JP2009097818A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009097818A
JP2009097818A JP2007271052A JP2007271052A JP2009097818A JP 2009097818 A JP2009097818 A JP 2009097818A JP 2007271052 A JP2007271052 A JP 2007271052A JP 2007271052 A JP2007271052 A JP 2007271052A JP 2009097818 A JP2009097818 A JP 2009097818A
Authority
JP
Japan
Prior art keywords
flow path
path member
heat exchanger
working fluid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271052A
Other languages
Japanese (ja)
Inventor
Shuichi Umezawa
修一 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2007271052A priority Critical patent/JP2009097818A/en
Publication of JP2009097818A publication Critical patent/JP2009097818A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger of high maintenance performance. <P>SOLUTION: A plate-shaped first passage member for first working fluid to flow inside and a second passage member for second working fluid to flow inside are detachable, so that the first passage member and the second passage member are easily separable. In the case of conducting maintenance to either one of the first passage member and the second passage member, the first passage member and the second passage member are separated for maintenance, instead of conducting large-scale maintenance. Maintenance performance of the heat exchanger is thus improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、第1作動流体と第2作動流体との間で熱交換を行わせる熱交換器に関する。   The present invention relates to a heat exchanger that exchanges heat between a first working fluid and a second working fluid.

水道水を流通させる流路を内部に有する流路部材と高温・高圧の二酸化炭素を流通させる流路を内部に有する流路部材とを接合して水道水及び二酸化炭素のそれぞれの流路内を熱的に接触させた状態にし、水道水と二酸化炭素との間で熱の移動を行わせる熱交換器が知られている(例えば、特許文献1参照)。   A flow path member having a flow path for circulating tap water and a flow path member having a flow path for circulating high-temperature, high-pressure carbon dioxide are joined to each other in the flow paths of tap water and carbon dioxide. There is known a heat exchanger that is brought into thermal contact and moves heat between tap water and carbon dioxide (see, for example, Patent Document 1).

水道水に例えばカルシウム成分が多く含まれている場合、水道水を流通させる流路部材の内部にスケールが付着することがある。流路部材の内部にスケールが付着すると、熱交換の性能が低下したり、流路内が詰ったりするなどの問題があるため、このような場合は水道水の流路部材を修理又は交換する必要がある。
特開平5−196377号公報
When tap water contains a large amount of calcium components, for example, scale may adhere to the inside of the channel member through which tap water is circulated. If scale adheres to the inside of the channel member, there is a problem that the performance of heat exchange deteriorates or the inside of the channel is clogged. In such a case, repair or replace the channel member of tap water. There is a need.
JP-A-5-196377

しかしながら、上記の構成においては、水道水用の流路部材と二酸化炭素用の流路部材とが一体化されている場合、水道水用の流路部材のみを修理する場合であっても熱交換器全体を取り外す必要がある。熱交換器全体を取り外す場合、流路部材内の二酸化炭素が外部に漏れ出すことになるため、工場など設備が整った場所で二酸化炭素を再度流路部材内に圧縮して充填させる必要がある。修理・交換に限られず、流路部材の清掃などを行う場合についても同様であり、このようなメンテナンス作業が大掛かりなものになってしまうという問題がある。水道水と二酸化炭素とを作動流体として用いる場合に限られず、他の作動流体を用いる場合においても同様の問題が生じうる。   However, in the above configuration, when the channel member for tap water and the channel member for carbon dioxide are integrated, heat exchange is performed even when only the channel member for tap water is repaired. It is necessary to remove the entire vessel. When removing the entire heat exchanger, the carbon dioxide in the flow path member will leak to the outside, so it is necessary to compress and fill the flow path member with carbon dioxide again in a well-equipped place such as a factory. . The same applies to the case where the flow path member is cleaned, not limited to repair / replacement, and there is a problem that such maintenance work becomes large. The same problem may arise when using other working fluids, not only when using tap water and carbon dioxide as working fluids.

以上のような事情に鑑み、本発明の目的は、メンテナンス性が高い熱交換器を提供することにある。   In view of the circumstances as described above, an object of the present invention is to provide a heat exchanger having high maintainability.

上記目的を達成するため、本発明に係る熱交換器は、第1作動流体を内部に流通させる板状の第1流路部材と、前記第1流路部材に着脱可能に巻回され、前記第1作動流体との間で熱交換を行わせる第2作動流体を内部に流通させる第2流路部材とを備えることを特徴とする。   In order to achieve the above object, a heat exchanger according to the present invention is a plate-like first flow path member that circulates a first working fluid therein, and is detachably wound around the first flow path member, And a second flow path member that circulates a second working fluid that exchanges heat with the first working fluid.

本発明によれば、第1作動流体を内部に流通させる板状の第1流路部材と、第2作動流体を内部に流通させる第2流路部材とが着脱可能であるため、第1流路部材と第2流路部材とを容易に分離することができる。第1流路部材及び第2流路部材のうちいずれか一方のみのメンテナンスを行う場合には、第1流路部材と第2流路部材とを分離してメンテナンスを行うことができるため、大掛かりなメンテナンスを行わなくても済むことになる。これにより、熱交換器のメンテナンス性を向上させることができる。また、本発明によれば、板状の第1流路部材に第2流路部材を巻回することとしたので、板状の第1流路部材の一面のみならず他の面においても熱交換を行うことができるため、熱交換の効率を高めることができる。   According to the present invention, since the plate-like first flow path member that circulates the first working fluid and the second flow path member that circulates the second working fluid inside are detachable, the first flow The path member and the second flow path member can be easily separated. When maintenance is performed on only one of the first flow path member and the second flow path member, the maintenance can be performed by separating the first flow path member and the second flow path member. This eliminates the need for maintenance. Thereby, the maintainability of a heat exchanger can be improved. Further, according to the present invention, since the second flow path member is wound around the plate-shaped first flow path member, heat is applied not only on one surface of the plate-shaped first flow path member but also on the other surface. Since the exchange can be performed, the efficiency of the heat exchange can be increased.

上記の熱交換器は、前記第1流路部材と前記第2流路部材とが接着部材を介して着脱可能に接着されていることを特徴とする。
本発明によれば、第1流路部材と第2流路部材とが接着部材を介して着脱可能に接着されていることとしたので、当該接着部材によって第1流路部材と第2流路部材との間の位置ずれを防ぐことができ、第1流路部材と第2流路部材との間の熱的な接触の度合いを高めることができる。加えて、接着部材によって着脱可能に接着されているので、第1流路部材と第2流路部材とを容易に分離することができ、高いメンテナンス性を確保することもできる。
The heat exchanger is characterized in that the first flow path member and the second flow path member are detachably bonded via an adhesive member.
According to the present invention, since the first flow path member and the second flow path member are detachably bonded via the adhesive member, the first flow path member and the second flow path are bonded by the adhesive member. It is possible to prevent the positional deviation between the members and the degree of thermal contact between the first flow path member and the second flow path member. In addition, since the first flow path member and the second flow path member can be easily separated since they are detachably bonded by the bonding member, high maintainability can be ensured.

上記の熱交換器は、前記第1流路部材は、前記第2流路部材によって巻回される部分に溝部を有することを特徴とする。
本発明によれば、第1流路部材が第2流路部材によって巻回される部分に溝部を有することとしたので、第2流路部材が第1流路部材の溝部に沿って巻回されることになる。これにより、溝部によって第1流路部材と第2流路部材との間の位置ずれを防ぐことができ、第1流路部材と第2流路部材との間の熱的な接触の度合いを高めることができる。
In the above heat exchanger, the first flow path member has a groove in a portion wound by the second flow path member.
According to the present invention, since the first flow path member has the groove portion wound by the second flow path member, the second flow path member is wound along the groove portion of the first flow path member. Will be. Thereby, the position difference between the first flow path member and the second flow path member can be prevented by the groove, and the degree of thermal contact between the first flow path member and the second flow path member can be reduced. Can be increased.

上記の熱交換器は、前記第1流路部材のうち前記第2流路部材に巻回される部分の角部が丸みを帯びた形状になっていることを特徴とする。
本発明によれば、前記第1流路部材のうち前記第2流路部材に巻回される部分の角部が丸みを帯びた形状になっていることとしたので、第1流路部材と第2流路部材との間の密着性を一層向上させることができる。これにより、第1流路部材と第2流路部材との間の熱的接触の度合いを更に高めることができる。
Said heat exchanger is characterized by the corner | angular part of the part wound around the said 2nd flow path member among the said 1st flow path members having the rounded shape.
According to the present invention, the corner portion of the portion of the first flow path member that is wound around the second flow path member has a rounded shape. Adhesiveness with the second flow path member can be further improved. Thereby, the degree of thermal contact between the first flow path member and the second flow path member can be further increased.

上記の熱交換器は、前記第1流路部材及び前記第2流路部材は、前記第1作動流体が一方向に流通し前記第2作動流体が前記一方向とは逆方向へ流通するように配置されていることを特徴とする。
本発明によれば、第1流路部材及び第2流路部材は、第1作動流体が一方向に流通し第2作動流体が一方向とは逆方向へ流通するように配置されているので、第1作動流体と第2作動流体との間で効率的に熱交換を行わせることができる。
In the heat exchanger, the first flow path member and the second flow path member may be configured such that the first working fluid flows in one direction and the second working fluid flows in a direction opposite to the one direction. It is characterized by being arranged in.
According to the present invention, the first flow path member and the second flow path member are arranged so that the first working fluid flows in one direction and the second working fluid flows in a direction opposite to the one direction. The heat exchange can be efficiently performed between the first working fluid and the second working fluid.

上記の熱交換器は、前記第1流路部材は、所定温度以上の前記第1作動流体が流通する高温部と前記所定温度より低い前記第1作動流体が流通する低温部とを有し、前記第2流路部材は、前記第1流路部材に螺旋状に巻回されており、前記第2流路部材の螺旋方向の単位長さあたりの巻回数は、前記低温部よりも前記高温部の方が少なくなっていることを特徴とする。
本発明によれば、第1流路部材のうち所定温度より低い温度の第1作動流体が流通する低温部よりも所定温度以上の温度の第1作動流体が流通する高温部の方が、第1流路部材に螺旋状に巻回された第2流路部材の螺旋方向の単位長さあたりの巻回数が少なくなっているので、高温部では低温部に比べて緩やかに熱交換が行われることになる。高温部でのスケールの付着が抑えられることになるため、メンテナンスの回数を抑えることができる。所定温度としては、スケールが付着し始める温度、例えば65℃〜70℃程度が好ましい。
In the above heat exchanger, the first flow path member has a high temperature portion through which the first working fluid having a predetermined temperature or higher flows and a low temperature portion through which the first working fluid lower than the predetermined temperature flows. The second channel member is spirally wound around the first channel member, and the number of windings per unit length in the spiral direction of the second channel member is higher than that of the low temperature part. It is characterized by fewer parts.
According to the present invention, in the first flow path member, the high temperature portion in which the first working fluid having a temperature equal to or higher than the predetermined temperature flows is lower than the low temperature portion in which the first working fluid having a temperature lower than the predetermined temperature flows. Since the number of turns per unit length in the spiral direction of the second flow path member wound spirally around one flow path member is reduced, heat exchange is performed more slowly in the high temperature portion than in the low temperature portion. It will be. Since adhesion of the scale in the high temperature part is suppressed, the number of maintenance can be suppressed. The predetermined temperature is preferably a temperature at which the scale starts to adhere, for example, about 65 ° C to 70 ° C.

上記の熱交換器は、前記第1流路部材は、所定温度以上の温度の前記第1作動流体が流通する高温部と前記所定温度より低い温度の前記第1作動流体が流通する低温部とを有し、前記高温部は、前記低温部に比べて前記第1作動流体の流路断面積が大きくなっていることを特徴とする。
本発明によれば、第1流路部材のうち所定温度以上の温度の第1作動流体が流通する高温部が、所定温度より低い温度の第1作動流体が流通する低温部に比べて第1作動流体の流路断面積が大きくなっているので、高温部においてスケールの付着による流路の詰まりを防ぐことができる。所定温度としては、スケールが付着し始める温度、例えば65℃〜70℃程度が好ましい。
In the above heat exchanger, the first flow path member includes a high temperature portion through which the first working fluid having a temperature equal to or higher than a predetermined temperature flows, and a low temperature portion through which the first working fluid having a temperature lower than the predetermined temperature flows. The high-temperature part has a larger cross-sectional area of the first working fluid than the low-temperature part.
According to the present invention, the high temperature portion in which the first working fluid having a temperature equal to or higher than the predetermined temperature in the first flow path member is first compared to the low temperature portion in which the first working fluid having a temperature lower than the predetermined temperature flows. Since the cross-sectional area of the working fluid is large, it is possible to prevent clogging of the flow path due to the adhesion of the scale in the high temperature part. The predetermined temperature is preferably a temperature at which the scale starts to adhere, for example, about 65 ° C to 70 ° C.

上記の熱交換器は、前記第1流路部材は、所定温度以上の温度の前記第1作動流体が流通する高温部と前記所定温度より低い温度の前記第1作動流体が流通する低温部とを有し、前記高温部と前記低温部とが分離可能に設けられていることを特徴とする。
本発明によれば、第1流路部材のうち所定温度以上の温度の第1作動流体が流通する高温部と、所定温度より低い温度の第1作動流体が流通する低温部とが分離可能に設けられているので、メンテナンスの際にはスケールが付着しやすい高温部のみを分離して修理・交換などを行うことができる。これにより、メンテナンス性を一層向上させることができる。所定温度としては、スケールが付着し始める温度、例えば65℃〜70℃程度が好ましい。
In the above heat exchanger, the first flow path member includes a high temperature portion through which the first working fluid having a temperature equal to or higher than a predetermined temperature flows, and a low temperature portion through which the first working fluid having a temperature lower than the predetermined temperature flows. The high temperature part and the low temperature part are provided in a separable manner.
According to the present invention, a high temperature portion in which a first working fluid having a temperature equal to or higher than a predetermined temperature in the first flow path member can be separated from a low temperature portion in which a first working fluid having a temperature lower than the predetermined temperature flows. Since it is provided, at the time of maintenance, it is possible to carry out repair / replacement or the like by separating only the high temperature part where the scale is likely to adhere. Thereby, maintainability can be improved further. The predetermined temperature is preferably a temperature at which the scale starts to adhere, for example, about 65 ° C to 70 ° C.

本発明によれば、メンテナンス性が高い熱交換器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a heat exchanger with high maintainability can be provided.

以下、図面をもとにして、本発明の実施の形態を説明する。
図1は、給湯システム1の全体構成を示す模式図である。
本発明に係る給湯システム1は、水加熱部2と、冷媒循環部3と、熱交換器4とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram illustrating an overall configuration of a hot water supply system 1.
A hot water supply system 1 according to the present invention includes a water heating unit 2, a refrigerant circulation unit 3, and a heat exchanger 4.

水加熱部2は、水供給源21と、配管22と、循環ポンプ23と、配管24と、配管25と、湯供給部26とを有している。水加熱部2では、第1作動流体としての水(HO)が、水供給源21から配管22、循環ポンプ23、配管24を順に流通して熱交換器4に供給され、熱交換器4によって加熱されて湯になり、当該湯が熱交換器4から配管25を流通して湯供給部26から供給されるようになっている。 The water heating unit 2 includes a water supply source 21, a pipe 22, a circulation pump 23, a pipe 24, a pipe 25, and a hot water supply part 26. In the water heating unit 2, water (H 2 O) as the first working fluid is supplied from the water supply source 21 to the heat exchanger 4 through the pipe 22, the circulation pump 23, and the pipe 24 in this order. 4 is heated to be hot water, and the hot water is supplied from the hot water supply section 26 through the pipe 25 from the heat exchanger 4.

水供給源21は、水加熱部2を流通する水の供給源であり、例えば水道管や水貯留タンクなどが挙げられる。配管22は、水供給源21と循環ポンプ23とを接続する配管である。循環ポンプ23は、水供給源21の水を吸引し、配管24側へと供給するポンプである。配管24は、循環ポンプ23と熱交換器4とを接続する配管である。配管25は、熱交換器4と湯供給部26とを接続する配管である。   The water supply source 21 is a water supply source that circulates through the water heating unit 2, and examples thereof include a water pipe and a water storage tank. The pipe 22 is a pipe that connects the water supply source 21 and the circulation pump 23. The circulation pump 23 is a pump that sucks water from the water supply source 21 and supplies it to the pipe 24 side. The pipe 24 is a pipe that connects the circulation pump 23 and the heat exchanger 4. The pipe 25 is a pipe that connects the heat exchanger 4 and the hot water supply unit 26.

冷媒循環部3は、冷媒用熱交換器31と、配管32と、コンプレッサ33と、配管34と、配管35と、膨張弁36と、配管37とを有しており、冷媒循環部3内には冷媒(第2作動流体)としての二酸化炭素(CO)が封入されている。冷媒循環部3は閉じた空間になっており、冷媒が冷媒用熱交換器31、配管32、コンプレッサ33、配管34を順に流通して熱交換器4に供給され、当該熱交換器4から配管35、膨張弁36、配管37を流通して再び冷媒用熱交換器31に供給されるようになっている。このように、冷媒循環部3では、冷媒が上記各部を循環する構成になっている。 The refrigerant circulation unit 3 includes a refrigerant heat exchanger 31, a pipe 32, a compressor 33, a pipe 34, a pipe 35, an expansion valve 36, and a pipe 37. Is filled with carbon dioxide (CO 2 ) as a refrigerant (second working fluid). The refrigerant circulation unit 3 is a closed space, and the refrigerant flows through the refrigerant heat exchanger 31, the pipe 32, the compressor 33, and the pipe 34 in order, and is supplied to the heat exchanger 4. 35, the expansion valve 36, and the pipe 37 are supplied to the refrigerant heat exchanger 31 again. As described above, the refrigerant circulation unit 3 is configured such that the refrigerant circulates through the respective parts.

冷媒用熱交換器31は、大気を取り込むファン38を有しており、取り込んだ大気の熱を冷媒に吸収させて配管32へと冷媒を供給する装置である。配管32は、冷媒用熱交換器31とコンプレッサ31を接続する配管である。コンプレッサ33は、冷媒を圧縮して配管34側へと供給する装置であり、冷媒を圧縮することで当該冷媒の温度を上昇させることができるようになっている。コンプレッサ33を冷媒用熱交換器31の下流側に配置することで、コンプレッサ33に流入する冷媒の温度をある程度上昇させておくことができるようになっており、その分コンプレッサ33で高温を作るために投入するエネルギーを少なくすることができるようになっている。配管34は、コンプレッサ33と熱交換器4とを接続する配管である。配管35は、熱交換器4と膨張弁36とを接続する配管である。膨張弁36は、冷媒を膨張させて配管37側へと供給する装置であり、冷媒を膨張させることで当該冷媒の温度を下げることができるようになっている。   The refrigerant heat exchanger 31 has a fan 38 that takes in the atmosphere, and is a device that absorbs the heat of the taken-in air into the refrigerant and supplies the refrigerant to the pipe 32. The pipe 32 is a pipe that connects the refrigerant heat exchanger 31 and the compressor 31. The compressor 33 is a device that compresses the refrigerant and supplies the refrigerant to the pipe 34 side. The compressor 33 can increase the temperature of the refrigerant by compressing the refrigerant. By arranging the compressor 33 on the downstream side of the refrigerant heat exchanger 31, the temperature of the refrigerant flowing into the compressor 33 can be raised to some extent, and the compressor 33 generates a correspondingly high temperature. Energy can be reduced. The pipe 34 is a pipe that connects the compressor 33 and the heat exchanger 4. The pipe 35 is a pipe that connects the heat exchanger 4 and the expansion valve 36. The expansion valve 36 is a device that expands the refrigerant and supplies the refrigerant to the pipe 37 side, and the temperature of the refrigerant can be lowered by expanding the refrigerant.

熱交換器4は、水加熱部2を流通する水と冷媒循環部3を循環する冷媒との間で熱を交換する装置であり、水加熱部2及び冷媒循環部3の流通経路上に設けられている。図2は、熱交換器4の外観を示す図である。図3は、熱交換器4を上面から見たときの構成を示す図である。図2及び図3に示すように、熱交換器4は、水流通用の流路部材41と、冷媒流通用の流路部材42とを備えている。   The heat exchanger 4 is a device that exchanges heat between the water that flows through the water heating unit 2 and the refrigerant that circulates through the refrigerant circulation unit 3, and is provided on the flow path of the water heating unit 2 and the refrigerant circulation unit 3. It has been. FIG. 2 is a view showing the appearance of the heat exchanger 4. FIG. 3 is a diagram illustrating a configuration when the heat exchanger 4 is viewed from above. As shown in FIGS. 2 and 3, the heat exchanger 4 includes a flow passage member 41 for water circulation and a flow passage member 42 for refrigerant circulation.

水流通用の流路部材41は、水流入口43と、水流通部44と、水流出口45とを有する板状部材である。水流入口43は、水加熱部2の配管24に接続されている。図4は、水流通部44の内部構成を示す断面図である。図4に示すように、水流通部44は、内部に複数の流路壁44aが設けられており、当該流路壁44aによって水流通部44の内部に流路44bが形成されている。図2及び図4に示すように、水流出口45は、水加熱部2の配管25に接続されている。流路部材41においては、水が水流入口43から流入し、水流通部44内部の流路44bを流通して水流出口45から流出されるようになっている。流路部材41全体では、水の流通する方向は例えば図2における下側から上側(水流入口43側から水流出口45側)の方向となっている。   The water flow channel member 41 is a plate-like member having a water flow inlet 43, a water flow portion 44, and a water flow outlet 45. The water inlet 43 is connected to the pipe 24 of the water heating unit 2. FIG. 4 is a cross-sectional view showing the internal configuration of the water circulation part 44. As shown in FIG. 4, the water circulation part 44 has a plurality of flow path walls 44a provided therein, and a flow path 44b is formed inside the water flow part 44 by the flow path walls 44a. As shown in FIGS. 2 and 4, the water outlet 45 is connected to the pipe 25 of the water heating unit 2. In the channel member 41, water flows in from the water inlet 43, flows through the channel 44 b in the water circulation part 44, and flows out from the water outlet 45. In the entire flow path member 41, the direction in which water flows is, for example, from the lower side to the upper side in FIG. 2 (from the water inlet 43 side to the water outlet 45 side).

冷媒流通用の流路部材42は、図2に示すように、冷媒流入口46と、冷媒流通部47と、冷媒流出口48とを有する管状部材である。冷媒流入口46は、冷媒循環部3の配管34に接続されている。冷媒流通部47は、流路部材41に対して水流入口43から水流出口45の方向へらせん状に巻回されている。   As shown in FIG. 2, the flow passage member 42 for refrigerant circulation is a tubular member having a refrigerant inlet 46, a refrigerant circulation portion 47, and a refrigerant outlet 48. The refrigerant inlet 46 is connected to the pipe 34 of the refrigerant circulation unit 3. The refrigerant circulation portion 47 is wound around the flow path member 41 in a spiral shape from the water inlet 43 to the water outlet 45.

図3に示すように、冷媒流通部47と流路部材41との間には接着部材49が設けられている。接着部材49は、例えば銀ロウなどのロウ材やエポキシなどの樹脂材料から構成されている。当該接着部材49によって流路部材42の内部と流路部材41の内部とが熱的に接触した状態になっていると共に、流路部材42と流路部材41との間が着脱可能に接着された状態になっている。   As shown in FIG. 3, an adhesive member 49 is provided between the refrigerant circulation portion 47 and the flow path member 41. The adhesive member 49 is made of, for example, a brazing material such as silver brazing or a resin material such as epoxy. The adhesive member 49 is in a state where the inside of the flow path member 42 and the inside of the flow path member 41 are in thermal contact, and the flow path member 42 and the flow path member 41 are detachably bonded. It is in the state.

冷媒流出口48は、図2に示すように、冷媒循環部3の配管35に接続されている。流通部材42においては、冷媒が冷媒流入口46から流入し、冷媒流通部47を流通して冷媒流出口48から流出されるようになっている。流路部材42全体では、冷媒の流通する方向は例えば図2における上側から下側(冷媒流入口46側から冷媒流出口48側)の方向となっており、水の流通する方向とはちょうど逆方向になっている。   As shown in FIG. 2, the refrigerant outlet 48 is connected to a pipe 35 of the refrigerant circulation unit 3. In the circulation member 42, the refrigerant flows from the refrigerant inlet 46, flows through the refrigerant circulation portion 47, and flows out from the refrigerant outlet 48. In the entire flow path member 42, the direction in which the refrigerant flows is, for example, the direction from the upper side to the lower side in FIG. 2 (from the refrigerant inlet 46 side to the refrigerant outlet 48 side). It is in the direction.

次に、上記のように構成された給湯システム1の動作を説明する。
水加熱部2においては、循環ポンプ23を作動させて水供給源21から配管22へと水を流通させる。この水は、循環ポンプ23により配管22から配管24、水流入口43を介して熱交換器4へと流入する。熱交換器4へ流入するときの水の温度は15℃程度になっている。
Next, operation | movement of the hot water supply system 1 comprised as mentioned above is demonstrated.
In the water heating unit 2, the circulation pump 23 is operated to circulate water from the water supply source 21 to the pipe 22. This water flows from the pipe 22 into the heat exchanger 4 through the pipe 24 and the water inlet 43 by the circulation pump 23. The temperature of water when flowing into the heat exchanger 4 is about 15 ° C.

一方、冷媒循環部3においては、コンプレッサ33及び膨張弁36によって冷媒を循環させる。冷媒用熱交換器31においてファン38によって取り込まれた外気の熱を吸収して冷媒の温度を上昇させる。この冷媒は、圧力が30気圧、温度が10℃程度の状態で配管32を流通し、コンプレッサ33に流入する。コンプレッサ33に流入した冷媒は、当該コンプレッサ33において圧縮され、100気圧程度にまで加圧されると共にこの圧縮によって温度が130℃程度にまで上昇した状態で配管34へ供給する。この冷媒は、配管34から冷媒流入口46を介して熱交換器4に流入する。   On the other hand, in the refrigerant circulation unit 3, the refrigerant is circulated by the compressor 33 and the expansion valve 36. The refrigerant heat exchanger 31 absorbs the heat of the outside air taken in by the fan 38 and raises the temperature of the refrigerant. This refrigerant flows through the pipe 32 in a state where the pressure is 30 atm and the temperature is about 10 ° C., and flows into the compressor 33. The refrigerant that has flowed into the compressor 33 is compressed by the compressor 33, pressurized to about 100 atm, and supplied to the pipe 34 with the temperature raised to about 130 ° C. by this compression. This refrigerant flows into the heat exchanger 4 from the pipe 34 through the refrigerant inlet 46.

熱交換器4では、水流入口43を介して流路部材41の内部に流入した水が、水流通部44の流路44bを流通する。また、冷媒流入口46を介して流路部材42の内部に流入した冷媒が、冷媒流通部47の内部を流通する。流路部材41の内部と流路部材42の内部との間が熱的に接触した状態になっているため、流路部材41内部の水と流路部材42内部の冷媒との間で熱の交換が行われることになる。具体的には、流路部材42内部の冷媒から流路部材41内部の水に熱が移動し、冷媒の圧力及び温度が低下すると共に水の温度が上昇することになる。流路部材41全体における水の流通方向と流路部材42全体における冷媒の流通方向とが逆方向になっているため、水と冷媒との間で効率的に熱交換が行われることになる。   In the heat exchanger 4, the water that has flowed into the flow path member 41 through the water inlet 43 flows through the flow path 44 b of the water flow portion 44. In addition, the refrigerant that has flowed into the flow path member 42 through the refrigerant inlet 46 flows through the refrigerant circulation portion 47. Since the interior of the flow path member 41 and the interior of the flow path member 42 are in thermal contact with each other, heat is transferred between the water in the flow path member 41 and the refrigerant in the flow path member 42. An exchange will be made. Specifically, heat is transferred from the refrigerant in the flow path member 42 to the water in the flow path member 41, and the pressure and temperature of the refrigerant are reduced and the temperature of the water is increased. Since the flow direction of water in the entire flow path member 41 and the flow direction of the refrigerant in the entire flow path member 42 are opposite to each other, heat exchange is efficiently performed between the water and the refrigerant.

温度の上昇した水は、90℃程度の湯となって配管25に流出し、湯供給部26から供給されることになる。このように、水加熱部2においては水供給源21の水を循環ポンプ23によって熱交換器4に流入させ、熱交換器4において生成された湯を湯供給部26から供給する動作を繰り返すことになる。   The water whose temperature has risen becomes hot water of about 90 ° C., flows out into the pipe 25, and is supplied from the hot water supply unit 26. As described above, in the water heating unit 2, the operation of supplying the water from the water supply source 21 to the heat exchanger 4 by the circulation pump 23 and supplying the hot water generated in the heat exchanger 4 from the hot water supply unit 26 is repeated. become.

水加熱部2において上記動作を繰り返す場合、水供給源21から例えばカルシウム成分を多く含む水が供給されると、水流通部44の例えば流路壁44aや流路44bなどにスケールが付着することがある。このようなスケールが水流通部44の内部に付着すると、熱交換の性能が低下したり、流路44b内が詰ったりするなどの問題があるため、流路部材41を定期的に交換する必要がある。本実施形態では、流路部材41と流路部材42とが接着部材49によって着脱可能に接着されているため、流路部材41の交換時には流路部材41と流路部材42と分離して流路部材41のみを取り替えるようにすればよい。この場合、流路部材42については冷媒循環部3から切り離す必要は無いため、冷媒循環部3内に封入された冷媒を再度封入しなおす必要は無い。   When the water heating unit 2 repeats the above operation, if water containing a large amount of calcium components is supplied from the water supply source 21, for example, the scale adheres to the channel wall 44a, the channel 44b, or the like of the water circulation unit 44. There is. If such a scale adheres to the inside of the water circulation part 44, there is a problem that the performance of heat exchange is reduced or the inside of the flow path 44b is clogged, so the flow path member 41 needs to be replaced periodically. There is. In this embodiment, since the flow path member 41 and the flow path member 42 are detachably bonded by the adhesive member 49, the flow path member 41 and the flow path member 42 are separated from each other when the flow path member 41 is replaced. Only the road member 41 may be replaced. In this case, since it is not necessary to separate the flow path member 42 from the refrigerant circulation unit 3, there is no need to re-enclose the refrigerant enclosed in the refrigerant circulation unit 3.

一方、圧力及び温度の低下した冷媒は、圧力が100気圧、温度が20℃程度の状態で配管35に流出する。この冷媒は配管35を介して膨張弁36に流入し、当該膨張弁36によって膨張されて圧力が30気圧程度まで減圧される。また、当該膨張によって温度が5℃程度にまで低下する。減圧されて温度低下した冷媒は、配管37を介して再び冷媒用熱交換器31に供給される。冷媒用熱交換器31では、上記のようにファン38によって取り込まれた外気の熱を吸収して冷媒の温度が10℃程度にまで上昇する。このように、冷媒循環部3では、コンプレッサ33において冷媒を圧縮し温度を上昇させて熱交換器4に流入させ、熱交換器4において冷却された冷媒を膨張弁36にて膨張させて減圧し、冷媒用熱交換器31において外気の熱を吸熱させる動作を繰り返すことになる。   On the other hand, the refrigerant whose pressure and temperature have decreased flows out into the pipe 35 in a state where the pressure is 100 atm and the temperature is about 20 ° C. The refrigerant flows into the expansion valve 36 through the pipe 35 and is expanded by the expansion valve 36 to reduce the pressure to about 30 atmospheres. In addition, the temperature decreases to about 5 ° C. due to the expansion. The refrigerant whose pressure has been reduced due to the reduced pressure is supplied again to the refrigerant heat exchanger 31 via the pipe 37. In the refrigerant heat exchanger 31, the heat of the outside air taken in by the fan 38 as described above is absorbed, and the temperature of the refrigerant rises to about 10 ° C. As described above, in the refrigerant circulation unit 3, the refrigerant is compressed by the compressor 33 to raise the temperature and flow into the heat exchanger 4, and the refrigerant cooled in the heat exchanger 4 is expanded by the expansion valve 36 to reduce the pressure. Then, the operation of absorbing the heat of the outside air in the refrigerant heat exchanger 31 is repeated.

このように、本実施形態によれば、第1作動流体としての水を内部に流通させる板状の流路部材41と、第2作動流体としての冷媒を内部に流通させる流路部材42とが着脱可能であるため、流路部材41と流路部材42とを容易に分離することができる。流路部材41及び流路部材42のうちいずれか一方のみのメンテナンスを行う場合には、流路部材41と流路部材42とを分離してメンテナンスを行うことができるため、大掛かりなメンテナンスを行わなくても済むことになる。これにより、熱交換器4のメンテナンス性を向上させることができる。   Thus, according to the present embodiment, the plate-like flow path member 41 that circulates water as the first working fluid therein and the flow path member 42 that circulates the refrigerant as the second working fluid therein. Since it is detachable, the flow path member 41 and the flow path member 42 can be easily separated. When only one of the flow path member 41 and the flow path member 42 is to be maintained, the maintenance can be performed by separating the flow path member 41 and the flow path member 42, so that large-scale maintenance is performed. You don't have to. Thereby, the maintainability of the heat exchanger 4 can be improved.

また、本実施形態によれば、板状の流路部材41に管状の流路部材42を巻回することとしたので、板状の流路部材41の一面のみならず他の面においても熱交換を行うことができるため、熱交換の効率を高めることができる。   Further, according to the present embodiment, since the tubular flow path member 42 is wound around the plate-shaped flow path member 41, heat is applied not only on one surface of the plate-shaped flow path member 41 but also on other surfaces. Since the exchange can be performed, the efficiency of the heat exchange can be increased.

本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
例えば、図5に示すように、流路部材41の表面のうち流路部材42によって巻回される部分に溝部50を設ける構成であっても構わない。流路部材42が流路部材41の溝部50に沿って巻回されることになるため、溝部50によって流路部材41と流路部材42との間の位置ずれを防ぐことができ、流路部材41と流路部材42との間の熱的な接触の度合いを高めることができる。
The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.
For example, as shown in FIG. 5, the groove portion 50 may be provided in a portion of the surface of the flow path member 41 that is wound by the flow path member 42. Since the flow path member 42 is wound along the groove portion 50 of the flow path member 41, the groove portion 50 can prevent the positional deviation between the flow path member 41 and the flow path member 42, and the flow path The degree of thermal contact between the member 41 and the flow path member 42 can be increased.

この場合、溝部50に沿って流路部材42を巻回させると図6に示される状態となる。図6は、図5に流路部材42を巻きつけた状態においてA−A断面に沿った構成を示す図である。流路部材41と流路部材42との接着については、接着部材49を流路部材41と流路部材42との間を埋めるように配置する必要は無く、例えば図6に示すように溝部50の端辺に沿って接着部材49を配置するようにすることもできる。このような構成であっても、流路部材41と流路部材42とを着脱可能に接着することができる上、流路部材41内部と流路部材42内部とを熱的に接触させることができる。   In this case, when the flow path member 42 is wound along the groove 50, the state shown in FIG. FIG. 6 is a view showing a configuration along the AA section in a state where the flow path member 42 is wound around FIG. For the adhesion between the flow path member 41 and the flow path member 42, the adhesive member 49 need not be disposed so as to fill the space between the flow path member 41 and the flow path member 42. For example, as shown in FIG. It is also possible to arrange the adhesive member 49 along the edges of the. Even in such a configuration, the flow channel member 41 and the flow channel member 42 can be detachably bonded, and the flow channel member 41 and the flow channel member 42 can be in thermal contact with each other. it can.

また、図7に示すように、流路部材41のうち流路部材42によって巻回される部分の角部41aが丸みを帯びた形状であっても良い。これにより、流路部材41と流路部材42とが流路部材41の角部41aにおいても密着することになるため、両者の間の密着性を一層向上させることができ、流路部材41と流路部材42との間の熱的接触の度合いを更に高めることができる。   Moreover, as shown in FIG. 7, the corner | angular part 41a of the part wound by the flow path member 42 among the flow path members 41 may be a rounded shape. Thereby, since the flow path member 41 and the flow path member 42 are in close contact with each other at the corner 41a of the flow path member 41, the adhesion between the both can be further improved. The degree of thermal contact with the flow path member 42 can be further increased.

また、図8に示すように、流路部材41のうちスケールが付着し始める温度、すなわち65℃〜70℃の範囲で設定した所定温度よりも低い温度の水が流通する部分を低温部41cとすると共に所定温度以上の温度の水が流通する部分を高温部41bとし、流路部材42の螺旋方向の単位長さあたりの巻回数を低温部41cよりも高温部41bの方が少なくする、すなわち、低温部41cよりも高温部41bの方が流路部材42の密度が粗くなるように流路部材42を巻回する構成であっても構わない。この構成によれば、高温部41bでは低温部41cに比べて緩やかに熱交換が行われることになる。高温部41bでのスケールの付着が抑えられることになるため、メンテナンスの回数を抑えることができる。   Further, as shown in FIG. 8, a portion of the flow path member 41 at which the scale starts to adhere, that is, a portion where water having a temperature lower than a predetermined temperature set in the range of 65 ° C. to 70 ° C. flows is the low temperature portion 41c. In addition, the portion through which water having a temperature equal to or higher than a predetermined temperature flows is defined as the high temperature portion 41b, and the number of turns per unit length in the spiral direction of the flow path member 42 is reduced in the high temperature portion 41b than in the low temperature portion 41c. Alternatively, the flow path member 42 may be wound so that the density of the flow path member 42 is coarser in the high temperature section 41b than in the low temperature section 41c. According to this configuration, heat exchange is performed more gently in the high temperature portion 41b than in the low temperature portion 41c. Since the adhesion of the scale at the high temperature part 41b is suppressed, the number of maintenance can be suppressed.

また、図9に示すように、図8の構成と同様に流路部材41のうちスケールが付着し始める温度、すなわち65℃〜70℃の範囲で設定した所定温度よりも低い温度の水が流通する部分を低温部41cとすると共に所定温度以上の温度の水が流通する部分を高温部41bとし、高温部41bにおいては、低温部41cに比べて流路44bの流路断面積が大きくなる構成であっても構わない。この構成によれば、高温部41bにおいてスケールの付着による流路の詰まりを防ぐことができる。   Further, as shown in FIG. 9, water having a temperature lower than a predetermined temperature set in the range of 65 ° C. to 70 ° C. flows in the flow path member 41 as in the configuration of FIG. The portion to be used is the low temperature portion 41c and the portion through which water having a temperature equal to or higher than the predetermined temperature flows is the high temperature portion 41b, and the flow passage cross-sectional area of the flow channel 44b is larger in the high temperature portion 41b than the low temperature portion 41c. It does not matter. According to this configuration, it is possible to prevent clogging of the flow path due to scale adhesion in the high temperature portion 41b.

また、図10に示すように、図8の構成と同様に流路部材41のうちスケールが付着し始める温度、すなわち65℃〜70℃の範囲で設定した所定温度よりも低い温度の水が流通する部分を低温部41cとすると共に所定温度以上の温度の水が流通する部分を高温部41bとし、当該高温部41bと低温部41cとを分離可能に設ける構成であっても構わない。この構成によれば、メンテナンスの際にはスケールが付着しやすい高温部41bのみを分離して修理・交換などを行うことができる。これにより、メンテナンス性を一層向上させることができる。   Further, as shown in FIG. 10, water having a temperature lower than a predetermined temperature set in the range of 65 ° C. to 70 ° C. flows in the flow path member 41 as in the configuration of FIG. The part to be used may be the low temperature part 41c, the part through which water having a temperature equal to or higher than the predetermined temperature flows may be the high temperature part 41b, and the high temperature part 41b and the low temperature part 41c may be provided to be separable. According to this configuration, it is possible to perform repair / replacement or the like by separating only the high temperature portion 41b to which the scale easily adheres during maintenance. Thereby, maintainability can be improved further.

本発明の実施形態に係る給湯システムの外観を示す図。The figure which shows the external appearance of the hot water supply system which concerns on embodiment of this invention. 本実施形態に係る熱交換器の外観を示す図。The figure which shows the external appearance of the heat exchanger which concerns on this embodiment. 熱交換器の上面から見た構成を示す図。The figure which shows the structure seen from the upper surface of the heat exchanger. 熱交換器の内部の構成を示す断面図。Sectional drawing which shows the structure inside a heat exchanger. 熱交換器の他の構成を示す図。The figure which shows the other structure of a heat exchanger. 熱交換器の他の構成を示す図。The figure which shows the other structure of a heat exchanger. 熱交換器の他の構成を示す図。The figure which shows the other structure of a heat exchanger. 熱交換器の他の構成を示す図。The figure which shows the other structure of a heat exchanger. 熱交換器の他の構成を示す図。The figure which shows the other structure of a heat exchanger. 熱交換器の他の構成を示す図。The figure which shows the other structure of a heat exchanger.

符号の説明Explanation of symbols

1…給湯システム 4…熱交換器 41…流路部材 41a…角部 41b…高温部 41c…低温部 42…流路部材 44b…流路 49…接着部材 50…溝部 DESCRIPTION OF SYMBOLS 1 ... Hot water supply system 4 ... Heat exchanger 41 ... Channel member 41a ... Corner | angular part 41b ... High temperature part 41c ... Low temperature part 42 ... Channel member 44b ... Channel 49 ... Adhesive member 50 ... Groove part

Claims (8)

第1作動流体を内部に流通させる板状の第1流路部材と、
前記第1流路部材に着脱可能に巻回され、前記第1作動流体との間で熱交換を行わせる第2作動流体を内部に流通させる第2流路部材と
を備えることを特徴とする熱交換器。
A plate-like first flow path member for circulating the first working fluid therein;
A second flow path member that is detachably wound around the first flow path member and allows a second working fluid to circulate therein to exchange heat with the first working fluid. Heat exchanger.
前記第1流路部材と前記第2流路部材とが接着部材を介して着脱可能に接着されている
ことを特徴とする請求項1に記載の熱交換器。
The heat exchanger according to claim 1, wherein the first flow path member and the second flow path member are detachably bonded via an adhesive member.
前記第1流路部材は、前記第2流路部材によって巻回される部分に溝部を有する
ことを特徴とする請求項1又は請求項2に記載の熱交換器。
The heat exchanger according to claim 1 or 2, wherein the first flow path member has a groove in a portion wound by the second flow path member.
前記第1流路部材のうち前記第2流路部材に巻回される部分の角部が丸みを帯びた形状になっている
ことを特徴とする請求項1から請求項3のうちいずれか一項に記載の熱交換器。
The corner part of the part wound by the said 2nd flow path member among said 1st flow path members is a rounded shape. Any one of Claims 1-3 characterized by the above-mentioned. The heat exchanger according to item.
前記第1流路部材及び前記第2流路部材は、前記第1作動流体が一方向に流通し前記第2作動流体が前記一方向とは逆方向へ流通するように配置されている
ことを特徴とする請求項1から請求項4のうちいずれか一項に記載の熱交換器。
The first flow path member and the second flow path member are arranged such that the first working fluid flows in one direction and the second working fluid flows in a direction opposite to the one direction. The heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is characterized.
前記第1流路部材は、所定温度以上の温度の前記第1作動流体が流通する高温部と前記所定温度より低い温度の前記第1作動流体が流通する低温部とを有し、
前記第2流路部材は、前記第1流路部材に螺旋状に巻回されており、
前記第2流路部材の螺旋方向の単位長さあたりの巻回数は、前記低温部よりも前記高温部の方が少なくなっている
ことを特徴とする請求項1から請求項5のうちいずれか一項に記載の熱交換器。
The first flow path member has a high temperature portion through which the first working fluid having a temperature equal to or higher than a predetermined temperature flows and a low temperature portion through which the first working fluid having a temperature lower than the predetermined temperature flows.
The second flow path member is spirally wound around the first flow path member,
The number of turns per unit length in the spiral direction of the second flow path member is smaller in the high temperature portion than in the low temperature portion. The heat exchanger according to one item.
前記第1流路部材は、所定温度以上の温度の前記第1作動流体が流通する高温部と前記所定温度より低い温度の前記第1作動流体が流通する低温部とを有し、
前記高温部は、前記低温部に比べて前記第1作動流体の流路断面積が大きくなっている
ことを特徴とする請求項1から請求項6のうちいずれか一項に記載の熱交換器。
The first flow path member has a high temperature portion through which the first working fluid having a temperature equal to or higher than a predetermined temperature flows and a low temperature portion through which the first working fluid having a temperature lower than the predetermined temperature flows.
The heat exchanger according to any one of claims 1 to 6, wherein the high-temperature portion has a larger cross-sectional area of the first working fluid than the low-temperature portion. .
前記第1流路部材は、所定温度以上の温度の前記第1作動流体が流通する高温部と前記所定温度より低い温度の前記第1作動流体が流通する低温部とを有し、
前記高温部と前記低温部とが分離可能に設けられている
ことを特徴とする請求項1から請求項7のうちいずれか一項に記載の熱交換器。
The first flow path member has a high temperature portion through which the first working fluid having a temperature equal to or higher than a predetermined temperature flows and a low temperature portion through which the first working fluid having a temperature lower than the predetermined temperature flows.
The heat exchanger according to any one of claims 1 to 7, wherein the high-temperature part and the low-temperature part are provided so as to be separable.
JP2007271052A 2007-10-18 2007-10-18 Heat exchanger Pending JP2009097818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271052A JP2009097818A (en) 2007-10-18 2007-10-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271052A JP2009097818A (en) 2007-10-18 2007-10-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009097818A true JP2009097818A (en) 2009-05-07

Family

ID=40700984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271052A Pending JP2009097818A (en) 2007-10-18 2007-10-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009097818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149631A (en) * 2010-01-22 2011-08-04 Hitachi Appliances Inc Heat pump water heater
JP2013007519A (en) * 2011-06-24 2013-01-10 Hitachi Appliances Inc Water-refrigerant heat exchanger, and heat pump water heater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332466U (en) * 1976-08-26 1978-03-20
JPS58160795A (en) * 1982-03-17 1983-09-24 Matsushita Electric Ind Co Ltd Heat exchanger
JPS58196746U (en) * 1982-06-24 1983-12-27 株式会社東芝 Heat exchanger
JP2000283664A (en) * 1999-03-29 2000-10-13 Shinei Sangyo Kk Heat exchanging pipe of refrigeration cycle and method of manufacture of heat exchange pipe
JP2003097898A (en) * 2001-07-16 2003-04-03 Daikin Ind Ltd Heat exchanger
JP2004251543A (en) * 2003-02-20 2004-09-09 Denso Corp Tube
JP2006284009A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Method of manufacturing twisted tube-type heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332466U (en) * 1976-08-26 1978-03-20
JPS58160795A (en) * 1982-03-17 1983-09-24 Matsushita Electric Ind Co Ltd Heat exchanger
JPS58196746U (en) * 1982-06-24 1983-12-27 株式会社東芝 Heat exchanger
JP2000283664A (en) * 1999-03-29 2000-10-13 Shinei Sangyo Kk Heat exchanging pipe of refrigeration cycle and method of manufacture of heat exchange pipe
JP2003097898A (en) * 2001-07-16 2003-04-03 Daikin Ind Ltd Heat exchanger
JP2004251543A (en) * 2003-02-20 2004-09-09 Denso Corp Tube
JP2006284009A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Method of manufacturing twisted tube-type heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149631A (en) * 2010-01-22 2011-08-04 Hitachi Appliances Inc Heat pump water heater
JP2013007519A (en) * 2011-06-24 2013-01-10 Hitachi Appliances Inc Water-refrigerant heat exchanger, and heat pump water heater

Similar Documents

Publication Publication Date Title
US20210215445A1 (en) Heat exchanger array system and method for an air thermal conditioner
JP6827062B2 (en) Heat exchanger including manifold
JPWO2008023732A1 (en) High pressure-resistant compact heat exchanger, hydrogen storage container, and manufacturing method thereof
JP4324187B2 (en) Heat storage device
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
JP6111083B2 (en) Compression device
CN104132487A (en) Air source heat pump system of double-pressure control
CN105960566A (en) Heat exchanger for hot water supply and hot water supply device comprising same
CN107429577B (en) Supercritical carbon dioxide power generation Brayton Cycle system and method
CN104185765A (en) Refrigeration device
US20090139700A1 (en) Heat exchanger
JP4657226B2 (en) Heat storage device
JP2008501885A (en) Heat engine
JP2009097818A (en) Heat exchanger
JP2011085284A (en) Heat pump type heating device
CN106052121A (en) Heat pump device and hot water supply device
JP4650171B2 (en) Geothermal heat pump water heater
CN105683685A (en) Heat pump system
JP2018525205A (en) Cold water circulation supply device for mat
CN112178737A (en) Energy storage assembly and heat pump system
KR101326542B1 (en) Heat exchanging method of natural inducement type using the pressure difference and gas compressor and heat pump using the same
JP2004205060A (en) Heat exchanger
KR101679283B1 (en) A Water Purifier using Heat Pipe
WO2016047630A1 (en) Container-type compressed air storage power generation device
JP7307949B2 (en) Geothermal heat utilization equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911