22)、気液分離器としての受液器(23)および過冷却部(24)を有するコンデンサ(21)と、エバポレータ(25)と、減圧器としての膨張弁(26)と、コンデンサ(20)から出てきた冷媒とエバポレータ(25)から出てきた冷媒とを熱交換させる中間熱交換器としての二重管式熱交換器(1)とを備えている。二重管式熱交換器(1)の外管(2)に接続された高圧冷媒流入パイプ(11)にコンデンサ(20)の過冷却部(24)からのびる配管が接続され、同じく外管(2)に接続された高圧冷媒流出パイプ(12)に膨張弁(26)にのびる配管が接続される。また、二重管式熱交換器(1)の内管(3)における高圧冷媒流出パイプ(12)側の端部に、エバポレータ(25)からのびる配管が接続され、同じく内管(3)における高圧冷媒流入パイプ(11)側の端部に、コンプレッサ(20)にのびる配管が接続される。冷凍サイクルは、カーエアコンとして車両、たとえば自動車に搭載される。   In FIG. 6, the refrigeration cycle uses, for example, a chlorofluorocarbon refrigerant as a refrigerant, and includes a compressor (20), a condensing unit (22), a liquid receiver (23) as a gas-liquid separator, and a supercooling unit ( 24), the condenser (21), the evaporator (25), the expansion valve (26) as a pressure reducer, and the refrigerant coming out of the condenser (20) and the refrigerant coming out of the evaporator (25). And a double-pipe heat exchanger (1) as an intermediate heat exchanger. A pipe extending from the supercooling section (24) of the condenser (20) is connected to the high-pressure refrigerant inflow pipe (11) connected to the outer pipe (2) of the double-pipe heat exchanger (1). A pipe extending to the expansion valve (26) is connected to the high-pressure refrigerant outflow pipe (12) connected to 2). In addition, a pipe extending from the evaporator (25) is connected to the end of the inner pipe (3) of the double pipe heat exchanger (1) on the side of the high-pressure refrigerant outflow pipe (12), and also in the inner pipe (3). A pipe extending to the compressor (20) is connected to an end of the high-pressure refrigerant inflow pipe (11) side. The refrigeration cycle is mounted on a vehicle such as an automobile as a car air conditioner.

冷凍サイクルの稼働時には、コンプレッサ(20)で圧縮された高温高圧の気液混相の冷媒は、コンデンサ(21)の凝縮部(22)で冷却されて凝縮させられた後、受液器(23)内に流入して気液2相に分離され、ついで過冷却部(24)に流入して過冷却される。過冷却された液相冷媒は、高圧冷媒流入パイプ(11)を通って二重管式熱交換器(1)の外管(2)の拡管部(7)内に流入し、拡管部(7)を経て第1冷媒流路(4)内に入る。拡管部(7)内に流入した液相冷媒は、拡管部(7)の働きにより、第1冷媒流路(4)の全周にわたって分流させられる。一方、エバポレータ(25)から出てきた気相冷媒は、二重管式熱交換器(1)の第2冷媒流路(5)内に流入する。そして、液相冷媒が第1冷媒流路(4)内を流れる間に第2冷媒流路(5)内を流れる比較的低温の気相冷媒によりさらに冷却される。   During the operation of the refrigeration cycle, the high-temperature and high-pressure gas-liquid mixed phase refrigerant compressed by the compressor (20) is cooled and condensed by the condenser (22) of the condenser (21), and then the receiver (23) It flows into the interior and is separated into two phases of gas and liquid, and then flows into the supercooling section (24) to be supercooled. The supercooled liquid phase refrigerant flows through the high-pressure refrigerant inflow pipe (11) into the expanded pipe (7) of the outer pipe (2) of the double-pipe heat exchanger (1). ) Through the first refrigerant flow path (4). The liquid-phase refrigerant that has flowed into the expanded pipe portion (7) is diverted over the entire circumference of the first refrigerant flow path (4) by the action of the expanded pipe portion (7). On the other hand, the gas-phase refrigerant that has come out of the evaporator (25) flows into the second refrigerant channel (5) of the double-pipe heat exchanger (1). Then, while the liquid-phase refrigerant flows in the first refrigerant channel (4), it is further cooled by the relatively low temperature gas-phase refrigerant flowing in the second refrigerant channel (5).

このとき、第2冷媒流路(5)内に流入した冷媒は、ねじり板(19)の働きによって、第2冷媒流路(5)における空隙(18)が形成されている径方向中心側の部分からフィン(15)が存在する径方向外周側の部分に多く流されることになり、第2冷媒流路(5)の全体を均一に流れる。しかも、フィン(15)の連結部(15c)に設けられたルーバ(16)および冷媒通過穴(17)の働きによって、冷媒は、内管(3)内の第2冷媒流路(5)を、内管(3)の軸線の周りに旋回しつつ流れるので、第2冷媒流路(5)内を流れる冷媒が効果的に攪拌される。したがって、第1冷媒流路(4)を流れる冷媒と第2冷媒流路(5)を流れる冷媒との熱交換効率が効果的に向上する。   At this time, the refrigerant that has flowed into the second refrigerant flow path (5) is moved to the central side in the radial direction where the gap (18) in the second refrigerant flow path (5) is formed by the action of the twist plate (19). A large amount of gas flows from the portion to the radially outer peripheral portion where the fins (15) are present, and flows uniformly throughout the second refrigerant flow path (5). Moreover, the refrigerant passes through the second refrigerant flow path (5) in the inner pipe (3) by the action of the louver (16) and the refrigerant passage hole (17) provided in the connecting portion (15c) of the fin (15). Since it flows while turning around the axis of the inner pipe (3), the refrigerant flowing in the second refrigerant flow path (5) is effectively stirred. Therefore, the heat exchange efficiency between the refrigerant flowing through the first refrigerant channel (4) and the refrigerant flowing through the second refrigerant channel (5) is effectively improved.

図7および図8はこの発明による二重管式熱交換器の第2の実施形態を示す。   7 and 8 show a second embodiment of the double-pipe heat exchanger according to the present invention.

図7および図8に示す二重管式熱交換器(30)において、内管(3)の内周面に、外方に凹んだ複数のスパイラル状凹溝(31)が、内管(3)の周壁を変形させることによって形成されている。スパイラル状凹溝(31)のねじれ方向は、ねじり板(19)のねじれ方向とは逆向きとなっている。また、内管(3)の外周面には凸条(3a)は設けられておらず、内管(3)の周壁を変形させることによりスパイラル状凹溝(31)を形成することによって、内管(3)の外周面にスパイラル状凸条(32)が設けられている。   In the double-tube heat exchanger (30) shown in FIGS. 7 and 8, a plurality of spiral grooves (31) recessed outward are formed on the inner peripheral surface of the inner tube (3). ) To deform the peripheral wall. The twist direction of the spiral groove (31) is opposite to the twist direction of the twist plate (19). In addition, the outer circumferential surface of the inner tube (3) is not provided with a ridge (3a), and the inner wall (3) is deformed to form a spiral groove (31). A spiral ridge (32) is provided on the outer peripheral surface of the tube (3).

図示は省略したが、スパイラル状凸条(32)における縮管部(14)と対応する部分は、外管(2)の拡管部(7)(8)に縮管部(14)を形成する際に圧潰され、縮管部(14)の内周面と内管(3)における隣り合う圧潰されたスパイラル状凸条(32)どうしの間の間隙がろう材で埋められている。   Although not shown, the portion corresponding to the contracted tube portion (14) in the spiral ridge (32) forms the contracted tube portion (14) in the expanded tube portions (7) and (8) of the outer tube (2). In this case, the gap between the inner peripheral surface of the contracted tube portion (14) and the adjacent crushed spiral ridges (32) in the inner tube (3) is filled with a brazing material.

その他の構成は、図1〜図5に示す第1の実施形態の二重管式熱交換器(1)と同様である。   Other configurations are the same as those of the double-tube heat exchanger (1) of the first embodiment shown in FIGS.

図9はこの発明による二重管式熱交換器の第3の実施形態を示す。   FIG. 9 shows a third embodiment of the double-pipe heat exchanger according to the present invention.

図9に示す二重管式熱交換器(35)において、内管(3)内の第2冷媒流路(5)におけるフィン(15)の波底部(15b)よりも内管(3)の径方向内側部分に形成された空隙(18)に、外周面にスパイラル状溝(37)が形成されたアルミニウム製円柱状体(36)(偏流部材)が配置されている。詳細な図示は省略したが、円柱状体(36)は両端が閉鎖された円筒からなり、円筒の周壁が変形させられてスパイラル状溝(37)が形成されている。円柱状体(36)は、フィン(15)の波底部(15b)にろう付されていてもよい。   In the double-pipe heat exchanger (35) shown in FIG. 9, the inner pipe (3) is located more than the wave bottom (15b) of the fin (15) in the second refrigerant flow path (5) in the inner pipe (3). An aluminum columnar body (36) (a drift member) having a spiral groove (37) formed on the outer peripheral surface is disposed in the gap (18) formed in the radially inner portion. Although not shown in detail, the columnar body (36) is formed of a cylinder closed at both ends, and the circumferential wall of the cylinder is deformed to form a spiral groove (37). The cylindrical body (36) may be brazed to the wave bottom (15b) of the fin (15).

その他の構成は、図1〜図5に示す第1の実施形態の二重管式熱交換器(1)と同様である。   Other configurations are the same as those of the double-tube heat exchanger (1) of the first embodiment shown in FIGS.

図10はこの発明による二重管式熱交換器の第4の実施形態を示す。   FIG. 10 shows a fourth embodiment of the double-pipe heat exchanger according to the present invention.

図10に示す二重管式熱交換器(40)において、内管(3)内の第2冷媒流路(5)におけるフィン(15)の波底部(15b)よりも内管(3)の径方向内側部分に形成された空隙(18)に、横断面において前記空隙(18)を横切るように配置されたアルミニウム製波板(41)(偏流部材)が配置されている。波板(41)は、第2冷媒流路(5)での冷媒流れ方向に延びる波頂部(41a)、第2冷媒流路(5)での冷媒流れ方向に延びる波底部(41b)および波頂部(41a)と波底部(41b)とを連結する連結部(41c)からなる。波板(41)の連結部(41c)には、波頂部(41a)から波底部(41b)に向かう方向にのびる複数のルーバ(42)が第2冷媒流路(5)での冷媒流れ方向に間隔をおいて設けられている。波板(41)は、フィン(15)の波底部(15b)にろう付されていてもよい。   In the double-pipe heat exchanger (40) shown in FIG. 10, the inner pipe (3) is located more than the wave bottom (15b) of the fin (15) in the second refrigerant flow path (5) in the inner pipe (3). An aluminum corrugated plate (41) (a drift member) is disposed in the gap (18) formed in the radially inner portion so as to cross the gap (18) in the cross section. The corrugated plate (41) includes a wave crest (41a) extending in the refrigerant flow direction in the second refrigerant flow path (5), a wave bottom (41b) extending in the refrigerant flow direction in the second refrigerant flow path (5), and a wave The connecting portion (41c) connects the top portion (41a) and the wave bottom portion (41b). The connecting portion (41c) of the corrugated plate (41) has a plurality of louvers (42) extending from the wave crest (41a) to the wave bottom (41b) in the direction of refrigerant flow in the second refrigerant flow path (5). Are provided at intervals. The corrugated plate (41) may be brazed to the wave bottom (15b) of the fin (15).

その他の構成は、図1〜図5に示す第1の実施形態の二重管式熱交換器(1)と同様である。   Other configurations are the same as those of the double-tube heat exchanger (1) of the first embodiment shown in FIGS.

図11および図12はこの発明による二重管式熱交換器の第5の実施形態を示す。   11 and 12 show a fifth embodiment of the double-pipe heat exchanger according to the present invention.

図11および図12に示す二重管式熱交換器(50)において、外管(2)における両拡管部(7)(8)よりも長さ方向の外側部分には縮管部(14)は形成されておらず、外管(2)の両端部に、第1冷媒流路(4)の両端開口を塞ぐアルミニウム製閉鎖部材(51)が配置されている。閉鎖部材(51)は、外管(2)の両端寄りの部分に外側から嵌め被せられて外管(23)外周面にろう付された大円筒部(52)と、内管(3)における外管(2)の両端寄りの部分に外側から嵌め被せられて内管(3)外周面にろう付された小円筒部(53)と、大円筒部(52)における外管(2)の長さ方向中央部側とは反対側の端部と小円筒部(53)における内管(3)の長さ方向中央部側の端部とを連結しかつ第1冷媒流路(4)の両端開口を塞ぐ閉鎖部(54)とよりなる。なお、図11および図12においては、高圧冷媒流入パイプ(11)が通じる冷媒入口(9)が形成されている一方の拡管部(7)側の部分のみが示されているが、他方の拡管部(8)側も同様である。   In the double-pipe heat exchanger (50) shown in FIGS. 11 and 12, a contracted tube portion (14) is provided on the outer portion of the outer tube (2) in the longitudinal direction from both expanded portions (7) and (8). Are not formed, and an aluminum closing member (51) for closing both end openings of the first refrigerant flow path (4) is disposed at both ends of the outer pipe (2). The closing member (51) includes a large cylindrical portion (52) that is fitted from the outside to a portion near both ends of the outer tube (2) and brazed to the outer peripheral surface of the outer tube (23), and an inner tube (3). A small cylindrical part (53) fitted on the outer pipe (2) from the outside and brazed to the outer peripheral surface of the inner pipe (3), and the outer pipe (2) in the large cylindrical part (52) The end on the opposite side to the central portion in the length direction is connected to the end on the central portion in the length direction of the inner tube (3) in the small cylindrical portion (53), and the first coolant channel (4) is connected. It consists of a closing part (54) that closes the opening at both ends. 11 and 12, only the portion on the side of one expanded portion (7) where the refrigerant inlet (9) through which the high-pressure refrigerant inflow pipe (11) communicates is formed is shown. The same applies to the part (8) side.

閉鎖部材(51)は、少なくとも片面にろう材層を有するアルミニウムブレージングシートを用いて、大円筒部(52)および小円筒部(53)の内周面がろう材層に覆われるように形成されている。   The closing member (51) is formed such that the inner peripheral surface of the large cylindrical portion (52) and the small cylindrical portion (53) is covered with the brazing material layer using an aluminum brazing sheet having a brazing material layer on at least one side. ing.

二重管式熱交換器(50)は、外管(2)、内管(3)、閉鎖部材(51)、管継手部材(6)、高圧冷媒流入パイプ(11)、高圧冷媒流出パイプ(12)、管継手部材(13)、フィン(15)およびねじり板(19)を組み合わせて仮止めし、炉中において一括してろう付することにより製造される。   The double pipe heat exchanger (50) includes an outer pipe (2), an inner pipe (3), a closing member (51), a pipe joint member (6), a high-pressure refrigerant inflow pipe (11), a high-pressure refrigerant outflow pipe ( 12), a pipe joint member (13), a fin (15), and a torsion plate (19) are combined and temporarily fixed, and are then brazed together in a furnace.

その他の構成は、図1〜図5に示す第1の実施形態の二重管式熱交換器(1)と同様である。   Other configurations are the same as those of the double-tube heat exchanger (1) of the first embodiment shown in FIGS.

図13はこの発明による二重管式熱交換器の第6の実施形態を示す。   FIG. 13 shows a sixth embodiment of the double-pipe heat exchanger according to the present invention.

図13に示す二重管式熱交換器(55)において、外管(2)の両端寄りの部分には拡管部(7)(8)は形成されておらず、外管(2)の両端寄りの部分に、冷媒入口(9)および冷媒出口が形成されている。また、外管(2)の両端部に、第1冷媒流路(4)の両端開口を塞ぐアルミニウム製閉鎖部材(56)が配置されている。閉鎖部材(56)は、外管(2)の両端寄りの部分に外側から嵌め被せられて外管(3)外周面にろう付された大円筒部(57)と、内管(3)における外管(2)の両端寄りの部分に外側から嵌め被せられて内管(3)外周面にろう付された小円筒部(58)と、大円筒部(57)における外管(2)の長さ方向中央部側とは反対側の端部と小円筒部(58)における内管(3)の長さ方向中央部側の端部とを連結しかつ第1冷媒流路(4)の両端開口を塞ぐ閉鎖部(59)とよりなる。なお、図13においては、高圧冷媒流入パイプ(11)が通じる冷媒入口(9)が形成されている片側の部分のみが示されているが、他方の冷媒出口が形成されている他方の側も同様である。   In the double-pipe heat exchanger (55) shown in FIG. 13, the expanded pipes (7) and (8) are not formed in the portions near both ends of the outer pipe (2), and both ends of the outer pipe (2) are formed. A refrigerant inlet (9) and a refrigerant outlet are formed in the portion closer to it. In addition, an aluminum closing member (56) that closes both end openings of the first refrigerant flow path (4) is disposed at both ends of the outer tube (2). The closing member (56) includes a large cylindrical portion (57) that is fitted from the outside to a portion near both ends of the outer tube (2) and brazed to the outer peripheral surface of the outer tube (3), and an inner tube (3). A small cylindrical part (58) fitted on the outer pipe (2) from the outside and brazed to the outer peripheral surface of the inner pipe (3), and the outer pipe (2) of the large cylindrical part (57) The end on the opposite side to the central portion in the length direction is connected to the end on the central portion in the length direction of the inner tube (3) in the small cylindrical portion (58), and the first coolant channel (4) is connected. It consists of a closing part (59) that closes the opening at both ends. In FIG. 13, only one portion where the refrigerant inlet (9) through which the high-pressure refrigerant inlet pipe (11) communicates is formed is shown, but the other side where the other refrigerant outlet is formed is also shown. It is the same.

閉鎖部材(56)は、少なくとも片面にろう材層を有するアルミニウムブレージングシートを用いて、大円筒部(57)および小円筒部(58)の内周面がろう材層に覆われるように形成されている。   The closing member (56) is formed so that the inner peripheral surface of the large cylindrical portion (57) and the small cylindrical portion (58) is covered with the brazing material layer using an aluminum brazing sheet having a brazing material layer on at least one side. ing.

二重管式熱交換器(55)は、外管(2)、内管(3)、閉鎖部材(56)、管継手部材(6)、高圧冷媒流入パイプ(11)、高圧冷媒流出パイプ(12)、管継手部材(13)、フィン(15)およびねじり板(19)を組み合わせて仮止めし、炉中において一括してろう付することにより製造される。   The double pipe heat exchanger (55) includes an outer pipe (2), an inner pipe (3), a closing member (56), a pipe joint member (6), a high-pressure refrigerant inflow pipe (11), a high-pressure refrigerant outflow pipe ( 12), a pipe joint member (13), a fin (15), and a torsion plate (19) are combined and temporarily fixed, and are then brazed together in a furnace.

その他の構成は、図1〜図5に示す第1の実施形態の二重管式熱交換器(1)と同様である。   Other configurations are the same as those of the double-tube heat exchanger (1) of the first embodiment shown in FIGS.

上述した第5および第6の実施形態の二重管式熱交換器(50)(55)において、内管(3)外周面の凸条(3a)は、内管(3)における外管(2)よりも外側に突出した部分において切除されるか、あるいは圧潰される。   In the double pipe heat exchangers (50) and (55) of the fifth and sixth embodiments described above, the protrusion (3a) on the outer peripheral surface of the inner pipe (3) is the outer pipe ( It is excised or crushed at the part protruding outward from 2).

上述した第3〜第6の実施形態の二重管式熱交換器(35)(40)(50)(55)において、第2の実施形態の二重管式熱交換器(30)の場合と同様に、内管(3)の内周面に、外方に凹んだ複数のスパイラル状凹溝(31)が、内管(3)の周壁を変形させることによって形成されるとともに、内管(3)の外周面にスパイラル状凸条(32)が形成されていてもよい。第3の実施形態の二重管式熱交換器(35)においては、スパイラル状凹溝(31)のねじれ方向は、円柱状体(36)のスパイラル状凹溝(37)のねじれ方向とは逆向きとなっていることが好ましい。   In the double pipe heat exchanger (35) (40) (50) (55) of the third to sixth embodiments described above, the double pipe heat exchanger (30) of the second embodiment is used. Similarly, a plurality of spirally recessed grooves (31) recessed outward are formed on the inner peripheral surface of the inner pipe (3) by deforming the peripheral wall of the inner pipe (3). Spiral ridges (32) may be formed on the outer peripheral surface of (3). In the double-tube heat exchanger (35) of the third embodiment, the twist direction of the spiral groove (31) is the twist direction of the spiral groove (37) of the cylindrical body (36). The reverse direction is preferred.

第3および第4の実施形態の二重管式熱交換器(35)(40)においてスパイラル状凸条(32)が形成される場合、スパイラル状凸条(32)における縮管部(14)と対応する部分は、外管(2)の拡管部(7)(8)に縮管部(14)を形成する際に圧潰され、縮管部(14)の内周面と内管(3)における隣り合う圧潰されたスパイラル状凸条(32)どうしの間の間隙がろう材で埋められる。   When the spiral ridge (32) is formed in the double-tube heat exchanger (35) (40) of the third and fourth embodiments, the contracted tube portion (14) in the spiral ridge (32) is formed. And the corresponding portion are crushed when forming the contracted tube portion (14) in the expanded portion (7) (8) of the outer tube (2), and the inner peripheral surface of the contracted tube portion (14) and the inner tube (3 ) Between adjacent crushed spiral ridges (32) are filled with brazing material.

第5および第6の実施形態の二重管式熱交換器(50)(55)においてスパイラル状凸条(32)が形成される場合、スパイラル状凸条(32)は、内管(3)おける外管(2)よりも外側に突出した部分において圧潰され、縮管部(14)の内周面と内管(3)における隣り合う圧潰されたスパイラル状凸条(32)どうしの間の間隙がろう材で埋められる。   When the spiral ridges (32) are formed in the double-tube heat exchangers (50) and (55) of the fifth and sixth embodiments, the spiral ridges (32) are formed on the inner pipe (3). Between the inner peripheral surface of the contraction pipe part (14) and the adjacent crushing spiral ridges (32) adjacent to each other in the inner pipe (3). The gap is filled with brazing material.

この発明による二重管式熱交換器は、コンプレッサ、凝縮部と過冷却部とを有するコンデンサ、エバポレータ、減圧器としての膨張弁、気液分離器、およびコンデンサとエバポレータとの間に配置され、かつコンデンサの過冷却部から出てきた高温の冷媒とエバポレータから出てきた低温の冷媒とを熱交換させる中間熱交換器を備えたカーエアコンを構成する冷凍サイクルにおいて、中間熱交換器として好適に用いられる。   The double pipe heat exchanger according to the present invention is disposed between a compressor, a condenser having a condensing part and a supercooling part, an evaporator, an expansion valve as a decompressor, a gas-liquid separator, and the condenser and the evaporator, In a refrigeration cycle that constitutes a car air conditioner having an intermediate heat exchanger that exchanges heat between the high-temperature refrigerant that has come out of the condenser supercooling section and the low-temperature refrigerant that has come out of the evaporator, it is suitable as an intermediate heat exchanger Used.

(1)(30)(35)(40)(50)(55):二重管式熱交換器
(2):外管
(3):内管
(4):第1冷媒流路
(5):第2冷媒流路
(15):フィン
(15a):波頂部
(15b):波底部
(15c):連結部
(16):ルーバ
(17):冷媒通過穴
(18):空隙
(19):ねじり板(偏流部材)
(31):スパイラル状凹溝
(36):円柱状体(偏流部材)
(37):スパイラル状凹溝
(41):波板(偏流部材)
(41a):波頂部
(41b):波底部
(41c):連結部
(51)(56):閉鎖部材
(52)(57):大円筒部
(53)(58):小円筒部
(54)(59):閉鎖部
(1) (30) (35) (40) (50) (55): Double tube heat exchanger
(2): Outer pipe
(3): Inner pipe
(4): First refrigerant flow path
(5): Second refrigerant flow path
(15): Fin
(15a): Wave peak
(15b): Wave bottom
(15c): Connection part
(16): Louver
(17): Refrigerant passage hole
(18): Air gap
(19): Torsion plate (Diffusion member)
(31): Spiral groove
(36): Cylindrical body (Diffusion member)
(37): Spiral groove
(41): Corrugated plate (Drift member)
(41a): Wave peak
(41b): Wave bottom
(41c): Connection part
(51) (56): Closing member
(52) (57): Large cylindrical part
(53) (58): Small cylindrical part
(54) (59): Closure

Claims (12)

外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙が第1冷媒流路となるとともに内管内が第2冷媒流路となっている二重管式熱交換器であって、
内管の内周面に沿って、波頂部、波底部および波頂部と波底部とを連結する連結部からなり、かつ波頂部および波底部が第2冷媒流路での冷媒流れ方向を向いたコルゲート状フィンが配置され、フィンの波頂部が内管内周面に接合され、フィンの連結部に冷媒通過穴が形成されている二重管式熱交換器。
An outer pipe and an inner pipe arranged at intervals in the outer pipe are provided, and a gap between the outer pipe and the inner pipe serves as a first refrigerant flow path, and the inner pipe serves as a second refrigerant flow path. A double-tube heat exchanger,
Along the inner peripheral surface of the inner tube, the wave crest portion, the wave bottom portion, and a connecting portion that connects the wave crest portion and the wave bottom portion are formed, and the wave crest portion and the wave bottom portion face the refrigerant flow direction in the second refrigerant flow path. A double-tube heat exchanger in which corrugated fins are arranged, the wave crests of the fins are joined to the inner peripheral surface of the inner tube, and a refrigerant passage hole is formed in the connecting portion of the fins.
フィンの連結部に、波頂部から波底部に向かう方向にのびる複数のルーバが第2冷媒流路での冷媒流れ方向に間隔をおいて設けられ、ルーバが設けられることにより連結部に冷媒通過穴が形成されている請求項1記載の二重管式熱交換器。 A plurality of louvers extending in the direction from the wave crest to the wave bottom are provided at intervals in the refrigerant flow direction in the second refrigerant flow path at the fin connection, and the louver is provided so that a refrigerant passage hole is formed in the connection. The double pipe heat exchanger according to claim 1, wherein: 連結部に設けられた全てのルーバが、第2冷媒流路での冷媒流れ方向に対して同一方向に傾斜している請求項2記載の二重管式熱交換器。 The double-tube heat exchanger according to claim 2, wherein all louvers provided in the connecting portion are inclined in the same direction with respect to the refrigerant flow direction in the second refrigerant flow path. 内管内におけるフィンよりも内管の径方向内側部分に空隙が形成されており、当該空隙内に、当該空隙内を流れる冷媒をフィン側に偏流させる偏流部材が配置されている請求項1〜3のうちのいずれかに記載の二重管式熱交換器。 A gap is formed in a radially inner portion of the inner pipe with respect to the fin in the inner pipe, and a drift member for drifting the refrigerant flowing in the gap to the fin side is disposed in the gap. A double tube heat exchanger according to any one of the above. 偏流部材が、ねじり板からなる請求項4記載の二重管式熱交換器。 The double-tube heat exchanger according to claim 4, wherein the drift member is a torsion plate. 内管の内周面に、外方に凹んだ複数のスパイラル状凹溝が、内管の周壁を変形させることによって形成されており、ねじり板のねじれ方向とスパイラル状凹溝のねじれ方向とが逆向きである請求項5記載の二重管式熱交換器。 A plurality of spiral grooves recessed outward are formed on the inner peripheral surface of the inner tube by deforming the peripheral wall of the inner tube, and the twist direction of the torsion plate and the twist direction of the spiral groove are The double-pipe heat exchanger according to claim 5, which is in the reverse direction. 偏流部材が、外周面にスパイラル状溝が形成された円柱状体からなる請求項4記載の二重管式熱交換器。 The double-tube heat exchanger according to claim 4, wherein the drift member comprises a cylindrical body having a spiral groove formed on the outer peripheral surface. 円柱状体が、両端が閉鎖された円筒からなり、円筒の周壁が変形させられてスパイラル状溝が形成されている請求項7記載の二重管式熱交換器。 The double-pipe heat exchanger according to claim 7, wherein the columnar body is formed of a cylinder closed at both ends, and a spiral groove is formed by deforming a peripheral wall of the cylinder. 内管の内周面に、外方に凹んだ複数のスパイラル状凹溝が、内管の周壁を変形させることによって形成されており、偏流部材となる円柱状体の外周面のスパイラル状凹溝のねじれ方向と、内管の内周面のスパイラル状凹溝のねじれ方向とが逆向きである請求項7または8記載の二重管式熱交換器。 A plurality of spiral grooves recessed outward are formed on the inner peripheral surface of the inner tube by deforming the peripheral wall of the inner tube, and the spiral grooves on the outer peripheral surface of the columnar body serving as the drift member The double-pipe heat exchanger according to claim 7 or 8, wherein the twist direction of the inner tube is opposite to the twist direction of the spiral groove on the inner peripheral surface of the inner tube. 偏流部材が、横断面において前記空隙を横切るように配置された波板からなり、波板が波頂部、波底部および波頂部と波底部とを連結する連結部からなり、かつ波頂部および波底部が第2冷媒流路での冷媒流れ方向を向いている請求項4記載の二重管式熱交換器。 The drift member is made of a corrugated plate arranged so as to cross the gap in the cross section, and the corrugated plate is made of a wave crest portion, a wave bottom portion and a connecting portion connecting the wave crest portion and the wave bottom portion, and the wave crest portion and the wave bottom portion. The double-pipe heat exchanger according to claim 4, wherein is oriented in the refrigerant flow direction in the second refrigerant flow path. 外管の両端部に、第1冷媒流路の両端開口を塞ぐ閉鎖部材が配置されており、閉鎖部材が、外管の両端寄りの部分に外側から嵌め被せられて外管外周面にろう付された大円筒部と、内管における外管の両端寄りの部分に外側から嵌め被せられて内管外周面にろう付された小円筒部と、大円筒部における外管の長さ方向中央部側とは反対側の端部と小円筒部における内管の長さ方向中央部側の端部とを連結しかつ第1冷媒流路の両端開口を塞ぐ閉鎖部とよりなる請求項1〜10のうちのいずれかに記載の二重管式熱交換器。 Closing members that close both end openings of the first refrigerant flow path are disposed at both ends of the outer tube, and the closing members are fitted from the outside to portions near both ends of the outer tube and brazed to the outer peripheral surface of the outer tube. A large cylindrical portion, a small cylindrical portion that is fitted from the outside to a portion of the inner tube near the both ends of the outer tube, and brazed to the outer peripheral surface of the inner tube, and a central portion in the lengthwise direction of the outer tube in the large cylindrical portion 11. A closed portion that connects an end opposite to the side and an end of the small cylindrical portion on the side of the central portion in the length direction of the inner tube and closes both ends of the first refrigerant flow path. A double tube heat exchanger according to any one of the above. 閉鎖部材が、少なくとも片面にろう材層を有するブレージングシートを用いて、大円筒部および小円筒部の内周面がろう材層に覆われるように形成されている請求項11記載の二重管式熱交換器。 12. The double pipe according to claim 11, wherein the closing member is formed using a brazing sheet having a brazing material layer on at least one side so that the inner peripheral surfaces of the large cylindrical portion and the small cylindrical portion are covered with the brazing material layer. Type heat exchanger.
JP2014083316A 2013-04-19 2014-04-15 Double-pipe heat exchanger Pending JP2014224670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014083316A JP2014224670A (en) 2013-04-19 2014-04-15 Double-pipe heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013088001 2013-04-19
JP2013088001 2013-04-19
JP2014083316A JP2014224670A (en) 2013-04-19 2014-04-15 Double-pipe heat exchanger

Publications (1)

Publication Number Publication Date
JP2014224670A true JP2014224670A (en) 2014-12-04

Family

ID=51158618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083316A Pending JP2014224670A (en) 2013-04-19 2014-04-15 Double-pipe heat exchanger

Country Status (2)

Country Link
JP (1) JP2014224670A (en)
CN (1) CN203719472U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026248A (en) * 2015-07-24 2017-02-02 株式会社ケーヒン・サーマル・テクノロジー Double-pipe heat exchanger
CN106468322A (en) * 2015-08-17 2017-03-01 天津海莱姆科技有限公司 Heat exchange type fluid buffer
CN112112723A (en) * 2020-09-03 2020-12-22 中北大学 Cooling device for internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047629B2 (en) * 2016-11-11 2021-06-29 Marelli Cabin Comfort Japan Corporation Fin-assembled tube manufacturing method and double tube manufacturing method
CN107893891A (en) * 2017-10-21 2018-04-10 肇庆鼎湖檀树电子科技有限公司 Suitable for the cooling tube of nuclear power station

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026248A (en) * 2015-07-24 2017-02-02 株式会社ケーヒン・サーマル・テクノロジー Double-pipe heat exchanger
CN106468322A (en) * 2015-08-17 2017-03-01 天津海莱姆科技有限公司 Heat exchange type fluid buffer
CN112112723A (en) * 2020-09-03 2020-12-22 中北大学 Cooling device for internal combustion engine

Also Published As

Publication number Publication date
CN203719472U (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5504050B2 (en) Double tube heat exchanger and method for manufacturing the same
JP5202030B2 (en) Double tube heat exchanger
US20090166019A1 (en) Double-wall-tube heat exchanger
US6935414B2 (en) Tube and heat exchanger having the same
US20220011050A1 (en) Double tube for heat-exchange
JP6180281B2 (en) Heat exchanger with heat storage function and manufacturing method thereof
JP2014224670A (en) Double-pipe heat exchanger
JP2015087086A5 (en)
JP2009162396A (en) Double-wall-tube heat exchanger
JP6341099B2 (en) Refrigerant evaporator
JP2006003071A (en) Heat exchanger
WO2018088166A1 (en) Accumulator with integrated internal heat exchanger, and refrigeration cycle using same
JP6574630B2 (en) Double tube heat exchanger
JP2011191034A (en) Dual-pipe heat exchanger
JP2009041798A (en) Heat exchanger
JP5202029B2 (en) Double tube heat exchanger
JP2015017762A (en) Double-tube type heat exchanger
JP5003968B2 (en) Heat exchanger tube for subcooler and method for manufacturing the same
JP2009216285A (en) Double-tube heat exchanger
JP2013061138A (en) Intermediate heat exchanger
JP2014095482A (en) Double-pipe heat exchanger
JP2004183960A (en) Heat exchanger
JP5899013B2 (en) Double tube heat exchanger
JP6651692B2 (en) Double tube internal heat exchanger
JP2014035169A (en) Intermediate heat exchanger