JP2007326141A - Method of manufacturing spiral multistage type heat exchanger and spiral multistage type heat exchanger - Google Patents

Method of manufacturing spiral multistage type heat exchanger and spiral multistage type heat exchanger Download PDF

Info

Publication number
JP2007326141A
JP2007326141A JP2006161341A JP2006161341A JP2007326141A JP 2007326141 A JP2007326141 A JP 2007326141A JP 2006161341 A JP2006161341 A JP 2006161341A JP 2006161341 A JP2006161341 A JP 2006161341A JP 2007326141 A JP2007326141 A JP 2007326141A
Authority
JP
Japan
Prior art keywords
spiral
heat exchanger
peripheral side
tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006161341A
Other languages
Japanese (ja)
Other versions
JP4699945B2 (en
Inventor
Takahiko Kawai
孝彦 河合
Takehiro Hayashi
毅浩 林
Takashi Kanetani
隆 金谷
Mitsusada Hayakawa
満貞 早川
Hideki Mori
秀樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006161341A priority Critical patent/JP4699945B2/en
Publication of JP2007326141A publication Critical patent/JP2007326141A/en
Application granted granted Critical
Publication of JP4699945B2 publication Critical patent/JP4699945B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a spiral multistage type heat exchanger by which the entire length is continuously wound without relaying connection and productivity is improved. <P>SOLUTION: In the method of manufacturing the spiral multistage type heat exchanger which has a first heat transfer tube in which a first fluid flows and a second heat transfer tube in which a second fluid flows and by which a combined tube in which the second heat transfer tube is wound around the outer periphery of the first heat transfer tube is formed into a planar spiral shape and it is piled up in the multistage, the combined tube is bent from the outer peripheral side of the spiral shape toward the inner peripheral side and, after the bending reaches the approximately center part, the first stage in which the spiral shape is completed is dropped downward by the gravity. Furthermore, the combined tube is wound from the inner peripheral side of the next stage toward the outer peripheral side and, after the bending reaches the outer peripheral side, the second stage is also dropped downward by the gravity. Again, the combined tube is similarly wound from the outer peripheral side of the next stage toward the inner peripheral side. By continuously repeating this work, the continuous spiral multistage type heat exchanger is manufactured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、渦巻き状に巻き加工して平面形状とし、これを多段に中継接続なしで連続して形成する渦巻き多段形熱交換器の製造方法及び渦巻き多段形熱交換器に関する。   The present invention relates to a method for manufacturing a spiral multi-stage heat exchanger and a spiral multi-stage heat exchanger in which a spiral shape is formed into a planar shape and is continuously formed in multiple stages without relay connection.

従来の渦巻き多段形熱交換器は、限られたスペースの中で配管長を長くするために、渦巻き末端の中心部又は外周部において配管の中継接続を行うのが一般的であった。   In the conventional spiral multistage heat exchanger, in order to increase the length of the pipe in a limited space, it is common to perform the relay connection of the pipe at the center or the outer periphery of the spiral end.

冷媒対水熱交換器の形状を改良し、ヒートポンプ給湯機の小型化を図るために、第1流体が流動する第1伝熱管と、第2流体が流動する第2伝熱管とを備え、この第2伝熱管に第1伝熱管を埋設一体化して結合して結合管となし、この結合管を渦巻き状に折曲加工して構成し、かつ、渦巻き状の熱交換器本体を平面形状を呈するように形成した熱交換器が提案されている(例えば、特許文献1参照)。
特開2004−60906号公報
In order to improve the shape of the refrigerant-to-water heat exchanger and reduce the size of the heat pump water heater, the first heat transfer tube through which the first fluid flows and the second heat transfer tube through which the second fluid flows are provided. The first heat transfer tube is embedded and integrated with the second heat transfer tube to form a combined tube, the combined tube is formed by bending it into a spiral shape, and the spiral heat exchanger body has a planar shape. A heat exchanger formed so as to be presented has been proposed (see, for example, Patent Document 1).
JP 2004-60906 A

従来の渦巻き多段形熱交換器は、全長を中継接続なしに連続巻きすることが困難であり、そのため中継接続箇所があるとコスト高になり、熱交換効率又は信頼性確保の観点からも不利となる課題があった。また、渦巻き中心部での中継接続作業は困難となる場合が多く作業時間・信頼性低下の要因となっていた。さらには中継配管の取り回しのために省スペース化が難しくなり、組立後の接続部の品質確認、不良修正も容易ではない。また、熱交換器内の流体の排出性が悪く液溜まりによる課題を有していた。また、曲げ半径が大きいとスペース効率が悪いばかりでなく、スプリングバックによる形状バラツキが生じ、さらには熱交換性能にも影響を及ぼしていた。   Conventional swirl multistage heat exchangers are difficult to wind continuously without relay connection for the entire length.Therefore, if there is a relay connection point, the cost becomes high, which is disadvantageous from the viewpoint of ensuring heat exchange efficiency or reliability. There was a problem. In addition, the relay connection work at the center of the spiral is often difficult, which causes a reduction in work time and reliability. Furthermore, it becomes difficult to save space due to the routing of the relay pipe, and it is not easy to check the quality of the connecting part after assembly and correct the defect. Moreover, the discharge | emission property of the fluid in a heat exchanger was bad and had the subject by a liquid pool. Further, when the bending radius is large, not only the space efficiency is bad, but also the shape variation due to the springback occurs, and further, the heat exchange performance is affected.

この発明は、上記のような課題を解決するためになされたもので、より長い配管を中継接続が無い高密度状態な熱交換器として収納し、熱交換器内の流体の排出性が良く、品質バラツキの少ない信頼性の高い、安価な高性能の渦巻き多段形熱交換器及び渦巻き多段形熱交換器の製造方法を提供することを目的とする。   This invention has been made to solve the above-described problems, and accommodates longer pipes as heat exchangers in a high-density state without relay connection, and has good drainage of fluid in the heat exchangers. It is an object of the present invention to provide a reliable and inexpensive high-performance spiral multistage heat exchanger with little quality variation and a method for manufacturing the spiral multistage heat exchanger.

この発明に係る渦巻き多段形熱交換器の製造方法は、第1流体が流れる第1伝熱管と、第2流体が流れる第2伝熱管とを有し、第1伝熱管の外周に第2伝熱管が巻回された結合管を平面的に渦巻き形状に形成し、これらを多段に積み重ねた渦巻き多段形熱交換器の製造方法において、結合管を渦巻き形状の外周側から内周側へ向かって曲げていき、略中心部到達後、渦巻き形状が完成した1段目は重力により下方に落とし、さらに次の段の内周側から外周側へ向かって曲げていき、外周側へ到達後、2段目も重力により下方に落とし、再び次の段の外周側から内周側に向かって同様に曲げていき、これを連続的に繰り返すことにより連続した渦巻き形状の多段の熱交換器とすることを特徴とする。   The manufacturing method of the spiral multistage heat exchanger according to the present invention includes a first heat transfer tube through which a first fluid flows and a second heat transfer tube through which a second fluid flows, and the second heat transfer tube is disposed on the outer periphery of the first heat transfer tube. In a manufacturing method of a spiral multi-stage heat exchanger in which a coupling tube around which a heat tube is wound is formed into a spiral shape and stacked in a multistage manner, the coupling tube is moved from the outer periphery side of the spiral shape toward the inner periphery side. Bending, after reaching the substantially central part, the first stage where the spiral shape is completed is dropped by gravity, further bent from the inner periphery side to the outer periphery side of the next stage, and after reaching the outer periphery side, 2 The stage is also dropped downward by gravity, bent again in the same way from the outer circumference side to the inner circumference side of the next stage, and continuously repeated to form a continuous spiral multi-stage heat exchanger It is characterized by.

この発明に係る渦巻き多段形熱交換器の製造方法は、上記構成により、全長を中継接続なしに連続巻きすることができ、生産性が向上する。   The manufacturing method of the spiral multistage heat exchanger according to the present invention can continuously wind the entire length without relay connection by the above configuration, and the productivity is improved.

実施の形態1.
図1乃至図14は実施の形態1を示す図で、図1は渦巻き多段形熱交換器5の平面図、図2は渦巻き多段形熱交換器5の側面図、図3は図2のA−A線から下の1段目を見た平面図、図4は図1における結合管3のB部拡大図、図5は他の例の結合管3Aを示す拡大図、図6は渦巻き多段形熱交換器5の多段化を示すイメージ図、図7は渦巻き多段形熱交換器5の渦巻き成形手順を示す図、図8,図9は図7の各ステップを個々に示す図、図10は結合管3の内側曲げ半径Rと伝熱性能の関係を示す図、図11は曲げ内側半径寸法Rを外径d2の2倍にした時の渦巻き多段形熱交換器5の部分的な平面図、図12は曲げ内側半径寸法Rを外径Dの1倍にした時の渦巻き多段形熱交換器5の部分的な平面図、図13は曲げ内側半径寸法Rを外径Dの0.75倍にした時の渦巻き多段形熱交換器5の部分的な平面図、図14は曲げ内側半径寸法Rを外径Dの0.5倍にした時の渦巻き多段形熱交換器5の部分的な平面図である。
Embodiment 1 FIG.
FIG. 1 to FIG. 14 are diagrams showing Embodiment 1, FIG. 1 is a plan view of a spiral multistage heat exchanger 5, FIG. 2 is a side view of the spiral multistage heat exchanger 5, and FIG. FIG. 4 is an enlarged view of a portion B of the coupling pipe 3 in FIG. 1, FIG. 5 is an enlarged view showing another example of the coupling pipe 3A, and FIG. 6 is a spiral multi-stage. FIG. 7 is a diagram showing a spiral forming procedure of the spiral multi-stage heat exchanger 5, FIGS. 8 and 9 are diagrams showing individual steps of FIG. 7, and FIG. FIG. 11 is a partial plan view of the spiral multi-stage heat exchanger 5 when the inner bending radius R of the coupling tube 3 and the heat transfer performance are set to be twice the outer bending radius R2. 12 is a partial plan view of the spiral multistage heat exchanger 5 when the bending inner radius R is set to be one time the outer diameter D, and FIG. FIG. 14 is a partial plan view of the spiral multistage heat exchanger 5 when it is 0.75 times as large as FIG. 14, and FIG. 14 is a spiral multistage heat exchanger when the bending inner radius R is 0.5 times the outer diameter D. 5 is a partial plan view of FIG.

図1は、3段の渦巻き多段形熱交換器5を上から見た平面図である。この渦巻き多段形熱交換器5は、例えば、ヒートポンプ給湯機の冷媒対水熱交換器に使用されるもので、第1流体(例えば、水)が流れる第1伝熱管の外周に、第2流体(例えば、冷媒)が流れる第2伝熱管を這わすように螺旋状に巻回した結合管3を渦巻き状に形成し、これを連続して多段に形成したものである。これについては、後述する。   FIG. 1 is a plan view of a three-stage spiral multistage heat exchanger 5 as viewed from above. The spiral multistage heat exchanger 5 is used, for example, in a refrigerant-to-water heat exchanger of a heat pump water heater, and a second fluid is provided on the outer periphery of a first heat transfer tube through which a first fluid (for example, water) flows. The coupling tube 3 spirally wound so as to swirl the second heat transfer tube (for example, refrigerant) is formed in a spiral shape, and this is continuously formed in multiple stages. This will be described later.

図1では、上の1段目の渦巻き形状が見えているが、後述するように、曲げ始めの入口管部3aは、一番下の3段目にある。入口管部3aの位置は、ヒートポンプ給湯機の水回路との配管接続位置を基準に決められる。   In FIG. 1, the upper spiral shape of the first stage is visible, but as will be described later, the inlet pipe portion 3 a at the beginning of bending is in the lowermost third stage. The position of the inlet pipe portion 3a is determined based on the pipe connection position with the water circuit of the heat pump water heater.

曲げ終わりの出口管部3bの位置も、ヒートポンプ給湯機の水回路との配管接続位置に一致するのが好ましいが、曲げ加工のバラツキにより、結合管3の全長を決めておいても、出口管部3bの位置はその都度変わる。図1の曲げ位置調整部分において、最後の曲げの位置を変えることにより、曲げ加工による出口管部3bの位置のバラツキを調整する。設計値としては、この曲げ位置調整部分の中間に出口管部3bがくるように狙う。そして、出口管部3bの位置が基準位置に達しない場合は、最後の曲げを早めに行う。逆に、出口管部3bの位置が基準位置を超える場合は、図1の2点鎖線で示す位置に近い曲げを行い出口管部3bの位置が基準位置に合わせる。   It is preferable that the position of the outlet pipe portion 3b at the end of bending also coincides with the pipe connection position with the water circuit of the heat pump water heater. However, even if the total length of the coupling pipe 3 is determined due to variation in bending, The position of the part 3b changes each time. In the bending position adjusting portion of FIG. 1, the position of the outlet pipe portion 3b due to bending is adjusted by changing the position of the last bending. The design value is aimed so that the outlet pipe portion 3b comes in the middle of the bending position adjusting portion. When the position of the outlet pipe portion 3b does not reach the reference position, the last bending is performed early. On the other hand, when the position of the outlet pipe portion 3b exceeds the reference position, bending close to the position indicated by the two-dot chain line in FIG. 1 is performed to adjust the position of the outlet pipe portion 3b to the reference position.

結合管3の曲げは、図3に示す1段目から行う。1段目の曲げは、外側から内側に向かって行う。各曲げは、略直角に曲げるが、その際に内側曲げRは、後述するが、スペース効率や熱交換器としての伝熱性能が適正な値になるような内側曲げRで行う必要がある。   The coupling pipe 3 is bent from the first stage shown in FIG. The first stage bending is performed from the outside to the inside. Each bend is bent at a substantially right angle. In this case, the inner bend R needs to be performed by the inner bend R so that space efficiency and heat transfer performance as a heat exchanger become appropriate values, as will be described later.

1段目の曲げが完了したら、図2に示す2段目に移行する。2段目では、結合管3の曲げを内側から外側に向かって行う。   When the first stage bending is completed, the process proceeds to the second stage shown in FIG. In the second stage, the coupling pipe 3 is bent from the inside to the outside.

2段目の曲げが完了したら、図1に示す3段目に移行する。3段目では、結合管3の曲げを外側から内側に向かって行う。   When the second stage bending is completed, the process proceeds to the third stage shown in FIG. In the third stage, the coupling pipe 3 is bent from the outside to the inside.

図1乃至図3の例は、段数が3段であるが、もちろん3段に限定されるものではない。   In the example of FIGS. 1 to 3, the number of stages is three, but it is of course not limited to three.

ここで、結合管3について、説明しておく。図4の例は、第1流体(例えば、水)が流れる第1伝熱管1は平滑管であり、その外周に第2流体(例えば、冷媒)が流れる第2伝熱管2が螺旋状に巻回される。また、螺旋状に巻回された第2伝熱管2の外径を、結合管3の外径Dと定義する。この結合管3の外径Dは、後の説明で使用する。   Here, the coupling tube 3 will be described. In the example of FIG. 4, the first heat transfer tube 1 through which the first fluid (for example, water) flows is a smooth tube, and the second heat transfer tube 2 through which the second fluid (for example, refrigerant) flows around the outer periphery thereof is spirally wound. Turned. In addition, the outer diameter of the second heat transfer tube 2 wound spirally is defined as the outer diameter D of the coupling tube 3. The outer diameter D of the coupling pipe 3 will be used in later explanation.

図5の例は、第1流体が流れる第1伝熱管1Aが、捩り管である点が図4と異なる。捩り管である第1伝熱管1Aは、少なくとも1条の山部1aと谷底部1bとからなる螺旋溝を外周に備える。第1伝熱管1Aの管内壁部1cも、外周の螺旋溝に沿うような形状になっている。この場合も、螺旋溝に螺旋状に巻回された第2伝熱管2の外径を、結合管3の外径Dと定義する。   The example of FIG. 5 differs from FIG. 4 in that the first heat transfer tube 1A through which the first fluid flows is a torsion tube. The first heat transfer tube 1A, which is a torsion tube, includes a spiral groove having at least one peak portion 1a and a valley bottom portion 1b on the outer periphery. The inner wall portion 1c of the first heat transfer tube 1A is also shaped along the outer circumferential spiral groove. Also in this case, the outer diameter of the second heat transfer tube 2 wound spirally around the spiral groove is defined as the outer diameter D of the coupling tube 3.

図6は渦巻き多段形熱交換器5の、連続直角曲げ渦巻き多段イメージを示す。図6は段数が4段の場合であり、曲げ始めの1段目は、外側から内側に向かって連続直角曲げにより渦巻きを形成する。2段目は、内側から外側に向かって連続直角曲げにより渦巻きを形成するが、このとき1段目は重力により2段目より下方に落ち、垂れ下がっている。3段目は、外側から内側に向かって連続直角曲げにより渦巻きを形成するが、このとき1段目及び2段目は重力により3段目より下方に落ち、垂れ下がっている。4段目は、内側から外側に向かって連続直角曲げにより渦巻きを形成するが、このとき1段目乃至3段目は重力により4段目より下方に落ち、垂れ下がっている。   FIG. 6 shows a continuous right angle bending spiral multistage image of the spiral multistage heat exchanger 5. FIG. 6 shows a case where the number of steps is four, and the first step at the beginning of bending forms a spiral by continuous right-angle bending from the outside to the inside. In the second stage, a spiral is formed by continuous right-angle bending from the inside to the outside. At this time, the first stage falls below the second stage due to gravity and hangs down. The third stage forms a spiral by continuous right-angle bending from the outside to the inside. At this time, the first stage and the second stage fall below the third stage due to gravity and hang down. In the fourth stage, a spiral is formed by continuous right-angle bending from the inside to the outside. At this time, the first to third stages fall below the fourth stage due to gravity and hang down.

図8により、渦巻き多段形熱交換器5の成形手順を説明する。尚、図9、図10に各ステップを分けて示す。   The forming procedure of the spiral multistage heat exchanger 5 will be described with reference to FIG. 9 and 10 show the steps separately.

ステップ1で、結合管3(結合管3Aでもよい)を所定距離送り、最初の曲げ位置に合わせる。   In step 1, the coupling tube 3 (or the coupling tube 3 </ b> A) is fed by a predetermined distance and adjusted to the initial bending position.

ステップ2で、結合管3をほぼ直角に曲げる(曲げ1)。   In step 2, the coupling tube 3 is bent at a substantially right angle (bending 1).

ステップ3で、再び所定距離(短手方向の長さ分)、次の曲げ位置に合わせる。   In step 3, it is adjusted again to the next bending position by a predetermined distance (the length in the short direction).

ステップ4で、結合管3をほぼ直角に曲げる(曲げ2)。   In step 4, the coupling tube 3 is bent at a substantially right angle (bending 2).

ステップ5で、再び所定距離(長手方向の長さ分)送り、次の曲げ位置に合わせる。   In step 5, the predetermined distance (the length in the longitudinal direction) is again fed and adjusted to the next bending position.

ステップ6で、結合管3をほぼ直角に曲げる(曲げ3)。   In step 6, the coupling tube 3 is bent at a substantially right angle (bending 3).

ステップ7で、再び所定距離(短手方向の長さ分)、次の曲げ位置に合わせる。   In step 7, it is adjusted again to the next bending position by a predetermined distance (the length in the short direction).

ステップ8で、結合管3をほぼ直角に曲げる(曲げ4)。この時、結合管3の先端である入口管部3aが供給材料と干渉するので、入口管部3aを供給材料と干渉しないように下方へ排出していく。   In step 8, the coupling tube 3 is bent at a substantially right angle (bending 4). At this time, since the inlet pipe portion 3a which is the tip of the coupling pipe 3 interferes with the supply material, the inlet pipe portion 3a is discharged downward so as not to interfere with the supply material.

ステップ9で、再び所定距離(長手方向の長さ分)送り、次の曲げ位置に合わせる。   In step 9, it again feeds a predetermined distance (the length in the longitudinal direction) to match the next bending position.

以上の手順を繰り返して、渦巻き多段形熱交換器5を、図6のイメージで形成する。先に曲げられた部分が、下方に排出されて垂れ下がるイメージである。   By repeating the above procedure, the spiral multi-stage heat exchanger 5 is formed with the image of FIG. It is an image in which the bent part is discharged downward and hangs down.

次に、結合管3の直角曲げ時の、内側曲げ半径Rについて言及する。図10は、先に定義した外径D=20mmの結合管3について、内側曲げ半径Rと渦巻き多段形熱交換器5の伝熱性能との関係を実験により求めた結果である。図10において、横軸が内側曲げ半径Rで、縦軸が伝熱性能の相対値で、内側曲げ半径R=0.5Dのときの伝熱性能を100%とする。   Next, the inner bending radius R when the coupling tube 3 is bent at a right angle will be described. FIG. 10 is a result of experimentally determining the relationship between the inner bending radius R and the heat transfer performance of the spiral multistage heat exchanger 5 for the coupling tube 3 having the outer diameter D = 20 mm defined above. In FIG. 10, the horizontal axis is the inner bending radius R, the vertical axis is the relative value of the heat transfer performance, and the heat transfer performance when the inner bending radius R = 0.5D is 100%.

図10に示すように、内側曲げ半径Rが0.5Dより小さい場合は、結合管3が挫屈するので、この領域は範囲外である。   As shown in FIG. 10, when the inner bending radius R is smaller than 0.5D, the coupling tube 3 is bent, so this region is out of range.

内側曲げ半径Rが0.5Dより大きくなると、徐々に伝熱性能が低下し、内側曲げ半径Rが約1.5Dの点に扁曲点がある。従って、伝熱性能については、0.5D≦R<1.5Dが好ましい範囲と言える。内側曲げ半径Rが小さい方が伝熱性能が良いのは、結合管3の外周面に巻回される第2伝熱管2が密の状態を保つことと、結合管3の曲げ部での流速が内側曲げ半径Rが小さい方が早く、乱流効果があるためと考えられる。   When the inner bending radius R becomes larger than 0.5D, the heat transfer performance gradually decreases, and there is a bending point at a point where the inner bending radius R is about 1.5D. Therefore, it can be said that 0.5D ≦ R <1.5D is a preferable range for the heat transfer performance. The smaller the inner bending radius R, the better the heat transfer performance is that the second heat transfer tube 2 wound around the outer peripheral surface of the coupling tube 3 is kept in a dense state and the flow velocity at the bent portion of the coupling tube 3 However, it is considered that the smaller the inner bending radius R is, the faster the turbulent effect is.

次に、図11乃至図14を参照しながら、内側曲げ半径Rと渦巻き多段形熱交換器5のスペース効率との関係について述べる。図11の内側曲げ半径R=2D、図12の内側曲げ半径R=2Dの場合は、各図が示すように、中心付近に結合管3を曲げるスペースがなく、スペース効率が悪い。図13の内側曲げ半径R=0.75D、図14の内側曲げ半径R=0.5Dの場合は、中心付近に結合管3を曲げるスペースがあり、スペース効率が良い。従って、スペース効率については、内側曲げ半径R≦5/6Dが好ましいと言える。   Next, the relationship between the inner bending radius R and the space efficiency of the spiral multistage heat exchanger 5 will be described with reference to FIGS. 11 to 14. In the case of the inner bending radius R = 2D in FIG. 11 and the inner bending radius R = 2D in FIG. 12, there is no space for bending the coupling tube 3 in the vicinity of the center as shown in each figure, and the space efficiency is poor. In the case of the inner bending radius R = 0.75D in FIG. 13 and the inner bending radius R = 0.5D in FIG. 14, there is a space for bending the coupling tube 3 near the center, and the space efficiency is good. Therefore, it can be said that the inner bending radius R ≦ 5 / 6D is preferable for the space efficiency.

伝熱性能と、スペース効率との両方を考慮した場合、内側曲げ半径Rは、0.5D≦R≦5/6Dとなる。   In consideration of both heat transfer performance and space efficiency, the inner bending radius R is 0.5D ≦ R ≦ 5 / 6D.

以上の説明では、結合管3の曲げは、直角曲げとしたが、曲線的な曲げでも良い。   In the above description, the coupling pipe 3 is bent at a right angle, but it may be curved.

以上のように、本実施の形態によれば、渦巻きの中心部に配管の中継接続のためのスペースを考慮せずに渦巻き状に巻いていくことができるため、配管の高密度収納が可能となる。また、直角状に曲げるため曲げ形状のバラツキが少ない高速自動化が可能となる。また、図1に示すように出口管部3b(曲げ終わり側)の曲げ位置を長手方向において任意調整することにより配管出口位置が一定化する。つまり、配管の入口管部3aと出口管部3bの末端が渦巻きの外周部または中心部の任意の位置に精度よく配置されるため、後工程のユニット(水回路)形態形成時の配管接続が容易となる。   As described above, according to the present embodiment, it is possible to wind in a spiral shape without considering the space for relay connection of the pipe at the center of the spiral, which enables high-density storage of the pipe. Become. In addition, since it is bent at a right angle, high-speed automation is possible with little variation in the bending shape. Further, as shown in FIG. 1, the pipe outlet position is fixed by arbitrarily adjusting the bending position of the outlet pipe portion 3b (bending end side) in the longitudinal direction. In other words, since the ends of the inlet pipe portion 3a and the outlet pipe portion 3b of the pipe are accurately arranged at arbitrary positions on the outer periphery or the center of the spiral, the pipe connection at the time of forming the unit (water circuit) in the subsequent process It becomes easy.

実施の形態1を示す図で、渦巻き多段形熱交換器5の平面図である。FIG. 5 is a diagram showing the first embodiment, and is a plan view of a spiral multistage heat exchanger 5. FIG. 実施の形態1を示す図で、渦巻き多段形熱交換器5の側面図である。FIG. 2 is a diagram showing the first embodiment, and is a side view of a spiral multistage heat exchanger 5. FIG. 実施の形態1を示す図で、図2のA−A線から下の1段目を見た平面図である。FIG. 3 is a diagram showing the first embodiment, and is a plan view of the first stage from the line AA in FIG. 2. 実施の形態1を示す図で、図1における結合管3のB部拡大図である。FIG. 2 is a diagram showing the first embodiment, and is an enlarged view of part B of the coupling pipe 3 in FIG. 1. 実施の形態1を示す図で、他の例の結合管3Aを示す拡大図である。It is a figure which shows Embodiment 1, and is an enlarged view which shows 3 A of coupling pipes of another example. 実施の形態1を示す図で、渦巻き多段形熱交換器5の多段化を示すイメージ図である。FIG. 5 is a diagram illustrating the first embodiment and is an image diagram illustrating multi-stages of the spiral multi-stage heat exchanger 5. 実施の形態1を示す図で、渦巻き多段形熱交換器5の渦巻き成形手順を示す図である。FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating a spiral forming procedure of the spiral multistage heat exchanger 5. 実施の形態1を示す図で、図7の各ステップを個々に示す図である。It is a figure which shows Embodiment 1, and is a figure which shows each step of FIG. 7 separately. 実施の形態1を示す図で、図7の各ステップを個々に示す図である。It is a figure which shows Embodiment 1, and is a figure which shows each step of FIG. 7 separately. 実施の形態1を示す図で、結合管3の内側曲げ半径Rと伝熱性能の関係を示す図である。FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating a relationship between an inner bending radius R of a coupling pipe 3 and heat transfer performance. 実施の形態1を示す図で、曲げ内側半径寸法Rを外径d2の2倍にした時の渦巻き多段形熱交換器5の部分的な平面図である。FIG. 5 shows the first embodiment, and is a partial plan view of the spiral multistage heat exchanger 5 when the bending inner radius R is twice the outer diameter d2. 実施の形態1を示す図で、曲げ内側半径寸法Rを外径Dの1倍にした時の渦巻き多段形熱交換器5の部分的な平面図である。FIG. 5 shows the first embodiment, and is a partial plan view of the spiral multistage heat exchanger 5 when the bending inner radius R is set to be one time the outer diameter D. FIG. 実施の形態1を示す図で、曲げ内側半径寸法Rを外径Dの0.75倍にした時の渦巻き多段形熱交換器5の部分的な平面図である。FIG. 5 shows the first embodiment, and is a partial plan view of the spiral multistage heat exchanger 5 when the bending inner radius R is 0.75 times the outer diameter D. FIG. 実施の形態1を示す図で、曲げ内側半径寸法Rを外径Dの0.5倍にした時の渦巻き多段形熱交換器5の部分的な平面図である。FIG. 5 shows the first embodiment, and is a partial plan view of the spiral multistage heat exchanger 5 when the bending inner radius R is 0.5 times the outer diameter D. FIG.

符号の説明Explanation of symbols

1 第1伝熱管、1a 山部、1b 谷底部、1c 管内壁部、2 第2伝熱管、3 結合管、3A 結合管、3a 入口管部、3b 出口管部、5 渦巻き多段形熱交換器。   DESCRIPTION OF SYMBOLS 1 1st heat exchanger tube, 1a peak part, 1b valley bottom part, 1c pipe inner wall part, 2nd heat transfer pipe, 3 coupling pipe, 3A coupling pipe, 3a inlet pipe part, 3b outlet pipe part, 5 spiral multistage heat exchanger .

Claims (9)

第1流体が流れる第1伝熱管と、第2流体が流れる第2伝熱管とを有し、前記第1伝熱管の外周に前記第2伝熱管が巻回された結合管を平面的に渦巻き形状に形成し、これらを多段に積み重ねた渦巻き多段形熱交換器の製造方法において、
前記結合管を渦巻き形状の外周側から内周側へ向かって曲げていき、略中心部到達後、渦巻き形状が完成した1段目は重力により下方に落とし、さらに次の段の内周側から外周側へ向かって曲げていき、外周側へ到達後、2段目も重力により下方に落とし、再び次の段の外周側から内周側に向かって同様に曲げていき、これを連続的に繰り返すことにより連続した渦巻き形状の多段の熱交換器とすることを特徴とする渦巻き多段形熱交換器の製造方法。
A first heat transfer tube through which the first fluid flows and a second heat transfer tube through which the second fluid flows, and a joint tube in which the second heat transfer tube is wound around the outer periphery of the first heat transfer tube is swirled in a plane. In the manufacturing method of the spiral multistage heat exchanger formed in a shape and stacked in multiple stages,
The coupling tube is bent from the outer periphery side of the spiral shape toward the inner periphery side, and after reaching the substantially central portion, the first stage where the spiral shape is completed is dropped downward by gravity, and further from the inner periphery side of the next stage. Bend toward the outer periphery, and after reaching the outer periphery, the second step is also dropped downward due to gravity, and again bent in the same way from the outer periphery to the inner periphery of the next step. A process for producing a spiral multi-stage heat exchanger, characterized by being repeated to form a continuous spiral multi-stage heat exchanger.
前記結合管の曲げは、略直角に曲げることを特徴とする請求項1記載の渦巻き多段形熱交換器の製造方法。   2. The method of manufacturing a spiral multistage heat exchanger according to claim 1, wherein the coupling pipe is bent at a substantially right angle. 前記結合管を略直角に曲げる場合の、前記結合管の内側曲げ半径Rを、前記結合管の外径をDとしたとき、0.5D≦R<1.5Dとすることを特徴とする請求項2記載の渦巻き多段形熱交換器の製造方法。   The inner bending radius R of the coupling tube when the coupling tube is bent at a substantially right angle is 0.5D ≦ R <1.5D, where D is the outer diameter of the coupling tube. Item 3. A method for producing a spiral multistage heat exchanger according to Item 2. 前記結合管を略直角に曲げる場合の、前記結合管の内側曲げ半径Rを、前記結合管の外径をDとしたとき、0.5D≦R≦5/6Dとすることを特徴とする請求項3記載の渦巻き多段形熱交換器の製造方法。   The inner bending radius R of the coupling pipe when the coupling pipe is bent at a substantially right angle is 0.5D ≦ R ≦ 5 / 6D, where D is the outer diameter of the coupling pipe. Item 4. A method for producing a spiral multistage heat exchanger according to Item 3. 前記結合管の最終段の渦巻き形状は、外周側から内周側に向かって曲げていくものであり、内周側における最後の略180度の曲げの位置を変えることにより、曲げ加工による出口管部の位置のバラツキを調整することを特徴とする請求項1乃至請求項4のいずれかに記載の渦巻き多段形熱交換器の製造方法。   The spiral shape of the final stage of the coupling pipe is bent from the outer peripheral side toward the inner peripheral side, and the outlet pipe by bending is changed by changing the position of the last approximately 180 degrees bending on the inner peripheral side. The manufacturing method of the spiral multistage heat exchanger according to any one of claims 1 to 4, wherein the variation of the position of the portion is adjusted. 第1流体が流れる第1伝熱管と、第2流体が流れる第2伝熱管とを有し、前記第1伝熱管の外周に前記第2伝熱管が巻回された結合管を平面的に渦巻き形状に形成し、これらを多段に積み重ねた渦巻き多段形熱交換器において、
端部に位置する渦巻き形状の少なくとも一つは、前記結合管の一方の端部が外周側に位置し、内周側の略中心部から次の渦巻き形状に連続して移行し、該次の渦巻き形状は内周側から外周側に向かって渦巻きが形成され、外周側からさらに次の渦巻き形状の外周側に連続して移行し、該さらに次の渦巻き形状は外周側から内周側に向かって渦巻きが形成され、これを繰り返して平面的な渦巻き形状を多段に積み重ねたことを特徴とする渦巻き多段形熱交換器。
A first heat transfer tube through which the first fluid flows and a second heat transfer tube through which the second fluid flows, and a joint tube in which the second heat transfer tube is wound around the outer periphery of the first heat transfer tube is swirled in a plane. In a spiral multistage heat exchanger formed into a shape and stacked in multiple stages,
At least one of the spiral shapes located at the end portion is such that one end portion of the coupling tube is located on the outer peripheral side, and is continuously shifted from the substantially central portion on the inner peripheral side to the next spiral shape. In the spiral shape, a spiral is formed from the inner peripheral side to the outer peripheral side, and continuously moves from the outer peripheral side to the outer peripheral side of the next spiral shape, and the further next spiral shape is directed from the outer peripheral side to the inner peripheral side. The spiral multistage heat exchanger is characterized in that spirals are formed and the planar spiral shape is stacked in multiple stages by repeating this process.
前記渦巻き形状の前記結合管の曲げは、略直角に曲げられることを特徴とする請求項6記載の渦巻き多段形熱交換器。   The spiral multistage heat exchanger according to claim 6, wherein the spiral-shaped coupling pipe is bent at a substantially right angle. 前記結合管を略直角に曲げる場合の、前記結合管の内側曲げ半径Rを、前記結合管の外径をDとしたとき、0.5D≦R<1.5Dとすることを特徴とする請求項7記載の渦巻き多段形熱交換器。   The inner bending radius R of the coupling tube when the coupling tube is bent at a substantially right angle is 0.5D ≦ R <1.5D, where D is the outer diameter of the coupling tube. Item 8. The spiral multistage heat exchanger according to Item 7. 前記結合管を略直角に曲げる場合の、前記結合管の内側曲げ半径Rを、前記結合管の外径をDとしたとき、0.5D≦R≦5/6Dとすることを特徴とする請求項8記載の渦巻き多段形熱交換器。   The inner bending radius R of the coupling pipe when the coupling pipe is bent at a substantially right angle is 0.5D ≦ R ≦ 5 / 6D, where D is the outer diameter of the coupling pipe. Item 9. The spiral multistage heat exchanger according to Item 8.
JP2006161341A 2006-06-09 2006-06-09 Manufacturing method of spiral multistage heat exchanger and spiral multistage heat exchanger Expired - Fee Related JP4699945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161341A JP4699945B2 (en) 2006-06-09 2006-06-09 Manufacturing method of spiral multistage heat exchanger and spiral multistage heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161341A JP4699945B2 (en) 2006-06-09 2006-06-09 Manufacturing method of spiral multistage heat exchanger and spiral multistage heat exchanger

Publications (2)

Publication Number Publication Date
JP2007326141A true JP2007326141A (en) 2007-12-20
JP4699945B2 JP4699945B2 (en) 2011-06-15

Family

ID=38926991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161341A Expired - Fee Related JP4699945B2 (en) 2006-06-09 2006-06-09 Manufacturing method of spiral multistage heat exchanger and spiral multistage heat exchanger

Country Status (1)

Country Link
JP (1) JP4699945B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125700A1 (en) * 2008-04-08 2009-10-15 サンデン株式会社 Heat exchanger and hot-water supply device using same
JP2010023046A (en) * 2008-07-15 2010-02-04 Daikin Piping Kk Method and apparatus for manufacturing multiple time bening piping
WO2010089957A1 (en) * 2009-02-05 2010-08-12 パナソニック株式会社 Heat exchanger
JP2012122714A (en) * 2010-11-15 2012-06-28 Sumitomo Light Metal Ind Ltd Heat exchanger for hot-water supply
JP2013011404A (en) * 2011-06-29 2013-01-17 Noritz Corp Heat exchanger and method of manufacturing the same
KR102278689B1 (en) * 2020-09-02 2021-07-16 우주벤텍 주식회사 Apparatus for making swirl typed heat exchaning tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4427807Y1 (en) * 1966-11-19 1969-11-19
JPS5736478U (en) * 1980-08-08 1982-02-26
JPH04122952U (en) * 1991-04-16 1992-11-05 三井精機工業株式会社 Coil structure for heat exchanger of smoke generator
JP2003290839A (en) * 2002-04-03 2003-10-14 Jfe Steel Kk Method for drawing-bending tubing
JP2004093057A (en) * 2002-09-03 2004-03-25 Daikin Ind Ltd Heat exchanger and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4427807Y1 (en) * 1966-11-19 1969-11-19
JPS5736478U (en) * 1980-08-08 1982-02-26
JPH04122952U (en) * 1991-04-16 1992-11-05 三井精機工業株式会社 Coil structure for heat exchanger of smoke generator
JP2003290839A (en) * 2002-04-03 2003-10-14 Jfe Steel Kk Method for drawing-bending tubing
JP2004093057A (en) * 2002-09-03 2004-03-25 Daikin Ind Ltd Heat exchanger and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2282140A4 (en) * 2008-04-08 2014-01-01 Sanden Corp Heat exchanger and hot-water supply device using same
JP2009270809A (en) * 2008-04-08 2009-11-19 Sanden Corp Heat exchanger and hot-water supply device using the same
WO2009125700A1 (en) * 2008-04-08 2009-10-15 サンデン株式会社 Heat exchanger and hot-water supply device using same
EP2282140A1 (en) * 2008-04-08 2011-02-09 Sanden Corporation Heat exchanger and hot-water supply device using same
AU2009234819B2 (en) * 2008-04-08 2014-05-22 Sanden Holdings Corporation Heat exchanger and hot water supply system using the same
JP2010023046A (en) * 2008-07-15 2010-02-04 Daikin Piping Kk Method and apparatus for manufacturing multiple time bening piping
WO2010089957A1 (en) * 2009-02-05 2010-08-12 パナソニック株式会社 Heat exchanger
EP2395308A4 (en) * 2009-02-05 2013-09-11 Panasonic Corp Heat exchanger
JP5394405B2 (en) * 2009-02-05 2014-01-22 パナソニック株式会社 Heat exchanger
EP2395308A1 (en) * 2009-02-05 2011-12-14 Panasonic Corporation Heat exchanger
JP2012122714A (en) * 2010-11-15 2012-06-28 Sumitomo Light Metal Ind Ltd Heat exchanger for hot-water supply
JP2013011404A (en) * 2011-06-29 2013-01-17 Noritz Corp Heat exchanger and method of manufacturing the same
KR102278689B1 (en) * 2020-09-02 2021-07-16 우주벤텍 주식회사 Apparatus for making swirl typed heat exchaning tube

Also Published As

Publication number Publication date
JP4699945B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4699945B2 (en) Manufacturing method of spiral multistage heat exchanger and spiral multistage heat exchanger
CN203177706U (en) Double-layered pipe for heat exchanger
CN107532870B (en) Heat exchanger and the refrigerating circulatory device for using it
JP2007511735A (en) Helical multi-tube heat exchanger
JP2003156294A5 (en)
JP5899679B2 (en) Heat exchanger and manufacturing method thereof
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP5785883B2 (en) Heat exchanger and heat pump type water heater using the same
JP2016099075A (en) Double pipe heat exchanger and heat pump type heat source machine including the same
CN105026869B (en) Pipeline configuration for heat exchanger
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
JP5929012B2 (en) Heat exchanger and heat pump water heater
JP2005221087A (en) Heat exchanger
JP2008249163A (en) Heat exchanger for supplying hot water
JP5404589B2 (en) Twisted tube heat exchanger
JP2007218523A (en) Heat exchanger
JP2010014312A (en) Double tube type supercooler
JP5656786B2 (en) Manufacturing method of different diameter twisted tube heat exchanger
JP2006162204A (en) Heat exchanger for water heater
JP2008082600A (en) Water-refrigerant heat exchanger and heat pump hot water supply device using the same
CN209991815U (en) Heat exchanger
JP6016350B2 (en) Manufacturing method of heat exchanger for hot water supply
JP2011127823A (en) Heat exchanger and water heater with the same
CN108534586A (en) A kind of spiral fin coil and the KL type fin heat exchangers comprising it
JP2005164102A (en) Heat exchanger and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R150 Certificate of patent or registration of utility model

Ref document number: 4699945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees