JP2011127823A - Heat exchanger and water heater with the same - Google Patents

Heat exchanger and water heater with the same Download PDF

Info

Publication number
JP2011127823A
JP2011127823A JP2009286137A JP2009286137A JP2011127823A JP 2011127823 A JP2011127823 A JP 2011127823A JP 2009286137 A JP2009286137 A JP 2009286137A JP 2009286137 A JP2009286137 A JP 2009286137A JP 2011127823 A JP2011127823 A JP 2011127823A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
water
pipe
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009286137A
Other languages
Japanese (ja)
Other versions
JP5540683B2 (en
Inventor
Kazuhiko Machida
和彦 町田
Tomoaki Ando
智朗 安藤
Osamu Aoyanagi
治 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009286137A priority Critical patent/JP5540683B2/en
Publication of JP2011127823A publication Critical patent/JP2011127823A/en
Application granted granted Critical
Publication of JP5540683B2 publication Critical patent/JP5540683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tubular heat exchanger with the largest ratio of the capacity to a pipe weight by enabling the sophistication of the heat exchanger while minimizing the increase of the heat exchanger weight and by suppressing the increase of the loss of hydraulic pressure as much as possible. <P>SOLUTION: The heat exchanger includes an outer pipe 105 in which fluid A flows, and two or more inner tubes 103 which are installed in the outer pipe 105 and in which fluid B flows. The outer pipe 105 has a part of spiral-shaped 105b which is exclusively applied to a part where the temperature of fluid A is relatively high and the viscosity is the smallest. Hence, the heat transfer in a flow passage for water is enhanced more effectively, and the increase of the loss of hydraulic pressure is minimized since the area has less viscosity. The tubular heat exchanger with the largest ratio of the capacity to the pipe weight is provided thereby. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空調装置、給湯装置等の機器に用いられ、特にヒートポンプ式の給湯機等のように、水等の流体と冷媒等の二種の流体を熱交換させるための熱交換器に関するものである。   The present invention relates to a heat exchanger for exchanging heat between a fluid such as water and two kinds of fluids such as a refrigerant, such as a heat pump type hot water heater, etc., used in equipment such as an air conditioner and a hot water heater. It is.

従来、この種の熱交換器としては、内部に冷媒用流路が形成された内管と、内管の外側に設けられ内管との間に水用流路を形成する外管とから構成され、冷媒と水を熱交換するいわゆる二重管式タイプが考案されており、熱交換器の高能力化のために外管に螺旋形状を有する管を用いたものが知られている(例えば、特許文献1参照)。   Conventionally, this type of heat exchanger is composed of an inner pipe in which a refrigerant flow path is formed and an outer pipe that is provided outside the inner pipe and forms a water flow path between the inner pipe and the inner pipe. A so-called double-tube type for exchanging heat between the refrigerant and water has been devised, and a tube having a spiral shape is used for the outer tube in order to increase the capacity of the heat exchanger (for example, , See Patent Document 1).

図11、図12は、特許文献1に記載された従来の熱交換器を示すもので、図11は同熱交換器の上面図、図12は同熱交換器の一部を切除し、一部を切欠いた斜視図である。   11 and 12 show a conventional heat exchanger described in Patent Document 1, FIG. 11 is a top view of the heat exchanger, and FIG. 12 is a part of the heat exchanger cut out. It is the perspective view which notched the part.

図11、図12に示すように、この熱交換器101は、二重管式の熱交換器であり、内部を冷媒用流路102とする内管103と、内管103の外側に設けられ、内管103との間に水用流路104を形成する螺旋形状を有する水管105aとから構成され、この熱交換器101の場合は、内管103が2本設けられている。   As shown in FIGS. 11 and 12, the heat exchanger 101 is a double-pipe heat exchanger, and is provided on the outer side of the inner tube 103 and the inner tube 103 having the inside as the refrigerant flow path 102. In this heat exchanger 101, two inner tubes 103 are provided. The water tube 105a has a spiral shape that forms a water flow path 104 between the inner tube 103 and the inner tube 103.

内管103は、銅製の冷媒管106と、冷媒管106の外周に設けられた銅製の漏洩検知管107とから構成され、冷媒管106を拡管するか、或いは、漏洩検知管107を縮管することにより、冷媒管106と漏洩検知管107を密着している。また、水管105aは螺旋形状を有する螺旋管からなり、熱交換器101の全長にわたって用いられている。   The inner pipe 103 includes a copper refrigerant pipe 106 and a copper leak detection pipe 107 provided on the outer periphery of the refrigerant pipe 106, and expands the refrigerant pipe 106 or contracts the leak detection pipe 107. As a result, the refrigerant pipe 106 and the leak detection pipe 107 are in close contact with each other. The water pipe 105a is a spiral pipe having a spiral shape and is used over the entire length of the heat exchanger 101.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

熱交換器101は、冷媒用流路102を流れる二酸化炭素2と水用流路104を流れる水とが、内管103を介して熱交換されるようになっている。そして、螺旋形状を有する水管105aによる水流攪拌のため伝熱促進され、高能力化が図られる。このとき、同時に水側圧力損失(以降、水圧損と呼ぶ)も増大する特徴を有する。   The heat exchanger 101 is configured such that heat exchange is performed between the carbon dioxide 2 flowing in the refrigerant flow path 102 and the water flowing in the water flow path 104 via the inner pipe 103. And heat transfer is accelerated for the water flow stirring by the water pipe 105a which has a spiral shape, and high performance is achieved. At this time, the water pressure loss (hereinafter referred to as water pressure loss) also increases at the same time.

また、この熱交換器101の製造工程上、内管103を螺旋形状の水管105a内へ挿入する必要があるが、水管105aの内径は螺旋溝深さの分だけ大きいものが必要となる。   Further, in the manufacturing process of the heat exchanger 101, it is necessary to insert the inner pipe 103 into the spiral water pipe 105a. However, the inner diameter of the water pipe 105a is required to be larger by the depth of the spiral groove.

従って、水管105aを熱交換器101の全長にわたって単純に用いる場合、熱交換器101の熱交換能力は向上するが、水圧損や重量も増大してしまうこととなる。   Therefore, when the water pipe 105a is simply used over the entire length of the heat exchanger 101, the heat exchange capacity of the heat exchanger 101 is improved, but the water pressure loss and weight are also increased.

特許第4200329号公報Japanese Patent No. 4300329

しかしながら、前記従来における構成では、水用流路104の伝熱促進のために螺旋形状の水管105aを単純に用いただけでは熱交換能力は増加するものの、螺旋溝深さの分
だけ大きい管径となるため、熱交換器重量も増加して材料費が上昇してしまう。
However, in the conventional configuration, the heat exchange capacity increases only by using the spiral water pipe 105a to promote heat transfer in the water flow path 104, but the pipe diameter is increased by the depth of the spiral groove. As a result, the weight of the heat exchanger increases and the material cost increases.

また、熱交換器の水圧損も増加するため、水搬送流量確保のためには、より搬送容量の大きいポンプ、つまりポンプの大型化が必要となり、材料費の上昇とともに大型のポンプを収容する製品本体が大型化してしまう。   In addition, the water pressure loss of the heat exchanger also increases, so in order to secure the water transfer flow rate, it is necessary to increase the pump capacity, that is, to increase the pump size, and to accommodate large pumps as the material cost increases. The main body becomes larger.

このように、螺旋形状管を単純に適用するだけでは、材料費を低減できないという課題を有していた。   Thus, there has been a problem that the material cost cannot be reduced by simply applying the helical tube.

本発明は、上記従来の課題を解決するもので、熱交換器重量の増加を最小限に抑えながら熱交換器の高性能化を可能にし、かつ、水圧損の上昇も極力抑えることで、管重量に対する能力の比が最も大きい管式の熱交換器を提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, and enables the performance of the heat exchanger to be improved while minimizing the increase in the weight of the heat exchanger, and also suppresses the increase in water pressure loss as much as possible. The object of the present invention is to provide a tubular heat exchanger having the largest capacity to weight ratio.

上記従来の課題を解決するために、本発明の熱交換器は、内部を流体Aが流れる外管と、前記外管内に配設され、内部を流体Bが流れる複数の内管とを備え、前記外管の一部は螺旋形状であることを特徴とするもので、水用流路の伝熱促進がより効果的に発揮される高温部・高レイノルズ数域に螺旋形状を限定適用することで、熱交換器の重量に対する能力の比(ここでは能力重量比と呼ぶ)を最も大きくすることが可能となる。   In order to solve the above-described conventional problems, a heat exchanger according to the present invention includes an outer tube through which fluid A flows, and a plurality of inner tubes that are disposed in the outer tube and through which fluid B flows. A part of the outer tube has a spiral shape, and the spiral shape is limitedly applied to a high temperature portion / high Reynolds number region where heat transfer promotion of the water channel is more effectively exhibited. Thus, the ratio of the capacity to the weight of the heat exchanger (herein referred to as the capacity-weight ratio) can be maximized.

また、高温部ゆえに水の粘度も小さくなるので、水圧損の上昇も極力抑えることも実現した管式の熱交換器を提供することができる。   Moreover, since the viscosity of water becomes small because of the high temperature portion, it is possible to provide a tubular heat exchanger that can suppress an increase in water pressure loss as much as possible.

本発明によれば、熱交換器重量の増加を最小限に抑えながら熱交換器の高性能化を可能にし、かつ、水圧損の上昇も極力抑えることで、管重量に対する能力の比が最も大きい管式の熱交換器を提供できる。   According to the present invention, it is possible to improve the performance of the heat exchanger while minimizing the increase in the weight of the heat exchanger, and also suppress the increase in water pressure loss as much as possible, so that the ratio of the capacity to the pipe weight is the largest. A tubular heat exchanger can be provided.

本発明の実施の形態1における熱交換器の上面図The top view of the heat exchanger in Embodiment 1 of this invention 同熱交換器の熱交換能力を示す図Diagram showing heat exchange capacity of the heat exchanger 同熱交換器の管重量を示した図Figure showing the tube weight of the heat exchanger 同熱交換器の熱交換能力/重量比を示す図The figure which shows the heat exchange capacity / weight ratio of the same heat exchanger 同熱交換器の水側圧力損失を示した図The figure which showed the water side pressure loss of the heat exchanger 本発明の実施の形態2における熱交換器の上面図Top view of heat exchanger in Embodiment 2 of the present invention 同熱交換器の一部を切除し、一部を切欠いた斜視図Perspective view with part of the heat exchanger cut out 同熱交換器の一部を切除し、一部を切欠いた斜視図Perspective view with part of the heat exchanger cut out 図6のA−A断面図AA sectional view of FIG. 図6のB−B断面図BB sectional view of FIG. 従来例を示す熱交換器の上面図Top view of a conventional heat exchanger 同熱交換器の一部を切除し、一部を切欠いた斜視図Perspective view with part of the heat exchanger cut out

第1の発明は、内部を流体Aが流れる外管と、前記外管内に配設され、内部を流体Bが流れる複数の内管とを備え、前記外管の一部は螺旋形状であることを特徴とするもので、流体Aの温度が比較的高く粘度が最も小さくなる部位に螺旋形状を限定適用するので、水用流路の伝熱促進がより効果的に発揮されるだけでなく、水の粘度が小さい領域のため水圧損の上昇も最小限に抑えることも可能となり、管重量に対する能力の比が最も大きい管式の熱交換器を提供することができる。   1st invention is equipped with the outer pipe | tube with which the fluid A flows inside, and the some inner pipe | tube arrange | positioned in the said outer pipe | tube, and the fluid B flows through the inside, and a part of said outer pipe | tube is helical shape Since the spiral shape is limited and applied to the portion where the temperature of the fluid A is relatively high and the viscosity is the smallest, not only the heat transfer promotion of the water flow path is more effectively exhibited, Since the water viscosity is low, the increase in water pressure loss can be minimized, and a tubular heat exchanger having the largest capacity to tube weight ratio can be provided.

第2の発明は、外管は管径の大きい大径管と管径の小さい小径管とから構成され、前記大径管が螺旋形状であるとともに、前記大径管の管肉厚は、前記小径管の管肉厚と略同等であることを特徴とする、螺旋形状を有する管による高能力化とともに、大径管の肉厚を小径管と同じ肉厚にしても、螺旋形状の効果により管曲げ時の座屈が発生し難くいため、軽量化が図れ、管重量に対する能力の比が最も大きい管式の熱交換器を提供できる。   In the second invention, the outer tube is composed of a large-diameter tube having a large tube diameter and a small-diameter tube having a small tube diameter, and the large-diameter tube has a helical shape, and the wall thickness of the large-diameter tube is Due to the effect of the spiral shape even if the wall thickness of the large-diameter pipe is made the same as that of the small-diameter pipe, along with the enhancement of the capacity by the pipe having a spiral shape, which is approximately the same as the wall thickness of the small-diameter pipe Since it is difficult for buckling to occur when bending a tube, it is possible to reduce the weight and provide a tubular heat exchanger with the largest ratio of capacity to tube weight.

第3の発明は、大径管の最小内径は、小径管の最小内径と略同等であることを特徴とするもので、螺旋管と内管のクリアランスは小径管と内管のクリアランスと同じであるので、内管を外管へ挿入する生産性を維持したままで、更なる高能力化を図ることが可能となる。   The third invention is characterized in that the minimum inner diameter of the large diameter tube is substantially equal to the minimum inner diameter of the small diameter tube, and the clearance between the spiral tube and the inner tube is the same as the clearance between the small diameter tube and the inner tube. As a result, it is possible to further increase the capacity while maintaining the productivity of inserting the inner tube into the outer tube.

第4の発明は、外管に流体A及び流体Bの流入口と流出口とを設け、前記流体Aと前記流体Bの流れが対向流となるように構成したことを特徴とするもので、流体Aと流体Bの平均的な温度差を大きくして熱交換量を大きくすることができ、熱交換器の性能を向上することができる。   The fourth invention is characterized in that the outer pipe is provided with an inlet and an outlet for the fluid A and the fluid B, and the flow of the fluid A and the fluid B is opposed to each other. The average temperature difference between the fluid A and the fluid B can be increased to increase the amount of heat exchange, and the performance of the heat exchanger can be improved.

第5の発明は、流体Aを水、流体Bを二酸化炭素とし、第6の発明は、第1〜5のいずれかの熱交換器を備えた給湯機で、熱交換器を、ヒートポンプ式給湯機用として、水と冷媒の間で熱交換を行う熱交換器として用いた場合、前記二酸化炭素は超臨界状態で動作し、フロン系の冷媒に比して密度が高い状態で作動するため、高いヒートポンプ効率を得ることができる。   5th invention sets water A as fluid A and fluid B as carbon dioxide, 6th invention is a hot water supply machine provided with the heat exchanger in any one of the 1st-5th, and a heat exchanger is a heat pump type hot water supply. When used as a heat exchanger for exchanging heat between water and a refrigerant, the carbon dioxide operates in a supercritical state and operates in a higher density than a chlorofluorocarbon refrigerant, High heat pump efficiency can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の上面図である。図2は、同熱交換器の螺旋管の長さと熱交換能力の関係を示した図である。図3は、同熱交換器の螺旋管の長さと重量の関係を示した図である。図4は、同熱交換器の螺旋管の長さと重量に対する熱交換能力の比を示した図である。図5は、同熱交換器の螺旋管の長さと水圧損の関係を示した図である。
(Embodiment 1)
FIG. 1 is a top view of the heat exchanger according to Embodiment 1 of the present invention. FIG. 2 is a diagram showing the relationship between the length of the helical tube and the heat exchange capacity of the heat exchanger. FIG. 3 is a diagram showing the relationship between the length and weight of the spiral tube of the heat exchanger. FIG. 4 is a diagram showing the ratio of the heat exchange capacity to the length and weight of the helical tube of the heat exchanger. FIG. 5 is a diagram showing the relationship between the length of the helical tube of the heat exchanger and the water pressure loss.

尚、従来の熱交換器101と同一構成については、同一符号を付して詳細な説明を省略する。   In addition, about the same structure as the conventional heat exchanger 101, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図1において、熱交換器1は、二重管式の熱交換器であり、内部を二酸化炭素2(本発明の流体B)が流れる冷媒用流路102を形成する内管103と、内管103の外側に設けられ、内管103との間に水4(本発明の流体A)が流れ水用流路104を形成する銅製の外管105とから構成され、この熱交換器1の場合は、内管103が2本設けられている。   In FIG. 1, a heat exchanger 1 is a double-pipe heat exchanger, and an inner tube 103 that forms a refrigerant flow path 102 through which carbon dioxide 2 (fluid B of the present invention) flows, and an inner tube In the case of the heat exchanger 1, the heat exchanger 1 is configured by a copper outer pipe 105 that is provided outside the pipe 103 and in which the water 4 (fluid A of the present invention) flows between the inner pipe 103 and forms the flow path 104 for water. Are provided with two inner tubes 103.

内管103は、銅製の冷媒管106と、冷媒管106の外周に設けられた銅製の漏洩検知管107とから構成され、冷媒管106を拡管するか、或いは、漏洩検知管107を縮管することにより、冷媒管106と漏洩検知管107を密着している。   The inner pipe 103 includes a copper refrigerant pipe 106 and a copper leak detection pipe 107 provided on the outer periphery of the refrigerant pipe 106, and expands the refrigerant pipe 106 or contracts the leak detection pipe 107. As a result, the refrigerant pipe 106 and the leak detection pipe 107 are in close contact with each other.

そして、内管103は、互いに螺旋状にねじり合わされ、その螺旋の中心が、外管105の軸心とほぼ同軸となるように外管105に内包されている。したがって、外管105内において、内管103との間を水4が流動する。しかもその流れは、内管103の螺旋に沿った旋回流となる。   The inner tube 103 is spirally twisted with each other, and the center of the spiral is included in the outer tube 105 so as to be substantially coaxial with the axis of the outer tube 105. Accordingly, the water 4 flows between the outer pipe 105 and the inner pipe 103. Moreover, the flow becomes a swirl flow along the spiral of the inner tube 103.

また、外管105は螺旋形状を有する螺旋管105bと平滑管105cとから構成されており、螺旋管105bは水4の出口部から長さLの区間だけ設けられている。さらに、外管105の両端、および内管103の両端には、それぞれ流入口8a、7aと流出口8b、7bが設けられており、内管103の二酸化炭素2の流入口7a、流出口7bと、外管105の水4の流入口8a、流出口8bは、各々の流れが対向するように方向付けて設けられている。   The outer tube 105 includes a spiral tube 105b having a spiral shape and a smooth tube 105c. The spiral tube 105b is provided only for a length L from the water 4 outlet. Further, at both ends of the outer tube 105 and at both ends of the inner tube 103, inlets 8a and 7a and outlets 8b and 7b are provided, respectively, and an inlet 7a and an outlet 7b of carbon dioxide 2 in the inner tube 103 are provided. And the inflow port 8a and the outflow port 8b of the water 4 of the outer tube 105 are provided so as to face each other.

図2において、横軸は外管105の長さに対する螺旋管105bの長さの比L(%)で、縦軸は熱交換器1の熱交換能力Qの増加割合ΔQ(%)である。図3において、横軸は外管105の長さに対する螺旋管105bの長さの比L(%)で、縦軸は熱交換器1の重量Wの増加割合ΔW(%)である。図4において、横軸は外管105の長さに対する螺旋管105bの長さの比L(%)で、縦軸は熱交換器1の重量Wの増加割合ΔW(%)に対する熱交換能力Qの増加割合ΔQ(%)の比ΔQ/ΔWである。図5において、横軸は外管105の長さに対する螺旋管105bの長さの比L(%)で、縦軸は熱交換器1における水圧損Pの増加割合ΔP(%)である。   In FIG. 2, the horizontal axis is the ratio L (%) of the length of the helical tube 105 b to the length of the outer tube 105, and the vertical axis is the increase rate ΔQ (%) of the heat exchange capability Q of the heat exchanger 1. In FIG. 3, the horizontal axis is the ratio L (%) of the length of the helical tube 105 b to the length of the outer tube 105, and the vertical axis is the increase rate ΔW (%) of the weight W of the heat exchanger 1. In FIG. 4, the horizontal axis is the ratio L (%) of the length of the helical tube 105 b to the length of the outer tube 105, and the vertical axis is the heat exchange capability Q with respect to the increase rate ΔW (%) of the weight W of the heat exchanger 1. Is the ratio ΔQ / ΔW of the increase rate ΔQ (%). In FIG. 5, the horizontal axis represents the ratio L (%) of the length of the helical tube 105 b to the length of the outer tube 105, and the vertical axis represents the increase rate ΔP (%) of the water pressure loss P in the heat exchanger 1.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

それぞれの流入口7a、8aから二酸化炭素2と水4が流入することにより、内管103の内部をヒートポンプの冷媒とする二酸化炭素2が流動し、外管105の内部における内管103との間を水4が流れる。これらの流れ方向は、前述の如く流入口7a、8aと流出口7b、8bの方向付けにより、対向して流れ、内管103の壁を介して二酸化炭素2と水4が熱交換する。したがって、水4は外管105の流出口8bに近くなるにつれてその温度が上昇し、二酸化炭素2は、流出口7bに近くなるにつれてその温度が低下する。   When carbon dioxide 2 and water 4 flow in from the respective inlets 7 a and 8 a, carbon dioxide 2 using the inside of the inner pipe 103 as a refrigerant of the heat pump flows, and between the inner pipe 103 inside the outer pipe 105. Water 4 flows. These flow directions flow as opposed to each other by the orientation of the inlets 7a and 8a and the outlets 7b and 8b as described above, and the carbon dioxide 2 and the water 4 exchange heat through the wall of the inner tube 103. Accordingly, the temperature of the water 4 increases as it approaches the outlet 8b of the outer tube 105, and the temperature of the carbon dioxide 2 decreases as it approaches the outlet 7b.

本発明では、外管105は螺旋形状を有する螺旋管105bと平滑管105cとから構成されており、螺旋管105bは水4の出口部から長さLの区間だけ設けられているので、螺旋管105bによる重量増加に対して、より効率的に熱交換器1の熱交換能力Qを高めることができる。熱交換器1において、螺旋管105bの長さLは、好ましくは外管105の長さに対して3%から48%の範囲である。   In the present invention, the outer tube 105 is composed of a spiral tube 105b having a spiral shape and a smooth tube 105c, and the spiral tube 105b is provided only for a section of length L from the outlet of the water 4. The heat exchange capability Q of the heat exchanger 1 can be more efficiently increased with respect to the weight increase due to 105b. In the heat exchanger 1, the length L of the helical tube 105b is preferably in the range of 3% to 48% with respect to the length of the outer tube 105.

図2に示すように、螺旋管105bの長さLを長くすると熱交換能力Qの増加率ΔQは増えるが、螺旋管105bの長さLが長くなるに従って熱交換能力Qの増加率ΔQの増え方が小さくなる特性がある。この理由は、水4の温度が高い領域ほど粘度が小さくなるためレイノルズ数が高くなり、螺旋管105bによる乱流促進の影響を受けやすくなるためである。   As shown in FIG. 2, when the length L of the helical tube 105b is increased, the increase rate ΔQ of the heat exchange capability Q increases, but as the length L of the spiral tube 105b increases, the increase rate ΔQ of the heat exchange capability Q increases. There is a characteristic that becomes smaller. The reason for this is that the higher the temperature of the water 4 is, the lower the viscosity is, so that the Reynolds number is high, and it is easy to be influenced by the turbulent flow acceleration by the spiral tube 105b.

螺旋管105bを用いて量産するためには、製造工程上、内管103を螺旋管105b内へ挿入する必要があり、螺旋管105bの管径は螺旋溝深さの分だけ大きくする必要がある。   In order to mass-produce using the spiral tube 105b, it is necessary to insert the inner tube 103 into the spiral tube 105b in the manufacturing process, and the tube diameter of the spiral tube 105b needs to be increased by the depth of the spiral groove. .

図3に示すように、螺旋管105bの長さLに比例して熱交換器1の重量Wの増加割合ΔW(%)は増えることになる。したがって、図2と図3の特性から図4に示す特性が得られ、図4によると、熱交換器1の重量増加割合ΔW(%)に対する熱交換能力Qの増加割合ΔQ(%)は、螺旋管105bを水4の出口部側に一部投入した領域にピークを持つ特性となる。   As shown in FIG. 3, the increase rate ΔW (%) of the weight W of the heat exchanger 1 increases in proportion to the length L of the spiral tube 105b. Therefore, the characteristics shown in FIG. 4 are obtained from the characteristics shown in FIGS. 2 and 3. According to FIG. 4, the increase rate ΔQ (%) of the heat exchange capacity Q with respect to the weight increase rate ΔW (%) of the heat exchanger 1 is The spiral tube 105b has a peak in a region where a part of the spiral tube 105b is introduced to the outlet side of the water 4.

これによると、螺旋管105bが外管105の長さに対して3%から48%の範囲ならば、ΔQ/ΔWが35%以上となり、螺旋管105bを効率的に投入することができる。
つまり、水4の出口部8b付近に螺旋管105bを部分的に適用したほうが熱交換能力Qの増加率ΔQが大きくでき、水4の出口部8b付近まで螺旋管105bを適用しても重量増加の割に熱交換能力の増加が小さいと言える。
According to this, when the spiral tube 105b is in the range of 3% to 48% with respect to the length of the outer tube 105, ΔQ / ΔW is 35% or more, and the spiral tube 105b can be efficiently charged.
That is, if the spiral tube 105b is partially applied in the vicinity of the outlet portion 8b of the water 4, the increase rate ΔQ of the heat exchange capacity Q can be increased, and the weight increases even if the spiral tube 105b is applied to the vicinity of the outlet portion 8b of the water 4. However, the increase in heat exchange capacity is small.

このように、螺旋管105bを単純に外管105の全長にわたって用いるよりも、水4の出口部8bから長さLだけ螺旋管105bを部分的に適用するほうが、管重量に対する能力の比が最も大きい管式の熱交換器を提供できる。   Thus, rather than simply using the spiral tube 105b over the entire length of the outer tube 105, the ratio of the capacity to the tube weight is the most when the spiral tube 105b is partially applied from the outlet portion 8b of the water 4 by the length L. Can provide a large tubular heat exchanger.

また、水用流路104に生じる水圧損ΔPについても、外管105の全長にわたって単純に用いると、水圧損ΔPが大幅増加するため水搬送動力が過大に必要となり容量の大きいポンプが別途必要となる。   In addition, if the water pressure loss ΔP generated in the water flow path 104 is simply used over the entire length of the outer pipe 105, the water pressure loss ΔP increases greatly, so that the water conveyance power is excessively required and a pump with a large capacity is additionally required. Become.

図5に示すように、水4の出口部8bに近い領域に螺旋管105bを部分的に適用したほうが水圧損Pの増加割合ΔPは小さいことがわかる。この理由は、水4の温度が高い領域ほど粘度が小さくなるため水流路抵抗が小さくなるためである。   As shown in FIG. 5, it can be seen that the rate of increase ΔP of the water pressure loss P is smaller when the spiral tube 105 b is partially applied to a region near the outlet 8 b of the water 4. This is because the viscosity of the water 4 becomes lower in the region where the temperature of the water 4 is higher, so the water flow path resistance becomes smaller.

よって、水4の出口部8b付近に螺旋管105bを部分的に適用したほうが、水圧損ΔPの上昇をより小さく抑えることができ、ポンプの許容抵抗値ΔP1以下に水圧損ΔPを抑えうるものである。   Therefore, when the spiral tube 105b is partially applied in the vicinity of the outlet portion 8b of the water 4, the increase in the water pressure loss ΔP can be suppressed to a smaller value, and the water pressure loss ΔP can be suppressed below the allowable resistance value ΔP1 of the pump. is there.

以上のように、水4の温度が比較的高く粘度が小さくなる所謂高温部に螺旋管105bを部分的に限定して適用することにより、高レイノルズ数域に焦点を絞って螺旋管を投入することが可能となり、水用流路104の伝熱促進がより効果的に発揮されるだけでなく、水4の粘度が小さい領域のため水圧損ΔPの上昇も最小限に抑えることも可能となり、熱交換器1の重量Wに対する熱交換能力Qの比が最も大きくなる管式の熱交換器を提供することができる。   As described above, the helical tube 105b is partially limited and applied to the so-called high-temperature portion where the temperature of the water 4 is relatively high and the viscosity is low, so that the helical tube is thrown into the high Reynolds number region. It is possible not only to promote the heat transfer of the water flow path 104 more effectively, but also to suppress the increase in the water pressure loss ΔP because the viscosity of the water 4 is small, A tubular heat exchanger in which the ratio of the heat exchange capacity Q to the weight W of the heat exchanger 1 is the largest can be provided.

このように、本実施の形態1における熱交換器1は、内管5内を流れる二酸化炭素4と外管3内を流れる水2の熱交換作用を効果的に行うことができ、これにより熱交換器1の管長を延長させることなく、熱交換性能を高めることができるものである。   Thus, the heat exchanger 1 according to the first embodiment can effectively perform the heat exchange action between the carbon dioxide 4 flowing in the inner pipe 5 and the water 2 flowing in the outer pipe 3, thereby Heat exchange performance can be improved without extending the tube length of the exchanger 1.

また、水4と二酸化炭素2を対向流としたことにより、水4と二酸化炭素2との温度差を大きくして熱交換量を大きくすることができ、熱交換器1の能力をさらに高めることができる。   Moreover, by making the water 4 and the carbon dioxide 2 into the opposite flow, the temperature difference between the water 4 and the carbon dioxide 2 can be increased to increase the amount of heat exchange, and the capacity of the heat exchanger 1 can be further enhanced. Can do.

尚、本発明の実施の形態1では、外管5内に配置する内管3の本数を2本としているが、それ以上の本数とすることもでき、同様の作用効果を期待することができる。   In the first embodiment of the present invention, the number of the inner pipes 3 arranged in the outer pipe 5 is two. However, the number of the inner pipes 3 may be more than that and the same effect can be expected. .

また、本実施の形態1において、螺旋管105bは螺旋形状を有する管としたが、コルゲート管や内面溝付き管でも同様の作用効果を期待することができる。   In the first embodiment, the spiral tube 105b is a spiral tube, but the same effect can be expected with a corrugated tube or an internally grooved tube.

さらに、本発明の実施の形態1において、外管5、内管3を銅製としたが、少なくともいずれか一方を真鍮、ステンレス、耐食性を持った鉄、アルミ合金等を材料として構成しても、同様の作用効果が期待できる。   Furthermore, in Embodiment 1 of the present invention, the outer tube 5 and the inner tube 3 are made of copper, but at least one of them may be made of brass, stainless steel, iron having corrosion resistance, aluminum alloy, or the like as a material. Similar effects can be expected.

また、本発明の実施の形態1では、内管3を流れる冷媒を二酸化炭素2としたが、ハイドロカーボン系やHFC系(R410A等)の冷媒、あるいはこれらの代替冷媒とすることも同様の作用効果が期待できる。   Further, in Embodiment 1 of the present invention, the refrigerant flowing through the inner pipe 3 is carbon dioxide 2. However, it is also possible to use a hydrocarbon-based refrigerant, an HFC-based refrigerant (R410A, etc.), or an alternative refrigerant thereof. The effect can be expected.

(実施の形態2)
図6は、本発明の実施の形態2における熱交換器の上面図である。図7および図8は、同熱交換器の一部を切除し、一部を切欠いた斜視図である。図8は、図7のA−A線による断面図である。図9は、図8のB−B線による断面図である。
(Embodiment 2)
FIG. 6 is a top view of the heat exchanger according to Embodiment 2 of the present invention. 7 and 8 are perspective views in which a part of the heat exchanger is cut out and a part thereof is cut out. 8 is a cross-sectional view taken along line AA in FIG. 9 is a cross-sectional view taken along line BB in FIG.

尚、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。   In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図6において、外管105は、管径の小さい小径管とスケール耐久信頼性を向上させるための管径の大きい大径管から構成されており、螺旋管105bは大径管に、平滑管105cは小径管に施されている。大径管である螺旋管105bの肉厚t1は、小径管なる平滑管105cの肉厚t2と略同等としたものである。   In FIG. 6, the outer tube 105 is composed of a small-diameter tube having a small tube diameter and a large-diameter tube having a large tube diameter for improving the scale durability reliability, and the helical tube 105b is replaced by a large-diameter tube and a smooth tube 105c. Is applied to a small-diameter pipe. The wall thickness t1 of the spiral tube 105b that is a large diameter tube is substantially the same as the wall thickness t2 of the smooth tube 105c that is a small diameter tube.

また、螺旋管105bと内管103のクリアランスt1は平滑管105cと内管103のクリアランスt2と略同等であり、これにより大径管と小径管の最小内径を同等にすることができる。   Further, the clearance t1 between the spiral tube 105b and the inner tube 103 is substantially equal to the clearance t2 between the smooth tube 105c and the inner tube 103, whereby the minimum inner diameters of the large diameter tube and the small diameter tube can be made equal.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

螺旋管105bによる高能力化とともに、螺旋形状の効果により管曲げ時の座屈が発生しにくくなる分、大径管である螺旋管105bの肉厚t1をより薄くできるので軽量化が図れる。好ましくは、螺旋管105bと平滑管105cの肉厚t1、t2が同じである。   Along with higher performance by the spiral tube 105b, the thickness t1 of the spiral tube 105b, which is a large-diameter tube, can be made thinner because the effect of the spiral shape is less likely to cause buckling when bending the tube, and thus the weight can be reduced. Preferably, the thicknesses t1 and t2 of the spiral tube 105b and the smooth tube 105c are the same.

また、螺旋管105bと内管103のクリアランスS1は平滑管105cと内管103のクリアランスS2と同じであるので、内管103を外管105へ挿入する生産性を維持したままで更なる高能力化を図ることが可能となる。   Further, since the clearance S1 between the spiral tube 105b and the inner tube 103 is the same as the clearance S2 between the smooth tube 105c and the inner tube 103, a higher performance can be achieved while maintaining the productivity of inserting the inner tube 103 into the outer tube 105. Can be achieved.

以上のように、螺旋管105bの肉厚t1とクリアランスS1を平滑管105cと略同等とすることにより、熱交換器1の重量増加を最小限に抑えながら熱交換器1の高性能化を可能にし、かつ水圧損の上昇も極力抑えられる管式の熱交換器を提供できる。   As described above, by making the thickness t1 and clearance S1 of the spiral tube 105b substantially the same as the smooth tube 105c, it is possible to improve the performance of the heat exchanger 1 while minimizing the increase in the weight of the heat exchanger 1. In addition, it is possible to provide a tubular heat exchanger that can suppress an increase in water pressure loss as much as possible.

以上のように、本発明にかかる熱交換器は、管長を長くして内管の伝熱面積を増加させることなく、熱交換器の熱交換性能を向上させることができるもので、二酸化炭素を用いた超臨界ヒートポンプ式給湯器や、暖房用ブラインを加熱する超臨界ヒートポンプ装置、さらには、家庭用、業務用の空気調和機、あるいはヒートポンプによる乾燥機能を具備した洗濯乾燥機、穀物貯蔵倉庫等のヒートポンプ機器の他に、燃料電池等の熱交換用途にも適用できる。   As described above, the heat exchanger according to the present invention can improve the heat exchange performance of the heat exchanger without increasing the heat transfer area of the inner tube by increasing the tube length. Supercritical heat pump water heater used, supercritical heat pump device for heating brine for heating, air conditioner for home use and business use, washing dryer with drying function by heat pump, grain storage warehouse, etc. In addition to the heat pump device, it can be applied to heat exchange applications such as fuel cells.

1 熱交換器
2 二酸化炭素(流体B)
4 水(流体A)
7a 二酸化炭素2の流入口
7b 二酸化炭素2の流出口
8a 水4の流入口
8b 水4の流出口
103 内管
105 外管
105b 螺旋管
L 螺旋管105bの長さ
t1、t2 管肉厚
S1、S2 クリアランス
1 Heat exchanger 2 Carbon dioxide (fluid B)
4 Water (fluid A)
7a Carbon dioxide 2 inlet 7b Carbon dioxide 2 outlet 8a Water 4 inlet 8b Water 4 outlet 103 Inner tube 105 Outer tube 105b Spiral tube L Length of spiral tube 105b t1, t2 Tube thickness S1, S2 clearance

Claims (6)

内部を流体Aが流れる外管と、前記外管内に配設され、内部を流体Bが流れる複数の内管とを備え、前記外管の一部は螺旋形状であることを特徴とする熱交換器。 A heat exchange comprising: an outer pipe through which fluid A flows; and a plurality of inner pipes arranged in the outer pipe and through which fluid B flows, wherein a part of the outer pipe has a spiral shape. vessel. 外管は管径の大きい大径管と管径の小さい小径管とから構成され、前記大径管が螺旋形状であるとともに、前記大径管の管肉厚は、前記小径管の管肉厚と略同等であることを特徴とする請求項1に記載の熱交換器。 The outer tube is composed of a large-diameter tube having a large tube diameter and a small-diameter tube having a small tube diameter. The large-diameter tube has a spiral shape, and the wall thickness of the large-diameter tube is the tube thickness of the small-diameter tube. The heat exchanger according to claim 1, wherein the heat exchanger is substantially equivalent to the heat exchanger. 大径管の最小内径は、小径管の最小内径と略同等であることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the minimum inner diameter of the large-diameter tube is substantially equal to the minimum inner diameter of the small-diameter tube. 外管に流体A及び流体Bの流入口と流出口とを設け、前記流体Aと前記流体Bの流れが対向流となるように構成したことを特徴とする請求項1〜3のいずれか1項に記載の熱交換器。 The inlet and outlet of the fluid A and the fluid B are provided in the outer pipe, and the flow of the fluid A and the fluid B is configured to be opposed to each other. The heat exchanger according to item. 流体Aを水、流体Bを二酸化炭素としたことを特徴とする請求項1〜4のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the fluid A is water and the fluid B is carbon dioxide. 請求項1〜5のいずれか1項に記載の熱交換器を備えた給湯機。 A water heater provided with the heat exchanger according to any one of claims 1 to 5.
JP2009286137A 2009-12-17 2009-12-17 Heat exchanger and water heater provided with the same Active JP5540683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286137A JP5540683B2 (en) 2009-12-17 2009-12-17 Heat exchanger and water heater provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286137A JP5540683B2 (en) 2009-12-17 2009-12-17 Heat exchanger and water heater provided with the same

Publications (2)

Publication Number Publication Date
JP2011127823A true JP2011127823A (en) 2011-06-30
JP5540683B2 JP5540683B2 (en) 2014-07-02

Family

ID=44290592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286137A Active JP5540683B2 (en) 2009-12-17 2009-12-17 Heat exchanger and water heater provided with the same

Country Status (1)

Country Link
JP (1) JP5540683B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118761A1 (en) * 2011-11-17 2013-05-23 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Internal heat exchanger for a motor vehicle air conditioning system
US9279621B2 (en) 2010-08-12 2016-03-08 GM Global Technology Operations LLC Internal heat exchanger for a motor vehicle air-conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1145183B (en) * 1960-06-25 1963-03-14 Schmidt Sche Heissdampf Waste heat boiler built from double pipe registers with pinned heating pipes with high heating surface load
JPH05133692A (en) * 1991-11-11 1993-05-28 Matsushita Refrig Co Ltd Evaporator
WO2003021177A1 (en) * 2001-08-31 2003-03-13 Mahendra Chhotalal Sheth Piping system and method of making the same and associated method of heat transfer
JP2005291684A (en) * 2004-04-06 2005-10-20 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump hot water supply device using this heat exchanger
JP2008267631A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1145183B (en) * 1960-06-25 1963-03-14 Schmidt Sche Heissdampf Waste heat boiler built from double pipe registers with pinned heating pipes with high heating surface load
JPH05133692A (en) * 1991-11-11 1993-05-28 Matsushita Refrig Co Ltd Evaporator
WO2003021177A1 (en) * 2001-08-31 2003-03-13 Mahendra Chhotalal Sheth Piping system and method of making the same and associated method of heat transfer
JP2005291684A (en) * 2004-04-06 2005-10-20 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump hot water supply device using this heat exchanger
JP2008267631A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9279621B2 (en) 2010-08-12 2016-03-08 GM Global Technology Operations LLC Internal heat exchanger for a motor vehicle air-conditioning system
DE102011118761A1 (en) * 2011-11-17 2013-05-23 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Internal heat exchanger for a motor vehicle air conditioning system

Also Published As

Publication number Publication date
JP5540683B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP4572662B2 (en) Heat exchanger
JP2009264644A (en) Heat exchanger
JP2010038429A (en) Heat exchanger
JP5157617B2 (en) Heat exchanger
JP2005221087A (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP5548957B2 (en) Heat exchanger and heat pump water heater using the same
JP2012007773A (en) Heat exchanger
JP2013160479A (en) Heat exchanger and heat pump type water heater using the same
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP5533328B2 (en) Heat exchanger
JP4947162B2 (en) Heat exchanger
JP2007218461A (en) Double tube type heat exchanger
JP2022051011A (en) Heat exchanger and hot water supply machine including the same
JP2008267631A (en) Heat exchanger
JP2005147567A (en) Double pipe type heat exchanger
JP2008175450A (en) Heat exchanger
JP2006162165A (en) Heat exchanger
JP2012007771A (en) Heat exchanger
JP5531810B2 (en) Heat exchanger
JP2010127496A (en) Heat exchanger
JP2010032183A (en) Heat exchanger
JP2010112565A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R151 Written notification of patent or utility model registration

Ref document number: 5540683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151