JP5516190B2 - Resin composition, metal foil with resin, and metal base substrate - Google Patents
Resin composition, metal foil with resin, and metal base substrate Download PDFInfo
- Publication number
- JP5516190B2 JP5516190B2 JP2010168580A JP2010168580A JP5516190B2 JP 5516190 B2 JP5516190 B2 JP 5516190B2 JP 2010168580 A JP2010168580 A JP 2010168580A JP 2010168580 A JP2010168580 A JP 2010168580A JP 5516190 B2 JP5516190 B2 JP 5516190B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- resin composition
- metal
- base substrate
- metal base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 103
- 239000002184 metal Substances 0.000 title claims description 103
- 239000011342 resin composition Substances 0.000 title claims description 48
- 239000000758 substrate Substances 0.000 title claims description 38
- 239000011888 foil Substances 0.000 title description 45
- 229920005989 resin Polymers 0.000 title description 41
- 239000011347 resin Substances 0.000 title description 41
- 229920006287 phenoxy resin Polymers 0.000 claims description 27
- 239000013034 phenoxy resin Substances 0.000 claims description 27
- 239000003822 epoxy resin Substances 0.000 claims description 22
- 229920000647 polyepoxide Polymers 0.000 claims description 22
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 21
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical group C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 claims description 17
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 9
- 239000011256 inorganic filler Substances 0.000 claims description 9
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 9
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 7
- 239000012790 adhesive layer Substances 0.000 claims description 5
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 5
- 239000000347 magnesium hydroxide Substances 0.000 claims description 5
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 20
- 238000009413 insulation Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 15
- 229910000679 solder Inorganic materials 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 239000002966 varnish Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000011889 copper foil Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- -1 glycidyl ester Chemical class 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910002026 crystalline silica Inorganic materials 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 229920002050 silicone resin Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000004305 biphenyl Substances 0.000 description 4
- 235000010290 biphenyl Nutrition 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 229920000800 acrylic rubber Polymers 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000010296 bead milling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- ARSRKIQSWHMOJO-UHFFFAOYSA-N cyclohexane cyclohexanone Chemical compound C1CCCCC1.C1(CCCCC1)=O.C1(CCCCC1)=O ARSRKIQSWHMOJO-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical group C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
Description
本発明は、樹脂組成物、樹脂付き金属箔、及び金属ベース基板に関する。 The present invention relates to a resin composition, a metal foil with a resin, and a metal base substrate.
金属板上に無機充填剤を配合したエポキシ樹脂等の樹脂からなる絶縁層を設け、その上に導電回路を配設した金属ベース基板が、熱放散性に優れることから高発熱性電子部品を実装する回路基板として用いられている。 Highly heat-generating electronic components are mounted on a metal plate with an insulating layer made of a resin such as an epoxy resin mixed with an inorganic filler and a conductive circuit on the insulating layer. It is used as a circuit board.
一方、車載用電子機器について、その小型化、省スペ−ス化と共に電子機器をエンジンル−ム内に設置することが要望されている。エンジンル−ム内は温度が高く、温度変化が大きいなど過酷な環境であり、また、放熱面積の大きな基板が必要とされる。このような用途に対して、より一層放熱性に優れる金属ベース基板が注目されている。 On the other hand, with respect to in-vehicle electronic devices, it is desired to install the electronic devices in the engine room together with downsizing and space saving. The engine room has a severe environment such as a high temperature and a large temperature change, and a substrate having a large heat radiation area is required. For such applications, metal base substrates that are further excellent in heat dissipation have attracted attention.
従来の金属ベース基板は、熱放散性や経済的な理由からアルミニウム板を用いることが多いが、実使用下で加熱/冷却が繰り返されると、前記アルミニウム板と電子部品、特にチップ部品との熱膨張率の差に起因して大きな熱応力が発生し、部品を固定している半田部分或いはその近傍にクラックが発生するなど電気的信頼性が低下するという問題点がある。 Conventional metal base substrates often use an aluminum plate for heat dissipation and economical reasons. However, when heating / cooling is repeated under actual use, heat between the aluminum plate and electronic components, particularly chip components, is often used. A large thermal stress is generated due to the difference in expansion coefficient, and there is a problem that the electrical reliability is lowered, for example, a crack is generated at or near the solder portion fixing the component.
このような点を改良するためには、絶縁層を熱伝導性が高く、低弾性率にして、さらに高レベルの耐熱性、耐湿性を有することが必要である。このような目的のために、アクリルゴムを用いることにより、低弾性率化を図った樹脂組成物が開示されている(例えば、特許文献1、2)。
しかし、アクリルゴムを用いた場合は、ヒートサイクル試験において十分な性能が得られない問題があった。
In order to improve such a point, it is necessary that the insulating layer has a high thermal conductivity, a low elastic modulus, and a higher level of heat resistance and moisture resistance. For such purposes, resin compositions having a low elastic modulus by using acrylic rubber have been disclosed (for example, Patent Documents 1 and 2).
However, when acrylic rubber is used, there is a problem that sufficient performance cannot be obtained in the heat cycle test.
また、他の低弾性率化手段として、シリコーン樹脂などを用いる技術が検討されている(例えば、特許文献3)。
しかし、シリコーン樹脂を用いた場合、金属板との密着性に劣るため、金属ベース板との密着力が低下し、金属板と絶縁樹脂間に吸湿等により、絶縁抵抗値が低下する問題があった。
In addition, as another means for reducing the elastic modulus, a technique using a silicone resin or the like has been studied (for example, Patent Document 3).
However, when silicone resin is used, the adhesion to the metal plate is inferior, so the adhesion to the metal base plate is reduced, and there is a problem that the insulation resistance value is reduced due to moisture absorption between the metal plate and the insulating resin. It was.
本発明は、上記の事情に鑑みてなされたものであり、金属ベース板との密着性、ヒートサイクル性に優れ、十分な絶縁抵抗を有する樹脂組成物、樹脂付き金属、及び金属ベース基板を提供する。 The present invention has been made in view of the above circumstances, and provides a resin composition, a metal with resin, and a metal base substrate that are excellent in adhesion to a metal base plate and heat cycle, and have sufficient insulation resistance. To do.
本発明の目的は、下記[1]〜[4]項に記載の本発明により達成される。
[1](A)ビスフェノールS骨格を有するフェノキシ樹脂、(B)水酸化アルミニウム、水酸化マグネシウムから選ばれる少なくとも1種の無機充填剤、及び(C)シランカップリング剤を必須成分とする樹脂組成物であって、(C)シランカップリング剤が樹脂組成物全体の2〜10重量%であることを特徴とする樹脂組成物。
[2]前記(A)ビスフェノールS骨格を有するフェノキシ樹脂の含有量は、樹脂組成物全体の10〜40重量%である[1]に記載の樹脂組成物。
[3][1]または[2]に記載の樹脂組成物は、さらに(D)ビスフェノールA型エポキシ樹脂を含むものである樹脂組成物。
[4][1]乃至[3]記載のいずれか一に記載の樹脂組成物、金属、接着層および金属板を用いてなる金属ベース基板。
The object of the present invention is achieved by the present invention described in the following items [1] to [4].
[1] Resin composition comprising (A) phenoxy resin having bisphenol S skeleton, (B) at least one inorganic filler selected from aluminum hydroxide and magnesium hydroxide , and (C) silane coupling agent as essential components A resin composition, wherein (C) the silane coupling agent is 2 to 10% by weight of the total resin composition.
[2] The resin composition according to [1], wherein the content of the phenoxy resin having the (A) bisphenol S skeleton is 10 to 40% by weight of the entire resin composition .
[3] The resin composition according to [1] or [2] is a resin composition further comprising (D) a bisphenol A type epoxy resin .
[4] A metal base substrate using the resin composition according to any one of [1] to [3], a metal, an adhesive layer, and a metal plate.
本発明の樹脂組成物は、金属ベース板との密着性、ヒートサイクル性に優れる、十分な絶縁抵抗を有する。 The resin composition of this invention has sufficient insulation resistance which is excellent in adhesiveness with a metal base board, and heat cycle property.
本発明の樹脂組成物について説明する。
本発明の樹脂組成物は、(A)ビスフェノールS骨格を有するフェノキシ樹脂(B)無機充填剤、及び(C)シランカップリング剤を必須成分とする樹脂組成物であって、(C)シランカップリング剤が樹脂組成物全体の2〜10重量%であることを特徴とする樹脂組成物である。
これにより、金属ベース板との密着性、ヒートサイクル性に優れる、十分な絶縁抵抗を有する。
また、本発明の樹脂組成物は、金属板との密着性に優れるため、長期絶縁信頼性試験において、良好な絶縁抵抗を示し、絶縁信頼性を有する。
The resin composition of the present invention will be described.
The resin composition of the present invention is a resin composition comprising (A) a phenoxy resin having a bisphenol S skeleton (B) an inorganic filler and (C) a silane coupling agent as essential components, and (C) a silane cup It is a resin composition characterized in that the ring agent is 2 to 10% by weight of the entire resin composition.
Thereby, it has sufficient insulation resistance which is excellent in adhesiveness with a metal base board, and heat cycle property.
Moreover, since the resin composition of this invention is excellent in adhesiveness with a metal plate, it shows favorable insulation resistance in a long-term insulation reliability test, and has insulation reliability.
加えて、本発明の樹脂組成物は、無機充填剤を含有させていることで従来からの熱放散性が優れる点、耐電圧等の電気絶縁性に優れる点等が良好のままに維持されていながら、応力緩和性が改善されている。 In addition, the resin composition of the present invention maintains an excellent point such as a conventional heat dissipating property and an excellent electrical insulation property such as a withstand voltage by including an inorganic filler. However, the stress relaxation property is improved.
前記(A)ビスフェノールS骨格を有するフェノキシ樹脂(以下、単に「(A)フェノキシ樹脂」ということがある。)とは、(A)フェノキシ樹脂の構造中にジフェニルスルホン構造を有する化合物であれば特に限定されない。分子内に2つのエポキシ基を有する化合物とビス(4-ヒドロキシフェニル)スルホンを反応させることで得ることができる。例えば、ビスフェノールA型エポキシ樹脂とビス(4-ヒドロキシフェニル)スルホンを反応させたフェノキシ樹脂、ビフェニル型エポキシ樹脂とビス(4-ヒドロキシフェニル)スルホンを反応させたフェノキシ樹脂、ナフタレン型エポキシ樹脂とビス(4-ヒドロキシフェニル)スルホンを反応させたフェノキシ樹脂などがあげられる。 The (A) phenoxy resin having a bisphenol S skeleton (hereinafter sometimes simply referred to as “(A) phenoxy resin”) is particularly a compound having a diphenylsulfone structure in the structure of (A) phenoxy resin. It is not limited. It can be obtained by reacting a compound having two epoxy groups in the molecule with bis (4-hydroxyphenyl) sulfone. For example, a phenoxy resin obtained by reacting bisphenol A type epoxy resin and bis (4-hydroxyphenyl) sulfone, a phenoxy resin obtained by reacting biphenyl type epoxy resin and bis (4-hydroxyphenyl) sulfone, a naphthalene type epoxy resin and bis ( And phenoxy resin reacted with 4-hydroxyphenyl) sulfone.
(A)フェノキシ樹脂を樹脂層に含むことにより、樹脂層と金属板との密着性が向上するだけでなく、プレス時に、流動性が改善され、ボイド等なく成形することが可能となる。また、分子内のS原子と金属板との金属原子相互作用により、樹脂層と金属板との密着性が向上し、そのため、吸湿後の絶縁抵抗値が優れたものとなる。また低弾性率化が可能となり、金属ベース基板に用いると応力緩和性にも優れ、例えば、金属ベース基板として用い、電子部品等を実装した半導体装置を製造した場合、当該半導体装置は、急激な加熱/冷却の環境下おいても、電子部品と金属ベース基板を接合する半田接合部、またはその近傍で、クラック等の不良が発生することはない。 (A) By including the phenoxy resin in the resin layer, not only the adhesion between the resin layer and the metal plate is improved, but also the fluidity is improved at the time of pressing, and it becomes possible to mold without voids. Further, due to the metal atom interaction between the S atom in the molecule and the metal plate, the adhesion between the resin layer and the metal plate is improved, so that the insulation resistance value after moisture absorption is excellent. In addition, the elastic modulus can be reduced, and when used for a metal base substrate, it has excellent stress relaxation properties.For example, when a semiconductor device using a metal base substrate and mounting an electronic component or the like is manufactured, the semiconductor device Even under the heating / cooling environment, no defects such as cracks occur at or near the solder joint where the electronic component and the metal base substrate are joined.
(A)フェノキシ樹脂の重量平均分子量は、特に限定されないが、3.0×104〜4.5×104が好ましい。3.0×104より小さいと、弾性率を低くすること難しく、半導体装置に用いた場合、急激な加熱/冷却下で、半田接合部、またはその近傍でのクラックを発生することがある。重量平均分子量が4.5×104より大きいと、樹脂組成物の粘度上昇により、プレス時の流動性が悪化し、ボイド等が発生することがあり、金属ベース基板の絶縁信頼性が低下する場合がある。 The weight average molecular weight of (A) phenoxy resin is not particularly limited, 3.0 × 10 4 ~4.5 × 10 4 are preferable. If it is less than 3.0 × 10 4 , it is difficult to lower the elastic modulus, and when used in a semiconductor device, cracks may occur at or near the solder joints under rapid heating / cooling. If the weight average molecular weight is greater than 4.5 × 10 4 , the viscosity of the resin composition increases, fluidity during pressing deteriorates, voids may occur, and the insulation reliability of the metal base substrate decreases. There is a case.
前記(A)フェノキシ樹脂の含有量は特に限定されないが、樹脂組成物全体の10〜40重量%であることが好ましい。10重量%未満であると、弾性率を十分下げることができない場合があり、金属ベース基板に用いると応力緩和性が十分でなく、急激な加熱/冷却を受けても半田或いはその近傍でのクラックが発生する恐れがある。40重量%より多いと、プレス時の流動性が悪化し、ボイド等が発生するため、金属ベース基板の絶縁信頼性が低下する場合がある。
なお樹脂組成物全体とは、例えば、溶剤等を用いたワニスの場合は、溶剤を除く固形を意味し、液状エポキシ、カップリング剤等の液状成分は、樹脂組成物に含まれる。
Although content of the said (A) phenoxy resin is not specifically limited, It is preferable that it is 10 to 40 weight% of the whole resin composition. If it is less than 10% by weight, the elastic modulus may not be sufficiently lowered. If it is used for a metal base substrate, the stress relaxation property is not sufficient, and cracks in the solder or its vicinity even when subjected to rapid heating / cooling. May occur. If it exceeds 40% by weight, the fluidity during pressing deteriorates and voids are generated, so that the insulation reliability of the metal base substrate may be lowered.
For example, in the case of a varnish using a solvent or the like, the entire resin composition means a solid excluding the solvent, and liquid components such as a liquid epoxy and a coupling agent are included in the resin composition.
前記(B)無機充填剤は、特に限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、酸化カルシウム、酸化マグネシウム、アルミナ、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、炭化ケイ素などが挙げられる。 The (B) inorganic filler is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, calcium oxide, magnesium oxide, alumina, aluminum nitride, aluminum borate whisker, and nitride. Boron, crystalline silica, amorphous silica, silicon carbide and the like can be mentioned.
これらの中でも、アルミナ、窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性シリカが、高熱伝導性の観点から好ましい。 さらに好ましくは、アルミナである。アルミナを用いた場合、高熱伝導性に加え、耐熱性、絶縁性の点で好ましい。 Among these, alumina, aluminum nitride, boron nitride, crystalline silica, and amorphous silica are preferable from the viewpoint of high thermal conductivity. More preferred is alumina. When alumina is used, it is preferable in terms of heat resistance and insulation in addition to high thermal conductivity.
また、信頼性の観点から、結晶性シリカまたは非晶性シリカは、イオン性不純物が少ない点で好ましい。絶縁信頼性に優れる金属ベース基板を製造することができる。
結晶性シリカまたは非晶性シリカは、プレッシャークッカテスト等の水蒸気雰囲気下で絶縁性が高く、金属、アルミ線、アルミ板等の腐食が少ない点で好適である。
Further, from the viewpoint of reliability, crystalline silica or amorphous silica is preferable in that it has few ionic impurities. A metal base substrate having excellent insulation reliability can be manufactured.
Crystalline silica or amorphous silica is suitable in that it has high insulation under a water vapor atmosphere such as a pressure cooker test and has little corrosion on metals, aluminum wires, aluminum plates, and the like.
一方、難燃性の観点からは、水酸化アルミニウム、水酸化マグネシウムが好ましい。
さらに、 溶融粘度調整やチクトロピック性の付与の目的においては、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグシウム、アルミナ、結晶性シリカ、非晶性シリカが好ましい。
On the other hand, from the viewpoint of flame retardancy, aluminum hydroxide and magnesium hydroxide are preferred.
Furthermore, for the purpose of imparting melt viscosity adjustment and chicotropic properties, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, crystalline silica, Amorphous silica is preferred.
(B)無機充填剤の含有量は、特に限定されないが、樹脂組成物全体の40〜70重量%であることが好ましい。40重量%より少ないと、熱抵抗が増大し、十分な放熱性を得ることができない場合があり、70重量%より多いと、プレス時の流動性が悪化し、ボイド等が発生する場合がある。 (B) Content of an inorganic filler is although it does not specifically limit, It is preferable that it is 40 to 70 weight% of the whole resin composition. If the amount is less than 40% by weight, the thermal resistance may increase, and sufficient heat dissipation may not be obtained. If the amount is more than 70% by weight, fluidity during pressing may be deteriorated and voids may be generated. .
前記(C)シランカップリング剤は、本発明の樹脂組成物に含むことにより、金属板との密着性が向上し、従来よりも金属ベース基板の絶縁信頼性が向上する。
これは、(A)ビスフェノールS骨格を有するフェノキシ樹脂、及び(B)無機充填剤との組み合わせによる相乗効果によるものと推察される。
By including the (C) silane coupling agent in the resin composition of the present invention, the adhesion to the metal plate is improved, and the insulation reliability of the metal base substrate is improved as compared with the conventional case.
This is presumably due to a synergistic effect of the combination of (A) a phenoxy resin having a bisphenol S skeleton and (B) an inorganic filler.
前記(C)シランカップリング剤の含有量は、特に限定されないが、樹脂組成物全体の2〜10重量%であることが好ましく、3〜7重量%であることがより好ましい。含有量が2重量%未満であると、金属板との密着力が低下し、半田耐熱性が低下する場合がある。また10重量%を超えると、シランカップリング剤が加水分解し、半田耐熱性が低下しする場合がある。 Although content of the said (C) silane coupling agent is not specifically limited, It is preferable that it is 2-10 weight% of the whole resin composition, and it is more preferable that it is 3-7 weight%. When the content is less than 2% by weight, the adhesion to the metal plate is lowered, and the solder heat resistance may be lowered. On the other hand, if it exceeds 10% by weight, the silane coupling agent may be hydrolyzed and solder heat resistance may be lowered.
前記樹脂組成物は、さらにエポキシ樹脂等の本発明では改質剤として、エポキシ樹脂を用いることができる。エポキシ樹脂を添加することにより、樹脂組成物の耐湿性、耐熱性、特に吸湿後の耐熱性が改善される。エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であれば、特に限定されず、例えば、ビスフェノールA系、ビスフェノールF系、ビフェニル系、ノボラック系、多官能フェノール系、ナフタレン系、脂環式系及びアルコール系等のグリシジルエーテル、グリシジルアミン系並びにグリシジルエステル系等が挙げられ、1種又は2種以上を混合して使用することができる。 The resin composition may further use an epoxy resin as a modifier in the present invention such as an epoxy resin. By adding an epoxy resin, the moisture resistance and heat resistance of the resin composition, particularly the heat resistance after moisture absorption is improved. The epoxy resin is not particularly limited as long as it is an epoxy resin having two or more epoxy groups in one molecule. For example, bisphenol A, bisphenol F, biphenyl, novolac, polyfunctional phenol, naphthalene And glycidyl ethers such as alicyclic type and alcohol type, glycidyl amine type and glycidyl ester type, and the like can be used alone or in combination.
これらの中で、耐熱性、耐湿性、金属接着性およびプレス成形時の流動性の点から、ビスフェノールAエポキシ樹脂が好ましく、特に常温で液状のビスフェノールAエポキシ樹脂が好ましい。常温で液状のビスフェノールAエポキシ樹脂は、プレス成形時の流動性が特に優れる上、ビスフェノールS骨格を有するフェノキシ樹脂との相溶性に優れ、樹脂組成物が相分離等を起こさないため、耐熱性に優れる。 Among these, bisphenol A epoxy resins are preferable from the viewpoint of heat resistance, moisture resistance, metal adhesion, and fluidity during press molding, and bisphenol A epoxy resins that are liquid at room temperature are particularly preferable. The bisphenol A epoxy resin that is liquid at room temperature is particularly excellent in fluidity during press molding, and is excellent in compatibility with the phenoxy resin having a bisphenol S skeleton, and the resin composition does not cause phase separation, etc. Excellent.
本発明の樹脂組成物は、エポキシ樹脂の硬化剤を含んでも良い。硬化剤としては、特に限定されないが、例えば、酸無水物、アミン化合物及びフェノール化合物等が挙げられる。 The resin composition of the present invention may contain an epoxy resin curing agent. Although it does not specifically limit as a hardening | curing agent, For example, an acid anhydride, an amine compound, a phenol compound, etc. are mentioned.
本発明の樹脂組成物は、必要に応じて、硬化促進剤を用いても良い。硬化促進剤は、特に限定されないが、例えば、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩等が挙げられる。 The resin composition of the present invention may use a curing accelerator as necessary. The curing accelerator is not particularly limited, and examples thereof include imidazoles and derivatives thereof, tertiary amines, and quaternary ammonium salts.
本発明の樹脂組成物は、その他必要に応じ、任意に公知の熱可塑性樹脂、エラストマー、難燃剤及び充填剤、色素、紫外線吸収剤等の併用ができる。 The resin composition of the present invention can optionally be used in combination with known thermoplastic resins, elastomers, flame retardants and fillers, dyes, ultraviolet absorbers and the like as necessary.
次に、樹脂付き金属箔について説明する。
前述した樹脂組成物を用いた樹脂付き金属箔は、樹脂組成物からなる樹脂層を金属箔上に形成することにより得られる。
まず、樹脂層を形成するため本発明の樹脂組成物を、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、酢酸エチル、シクロヘキサン、ヘプタン、シクロヘキサンシクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系、アニソール等の有機溶剤中で、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式、および自転公転式分散方式などの各種混合機を用いて溶解、混合、撹拌して樹脂ワニスを作製する。
Next, the metal foil with resin will be described.
The metal foil with a resin using the resin composition described above can be obtained by forming a resin layer made of the resin composition on the metal foil.
First, in order to form a resin layer, the resin composition of the present invention is acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, ethyl acetate, cyclohexane, heptane, cyclohexane cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, Various mixing machines such as ultrasonic dispersion method, high-pressure collision dispersion method, high-speed rotation dispersion method, bead mill method, high-speed shear dispersion method, and rotation and revolution dispersion method in organic solvents such as cellsolve, carbitol, and anisole A resin varnish is prepared by dissolving, mixing, and stirring using the above.
前記樹脂ワニス中の樹脂組成物の含有量は、特に限定されないが、45〜85重量%が好ましく、特に55〜75重量%が好ましい。 Although content of the resin composition in the said resin varnish is not specifically limited, 45 to 85 weight% is preferable and 55 to 75 weight% is especially preferable.
次に前記樹脂ワニスを、各種塗工装置を用いて、金属箔上に塗工した後、これを乾燥する。または、樹脂ワニスをスプレー装置により金属箔に噴霧塗工した後、これを乾燥する。これらの方法により樹脂付き金属箔を作製することができる。
前記塗工装置は、特に限定されないが、例えば、ロールコーター、バーコーター、ナイフコーター、グラビアコーター、ダイコーター、コンマコーターおよびカーテンコーターなどを用いることができる。これらの中でも、ダイコーター、ナイフコーター、およびコンマコーターを用いる方法が好ましい。これにより、ボイドがなく、均一な絶縁層の厚みを有する樹脂付き金属箔を効率よく製造することができる。
Next, the resin varnish is coated on a metal foil using various coating apparatuses, and then dried. Alternatively, the resin varnish is spray-coated on the metal foil with a spray device and then dried. A metal foil with a resin can be produced by these methods.
Although the said coating apparatus is not specifically limited, For example, a roll coater, a bar coater, a knife coater, a gravure coater, a die coater, a comma coater, a curtain coater, etc. can be used. Among these, a method using a die coater, a knife coater, and a comma coater is preferable. Thereby, the metal foil with resin which does not have a void and has the thickness of a uniform insulating layer can be manufactured efficiently.
前記樹脂層の厚さは、50μm〜250μmの範囲が好ましく、50μm未満の場合、以下に述べる金属ベース基板に用いる、例えば、アルミニウム板等の金属板との熱膨張率差による熱応力の発生を絶縁接着層で緩和することが十分に出来ない。
その結果、基板に半導体素子、抵抗部品等を表面実装した場合、歪が大きくなり、十分な熱衝撃信頼性を得ることができなくなる場合がある。250μmを超えると、表面実装した部分の歪量が少なく、良好な熱衝撃信頼性を得ることができるが、熱抵抗が増大するため、十分な放熱性を得ることができない。
The thickness of the resin layer is preferably in the range of 50 μm to 250 μm. When the thickness is less than 50 μm, it is used for a metal base substrate described below. It cannot be sufficiently relaxed with an insulating adhesive layer.
As a result, when a semiconductor element, a resistor component, or the like is surface-mounted on a substrate, distortion may increase and sufficient thermal shock reliability may not be obtained. When the thickness exceeds 250 μm, the amount of distortion of the surface-mounted portion is small and good thermal shock reliability can be obtained, but since the thermal resistance increases, sufficient heat dissipation cannot be obtained.
前記金属箔は、特に限定されないが、例えば銅及び銅系合金、アルミ及びアルミ系合金、銀及び銀系合金、金及び金系合金、亜鉛及び亜鉛系合金、ニッケル及びニッケル系合金、錫及び錫系合金、鉄および鉄系合金等の金属箔が挙げられる。
これらの中でも、金属箔をエッチングにより導体回路として用いることができる点で銅が好ましい。
また、低熱膨張の観点から、鉄−ニッケル合金が好ましい。
The metal foil is not particularly limited. For example, copper and copper-based alloy, aluminum and aluminum-based alloy, silver and silver-based alloy, gold and gold-based alloy, zinc and zinc-based alloy, nickel and nickel-based alloy, tin and tin And metal foils such as iron alloys, iron and iron alloys.
Among these, copper is preferable because the metal foil can be used as a conductor circuit by etching.
From the viewpoint of low thermal expansion, an iron-nickel alloy is preferable.
尚、前記金属箔の製造方法は電解法でも圧延法で作製したものでもよく、金属箔上にはNiメッキ、Ni−Auメッキ、半田メッキなどの金属メッキがほどこされていてもかまわないが、絶縁接着層との接着性の点から導体回路の絶縁接着層に接する側の表面はエッチングやメッキ等により予め粗化処理されていることが一層好ましい。 In addition, the manufacturing method of the metal foil may be one produced by an electrolytic method or a rolling method, and metal plating such as Ni plating, Ni-Au plating, or solder plating may be applied on the metal foil. From the viewpoint of adhesion to the insulating adhesive layer, it is more preferable that the surface of the conductor circuit on the side in contact with the insulating adhesive layer is roughened in advance by etching, plating, or the like.
前記金属箔の厚さは、特に限定されないが、0.5μm以上105μm以下であることが好ましい。さらには1μm以上70μm以下が好ましく、さらに好ましくは9μm以上35μm以下が好ましい。前記金属箔の厚さが上記下限値未満であると、ピンホールが発生しやすく、金属箔をエッチングし導体回路として用いた場合、回路パターン成形時のメッキバラツキ、回路断線、エッチング液やデスミア液等の薬液の染み込みなどが発生する怖れがあり、前記上限値を超えると、金属箔の厚みバラツキが大きくなったり、金属箔粗化面の表面粗さバラツキが大きくなったりする場合がある。
また、前記金属箔は、キャリア箔付き極薄金属箔を用いることもできる。キャリア箔付き極薄金属箔とは、剥離可能なキャリア箔と極薄金属箔とを張り合わせた金属箔である。キャリア箔付き極薄金属箔を用いることで前記絶縁層の両面に極薄金属箔層を形成できることから、例えば、セミアディティブ法などで回路を形成する場合、無電解メッキを行うことなく、極薄金属箔を直接給電層として電解メッキすることで、回路を形成後、極薄銅箔をフラッシュエッチングすることができる。キャリア箔付き極薄金属箔を用いることによって、厚さ10μm以下の極薄金属箔でも、例えばプレス工程での極薄金属箔のハンドリング性の低下や、極薄銅箔の割れや切れを防ぐことができる。
The thickness of the metal foil is not particularly limited, but is preferably 0.5 μm or more and 105 μm or less. Further, it is preferably 1 μm or more and 70 μm or less, more preferably 9 μm or more and 35 μm or less. If the thickness of the metal foil is less than the above lower limit value, pinholes are likely to occur, and when the metal foil is etched and used as a conductor circuit, plating variations during circuit pattern formation, circuit disconnection, etching solution or desmear solution If the upper limit is exceeded, the thickness variation of the metal foil may increase or the surface roughness variation of the roughened surface of the metal foil may increase.
The metal foil may be an ultrathin metal foil with a carrier foil. The ultrathin metal foil with a carrier foil is a metal foil obtained by laminating a peelable carrier foil and an ultrathin metal foil. Since an ultra-thin metal foil layer can be formed on both sides of the insulating layer by using an ultra-thin metal foil with a carrier foil, for example, when forming a circuit by a semi-additive method, etc. By electroplating the metal foil directly as the power feeding layer, the ultrathin copper foil can be flash etched after the circuit is formed. By using an ultra-thin metal foil with a carrier foil, even with an ultra-thin metal foil having a thickness of 10 μm or less, for example, a reduction in handling properties of the ultra-thin metal foil in a pressing process, and cracking or cutting of the ultra-thin copper foil are prevented. Can do.
次に、金属ベース基板について説明する。
本発明に係る金属ベース基板の製造方法は、特に限定されないが、例えば、金属板の片面又は両面に前記樹脂付き金属箔の樹脂面が接するように積層し、プレス等を用い加圧・加熱硬化させて樹脂層を形成することにより金属ベース基板を得ることができる。
金属ベース基板は、金属箔をエッチングすることにより、回路形成し、用いることができる。
多層にする場合は、前記金属ベース基板に回路形成後、さらに樹脂付き金属箔を積層し、前記同様エッチングすることにより回路形成することにより多層の金属ベース基板を得ることができる。
なお、最外層にソルダーレジストを形成し、露光・現像により半導体素子、や電子部品が実装できるよう接続用電極部を露出させても良い。
Next, the metal base substrate will be described.
The method for producing the metal base substrate according to the present invention is not particularly limited. For example, the metal plate is laminated so that the resin surface of the metal foil with resin is in contact with one surface or both surfaces of the metal plate, and is pressed and heat-cured using a press or the like. Thus, a metal base substrate can be obtained by forming a resin layer.
The metal base substrate can be used by forming a circuit by etching a metal foil.
In the case of a multi-layer, after forming a circuit on the metal base substrate, a metal foil with resin is further laminated, and a circuit is formed by etching in the same manner as described above to obtain a multi-layer metal base substrate.
Note that a solder resist may be formed on the outermost layer, and the connection electrode portion may be exposed so that a semiconductor element or an electronic component can be mounted by exposure and development.
前記金属板の厚みは、特に限定されないが、厚み0.5〜5.0mmであることが好ましい。熱放散性に優れ、しかも経済的であるからである。 Although the thickness of the said metal plate is not specifically limited, It is preferable that it is 0.5-5.0 mm in thickness. This is because it is excellent in heat dissipation and economical.
金属ベース基板を作製する別の方法としては、金属板に前記樹脂ワニスを塗工し、その後、金属箔を積層し加熱・加圧する方法が挙げられる。
前記同様エッチングにより回路形成して用いることもできる。
As another method for producing a metal base substrate, there is a method in which the resin varnish is applied to a metal plate, and then a metal foil is laminated and heated and pressurized.
Similarly to the above, a circuit can be formed by etching.
尚、前記において金属板に前記樹脂ワニスを塗工し、樹脂を硬化させた後、無電解めっき、および電解めっきにより回路形成を行っても良い。 In the above, after the resin varnish is applied to the metal plate and the resin is cured, the circuit may be formed by electroless plating and electrolytic plating.
以下、本発明を実施例、参考例及び比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example , a reference example, and a comparative example, this invention is not limited to this.
実施例、参考例及び比較例において用いた原材料は以下の通りである。
(1)フェノキシ樹脂A:ビスフェノールSエポキシ樹脂とビフェニル型エポキシ樹脂と
の共重合体であるフェノキシ樹脂(三菱化学製、YX−8100、重量平均分子量380
00)
(2)フェノキシ樹脂B:ビスフェノールSエポキシ樹脂とビスフェノールA型エポキシ
樹脂との共重合体であるフェノキシ樹脂(新日鉄化学製、YPS−007、重量平均分子
量40000)
(3)フェノキシ樹脂C:ビスフェノールA型フェノキシ樹脂(新日鐵化学製、YP−5
0、重量平均分子量50000)
(4)ビスフェノールA型エポキシ樹脂(DIC製、850S、エポキシ当量190)
(5)ビスフェノールA型エポキシ樹脂(三菱化学製、1001、エポキシ当量475)
(6)ジシアンジアミド(デグサ製)
(7)フェノールノボラック樹脂(DIC製、TD−2010、水酸基当量105)
(8)2−フェニルイミダゾール(四国化成製、2PZ)
(9)γ−グリシドキシプロピルトリトメキシシラン(信越シリコーン製、KBM−40
3)
(10)水酸化アルミニウム(昭和電工製、HP−360)
(11)アルミナ(電気化学工業製、AS−50)
(12)窒化ホウ素(電気化学工業製、SPG−3)
(13)シリコーン樹脂(モメンティブパフォーマンズ製XE14−A0425(A)、
ポリアルキルアルケニルシロキサン)
(14)シリコーン樹脂(モメンティブパフォーマンズ製XE14−A0425(B)、
ポリアルキル水素シロキサン)
The raw materials used in Examples , Reference Examples and Comparative Examples are as follows.
(1) Phenoxy resin A: Phenoxy resin (YX-8100, manufactured by Mitsubishi Chemical Co., Ltd., weight average molecular weight 380) which is a copolymer of bisphenol S epoxy resin and biphenyl type epoxy resin
00)
(2) Phenoxy resin B: Phenoxy resin which is a copolymer of bisphenol S epoxy resin and bisphenol A type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YPS-007, weight average molecular weight 40000)
(3) Phenoxy resin C: bisphenol A type phenoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YP-5
0, weight average molecular weight 50000)
(4) Bisphenol A type epoxy resin (made by DIC, 850S, epoxy equivalent 190)
(5) Bisphenol A type epoxy resin (Mitsubishi Chemical, 1001, epoxy equivalent 475)
(6) Dicyandiamide (Degussa)
(7) Phenol novolac resin (DIC, TD-2010, hydroxyl equivalent 105)
(8) 2-Phenylimidazole (manufactured by Shikoku Chemicals, 2PZ)
(9) γ-Glycidoxypropyltritomexisilane (manufactured by Shin-Etsu Silicone, KBM-40
3)
(10) Aluminum hydroxide (Showa Denko, HP-360)
(11) Alumina (manufactured by Denki Kagaku Kogyo, AS-50)
(12) Boron nitride (SPG-3, manufactured by Denki Kagaku Kogyo)
(13) Silicone resin (XE14-A0425 (A) manufactured by Momentive Performers,
Polyalkylalkenylsiloxane)
(14) Silicone resin (XE14-A0425 (B) manufactured by Momentive Performers,
Polyalkyl hydrogen siloxane)
(実施例1)
(1)樹脂ワニスの調製
ビスフェノールS骨格を有するフェノキシ樹脂(三菱化学製、YX−8100、重量平均分子量38000、ビスフェノールSエポキシ樹脂とビフェニル型エポキシ樹脂との共重合体)22.0重量%、ビスフェノールA型エポキシ樹脂(DIC製、850S、エポキシ当量190)10.0重量%、ビスフェノールA型エポキシ樹脂(三菱化学製、1001、エポキシ当量475)15.0重量%、2−フェニルイミダゾール(四国化成製2PZ)1.0重量%、シランカップリング剤としてγ―グリシドキシプロピルトリメトキシシラン(信越シリコーン製KBM−403)2.0重量%、水酸化アルミニウム(昭和電工製、HP−360、粒径3.0μm)50.0重量%をシクロヘキサノンに溶解・混合させ、高速撹拌装置を用い撹拌して、樹脂組成物が固形分基準で70重量%のワニスを得た。
Example 1
(1) Preparation of resin varnish Phenoxy resin having bisphenol S skeleton (Mitsubishi Chemical, YX-8100, weight average molecular weight 38000, copolymer of bisphenol S epoxy resin and biphenyl type epoxy resin) 22.0% by weight, bisphenol Type A epoxy resin (DIC, 850S, epoxy equivalent 190) 10.0% by weight, bisphenol A type epoxy resin (Mitsubishi Chemical, 1001, epoxy equivalent 475) 15.0 % by weight, 2-phenylimidazole (Shikoku Chemicals) 2PZ) 1.0 % by weight, γ-glycidoxypropyltrimethoxysilane (KBM-403 made by Shin-Etsu Silicone) as a silane coupling agent 2.0 % by weight, aluminum hydroxide (Showa Denko, HP-360, particle size) 3.0 [mu] m) is dissolved and mixed with 50.0 wt% in cyclohexanone And stirred using a high speed stirrer, a resin composition was obtained 70% by weight of the varnish on a solids basis.
(2)樹脂付き金属箔の作製
金属箔として、厚さ70μmの銅箔(古河サーキットホイル製、GTSMP)を用い、銅箔の粗化面に樹脂ワニスをコンマコーターにて塗布し、100℃で3分、150℃で3分加熱乾燥し、樹脂厚100μmの樹脂付き銅箔を得た。
(2) Preparation of metal foil with resin As the metal foil, a copper foil having a thickness of 70 μm (GTSMP, manufactured by Furukawa Circuit Foil) was used, and a resin varnish was applied to the roughened surface of the copper foil with a comma coater at 100 ° C. Heat drying for 3 minutes at 150 ° C. for 3 minutes to obtain a resin-coated copper foil with a resin thickness of 100 μm.
(3)金属ベース基板の作製
前記樹脂付き銅箔と金属板として2mm厚のアルミニウム板を張り合わせ、真空プレスで、プレス圧30kg/cm2で80℃30分、200℃90分の条件下で、プレスし金属ベース基板を得た。
(3) Production of metal base substrate The resin-coated copper foil and a 2 mm thick aluminum plate were bonded together as a metal plate, and were subjected to a vacuum press at a press pressure of 30 kg / cm 2 at 80 ° C. for 30 minutes and 200 ° C. for 90 minutes. A metal base substrate was obtained by pressing.
(実施例2〜9、参考例1、2および比較例1〜6)
表1、及び表2に記載の配合表に従い樹脂ワニスを調製した以外は、実施例1と同様に樹脂ワニスを調製し、樹脂付き銅箔、金属ベース基板を作製した。
また、各実施例、参考例および比較例により得られた金属ベース基板について、次の各評価を行った。評価結果を表1、及び表2に示す。
(Examples 2 to 9, Reference Examples 1 and 2 and Comparative Examples 1 to 6)
A resin varnish was prepared in the same manner as in Example 1 except that a resin varnish was prepared according to the recipes shown in Tables 1 and 2, and a copper foil with a resin and a metal base substrate were prepared.
Moreover, each evaluation of the following was performed about the metal base substrate obtained by each Example , the reference example, and the comparative example. The evaluation results are shown in Tables 1 and 2.
(評価方法)
上述の各評価について、評価方法を以下に示す。
(Evaluation method)
An evaluation method is shown below for each of the above evaluations.
(1)ピール強度
前記実施例、及び比較例で得られた金属ベース基板から100mm×20mmの試験片を作製し、23℃における金属ベース基板と樹脂層とのピール強度を測定した。
尚、ピール強度測定は、JIS C 6481に準拠して行った。
(1) Peel strength A 100 mm × 20 mm test piece was prepared from the metal base substrates obtained in the examples and comparative examples, and the peel strength between the metal base substrate and the resin layer at 23 ° C. was measured.
The peel strength measurement was performed according to JIS C 6481.
(2)半田耐熱性
得られた金属ベース基板を50mm×50mmにグラインダーソーでカットした後、エッチングにより銅箔を1/4だけ残した試料を作製し、JIS C 6481に準拠して評価した。評価は、前処理をしない場合と、前処理をしない場合と、121℃、100%、(PCT処理)を4時間行った後の場合において、288℃の半田槽に30秒間浸漬した後で外観の異常の有無を調べた。
評価基準:異常なし
:膨れあり(全体的にフクレの箇所がある)
(2) Solder heat resistance After the obtained metal base substrate was cut to 50 mm × 50 mm with a grinder saw, a sample in which only 1/4 of the copper foil was left by etching was prepared and evaluated in accordance with JIS C 6481. Evaluation is performed after immersion for 30 seconds in a solder bath at 288 ° C. in the case of no pretreatment, in the case of no pretreatment, and after 121 ° C., 100%, (PCT treatment) for 4 hours. The presence or absence of abnormalities was examined.
Evaluation criteria: No abnormality: Swelling (there is a bulge on the whole)
(3)絶縁抵抗測定
前記金属ベース基板の樹脂層の絶縁抵抗値を、絶縁抵抗測定器を用いて測定した。
測定は、室温おいて交流電圧を銅箔とアルミニウム板間に印加し、行った。評価は、前処理をしないで測定する場合、及びおよび121℃、100%、(PCT処理)を96時間行った後に測定する場合の2種類で行った。
(3) Insulation resistance measurement The insulation resistance value of the resin layer of the metal base substrate was measured using an insulation resistance measuring instrument.
The measurement was performed by applying an alternating voltage between the copper foil and the aluminum plate at room temperature. The evaluation was performed in two types: measurement without pretreatment, and measurement after 121 ° C., 100%, (PCT treatment) for 96 hours.
(4)熱伝導率
得られた金属ベース基板の密度を水中置換法により測定し、また、比熱をDSC(示差走査熱量測定)により測定し、さらに、レーザーフラッシュ法により熱拡散率を測定した。
そして、熱伝導率を以下の式から算出した。
熱伝導率(W/m・K)=密度(kg/m3)×比熱(kJ/kg・K)×熱拡散率(m2/S)×1000
(4) Thermal conductivity The density of the obtained metal base substrate was measured by an underwater substitution method, the specific heat was measured by DSC (differential scanning calorimetry), and the thermal diffusivity was further measured by a laser flash method.
And thermal conductivity was computed from the following formula | equation.
Thermal conductivity (W / m · K) = density (kg / m 3 ) × specific heat (kJ / kg · K) × thermal diffusivity (m 2 / S) × 1000
(5)ヒ−トサイクル試験
得られた金属ベース配線基板を、−40℃7分〜+125℃7分を1サイクルとして5000回のヒートサイクル試験を行った後、顕微鏡で半田部分のクラックの有無を観察した。半田部分のクラックの発生が10%以上あるものは不良とし、半田クラックの発生が10%未満のものを良好と判定した。
評価基準:良好
:不良(クラック発生率10%以上)
(5) Heat cycle test The obtained metal base wiring board was subjected to 5000 heat cycle tests with -40 ° C. 7 minutes to + 125 ° C. 7 minutes as one cycle, and then the presence or absence of cracks in the solder portion with a microscope Was observed. Those having a crack occurrence of 10% or more in the solder portion were judged as defective, and those having a solder crack occurrence of less than 10% were judged good.
Evaluation criteria: Good: Poor (crack generation rate of 10% or more)
表1、及び2に記載されている評価結果より、以下のことが分かる。
比較例1及び比較例2では、半田耐熱性が悪化した。
これは、比較例1は、γ−グリシドキシプロピルトリトメキシシランの量が少ないため、また比較例2は、γ−グリシドキシプロピルトリトメキシシランの量が多すぎるためと推察される。
比較例3は、密着性が低下し、吸湿後の樹脂層の絶縁性が低下した。
これは、ビスフェノールS骨格を有するフェノキシ樹脂を用いず、ビスフェノールA型フェノキシ樹脂を用いたためと推察される。
比較例4は、ピール強度が低下し、ヒートサイクル試験において実用可能なレベルに達していなかった。
これは、フェノキシ樹脂を用いなかったためと推察する。
比較例5は、無機充填剤を用いなかったため、熱伝導率が十分小さくならなかった。
比較例6は、ビスフェノールS骨格を有するフェノキシ樹脂の代わりにシリコーン樹脂を用いたものである。金属板と樹脂間に吸湿を起こし、絶縁抵抗値が低下した。
一方、実施例1〜11で得られた本発明の樹脂組成物、樹脂付き金属箔箔を用いた金属ベース基板は、ピール強度が高く、半田耐熱性に優れ、十分な絶縁抵抗値、並びに高い熱伝導率を有し、ヒートサイクル試験においても良好な結果であった。
従って、本発明で特定した樹脂組成物を用いることにより、性能の優れた金属ベース基板を得られることがわかる。
From the evaluation results described in Tables 1 and 2, the following can be understood.
In Comparative Example 1 and Comparative Example 2, the solder heat resistance deteriorated.
This is presumably because Comparative Example 1 has a small amount of γ-glycidoxypropyltritomoxysilane, and Comparative Example 2 has a large amount of γ-glycidoxypropyltritomoxysilane.
In Comparative Example 3, the adhesiveness was lowered, and the insulating property of the resin layer after moisture absorption was lowered.
This is presumably because phenoxy resin having a bisphenol S skeleton was not used but bisphenol A type phenoxy resin was used.
In Comparative Example 4, the peel strength was lowered, and the practical level was not reached in the heat cycle test.
This is presumably because no phenoxy resin was used.
Since the comparative example 5 did not use the inorganic filler, the thermal conductivity was not sufficiently reduced.
Comparative Example 6 uses a silicone resin in place of the phenoxy resin having a bisphenol S skeleton. Moisture absorption occurred between the metal plate and the resin, resulting in a decrease in insulation resistance value.
On the other hand, the metal base substrate using the resin composition of the present invention obtained in Examples 1 to 11 and the metal foil foil with resin has high peel strength, excellent solder heat resistance, sufficient insulation resistance, and high. It had thermal conductivity and was a good result in the heat cycle test.
Therefore, it can be seen that a metal base substrate having excellent performance can be obtained by using the resin composition specified in the present invention.
本発明の樹脂組成物、樹脂付き金属箔、及び金属ベース基板は自動車のエンジンル−ム等過酷な環境化で用いられる基板にでも使用することができ、産業上非常に有用である。 The resin composition, resin-coated metal foil, and metal base substrate of the present invention can be used for substrates used in harsh environments such as automobile engine rooms, and are very useful industrially.
Claims (4)
A metal base substrate using the resin composition according to any one of claims 1 to 3, a metal, an adhesive layer, and a metal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010168580A JP5516190B2 (en) | 2010-07-27 | 2010-07-27 | Resin composition, metal foil with resin, and metal base substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010168580A JP5516190B2 (en) | 2010-07-27 | 2010-07-27 | Resin composition, metal foil with resin, and metal base substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012025914A JP2012025914A (en) | 2012-02-09 |
JP5516190B2 true JP5516190B2 (en) | 2014-06-11 |
Family
ID=45779221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010168580A Active JP5516190B2 (en) | 2010-07-27 | 2010-07-27 | Resin composition, metal foil with resin, and metal base substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5516190B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5717698B2 (en) * | 2012-07-31 | 2015-05-13 | 株式会社有沢製作所 | Epoxy resin composition |
KR101929588B1 (en) * | 2012-12-31 | 2018-12-17 | 도레이첨단소재 주식회사 | Plastic Films for Transparent Flexible Substrates |
JP7395849B2 (en) * | 2019-06-03 | 2023-12-12 | 住友ベークライト株式会社 | Thermosetting resin composition, its resin sheet, and metal base substrate |
JP7559370B2 (en) | 2019-06-17 | 2024-10-02 | 住友ベークライト株式会社 | Phenoxy resin composition and resin material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009028493A1 (en) * | 2007-08-28 | 2009-03-05 | Sumitomo Bakelite Company, Ltd. | Insulating resin composition for multilayer printed wiring board, insulating resin sheet with base material, multilayer printed wiring board, and semiconductor device |
JP2010157380A (en) * | 2008-12-26 | 2010-07-15 | Sekisui Chem Co Ltd | Insulating sheet, and laminated structure |
-
2010
- 2010-07-27 JP JP2010168580A patent/JP5516190B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012025914A (en) | 2012-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5738274B2 (en) | Heat-resistant adhesive | |
JP5870934B2 (en) | Method for manufacturing metal-based circuit board | |
JP7026674B2 (en) | Resin composition for circuit boards and metal-based circuit boards using them | |
WO2011138865A1 (en) | Epoxy resin composition for circuit boards, prepreg, laminate, resin sheet, laminate for printed wiring boards, printed wiring boards, and semiconductor devices | |
JP6477483B2 (en) | Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device | |
JP6931542B2 (en) | Cured resin composition, resin composition and multilayer substrate | |
JP2008297429A (en) | Adhesive composition, adhesive sheet and copper foil with adhesive agent | |
WO2015163054A1 (en) | Metal-based substrate, method for manufacturing metal-based substrate, metal-based circuit board, and electronic device | |
JP5516190B2 (en) | Resin composition, metal foil with resin, and metal base substrate | |
JP5821355B2 (en) | Metal base circuit board, laminated board, inverter device and power semiconductor device | |
JP5821845B2 (en) | Resin composition used for formation of resin layer constituting metal base substrate, metal base substrate, and method of manufacturing metal base substrate | |
JP2012131899A (en) | Resin composition, resin sheet, metal-based circuit board, inverter, and power semiconductor device | |
CN113272355A (en) | Resin composition and metal-based copper-clad laminate | |
JP6726481B2 (en) | Circuit board and electronic component mounting board | |
JP5429054B2 (en) | Resin composition, metal foil with resin, and metal base substrate | |
JP2011162622A (en) | Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device | |
JP2008143971A (en) | Insulation resin composition, insulation resin sheet with substrate, multi-layer printed wiring board and semiconductor device | |
JP2005076023A (en) | Adhesive with low elastic coefficient and laminate using the same, heat sink with adhesive, metal foil with adhesive | |
JP2012153770A (en) | Resin composition, resin sheet, metal-based circuit board, inverter device, and power semiconductor device | |
JP2011094147A (en) | Adhesive with low elastic coefficient and laminate using the same, heat sink with adhesive, metal foil with adhesive | |
JP4366785B2 (en) | Adhesive sheet, production method thereof, multilayer printed wiring board using the adhesive sheet, and production method thereof | |
JP2024137893A (en) | Thermosetting composition, sheet-like cured product, composite molded product, and semiconductor device | |
JP2010050180A (en) | Circuit board and electronic-component mounting board | |
JP2014009356A (en) | Epoxy resin composition, insulating film made of the same, and multilayer printed board comprising the same | |
JP2000133949A (en) | Circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140317 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5516190 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |