JP5899013B2 - Double tube heat exchanger - Google Patents

Double tube heat exchanger Download PDF

Info

Publication number
JP5899013B2
JP5899013B2 JP2012059953A JP2012059953A JP5899013B2 JP 5899013 B2 JP5899013 B2 JP 5899013B2 JP 2012059953 A JP2012059953 A JP 2012059953A JP 2012059953 A JP2012059953 A JP 2012059953A JP 5899013 B2 JP5899013 B2 JP 5899013B2
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
center line
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012059953A
Other languages
Japanese (ja)
Other versions
JP2013194940A (en
Inventor
北斗 峯
北斗 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2012059953A priority Critical patent/JP5899013B2/en
Publication of JP2013194940A publication Critical patent/JP2013194940A/en
Application granted granted Critical
Publication of JP5899013B2 publication Critical patent/JP5899013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は二重管式熱交換器に関し、さらに詳しくは、外管と、外管内に間隔をおいて設けられた内管とを備えている二重管式熱交換器に関する。   The present invention relates to a double-pipe heat exchanger, and more particularly to a double-pipe heat exchanger that includes an outer tube and an inner tube that is spaced from the outer tube.

この明細書において、「コンデンサ」という用語には、通常のコンデンサの他に凝縮部および過冷却部を有するサブクールコンデンサを含むものとする。   In this specification, the term “capacitor” includes a subcool condenser having a condensing part and a supercooling part in addition to a normal condenser.

従来、カーエアコンに用いられる冷凍サイクルとして、コンプレッサ、凝縮部と過冷却部とを有するコンデンサ、エバポレータ、減圧器としての膨張弁、気液分離器、およびコンデンサとエバポレータとの間に配置され、かつコンデンサの過冷却部から出てきた高温の冷媒とエバポレータから出てきた低温の冷媒とを熱交換させる中間熱交換器を備えたものが提案されている(特許文献1参照)。特許文献1記載の冷凍サイクルによれば、コンデンサの過冷却部において過冷却された冷媒が、中間熱交換器において、エバポレータから出てきた低温の冷媒によりさらに冷却され、これによりエバポレータの冷却性能が向上させられるようになっている。   Conventionally, as a refrigeration cycle used in a car air conditioner, a compressor, a condenser having a condensing part and a supercooling part, an evaporator, an expansion valve as a decompressor, a gas-liquid separator, and a condenser and an evaporator, and An apparatus including an intermediate heat exchanger for exchanging heat between a high-temperature refrigerant coming out of a condenser supercooling section and a low-temperature refrigerant coming out of an evaporator has been proposed (see Patent Document 1). According to the refrigeration cycle described in Patent Document 1, the refrigerant that has been supercooled in the supercooling section of the condenser is further cooled by the low-temperature refrigerant that has come out of the evaporator in the intermediate heat exchanger, thereby improving the cooling performance of the evaporator. It can be improved.

特許文献1記載の冷凍サイクルに用いられている中間熱交換器は、外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙がコンデンサから出てきた高温冷媒が流れる第1冷媒流路となり、内管内がエバポレータから出てきた低温の冷媒が流れる第2冷媒流路となっており、外管に、第1冷媒流路に通じる冷媒入口および冷媒出口が、外管の長さ方向に間隔をおいて形成され、外管の冷媒入口に通じる冷媒流入パイプおよび同じく冷媒出口に通じる冷媒流出パイプがそれぞれ外管に接合されており、冷媒流入パイプおよび冷媒流出パイプが、外管の周方向の同一位置に位置している二重管式熱交換器からなる。   The intermediate heat exchanger used in the refrigeration cycle described in Patent Document 1 includes an outer tube and an inner tube arranged at intervals in the outer tube, and a gap between the outer tube and the inner tube is a condenser. The first refrigerant flow path through which the high-temperature refrigerant coming out of the refrigerant flows, the second refrigerant flow path through which the low-temperature refrigerant coming out of the evaporator flows through the inner pipe, and the refrigerant communicating with the first refrigerant flow path in the outer pipe An inlet and a refrigerant outlet are formed at intervals in the length direction of the outer pipe, and a refrigerant inflow pipe leading to the refrigerant inlet of the outer pipe and a refrigerant outflow pipe also leading to the refrigerant outlet are joined to the outer pipe, respectively. The inflow pipe and the refrigerant outflow pipe are composed of a double-tube heat exchanger located at the same position in the circumferential direction of the outer tube.

しかしながら、特許文献1記載の二重管式熱交換器の場合、冷媒流入パイプから外管と内管との間の第1冷媒流路内に流入した冷媒が、第1冷媒流路の冷媒流入パイプ側の部分を多く流れることになって冷媒の偏流が生じ、第1冷媒流路内での冷媒の流れが周方向に不均一になる。その結果、第1冷媒流路を流れる高温冷媒と、第2冷媒流路を流れる低温冷媒との熱交換効率が低下するおそれがある。   However, in the case of the double-tube heat exchanger described in Patent Document 1, the refrigerant that has flowed into the first refrigerant flow path between the outer pipe and the inner pipe from the refrigerant flow-in pipe is the refrigerant flow into the first refrigerant flow path. A large amount of the pipe-side portion flows, resulting in refrigerant drift, and the refrigerant flow in the first refrigerant flow path becomes uneven in the circumferential direction. As a result, the heat exchange efficiency between the high-temperature refrigerant flowing through the first refrigerant flow path and the low-temperature refrigerant flowing through the second refrigerant flow path may be reduced.

そこで、本出願人は、先に、基本構成が特許文献1記載の二重管式熱交換器と同一であり、冷媒流出パイプが、冷媒流入パイプに対して外管の周方向にずれた位置に配置されている二重管式熱交換器を提案した(特許文献2参照)。   In view of this, the present applicant has previously found that the basic configuration is the same as that of the double pipe heat exchanger described in Patent Document 1, and the refrigerant outflow pipe is displaced in the circumferential direction of the outer pipe with respect to the refrigerant inflow pipe. Proposed a double-pipe heat exchanger (see Patent Document 2).

しかしながら、特許文献2記載の二重管式熱交換器に比較して、第1冷媒流路内での冷媒の流れを、周方向に一層効果的に均一化しうる二重管式熱交換器が求められている。   However, compared with the double-pipe heat exchanger described in Patent Document 2, there is a double-pipe heat exchanger that can more effectively equalize the refrigerant flow in the first refrigerant flow path in the circumferential direction. It has been demanded.

特開2009−204165号公報JP 2009-204165 A 特開2012−21734号公報JP 2012-21734 A

この発明の目的は、上記要求に応え、特許文献2記載の二重管式熱交換器に比較して、第1冷媒流路内での冷媒の流れを周方向に均一化しうる二重管式熱交換器を提供することにある。   The object of the present invention is to meet the above requirements and to make the refrigerant flow in the first refrigerant flow path uniform in the circumferential direction as compared with the double pipe heat exchanger described in Patent Document 2. It is to provide a heat exchanger.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙が第1冷媒流路となるとともに内管内が第2冷媒流路となっており、外管に第1冷媒流路に通じる冷媒入口が形成されるとともに、第1冷媒流路内に冷媒を送り込む冷媒流入パイプが、冷媒入口に通じるように外管に接合されており、冷媒流入パイプにおける冷媒入口側端部からの一定の長さ部分が直線状である二重管式熱交換器であって、
冷媒流入パイプにおける冷媒入口側の直線状部分の中心線と、内管における外管の冷媒入口が臨んだ部分の中心線とが、外管の径方向外方から見た場合に一定の角度をなすとともに交差しておらず、冷媒流入パイプの前記直線状部分の中心線における内管側への延長線が、内管から径方向外方にずれており、
外管の一端部に、他の部分に比較して外側に広がりかつ周壁の大部分が円筒状となった拡大部が設けられており、拡大部の周壁に、内管における拡大部内に存在する部分の中心線が位置している1つの仮想平面と平行になった平坦なパイプ接合部が、外管の拡大部の周壁の大部分が位置している円筒面よりも拡大部の径方向内側に突出するように設けられている二重管式熱交換器。
1) An outer pipe and an inner pipe arranged at intervals in the outer pipe, and a gap between the outer pipe and the inner pipe becomes the first refrigerant flow path, and the inner pipe has the second refrigerant flow path. A refrigerant inlet that leads to the first refrigerant flow path is formed in the outer pipe, and a refrigerant inflow pipe that feeds the refrigerant into the first refrigerant flow path is joined to the outer pipe so as to lead to the refrigerant inlet. A double-tube heat exchanger in which a constant length from the refrigerant inlet side end of the refrigerant inflow pipe is linear,
The center line of the straight portion on the refrigerant inlet side of the refrigerant inlet pipe and the center line of the portion of the inner pipe facing the refrigerant inlet of the outer pipe form a fixed angle when viewed from the outside in the radial direction of the outer pipe. The extension line to the inner pipe side in the center line of the linear portion of the refrigerant inflow pipe is shifted radially outward from the inner pipe ,
One end portion of the outer tube is provided with an enlarged portion that extends outward as compared with other portions and has a cylindrical portion of the peripheral wall, and exists in the enlarged portion of the inner tube on the peripheral wall of the enlarged portion The flat pipe joint parallel to one imaginary plane where the center line of the part is located is radially inward of the enlarged part from the cylindrical surface on which most of the peripheral wall of the enlarged part of the outer pipe is located A double-pipe heat exchanger that is provided so as to protrude .

2)冷媒流入パイプの前記直線状部分の中心線と、内管における外管の冷媒入口が臨んだ部分の中心線とが、外管の径方向外方から見た場合に直角をなしている上記1)記載の二重管式熱交換器2) The center line of the straight portion of the refrigerant inflow pipe and the center line of the portion of the inner pipe facing the refrigerant inlet of the outer pipe form a right angle when viewed from the outside in the radial direction of the outer pipe. A double-pipe heat exchanger as described in 1) above.

上記1)および2)の二重管式熱交換器によれば、冷媒流入パイプにおける冷媒入口側の直線状部分の中心線と、内管における外管の冷媒入口が臨んだ部分の中心線とが、外管の径方向外方から見た場合に一定の角度をなすとともに交差しておらず、冷媒流入パイプの前記直線状部分の中心線における内管側への延長線が、内管から径方向外方にずれているので、冷媒流入パイプを通って第1冷媒流路内に流入した冷媒が、内管の外周面に沿ってその周方向に流れる。したがって、冷媒が、第1冷媒流路内の周方向の全体に行き渡ることになり、特許文献2記載の二重管式熱交換器に比較して、第1冷媒流路内での冷媒の流れが外管の周方向に均一化される。その結果、第1冷媒流路を流れる高温冷媒と、第2冷媒流路を流れる低温冷媒との熱交換効率が向上する。 According to the double-tube heat exchangers of 1) and 2) above, the center line of the straight portion on the refrigerant inlet side of the refrigerant inflow pipe and the center line of the portion of the inner pipe facing the refrigerant inlet of the outer tube However, when viewed from the outside in the radial direction of the outer pipe, it forms a certain angle and does not intersect, and the extension line to the inner pipe side at the center line of the linear portion of the refrigerant inflow pipe extends from the inner pipe. Since it is displaced radially outward, the refrigerant that has flowed into the first refrigerant flow path through the refrigerant inflow pipe flows in the circumferential direction along the outer peripheral surface of the inner tube. Therefore, the refrigerant spreads over the entire circumferential direction in the first refrigerant flow path, and the flow of the refrigerant in the first refrigerant flow path as compared with the double pipe heat exchanger described in Patent Document 2. Is made uniform in the circumferential direction of the outer tube. As a result, the heat exchange efficiency between the high-temperature refrigerant flowing through the first refrigerant flow path and the low-temperature refrigerant flowing through the second refrigerant flow path is improved.

上記1)の二重管式熱交換器によれば、比較的簡単な構成で、冷媒流入パイプの中心線と、内管における外管の冷媒入口が臨んだ部分の中心線とが、交差することがなく、かつ外管の外側から見た場合に一定の角度をなし、さらに冷媒流入パイプの中心線における内管側への延長線が、内管から径方向外方にずれるようにすることができる According to the double pipe heat exchanger of 1) above, the center line of the refrigerant inflow pipe intersects with the center line of the portion of the inner pipe facing the refrigerant inlet of the outer pipe with a relatively simple configuration. And when viewed from the outside of the outer pipe, make a certain angle, and the extension line to the inner pipe side of the center line of the refrigerant inflow pipe should be shifted radially outward from the inner pipe Can do .

上記2)の二重管式熱交換器によれば、第1冷媒流路内での冷媒の流れが、外管の周方向により効果的に均一化されるAccording to the double-pipe heat exchanger of the two), the flow of the refrigerant in the first refrigerant passage is effectively uniform by the circumferential direction of the outer tube.

この発明による二重管式熱交換器の全体構成を示す長さ方向の中間部を省略した垂直縦断面図である。It is the vertical longitudinal cross-sectional view which abbreviate | omitted the intermediate part of the length direction which shows the whole structure of the double tube | pipe type heat exchanger by this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1のB−B線拡大断面図である。It is a BB line expanded sectional view of Drawing 1. 外管の拡大部の変形例を示す図2相当の図である。It is a figure equivalent to FIG. 2 which shows the modification of the expansion part of an outer tube | pipe.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

また、以下の説明において、図1の上下、左右を上下、左右というものとする。   In the following description, the top and bottom and the left and right in FIG.

図1はこの発明による二重管式熱交換器の全体構成を示し、図2および図3はその要部の構成を示す。   FIG. 1 shows the overall configuration of a double-pipe heat exchanger according to the present invention, and FIGS. 2 and 3 show the configuration of the main part thereof.

図1および図2において、二重管式熱交換器(1)は、横断面円形のアルミニウム押出形材製外管(2)、および外管(2)内に間隔をおいて同心状に挿入された横断面円形のアルミニウム押出形材製内管(3)を備えており、外管(2)と内管(3)との間の間隙が第1冷媒流路(4)となり、内管(3)内が第2冷媒流路(5)となっている。内管(3)の両端部は外管(2)の両端部よりも外側に突出しており、両突出端部にそれぞれ管継手部材(6)が接合されている。   1 and 2, the double-tube heat exchanger (1) is inserted into the outer tube (2) made of extruded aluminum having a circular cross section and concentrically with a space in the outer tube (2). The inner pipe (3) made of extruded aluminum with a circular cross section is provided, and the gap between the outer pipe (2) and the inner pipe (3) becomes the first refrigerant channel (4), and the inner pipe (3) The inside is the second refrigerant flow path (5). Both end portions of the inner pipe (3) protrude outward from both end portions of the outer pipe (2), and pipe joint members (6) are joined to both protruding end portions, respectively.

外管(2)の右端部に、他の部分に比較して外側に広がった拡大部(7)が設けられている。ここでは、拡大部(7)は、外管(2)と別個に形成されたものが外管(2)にろう付により接合されることによって設けられているが、これに代えて、外管(2)が拡管されることにより外管に一体に設けられていてもよい。拡大部(7)の周壁(7a)に、内管(3)における拡大部(7)内に存在する部分(3a)の中心線(O1)が位置している1つの仮想平面(P)と平行になった平坦なパイプ接合部(8)が設けられている。拡大部(7)の周壁(7a)は大部分が円筒状であり、パイプ接合部(8)は、拡大部(7)の周壁(7a)の大部分が位置している円筒面よりも拡大部(7)の径方向外側に突出するように設けられている。パイプ接合部(8)に第1冷媒流路(4)に通じる冷媒入口(9)が形成されており、第1冷媒流路(4)内に冷媒を送り込む冷媒流入パイプが、冷媒入口に通じるように外管に接合されており、アルミニウム製冷媒流入パイプ(11)が、外管(2)の冷媒入口(9)に通じるように、パイプ接合部(8)にろう付されている。ここでは、冷媒流入パイプ(11)の端部が、冷媒入口(9)内に挿入された状態で、パイプ接合部(8)にろう付されている。冷媒流入パイプ(11)における冷媒入口(9)側端部からの一定の長さ部分、ここでは全体が直線状となっている。   The right end of the outer tube (2) is provided with an enlarged portion (7) that spreads outward compared to the other portions. Here, the enlarged portion (7) is provided by joining the outer pipe (2) separately from the outer pipe (2). (2) may be provided integrally with the outer tube by expanding the tube. One virtual plane (P) where the center line (O1) of the portion (3a) existing in the enlarged portion (7) of the inner pipe (3) is located on the peripheral wall (7a) of the enlarged portion (7) A parallel flat pipe joint (8) is provided. The peripheral wall (7a) of the enlarged portion (7) is mostly cylindrical, and the pipe joint (8) is larger than the cylindrical surface on which the majority of the peripheral wall (7a) of the enlarged portion (7) is located. It is provided so as to protrude outward in the radial direction of the portion (7). A refrigerant inlet (9) that leads to the first refrigerant flow path (4) is formed in the pipe joint (8), and a refrigerant inflow pipe that feeds the refrigerant into the first refrigerant flow path (4) leads to the refrigerant inlet. The aluminum refrigerant inflow pipe (11) is brazed to the pipe joint (8) so as to communicate with the refrigerant inlet (9) of the outer pipe (2). Here, the end of the refrigerant inflow pipe (11) is brazed to the pipe joint (8) while being inserted into the refrigerant inlet (9). A constant length portion from the refrigerant inlet (9) side end portion of the refrigerant inflow pipe (11), here, the whole is linear.

したがって、冷媒流入パイプ(11)の中心線(O2)と、内管(3)における外管(2)の冷媒入口(9)が臨んだ部分、すなわち外管(2)の拡大部(7)内に存在する部分(3a)の中心線(O1)とが、外管(2)の外側(図2の右側)から見た場合に直角をなしており、図2において、冷媒流入パイプ(11)の中心線(O2)が、仮想平面(P)と内管(3)外周面とが交わる点における内管(3)の接線と平行になっている。図2は、冷媒流入パイプ(11)の中心線(O2)が、中心線(O2)を含みかつ内管(3)の中心線(O1)と直交する1つの平面での断面を示し、中心線(O2)が前記平面上での内管(3)の接線と平行になっている。すなわち、冷媒流入パイプ(11)の中心線(O2)と、内管(3)における外管(2)の拡大部(7)内に存在する部分(3a)の中心線(O1)とが、外管(2)の外側(図2の右側)から見た場合に一定の角度をなしているとともに交差しておらず、冷媒流入パイプ(11)の中心線(O2)における内管(3)側への延長線が、内管(3)から径方向外方にずれている。   Therefore, the center line (O2) of the refrigerant inflow pipe (11) and the part of the inner pipe (3) facing the refrigerant inlet (9) of the outer pipe (2), that is, the enlarged part (7) of the outer pipe (2) The center line (O1) of the portion (3a) existing inside is perpendicular to the outer pipe (2) when viewed from the outside (right side in FIG. 2). In FIG. ) Is parallel to the tangent line of the inner tube (3) at the point where the virtual plane (P) and the outer surface of the inner tube (3) intersect. FIG. 2 shows a cross section in one plane in which the center line (O2) of the refrigerant inflow pipe (11) includes the center line (O2) and is orthogonal to the center line (O1) of the inner pipe (3). The line (O2) is parallel to the tangent of the inner tube (3) on the plane. That is, the center line (O2) of the refrigerant inflow pipe (11) and the center line (O1) of the portion (3a) existing in the enlarged portion (7) of the outer pipe (2) in the inner pipe (3) When viewed from the outside of the outer pipe (2) (right side in FIG. 2), the inner pipe (3) at a center angle (O2) of the refrigerant inflow pipe (11) forms a certain angle and does not intersect. The extension line to the side is displaced radially outward from the inner tube (3).

外管(2)の左端寄りの部分、すなわち左端よりも長さ方向の若干内側部分に、外管(2)の一部分が拡管されることにより拡管部(12)が形成されている。拡管部(12)の周壁(12a)に第1冷媒流路(4)に通じる冷媒出口(13)が形成されており、アルミニウム製冷媒流出パイプ(14)が、外管(2)の冷媒出口(13)に通じるように、周壁(12a)にろう付されている。ここでは、冷媒流出パイプ(14)の端部が、冷媒出口(13)内に挿入された状態で、周壁(12a)にろう付されている。   A part of the outer tube (2) is expanded at a portion closer to the left end of the outer tube (2), that is, a slightly inner portion in the length direction from the left end, thereby forming the expanded portion (12). A refrigerant outlet (13) communicating with the first refrigerant flow path (4) is formed in the peripheral wall (12a) of the expanded pipe (12), and the aluminum refrigerant outlet pipe (14) is connected to the refrigerant outlet of the outer pipe (2). The peripheral wall (12a) is brazed so as to lead to (13). Here, the end of the refrigerant outflow pipe (14) is brazed to the peripheral wall (12a) in a state of being inserted into the refrigerant outlet (13).

図2および図3に示すように、外管(2)の内周面に、径方向内方に突出しかつ長さ方向にのびる複数の凸条(15)が周方向に等間隔をおいて一体に設けられている。第1冷媒流路(4)における隣り合う凸条(15)間の間隙が流路部分(4A)となっている。そして、外管(2)の拡大部(7)内が、第1冷媒流路(4)の全流路部分(4A)を通じさせかつ冷媒流入パイプ(11)から外管(2)内に流入してきた冷媒を全流路部分(4A)に分流させる冷媒分流部となり、拡管部(12)内が、第1冷媒流路(4)の全流路部分(4A)を通じさせかつ全流路部分(4A)を流れてきた冷媒を合流させる冷媒合流部となっている。   As shown in FIGS. 2 and 3, a plurality of ridges (15) projecting inward in the radial direction and extending in the length direction are integrally formed on the inner peripheral surface of the outer tube (2) at equal intervals in the circumferential direction. Is provided. A gap between adjacent ridges (15) in the first refrigerant channel (4) is a channel portion (4A). Then, the inside of the enlarged portion (7) of the outer pipe (2) passes through the entire flow path portion (4A) of the first refrigerant flow path (4) and flows into the outer pipe (2) from the refrigerant inflow pipe (11). The refrigerant distribution part which divides the refrigerant that has flown into the whole flow path part (4A), and the inside of the expanded pipe part (12) is allowed to pass through the whole flow path part (4A) of the first refrigerant flow path (4) and the whole flow path part. It is a refrigerant junction part that joins the refrigerant that has flowed through (4A).

上述した二重管式熱交換器(1)は、たとえばコンプレッサ、凝縮部、気液分離器としての受液器および過冷却部を有するコンデンサと、エバポレータと、減圧器としての膨張弁とを備えた冷凍サイクルにおいて、コンデンサから出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交換器として用いられる。冷凍サイクルは、カーエアコンとして車両、たとえば自動車に搭載される。   The double pipe heat exchanger (1) described above includes, for example, a compressor, a condenser, a condenser having a liquid receiver as a gas-liquid separator and a supercooling part, an evaporator, and an expansion valve as a pressure reducer. In the refrigeration cycle, the refrigerant is used as an intermediate heat exchanger for exchanging heat between the refrigerant coming out of the condenser and the refrigerant coming out of the evaporator. The refrigeration cycle is mounted on a vehicle such as an automobile as a car air conditioner.

この冷凍サイクルの場合、二重管式熱交換器(1)の外管(2)に接続された冷媒流入パイプ(11)に、コンデンサの過冷却部からのびる配管が接続され、同じく外管(2)に接続された冷媒流出パイプ(14)に、膨張弁にのびる配管が接続される。また、二重管式熱交換器(1)の内管(3)における冷媒流出パイプ(14)側の端部に、エバポレータからのびる配管が接続され、同じく内管(3)における冷媒流入パイプ(13)側の端部に、コンプレッサにのびる配管が接続される。   In this refrigeration cycle, a pipe extending from the supercooling section of the condenser is connected to the refrigerant inflow pipe (11) connected to the outer pipe (2) of the double pipe heat exchanger (1), and the outer pipe ( A pipe extending to the expansion valve is connected to the refrigerant outflow pipe (14) connected to 2). In addition, a pipe extending from the evaporator is connected to the end of the inner pipe (3) of the double pipe heat exchanger (1) on the side of the refrigerant outflow pipe (14), and the refrigerant inflow pipe ( 13) A pipe extending to the compressor is connected to the end on the side.

冷凍サイクルの稼働時には、コンプレッサで圧縮された高温高圧の気液混相の冷媒は、コンデンサの凝縮部で冷却されて凝縮させられた後、受液器内に流入して気液2相に分離され、ついで過冷却部に流入して過冷却される。過冷却された液相冷媒は、冷媒流入パイプ(11)を通って二重管式熱交換器(1)の外管(2)の拡大部(7)内に流入し、拡大部(7)を経て第1冷媒流路(4)内に入る。このとき、冷媒流入パイプ(11)の中心線(O2)と、内管(3)における外管(2)の拡大部(7)内に存在する部分(3a)の中心線(O1)とが、外管(2)の外側(図2の右側)から見た場合に直角をなしており、冷媒流入パイプ(11)の中心線(O2)が、内管(3)の接線と平行になっていることから、冷媒流入パイプ(11)を通って拡大部(7)内に流入した冷媒が、内管(3)の外周面に沿ってその周方向に流れ(図2矢印X参照)、液相冷媒の偏流の発生が防止される。したがって、冷媒が、第1冷媒流路(4)内の周方向の全体に行き渡って全流路部分(4A)に流入することになり、第1冷媒流路(4)内での冷媒の流れが周方向に均一化される。その結果、第1冷媒流路(4)を流れる高温液相冷媒と、第2冷媒流路(5)を流れる後述する低温気相冷媒との熱交換効率が向上する。   During operation of the refrigeration cycle, the high-temperature and high-pressure gas-liquid mixed phase refrigerant compressed by the compressor is cooled and condensed by the condenser section of the condenser, and then flows into the receiver and is separated into two phases. Then, it flows into the supercooling section and is supercooled. The supercooled liquid-phase refrigerant flows into the enlarged portion (7) of the outer pipe (2) of the double-pipe heat exchanger (1) through the refrigerant inflow pipe (11), and the enlarged portion (7). It enters into the 1st refrigerant channel (4) via. At this time, the center line (O2) of the refrigerant inflow pipe (11) and the center line (O1) of the portion (3a) existing in the enlarged portion (7) of the outer pipe (2) in the inner pipe (3) When viewed from the outside of the outer pipe (2) (right side of Fig. 2), it is perpendicular, and the center line (O2) of the refrigerant inflow pipe (11) is parallel to the tangent of the inner pipe (3). Therefore, the refrigerant flowing into the enlarged portion (7) through the refrigerant inflow pipe (11) flows in the circumferential direction along the outer peripheral surface of the inner pipe (3) (see arrow X in FIG. 2), Occurrence of the drift of the liquid phase refrigerant is prevented. Accordingly, the refrigerant spreads over the entire circumferential direction in the first refrigerant flow path (4) and flows into all the flow path portions (4A), and the flow of the refrigerant in the first refrigerant flow path (4). Is made uniform in the circumferential direction. As a result, the efficiency of heat exchange between the high-temperature liquid-phase refrigerant flowing through the first refrigerant flow path (4) and the low-temperature gas-phase refrigerant described later flowing through the second refrigerant flow path (5) is improved.

一方、エバポレータから出てきた気相冷媒は、二重管式熱交換器(1)の第2冷媒流路(5)内に流入する。そして、液相冷媒が第1冷媒流路(4)内を流れる間に第2冷媒流路(5)内を流れる比較的低温の気相冷媒によりさらに冷却される。二重管式熱交換器(1)の第1冷媒流路(4)における隣接する凸条(15)間の全流路部分(4A)を通過した液相冷媒は、拡管部(12)において合流し、冷媒出口(13)および冷媒流出パイプ(14)を通って膨張弁に送られる。膨張弁に送られた液相冷媒は、膨張弁において断熱膨張させられて減圧された後エバポレータに流入し、エバポレータにおいて気化させられる。一方、二重管式熱交換器(1)の第2冷媒流路(5)を通過した気相冷媒はコンプレッサに送られる。   On the other hand, the gas-phase refrigerant that has come out of the evaporator flows into the second refrigerant flow path (5) of the double-pipe heat exchanger (1). Then, while the liquid-phase refrigerant flows in the first refrigerant channel (4), it is further cooled by the relatively low temperature gas-phase refrigerant flowing in the second refrigerant channel (5). The liquid-phase refrigerant that has passed through all the flow passage portions (4A) between adjacent ridges (15) in the first refrigerant flow passage (4) of the double tube heat exchanger (1) They are merged and sent to the expansion valve through the refrigerant outlet (13) and the refrigerant outflow pipe (14). The liquid-phase refrigerant sent to the expansion valve is adiabatically expanded and decompressed in the expansion valve, flows into the evaporator, and is vaporized in the evaporator. On the other hand, the gas-phase refrigerant that has passed through the second refrigerant flow path (5) of the double-pipe heat exchanger (1) is sent to the compressor.

図4は、外管(2)の拡大部の変形例を示す。   FIG. 4 shows a modification of the enlarged portion of the outer tube (2).

図4において、拡大部(20)の周壁(20a)に、内管(3)における拡大部(20)内に存在する部分(3a)の中心線(O1)が位置している1つの仮想平面(P)と平行になった平坦なパイプ接合部(21)が設けられている。拡大部(20)の周壁(20a)は大部分が円筒状であり、パイプ接合部(21)は、拡大部(20)の周壁(20a)の大部分が位置している円筒面よりも拡大部(20)の径方向内側に突出するように設けられている。パイプ接合部(21)に第1冷媒流路(4)に通じる冷媒入口(9)が形成されており、アルミニウム製冷媒流入パイプ(11)が、外管(2)の冷媒入口(9)に通じるように、パイプ接合部(21)にろう付されている。ここでは、冷媒流入パイプ(11)の端部が、冷媒入口(9)内に挿入された状態で、パイプ接合部(21)にろう付されている。   In FIG. 4, one virtual plane in which the center line (O1) of the portion (3a) existing in the enlarged portion (20) of the inner pipe (3) is located on the peripheral wall (20a) of the enlarged portion (20). A flat pipe joint (21) parallel to (P) is provided. The peripheral wall (20a) of the enlarged portion (20) is mostly cylindrical, and the pipe joint (21) is larger than the cylindrical surface on which the majority of the peripheral wall (20a) of the enlarged portion (20) is located. It is provided so as to protrude radially inward of the portion (20). A refrigerant inlet (9) leading to the first refrigerant flow path (4) is formed in the pipe joint (21), and an aluminum refrigerant inflow pipe (11) is connected to the refrigerant inlet (9) of the outer pipe (2). The pipe joint (21) is brazed so as to communicate. Here, the end of the refrigerant inflow pipe (11) is brazed to the pipe joint (21) while being inserted into the refrigerant inlet (9).

したがって、冷媒流入パイプ(11)の中心線(O2)と、内管(3)における外管(2)の拡大部(7)内に存在する部分(3a)の中心線(O1)とが、外管(2)の外側(図2の右側)から見た場合に直角をなしており、図4において、冷媒流入パイプ(11)の中心線(O2)が、仮想平面(P)と内管(3)外周面とが交わる点における内管(3)の接線と平行になっている。すなわち、冷媒流入パイプ(11)の中心線(O2)と、内管(3)における外管(2)の拡大部(7)内に存在する部分(3a)の中心線(O1)とが、外管(2)の外側(図2の右側)から見た場合に一定の角度をなしているとともに交差しておらず、冷媒流入パイプ(11)の中心線(O2)における内管(3)側への延長線が、内管(3)から径方向外方にずれている。   Therefore, the center line (O2) of the refrigerant inflow pipe (11) and the center line (O1) of the portion (3a) existing in the enlarged portion (7) of the outer pipe (2) in the inner pipe (3) When viewed from the outside (right side of FIG. 2) of the outer pipe (2), it is at a right angle. In FIG. 4, the center line (O2) of the refrigerant inflow pipe (11) is the virtual plane (P) and the inner pipe. (3) It is parallel to the tangent of the inner tube (3) at the point where the outer peripheral surface intersects. That is, the center line (O2) of the refrigerant inflow pipe (11) and the center line (O1) of the portion (3a) existing in the enlarged portion (7) of the outer pipe (2) in the inner pipe (3) When viewed from the outside of the outer pipe (2) (right side in FIG. 2), the inner pipe (3) at a center angle (O2) of the refrigerant inflow pipe (11) forms a certain angle and does not intersect. The extension line to the side is displaced radially outward from the inner tube (3).

図4に示す拡大部(20)を備えている場合にも、冷媒流入パイプ(11)を通って拡大部(20)内に流入した冷媒が、内管(3)の外周面に沿ってその周方向に流れ(図4矢印X参照)、液相冷媒の偏流の発生が防止される。したがって、冷媒が、第1冷媒流路(4)内の周方向の全体に行き渡って全流路部分(4A)に流入することになり、第1冷媒流路(4)内での冷媒の流れが周方向に均一化される。その結果、第1冷媒流路(4)を流れる高温液相冷媒と、第2冷媒流路(5)を流れる後述する低温気相冷媒との熱交換効率が向上する。   Even when the enlarged portion (20) shown in FIG. 4 is provided, the refrigerant flowing into the enlarged portion (20) through the refrigerant inflow pipe (11) flows along the outer peripheral surface of the inner pipe (3). Flowing in the circumferential direction (see arrow X in FIG. 4) prevents the occurrence of liquid refrigerant flow. Accordingly, the refrigerant spreads over the entire circumferential direction in the first refrigerant flow path (4) and flows into all the flow path portions (4A), and the flow of the refrigerant in the first refrigerant flow path (4). Is made uniform in the circumferential direction. As a result, the efficiency of heat exchange between the high-temperature liquid-phase refrigerant flowing through the first refrigerant flow path (4) and the low-temperature gas-phase refrigerant described later flowing through the second refrigerant flow path (5) is improved.

この発明による二重管式熱交換器は、コンプレッサ、凝縮部と過冷却部とを有するコンデンサ、エバポレータ、減圧器としての膨張弁、気液分離器、およびコンデンサとエバポレータとの間に配置され、かつコンデンサの過冷却部から出てきた高温の冷媒とエバポレータから出てきた低温の冷媒とを熱交換させる中間熱交換器を備えたカーエアコンを構成する冷凍サイクルにおいて、中間熱交換器として好適に用いられる。   The double pipe heat exchanger according to the present invention is disposed between a compressor, a condenser having a condensing part and a supercooling part, an evaporator, an expansion valve as a decompressor, a gas-liquid separator, and the condenser and the evaporator, In a refrigeration cycle that constitutes a car air conditioner having an intermediate heat exchanger that exchanges heat between the high-temperature refrigerant that has come out of the condenser supercooling section and the low-temperature refrigerant that has come out of the evaporator, it is suitable as an intermediate heat exchanger Used.

(1):二重管式熱交換器
(2):外管
(3):内管
(4):第1冷媒流路
(5):第2冷媒流路
(7)(20):拡大部
(7a)(20a):周壁
(8)(21):パイプ接合部
(9):冷媒入口
(11):冷媒流入パイプ
(O1):内管における外管の冷媒入口が臨んだ部分の中心線
(O2):冷媒流入パイプの中心線
(P):内管における拡大部内に存在する部分の中心線が位置している1つの仮想平面
(1): Double tube heat exchanger
(2): Outer pipe
(3): Inner pipe
(4): First refrigerant flow path
(5): Second refrigerant flow path
(7) (20): Enlarged part
(7a) (20a): Perimeter wall
(8) (21): Pipe joint
(9): Refrigerant inlet
(11): Refrigerant inlet pipe
(O1): Center line of the inner pipe facing the refrigerant inlet of the outer pipe
(O2): Center line of refrigerant inflow pipe
(P): One virtual plane in which the center line of the portion existing in the enlarged portion of the inner pipe is located

Claims (2)

外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙が第1冷媒流路となるとともに内管内が第2冷媒流路となっており、外管に第1冷媒流路に通じる冷媒入口が形成されるとともに、第1冷媒流路内に冷媒を送り込む冷媒流入パイプが、冷媒入口に通じるように外管に接合されており、冷媒流入パイプにおける冷媒入口側端部からの一定の長さ部分が直線状である二重管式熱交換器であって、
冷媒流入パイプにおける冷媒入口側の直線状部分の中心線と、内管における外管の冷媒入口が臨んだ部分の中心線とが、外管の径方向外方から見た場合に一定の角度をなすとともに交差しておらず、冷媒流入パイプの前記直線状部分の中心線における内管側への延長線が、内管から径方向外方にずれており、
外管の一端部に、他の部分に比較して外側に広がりかつ周壁の大部分が円筒状となった拡大部が設けられており、拡大部の周壁に、内管における拡大部内に存在する部分の中心線が位置している1つの仮想平面と平行になった平坦なパイプ接合部が、外管の拡大部の周壁の大部分が位置している円筒面よりも拡大部の径方向内側に突出するように設けられている二重管式熱交換器。
An outer pipe and an inner pipe arranged at intervals in the outer pipe are provided, and a gap between the outer pipe and the inner pipe serves as a first refrigerant flow path, and the inner pipe serves as a second refrigerant flow path. In addition, a refrigerant inlet that leads to the first refrigerant flow path is formed in the outer pipe, and a refrigerant inflow pipe that sends the refrigerant into the first refrigerant flow path is joined to the outer pipe so as to lead to the refrigerant inlet, A double-tube heat exchanger in which a certain length from the refrigerant inlet side end of the inflow pipe is straight,
The center line of the straight portion on the refrigerant inlet side of the refrigerant inlet pipe and the center line of the portion of the inner pipe facing the refrigerant inlet of the outer pipe form a fixed angle when viewed from the outside in the radial direction of the outer pipe. The extension line to the inner pipe side in the center line of the linear portion of the refrigerant inflow pipe is shifted radially outward from the inner pipe ,
One end portion of the outer tube is provided with an enlarged portion that extends outward as compared with other portions and has a cylindrical portion of the peripheral wall, and exists in the enlarged portion of the inner tube on the peripheral wall of the enlarged portion. The flat pipe joint parallel to one imaginary plane where the center line of the part is located is radially inward of the enlarged part from the cylindrical surface on which most of the peripheral wall of the enlarged part of the outer pipe is located A double-pipe heat exchanger that is provided so as to protrude .
冷媒流入パイプの前記直線状部分の中心線と、内管における外管の冷媒入口が臨んだ部分の中心線とが、外管の径方向外方から見た場合に直角をなしている請求項1記載の二重管式熱交換器。 The center line of the straight portion of the refrigerant inflow pipe and the center line of the portion of the inner pipe facing the refrigerant inlet of the outer pipe form a right angle when viewed from the outside in the radial direction of the outer pipe. 2. The double-pipe heat exchanger according to 1.
JP2012059953A 2012-03-16 2012-03-16 Double tube heat exchanger Expired - Fee Related JP5899013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012059953A JP5899013B2 (en) 2012-03-16 2012-03-16 Double tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059953A JP5899013B2 (en) 2012-03-16 2012-03-16 Double tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2013194940A JP2013194940A (en) 2013-09-30
JP5899013B2 true JP5899013B2 (en) 2016-04-06

Family

ID=49394139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059953A Expired - Fee Related JP5899013B2 (en) 2012-03-16 2012-03-16 Double tube heat exchanger

Country Status (1)

Country Link
JP (1) JP5899013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6651692B2 (en) * 2016-06-10 2020-02-19 株式会社ヴァレオジャパン Double tube internal heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306398A (en) * 1987-06-05 1988-12-14 Mitsubishi Electric Corp Heat exchanger
JP2006003071A (en) * 2004-05-20 2006-01-05 Showa Denko Kk Heat exchanger
JP4987685B2 (en) * 2007-12-19 2012-07-25 三菱電機株式会社 Double tube heat exchanger, method for manufacturing the same, and heat pump system including the same
EP2431091A1 (en) * 2009-04-17 2012-03-21 Nisso Engineering Co., Ltd. Tubular flow type reactor

Also Published As

Publication number Publication date
JP2013194940A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
US8590604B2 (en) Double-wall-tube heat exchanger
US20090166019A1 (en) Double-wall-tube heat exchanger
KR101317377B1 (en) Condenser for vehicle
JP2009204166A (en) Double pipe heat exchanger
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2009162396A (en) Double-wall-tube heat exchanger
JP5812997B2 (en) Condenser with refrigeration cycle and supercooling section
JP2014224670A (en) Double-pipe heat exchanger
JP5898892B2 (en) Intermediate heat exchanger
JP2009041798A (en) Heat exchanger
JP6574630B2 (en) Double tube heat exchanger
JP5899013B2 (en) Double tube heat exchanger
JP2011191034A (en) Dual-pipe heat exchanger
JP5202029B2 (en) Double tube heat exchanger
JP2011149636A (en) Air conditioner
JP2010139196A (en) Heat exchanger
JP2009216285A (en) Double-tube heat exchanger
JP2014095482A (en) Double-pipe heat exchanger
JP2016217565A (en) Condenser
JP2014035169A (en) Intermediate heat exchanger
KR102086378B1 (en) Cooling system for vehicle
WO2012108112A1 (en) Refrigeration cycle device
JP6651692B2 (en) Double tube internal heat exchanger
JP2015017762A (en) Double-tube type heat exchanger
JP2008075896A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5899013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees