JPS63306398A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS63306398A
JPS63306398A JP14183387A JP14183387A JPS63306398A JP S63306398 A JPS63306398 A JP S63306398A JP 14183387 A JP14183387 A JP 14183387A JP 14183387 A JP14183387 A JP 14183387A JP S63306398 A JPS63306398 A JP S63306398A
Authority
JP
Japan
Prior art keywords
refrigerant
header
heat exchanger
inlet pipe
annular chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14183387A
Other languages
Japanese (ja)
Inventor
Junichi Kita
北 純一
Takashi Shiga
隆司 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14183387A priority Critical patent/JPS63306398A/en
Publication of JPS63306398A publication Critical patent/JPS63306398A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Abstract

PURPOSE:To allow an even influx of refrigerant to effectively use respective refrigerant passages by orienting the opening of a refrigerant inlet pipe toward the circumferential direction of an annular chamber formed by a header. CONSTITUTION:An inlet header 10 forms an annular chamber 22 connected to refrigerant passages 8 at an end of an outer pipe 9 fitted over an inner pipe 6 in which heating medium passes. Since the opening 24 of a refrigerant inlet pipe 23 is oriented toward the circumferential direction of the annular chamber 22, the refrigerant entering from the opening 24 into the header 10 spirals along the inner surface of the header 10 and the outer surface of the inner pipe 6 without colliding the inner pipe 6. Therefore, the refrigerant can evenly enter independent and separate refrigerant passages 8. In this way, by effectively using the refrigerant passages to enhance the refrigerant capacity, the heat exchanger can be miniaturized, and the manufacturing cost of refrigerating device can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば冷凍装置等に用いられ、内管に熱媒体を
流通させ、外管に冷媒を流通させて熱交換を行わせる熱
交換器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a heat exchanger that is used, for example, in a refrigeration system, and performs heat exchange by circulating a heat medium through an inner tube and circulating a refrigerant through an outer tube. It is related to.

〔従来の技術〕[Conventional technology]

第7図は従来の熱交換器が用いられた冷凍装置を示す冷
媒回路図であり、冷凍装置は、ガス冷媒を吸入し圧縮し
て吐出する圧縮機1と、送風機2により強制空冷される
空冷式の凝縮器3と、凝縮された冷媒を減圧する絞り装
置4と、蒸発器として機能して水を冷却する熱交換器5
などからなる。
FIG. 7 is a refrigerant circuit diagram showing a refrigeration system using a conventional heat exchanger. a condenser 3 of the type, a throttle device 4 that reduces the pressure of the condensed refrigerant, and a heat exchanger 5 that functions as an evaporator to cool the water.
Consists of etc.

熱交換器5は第8図に一部断面図を示し、第9図に第8
図のIX−IX線断面図を示すように、熱媒体としての
水が流通する内管6と、この内管6に嵌装され内管6と
の間に放射状に配設された複数個の伝熱フィン7・・に
よって画成された複数個の冷媒流通路8・・を形成する
外管9などからコイル状に形成されており、外管9の両
端部に固着接続された入口ヘッダー10および出口ヘッ
ダー11には、冷媒入口管12および冷媒出口管13が
ヘッダーと直交するように接続されている。
A partial sectional view of the heat exchanger 5 is shown in FIG.
As shown in the cross-sectional view taken along the line IX-IX in the figure, an inner tube 6 through which water as a heat medium flows, and a plurality of tubes fitted in the inner tube 6 and disposed radially between the inner tube 6 and the inner tube 6. An inlet header 10 is formed into a coil shape from an outer tube 9 forming a plurality of refrigerant flow passages 8 defined by heat transfer fins 7, etc., and is fixedly connected to both ends of the outer tube 9. A refrigerant inlet pipe 12 and a refrigerant outlet pipe 13 are connected to the outlet header 11 so as to be perpendicular to the header.

したがって、圧縮機1を駆動すると圧縮機1から吐出さ
れた高温高圧のガス冷媒が矢印方向に循環するために熱
交換器5において水が冷却される。
Therefore, when the compressor 1 is driven, the high temperature and high pressure gas refrigerant discharged from the compressor 1 circulates in the direction of the arrow, so that water is cooled in the heat exchanger 5.

すなわち、圧縮機1から吐出されたガス冷媒は、凝縮器
3で強制空冷されてi縮し高温高圧の液冷媒となる。こ
の液冷媒は絞り装置4に導かれ、ここで減圧されて低温
低圧の気液混合冷媒となり、冷媒入口管12から熱交換
器5に流入する。そして、それぞれ独立した冷媒流通路
8・・に分配されて冷媒流通路8・・を流通するが、こ
のとき、内管6内を流通する水等の流体との間において
熱交換がなされる。その結果、吸熱して気化し、冷媒出
口管13から圧縮機1へ戻される。
That is, the gas refrigerant discharged from the compressor 1 is forcedly air-cooled in the condenser 3 and condensed to become a high-temperature, high-pressure liquid refrigerant. This liquid refrigerant is led to the expansion device 4, where it is depressurized to become a low-temperature, low-pressure gas-liquid mixed refrigerant, which flows into the heat exchanger 5 through the refrigerant inlet pipe 12. Then, the refrigerant is distributed into independent refrigerant flow passages 8 and flows through the refrigerant flow passages 8. At this time, heat exchange is performed with a fluid such as water flowing within the inner tube 6. As a result, the refrigerant absorbs heat, vaporizes, and is returned to the compressor 1 through the refrigerant outlet pipe 13.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のこの種の熱交換器においては、入口ヘッ
ダ−10に冷媒入口管12が略直交するように接続され
ているために、冷媒入口管12から流入した気液混合冷
媒は、流入した直後に内管6に衝突する。そのため、冷
媒の流れが乱され、内管6によって冷媒の流入が妨げら
れた反冷媒入口管12例の部分においては冷媒量が著し
く少なくなり、各冷媒流通路8・・には平均的には冷媒
が流入しなくなる。その結果、冷凍能力が低下するとい
う不具合があった。すなわち、冷媒が不足している冷媒
流通路8においては伝熱面積が減少したことになり、熱
交換器全体としては冷媒の気化が十分には行われないか
らである。
However, in a conventional heat exchanger of this type, since the refrigerant inlet pipe 12 is connected to the inlet header 10 so as to be substantially perpendicular to the inlet header 10, the gas-liquid mixed refrigerant flowing from the refrigerant inlet pipe 12 is It immediately collides with the inner pipe 6. Therefore, the flow of refrigerant is disturbed and the amount of refrigerant decreases significantly in the portion of the anti-refrigerant inlet pipe 12 where the inflow of refrigerant is blocked by the inner pipe 6, and on average there is Refrigerant will no longer flow. As a result, there was a problem that the refrigerating capacity was reduced. That is, the heat transfer area is reduced in the refrigerant flow path 8 where there is a shortage of refrigerant, and the refrigerant is not sufficiently vaporized in the heat exchanger as a whole.

本発明はこのような事情に鑑みなされたもので、その目
的は、冷凍能力が低下するのを防止することができる熱
交換器を提供するものである。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a heat exchanger that can prevent the refrigerating capacity from decreasing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る熱交換器は、ヘッダーに接続され冷媒をヘ
ッダーで形成した環状室に流入させる冷媒入口管の開口
部を、環状室の円周方向に向けて開口したものである。
In the heat exchanger according to the present invention, the opening of the refrigerant inlet pipe connected to the header and allowing the refrigerant to flow into the annular chamber formed by the header is opened toward the circumferential direction of the annular chamber.

〔作用〕[Effect]

本発明においては、冷媒入口管の開口部から流出した冷
媒は、ヘッダーの内周面および内管の外周面に沿って円
周方向に円滑に流れるので、冷媒流通路に平均的に流入
するようになる。
In the present invention, the refrigerant flowing out from the opening of the refrigerant inlet pipe flows smoothly in the circumferential direction along the inner peripheral surface of the header and the outer peripheral surface of the inner pipe, so that the refrigerant flows evenly into the refrigerant flow path. become.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により詳細に説明する。第
1図は本発明に係る熱交換器の要部を示す一部断面図、
第2図は第1図の■−■断面図、第3図は第1図の■−
■線断面図で、これらの図において符号21で示すもの
は熱交換器を示し、この熱交換器21は、従来のものは
同様に、熱媒体としての水が流通する内管6と、この内
管6に嵌装され内管6との間に放射状に配設された複数
個の伝熱フィン7・・によって画成された複数個の冷媒
流通路8・・を形成する外管9などからコイル状に形成
されている。10および11は前記内管6に嵌装され外
管9の端部に前記冷媒流通路8・・に連通された環状室
22を形成する入ロヘフダーおよび出口ヘッダーである
。これらヘッダーの一端は内管6の外周面に気密に固着
され、他端は外筒9の外周面に気密に固着されている。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial sectional view showing the main parts of a heat exchanger according to the present invention;
Figure 2 is a sectional view taken from ■-■ in Figure 1, and Figure 3 is a cross-sectional view taken from ■-■ in Figure 1.
■ In the line sectional views, the reference numeral 21 in these figures indicates a heat exchanger, and this heat exchanger 21, like the conventional one, has an inner tube 6 through which water as a heat medium flows, and this heat exchanger 21. An outer tube 9 that forms a plurality of refrigerant flow passages 8 defined by a plurality of heat transfer fins 7 fitted into the inner tube 6 and arranged radially between the inner tube 6 and the like. It is formed into a coil shape. Reference numerals 10 and 11 designate an inlet header and an outlet header that are fitted into the inner tube 6 and form an annular chamber 22 at the end of the outer tube 9 that communicates with the refrigerant flow passage 8 . One end of these headers is hermetically fixed to the outer circumferential surface of the inner tube 6, and the other end is hermetically fixed to the outer circumferential surface of the outer tube 9.

13は出口ヘッダ−11に接続された冷媒出口管であり
、これらの部材は従来のものと何ら変わるところが、な
い。
13 is a refrigerant outlet pipe connected to the outlet header 11, and these members are no different from conventional ones.

23は入口ヘッダ−10に接続された本発明の要部とな
る冷媒入口管であり、開口部24は前記環状室22の円
周方向に向けて開口されている。
Reference numeral 23 denotes a refrigerant inlet pipe connected to the inlet header 10 and serving as a main part of the present invention, and an opening 24 is opened toward the circumferential direction of the annular chamber 22.

本実施例においては、冷媒入口管23はその軸線が入口
ヘッダ−10の軸線と直交するように接続されており、
冷媒流出側端部を入口ヘッダ=IOの軸線と平行に延在
する平面であってかつ冷媒入口管23め軸線に対して傾
斜した平面で切断することによって形成されている。そ
して、開口部24の先端部24aが内管6の外周面に接
触するように接続されている。なお、冷媒入口管23は
必ずしも入口ヘッダ−10に対して直交させる必要はな
く、僅かに傾斜させるようにしてもよい。
In this embodiment, the refrigerant inlet pipe 23 is connected so that its axis is orthogonal to the axis of the inlet header 10,
It is formed by cutting the refrigerant outflow side end with a plane that extends parallel to the axis of the inlet header IO and is inclined with respect to the axis of the refrigerant inlet pipe 23. The tip end 24a of the opening 24 is connected to the outer circumferential surface of the inner tube 6 so as to be in contact therewith. Note that the refrigerant inlet pipe 23 does not necessarily have to be orthogonal to the inlet header 10, and may be slightly inclined.

このように構成された熱交換器21は、第7図に示した
ように冷凍装置に使用され、冷媒入口管23から入口ヘ
ッダ−10内に流入し冷媒流通路8を流通する冷媒によ
って、内管6内を流通する水を冷却することができる。
The heat exchanger 21 configured in this way is used in a refrigeration system as shown in FIG. Water flowing through the pipe 6 can be cooled.

そして、冷媒入口管23の開口部24を環状室22の円
周方向に向けて開口したから、開口部24から流出し入
口ヘッダー10内に流入した冷媒を、入口ヘッダ−10
の内周面および内管6の外周面に沿って円周方向に円滑
に流すことができる。
Since the opening 24 of the refrigerant inlet pipe 23 is opened in the circumferential direction of the annular chamber 22, the refrigerant flowing out from the opening 24 and flowing into the inlet header 10 is transferred to the inlet header 10.
The liquid can flow smoothly in the circumferential direction along the inner circumferential surface of the inner tube 6 and the outer circumferential surface of the inner tube 6.

換言すれば、入口ヘッダ−10内に流入した冷媒を、内
管6に衝突させることな(第1図中矢印で示すように螺
旋状に回転させながら流すことができる。したがって、
冷媒を個々に独立している複数個の冷媒流通路8・・に
平均的に流入させることができる。その結果、各冷媒流
通路8・・をそれぞれ有効的に使用して冷媒を気化させ
ることができる。
In other words, the refrigerant flowing into the inlet header 10 can flow while rotating in a spiral shape as shown by the arrow in FIG. 1 without colliding with the inner pipe 6.
The refrigerant can evenly flow into the plurality of independent refrigerant flow passages 8. As a result, each refrigerant flow path 8 can be effectively used to vaporize the refrigerant.

第4図は第2の実施例を示す冷媒入口管23の斜視図で
、この実施例においては、冷媒入口管23の端部を、段
差部31を有する階段状に切断することによって開口部
24が形成されている。このような実施例においても、
冷媒入口管23は先端部24aが内管6の外周面に接触
するまで挿入するように接続され、開口部24から流出
した冷媒を螺旋状に流すことができる。
FIG. 4 is a perspective view of a refrigerant inlet pipe 23 showing a second embodiment. In this embodiment, the end of the refrigerant inlet pipe 23 is cut into a step shape having a stepped portion 31, so that an opening 24 is formed. is formed. Even in such an example,
The refrigerant inlet pipe 23 is connected so as to be inserted until the tip 24a contacts the outer peripheral surface of the inner pipe 6, and the refrigerant flowing out from the opening 24 can flow in a spiral shape.

このように本発明は冷媒入口管23の開口部24を環状
室22の円周方向に向けることによって冷媒が円滑に流
れるようにしたことをその内容とするものであるから、
上述したように開口部24を特殊な形状にするものに限
定されるものではなく、例えば第5図および第6図に第
3の実施例を示すように、入口ヘッダ−10の冷媒入口
管23が接続される接続部32をヘッダの直径方向に対
して傾斜させるように加工し、冷媒入口管23を、その
軸線33が環状室22の円周方向を指向するように傾斜
させるようにしてもよい。ここで、冷媒入口管23は軸
線33を内管6の外周面における接線と略等しくなるよ
うにするのが好ましい。
As described above, the present invention aims to allow the refrigerant to flow smoothly by orienting the opening 24 of the refrigerant inlet pipe 23 in the circumferential direction of the annular chamber 22.
As described above, the opening 24 is not limited to a special shape; for example, as shown in the third embodiment shown in FIGS. 5 and 6, the refrigerant inlet pipe 23 of the inlet header 10 The connecting portion 32 to which is connected may be processed to be inclined with respect to the diametrical direction of the header, and the refrigerant inlet pipe 23 may be inclined so that its axis 33 is oriented in the circumferential direction of the annular chamber 22. good. Here, it is preferable that the axis 33 of the refrigerant inlet pipe 23 be substantially equal to the tangent to the outer peripheral surface of the inner pipe 6.

このような実施例においても、冷媒入口管23から入口
ヘッダ−10内に流入した冷媒は第5図中矢印で示すよ
うに環状室22を円滑に螺旋状に流れるために、平均的
に冷媒流通路8内に流入するようになる。なお、冷媒入
口管23の端部を冷媒入口管23の軸線と直交する方向
に切断して開口部24を形成しているが、必ずしもこの
ように切断する必要はなく、軸線と直交する面に対して
傾斜させた面によって切断してもよい。
Even in such an embodiment, the refrigerant flowing into the inlet header 10 from the refrigerant inlet pipe 23 smoothly flows spirally through the annular chamber 22 as shown by the arrow in FIG. The liquid then flows into the channel 8. Although the opening 24 is formed by cutting the end of the refrigerant inlet pipe 23 in a direction perpendicular to the axis of the refrigerant inlet pipe 23, it is not always necessary to cut it in this way, and the end can be cut in a direction perpendicular to the axis of the refrigerant inlet pipe 23. It may also be cut by a surface that is inclined with respect to the surface.

なお、上記実施例においては空冷式の冷凍装置に実施し
た例について説明したが、本発明はこれに限定されるも
のではなく、水冷式や、ヒートポンプ式の冷凍装置にも
実施することができ、同様な作用効果が得られる。
In addition, although the above-mentioned example was explained as an example implemented in an air-cooled type refrigeration system, the present invention is not limited to this, and can also be implemented in a water-cooled type or a heat pump type refrigeration system. Similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ヘッダーに接続さ
れ冷媒をヘッダーで形成した環状室に流入させる冷媒入
口管の開口部を、環状室の円周方向に向けて開口したか
ら、冷媒入口管の開口部から流入した冷媒を、ヘッダー
の内周面および内管の外周面に沿って円周方向に円滑に
流すことができる。
As explained above, according to the present invention, the opening of the refrigerant inlet pipe that is connected to the header and allows the refrigerant to flow into the annular chamber formed by the header is opened toward the circumferential direction of the annular chamber. The refrigerant flowing in from the opening can smoothly flow in the circumferential direction along the inner circumferential surface of the header and the outer circumferential surface of the inner tube.

したがって、冷媒を冷媒流通路に平均的に流入させ、各
冷媒流通路をそれぞれ有効的に使用することができるか
ら、冷凍能力が低下するのを防止することができる。換
言すれば、従来有効に利用されてなかった冷媒流通路を
有効に利用することができるから、従来のものに比較し
て相対的に冷凍能力を高めることが可能になり、その分
だけ熱交換器を小型化することも可能になる。その結果
、冷凍装置に実施すれば、冷凍装置を小型化し冷凍装置
の製造コストの低減も期待できる。
Therefore, the refrigerant is allowed to flow into the refrigerant flow passages evenly, and each refrigerant flow passage can be used effectively, so that it is possible to prevent the refrigerating capacity from decreasing. In other words, it is possible to effectively utilize refrigerant flow paths that were not used effectively in the past, making it possible to increase the refrigerating capacity relatively compared to conventional ones, and the heat exchange rate increases accordingly. It also becomes possible to downsize the device. As a result, if applied to a refrigeration system, it can be expected to downsize the refrigeration system and reduce the manufacturing cost of the refrigeration system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る熱交換器の要部を示す一部断面図
、第2図は第1図のn−n断面図、第3図は第1図のm
−m線断面図、第4図は第2の実施例を示す冷媒入口管
の斜視図、第5図は第3の実施例を示す熱交換器要部の
一部断面図、第6図は第5図のVI−Vl線断面図、第
7図は従来の熱交換器が用いられた冷凍装置を示す冷媒
回路図、第8図は従来の熱交換器を示す一部断面図、第
9図は第8図のIX−IX線断面図である。 6・・・・内管、8・・・・冷媒流通路、9・・・・外
管、10・・・・入ロヘソグー、21・・・・熱交換器
、22・・・・環状室、23・・・・冷媒入口管、24
・・・・開口部。
FIG. 1 is a partial sectional view showing the main parts of a heat exchanger according to the present invention, FIG. 2 is a sectional view taken along line nn in FIG. 1, and FIG.
4 is a perspective view of the refrigerant inlet pipe showing the second embodiment, FIG. 5 is a partial sectional view of the main part of the heat exchanger showing the third embodiment, and FIG. FIG. 5 is a sectional view taken along line VI-Vl, FIG. 7 is a refrigerant circuit diagram showing a refrigeration system using a conventional heat exchanger, FIG. 8 is a partial sectional view showing a conventional heat exchanger, and FIG. The figure is a sectional view taken along line IX-IX in FIG. 6... Inner pipe, 8... Refrigerant flow path, 9... Outer tube, 10... Inner tube, 21... Heat exchanger, 22... Annular chamber, 23... Refrigerant inlet pipe, 24
····Aperture.

Claims (2)

【特許請求の範囲】[Claims] (1)熱媒体が流通する内管と、この内管に嵌装され内
管との間に放射状に配設された複数個の伝熱フィンによ
って画成された複数個の冷媒通路を形成する外管と、前
記内管に嵌装され外管の端部に前記冷媒流通路に連通さ
れた環状室を形成するヘッダーとを備えた熱交換器にお
いて、前記ヘッダーに接続され冷媒を前記環状室に流入
させる冷媒入口管の開口部を、環状室の円周方向に向け
て開口したことを特徴とする熱交換器。
(1) Forming a plurality of refrigerant passages defined by an inner tube through which the heat medium flows and a plurality of heat transfer fins fitted into the inner tube and arranged radially between the inner tube. A heat exchanger comprising: an outer tube; and a header that is fitted into the inner tube and forms an annular chamber at an end of the outer tube that communicates with the refrigerant flow passage; A heat exchanger characterized in that an opening of a refrigerant inlet pipe into which a refrigerant flows is opened toward the circumferential direction of an annular chamber.
(2)冷媒入口管は、その軸線が環状室の円周方向を指
向するように傾斜されていることを特徴とする特許請求
の範囲第1項記載の熱交換器。
(2) The heat exchanger according to claim 1, wherein the refrigerant inlet pipe is inclined so that its axis is directed in the circumferential direction of the annular chamber.
JP14183387A 1987-06-05 1987-06-05 Heat exchanger Pending JPS63306398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14183387A JPS63306398A (en) 1987-06-05 1987-06-05 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14183387A JPS63306398A (en) 1987-06-05 1987-06-05 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS63306398A true JPS63306398A (en) 1988-12-14

Family

ID=15301196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14183387A Pending JPS63306398A (en) 1987-06-05 1987-06-05 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS63306398A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098704A (en) * 1997-06-06 2000-08-08 Denso Corporation Heat exchanger having a double pipe construction and method for manufacturing the same
CN100346128C (en) * 2005-09-09 2007-10-31 张泽和 Apparatus for raising heat exchange effect and boiler and radiator utilizing the same apparatus
JP2009150573A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Double pipe type heat exchanger, its manufacturing method, and heat pump system comprising the same
JP2011117710A (en) * 2009-11-30 2011-06-16 Hyundai Motor Co Ltd Liquid supercooling system
JP2013194940A (en) * 2012-03-16 2013-09-30 Keihin Thermal Technology Corp Double-pipe heat exchanger
EP4113036A4 (en) * 2020-03-12 2023-08-09 Zhejiang Dunan Artificial Environment Co., Ltd. Three-way pipe, heat exchanger, heat exchanger assembly and refrigeration apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098704A (en) * 1997-06-06 2000-08-08 Denso Corporation Heat exchanger having a double pipe construction and method for manufacturing the same
CN100346128C (en) * 2005-09-09 2007-10-31 张泽和 Apparatus for raising heat exchange effect and boiler and radiator utilizing the same apparatus
JP2009150573A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Double pipe type heat exchanger, its manufacturing method, and heat pump system comprising the same
JP2011117710A (en) * 2009-11-30 2011-06-16 Hyundai Motor Co Ltd Liquid supercooling system
JP2013194940A (en) * 2012-03-16 2013-09-30 Keihin Thermal Technology Corp Double-pipe heat exchanger
EP4113036A4 (en) * 2020-03-12 2023-08-09 Zhejiang Dunan Artificial Environment Co., Ltd. Three-way pipe, heat exchanger, heat exchanger assembly and refrigeration apparatus

Similar Documents

Publication Publication Date Title
US6253573B1 (en) High efficiency refrigeration system
KR20010030262A (en) Combined evaporator/accumulator/suction line heat exchanger
MX2007009247A (en) Parallel flow heat exchanger for heat pump applications.
JPH09170832A (en) Refrigerating cycle device having two evaporation temperature
US11892206B2 (en) Heat exchanger and refrigeration cycle apparatus
JPS63306398A (en) Heat exchanger
US4175617A (en) Skewed turn coiled tube heat exchanger for refrigerator evaporators
US6289691B1 (en) Refrigerator
JP2644900B2 (en) Heat exchanger
JPH04186079A (en) Refrigerator
US11852386B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2574488B2 (en) Heat exchanger
KR20020078806A (en) Heat exchanger
JPH01210798A (en) Heat exchanger
JPH0250059A (en) Evaporator
JP2687593B2 (en) Refrigerant condenser
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JP2647098B2 (en) Shell tube heat exchanger
JPH0449495Y2 (en)
JP2000055509A (en) Heat exchanger for air conditioner
JPH11270980A (en) Heat transfer pipe for evaporator
JPS6240287Y2 (en)
KR100396836B1 (en) Condenser for air conditioner
KR100683823B1 (en) Air-conditioning and heating unit of a multi-cold media pipe
JP2004037010A (en) Heat exchanger