JP2005064168A - Metal-based circuit board and its manufacturing method - Google Patents

Metal-based circuit board and its manufacturing method Download PDF

Info

Publication number
JP2005064168A
JP2005064168A JP2003291094A JP2003291094A JP2005064168A JP 2005064168 A JP2005064168 A JP 2005064168A JP 2003291094 A JP2003291094 A JP 2003291094A JP 2003291094 A JP2003291094 A JP 2003291094A JP 2005064168 A JP2005064168 A JP 2005064168A
Authority
JP
Japan
Prior art keywords
circuit board
insulating layer
high thermal
metal
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003291094A
Other languages
Japanese (ja)
Other versions
JP4053478B2 (en
Inventor
Tatsuo Nakano
辰夫 中野
Yoshihiko Okajima
芳彦 岡島
Yoichi Ogata
陽一 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003291094A priority Critical patent/JP4053478B2/en
Publication of JP2005064168A publication Critical patent/JP2005064168A/en
Application granted granted Critical
Publication of JP4053478B2 publication Critical patent/JP4053478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal-based circuit board which is kept high in both thermal conductivity and heat cycle durability. <P>SOLUTION: The metal-based circuit board is used for a hybrid integrated circuit including both an electronic part releasing much heat and an electronic part requiring high thermal shock durability. The metal-based circuit board is composed of a metal plate and an insulating layer formed on the one main surface of the metal plate, and the circuits are formed on the one main surface of the metal plate through the intermediary of the insulating layer. The insulating layer is equipped with one region formed of a high-thermal conductivity insulating layer and the other region formed of silicone resin having JIS A hardness of 90 or below, and it is preferable that the region formed of a high-thermal conductivity insulating layer is formed of epoxy resin loaded with a high thermal conductivity filler. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高発熱性電子部品と熱衝撃耐久性を要する電子部品との両者を含む混成集積回路用の金属ベース回路基板に関する。   The present invention relates to a metal base circuit board for a hybrid integrated circuit including both a highly exothermic electronic component and an electronic component requiring thermal shock durability.

回路基板、特に金属ベース回路基板は、金属板上の一主面上に絶縁層を介して回路を設けた構造を有する(特許文献1、特許文献2参照)ので、絶縁層を高熱伝導化することにより、高集積化されたICなどの高発熱性電子部品からの発熱を効率良く放熱できる特徴があること、更に機械的強度にも優れる特徴があることから、音響機器用回路基板、自動車等の車載用回路基板、冷暖房機器用回路基板などとして広く産業界で使用されている。 A circuit board, particularly a metal base circuit board, has a structure in which a circuit is provided on one main surface of a metal plate via an insulating layer (see Patent Document 1 and Patent Document 2), so that the insulating layer has high thermal conductivity. As a result, the heat generated from highly heat-generating electronic components such as highly integrated ICs can be efficiently dissipated, and the mechanical strength is also excellent, so circuit boards for audio equipment, automobiles, etc. Are widely used in the industry as circuit boards for in-vehicle use and circuit boards for air conditioning equipment.

特開平11-150345号公報Japanese Patent Laid-Open No. 11-150345

特開平11-8450号公報Japanese Unexamined Patent Publication No. 11-8450

一方、前記回路基板に搭載される電子部品についてみると、最近では長足の進歩を遂げ、回路基板に搭載する電子部品も自立型から搭載性の良いチップ型への移行が主流となっており、いろいろな用途に於いてチップ型IC(以下、ICチップという)が用いられている。また、抵抗チップ、コンデンサーチップなどは熱膨張係数が小さく耐久性の良いセラミックス型がその中心となっている。 On the other hand, regarding the electronic components mounted on the circuit board, recently there has been considerable progress, and the electronic components mounted on the circuit board are also transitioning from the self-supporting type to the chip type with good mountability, Chip ICs (hereinafter referred to as IC chips) are used in various applications. Resistor chips, capacitor chips, etc. are mainly ceramic molds with a small coefficient of thermal expansion and good durability.

前記ICチップは、ヒートシンクを介して、前記回路基板に搭載されるが、この場合、ICチップは発熱が激しいことから、通常、ヒートシンク上に高温半田を介してICチップを接合した、ICチップ搭載ヒートシンクの形態として、回路基板上の回路上に搭載される。このように、前記IC搭載ヒートシンクや抵抗チップ、コンデンサーチップなどのチップ部品が回路基板上の回路上の所定の位置に半田ペーストより接合され、搭載される。 The IC chip is mounted on the circuit board via a heat sink. In this case, since the IC chip generates a lot of heat, the IC chip is usually mounted on the heat sink via a high-temperature solder. The heat sink is mounted on a circuit on a circuit board. Thus, chip components such as the IC-mounted heat sink, resistor chip, and capacitor chip are bonded and mounted at predetermined positions on the circuit on the circuit board by the solder paste.

前記事情により、金属ベース回路基板としても、いろいろな特性を併せ持つように、金属板の一主面上に2種以上の絶縁層を設け、同一回路基板の場所により異なった特性を達成しようと言う試みも開示されている(特許文献3参照)。   Due to the above circumstances, two or more types of insulating layers are provided on one main surface of a metal plate so that the metal base circuit board also has various characteristics, and different characteristics are achieved depending on the location of the same circuit board. An attempt is also disclosed (see Patent Document 3).

特開平6−90071号公報JP-A-6-90071

前記したとおりに、金属ベース回路基板は、機械的強度に優れ、絶縁層を高熱伝導化することにより、搭載されたICなどからの発熱を効率良く放散できることから、音響機器回路基板、車載用回路基板、冷暖房機器用回路基板などとして広く産業界に使用されているが、特に、日々進化している自動車の車載用回路基板としては、軽量化と防錆、価格の追及から金属べース回路基板に用いる金属板としてはアルミニウム合金やアルマイトが最良とされている。   As described above, the metal base circuit board is excellent in mechanical strength, and can efficiently dissipate heat generated from the mounted IC etc. by making the insulating layer highly thermally conductive. Widely used in industry as circuit boards, circuit boards for air conditioning equipment, etc., especially as automotive circuit boards for automobiles, which are evolving day by day, metal-based circuits due to weight reduction, rust prevention, and the pursuit of price As the metal plate used for the substrate, aluminum alloy or anodized is the best.

当該用途に適用される金属ベース回路基板としては、極めて高い耐久性が要求され、低温側−40℃、高温側125℃でのヒートサイクル3000サイクル以上が必要とされている。しかしながら、従来公知の金属ベース回路基板では、前記ヒートサイクル時の金属基板と抵抗チップやコンデンサーチップなどの膨張係数の差が原因で、数100サイクル経過後に、チップを回路に接合している半田部にクラック(半田クラックという)が発生して、終には破断してしまうという致命的な欠点を示すことが有り、半田クラックを防止できる金属ベース回路基板が強く望まれている。   As a metal base circuit board applied to the application, extremely high durability is required, and a heat cycle of 3000 cycles or more at a low temperature side of −40 ° C. and a high temperature side of 125 ° C. is required. However, in the conventionally known metal base circuit board, the solder part that joins the chip to the circuit after several hundred cycles due to the difference in expansion coefficient between the metal board and the resistor chip or the capacitor chip during the heat cycle. A metal base circuit board that can prevent a solder crack is strongly desired.

本発明者は、前記現状技術の問題を解決することを具体的な課題としてこれを解決するべくされたもので、その目的は、熱放散性に優れしかも耐熱衝撃性に優れ、従って電気的信頼性、耐久性に優れる金属ベース回路基板を提供することにある。   The inventor of the present invention has been made to solve the above-mentioned problems of the state of the art as a concrete problem, and the purpose thereof is excellent in heat dissipation and thermal shock resistance, and thus in electrical reliability. An object of the present invention is to provide a metal base circuit board that is excellent in durability and durability.

本発明は、高発熱性電子部品と熱衝撃耐久性を要する電子部品との両者を含む混成集積回路用の金属ベース回路基板であって、金属板の一主面上に絶縁層を介して回路が形成されてなり、前記絶縁層が、高熱伝導性絶縁層からなる領域とJIS A硬度が90以下のシリコーン樹脂からなる領域とを有することを特徴とする金属ベース回路基板であり、好ましくは、高熱伝導性絶縁層からなる領域が高熱伝導性充填剤を充填したエポキシ樹脂からなることを特徴とする前記の金属ベース回路基板である。 The present invention relates to a metal base circuit board for a hybrid integrated circuit including both a highly exothermic electronic component and an electronic component that requires thermal shock durability, and the circuit is provided on one main surface of the metal plate via an insulating layer. And the insulating layer has a region composed of a high thermal conductivity insulating layer and a region composed of a silicone resin having a JIS A hardness of 90 or less, preferably, The metal base circuit board according to claim 1, wherein the region made of the high thermal conductive insulating layer is made of an epoxy resin filled with a high thermal conductive filler.

また、本発明は、(1)金属板の一主面上の所望の部分に高熱伝導性エポキシ樹脂接着剤を塗布する工程、(2)前記高熱伝導性エポキシ樹脂接着剤を半硬化する工程、(3)金属板の前記主面上の高熱伝導性エポキシ樹脂接着剤が塗布されていない部分にシリコーン接着剤を塗布する工程、(4)前記の半硬化した高熱伝導性エポキシ樹脂接着剤と前記シリコーン接着剤との表面上に金属箔を積層し、前記高熱伝導性エポキシ樹脂接着剤と前記シリコーン接着剤を硬化する工程、(5)前記金属箔を加工し回路形成する工程、とからなることを特徴とする金属ベース回路基板の製造方法である。 The present invention also includes (1) a step of applying a high thermal conductivity epoxy resin adhesive to a desired portion on one main surface of a metal plate, (2) a step of semi-curing the high thermal conductivity epoxy resin adhesive, (3) a step of applying a silicone adhesive to a portion of the metal plate on which the high thermal conductivity epoxy resin adhesive is not applied; (4) the semi-cured high thermal conductivity epoxy resin adhesive; A step of laminating a metal foil on the surface of the silicone adhesive and curing the high thermal conductivity epoxy resin adhesive and the silicone adhesive; and (5) a step of processing the metal foil to form a circuit. A method of manufacturing a metal base circuit board characterized by the following.

本発明の金属ベース回路基板は、熱放散性に優れる絶縁層からなる領域と、熱衝撃耐久性に優れる絶縁層からなる領域とを共に有しているので、それぞれに発熱性電子部品と熱衝撃耐久性を要求される電子部品とを配置し、使用することで、電気的信頼性、耐久性に優れる混成集積回路を容易に提供できるという特徴を有しているので、厳しい耐久性が必要な車載用回路基板および、家電関連回路基板の超寿命化、産業用回路基板として極めて工業的に有用なものである。 Since the metal base circuit board of the present invention has both a region made of an insulating layer excellent in heat dissipation and a region made of an insulating layer excellent in thermal shock durability, each of them has a heat generating electronic component and a thermal shock. By placing and using electronic components that require durability, hybrid integrated circuits with excellent electrical reliability and durability can be easily provided, so strict durability is required. It is extremely industrially useful as an in-vehicle circuit board and a household circuit board related circuit board with a long life and an industrial circuit board.

本発明の金属ベース回路基板の製造方法は、前記の特徴を有する金属ベース回路基板を容易に生産性高く得ることができるので、産業上極めて有用なものである。   The metal base circuit board manufacturing method of the present invention is extremely useful industrially because a metal base circuit board having the above-described characteristics can be easily obtained with high productivity.

本発明の金属ベース回路基板は、高発熱性電子部品と熱衝撃耐久性を要する電子部品との両者を含む混成集積回路用の金属ベース回路基板である。前記高発熱性電子部品としては、例えば、集積回路素子、パワートランジスターなどが挙げられ、熱衝撃耐久性を要する電子部品としては、例えば、抵抗チップやコンデンサーチップなどが挙げられる。   The metal base circuit board of the present invention is a metal base circuit board for a hybrid integrated circuit including both high heat-generating electronic components and electronic components that require thermal shock durability. Examples of the highly exothermic electronic component include an integrated circuit element and a power transistor, and examples of the electronic component requiring thermal shock durability include a resistor chip and a capacitor chip.

本発明の金属ベース回路基板は、金属板の一主面上に絶縁層を介して回路が形成されてなり、前記絶縁層が、高熱伝導性絶縁層からなる領域とJIS A硬度が90以下のシリコーン樹脂からなる領域とを有することを特徴とする金属ベース回路基板であり、例えば、後述する図1に例示されている混成集積回路中に示されている。   In the metal base circuit board of the present invention, a circuit is formed on one main surface of a metal plate via an insulating layer, and the insulating layer has a region composed of a high thermal conductive insulating layer and a JIS A hardness of 90 or less. A metal base circuit board having a region made of silicone resin, and is shown in, for example, a hybrid integrated circuit illustrated in FIG. 1 described later.

本発明に於いて、金属ベース回路基板に用いられる金属板(1)としては、アルミニウムおよびアルミニウム合金、鋼、ステンレス、銅、チタンなど多くの材料が挙げられるが、熱伝導性や防錆効果、軽量化、接着性、価格などから、アルミニウムおよびアルミニウム合金や前記金属の表面がアルマイト化したものが好適である。更に、例えば、感磁性などの特殊機能を付加させる目的で、鋼板を用いるなどのように金属板を選択することもできる。   In the present invention, the metal plate (1) used for the metal base circuit board includes many materials such as aluminum and aluminum alloys, steel, stainless steel, copper, and titanium. From the viewpoint of weight reduction, adhesiveness, cost, etc., aluminum, aluminum alloy, or alumite of the metal surface is preferable. Furthermore, for example, for the purpose of adding a special function such as magnetism, a metal plate can be selected such as using a steel plate.

本発明の金属ベース回路基板は、絶縁層が高熱伝導性絶縁層からなる領域(2)を有しているが、前記高熱伝導性絶縁層を構成する材料としては、電気的に絶縁性を有する樹脂で構成されていれば良く、更に前記樹脂に電気絶縁性の無機質充填剤を含有させたものが高熱伝導性が得られることからより好ましい。前記無機質充填剤としては、アルミナ粉や窒化アルミニウム粉などが挙げられ、これらを樹脂中に85〜90質量%を充填して用いられる。   The metal base circuit board of the present invention has a region (2) in which the insulating layer is composed of a high thermal conductive insulating layer. The material constituting the high thermal conductive insulating layer is electrically insulative. What is necessary is just to be comprised with resin, and also what added the electrically insulating inorganic filler to the said resin is more preferable from high thermal conductivity being obtained. Examples of the inorganic filler include alumina powder and aluminum nitride powder. These are used by filling 85 to 90% by mass in a resin.

前記の樹脂としては、無機充填剤を含有させる必要性から、低粘度の液状反応性の樹脂が好ましく、シリコーン樹脂やエポキシ樹脂、アクリル樹脂、ウレタン樹脂などが挙げられる。これらの樹脂は、一般に接着剤としても用いられており、特性向上を目的に混合して用いても構わない。前記樹脂の中でエポキシ樹脂は、金属箔や金属板との接着性、回路基板としての耐久性の面から特に好ましい樹脂である。特に、エポキシ樹脂にアルミナ粉や窒化アルミニウム粉などを85〜90質量%を充填することにより、3〜8W/m・Kの高熱伝導率を有する絶縁層が形成できるからである。 The resin is preferably a low-viscosity liquid reactive resin because of the need to contain an inorganic filler, and examples thereof include silicone resins, epoxy resins, acrylic resins, and urethane resins. These resins are generally used as adhesives, and may be mixed for the purpose of improving characteristics. Among the resins, epoxy resin is a particularly preferable resin from the viewpoint of adhesion to a metal foil or a metal plate and durability as a circuit board. In particular, an insulating layer having a high thermal conductivity of 3 to 8 W / m · K can be formed by filling the epoxy resin with 85 to 90 mass% of alumina powder or aluminum nitride powder.

本発明の金属ベース回路基板は、JIS A硬度が90以下のシリコーン樹脂からなる領域3を有している特徴がある。そして、本発明の金属ベース回路基板は、前述の通りに、
絶縁層が高熱伝導性絶縁層からなる領域を有しているとともに、JIS A硬度が90以下のシリコーン樹脂からなる領域をも有している構造的な特徴がある。そして、前記構造的な特徴を有するが故に、発熱性電子部品と熱衝撃耐久性を要求される電子部品とを共に有する混成集積回路に適用して、電気的信頼性、耐久性に優れる混成集積回路を容易に提供できるという効果を示すものである。
The metal base circuit board of the present invention is characterized by having a region 3 made of a silicone resin having a JIS A hardness of 90 or less. And, as described above, the metal base circuit board of the present invention,
There is a structural feature in which the insulating layer has a region made of a highly thermally conductive insulating layer and also has a region made of a silicone resin having a JIS A hardness of 90 or less. And because it has the above structural features, it is applied to a hybrid integrated circuit that has both heat-generating electronic components and electronic components that are required to have thermal shock durability, and hybrid integration that excels in electrical reliability and durability. This shows the effect that the circuit can be easily provided.

本発明に用いるシリコーン樹脂に関し、本発明者はいろいろ検討した結果、前記特徴を有するシリコーン樹脂を用いるときにのみ本発明の効果を得ることが出来るという知見を得て本発明に達したものである。   As a result of various studies on the silicone resin used in the present invention, the present inventors have obtained the knowledge that the effects of the present invention can be obtained only when the silicone resin having the above characteristics is used. .

シリコーン樹脂は一般に−40℃以下のガラス転移温度を有していると共に、混成集積回路が作成される段階で半田接合時に受ける260℃もの高温に於いても、特性が劣化しないという特徴があり、どのようなシリコーン樹脂でも構わないかの印象を受ける。しかし、発明者の実験的検討に基づけば、理由は不明であるが、23℃のJISタイプA硬度が90以下のシリコーン樹脂、即ち、シリコ-ン接着剤を硬化したシリコーン樹脂の柔軟性がJISタイプA硬度が90以下であるときに、本発明効果が得られることを見出したもので、90を超える数値範囲のものでは本発明の前記効果を十分に得ることができない。
なお、シリコーン樹脂の硬度は深さ4mm直径3cmの円形枠内にシリコーン接着剤を入れ、硬化して、JISタイプA硬度計(高分子計器(株)製)で測定した値である。
Silicone resin generally has a glass transition temperature of −40 ° C. or lower, and has a characteristic that characteristics are not deteriorated even at a high temperature of 260 ° C. that is received at the time of soldering in a stage where a hybrid integrated circuit is formed. I get the impression that any silicone resin is acceptable. However, based on the inventor's experimental investigation, the reason is unknown, but the flexibility of a silicone resin having a JIS type A hardness of 90 ° C. or less at 23 ° C., ie, a silicone resin obtained by curing a silicone adhesive, is JIS. It has been found that the effect of the present invention can be obtained when the type A hardness is 90 or less, and in the numerical range exceeding 90, the effect of the present invention cannot be sufficiently obtained.
The hardness of the silicone resin is a value measured with a JIS type A hardness meter (manufactured by Kobunshi Keiki Co., Ltd.) after curing the silicone adhesive in a circular frame having a depth of 4 mm and a diameter of 3 cm.

本発明に於いて、絶縁層(2、3)の厚さは50〜300μmが好ましい。前述の通りに、本発明に於いて、高熱伝導性絶縁層からなる領域(2)とJIS A硬度が90以下となるシリコーン樹脂からなる領域(3)の両者を併せ持ち、その上方に金属箔(4)を載置するために、必然的に両者が同じ厚さであるが、その厚みについては高熱伝導性絶縁層からなる領域(2)とJIS A硬度が90以下となるシリコーン樹脂からなる領域(3)が持つべき特性により、特定な範囲であることが望ましく、50μm未満の厚さでは、耐電圧特性が確保できないことが生じることがあるし、300μmを超える厚さでは熱放散性が悪くなり用途展開上の問題を生じることがある。   In the present invention, the thickness of the insulating layers (2, 3) is preferably 50 to 300 μm. As described above, in the present invention, both the region (2) composed of a high thermal conductive insulating layer and the region (3) composed of a silicone resin having a JIS A hardness of 90 or less are combined, and a metal foil ( In order to mount 4), both are inevitably the same thickness, but the thickness is a region (2) composed of a high thermal conductive insulating layer and a region composed of a silicone resin having a JIS A hardness of 90 or less. Depending on the characteristics to be possessed by (3), a specific range is desirable. With a thickness of less than 50 μm, withstand voltage characteristics may not be ensured, and with a thickness exceeding 300 μm, heat dissipation is poor. May cause problems in application development.

本発明に於いて、特性を改良する目的で、図3に示すように、絶縁層(2、2’、3)が多層構造であってもよい。この場合に於いても、JIS A硬度が90以下となるシリコーン樹脂部分(3)の厚みは15〜150μmであることが望ましい。前記範囲を逸脱する場合には、十分に熱衝撃耐久性を確保できないことがあるからである。   In the present invention, for the purpose of improving the characteristics, the insulating layers (2, 2 ', 3) may have a multilayer structure as shown in FIG. Even in this case, it is desirable that the thickness of the silicone resin portion (3) having a JIS A hardness of 90 or less is 15 to 150 μm. This is because when the temperature deviates from the above range, sufficient thermal shock durability may not be ensured.

本発明に用いる金属箔(4)は、回路基板における回路を形成するものであり、高導電性の銅、アルミニウム等、或いはそれらの合金、複合箔を用いることができる。銅箔としては、電解銅箔、圧延銅箔いずれの銅箔でもよいが、銅箔製品は通常、イミダゾール系の防錆処理剤で処理してあるので、予め、高温加熱やアルコール類などでの洗浄や希薄銅エッチング液処理などすると、白金化合物を硬化触媒としたシリコーン接着剤の銅箔接着強度が飛躍的に増大するので、銅箔を予め処理しておくのが好ましいが、防錆剤が白金化合物の触媒作用を阻害しない場合や白金化合物を硬化触媒としないシリコーン接着剤では必要がない。   The metal foil (4) used for this invention forms the circuit in a circuit board, and can use highly conductive copper, aluminum, etc., those alloys, composite foil. The copper foil may be either an electrolytic copper foil or a rolled copper foil, but since the copper foil product is usually treated with an imidazole-based rust preventive agent, it is preliminarily heated with high temperature or alcohol. Since the copper foil adhesion strength of silicone adhesives using platinum compounds as a curing catalyst increases dramatically when washed or diluted with copper etchant, it is preferable to treat the copper foil in advance. There is no need for a silicone adhesive that does not inhibit the catalytic action of the platinum compound or that does not use the platinum compound as a curing catalyst.

次に、本発明の金属ベース回路基板の製造方法を説明する。
本発明の金属ベース回路基板の製造方法は、(1)金属板の一主面上の所望の部分に高熱伝導性エポキシ樹脂接着剤を塗布する工程、(2)前記高熱伝導性エポキシ樹脂接着剤を半硬化する工程、(3)金属板の前記主面上の高熱伝導性エポキシ樹脂接着剤が塗布されていない部分にシリコーン接着剤を塗布する工程、(4)前記の半硬化した高熱伝導性エポキシ樹脂接着剤と前記シリコーン接着剤との表面上に金属箔を積層し、前記高熱伝導性エポキシ樹脂接着剤と前記シリコーン接着剤を硬化する工程、(5)前記金属箔を加工し回路形成する工程、とからなることを特徴とする金属ベース回路基板の製造方法である。
Next, the manufacturing method of the metal base circuit board of this invention is demonstrated.
The method for producing a metal base circuit board according to the present invention includes (1) a step of applying a high thermal conductivity epoxy resin adhesive to a desired portion on one main surface of a metal plate, and (2) the high thermal conductivity epoxy resin adhesive. (3) a step of applying a silicone adhesive to a portion of the metal plate on which the high thermal conductive epoxy resin adhesive is not applied, (4) the semi-cured high thermal conductivity A step of laminating a metal foil on the surface of the epoxy resin adhesive and the silicone adhesive and curing the high thermal conductivity epoxy resin adhesive and the silicone adhesive; (5) processing the metal foil to form a circuit; And a process for producing a metal base circuit board.

図1、図2はそれぞれ本発明に係る金属ベース回路基板を用いた混成集積回路を示す図である。本発明の於いては、まず、脱脂処理などの方法で清浄化した金属板(1)を準備し、この金属板(1)の一主面上の所望の部分に、高熱伝導性絶縁層(2)が形成できるように、高熱伝導性エポキシ樹脂接着剤を塗布し、加熱等の手段により前記高熱伝導性エポキシ樹脂接着剤を半硬化し、次に、前記高熱伝導性エポキシ樹脂接着剤が塗布されていない金属表面に、硬化後のJIS A硬度が90以下となるシリコーン樹脂からなる絶縁層(3)が得られるように、シリコーン接着剤を塗布し、前記半硬化状態の高熱伝導性エポキシ樹脂接着剤と前記シリコーン接着剤との表面上に金属箔を載置し、加熱等の手段により両樹脂を硬化し、更に前記金属箔をエッチング等の手段で加工して回路(4)とすることを特徴としている。 FIG. 1 and FIG. 2 are diagrams each showing a hybrid integrated circuit using a metal base circuit board according to the present invention. In the present invention, first, a metal plate (1) cleaned by a method such as degreasing is prepared, and a high thermal conductive insulating layer (on a desired portion on one main surface of the metal plate (1) is prepared. 2) Apply a high thermal conductivity epoxy resin adhesive so that it can be formed, semi-cure the high thermal conductivity epoxy resin adhesive by means of heating or the like, and then apply the high thermal conductivity epoxy resin adhesive A semi-cured highly heat-conductive epoxy resin is coated with a silicone adhesive so that an insulating layer (3) composed of a silicone resin having a JIS A hardness of 90 or less after curing is obtained on an unfinished metal surface. A metal foil is placed on the surface of the adhesive and the silicone adhesive, both resins are cured by means such as heating, and the metal foil is further processed by means such as etching to form a circuit (4). It is characterized by.

前記操作をそのままの順に実行することにより、図1の中に示される、本発明の金属ベース回路基板を容易に生産性高く得ることができる。尚、図1は、前記操作で得た金属ベース回路基板を用いて、引き続いて、所定の位置に半田レジスト(5)を塗布し、硬化し、その後、ヒートシンク(6)を高熱伝導絶縁層の領域部分の回路(4)上に半田ペーストを介して発熱部品であるICチップ(7)を、また、JIS A硬度が90以下となるシリコーン樹脂からなる絶縁層(3)上の回路(4)上には抵抗チップ又はコンデンサーチップ(9)などを半田(10)にて搭載し、更にワイヤボンディング(8)して混成集積回路としたものである。   By executing the operations in the order as they are, the metal base circuit board of the present invention shown in FIG. 1 can be easily obtained with high productivity. In FIG. 1, the metal base circuit board obtained by the above operation is used, and subsequently, a solder resist (5) is applied and cured at a predetermined position, and then the heat sink (6) is attached to the high thermal conductive insulating layer. An IC chip (7), which is a heat-generating component, is formed on the circuit (4) in the region via a solder paste, and a circuit (4) on the insulating layer (3) made of a silicone resin having a JIS A hardness of 90 or less. On the top, a resistor chip or a capacitor chip (9) is mounted with solder (10), and further, wire bonding (8) is performed to form a hybrid integrated circuit.

120mm×120mmに切断した厚さ1.5mmのアルミニウム板を、アルカリ性脱脂剤(理工協産社製エクリン)水溶液に50℃1分間浸漬して、中和、水洗後110℃熱風で乾燥した(以下、脱脂アルミニウム板と記す)。 An aluminum plate having a thickness of 1.5 mm cut into 120 mm × 120 mm was immersed in an alkaline degreasing agent (Ecline manufactured by Riko Kyosan Co., Ltd.) at 50 ° C. for 1 minute, neutralized, washed with water, and then dried with hot air at 110 ° C. , Referred to as degreased aluminum plate).

液状エポキシ樹脂(油化シェル社製エピコート807)10質量部にアルミナ粉(メーカー、グレード、或いは粒径等)90質量部を充填した高熱伝導性エポキシ樹脂に、芳香族系アミン硬化剤を配合(以下、高熱伝導エポキシ接着剤と記す)して、表面改良剤(ビックケミー・ジャパン(株)BYK)0.3質量部、ブチルセロソルブ2質量部を添加して混合して、粘度を調整(以下、高熱伝導エポキシ接着剤インクと記す)し、前記の脱脂アルミウム板の一主面の所望の部分に、100μm厚さで塗布(以下、ニューロング社製15GT印刷機を使用した印刷塗布である)した。 A liquid epoxy resin (Epicoat 807 manufactured by Yuka Shell Co., Ltd.) is blended with an aromatic amine curing agent in a high thermal conductive epoxy resin in which 10 parts by mass of alumina powder (manufacturer, grade, particle size, etc.) is filled 90 parts by mass ( Hereinafter, 0.3 parts by mass of a surface improver (BIC Chemie Japan Co., Ltd. BYK) and 2 parts by mass of butyl cellosolve are added and mixed to adjust the viscosity (hereinafter referred to as “high heat”). (Hereinafter referred to as conductive epoxy adhesive ink), and applied to a desired portion of one main surface of the degreased aluminum plate at a thickness of 100 μm (hereinafter, printing application using a 15 GT printer manufactured by Neurong).

次いで、150℃のオーブン中で6分間加熱後に23℃に放置冷却した後、前記高熱伝導エポキシ接着剤インクを塗布していない前記脱脂アルミニウム板表面にシリコーン接着剤(東レ・ダウ社製SE−1701、硬化物JISタイプA硬度64)を100μm厚さに塗布し、引き続いて、予め、120mm×120mmに切断した70μm厚さの電解銅箔(古河電工社製)を350℃、3分間オーブン内で加熱処理後、冷却した銅箔(以下、熱処理電解銅箔と記す)を前記の高熱伝導エポキシ接着剤とシリコーン接着剤との表面上に配置して120℃、10分間、熱プレスして接着剤を硬化した。更に、プレスから取り出し、オーブン中で150℃、10時間加熱硬化して金属ベース基板(以下、アルミベース基板と記す)を得た。 Next, after heating in an oven at 150 ° C. for 6 minutes and leaving to cool to 23 ° C., a silicone adhesive (SE-1701 manufactured by Toray Dow Co., Ltd.) was applied to the surface of the degreased aluminum plate to which the high thermal conductive epoxy adhesive ink was not applied. Then, a cured product JIS type A hardness 64) was applied to a thickness of 100 μm, and subsequently an electrolytic copper foil (manufactured by Furukawa Electric Co., Ltd.) having a thickness of 120 mm × 120 mm previously cut at 350 ° C. for 3 minutes in an oven. After the heat treatment, the cooled copper foil (hereinafter referred to as heat treated electrolytic copper foil) is placed on the surface of the high thermal conductive epoxy adhesive and the silicone adhesive, and hot pressed at 120 ° C. for 10 minutes for the adhesive. Cured. Further, it was taken out from the press and heated and cured in an oven at 150 ° C. for 10 hours to obtain a metal base substrate (hereinafter referred to as an aluminum base substrate).

<剥離強度>アルミベース基板の銅箔部を1cm幅に切断して、剥離速度50mm/分の条件で、引っ張り試験機(テンシロン社製引っ張り試験機)にて、T字剥離を測定した結果、20N/cmの剥離強度を示した。アルミベース基板の剥離強度試験片を260℃にセットした半田浴上に浮かべ、10分間放置後、冷却して前記同様に剥離強度を測定した結果、剥離強度に変化はなかった。 <Peel strength> As a result of measuring the T-shaped peel with a tensile tester (tensile tester manufactured by Tensilon) under the condition of a peel rate of 50 mm / min by cutting the copper foil portion of the aluminum base substrate into a width of 1 cm. A peel strength of 20 N / cm was shown. The peel strength test piece of the aluminum base substrate was floated on a solder bath set at 260 ° C., allowed to stand for 10 minutes, cooled, and the peel strength was measured in the same manner as described above. As a result, there was no change in the peel strength.

<耐電圧>アルミベース基板の銅箔部上にエッチングレジストを直径2cmの円形に塗布し、乾燥後に過硫酸アンモン10質量%の水溶液で銅箔をエッチングし、洗浄、乾燥後に、エッチングレジストを除去して耐電圧測定用試験片を作成した。円形銅箔部のほぼ中央に、銅細線を半田付けして、絶縁油(住友3M社製フロリナート)中でベースアルミニウム板と銅細線間に交流電圧を印加して絶縁層の絶縁破壊電圧を測定(KIKUSUI社製耐電圧測定器TOS8700)した結果、5.8KVで絶縁破壊した。耐電圧試験片を260℃にセットした半田浴上に浮かべ、10分間放置後、冷却して前記同様に絶縁破壊電圧を測定した結果、絶縁破壊電圧に変化はなかった。 <Withstand voltage> An etching resist is applied in a circular shape with a diameter of 2 cm on the copper foil portion of the aluminum base substrate, and after drying, the copper foil is etched with an aqueous solution of 10% by mass of ammonium persulfate. After washing and drying, the etching resist is removed. Thus, a test piece for withstand voltage measurement was prepared. Measure the breakdown voltage of the insulation layer by soldering a copper wire in the center of the circular copper foil and applying an AC voltage between the base aluminum plate and the copper wire in insulating oil (Fluorinert manufactured by Sumitomo 3M). (Withstand voltage measuring instrument TOS8700 manufactured by KIKUSUI) As a result, dielectric breakdown occurred at 5.8 KV. The withstand voltage test piece was floated on a solder bath set at 260 ° C., allowed to stand for 10 minutes, cooled, and the breakdown voltage was measured in the same manner as described above. As a result, there was no change in the breakdown voltage.

<高温耐湿プレッシャークッカー試験>剥離強度試験片および耐電圧試験片をプレッシャークッカー試験機(アルプ社製、試験温度121℃)で、100時間処理後、剥離強度、絶縁破壊電圧を測定した結果、剥離強度20N/cm、絶縁破壊電圧6.0kVであり、処理による変化はなかった。 <High-temperature and humidity-resistant pressure cooker test> The peel strength test piece and the withstand voltage test piece were treated with a pressure cooker tester (manufactured by Alp, test temperature 121 ° C) for 100 hours, and the peel strength and dielectric breakdown voltage were measured. The strength was 20 N / cm, the dielectric breakdown voltage was 6.0 kV, and there was no change due to the treatment.

<ヒートサイクル試験>アルミベース基板の金属箔を清浄化処理した後、所定の位置にエッチングレジストを塗布し、乾燥後に、エッチングして、エッチングレジストを除去し、次いで、半田レジストを塗布して硬化させた。更に、回路上へ半田ペ−スト(千住金属社製)を塗布して、抵抗チップ(ローム社製2125)及びコンデンサーチップ(TDK社製3225)を搭載して半田リフロー装置(Himmel Reich社製LSH800)で半田を溶融して、前記チップを接合した。そして、トルエン超音波洗浄で半田フラックスを除去後、ヒートサイクル試験機(楠本化成社製LT−60S)で低温側−40℃、7分保持、高温側125℃、7分保持を1サイクルとするヒートサイクル試験を実施した結果、ヒートサイクル5000回後も半田クラック発生による断線異常等は見いだせなかった。 <Heat cycle test> After cleaning the metal foil of the aluminum base substrate, apply an etching resist in place, dry and etch to remove the etching resist, then apply a solder resist and cure I let you. Further, a solder paste (manufactured by Senju Metal Co., Ltd.) is applied onto the circuit, and a resistor chip (2125 manufactured by ROHM Co., Ltd.) and a capacitor chip (3225 manufactured by TDK Co., Ltd.) are mounted. The solder was melted to join the chips. Then, after removing the solder flux by ultrasonic cleaning with toluene, a heat cycle tester (LT-60S manufactured by Enomoto Kasei Co., Ltd.) holds the low temperature side at −40 ° C. for 7 minutes and the high temperature side at 125 ° C. for 7 minutes. As a result of carrying out the heat cycle test, no disconnection abnormality or the like due to the occurrence of solder cracks was found even after 5000 heat cycles.

<熱伝導性の測定>高熱伝導エポキシ接着剤を2mm厚さに硬化して、1cm×1cmにダイヤモンドカッターで切り出して、レーザーフラッシュ法(Rigaku社製FA8510B)で熱伝導率を測定した結果、熱伝導率4W/mKであった。 <Measurement of thermal conductivity> As a result of curing a high thermal conductive epoxy adhesive to a thickness of 2 mm, cutting it into a 1 cm × 1 cm with a diamond cutter, and measuring the thermal conductivity by a laser flash method (FA8510B manufactured by Rigaku), The conductivity was 4 W / mK.

高熱伝導エポキシ接着剤インクを120mm×120mmに切断した厚さ1.5mmの脱脂アルミニウム板上全面に、50μm厚さで塗布した。次いで、150℃のオーブン中で8分間加熱後に23℃に放置冷却して、更に、前記の高熱伝導エポキシ接着剤インクを50μm厚さに塗布、120℃、20分加熱後、23℃に冷却後、シリコーン接着剤(SE−1701)を50μm厚さに塗布した。引き続いて、予め、120mm×120mmに切断した70μm厚さの電解銅箔を350℃、3分間オーブン内で加熱処理後冷却した電解銅箔を高熱伝導エポキシ接着剤インクとシリコーン接着剤を塗布した板上に設置した。次いで、120℃、10分間、熱プレスして接着剤を硬化した。更に、プレスから取り出しオーブン中で150℃、10時間加熱硬化して図2の混成集積回路の図中にみられる構造のアルミベース基板を得た。実施例1と同様に特性評価をした結果、<剥離強度>アルミベース基板の銅箔部を1cm幅に切断して、実施例1と同様の条件で、T字剥離を測定した結果、18N/cmの剥離強度を示した。アルミベース基板の剥離強度試験片を260℃にセットした半田浴上に浮かべ、10分間放置後、冷却して、剥離強度を測定した結果、剥離強度に変化はなかった。 A high heat conductive epoxy adhesive ink was applied to the entire surface of a 1.5 mm thick degreased aluminum plate cut into 120 mm × 120 mm in a thickness of 50 μm. Next, after heating in an oven at 150 ° C. for 8 minutes, the mixture is allowed to cool to 23 ° C., and the above-mentioned high thermal conductive epoxy adhesive ink is applied to a thickness of 50 μm, heated at 120 ° C. for 20 minutes, and then cooled to 23 ° C. A silicone adhesive (SE-1701) was applied to a thickness of 50 μm. Subsequently, a 70 μm-thick electrolytic copper foil cut in advance of 120 mm × 120 mm was heated in an oven at 350 ° C. for 3 minutes and then cooled, and then the electrolytic copper foil was coated with a high thermal conductive epoxy adhesive ink and a silicone adhesive Installed on top. Next, the adhesive was cured by hot pressing at 120 ° C. for 10 minutes. Further, it was removed from the press and heated and cured in an oven at 150 ° C. for 10 hours to obtain an aluminum base substrate having a structure as shown in the hybrid integrated circuit diagram of FIG. As a result of evaluating the characteristics in the same manner as in Example 1, <Peel strength> The copper foil part of the aluminum base substrate was cut into a width of 1 cm, and T-shaped peeling was measured under the same conditions as in Example 1. As a result, 18 N / A peel strength of cm was shown. The peel strength test piece of the aluminum base substrate was floated on a solder bath set at 260 ° C., allowed to stand for 10 minutes, cooled, and peel strength was measured. As a result, there was no change in peel strength.

実施例1と同様に測定した結果、耐電圧は6.0KVであった。また、耐電圧試験片を260℃にセットした半田浴上に浮かべ、10分間放置後、冷却して前記同様に絶縁破壊電圧を測定した結果、絶縁破壊電圧に変化はなかった。高温耐湿プレッシャークッカー試験については、実施例1と同様に測定した結果、剥離強度19N/cm、絶縁破壊電圧6.0kVであり、処理による変化はなかった。更に、実施例1同様にチッフ゜部品を搭載、フラックス洗浄処理して、ヒートサイクル試験を実施した結果、ヒートサイクル5000回後も半田クラック発生による断線異常等は見いだせなかったが、ハンダ上部にヘアークラックらしき微小ラインが観察された基板が10枚中1点観察された。更に、実施例1と同様にして熱伝導率を測定した結果4W/mKであった。 As a result of measurement in the same manner as in Example 1, the withstand voltage was 6.0 KV. Further, the dielectric strength test piece was floated on a solder bath set at 260 ° C., allowed to stand for 10 minutes, cooled, and the breakdown voltage was measured as described above. As a result, the breakdown voltage was not changed. The high temperature and humidity resistance pressure cooker test was measured in the same manner as in Example 1. As a result, the peel strength was 19 N / cm, the dielectric breakdown voltage was 6.0 kV, and there was no change due to the treatment. Furthermore, as in Example 1, chip components were mounted, flux washed, and heat cycle tests were conducted. As a result, no abnormalities in wire breakage due to the occurrence of solder cracks were found after 5000 heat cycles. One point out of 10 substrates on which apparent fine lines were observed was observed. Furthermore, the result of measuring the thermal conductivity in the same manner as in Example 1 was 4 W / mK.

実施例1のシリコーン接着剤をアルミナ74質量部とシリコーン接着剤(東レ・ダウ社製SE-1700)26質量部混合したアルミナ充填シリコーン接着剤(硬化物JISタイプA硬度90)に代えた以外は実施例1と同様にして、アルミベース基板を得た。実施例1と同様にアルミベース基板の特性評価をした結果、シリコーン樹脂からなる領域の絶縁層部の剥離強度15N/cm、高熱伝導エポキシ樹脂からなる領域の絶縁層部の剥離強度20N/cm、耐電圧5.6kV、ヒートサイクル3000サイクルでチップ接合半田部は断線しなかった。 Except for replacing the silicone adhesive of Example 1 with 74 parts by mass of alumina and 26 parts by mass of a silicone adhesive (SE-1700 manufactured by Toray Dow Co., Ltd.), an alumina-filled silicone adhesive (cured product JIS type A hardness 90). In the same manner as in Example 1, an aluminum base substrate was obtained. As a result of evaluating the characteristics of the aluminum base substrate in the same manner as in Example 1, the peel strength of the insulating layer portion in the region made of silicone resin is 15 N / cm, the peel strength of the insulating layer portion in the region made of high thermal conductive epoxy resin is 20 N / cm, The chip-bonded solder part was not disconnected at a withstand voltage of 5.6 kV and a heat cycle of 3000 cycles.

実施例2のシリコーン接着剤をシリコーン接着剤(東レ・ダウ社製SE-9207、硬化物JISタイプA硬度4)に代えた以外は実施例2と同様にして、アルミベース基板を得た。
実施例1と同様にアルミベース基板の特性評価をした結果、シリコーン樹脂からなる領域の絶縁層部の剥離強度9N/cm、高熱伝導エポキシ樹脂からなる領域の絶縁層部の剥離強度20N/cm、耐電圧5.4kV、ヒートサイクル5000サイクルでもチップ接合半田は断線しなかった。
(比較例1)
An aluminum base substrate was obtained in the same manner as in Example 2 except that the silicone adhesive in Example 2 was replaced with a silicone adhesive (SE-9207 manufactured by Toray Dow, JIS type A hardness 4).
As a result of evaluating the characteristics of the aluminum base substrate in the same manner as in Example 1, the peel strength of the insulating layer portion in the region made of silicone resin was 9 N / cm, the peel strength of the insulating layer portion in the region made of high thermal conductive epoxy resin was 20 N / cm, The chip bonding solder was not disconnected even at a withstand voltage of 5.4 kV and a heat cycle of 5000 cycles.
(Comparative Example 1)

脱脂アルミニウム板上に高熱伝導エポキシ接着剤インクを100μm厚さに塗布し、150℃6分間加熱後して、冷却後に、120mm×120mmに切断した70μm厚さの電解銅箔を設置して、熱プレスし、接着剤を硬化した。更に、プレスから取り出しオーブン中で150℃、10時間加熱硬化してアルミベース基板を得た。 A high thermal conductive epoxy adhesive ink is applied to a 100 μm thickness on a degreased aluminum plate, heated at 150 ° C. for 6 minutes, and after cooling, a 70 μm thick electrolytic copper foil cut into 120 mm × 120 mm is installed, Press to cure the adhesive. Further, the aluminum base substrate was obtained by removing from the press and heating and curing in an oven at 150 ° C. for 10 hours.

実施例1と同様にアルミベース基板の特性評価をした結果、剥離強度、耐電圧、絶縁層の熱伝導率は実施例1と同様であったがヒートサイクルは120サイクルでチップ接合部の半田部にクラックが発生して断線した。
(比較例2)
As a result of evaluating the characteristics of the aluminum base substrate in the same manner as in Example 1, the peel strength, the withstand voltage, and the thermal conductivity of the insulating layer were the same as in Example 1, but the heat cycle was 120 cycles, and the solder portion of the chip joint portion A crack occurred and the wire was broken.
(Comparative Example 2)

実施例1のシリコーン接着剤(SE−1701、JISタイプA硬度64)に代えて、シリコーン接着剤(東レ・ダウ社製SE1700、硬化物JISタイプA硬度46)にアルミナ90質量部と粘度調整のために、トルエン6質量部を配合したシリコーン接着剤インクを塗布して、40℃、3時間加熱後冷却して熱処理電解銅箔を載せ熱プレスし接着剤を硬化した。以後は実施例1と同様に処理してアルミベース基板を得た。アルミナ高充填シリコーン接着剤硬化物のJISタイプA硬度は100、熱伝導率3.6W/mKであった。 Instead of the silicone adhesive (SE-1701, JIS type A hardness 64) of Example 1, 90 mass parts of alumina and viscosity adjustment were added to a silicone adhesive (SE1700, cured product JIS type A hardness 46 manufactured by Toray Dow). For this purpose, a silicone adhesive ink blended with 6 parts by mass of toluene was applied, heated at 40 ° C. for 3 hours, cooled, and heat-treated electrolytic copper foil was placed thereon and hot pressed to cure the adhesive. Thereafter, the same processing as in Example 1 was performed to obtain an aluminum base substrate. The JIS type A hardness of the alumina high-filled silicone adhesive cured product was 100, and the thermal conductivity was 3.6 W / mK.

実施例1と同様にアルミベース基板の特性評価をした結果、耐電圧5.6kV、高熱伝導エポキシ樹脂からなる領域の絶縁層部の剥離強度20N/cmと良好であったが、アルミナ高充填シリコーン絶縁層部の剥離強度5N/cmと低く、ヒートサイクル500サイクルでチップ接合半田にクラックが発生して断線した。 As a result of evaluating the characteristics of the aluminum base substrate in the same manner as in Example 1, the dielectric strength was 5.6 kV and the peel strength of the insulating layer portion in the region made of the high thermal conductive epoxy resin was 20 N / cm. The peel strength of the insulating layer portion was as low as 5 N / cm, and cracks were generated in the chip bonding solder after 500 heat cycles, resulting in disconnection.

本発明は、例えば、過酷な性能と耐久性能が要求される自動車等の車載用回路基板、ことにエンジンルーム内の電子制御用回路基板として、また、ハイパワーの音響機器の回路基板、産業用冷暖房機器用回路基板など多方面の応用ができる。   The present invention is, for example, an in-vehicle circuit board for automobiles and the like that is required to have severe performance and durability performance, particularly as an electronic control circuit board in an engine room, a circuit board for high-power acoustic equipment, and industrial use. Various applications such as circuit boards for air conditioning equipment can be made.

本発明に係る金属ベース回路基板の一例を用いてなる混成集積回路の図。The figure of the hybrid integrated circuit which uses an example of the metal base circuit board based on this invention. 本発明に係る金属ベース回路基板の他の一例を用いてなる混成集積回路の図。The figure of the hybrid integrated circuit which uses another example of the metal base circuit board based on this invention.

符号の説明Explanation of symbols

1 金属板
2 高熱伝導性絶縁層
3 JIS A硬度が90以下のシリコーン樹脂からなる絶縁層
4 回路
5 半田レジスト
6 ヒートシンク
7 ICチップ
8 ボンディングワイヤー
9 抵抗チップ又はコンデンサーチップ
10 半田
DESCRIPTION OF SYMBOLS 1 Metal plate 2 High heat conductive insulating layer 3 Insulating layer which consists of silicone resin whose JIS A hardness is 90 or less 4 Circuit 5 Solder resist 6 Heat sink 7 IC chip 8 Bonding wire 9 Resistor chip or capacitor chip 10 Solder

Claims (3)

高発熱性電子部品と熱衝撃耐久性を要する電子部品との両者を含む混成集積回路用の金属ベース回路基板であって、金属板の一主面上に絶縁層を介して回路が形成されてなり、前記絶縁層が、高熱伝導性絶縁層からなる領域とJIS A硬度が90以下のシリコーン樹脂からなる領域とを有することを特徴とする金属ベース回路基板。 A metal-based circuit board for a hybrid integrated circuit including both a highly exothermic electronic component and an electronic component requiring thermal shock durability, wherein a circuit is formed on one main surface of the metal plate via an insulating layer. The metal base circuit board is characterized in that the insulating layer has a region made of a high thermal conductivity insulating layer and a region made of a silicone resin having a JIS A hardness of 90 or less. 高熱伝導性絶縁層からなる領域が高熱伝導性充填剤を充填したエポキシ樹脂からなることを特徴とする請求項1記載の金属ベース回路基板。 2. The metal base circuit board according to claim 1, wherein the region made of the high thermal conductive insulating layer is made of an epoxy resin filled with a high thermal conductive filler. (1)金属板の一主面上の所望の部分に高熱伝導性エポキシ樹脂接着剤を塗布する工程、(2)前記高熱伝導性エポキシ樹脂接着剤を半硬化する工程、(3)金属板の前記主面上の高熱伝導性エポキシ樹脂接着剤が塗布されていない部分にシリコーン接着剤を塗布する工程、(4)前記の半硬化した高熱伝導性エポキシ樹脂接着剤と前記シリコーン接着剤との表面上に金属箔を積層し、前記高熱伝導性エポキシ樹脂接着剤と前記シリコーン接着剤を硬化する工程、(5)前記金属箔を加工し回路形成する工程、とからなることを特徴とする金属ベース回路基板の製造方法。 (1) A step of applying a high thermal conductivity epoxy resin adhesive to a desired portion on one main surface of the metal plate, (2) a step of semi-curing the high thermal conductivity epoxy resin adhesive, (3) of the metal plate A step of applying a silicone adhesive to a portion of the main surface where the high thermal conductivity epoxy resin adhesive is not applied; (4) a surface of the semi-cured high thermal conductivity epoxy resin adhesive and the silicone adhesive; A metal base comprising: laminating a metal foil thereon and curing the high thermal conductive epoxy resin adhesive and the silicone adhesive; and (5) processing the metal foil to form a circuit. A method of manufacturing a circuit board.
JP2003291094A 2003-08-11 2003-08-11 Method for manufacturing metal-based circuit board Expired - Fee Related JP4053478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291094A JP4053478B2 (en) 2003-08-11 2003-08-11 Method for manufacturing metal-based circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291094A JP4053478B2 (en) 2003-08-11 2003-08-11 Method for manufacturing metal-based circuit board

Publications (2)

Publication Number Publication Date
JP2005064168A true JP2005064168A (en) 2005-03-10
JP4053478B2 JP4053478B2 (en) 2008-02-27

Family

ID=34368886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291094A Expired - Fee Related JP4053478B2 (en) 2003-08-11 2003-08-11 Method for manufacturing metal-based circuit board

Country Status (1)

Country Link
JP (1) JP4053478B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284009A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Method of manufacturing twisted tube-type heat exchanger
WO2006112478A1 (en) * 2005-04-19 2006-10-26 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board, led, and led light source unit
JP2007214202A (en) * 2006-02-07 2007-08-23 Denki Kagaku Kogyo Kk Circuit board
JP2007329371A (en) * 2006-06-09 2007-12-20 Shin Kobe Electric Mach Co Ltd Laminate circuit board
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger
US7514782B2 (en) 2006-04-17 2009-04-07 Mitsubishi Electric Corporation Semiconductor device
US7633154B2 (en) 2006-02-13 2009-12-15 Industrial Technology Research Institute Encapsulation and methods thereof
JP2010232577A (en) * 2009-03-30 2010-10-14 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2011146665A (en) * 2010-01-12 2011-07-28 Samsung Electro-Mechanics Co Ltd Hybrid heat dissipation substrate, and method of manufacturing the same
JP2012039070A (en) * 2010-08-05 2012-02-23 Kinko Denshi Kofun Yugenkoshi Circuit board and manufacturing method of the same
CN102378477A (en) * 2010-08-19 2012-03-14 欣兴电子股份有限公司 Circuit board and manufacturing method thereof
JP2012124389A (en) * 2010-12-09 2012-06-28 Mitsubishi Alum Co Ltd Printed circuit board
TWI406602B (en) * 2010-11-23 2013-08-21 Unimicron Technology Corp Wiring board and method for fabricating the same
US8598463B2 (en) 2010-08-05 2013-12-03 Unimicron Technology Corp. Circuit board and manufacturing method thereof
JP2013251515A (en) * 2012-06-04 2013-12-12 Mitsubishi Alum Co Ltd Printed board
JP2014170835A (en) * 2013-03-04 2014-09-18 Mitsubishi Electric Corp Heat radiation structure of heating component and audio device using the same
KR101593965B1 (en) * 2014-09-01 2016-02-17 희성전자 주식회사 Method of bonding substrates
CN106455299A (en) * 2016-10-31 2017-02-22 张昊辰 Heat dissipation type double-layer PCB
JP2018533197A (en) * 2015-07-17 2018-11-08 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Electric circuit board and method of manufacturing same type board
US11172573B2 (en) 2016-12-28 2021-11-09 Mitsubishi Electric Corporation Power supply device
KR102553052B1 (en) * 2023-02-01 2023-07-06 유병호 PCB of heat dissipation type, and method of the same
US11772829B2 (en) 2018-06-27 2023-10-03 Mitsubishi Electric Corporation Power supply device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284009A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Method of manufacturing twisted tube-type heat exchanger
KR101073423B1 (en) * 2005-04-19 2011-10-17 덴끼 가가꾸 고교 가부시키가이샤 Metal base circuit board, led, and led light source unit
WO2006112478A1 (en) * 2005-04-19 2006-10-26 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board, led, and led light source unit
TWI395538B (en) * 2005-04-19 2013-05-01 Denki Kagaku Kogyo Kk Metal substrate circuit board, LED and LED light source unit
US8071882B2 (en) 2005-04-19 2011-12-06 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board, LED, and LED light source unit
JP2007214202A (en) * 2006-02-07 2007-08-23 Denki Kagaku Kogyo Kk Circuit board
JP4484830B2 (en) * 2006-02-07 2010-06-16 電気化学工業株式会社 Circuit board
US7633154B2 (en) 2006-02-13 2009-12-15 Industrial Technology Research Institute Encapsulation and methods thereof
US7514782B2 (en) 2006-04-17 2009-04-07 Mitsubishi Electric Corporation Semiconductor device
JP4561697B2 (en) * 2006-06-09 2010-10-13 新神戸電機株式会社 Multilayer circuit board
JP2007329371A (en) * 2006-06-09 2007-12-20 Shin Kobe Electric Mach Co Ltd Laminate circuit board
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger
JP2010232577A (en) * 2009-03-30 2010-10-14 Toshiba Corp Semiconductor device and method of manufacturing the same
US8507927B2 (en) 2009-03-30 2013-08-13 Kabushiki Kaisha Toshiba Semiconductor device with high density optical chips and manufacturing method thereof
JP2011146665A (en) * 2010-01-12 2011-07-28 Samsung Electro-Mechanics Co Ltd Hybrid heat dissipation substrate, and method of manufacturing the same
JP2012039070A (en) * 2010-08-05 2012-02-23 Kinko Denshi Kofun Yugenkoshi Circuit board and manufacturing method of the same
US8598463B2 (en) 2010-08-05 2013-12-03 Unimicron Technology Corp. Circuit board and manufacturing method thereof
CN102378477A (en) * 2010-08-19 2012-03-14 欣兴电子股份有限公司 Circuit board and manufacturing method thereof
TWI406602B (en) * 2010-11-23 2013-08-21 Unimicron Technology Corp Wiring board and method for fabricating the same
JP2012124389A (en) * 2010-12-09 2012-06-28 Mitsubishi Alum Co Ltd Printed circuit board
JP2013251515A (en) * 2012-06-04 2013-12-12 Mitsubishi Alum Co Ltd Printed board
JP2014170835A (en) * 2013-03-04 2014-09-18 Mitsubishi Electric Corp Heat radiation structure of heating component and audio device using the same
KR101593965B1 (en) * 2014-09-01 2016-02-17 희성전자 주식회사 Method of bonding substrates
JP2018533197A (en) * 2015-07-17 2018-11-08 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Electric circuit board and method of manufacturing same type board
US10940671B2 (en) 2015-07-17 2021-03-09 Rogers Germany Gmbh Substrate for electrical circuits and method for producing a substrate of this type
CN106455299A (en) * 2016-10-31 2017-02-22 张昊辰 Heat dissipation type double-layer PCB
US11172573B2 (en) 2016-12-28 2021-11-09 Mitsubishi Electric Corporation Power supply device
US11772829B2 (en) 2018-06-27 2023-10-03 Mitsubishi Electric Corporation Power supply device
KR102553052B1 (en) * 2023-02-01 2023-07-06 유병호 PCB of heat dissipation type, and method of the same

Also Published As

Publication number Publication date
JP4053478B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP4053478B2 (en) Method for manufacturing metal-based circuit board
KR102504621B1 (en) Ceramic circuit board and module using the same
CN107851617B (en) Ceramic metal circuit board and semiconductor device using the same
JP3211856B2 (en) Circuit board
JP2008041752A (en) Semiconductor module, and radiation board for it
TWI665766B (en) Ceramic circuit board
JP2014118310A (en) Ceramic circuit board
JP4703377B2 (en) Stepped circuit board, manufacturing method thereof, and power control component using the same.
JP3449458B2 (en) Circuit board
JP2017065935A (en) Ceramic circuit board
JP7299672B2 (en) Ceramic circuit board and its manufacturing method
JP2004172182A (en) Circuit board and its manufacturing method
JP2013175525A (en) Method of manufacturing ceramic circuit board, and circuit board
JP2013191640A (en) Substrate for power module and manufacturing method of the same
JP6790945B2 (en) Manufacturing method of insulated circuit board and manufacturing method of insulated circuit board with heat sink
JP5516190B2 (en) Resin composition, metal foil with resin, and metal base substrate
WO2008014163A2 (en) Synergistically-modified surfaces and surface profiles for use with thermal interconnect and interface materials, methods of production and uses thereof
JP7298988B2 (en) Ceramic circuit board and its manufacturing method
JP2001203299A (en) Aluminium board and ceramics circuit board using the same
JP2002137974A (en) Method of bonding ceramic body and copper plate
JP6307386B2 (en) Ceramic circuit board
JP2005076023A (en) Adhesive with low elastic coefficient and laminate using the same, heat sink with adhesive, metal foil with adhesive
JP3669981B2 (en) Method for manufacturing module structure
JP3260222B2 (en) Circuit board manufacturing method
JP2011094147A (en) Adhesive with low elastic coefficient and laminate using the same, heat sink with adhesive, metal foil with adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees