JP2006284009A - Method of manufacturing twisted tube-type heat exchanger - Google Patents

Method of manufacturing twisted tube-type heat exchanger Download PDF

Info

Publication number
JP2006284009A
JP2006284009A JP2005101165A JP2005101165A JP2006284009A JP 2006284009 A JP2006284009 A JP 2006284009A JP 2005101165 A JP2005101165 A JP 2005101165A JP 2005101165 A JP2005101165 A JP 2005101165A JP 2006284009 A JP2006284009 A JP 2006284009A
Authority
JP
Japan
Prior art keywords
water pipe
thermosetting resin
heat exchanger
resin adhesive
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005101165A
Other languages
Japanese (ja)
Inventor
Mitsusada Hayakawa
満貞 早川
Hideki Mori
秀樹 森
Takayuki Hanaki
隆行 花木
Takashi Kanetani
隆 金谷
Takahiko Kawai
孝彦 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005101165A priority Critical patent/JP2006284009A/en
Publication of JP2006284009A publication Critical patent/JP2006284009A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform sound joining without needing large-scaled expensive equipment, coating of flux and cleaning to eliminate the flux. <P>SOLUTION: A refrigerant tube 3 is wound on water piping 2 along a plurality of spiral grooves 2a formed on an outer periphery of the water piping 2, the water piping 2 on which the refrigerant tube 3 is wound is bent to a prescribed dimension, the bent water piping 2 and the refrigerant tube 3 are coated with thermosetting resin adhesive 4 having high heat conductivity, and the water piping 2 and the refrigerant tube 3 coated with the thermosetting resin adhesive 4 are heated in the atmosphere to be closely joined to each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、捩り管形熱交換器、特に芯管となる水配管の外周に冷媒管を巻き付けてなる熱交換器の製造方法に関する。   The present invention relates to a torsion tube heat exchanger, and more particularly, to a method for manufacturing a heat exchanger in which a refrigerant pipe is wound around an outer periphery of a water pipe serving as a core pipe.

従来より、芯管となる水配管の外周に冷媒管を巻き付けてなる捩り管形熱交換器が知られている(例えば、特許文献1参照)。   Conventionally, a torsion tube type heat exchanger in which a refrigerant tube is wound around the outer periphery of a water pipe serving as a core tube has been known (see, for example, Patent Document 1).

また、このようなものにおいて、芯管となる水配管とその周りに巻回される冷媒管を密着させるために、芯管となる水配管をその内部に液圧をかけて拡管したり、芯管となる水配管の内部に拡管用ダイスを通して拡管し、これによって相対的に冷媒管の締付力を大きくして、冷媒管を水配管の外周面に対して食い込ませて密着させるようにしたものも知られている(例えば、特許文献2参照)。   Moreover, in such a thing, in order to make the water pipe used as a core pipe and the refrigerant pipe wound around it close, the water pipe used as a core pipe is expanded by applying hydraulic pressure to the inside thereof, The pipe is expanded through a dicing die inside the water pipe to be a pipe, thereby relatively increasing the tightening force of the refrigerant pipe, and the refrigerant pipe is intruded into the outer peripheral surface of the water pipe to be in close contact therewith. A thing is also known (for example, refer patent document 2).

また、プレート型熱交換器において、流路を形成する皿状プレートを複数重ね合せてりん銅ろうや銀ろう等の高融点ろう又は半田等の低融点ろうを用いて接合するようにしたものも知られている(例えば、特許文献3)。   In addition, in plate-type heat exchangers, a plurality of plate-like plates forming flow paths are overlapped and joined using a high melting point solder such as phosphor copper solder or silver solder or a low melting point solder such as solder. Known (for example, Patent Document 3).

特開2002−228370号公報JP 2002-228370 A 特開2004−93057号公報JP 2004-93057 A 特開2002−107074号公報JP 2002-107074 A

しかしながら、芯管となる水配管をその内部に液圧(例えば油圧)をかけて拡管することで、水配管とその周りに巻回された冷媒管を密着させる方式の場合、大規模な液圧拡管設備が必要となる。しかも、拡管後に油除去を目的とした水配管内の洗浄およびその乾燥が必要となるとともに、残油等のコンタミネーションを厳重に管理しなければならない。
また、芯管となる水配管の内部に拡管用ダイスを通して拡管することで、水配管とその周りに巻回された冷媒管を密着させる方式の場合、拡管用ダイスの影響で水配管内面に傷等が形成され腐食発生の起因となる。
However, in the case of a system in which the water pipe serving as the core pipe is expanded by applying a hydraulic pressure (for example, hydraulic pressure) to the inside, the water pipe and the refrigerant pipe wound around the water pipe are in close contact with each other. Tube expansion equipment is required. In addition, it is necessary to clean and dry the water pipe for the purpose of oil removal after the pipe expansion, and to strictly control contamination such as residual oil.
Also, in the case of a system in which the water pipe and the refrigerant pipe wound around the water pipe are in close contact with each other by expanding the pipe through the expansion pipe inside the water pipe that becomes the core pipe, the inner surface of the water pipe is damaged due to the influence of the expansion pipe. Etc. are formed and cause corrosion.

また、りん銅ろうや銀ろう等の高融点ろうを用いて接合する方式の場合、接合温度が高く、母材の表面に酸化皮膜が生成されるので、大気中での健全な接合は困難である。このため、大規模で高価な還元雰囲気連続炉設備の設置が必要不可欠となる。さらに母材との組合せによっては、母材表面の酸化皮膜除去を目的にフラックス(酸化皮膜除去剤)の塗布および後洗浄の必要がある。   In addition, in the case of joining using a high melting point solder such as phosphor copper brazing or silver brazing, the joining temperature is high and an oxide film is formed on the surface of the base material. is there. For this reason, installation of a large-scale and expensive reducing atmosphere continuous furnace facility is indispensable. Furthermore, depending on the combination with the base material, it is necessary to apply a flux (oxide film removing agent) and perform post-cleaning for the purpose of removing the oxide film on the surface of the base material.

ところで、還元雰囲気連続炉以外の接合においては、高周波接合、トーチ(ガス)接合等が考えられるが、捩り管形熱交換器の接合においては、還元雰囲気中での接合が必須であり、やはり無酸化ろう付け用置換設備が必要となる。さらに、ろう付けは、接合原理として毛管現象を利用した接合が基本であり、健全な接合をするためには水配管と冷媒管の隙間管理を徹底しなければならない。   By the way, in joining other than the reducing atmosphere continuous furnace, high-frequency joining, torch (gas) joining, and the like are conceivable. However, joining in a torsion tube heat exchanger requires joining in a reducing atmosphere. Replacement equipment for oxidation brazing is required. Furthermore, brazing is basically based on the use of capillary action as a joining principle, and in order to achieve sound joining, the gap between the water pipe and the refrigerant pipe must be thoroughly managed.

また、半田等の低融点ろうを用いて接合する方式の場合も、還元雰囲気設備を必要とするとともに、半田材によってはフラックス塗布および後洗浄が必要となる。さらに母材が銅の場合、半田による銅食われ現象も懸念される。   Also, in the case of joining using a low melting point solder such as solder, a reducing atmosphere facility is required, and depending on the solder material, flux application and post-cleaning are required. Furthermore, when the base material is copper, there is a concern about the phenomenon of copper erosion due to solder.

本発明は、以上のような課題を解決するためになされたもので、大規模で高価な設備が不要で、フラックス塗布やその除去を目的とした洗浄の必要もなく、健全な接合を可能とすることのできる捩り管形熱交換器の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and does not require large-scale and expensive equipment, and does not require cleaning for the purpose of flux application or removal thereof, and enables sound bonding. It is an object of the present invention to provide a method for manufacturing a twisted tube heat exchanger that can be used.

本発明に係る捩り管形熱交換器の製造方法は、外周に複数条の螺旋溝を設けた水配管に、前記螺旋溝に沿わせて冷媒管を巻き付ける工程と、冷媒管を巻き付けた水配管を所定寸法に曲げ加工する工程と、曲げ加工した水配管と冷媒管に高熱伝導性を有する熱硬化樹脂系接着剤を塗布する工程と、熱硬化樹脂系接着剤を塗布した水配管と冷媒管を大気中で加熱することで、これら水配管と冷媒管を密着接合する工程と、を有することを特徴としている。   The method for manufacturing a twisted tube heat exchanger according to the present invention includes a step of winding a refrigerant pipe along a spiral groove on a water pipe having a plurality of spiral grooves on the outer periphery, and a water pipe around which the refrigerant pipe is wound. A process of bending the pipe into a predetermined dimension, a process of applying a thermosetting resin adhesive having high thermal conductivity to the bent water pipe and refrigerant pipe, and a water pipe and refrigerant pipe coated with the thermosetting resin adhesive It is characterized by having a step of tightly joining the water pipe and the refrigerant pipe by heating the pipe in the atmosphere.

本発明の捩り管形熱交換器の製造方法によれば、曲げ加工した水配管と冷媒管に高熱伝導性を有する熱硬化樹脂系接着剤を塗布して、大気中で加熱することで、これら水配管と冷媒管を密着接合するので、酸化皮膜の生成が少ない低い温度帯でしかも酸化除去剤を必要とすることなく接合することができる。このため、大規模で高価な設備を必要とせず、しかもフラックス塗布工程とフラックス除去を目的とした洗浄工程を省くことができる。   According to the manufacturing method of the twisted tube heat exchanger of the present invention, by applying a thermosetting resin adhesive having high thermal conductivity to the bent water pipe and the refrigerant pipe, and heating them in the atmosphere, Since the water pipe and the refrigerant pipe are tightly joined, they can be joined in a low temperature zone where the generation of an oxide film is small and without the need for an oxidation remover. For this reason, large-scale and expensive equipment is not required, and a flux application process and a cleaning process for the purpose of flux removal can be omitted.

実施の形態1.
以下、図示実施形態により本発明を説明する。
図1は本発明の実施の形態1に係る捩り管形熱交換器の製造方法を示す工程図、図2は本発明の製造方法により制作された捩り管形熱交換器の全体構成図、図3はその捩り管形熱交換器の要部断面図、図4はその捩り管形熱交換器への熱硬化樹脂系接着剤の塗布例を示す要部拡大断面図、図5はその捩り管形熱交換器への熱硬化樹脂系接着剤の他の塗布例を示す要部拡大断面図、図6はその熱硬化樹脂系接着剤を塗布された捩り管形熱交換器の大気高温槽による加熱例を示す説明図、図7はその熱硬化樹脂系接着剤を塗布された捩り管形熱交換器の高周波電源装置による加熱例を示す説明図、図8はその捩り管形熱交換器の接着剤接合後の状態を示す要部断面図、図9はその捩り管形熱交換器の接着剤硬化条件を温度と時間の関係で示すグラフ、図10はその捩り管形熱交換器に用いられる熱硬化樹脂系接着剤の熱伝導性フィラー含有量と熱伝導率の関係を示す棒グラフである。
Embodiment 1 FIG.
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a process diagram showing a manufacturing method of a torsion tube heat exchanger according to Embodiment 1 of the present invention, and FIG. 2 is an overall configuration diagram of the torsion tube heat exchanger produced by the manufacturing method of the present invention. 3 is a cross-sectional view of the main part of the torsion tube heat exchanger, FIG. 4 is an enlarged cross-sectional view of the main part showing an application example of the thermosetting resin adhesive to the torsion tube heat exchanger, and FIG. The principal part expanded sectional view which shows the other example of application | coating of the thermosetting resin-type adhesive agent to a type | mold heat exchanger, FIG. 7 is an explanatory diagram showing an example of heating, FIG. 7 is an explanatory diagram showing an example of heating by a high frequency power supply device of a torsion tube heat exchanger coated with the thermosetting resin adhesive, and FIG. 8 is an illustration of the torsion tube heat exchanger. FIG. 9 is a cross-sectional view of the main part showing the state after bonding the adhesive, and FIG. 9 is a graph showing the adhesive curing conditions of the twisted tube heat exchanger in relation to temperature and time. FIG 10 is a bar graph showing the relationship between the thermally conductive filler content used in torsion tube type heat exchanger thermosetting resin adhesive and thermal conductivity.

本実施形態に係る捩り管形熱交換器1は、図2及び図3に示すように外周に複数条の螺旋溝2aを設けた捩り管すなわち水配管2と、水配管2に螺旋溝2aに沿わせて巻き付けた冷媒管3とから構成される。なお、図2は水配管2の管軸に沿って切断した断面を示している。   As shown in FIGS. 2 and 3, the torsion tube heat exchanger 1 according to the present embodiment includes a torsion tube having a plurality of spiral grooves 2a on the outer periphery, that is, a water pipe 2, and a water pipe 2 with a spiral groove 2a. It is comprised from the refrigerant | coolant pipe | tube 3 wound along. FIG. 2 shows a cross section cut along the tube axis of the water pipe 2.

水配管2と冷媒管3を接合する熱硬化樹脂系接着剤4を塗布する箇所は、後述する製造方法により異なり、水配管2の螺旋溝2aに冷媒管3を巻き付けてから塗布する場合は、図4のように表面側となり、水配管2の螺旋溝2aに先に熱硬化樹脂系接着剤を塗布する場合は、図5のように螺旋溝2aの底部となる。   The location where the thermosetting resin-based adhesive 4 that joins the water pipe 2 and the refrigerant pipe 3 is applied differs depending on the manufacturing method described later, and when the refrigerant pipe 3 is wound around the spiral groove 2a of the water pipe 2, When the thermosetting resin adhesive is first applied to the spiral groove 2a of the water pipe 2 as shown in FIG. 4, it becomes the bottom of the spiral groove 2a as shown in FIG.

また、水配管2と冷媒管3を接合するために、熱硬化樹脂系接着剤塗布後に加熱する手法も2通りあり、1つは図6のように大気高温槽(又は炉)5内に捩り管形熱交換器1を収容して、捩り管形熱交換器1全体を加熱する方法であり、他の1つは図7のように高周波電源装置6を用い、高周波電源装置6の加熱コイル6aを移動させて加熱する方法である。   There are also two methods of heating after applying the thermosetting resin adhesive to join the water pipe 2 and the refrigerant pipe 3, and one is twisted in the atmospheric high-temperature tank (or furnace) 5 as shown in FIG. This is a method in which the tubular heat exchanger 1 is accommodated and the entire twisted tubular heat exchanger 1 is heated, and the other one uses a high frequency power supply device 6 as shown in FIG. In this method, 6a is moved and heated.

次に、本実施形態の捩り管形熱交換器の製造方法について、図1に基づき図2乃至図10を参照しながら説明する。まず、外周に複数条の螺旋溝2aを設けた水配管2に、螺旋溝2aに沿わせて冷媒管3を巻き付けて嵌め込む(図1(a))。次いで、冷媒管3を巻き付けた水配管2を曲げ加工装置7にて所定寸法に曲げ加工(図1(b))した後、ディスペンサ等の自動塗布装置8を用いて高熱伝導性を有する熱硬化樹脂系接着剤4の塗布を行う(図1(c))。このように水配管2の螺旋溝2aに冷媒管3を巻き付けてから曲げ加工した後に、熱硬化樹脂系接着剤4の塗布を実施するため、図4のように冷媒管3を嵌め込んだ水配管2の表面(例えば上面)のみに熱硬化樹脂系接着剤4を塗布する方法が最良である。その際、熱硬化樹脂系接着剤4の塗布量および接着剤の粘度管理をすることが重要となる。その後、熱硬化樹脂系接着剤4を塗布した水配管2と冷媒管3を大気中で加熱する。すなわち、熱硬化樹脂系接着剤4を塗布した捩り管形熱交換器1を大気高温槽5内に収容し、温度200±50℃の範囲で加熱して(図1(d)、図6)、熱硬化樹脂系接着剤4を硬化させることで、水配管2と冷媒管3を密着接合する。なお、熱硬化樹脂系接着剤4を塗布した捩り管形熱交換器1を大気中で加熱する手段として図7のような高周波電源装置6を用いる場合は、曲げ加工後の蛇行状になった捩り管形熱交換器1に沿って加熱コイル6aを移動制御するための設備が必要となるが、この高周波電源装置6を用いた加熱方式も採用可能であることは言うまでもない。   Next, the manufacturing method of the twisted tube heat exchanger of this embodiment is demonstrated based on FIG. 1 and referring FIG. 2 thru | or FIG. First, the refrigerant pipe 3 is wound and fitted along the spiral groove 2a in the water pipe 2 provided with a plurality of spiral grooves 2a on the outer periphery (FIG. 1 (a)). Next, the water pipe 2 around which the refrigerant pipe 3 is wound is bent into a predetermined dimension by a bending apparatus 7 (FIG. 1B), and then thermosetting having high thermal conductivity using an automatic application apparatus 8 such as a dispenser. The resin adhesive 4 is applied (FIG. 1 (c)). After the refrigerant pipe 3 is wound around the spiral groove 2a of the water pipe 2 and bent, the thermosetting resin-based adhesive 4 is applied, so that the water into which the refrigerant pipe 3 is fitted as shown in FIG. The method of applying the thermosetting resin adhesive 4 only to the surface (for example, the upper surface) of the pipe 2 is the best. At that time, it is important to control the application amount of the thermosetting resin adhesive 4 and the viscosity of the adhesive. Thereafter, the water pipe 2 and the refrigerant pipe 3 coated with the thermosetting resin adhesive 4 are heated in the atmosphere. That is, the twisted tube heat exchanger 1 to which the thermosetting resin adhesive 4 is applied is housed in an atmospheric high-temperature tank 5 and heated in a temperature range of 200 ± 50 ° C. (FIG. 1 (d), FIG. 6). The water pipe 2 and the refrigerant pipe 3 are tightly joined by curing the thermosetting resin adhesive 4. When the high-frequency power supply device 6 as shown in FIG. 7 is used as means for heating the torsion tube heat exchanger 1 coated with the thermosetting resin adhesive 4 in the atmosphere, it has a meandering shape after bending. Equipment for moving and controlling the heating coil 6a along the torsion tube heat exchanger 1 is required, but it goes without saying that a heating method using this high-frequency power supply device 6 can also be adopted.

このように、本実施形態の捩り管形熱交換器の製造方法によれば、水配管2と冷媒管3の接合手段として高熱伝導性を有する熱硬化樹脂系接着剤4を使用するので、大気中で短時間での接合が可能であり、しかもフラックス塗布やその除去を目的とした洗浄も不要となる。   Thus, according to the manufacturing method of the twisted tube heat exchanger of this embodiment, since the thermosetting resin adhesive 4 having high thermal conductivity is used as a joining means of the water pipe 2 and the refrigerant pipe 3, Bonding in a short time is possible, and cleaning for the purpose of flux application and removal thereof is also unnecessary.

接合した捩り管形熱交換器1の接合後の断面図を図8に示す。りん銅ろう又は半田等のろう材を使用して接合する従来方式の場合、毛管現象を利用した接合となるため、水配管2と冷媒管3の隙間管理を適性な値(0.06mmから0.20mm)にする必要が生じる。水配管2に冷媒管3を巻き付けて嵌め込む際は、適正なテンションを掛けながら巻き付けるが、曲り部等はどうしても適正な隙間が確保できず、ろうが健全に塗れないことがある。しかし熱硬化樹脂系接着剤4の場合、毛管現象を利用した接合ではないため、厳密な隙間管理を必要とせず、健全な接合が可能となる。   FIG. 8 shows a cross-sectional view of the joined torsion tube heat exchanger 1 after joining. In the case of the conventional method of joining using a brazing material such as phosphor copper solder or solder, since the joining is performed using the capillary phenomenon, the gap management between the water pipe 2 and the refrigerant pipe 3 is set to an appropriate value (from 0.06 mm to 0). 20 mm). When the refrigerant pipe 3 is wound around and fitted into the water pipe 2, the pipe is wound while applying an appropriate tension. However, in the case of the thermosetting resin adhesive 4, since it is not joining utilizing capillary action, strict gap management is not required, and sound joining is possible.

図9は熱硬化樹脂系接着剤4の硬化条件を示すもので、縦軸に温度、横軸に硬化するまでの時間をとったものである。240℃で約10秒、180℃で約60秒、150℃で約90秒の条件で硬化する。これらの硬化条件下であれば、接合部の密着性に差異は無く、またボイド等の不具合が発生することもなかった。   FIG. 9 shows the curing conditions of the thermosetting resin adhesive 4, where the vertical axis represents temperature and the horizontal axis represents the time until curing. Curing is performed at 240 ° C. for about 10 seconds, 180 ° C. for about 60 seconds, and 150 ° C. for about 90 seconds. Under these curing conditions, there was no difference in the adhesion of the joints, and no defects such as voids occurred.

また、自動塗布装置8には、塗布をよりスムーズに行えるようにするために、50℃前後での保温供給を可能とするヒータを設けた。   In addition, the automatic application device 8 is provided with a heater that can supply heat at around 50 ° C. in order to perform application more smoothly.

図10は熱硬化樹脂系接着剤4の金属性熱伝導フィラー含有の有無による伝熱性能比較を示すもので、通常の樹脂接着剤(金属性熱伝導フィラー無し)の熱伝導率は0.5W/m・Kレベルであるのに対し、金属フィラーを30vol%含有した熱硬化樹脂系接着剤(例えば一液性エポキシ樹脂)の場合、熱伝導率は2.0W/m・Kとなりほぼ4倍となり、金属フィラーを60vol%含有した場合、熱伝導率は3.0W/m・Kとなりほぼ6倍となる。   FIG. 10 shows a comparison of heat transfer performance depending on whether or not the thermosetting resin adhesive 4 contains a metallic heat conductive filler. The heat conductivity of a normal resin adhesive (no metallic heat conductive filler) is 0.5 W. In the case of a thermosetting resin adhesive containing 30 vol% metal filler (for example, one-component epoxy resin), the thermal conductivity is 2.0 W / m · K, almost 4 times that of the / m · K level. When 60 vol% of the metal filler is contained, the thermal conductivity is 3.0 W / m · K, which is almost 6 times.

ただし、一般に銅の熱伝導率は約400W/m・K、錫の熱伝導率は約70W/m・Kと定義されており、銅含有率90vol%のりん銅ろうや錫含有率99vol%の半田と比較すると樹脂接着剤の熱伝導率は約1/100から1/20倍レベルにある。   However, in general, the thermal conductivity of copper is defined as about 400 W / m · K, and the thermal conductivity of tin is defined as about 70 W / m · K. Phosphor copper solder with a copper content of 90 vol% and tin content of 99 vol% Compared with solder, the thermal conductivity of the resin adhesive is about 1/100 to 1/20 times.

ところが、ろう材や樹脂接着剤等、接合材料単体が持つ熱伝導性は、捩り管形熱交換器全体としての熱交換性能に対して必ずしも比例の関係となっていないことが本発明者等の実験により判明した。例えば捩り管形熱交換器全体の熱交換性能においては、銅含有率90vol%のりん銅ろうで接合した場合を100とすると、錫含有率99vol%の半田ディップで接合した場合もほぼ100となる。熱伝導率が2.0W/m・Kの熱硬化樹脂系接着剤で接合した場合でも捩り管形熱交換器全体の熱交換性能は80前後にとなり、接合材単体での熱伝導率の差は見受けられない。   However, the present inventors have found that the thermal conductivity of a single bonding material, such as a brazing material and a resin adhesive, is not necessarily proportional to the heat exchange performance of the torsion tube heat exchanger as a whole. It became clear by experiment. For example, in the heat exchange performance of the torsion tube heat exchanger as a whole, assuming that 100 is the case where the copper content is 90 vol% and the copper content is 100 vol., The tin content is 99 vol%. . Even when bonded with a thermosetting resin adhesive with a thermal conductivity of 2.0 W / m · K, the overall heat exchange performance of the torsion tube heat exchanger is around 80, and the difference in thermal conductivity between the bonding materials alone Is not seen.

つまり、熱伝導率が2.0W/m・K以上の熱硬化樹脂系接着剤を接合材として用いた場合、熱交換器単体の熱交換性能バラツキ等を考慮すると、配管全長を1から2割増やす等の対応で充分問題無く使用可能となる。   In other words, when a thermosetting resin adhesive with a thermal conductivity of 2.0 W / m · K or higher is used as the bonding material, considering the heat exchange performance variation of the heat exchanger alone, the total pipe length is 10 to 20%. It becomes possible to use it without any problems by measures such as increasing it.

参考までに、熱伝導率が0.5W/m・Kの熱硬化樹脂系接着剤では伝熱性能が40と振るわず、少なくとも熱伝導率が2.0W/m・K以下の熱硬化樹脂系接着剤では、りん銅ろうや半田材で接合した熱交換器に比べて、同等の熱交換性能を得ることができなかった。   For reference, a thermosetting resin adhesive with a thermal conductivity of 0.5 W / m · K does not exhibit a heat transfer performance of 40, and at least a thermosetting resin system with a thermal conductivity of 2.0 W / m · K or less. With the adhesive, it was not possible to obtain the same heat exchange performance as compared with heat exchangers joined with phosphor copper solder or solder material.

よって、熱硬化樹脂系接着剤として、熱伝導率が2.0W/m・K以上である接着剤を用いることで、捩り管形熱交換器として比較的問題無い熱交換性能を確保することができる。   Therefore, by using an adhesive having a thermal conductivity of 2.0 W / m · K or more as the thermosetting resin adhesive, it is possible to ensure heat exchange performance with relatively no problem as a torsion tube heat exchanger. it can.

このように、捩り管形熱交換器の接合において、水配管2と冷媒管3を高熱伝導性を有する熱硬化樹脂系接着剤4を使用して接合することで、大規模な還元雰囲気炉等を必要とすることなく、大気中にて低温度帯でしかも短時間での接合が可能となり、フラックス塗布や後洗浄と言った前後処理も必要なく、健全な接合が可能となる。さらに熱硬化樹脂系接着剤4に金属性熱伝導フィラーを30vol%以上含有したことで、捩り管形熱交換器として比較的問題無い熱交換性能を確保することができた。   As described above, in joining the torsion tube heat exchanger, the water pipe 2 and the refrigerant pipe 3 are joined using the thermosetting resin adhesive 4 having high thermal conductivity, so that a large-scale reducing atmosphere furnace or the like can be used. Therefore, it is possible to perform bonding in a low temperature zone in the atmosphere in a short time, and before and after treatment such as flux application or post-cleaning is not required, and sound bonding is possible. Furthermore, by containing 30 vol% or more of the metallic heat conductive filler in the thermosetting resin adhesive 4, it was possible to ensure heat exchange performance with no problems as a twisted tube heat exchanger.

実施の形態2.
図11は本発明の実施の形態2に係る捩り管形熱交換器の製造方法を示す工程図であり、図中、前述の実施の形態1と同一部分には同一符号を付してある。なお、説明にあたっては前述の図2乃至図10を参照するものとする。
Embodiment 2. FIG.
FIG. 11 is a process diagram showing a method for manufacturing a twisted tube heat exchanger according to Embodiment 2 of the present invention. In the drawing, the same parts as those in Embodiment 1 are given the same reference numerals. In the description, reference is made to FIG. 2 to FIG.

図11に示すように本実施形態の捩り管形熱交換器の製造方法は、まず外周に複数条の螺旋溝2aを設けた水配管2に、螺旋溝2aに沿わせて冷媒管3を巻き付けて嵌め込む(図11(a))。次いで、冷媒管3を巻き付けた水配管2に、ディスペンサ等の自動塗布装置8を用いて高熱伝導性を有する熱硬化樹脂系接着剤4を塗布する(図11(b))。ここで熱硬化樹脂系接着剤4としては、前述の実施の形態1と同様、温度200±50℃で、硬化時間90秒以内の条件を満たす接着剤、あるいは熱伝導率が2.0W/m・K以上である接着剤、もしくは金属フィラーを30vol%以上含有した例えば一液性エポキシ樹脂を用いる。その後、熱硬化樹脂系接着剤4を塗布した水配管2と冷媒管3を一端側から他端側へかけて高周波電源装置6を用いて順次加熱すると同時に、このときの熱(接合熱)を利用して曲げ加工装置7にて曲げ加工が必要な部位の曲げ加工を行うことで、水配管2と冷媒管3を密着接合する工程と水配2管と冷媒管3を所定寸法に曲げ加工する工程とを同時進行させる(図11(c))。その際、硬化速度の管理が重要となる。また、熱硬化樹脂系接着剤4を塗布する際、曲げ部のみ接着剤の供給を停止することで、全体の密着面積は低下するものの健全な曲げ加工が可能となる。   As shown in FIG. 11, in the manufacturing method of the twisted tube heat exchanger of this embodiment, first, the refrigerant pipe 3 is wound around the water pipe 2 provided with a plurality of spiral grooves 2a on the outer periphery along the spiral grooves 2a. (Fig. 11 (a)). Next, the thermosetting resin adhesive 4 having high thermal conductivity is applied to the water pipe 2 around which the refrigerant pipe 3 is wound using an automatic application device 8 such as a dispenser (FIG. 11B). Here, as the thermosetting resin adhesive 4, as in the first embodiment, an adhesive that satisfies the conditions of a temperature of 200 ± 50 ° C. and a curing time of 90 seconds or less, or a thermal conductivity of 2.0 W / m. -For example, a one-component epoxy resin containing 30 vol% or more of an adhesive that is K or higher or a metal filler is used. Thereafter, the water pipe 2 and the refrigerant pipe 3 coated with the thermosetting resin adhesive 4 are sequentially heated from one end side to the other end side using the high frequency power supply device 6 and at the same time the heat (bonding heat) at this time Using the bending apparatus 7 to bend the part that needs to be bent, the process of tightly joining the water pipe 2 and the refrigerant pipe 3, and bending the water distribution pipe 2 and the refrigerant pipe 3 to a predetermined dimension And the step of performing are simultaneously performed (FIG. 11C). At that time, the management of the curing rate is important. In addition, when applying the thermosetting resin adhesive 4, by stopping the supply of the adhesive only at the bent portion, the entire adhesive area is reduced, but a sound bending process is possible.

本実施形態の捩り管形熱交換器の製造方法においても、水配管2と冷媒管3の接合手段として高熱伝導性を有する熱硬化樹脂系接着剤4を使用するので、大気中で短時間での接合が可能であり、しかもフラックス塗布やその除去を目的とした洗浄も不要となり、前述の実施の形態1と同様の作用、効果を奏する。   Also in the manufacturing method of the torsion tube type heat exchanger of this embodiment, since the thermosetting resin adhesive 4 having high thermal conductivity is used as the joining means of the water pipe 2 and the refrigerant pipe 3, it can be performed in the air in a short time. In addition, there is no need for flux application or cleaning for the purpose of removing the flux, and the same operations and effects as those of the first embodiment are achieved.

また、曲げ加工前に熱硬化樹脂系接着剤4の塗布を実施するため、図4のように冷媒管3を嵌め込んだ水配管2の上面のみに熱硬化樹脂系接着剤4を塗布する方法だけでなく、冷媒管3を嵌め込んだ水配管2に沿って螺旋状に熱硬化樹脂系接着剤4を塗布する方法も採用可能である。その場合、冷媒管3を嵌め込んだ水配管2を回転させる設備が必要となるが、密着個所に満遍なく塗布することができるため、熱硬化樹脂系接着剤4が下側まで濡れ広がることを考慮する必要がなく、上面のみの塗布方式に対して比較的管理がし易いという利点がある。   Further, in order to apply the thermosetting resin adhesive 4 before bending, a method of applying the thermosetting resin adhesive 4 only to the upper surface of the water pipe 2 into which the refrigerant pipe 3 is fitted as shown in FIG. In addition, a method of applying the thermosetting resin adhesive 4 spirally along the water pipe 2 into which the refrigerant pipe 3 is fitted may be employed. In that case, equipment for rotating the water pipe 2 fitted with the refrigerant pipe 3 is required. However, since it can be applied evenly to the close contact area, it is considered that the thermosetting resin adhesive 4 spreads to the lower side. There is an advantage that it is relatively easy to manage with respect to the coating method of only the upper surface.

実施の形態3.
図12は本発明の実施の形態3に係る捩り管形熱交換器の製造方法を示す工程図であり、図中、前述の実施の形態1と同一部分には同一符号を付してある。なお、説明にあたっては前述の図2乃至図10を参照するものとする。
Embodiment 3 FIG.
FIG. 12 is a process diagram showing a method for manufacturing a torsion tube heat exchanger according to Embodiment 3 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals. In the description, reference is made to FIG. 2 to FIG.

図12に示すように本実施形態の捩り管形熱交換器の製造方法は、まず外周に複数条の螺旋溝2aを設けた水配管2に、螺旋溝2aの底部に沿ってディスペンサ等の自動塗布装置8を用いて高熱伝導性を有する熱硬化樹脂系接着剤4を塗布する(図12(a))。熱硬化樹脂系接着剤4としては、前述の実施の形態1と同様、温度200±50℃で、硬化時間90秒以内の条件を満たす接着剤、あるいは熱伝導率が2.0W/m・K以上である接着剤、もしくは金属フィラーを30vol%以上含有した例えば一液性エポキシ樹脂を用いる。次いで、熱硬化樹脂系接着剤4を塗布した水配管2に、その螺旋溝2aに沿わせて冷媒管3を巻き付けて嵌め込む(図12(b))。次いで、冷媒管3を巻き付けた水配管2を曲げ加工装置7にて所定寸法に曲げ加工(図12(c))した後、既に熱硬化樹脂系接着剤4が塗布された捩り管形熱交換器1を大気高温槽5内に収容し、温度200±50℃の範囲で加熱して(図12(d))、熱硬化樹脂系接着剤4を硬化させることで、水配管2と冷媒管3を密着接合する。なお、熱硬化樹脂系接着剤4を塗布した捩り管形熱交換器1を大気中で加熱する手段として、ここでも図7のような高周波電源装置6を用いた加熱方式の採用が可能であることは言うまでもない。   As shown in FIG. 12, the manufacturing method of the twisted tube heat exchanger according to the present embodiment is as follows. First, a water pipe 2 having a plurality of spiral grooves 2a on the outer periphery, and an automatic dispenser or the like along the bottom of the spiral groove 2a. The thermosetting resin adhesive 4 having high thermal conductivity is applied using the coating device 8 (FIG. 12A). As the thermosetting resin adhesive 4, as in the first embodiment, the adhesive satisfies the conditions of a temperature of 200 ± 50 ° C. and a curing time of 90 seconds or a thermal conductivity of 2.0 W / m · K. For example, a one-component epoxy resin containing 30 vol% or more of the above adhesive or metal filler is used. Next, the refrigerant pipe 3 is wound around and fitted in the water pipe 2 to which the thermosetting resin adhesive 4 is applied (FIG. 12B). Next, the water pipe 2 around which the refrigerant pipe 3 is wound is bent to a predetermined dimension by the bending apparatus 7 (FIG. 12 (c)), and then the torsion pipe heat exchange in which the thermosetting resin adhesive 4 has already been applied. The container 1 is accommodated in the atmospheric high-temperature tank 5 and heated in a temperature range of 200 ± 50 ° C. (FIG. 12D), and the thermosetting resin adhesive 4 is cured, so that the water pipe 2 and the refrigerant pipe 3 is tightly bonded. As a means for heating the torsion tube heat exchanger 1 coated with the thermosetting resin adhesive 4 in the atmosphere, a heating method using a high frequency power supply device 6 as shown in FIG. 7 can be adopted here. Needless to say.

このように、本実施形態の捩り管形熱交換器の製造方法においても、水配管2と冷媒管3の接合手段として高熱伝導性を有する熱硬化樹脂系接着剤4を使用するので、大気中で短時間での接合が可能であり、しかもフラックス塗布やその除去を目的とした洗浄も不要となり、前述の実施の形態1と同様の作用、効果を奏する。   Thus, also in the manufacturing method of the twisted tube heat exchanger of the present embodiment, since the thermosetting resin adhesive 4 having high thermal conductivity is used as a joining means of the water pipe 2 and the refrigerant pipe 3, In addition, bonding in a short time is possible, and cleaning for the purpose of flux application and removal thereof is not necessary, and the same operations and effects as those of the first embodiment are achieved.

また、本実施形態においては、水配管2の螺旋溝2aに冷媒管3を巻き付けるよりも前に熱硬化樹脂系接着剤4の塗布を実施し、塗布後に冷媒管3を巻くため、滑り抑制のための冶具が必要となるが、曲げ加工前の塗布となるため、水配管2の螺旋溝2aに沿って螺旋状に塗布する方式が選択できる。さらに塗布後に螺旋溝2aに沿って巻回される冷媒管3が接着剤塗布部の蓋として機能し、設備への接着剤付着が抑制されるため、通常の曲げ加工を実施した後、図6に示す大気高温槽5での加熱が可能となる。つまり硬化速度の管理をしながら曲げ工程と加熱を同時に行う必要は無く、密着面積の低下を抑制した接合が可能となる。   Moreover, in this embodiment, since the thermosetting resin adhesive 4 is applied before the refrigerant pipe 3 is wound around the spiral groove 2a of the water pipe 2, and the refrigerant pipe 3 is wound after the application, the slip suppression is suppressed. However, since it is applied before bending, a method of applying a spiral along the spiral groove 2a of the water pipe 2 can be selected. Further, since the refrigerant tube 3 wound along the spiral groove 2a after application functions as a lid of the adhesive application part and adhesion of the adhesive to the equipment is suppressed, after performing normal bending, FIG. Heating in the atmospheric high-temperature tank 5 shown in FIG. That is, it is not necessary to perform the bending step and the heating simultaneously while managing the curing rate, and it is possible to perform the bonding while suppressing the decrease in the adhesion area.

本発明の実施の形態1に係る捩り管形熱交換器の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the twisted tube heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る捩り管形熱交換器の製造方法により制作された捩り管形熱交換器の全体構成図である。1 is an overall configuration diagram of a torsion tube heat exchanger produced by a method for manufacturing a torsion tube heat exchanger according to Embodiment 1 of the present invention. FIG. 本発明の実施の形態1に係る捩り管形熱交換器の要部断面図である。It is principal part sectional drawing of the twisted tube heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る捩り管形熱交換器の製造方法における熱硬化樹脂系接着剤の塗布例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the example of application | coating of the thermosetting resin adhesive in the manufacturing method of the twisted tube heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る捩り管形熱交換器の製造方法における熱硬化樹脂系接着剤の他の塗布例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the other application example of the thermosetting resin-type adhesive agent in the manufacturing method of the twisted tube type heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る捩り管形熱交換器の製造方法における熱硬化樹脂系接着剤を塗布された捩り管形熱交換器の大気高温槽による加熱例を示す説明図である。It is explanatory drawing which shows the example of a heating by the atmospheric high temperature tank of the torsion tube type heat exchanger with which the thermosetting resin adhesive was apply | coated in the manufacturing method of the torsion tube type heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る捩り管形熱交換器の製造方法における熱硬化樹脂系接着剤を塗布された捩り管形熱交換器の高周波電源装置による加熱例を示す説明図である。It is explanatory drawing which shows the example of a heating by the high frequency power supply device of the twisted tube type heat exchanger apply | coated with the thermosetting resin adhesive in the manufacturing method of the twisted tube type heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る捩り管形熱交換器の製造方法による捩り管形熱交換器の接着剤接合後の状態を示す要部断面図である。It is principal part sectional drawing which shows the state after adhesive bonding of the torsion tube type heat exchanger by the manufacturing method of the torsion tube type heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る捩り管形熱交換器の製造方法における接着剤硬化条件を温度と時間の関係で示すグラフである。It is a graph which shows the adhesive hardening conditions in the manufacturing method of the twisted tube heat exchanger which concerns on Embodiment 1 of this invention with the relationship between temperature and time. 本発明の実施の形態1に係る捩り管形熱交換器の製造方法に用いられる熱硬化樹脂系接着剤の熱伝導性フィラー含有量と熱伝導率の関係を示す棒グラフである。It is a bar graph which shows the relationship between the heat conductive filler content of the thermosetting resin adhesive used for the manufacturing method of the twisted tube heat exchanger which concerns on Embodiment 1 of this invention, and heat conductivity. 本発明の実施の形態2に係る捩り管形熱交換器の接造方法を示す工程図である。It is process drawing which shows the manufacturing method of the twisted tube type heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る捩り管形熱交換器の接造方法を示す工程図である。It is process drawing which shows the manufacturing method of the twisted tube type heat exchanger which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 捩り管形熱交換器、2 水配管、2a 螺旋溝、3 冷媒管、4 熱硬化樹脂系接着剤、5 大気高温槽(又は炉)、6 高周波電源装置、7 曲げ加工装置、8 自動塗布装置。
1 torsion tube heat exchanger, 2 water piping, 2a spiral groove, 3 refrigerant tube, 4 thermosetting resin adhesive, 5 atmospheric high temperature bath (or furnace), 6 high frequency power supply device, 7 bending processing device, 8 automatic coating apparatus.

Claims (6)

外周に複数条の螺旋溝を設けた水配管に、前記螺旋溝に沿わせて冷媒管を巻き付ける工程と、
冷媒管を巻き付けた水配管を所定寸法に曲げ加工する工程と、
曲げ加工した水配管と冷媒管に高熱伝導性を有する熱硬化樹脂系接着剤を塗布する工程と、
熱硬化樹脂系接着剤を塗布した水配管と冷媒管を大気中で加熱することで、これら水配管と冷媒管を密着接合する工程と、
を有することを特徴とする捩り管形熱交換器の製造方法。
A step of winding a refrigerant pipe along the spiral groove on a water pipe provided with a plurality of spiral grooves on the outer periphery;
Bending the water pipe around which the refrigerant pipe is wound to a predetermined dimension;
Applying a thermosetting resin adhesive having high thermal conductivity to the bent water pipe and the refrigerant pipe;
A step of closely bonding the water pipe and the refrigerant pipe by heating the water pipe and the refrigerant pipe coated with the thermosetting resin adhesive in the atmosphere;
The manufacturing method of the twisted tube type heat exchanger characterized by having.
外周に複数条の螺旋溝を設けた水配管に、前記螺旋溝に沿わせて冷媒管を巻き付ける工程と、
冷媒管を巻き付けた水配管に高熱伝導性を有する熱硬化樹脂系接着剤を塗布する工程と、
熱硬化樹脂系接着剤を塗布した水配管と冷媒管を一端側から他端側へかけて順次加熱すると同時に、このときの熱を利用して曲げ加工が必要な部位の曲げ加工を行うことで、水配管と冷媒管を密着接合する工程と水配管と冷媒管を所定寸法に曲げ加工する工程とを同時進行させることを特徴とする捩り管形熱交換器の製造方法。
A step of winding a refrigerant pipe along the spiral groove on a water pipe provided with a plurality of spiral grooves on the outer periphery;
Applying a thermosetting resin adhesive having high thermal conductivity to a water pipe wrapped with a refrigerant pipe;
By sequentially heating the water pipe and refrigerant pipe coated with thermosetting resin adhesive from one end side to the other end side, by using the heat at this time to bend the parts that need to be bent A method for manufacturing a torsion tube heat exchanger, wherein the step of tightly joining the water pipe and the refrigerant pipe and the step of bending the water pipe and the refrigerant pipe to a predetermined dimension are simultaneously performed.
外周に複数条の螺旋溝を設けた水配管に、前記螺旋溝の底部に沿って高熱伝導性を有する熱硬化樹脂系接着剤を塗布する工程と、
熱硬化樹脂系接着剤を塗布した水配管に、前記螺旋溝に沿わせて冷媒管を巻き付ける工程と、
冷媒管を巻き付けた水配管を所定寸法に曲げ加工する工程と、
曲げ加工した水配管と冷媒管を大気中で加熱することで、これら水配管と冷媒管を密着接合する工程と、
を有することを特徴とする捩り管形熱交換器の製造方法。
Applying a thermosetting resin adhesive having high thermal conductivity along the bottom of the spiral groove to a water pipe provided with a plurality of spiral grooves on the outer periphery;
A process of winding a refrigerant pipe along the spiral groove on a water pipe coated with a thermosetting resin adhesive;
Bending the water pipe around which the refrigerant pipe is wound to a predetermined dimension;
Heating and bending the water pipe and the refrigerant pipe in the atmosphere, thereby closely bonding the water pipe and the refrigerant pipe;
The manufacturing method of the twisted tube type heat exchanger characterized by having.
高熱伝導性を有する熱硬化樹脂系接着剤として、温度200±50℃で、硬化時間90秒以内の条件を満たす接着剤を用いることを特徴とする請求項1乃至請求項3のいずれかに記載の捩り管形熱交換器の製造方法。   The adhesive according to any one of claims 1 to 3, wherein an adhesive satisfying a condition of a curing time of 90 seconds or less at a temperature of 200 ± 50 ° C is used as the thermosetting resin adhesive having high thermal conductivity. Of manufacturing a twisted tube heat exchanger. 高熱伝導性を有する熱硬化樹脂系接着剤として、熱伝導率が2.0W/m・K以上である接着剤を用いることを特徴とする請求項1乃至請求項3のいずれかに記載の捩り管形熱交換器の製造方法。   The twist according to any one of claims 1 to 3, wherein an adhesive having a thermal conductivity of 2.0 W / m · K or more is used as the thermosetting resin adhesive having high thermal conductivity. A method for manufacturing a tubular heat exchanger. 高熱伝導性を有する熱硬化樹脂系接着剤として、金属性熱伝導フィラーを30vol%以上含有する一液性エポキシ樹脂を用いることを特徴とする請求項1乃至請求項3のいずれかに記載の捩り管形熱交換器の製造方法。
The twist according to any one of claims 1 to 3, wherein a one-component epoxy resin containing 30 vol% or more of a metallic thermal conductive filler is used as the thermosetting resin adhesive having high thermal conductivity. A method for manufacturing a tubular heat exchanger.
JP2005101165A 2005-03-31 2005-03-31 Method of manufacturing twisted tube-type heat exchanger Pending JP2006284009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101165A JP2006284009A (en) 2005-03-31 2005-03-31 Method of manufacturing twisted tube-type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101165A JP2006284009A (en) 2005-03-31 2005-03-31 Method of manufacturing twisted tube-type heat exchanger

Publications (1)

Publication Number Publication Date
JP2006284009A true JP2006284009A (en) 2006-10-19

Family

ID=37406126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101165A Pending JP2006284009A (en) 2005-03-31 2005-03-31 Method of manufacturing twisted tube-type heat exchanger

Country Status (1)

Country Link
JP (1) JP2006284009A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002631A (en) * 2007-06-25 2009-01-08 Furukawa Electric Co Ltd:The Heat exchanger and heat exchanging system
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger
JP2009097818A (en) * 2007-10-18 2009-05-07 Tokyo Electric Power Co Inc:The Heat exchanger
JP2012141076A (en) * 2010-12-28 2012-07-26 Mitsubishi Electric Corp Twisted tube type heat exchanger manufacturing method
JP2016530477A (en) * 2013-09-09 2016-09-29 フィーブ クリオ Bonded heat exchanger matrix and corresponding bonding method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229574A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Heat exchanger for heating refrigerant
JP2003156774A (en) * 2001-11-20 2003-05-30 Matsushita Electric Ind Co Ltd Short wavelength laser beam source
JP2003326622A (en) * 2002-05-15 2003-11-19 Mitsubishi Electric Corp High heat conduction honeycomb sandwich panel and panel loaded with equipment for artificial satellite provided with the sandwich panel
JP2004042247A (en) * 2002-05-16 2004-02-12 Denso Corp Heat exchanger manufacturing method
JP2004093057A (en) * 2002-09-03 2004-03-25 Daikin Ind Ltd Heat exchanger and its manufacturing method
JP2005064168A (en) * 2003-08-11 2005-03-10 Denki Kagaku Kogyo Kk Metal-based circuit board and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229574A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Heat exchanger for heating refrigerant
JP2003156774A (en) * 2001-11-20 2003-05-30 Matsushita Electric Ind Co Ltd Short wavelength laser beam source
JP2003326622A (en) * 2002-05-15 2003-11-19 Mitsubishi Electric Corp High heat conduction honeycomb sandwich panel and panel loaded with equipment for artificial satellite provided with the sandwich panel
JP2004042247A (en) * 2002-05-16 2004-02-12 Denso Corp Heat exchanger manufacturing method
JP2004093057A (en) * 2002-09-03 2004-03-25 Daikin Ind Ltd Heat exchanger and its manufacturing method
JP2005064168A (en) * 2003-08-11 2005-03-10 Denki Kagaku Kogyo Kk Metal-based circuit board and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002631A (en) * 2007-06-25 2009-01-08 Furukawa Electric Co Ltd:The Heat exchanger and heat exchanging system
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger
JP2009097818A (en) * 2007-10-18 2009-05-07 Tokyo Electric Power Co Inc:The Heat exchanger
JP2012141076A (en) * 2010-12-28 2012-07-26 Mitsubishi Electric Corp Twisted tube type heat exchanger manufacturing method
JP2016530477A (en) * 2013-09-09 2016-09-29 フィーブ クリオ Bonded heat exchanger matrix and corresponding bonding method

Similar Documents

Publication Publication Date Title
JP2006284009A (en) Method of manufacturing twisted tube-type heat exchanger
RU2522261C2 (en) Method for formation, introduction and fixation of ribs in boiler tubes
CN105081590B (en) The cold drawing and manufacture method of a kind of braze-welded structure
JP2013534569A (en) Assembly for connecting rotary target backing tube
JP4819765B2 (en) Method for manufacturing twisted tube heat exchanger
US8448839B1 (en) Brazing method using BCuP and BAg braze alloys
JP5293584B2 (en) Twisted tube heat exchanger and method of manufacturing twisted tube heat exchanger
JP4435008B2 (en) Method for manufacturing twisted tube heat exchanger
CN101670383A (en) Method for manufacturing inner covered stainless steel compound steel pipe
JP2008063601A (en) Piping for molten salt and heat treatment method
JP6203079B2 (en) Method for manufacturing twisted tube heat exchanger
JP2011110568A (en) Cooling device for welding of heat transfer tube
CN108581264B (en) Double-layer elbow machining method
JP2013533117A (en) How to attach protective coverings to pipes and tubes
JP5383641B2 (en) Method for manufacturing twisted tube heat exchanger
CN102473506A (en) Inductive component equipped with a liquid cooling and a method for manufacturing an inductive component
WO2013129065A1 (en) Resin coating layer and life-extending processing method for pipe
JP2009142096A (en) Motor manufacturing method
JP5008508B2 (en) Bonded body of copper tube and aluminum tube, bonding method, bonding device, and fluid circuit device
WO2010116730A1 (en) Heat exchanger and method for producing the same
WO2013094249A1 (en) Method for manufacturing heat exchanger and heat exchanger obtained by same
JP2007243071A (en) Transformer and manufacturing method thereof
JP2008180460A (en) Method for producing heat exchanger, and heat exchange produced by the method
JP2006090612A (en) Heat exchanger and its manufacturing method
KR101704753B1 (en) Closing member and closing method of stainless steel piping for refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020