WO2016047630A1 - Container-type compressed air storage power generation device - Google Patents

Container-type compressed air storage power generation device Download PDF

Info

Publication number
WO2016047630A1
WO2016047630A1 PCT/JP2015/076771 JP2015076771W WO2016047630A1 WO 2016047630 A1 WO2016047630 A1 WO 2016047630A1 JP 2015076771 W JP2015076771 W JP 2015076771W WO 2016047630 A1 WO2016047630 A1 WO 2016047630A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
heat storage
heat
tank
compressed air
Prior art date
Application number
PCT/JP2015/076771
Other languages
French (fr)
Japanese (ja)
Inventor
佳直美 坂本
浩樹 猿田
松隈 正樹
正剛 戸島
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015001043A external-priority patent/JP6452450B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201580051965.6A priority Critical patent/CN106715869B/en
Priority to US15/508,301 priority patent/US10145334B2/en
Priority to EP15843216.1A priority patent/EP3199780B1/en
Publication of WO2016047630A1 publication Critical patent/WO2016047630A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a compressed air storage power generator.
  • CAES Compressed Air Storage
  • An ordinary CAES power generator emits compression heat during storage of compressed air, resulting in energy loss.
  • Adiabatic-compressed-air-energy storage (ACAES) power generators have prevented this and improved system efficiency.
  • the ACAES generator collects and stores compression heat and prevents the release of compression heat during storage of compressed air. And the system efficiency is improved by returning the stored heat to the compressed air when the expander is driven.
  • Patent Document 1 discloses an ACAES power generator that stores compression heat in a thermal energy storage (TES) system.
  • TES thermal energy storage
  • CAES power generation devices including those disclosed in Patent Document 1 are all assembled on-site as a compressor, a generator, a tank, and the like. Therefore, transportation is complicated and time and cost are required for construction.
  • This invention makes it a subject to provide the CAES power generator which makes conveyance and field construction easy.
  • the present invention relates to a compressor that compresses air, a tank that stores air compressed by the compressor, a generator that is driven by the air supplied from the tank, and a control device that drives and controls the compressor and the generator.
  • a container-type compressed air storage power generation apparatus including a container, storing at least one of a compressor and a generator in the container, and providing a tank outside the container. Moreover, the container type compressed air storage power generation apparatus may store both the compressor and the generator in the container.
  • this container type compressed air storage power generation device transportation and on-site construction can be facilitated by storing equipment necessary for the CAES power generation device in a container. Furthermore, by separating the compressed air storage tank whose required capacity changes depending on the power generation time from the outside of the container, it is not necessary to change the design of the power generation unit due to the short required power generation time, and it is economical because the same package can be used. .
  • the container of the container-type compressed air storage power generation device includes a first container that stores the compressor and a second container that stores the generator. Moreover, the 1st heat exchanger may be accommodated in the 1st container, and the 2nd heat exchanger may be accommodated in the 2nd container.
  • the container can be reduced in size by dividing the container into a portion having a compression function and a portion having a power generation function. This downsizing further facilitates conveyance and expands the degree of freedom of layout for installing containers.
  • the container-type compressed air storage power generator includes a first heat exchanger that heats a heat storage fluid by exchanging heat between the air that is compressed and heated by the compressor and supplied to the tank and the heat storage fluid, and a generator from the tank.
  • a second heat exchanger that heats the air by exchanging heat between the air supplied to the heat storage fluid and the heat storage fluid, and can store the heat storage fluid, and is fluidly connected to the first heat exchanger and the second heat exchanger.
  • a first heat exchanger is housed in the container housing the compressor, the second heat exchanger is housed in the container housing the generator, and the container is disposed outside the container housing the compressor. It is preferable to provide a heat storage part outside the container that houses the generator.
  • this container type compressed air storage power generation device transportation and on-site construction can be facilitated by storing the facilities necessary for the ACAES power generation device in the container.
  • the heat storage unit whose required capacity changes depending on the power generation time from the outside of the container, it is not necessary to change the design of the power generation device due to the short required power generation time, and it is economical because the same package can be used.
  • the heat storage section of the container-type compressed air storage power generator is fluidly connected to store the heated heat storage fluid heated by the first heat exchanger and supply the heated heat storage fluid to the second heat exchanger.
  • First heat storage tank and a second heat storage tank fluidly connected to store the heat storage fluid that has been recovered by the second heat exchanger and lowered in temperature and to supply the temperature-reduced heat storage fluid to the first heat exchanger It is preferable to comprise.
  • the heat storage fluid can be stored at different temperatures, and the first heat exchanger and the second heat exchange The heat exchange efficiency in the vessel can be improved.
  • This container-type compressed air storage power generator preferably further includes a heat storage container for storing the heat storage section.
  • this container type compressed air storage power generation device it is possible to prevent heat loss due to heat dissipation by further providing a heat storage container for storing the heat storage section, and to facilitate transportation and field construction.
  • the container-type compressed air storage power generation apparatus further includes a heat storage container for storing the heat storage unit, and the heat storage container includes a partition inside to store the first heat storage tank and the second heat storage tank separately. preferable.
  • the heat storage container includes a partition inside, whereby the first heat storage tank and the second heat storage tank can be stored separately, and heat loss due to heat radiation can be prevented.
  • the container-type compressed air storage power generation apparatus further includes a heat storage container for storing a heat storage unit, and the heat storage container includes a third container for storing a first heat storage tank, and a fourth container for storing a second heat storage tank; It is preferable to provide.
  • the heat storage container includes the third container and the fourth container, so that the first heat storage tank and the second heat storage tank can be stored separately, and heat loss due to heat radiation can be prevented. .
  • the heat storage container that houses the heat storage section of the container-type compressed air storage power generator is a heat insulating container in which a heat insulating material is provided inside the heat storage container.
  • heat loss due to heat radiation can be prevented by providing a heat insulating material inside the heat storage container.
  • the first heat exchanger is installed so as to overlap with the compressor on the lower side
  • the second heat exchanger is installed so as to overlap with the generator on the lower side
  • This container-type compressed air storage power generator can effectively use a limited space in the container and can prevent an increase in the container size. Further, by installing the compressor and the generator on the first and second heat exchangers, the air pipe (air supply pipe) can be shortened, and heat loss and pressure loss can be reduced.
  • transportation and on-site construction can be facilitated by storing at least one of the compressor and generator of the CAES power generator in a container.
  • FIG. 1 is a schematic plan view of a container type CAES power generator according to a first embodiment of the present invention.
  • 1 is a schematic front view of a container-type CAES power generator according to a first embodiment of the present invention.
  • 1 is a schematic side view of a container-type CAES power generator according to a first embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing a connection configuration of each unit in FIGS. 1A to 1C.
  • FIG. 3 is a schematic configuration diagram illustrating a connection configuration of each unit illustrated in FIGS. 3A to 3C.
  • the side view which shows the layout of a compressor and a 1st heat exchanger.
  • the front view which shows the layout of a compressor and a 1st heat exchanger.
  • mold CAES electric power generating apparatus which concerns on 3rd Embodiment of this invention.
  • FIG. 8 is a schematic configuration diagram showing a connection configuration of each unit in FIGS. 7A to 7C.
  • the schematic block diagram which shows the connection structure of each part of the container type
  • the schematic block diagram which shows the connection structure of each part of the container type
  • the container-type CAES power generator 2 is a container in which CAES power generation equipment is stored in a container 4.
  • the container-type CAES power generator 2 is used for smoothing or peak-cutting fluctuating power, or for storing electricity.
  • FIGS. 1A to 1C and 2 the container-type CAES power generator 2 of the present embodiment will be described.
  • the container-type CAES power generation device 2 includes a CAES power generation facility and a container 4.
  • the CAES power generation facility includes three compressors 5a to 5c, a tank 8, three generators 9a to 9c, and a control device 12.
  • compressors 5a to 5c, generators 9a to 9c, and a controller 12 are arranged in one container 4, and a tank 8 is arranged outside the container 4. Yes.
  • the compressors 5a to 5c, the generators 9a to 9c, and the tank 8 are connected via an air supply pipe 14 (see FIG. 2).
  • the compressor 5a to 5c, the generators 9a to 9c, and the control device 12 are arranged in a line in the container 4 in order from the left side in FIGS. 1A and 1B.
  • the compressors 5a to 5c include compressor main body portions 6a to 6c and motors 16a to 16c mechanically connected to the compressor main body portions 6a to 6c.
  • the motors 16a to 16c are driven by power supplied from a power source (not shown). When the motors 16a to 16c are driven, the compressor main bodies 6a to 6c suck and compress the surrounding air.
  • the compressors 5a to 5c are connected to the tank 8 through the air supply pipe 14, and the air compressed by the compressors 5a to 5c is supplied to the tank 8 through the air supply pipe 14.
  • Valves 18a to 18c are provided in the air supply pipe 14 between the compressors 5a to 5c and the tank 8.
  • One valve 18a to 18c is provided for each of the compressors 5a to 5c, and it is possible to change which compressor 5a to 5c supplies the compressed air to the tank 8. Further, the number of the compressors 5a to 5c to be used may be adjusted by the valves 18a to 18c, and the amount of compressed air supplied to the tank 8 may be adjusted.
  • the tank 8 stores the air compressed by the compressors 5a to 5c.
  • the size and number of tanks 8 to be used are twelve tanks 8 of the same size in this embodiment. However, the size and number of tanks 8 can be changed according to necessary power and power generation time. It is not limited.
  • the tank 8 is connected to the generators 9a to 9c via the air supply pipe 14, and the compressed air stored in the tank 8 is supplied to the generators 9a to 9c through the air supply pipe 14.
  • the generators 9a to 9c are provided with expanders 20a to 20c mechanically connected to the generator main bodies 10a to 10c.
  • the expanders 20a to 20c are driven by compressed air supplied from the tank 8. When the expanders 20a to 20c are driven, the generators 9a to 9c generate electric power, respectively.
  • the generators 9a to 9c are connected to an external system (not shown) and can supply generated power.
  • Valves 18d to 18f are provided in the air supply pipe 14 between the tank 8 and the generators 9a to 9c.
  • one valve 18d to 18f is provided for each generator 9a to 9c. Accordingly, it is possible to change which generator 9a to 9c the compressed air is supplied from the tank 8. As described above, the number of generators 9a to 9c to be used may be adjusted by the valves 18d to 18f to adjust the amount of power to be generated.
  • the air supply pipe 14 connects the tank 8 outside the container 4 to the compressors 5a to 5c and the generators 9a to 9c in the container 4.
  • the piping outside the container 4 can be reduced, but the excess space in the container 4 can be reduced. Squeeze.
  • a two-dot chain line 4B when the air supply pipe 14 is taken out of the container 4 and then merged outside the container 4, there are many pipes outside the container 4, but inside the container 4 Extra space can be secured. Therefore, the configuration may be changed in consideration of the processing of the piping of the air supply pipe 14 and the necessity of extra space in the container 4.
  • the control device 12 includes a control panel 22, an inverter 24, a reactor 26, and a converter 28. As a result, each part of the container-type CAES power generator 2 can be electrically connected. However, the converter 28 may be omitted depending on the output method.
  • the control device 12 is also electrically connected to the compressors 5a to 5c, the generators 9a to 9c, and the valves 18a to 18f, and controls their operations. For example, the control device 12 performs smoothing control of the variable power. In this case, when the fluctuating power from a power source (not shown) is larger than a predetermined value, the valves 18a to 18c are opened to drive the compressors 5a to 5c, and the compressed air is stored in the tank 8 and stored.
  • the valves 18a to 18c are opened, and the generators 9a to 9c are driven by compressed air from the tank 8 to generate power.
  • the predetermined value used here may determine a necessary power value based on past power demand data.
  • the control device 12 can drive and control the compressors 5a to 5c, the generators 9a to 9c, and the valves 18a to 18f to smooth the fluctuating power.
  • the control device 12 may be used not only for smoothing control of variable power but also for peak cut as described above.
  • the container 4 of the present embodiment is a container having a length of 40 feet used for various types of general cargo transportation.
  • the type and size of the container 4 are not limited to this, and other commonly used containers such as a container having a length of 20 feet may be used.
  • the CAES power generation equipment is stored in the container 4, so that transportation and on-site construction can be facilitated. Furthermore, by disposing the tank 8 whose required capacity changes depending on the power generation time outside the container 4, it is not necessary to change the design of the CAES power generation equipment due to the short required power generation time, and the same package (compressors 5a to 5c, generator Since 9a to 9c and the control device 12) can be used, it is economical. Moreover, since it is a container type, a plurality of units can be used side by side, and it is easy to increase the capacity by expansion. Furthermore, it can be installed outdoors. Further, a side open container may be used as the container 4 to facilitate maintenance.
  • both the compressors 5a to 5c and the generators 9a to 9c are arranged in the container 4, but only one of them may be arranged in the container 4.
  • the control device 12 may also be disposed outside the container 4.
  • FIG. 4 show a container-type CAES power generator 2 according to a second embodiment of the present invention.
  • the container-type CAES power generator 2 according to the present embodiment has the same configuration as that shown in FIG. To C and the first embodiment of FIG. Accordingly, the same components as those shown in FIGS. 1A to 1C and FIG.
  • the container-type CAES power generator 2 of the second embodiment includes first heat exchangers 30a to 30c and second heat exchangers 32a to 32c in the container, and the container 4 Heat storage tanks 33a and 33b are provided outside.
  • the first heat exchangers 30a to 30c, the second heat exchangers 32a to 32c, and the heat storage tanks 33a and 33b are connected via a heat storage fluid supply pipe 34 (see FIG. 4).
  • the first heat exchangers 30a to 30c (compressors 5a to 5c) and the second heat exchangers 32a to 32c (generators 9a to 9c) are sequentially arranged from the left side in FIGS. 3A and 3B.
  • the control device 12 are generally arranged in a line.
  • the heat storage fluid flows inside the heat storage fluid supply pipe 34.
  • the heat storage fluid supply pipe 34 is provided with pumps 36a to 36f for causing the heat storage fluid to flow.
  • the heat storage fluid circulates and flows between the first heat exchangers 30a to 30c, the second heat exchangers 32a to 32c, and the heat storage tanks 33a and 33b by the pressure from the pumps 36a to 36f.
  • the first heat exchangers 30a to 30c are provided one for each of the compressors 5a to 5c.
  • the first heat exchangers 30a to 30c exchange heat between the air flowing through the air supply pipe 14 between the compressors 5a to 5c and the tank 8 and the heat storage fluid flowing through the heat storage fluid supply pipe 34. Specifically, heat is recovered from the air compressed by the compressors 5a to 5c and added with heat of compression at that time, and the heat storage fluid is heated by this heat.
  • the heated heat storage fluid is supplied to the first heat storage tank 33 a through the heat storage fluid supply pipe 34.
  • the first heat storage tank 33a stores the heat storage fluid heated by the first heat exchangers 30a to 30c and heated. It is preferable that the 1st heat storage tank 33a is formed from the heat insulation member so that the heat
  • the heated heat storage fluid stored in the first heat storage tank 33a is supplied to the second heat exchangers 32a to 32c through the heat storage fluid supply pipe.
  • One second heat exchanger 32a to 32c is provided for each of the generators 9a to 9c.
  • the second heat exchangers 32a to 32c exchange heat between the heated heat storage fluid flowing through the heat storage fluid supply pipe 34 and the compressed air flowing through the air supply pipe 14 between the tank 8 and the generators 9a to 9c. .
  • heat is recovered from the heated heat storage fluid, and the compressed air is heated with this heat.
  • the heated and heated compressed air is supplied to the generators 9a to 9c through the air supply pipe.
  • the heat storage fluid that has been heat-recovered and cooled by the second heat exchangers 32a to 32c is supplied to the second heat storage tank 33b through the heat storage fluid supply pipe.
  • the second heat storage tank 33b stores the heat storage fluid that has been heat-recovered and lowered in temperature by the second heat exchangers 32a to 32c.
  • the second heat storage tank 33b is preferably formed of a heat insulating member so as not to release the heat of the stored heat storage fluid to the outside.
  • the heat storage fluid stored in the second heat storage tank 33b is supplied to the first heat exchangers 30a to 30c through the heat storage fluid supply pipe.
  • the heat storage fluid is heated by the first heat exchangers 30a to 30c, stored in the first heat storage tank 33a, cooled by the second heat exchangers 32a to 32c, and stored in the second heat storage tank 33b. It returns to the 1st heat exchangers 30a-30c, is heated, and this is repeated.
  • the piping inside and outside the container 4 of the heat storage fluid supply pipe 34 is the same as the air supply pipe 14.
  • the heat storage fluid supply pipe 34 connects the heat storage tanks 33 a and 33 b outside the container 4 to the first heat exchangers 30 a to 30 c and the second heat exchangers 32 a to 32 c in the container 4.
  • the piping outside the container 4 can be reduced, but the excess space in the container 4 can be reduced. Squeeze.
  • pumps 36a to 36f are provided in the container 4 as shown in FIG. By doing in this way, conveyance and construction become easy.
  • the pumps 36a to 36f are not necessarily provided inside the container 4, and may be provided outside the container 4 as shown in FIG. In this way, it is easy to secure a surplus space in the container 4.
  • the number of pumps can be reduced by providing the pumps at positions where the heat storage fluid supply pipes 34 are joined together.
  • the heat storage tanks 33a and 33b whose required capacity changes depending on the power generation time are arranged outside the container 4, so that the design change of the CAES power generation facility due to the short required power generation time is unnecessary. Can be. Therefore, the same package can be used and it is economical.
  • the layout of the first heat exchangers 30a to 30c will be described.
  • 6A and 6B are a front view and a side view showing a layout of the first heat exchangers 30a to 30c and the compressors 5a to 5c.
  • the compressors 5a to 5c used in the present embodiment are of a two-stage type, and have a low-pressure stage compression unit 38 and a high-pressure stage compression unit 40.
  • the first heat exchangers 30a to 30c are an intercooler that recovers and cools the first stage compression heat generated by the low pressure stage compression unit 38 with respect to the compressed air, and a second stage compression heat generated by the high pressure stage compression unit 40. It serves as an aftercooler that recovers and cools the heat.
  • the compressors 5a to 5c are not limited to the two-stage type, and may be a three-stage type or a single-stage type.
  • the layout of the second heat exchangers 32a to 32c is the same as that of the first heat exchangers 30a to 30c. 6A and 6B, the first heat exchangers 30a to 30c are replaced with the second heat exchangers 32a to 32c, and the compressors 5a to 5c are replaced with the generators 9a to 9c.
  • the second heat exchangers 32a to 32c serve as a heater for the compressed air. That is, it functions as a preheater that supplies heat before the first stage expansion by the high-pressure stage compression unit 40 and an interheater that supplies heat before the second stage expansion by the low-pressure stage expansion unit 38.
  • the first heat exchangers 30a to 30c (second heat exchangers 32a to 32c) are arranged below the compressors 5a to 5c (generators 9a to 9c). Has been. Therefore, by arranging in such a manner, the space can be effectively used without occupying a large installation area in the container 4. Further, the compressors 5a to 5c and the first heat exchangers 30a to 30c or the generators 9a to 9c and the second heat exchangers 32a to 32c are arranged in close proximity to each other, so that the air supply pipe 14 that connects them is provided. Since the length can be shortened, the pressure loss and heat loss of the compressed air flowing inside can be reduced.
  • the compressors 5 a to 5 c (or the generators 9 a to 9 c) generate heat, so that the temperature in the container 4 rises and the electronic equipment such as the control device 12 becomes hot. There is a risk of exposure.
  • heat recovery is performed using the ACAES power generation facility, an increase in temperature in the container 4 can be suppressed, so that electronic devices such as the control device 12 can be protected from damage due to heat.
  • a total heat recovery type ACAES power generation facility that recovers all generated heat proposed by the applicant of this application in Japanese Patent Application No. 2014-172836 is used, there is almost no heat dissipation in the container 4, Ventilation fans and air conditioning equipment are not required. Therefore, it is only necessary to provide a vent hole through which air can enter and exit.
  • FIG. 7A to C and FIG. 8 show a container type CAES power generator 2 according to a third embodiment of the present invention.
  • the container-type CAES power generation apparatus 2 of the present embodiment is the same as the second embodiment of FIGS. 3A to 3C and FIG. 4 except for the portion related to the container 4 (the first container 4a and the second container 4b). Therefore, the same components as those shown in FIGS. 3A to 3C and FIG.
  • the container-type CAES power generator 2 of the present embodiment includes a first container 4a and a second container 4b.
  • the first container 4a and the second container 4b are containers having a length of 20 feet used for various types of general cargo transportation.
  • the size of the first container 4a and the second container 4b is not limited to this, and other commonly used containers such as a container having a length of 40 feet may be used.
  • Equipment related to the compression function includes the compressors 5a to 5c, the first heat exchangers 30a to 30c, and the control device 12a for controlling them.
  • Equipment related to the power generation function includes generators 9a to 9c, second heat exchangers 32a to 32c, and a control device 12b for controlling them.
  • the piping inside and outside the first container 4a and the second container 4b of the air supply pipe 14 and the heat storage fluid supply pipe 34 is the same as in the second embodiment. That is, the air supply pipe 14 may merge within the first container 4a and the second container 4b (see the dashed line 4A in FIG. 8), or may merge outside the first container 4a and the second container 4b. Good (see two-dot chain line 4B in FIG. 8). The same applies to the heat storage fluid supply pipe 34.
  • the pumps 36a to 36f are also arranged in the first container 4a and the second container 4b in FIG. 8, but may be arranged outside the first container 4a and the second container 4b as in the second embodiment. The same applies (see FIGS. 4 and 5).
  • each container 4a, 4b can be reduced in size by including the first container 4a having a compression function and the second container 4b having a power generation function. This downsizing further facilitates the conveyance and expands the degree of freedom of layout for installing the containers 4a and 4b.
  • FIG. 9 shows a container-type CAES power generator 2 according to a fourth embodiment of the present invention.
  • the container-type CAES power generator 2 of this embodiment is the same as that of 2nd Embodiment of FIG. 5 except the part regarding the container 41 for thermal storage. Accordingly, parts similar to those in the configuration shown in FIG.
  • the container type CAES power generator 2 of the present embodiment includes a heat storage container 41.
  • the heat storage container 41 houses a first heat storage tank 33a and a second heat storage tank 33b.
  • the size and configuration may be changed according to the piping of the heat storage fluid supply pipe 34 as in the containers 4A and 4B in FIG.
  • the heat storage fluid supply pipe 34 may be merged in the heat storage container 41 and then taken out of the heat storage container 41.
  • the heat storage fluid supply pipe 34 may be taken out of the heat storage container 41 and then merged outside the heat storage container 41. Therefore, the size and configuration may be changed in consideration of the processing of the piping of the heat storage fluid supply pipe 34 and the need for the extra space in the heat storage container 41.
  • the heat storage container 41 is a heat insulating container (also referred to as a thermal container) provided with a heat insulating material on the inside, and includes a partition 42 inside so as to store the first heat storage tank 33a and the second heat storage tank 33b separately. Since the first heat storage tank 33a and the second heat storage tank 33b have different temperatures of the heat storage fluid stored inside, the space can be divided by providing the partition 42, and heat loss due to heat radiation can be prevented. By configuring the partition 42 with a heat insulating material, heat loss can be further prevented.
  • the pumps 36 a to 36 f are provided in the heat storage container 41.
  • the pumps 36a to 36f are not necessarily provided in the heat storage container 41, and may be provided in the container 4 as shown in FIG. Preferably, it is preferable to arrange in one of the containers 4 and 41 for easier enforcement.
  • FIG. 10 shows a container-type CAES power generator 2 according to a fifth embodiment of the present invention.
  • the container-type CAES power generation device 2 of the present embodiment is the same as the fourth embodiment of FIG. 9 except for the portion related to the heat storage container 41 (the third container 41a and the fourth container 41b). Therefore, the same parts as those shown in FIG.
  • the container type CAES power generator 2 of the present embodiment includes a heat storage container 41.
  • the heat storage container 41 includes a third container 41a and a fourth container 41b.
  • the third container 41a houses the first heat storage tank 33a.
  • the fourth container 41b houses the second heat storage tank 33b.
  • the piping inside and outside the third container 41a and the fourth container 41b of the heat storage fluid supply pipe 34 is the same as in the fourth embodiment. That is, the heat storage fluid supply pipe 34 may merge within the third container 41a and the fourth container 41b (see the two-dot chain line 41B in FIG. 10), or merge outside the third container 41a and the fourth container 41b. (See the alternate long and short dash line 41A in FIG. 10).
  • the pumps 36a to 36f are also arranged in the heat storage container 41 in FIG. 10, but may be arranged outside the heat storage container 41 as in the second embodiment.
  • the 3rd container 41a and the 4th container 41b are heat insulation containers which provided the heat insulating material inside. Since the first heat storage tank 33a and the second heat storage tank 33b are different in temperature of the heat storage fluid stored therein, dividing the space like the third container 41a and the fourth container 41b, heat loss due to heat radiation Can be prevented. Moreover, each container 41a, 41b can be reduced in size by providing the 3rd container 41a which accommodates the 1st heat storage tank 33a, and the 4th container 41b which accommodates the 2nd heat storage tank 33b. This downsizing further facilitates the conveyance and expands the degree of freedom of layout for installing the containers 41a and 41b.
  • the compressors 5a to 5c and the generators 9a to 9c are equal in number. However, the number and capacity of the compressors 5a to 5c and the generators 9a to 9c do not need to be equalized, and the compressors 5a to 5c are made smaller (or less) and the generators 9a to 9c are made larger (or more). It is possible, and vice versa.
  • the number of first containers 4a having a compression function and the number of second containers 4b having a power generation function may be changed.
  • the tank 8 is installed adjacent to the outside of the container.
  • the tank is not limited to this mode, and may be buried underground, or a mine shaft or underground cavity may be used as the tank.
  • Container type compressed air storage generator (container type CAES generator) 4, 4A, 4B Container 4a 1st container 4b 2nd container 5a, 5b, 5c Compressor 6a, 6b, 6c Compressor body 8 Tank 9a, 9b, 9c Generator 10a, 10b, 10c Generator body 12, 12a, 12b Control device 14 Air supply pipe 16a, 16b, 16c Motor 18a, 18b, 18c, 18d, 18e, 18f Valve 20a, 20b, 20c Expander 22 Control panel 24 Inverter 26 Reactor 28 Converter 30a, 30b, 30c 1st Heat exchangers 32a, 32b, 32c Second heat exchanger 33a First heat storage tank 33b Second heat storage tank 34 Heat storage fluid supply pipe 36a, 36b, 36c, 36d, 36e, 36f Pump 38 Low pressure stage compression section 40 High pressure stage compression section 41 Heat storage container 41a Third container 1b fourth container 42 partition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A container-type compressed air storage power generation device (2) comprises compressors (5a-5c); a tank (8); power generators (9a-9c); a control device (12); and a container (4). The compressors (5a-5c) compress air. The tank (8) is driven by air supplied from the compressors (5a-5c). The power generators (9a-9c) are driven by air supplied from the tank (8). The control device drives and controls the compressors (5a-5c) and the power generators (9a-9c). The container (4) houses the compressors (5a-5c) and the power generators (9a-9c), and the tank (8) is disposed outside the container (4). Therefore, the container-type compressed air storage power generation device (2) is easy to transport and construct on-site.

Description

コンテナ型圧縮空気貯蔵発電装置Container type compressed air storage power generator
 本発明は、圧縮空気貯蔵発電装置に関する。 The present invention relates to a compressed air storage power generator.
 圧縮空気貯蔵(CAES:Compressed Air Energy Storage)発電装置は、電力プラントのオフピーク時間中に電気エネルギーを圧縮空気として貯蔵し、高電力需要時間中に貯蔵した圧縮空気により発電機を作動させて電気エネルギーを生成する。 Compressed Air Storage (CAES) power generators store electrical energy as compressed air during off-peak hours of the power plant and operate the generator with compressed air stored during high power demand times to generate electrical energy. Is generated.
 通常のCAES発電装置は、圧縮空気の貯蔵中に圧縮熱を放出するため、エネルギー損失が生じる。これを防止してシステム効率を改善したのが断熱圧縮空気貯蔵(ACAES:Adiabatic Compressed Air Energy Storage)発電装置である。ACAES発電装置は、圧縮熱を回収及び貯蔵し、圧縮空気の貯蔵中の圧縮熱の放出を防止する。そして、貯蔵した熱を、膨張機を駆動する際の圧縮空気に戻すことでシステム効率を改善している。 An ordinary CAES power generator emits compression heat during storage of compressed air, resulting in energy loss. Adiabatic-compressed-air-energy storage (ACAES) power generators have prevented this and improved system efficiency. The ACAES generator collects and stores compression heat and prevents the release of compression heat during storage of compressed air. And the system efficiency is improved by returning the stored heat to the compressed air when the expander is driven.
 このようなACAES発電装置が、例えば、特許文献1に開示されている。 Such an ACAES power generator is disclosed in Patent Document 1, for example.
 特許文献1には、圧縮熱を熱エネルギー貯蔵(TES:Thermal Energy Storage)システムに保存する、ACAES発電装置が開示されている。 Patent Document 1 discloses an ACAES power generator that stores compression heat in a thermal energy storage (TES) system.
 特許文献1に開示されたものを含む従来のCAES発電装置は、圧縮機、発電機、及びタンクなどを全て現地組み立てするため、運搬が煩雑で施工に時間と費用がかかる。 Conventional CAES power generation devices including those disclosed in Patent Document 1 are all assembled on-site as a compressor, a generator, a tank, and the like. Therefore, transportation is complicated and time and cost are required for construction.
特表2013-512410号公報Special table 2013-512410 gazette
 本発明は、運搬及び現地施工を容易にするCAES発電装置を提供することを課題とする。 This invention makes it a subject to provide the CAES power generator which makes conveyance and field construction easy.
 本発明は、空気を圧縮する圧縮機と、圧縮機により圧縮された空気を貯蔵するタンクと、タンクから供給される空気によって駆動する発電機と、圧縮機及び発電機を駆動制御する制御装置と、コンテナとを備え、このコンテナ内に圧縮機及び発電機のうちの少なくとも一方を収納し、このコンテナ外にタンクを設けている、コンテナ型圧縮空気貯蔵発電装置を提供する。また、コンテナ型圧縮空気貯蔵発電装置は、コンテナ内に圧縮機及び発電機の両方を収納してもよい。 The present invention relates to a compressor that compresses air, a tank that stores air compressed by the compressor, a generator that is driven by the air supplied from the tank, and a control device that drives and controls the compressor and the generator. A container-type compressed air storage power generation apparatus including a container, storing at least one of a compressor and a generator in the container, and providing a tank outside the container. Moreover, the container type compressed air storage power generation apparatus may store both the compressor and the generator in the container.
 このコンテナ型圧縮空気貯蔵発電装置によれば、CAES発電装置に必要な設備をコンテナに収納する事で、運搬及び現地施工を容易にできる。さらに、発電時間によって必要容量が変わる圧縮空気貯蔵タンクをコンテナの外部に分離する事で、必要発電時間の短長による発電装置部分の設計変更が不要となり、同じパッケージを使用できるため経済的である。 According to this container type compressed air storage power generation device, transportation and on-site construction can be facilitated by storing equipment necessary for the CAES power generation device in a container. Furthermore, by separating the compressed air storage tank whose required capacity changes depending on the power generation time from the outside of the container, it is not necessary to change the design of the power generation unit due to the short required power generation time, and it is economical because the same package can be used. .
 このコンテナ型圧縮空気貯蔵発電装置のコンテナは、圧縮機を収納する第1コンテナと、発電機を収納する第2コンテナとを備えることが好ましい。また、第1コンテナ内に第1熱交換器が収納され、第2コンテナ内に第2熱交換器が収納されていてもよい。 It is preferable that the container of the container-type compressed air storage power generation device includes a first container that stores the compressor and a second container that stores the generator. Moreover, the 1st heat exchanger may be accommodated in the 1st container, and the 2nd heat exchanger may be accommodated in the 2nd container.
 このコンテナ型圧縮空気貯蔵発電装置によれば、圧縮機能を有する部分と発電機能を有する部分にコンテナを分割することで、コンテナを小型化できる。この小型化により搬送がさらに容易になるとともに、コンテナを設置するレイアウトの自由度を拡張できる。 According to this container type compressed air storage power generation device, the container can be reduced in size by dividing the container into a portion having a compression function and a portion having a power generation function. This downsizing further facilitates conveyance and expands the degree of freedom of layout for installing containers.
 このコンテナ型圧縮空気貯蔵発電装置は、圧縮機で圧縮及び昇温されてタンクに供給される空気と蓄熱流体とで熱交換して蓄熱流体を加熱する第1熱交換器と、タンクから発電機へ供給される空気と蓄熱流体とで熱交換して当該空気を加熱する第2熱交換器と、蓄熱流体を貯蔵可能であり、第1熱交換器及び第2熱交換器と流体接続されている蓄熱部とをさらに備え、圧縮機を収納するコンテナ内に第1熱交換器を収納し、発電機を収納するコンテナ内に第2熱交換器を収納し、圧縮機を収納するコンテナ外かつ発電機を収納するコンテナ外に蓄熱部を設けていることが好ましい。 The container-type compressed air storage power generator includes a first heat exchanger that heats a heat storage fluid by exchanging heat between the air that is compressed and heated by the compressor and supplied to the tank and the heat storage fluid, and a generator from the tank. A second heat exchanger that heats the air by exchanging heat between the air supplied to the heat storage fluid and the heat storage fluid, and can store the heat storage fluid, and is fluidly connected to the first heat exchanger and the second heat exchanger. A first heat exchanger is housed in the container housing the compressor, the second heat exchanger is housed in the container housing the generator, and the container is disposed outside the container housing the compressor. It is preferable to provide a heat storage part outside the container that houses the generator.
 このコンテナ型圧縮空気貯蔵発電装置によれば、ACAES発電装置に必要な設備をコンテナに収納する事で、運搬及び現地施工を容易にできる。また、発電時間によって必要容量が変わる蓄熱部をコンテナの外部に分離することで、必要発電時間の短長による発電装置部分の設計変更が不要となり、同じパッケージを使用できるため経済的である。 According to this container type compressed air storage power generation device, transportation and on-site construction can be facilitated by storing the facilities necessary for the ACAES power generation device in the container. In addition, by separating the heat storage unit whose required capacity changes depending on the power generation time from the outside of the container, it is not necessary to change the design of the power generation device due to the short required power generation time, and it is economical because the same package can be used.
 このコンテナ型圧縮空気貯蔵発電装置の蓄熱部は、第1熱交換器で加熱され、昇温した蓄熱流体を貯蔵し、昇温した蓄熱流体を第2熱交換器に供給するよう流体的に接続された第1蓄熱タンクと、第2熱交換器で熱回収され、降温した蓄熱流体を貯蔵し、降温した蓄熱流体を第1熱交換器に供給するよう流体的に接続された第2蓄熱タンクとを備えることが好ましい。 The heat storage section of the container-type compressed air storage power generator is fluidly connected to store the heated heat storage fluid heated by the first heat exchanger and supply the heated heat storage fluid to the second heat exchanger. First heat storage tank and a second heat storage tank fluidly connected to store the heat storage fluid that has been recovered by the second heat exchanger and lowered in temperature and to supply the temperature-reduced heat storage fluid to the first heat exchanger It is preferable to comprise.
 このコンテナ型圧縮空気貯蔵発電装置によれば、第1蓄熱タンク及び第2蓄熱タンクの2つの蓄熱タンクを備えることで、蓄熱流体を異なる温度で貯蔵でき、第1熱交換器及び第2熱交換器における熱交換効率を向上できる。 According to this container type compressed air storage power generation device, by providing the two heat storage tanks of the first heat storage tank and the second heat storage tank, the heat storage fluid can be stored at different temperatures, and the first heat exchanger and the second heat exchange The heat exchange efficiency in the vessel can be improved.
 このコンテナ型圧縮空気貯蔵発電装置は、蓄熱部を収納する蓄熱用コンテナをさらに備えることが好ましい。 This container-type compressed air storage power generator preferably further includes a heat storage container for storing the heat storage section.
 このコンテナ型圧縮空気貯蔵発電装置によれば、蓄熱部を収納する蓄熱用コンテナをさらに備えることで放熱による熱損失を防止できるとともに、運搬及び現地施工が容易になる。 According to this container type compressed air storage power generation device, it is possible to prevent heat loss due to heat dissipation by further providing a heat storage container for storing the heat storage section, and to facilitate transportation and field construction.
 このコンテナ型圧縮空気貯蔵発電装置は、蓄熱部を収納する蓄熱用コンテナをさらに備え、この蓄熱用コンテナは、第1蓄熱タンク及び第2蓄熱タンクを分けて収納するよう内部に仕切りを備えることが好ましい。 The container-type compressed air storage power generation apparatus further includes a heat storage container for storing the heat storage unit, and the heat storage container includes a partition inside to store the first heat storage tank and the second heat storage tank separately. preferable.
 このコンテナ型圧縮空気貯蔵発電装置によれば、蓄熱用コンテナが内部に仕切りを備えることで、第1蓄熱タンク及び第2蓄熱タンクを分けて収納でき、放熱による熱損失を防止できる。 According to this container-type compressed air storage power generator, the heat storage container includes a partition inside, whereby the first heat storage tank and the second heat storage tank can be stored separately, and heat loss due to heat radiation can be prevented.
 このコンテナ型圧縮空気貯蔵発電装置は、蓄熱部を収納する蓄熱用コンテナをさらに備え、蓄熱用コンテナは、第1蓄熱タンクを収納する第3コンテナと、第2蓄熱タンクを収納する第4コンテナとを備えることが好ましい。 The container-type compressed air storage power generation apparatus further includes a heat storage container for storing a heat storage unit, and the heat storage container includes a third container for storing a first heat storage tank, and a fourth container for storing a second heat storage tank; It is preferable to provide.
 このコンテナ型圧縮空気貯蔵発電装置によれば、蓄熱用コンテナが第3コンテナ及び第4コンテナを備えることで、第1蓄熱タンク及び第2蓄熱タンクを分けて収納でき、放熱による熱損失を防止できる。 According to this container type compressed air storage power generation apparatus, the heat storage container includes the third container and the fourth container, so that the first heat storage tank and the second heat storage tank can be stored separately, and heat loss due to heat radiation can be prevented. .
 このコンテナ型圧縮空気貯蔵発電装置の蓄熱部を収納する蓄熱用コンテナは、蓄熱用コンテナの内側に断熱材を設けた断熱コンテナであることが好ましい。 It is preferable that the heat storage container that houses the heat storage section of the container-type compressed air storage power generator is a heat insulating container in which a heat insulating material is provided inside the heat storage container.
 このコンテナ型圧縮空気貯蔵発電装置によれば、蓄熱用コンテナの内側に断熱材を設けることで、放熱による熱損失を防止できる。 According to this container-type compressed air storage power generator, heat loss due to heat radiation can be prevented by providing a heat insulating material inside the heat storage container.
 このコンテナ型圧縮空気貯蔵発電装置は、第1熱交換器を圧縮機と下方側で重なるように設置し、第2熱交換器を発電機と下方側で重なるように設置することが好ましい。 In this container-type compressed air storage power generation device, it is preferable that the first heat exchanger is installed so as to overlap with the compressor on the lower side, and the second heat exchanger is installed so as to overlap with the generator on the lower side.
 このコンテナ型圧縮空気貯蔵発電装置によれば、コンテナ内の限られた空間を有効利用でき、コンテナサイズの増大を防止できる。また、第1及び第2熱交換器に圧縮機と発電機をそれぞれ重ねて設置することで空気配管(空気供給管)を短縮でき、熱損失や圧力損失を低減できる。 This container-type compressed air storage power generator can effectively use a limited space in the container and can prevent an increase in the container size. Further, by installing the compressor and the generator on the first and second heat exchangers, the air pipe (air supply pipe) can be shortened, and heat loss and pressure loss can be reduced.
 本発明によれば、CAES発電装置の圧縮機及び発電機の少なくとも一方をコンテナに収納する事で、運搬及び現地施工を容易にできる。 According to the present invention, transportation and on-site construction can be facilitated by storing at least one of the compressor and generator of the CAES power generator in a container.
本発明の第1実施形態に係るコンテナ型CAES発電装置の概略平面図。1 is a schematic plan view of a container type CAES power generator according to a first embodiment of the present invention. 本発明の第1実施形態に係るコンテナ型CAES発電装置の概略正面図。1 is a schematic front view of a container-type CAES power generator according to a first embodiment of the present invention. 本発明の第1実施形態に係るコンテナ型CAES発電装置の概略側面図。1 is a schematic side view of a container-type CAES power generator according to a first embodiment of the present invention. 図1A~Cの各部の接続構成を示す概略構成図。FIG. 1 is a schematic configuration diagram showing a connection configuration of each unit in FIGS. 1A to 1C. 本発明の第2実施形態に係るコンテナ型CAES発電装置の概略平面図。The schematic plan view of the container type | mold CAES electric power generating apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るコンテナ型CAES発電装置の概略正面図。The schematic front view of the container type | mold CAES electric power generating apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るコンテナ型CAES発電装置の概略側面図。The schematic side view of the container type | mold CAES electric power generating apparatus which concerns on 2nd Embodiment of this invention. 図3A~Cの各部の接続構成を示す概略構成図。FIG. 3 is a schematic configuration diagram illustrating a connection configuration of each unit illustrated in FIGS. 3A to 3C. 図4の蓄熱流体駆動用のポンプをコンテナ外に設置した場合の概略構成図。The schematic block diagram at the time of installing the heat storage fluid drive pump of FIG. 4 outside a container. 圧縮機と第1熱交換器のレイアウトを示す側面図。The side view which shows the layout of a compressor and a 1st heat exchanger. 圧縮機と第1熱交換器のレイアウトを示す正面図。The front view which shows the layout of a compressor and a 1st heat exchanger. 本発明の第3実施形態に係るコンテナ型CAES発電装置の平面図。The top view of the container type | mold CAES electric power generating apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るコンテナ型CAES発電装置の正面図。The front view of the container type | mold CAES electric power generating apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るコンテナ型CAES発電装置の側面図。The side view of the container type | mold CAES electric power generating apparatus which concerns on 3rd Embodiment of this invention. 図7A~Cの各部の接続構成を示す概略構成図。FIG. 8 is a schematic configuration diagram showing a connection configuration of each unit in FIGS. 7A to 7C. 本発明の第4実施形態に係るコンテナ型CAES発電装置の各部の接続構成を示す概略構成図。The schematic block diagram which shows the connection structure of each part of the container type | mold CAES electric power generating apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るコンテナ型CAES発電装置の各部の接続構成を示す概略構成図。The schematic block diagram which shows the connection structure of each part of the container type | mold CAES electric power generating apparatus which concerns on 5th Embodiment of this invention.
 以下、添付図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(第1実施形態)
 図1A~C及び図2は、本発明の第1実施形態に係るコンテナ型の圧縮空気貯蔵(CAES:compressed air energy storage)発電装置2を示す。コンテナ型CAES発電装置2は、CAES発電設備をコンテナ4内に収納したものである。コンテナ型CAES発電装置2は、変動電力の平滑化やピークカット、又は蓄電等に使用される。
(First embodiment)
1A to 1C and 2 show a container-type compressed air storage (CAES) power generator 2 according to a first embodiment of the present invention. The container-type CAES power generator 2 is a container in which CAES power generation equipment is stored in a container 4. The container-type CAES power generator 2 is used for smoothing or peak-cutting fluctuating power, or for storing electricity.
 図1A~C及び図2を参照して、本実施形態のコンテナ型CAES発電装置2について説明する。 Referring to FIGS. 1A to 1C and 2, the container-type CAES power generator 2 of the present embodiment will be described.
 コンテナ型CAES発電装置2は、CAES発電設備及びコンテナ4を備える。CAES発電設備には、3台の圧縮機5a~5c、タンク8、3台の発電機9a~9c、及び制御装置12が含まれる。本実施形態のコンテナ型CAES発電装置2では、1つのコンテナ4内に圧縮機5a~5c、発電機9a~9c、及び制御装置12が配置されており、コンテナ4外にタンク8が配置されている。圧縮機5a~5c、発電機9a~9c、及びタンク8は、空気供給管14(図2参照)を介して接続されている。本実施形態では、コンテナ4内には図1A及び図1Bにおいて左側から順に圧縮機5a~5c、発電機9a~9c、及び制御装置12が概ね一列に並べて配置されている。 The container-type CAES power generation device 2 includes a CAES power generation facility and a container 4. The CAES power generation facility includes three compressors 5a to 5c, a tank 8, three generators 9a to 9c, and a control device 12. In the container-type CAES power generator 2 of the present embodiment, compressors 5a to 5c, generators 9a to 9c, and a controller 12 are arranged in one container 4, and a tank 8 is arranged outside the container 4. Yes. The compressors 5a to 5c, the generators 9a to 9c, and the tank 8 are connected via an air supply pipe 14 (see FIG. 2). In the present embodiment, the compressor 5a to 5c, the generators 9a to 9c, and the control device 12 are arranged in a line in the container 4 in order from the left side in FIGS. 1A and 1B.
 圧縮機5a~5cは、圧縮機本体部6a~6cと、圧縮機本体部6a~6cに機械的に接続されたモータ16a~16cを備える。モータ16a~16cは、図示しない電力源から電力を供給されて駆動される。モータ16a~16cが駆動されると、圧縮機本体部6a~6cは周囲の空気を吸引して圧縮する。圧縮機5a~5cは、タンク8と空気供給管14を介して接続されており、圧縮機5a~5cで圧縮された空気は空気供給管14を通じてタンク8に供給される。 The compressors 5a to 5c include compressor main body portions 6a to 6c and motors 16a to 16c mechanically connected to the compressor main body portions 6a to 6c. The motors 16a to 16c are driven by power supplied from a power source (not shown). When the motors 16a to 16c are driven, the compressor main bodies 6a to 6c suck and compress the surrounding air. The compressors 5a to 5c are connected to the tank 8 through the air supply pipe 14, and the air compressed by the compressors 5a to 5c is supplied to the tank 8 through the air supply pipe 14.
 圧縮機5a~5cとタンク8との間の空気供給管14には弁18a~18cが設けられている。弁18a~18cは、各圧縮機5a~5cに対して1つずつ設けられており、いずれの圧縮機5a~5cからタンク8に圧縮空気を供給するかを変更できる。また、弁18a~18cによって、使用する圧縮機5a~5cの台数を調整し、タンク8に供給する圧縮空気の量を調整してもよい。 Valves 18a to 18c are provided in the air supply pipe 14 between the compressors 5a to 5c and the tank 8. One valve 18a to 18c is provided for each of the compressors 5a to 5c, and it is possible to change which compressor 5a to 5c supplies the compressed air to the tank 8. Further, the number of the compressors 5a to 5c to be used may be adjusted by the valves 18a to 18c, and the amount of compressed air supplied to the tank 8 may be adjusted.
 タンク8は、圧縮機5a~5cで圧縮された空気を貯蔵する。使用するタンク8のサイズや数は、図1Cより、本実施形態では同じサイズのタンク8が12基設けられているが、必要な電力及び発電時間等に応じて変更でき、そのサイズや数は限定されない。タンク8は、発電機9a~9cと空気供給管14を介して接続されており、空気供給管14を通じてタンク8に貯蔵された圧縮空気は発電機9a~9cに供給される。 The tank 8 stores the air compressed by the compressors 5a to 5c. As shown in FIG. 1C, the size and number of tanks 8 to be used are twelve tanks 8 of the same size in this embodiment. However, the size and number of tanks 8 can be changed according to necessary power and power generation time. It is not limited. The tank 8 is connected to the generators 9a to 9c via the air supply pipe 14, and the compressed air stored in the tank 8 is supplied to the generators 9a to 9c through the air supply pipe 14.
 発電機9a~9cは、発電機本体部10a~10c機械的に接続された膨張機20a~20cを備える。膨張機20a~20cは、タンク8から供給される圧縮空気により駆動される。膨張機20a~20cが駆動されると、発電機9a~9cはそれぞれ発電を行う。発電機9a~9cは、図示しない外部の系統に接続されており、発電した電力を供給できる。 The generators 9a to 9c are provided with expanders 20a to 20c mechanically connected to the generator main bodies 10a to 10c. The expanders 20a to 20c are driven by compressed air supplied from the tank 8. When the expanders 20a to 20c are driven, the generators 9a to 9c generate electric power, respectively. The generators 9a to 9c are connected to an external system (not shown) and can supply generated power.
 タンク8と発電機9a~9cとの間の空気供給管14には弁18d~18fが設けられている。本実施形態では、弁18d~18fは各発電機9a~9cに対して1つずつ設けられている。従って、タンク8からいずれの発電機9a~9cに圧縮空気を供給するかを変更できる。このように、弁18d~18fによって、使用する発電機9a~9cの数を調整し、発電する電力量を調整してもよい。 Valves 18d to 18f are provided in the air supply pipe 14 between the tank 8 and the generators 9a to 9c. In the present embodiment, one valve 18d to 18f is provided for each generator 9a to 9c. Accordingly, it is possible to change which generator 9a to 9c the compressed air is supplied from the tank 8. As described above, the number of generators 9a to 9c to be used may be adjusted by the valves 18d to 18f to adjust the amount of power to be generated.
 空気供給管14のコンテナ4の内外の配管について説明する。空気供給管14は、コンテナ4外のタンク8と、コンテナ4内の圧縮機5a~5c及び発電機9a~9cを接続している。例えば、一点鎖線4Aで示すように、空気供給管14をコンテナ4内で合流させた後、コンテナ4外へ取り出す構成とした場合、コンテナ4外の配管は少なくできるがコンテナ4内の余剰スペースを圧迫する。これに代えて、二点鎖線4Bで示すように、空気供給管14をコンテナ4外へ取り出した後、コンテナ4外で合流させる構成とした場合、コンテナ4外の配管は多いがコンテナ4内に余剰スペースを確保できる。従って、空気供給管14の配管の処理やコンテナ4内の余剰スペースの必要性を考慮して構成を変更してもよい。 The piping inside and outside the container 4 of the air supply pipe 14 will be described. The air supply pipe 14 connects the tank 8 outside the container 4 to the compressors 5a to 5c and the generators 9a to 9c in the container 4. For example, as shown by the one-dot chain line 4A, when the air supply pipe 14 is merged in the container 4 and then taken out of the container 4, the piping outside the container 4 can be reduced, but the excess space in the container 4 can be reduced. Squeeze. Instead, as shown by a two-dot chain line 4B, when the air supply pipe 14 is taken out of the container 4 and then merged outside the container 4, there are many pipes outside the container 4, but inside the container 4 Extra space can be secured. Therefore, the configuration may be changed in consideration of the processing of the piping of the air supply pipe 14 and the necessity of extra space in the container 4.
 制御装置12は、制御盤22、インバータ24、リアクトル26、及びコンバータ28を含む。これらにより、コンテナ型CAES発電装置2の各部は電気的に接続可能である。ただし、出力の方式によってはコンバータ28を省略してもよい。制御装置12はまた、圧縮機5a~5c、発電機9a~9c、及び弁18a~18fに電気的に接続されており、それぞれの動作を制御している。例えば、制御装置12は変動電力の平滑化制御を行う。この場合、図示しない電力源からの変動電力が所定の値より大きいときは弁18a~18cを開いて圧縮機5a~5cを駆動し、タンク8に圧縮空気を貯蔵して蓄電する。また、図示しない電力源からの変動電力が所定の値より小さいときは弁18a~18cを開き、タンク8からの圧縮空気により発電機9a~9cを駆動して発電する。ここで使用される所定の値は、過去の電力需要データに基づいて必要な電力値を決定してもよい。このようにして、制御装置12は、圧縮機5a~5c、発電機9a~9c、及び弁18a~18fを駆動制御し、変動電力を平滑化できる。制御装置12は変動電力の平滑化制御だけでなく、先に記載のようにピークカットに使用されてもよい。 The control device 12 includes a control panel 22, an inverter 24, a reactor 26, and a converter 28. As a result, each part of the container-type CAES power generator 2 can be electrically connected. However, the converter 28 may be omitted depending on the output method. The control device 12 is also electrically connected to the compressors 5a to 5c, the generators 9a to 9c, and the valves 18a to 18f, and controls their operations. For example, the control device 12 performs smoothing control of the variable power. In this case, when the fluctuating power from a power source (not shown) is larger than a predetermined value, the valves 18a to 18c are opened to drive the compressors 5a to 5c, and the compressed air is stored in the tank 8 and stored. When the fluctuating power from a power source (not shown) is smaller than a predetermined value, the valves 18a to 18c are opened, and the generators 9a to 9c are driven by compressed air from the tank 8 to generate power. The predetermined value used here may determine a necessary power value based on past power demand data. In this way, the control device 12 can drive and control the compressors 5a to 5c, the generators 9a to 9c, and the valves 18a to 18f to smooth the fluctuating power. The control device 12 may be used not only for smoothing control of variable power but also for peak cut as described above.
 本実施形態のコンテナ4は、多種類の一般貨物輸送に使用される長さが40フィートのコンテナである。ただし、コンテナ4の種類やサイズはこれに限定されず、例えば長さが20フィートのコンテナなど、他に通常よく使用されるコンテナを使用してもよい。 The container 4 of the present embodiment is a container having a length of 40 feet used for various types of general cargo transportation. However, the type and size of the container 4 are not limited to this, and other commonly used containers such as a container having a length of 20 feet may be used.
 このコンテナ型CAES発電装置2によれば、CAES発電設備をコンテナ4内に収納する事で、運搬及び現地施工を容易にできる。さらに、発電時間によって必要容量が変わるタンク8をコンテナ4外に配置する事で、必要発電時間の短長によるCAES発電設備部分の設計変更が不要となり、同じパッケージ(圧縮機5a~5c、発電機9a~9c、及び制御装置12)を使用できるため経済的である。また、コンテナ型であるため、複数台並べて使用でき、増設による大容量化が容易である。さらに、屋外への設置も可能である。また、コンテナ4としてサイドオープンコンテナを使用してメンテナンスを容易にしてもよい。 According to this container-type CAES power generation device 2, the CAES power generation equipment is stored in the container 4, so that transportation and on-site construction can be facilitated. Furthermore, by disposing the tank 8 whose required capacity changes depending on the power generation time outside the container 4, it is not necessary to change the design of the CAES power generation equipment due to the short required power generation time, and the same package (compressors 5a to 5c, generator Since 9a to 9c and the control device 12) can be used, it is economical. Moreover, since it is a container type, a plurality of units can be used side by side, and it is easy to increase the capacity by expansion. Furthermore, it can be installed outdoors. Further, a side open container may be used as the container 4 to facilitate maintenance.
 本実施形態では、圧縮機5a~5c及び発電機9a~9cの両方をコンテナ4内に配置しているが、いずれか一方のみをコンテナ4内に配置してもよい。制御装置12もまた、コンテナ4外に配置してもよい。 In this embodiment, both the compressors 5a to 5c and the generators 9a to 9c are arranged in the container 4, but only one of them may be arranged in the container 4. The control device 12 may also be disposed outside the container 4.
(第2実施形態)
 図3A~C及び図4は、本発明の第2実施形態に係るコンテナ型CAES発電装置2を示す。本実施形態のコンテナ型CAES発電装置2は、第1熱交換器30a~30c、第2熱交換器32a~32c、及び第1蓄熱タンク33a及び第2蓄熱タンク33bに関する部分以外の構成は図1A~C及び図2の第1実施形態と同様である。従って、図1A~C及び図2に示した構成と同様の部分については同様の符号を付して説明を省略する。
(Second Embodiment)
3A to C and FIG. 4 show a container-type CAES power generator 2 according to a second embodiment of the present invention. The container-type CAES power generator 2 according to the present embodiment has the same configuration as that shown in FIG. To C and the first embodiment of FIG. Accordingly, the same components as those shown in FIGS. 1A to 1C and FIG.
 図3A~C及び図4を参照して、第2実施形態のコンテナ型CAES発電装置2は、コンテナ内に第1熱交換器30a~30c及び第2熱交換器32a~32cを備え、コンテナ4外に蓄熱タンク33a,33bを備える。第1熱交換器30a~30c、第2熱交換器32a~32c、及び蓄熱タンク33a,33bは、蓄熱流体供給管34(図4参照)を介して接続されている。本実施形態では、コンテナ4内には図3A及び図3Bにおいて左側から順に第1熱交換器30a~30c(圧縮機5a~5c)、第2熱交換器32a~32c(発電機9a~9c)、及び制御装置12が概ね一列に並べて配置されている。 Referring to FIGS. 3A to 3C and 4, the container-type CAES power generator 2 of the second embodiment includes first heat exchangers 30a to 30c and second heat exchangers 32a to 32c in the container, and the container 4 Heat storage tanks 33a and 33b are provided outside. The first heat exchangers 30a to 30c, the second heat exchangers 32a to 32c, and the heat storage tanks 33a and 33b are connected via a heat storage fluid supply pipe 34 (see FIG. 4). In the present embodiment, in the container 4, the first heat exchangers 30a to 30c (compressors 5a to 5c) and the second heat exchangers 32a to 32c (generators 9a to 9c) are sequentially arranged from the left side in FIGS. 3A and 3B. , And the control device 12 are generally arranged in a line.
 蓄熱流体供給管34の内部には蓄熱流体が流れている。蓄熱流体供給管34には蓄熱流体を流動させるためのポンプ36a~36fが設けられている。蓄熱流体は、ポンプ36a~36fからの圧力によって、第1熱交換器30a~30cと第2熱交換器32a~32cと蓄熱タンク33a,33bとの間を循環流動する。 The heat storage fluid flows inside the heat storage fluid supply pipe 34. The heat storage fluid supply pipe 34 is provided with pumps 36a to 36f for causing the heat storage fluid to flow. The heat storage fluid circulates and flows between the first heat exchangers 30a to 30c, the second heat exchangers 32a to 32c, and the heat storage tanks 33a and 33b by the pressure from the pumps 36a to 36f.
 第1熱交換器30a~30cは、各圧縮機5a~5cに対して1つずつ設けられている。第1熱交換器30a~30cは、圧縮機5a~5cとタンク8の間の空気供給管14を流れる空気と、蓄熱流体供給管34を流れる蓄熱流体との間で熱交換する。具体的には、圧縮機5a~5cにより圧縮され、その際に圧縮熱を付加された空気から熱回収し、この熱で蓄熱流体を加熱する。加熱された蓄熱流体は、蓄熱流体供給管34を通じて第1蓄熱タンク33aに供給される。 The first heat exchangers 30a to 30c are provided one for each of the compressors 5a to 5c. The first heat exchangers 30a to 30c exchange heat between the air flowing through the air supply pipe 14 between the compressors 5a to 5c and the tank 8 and the heat storage fluid flowing through the heat storage fluid supply pipe 34. Specifically, heat is recovered from the air compressed by the compressors 5a to 5c and added with heat of compression at that time, and the heat storage fluid is heated by this heat. The heated heat storage fluid is supplied to the first heat storage tank 33 a through the heat storage fluid supply pipe 34.
 第1蓄熱タンク33aは、第1熱交換器30a~30cで加熱され、昇温した蓄熱流体を貯蔵する。第1蓄熱タンク33aは、貯蔵している昇温した蓄熱流体の熱を外部に放出しないように、断熱部材から形成されていることが好ましい。第1蓄熱タンク33aで貯蔵されている昇温した蓄熱流体は蓄熱流体供給管34を通じて第2熱交換器32a~32cに供給される。 The first heat storage tank 33a stores the heat storage fluid heated by the first heat exchangers 30a to 30c and heated. It is preferable that the 1st heat storage tank 33a is formed from the heat insulation member so that the heat | fever of the heat storage fluid which temperature-rises stored may not be discharge | released outside. The heated heat storage fluid stored in the first heat storage tank 33a is supplied to the second heat exchangers 32a to 32c through the heat storage fluid supply pipe.
 第2熱交換器32a~32cは、各発電機9a~9cに対して1つずつ設けられている。第2熱交換器32a~32cは、蓄熱流体供給管34を流れる昇温した蓄熱流体と、タンク8と発電機9a~9cの間の空気供給管14を流れる圧縮空気との間で熱交換する。具体的には、昇温した蓄熱流体から熱回収し、この熱で圧縮空気を加熱する。加熱され、昇温した圧縮空気は、空気供給管14を通じて発電機9a~9cに供給される。第2熱交換器32a~32cで熱回収され降温した蓄熱流体は、蓄熱流体供給管34を通じて第2蓄熱タンク33bに供給される。 One second heat exchanger 32a to 32c is provided for each of the generators 9a to 9c. The second heat exchangers 32a to 32c exchange heat between the heated heat storage fluid flowing through the heat storage fluid supply pipe 34 and the compressed air flowing through the air supply pipe 14 between the tank 8 and the generators 9a to 9c. . Specifically, heat is recovered from the heated heat storage fluid, and the compressed air is heated with this heat. The heated and heated compressed air is supplied to the generators 9a to 9c through the air supply pipe. The heat storage fluid that has been heat-recovered and cooled by the second heat exchangers 32a to 32c is supplied to the second heat storage tank 33b through the heat storage fluid supply pipe.
 第2蓄熱タンク33bは、第2熱交換器32a~32cで熱回収され、降温した蓄熱流体を貯蔵する。第2蓄熱タンク33bは、貯蔵している蓄熱流体の熱を外部に放出しないように、断熱部材から形成されていることが好ましい。第2蓄熱タンク33bで貯蔵されている蓄熱流体は蓄熱流体供給管34を通じて第1熱交換器30a~30cに供給される。 The second heat storage tank 33b stores the heat storage fluid that has been heat-recovered and lowered in temperature by the second heat exchangers 32a to 32c. The second heat storage tank 33b is preferably formed of a heat insulating member so as not to release the heat of the stored heat storage fluid to the outside. The heat storage fluid stored in the second heat storage tank 33b is supplied to the first heat exchangers 30a to 30c through the heat storage fluid supply pipe.
 このように、蓄熱流体は、第1熱交換器30a~30cで加熱され、第1蓄熱タンク33aで貯蔵され、第2熱交換器32a~32cで冷却され、第2蓄熱タンク33bで貯蔵され、第1熱交換器30a~30cへと戻り加熱され、これを繰り返す。 Thus, the heat storage fluid is heated by the first heat exchangers 30a to 30c, stored in the first heat storage tank 33a, cooled by the second heat exchangers 32a to 32c, and stored in the second heat storage tank 33b. It returns to the 1st heat exchangers 30a-30c, is heated, and this is repeated.
 蓄熱流体供給管34のコンテナ4の内外の配管については空気供給管14と同様である。蓄熱流体供給管34は、コンテナ4外の蓄熱タンク33a,33bと、コンテナ4内の第1熱交換器30a~30c及び第2熱交換器32a~32cを接続している。例えば、一点鎖線4Aで示すように、蓄熱流体供給管34をコンテナ4内で合流させた後、コンテナ4外へ取り出す構成とした場合、コンテナ4外の配管は少なくできるがコンテナ4内の余剰スペースを圧迫する。これに代えて、二点鎖線4Bで示すように、蓄熱流体供給管34をコンテナ4外へ取り出した後、コンテナ4外で合流させる構成とした場合、コンテナ4外の配管は多いがコンテナ4内に余剰スペースを確保しやすい。従って、蓄熱流体供給管34の配管の処理やコンテナ4内の余剰スペースの必要性を考慮して構成を変更してもよい。 The piping inside and outside the container 4 of the heat storage fluid supply pipe 34 is the same as the air supply pipe 14. The heat storage fluid supply pipe 34 connects the heat storage tanks 33 a and 33 b outside the container 4 to the first heat exchangers 30 a to 30 c and the second heat exchangers 32 a to 32 c in the container 4. For example, as shown by the one-dot chain line 4A, when the heat storage fluid supply pipe 34 is joined in the container 4 and then taken out of the container 4, the piping outside the container 4 can be reduced, but the excess space in the container 4 can be reduced. Squeeze. Instead, as shown by a two-dot chain line 4B, when the heat storage fluid supply pipe 34 is taken out of the container 4 and then merged outside the container 4, there are many pipes outside the container 4, but inside the container 4 It is easy to secure extra space. Therefore, the configuration may be changed in consideration of the processing of the piping of the heat storage fluid supply pipe 34 and the necessity of excess space in the container 4.
 本実施形態では、図4のようにポンプ36a~36fがコンテナ4内に設けられている。このようにすることで、運搬及び施工が容易になる。しかし、ポンプ36a~36fは必ずしもコンテナ4内に限らず、図5のようにコンテナ4外に設けられていてもよい。このようにすれば、コンテナ4内に余剰スペースを確保しやすい。また、本実施形態では、蓄熱流体供給管34が合流して一本になっている位置にポンプを設けるようにすれば、ポンプ台数を減らすことができる。 In this embodiment, pumps 36a to 36f are provided in the container 4 as shown in FIG. By doing in this way, conveyance and construction become easy. However, the pumps 36a to 36f are not necessarily provided inside the container 4, and may be provided outside the container 4 as shown in FIG. In this way, it is easy to secure a surplus space in the container 4. In the present embodiment, the number of pumps can be reduced by providing the pumps at positions where the heat storage fluid supply pipes 34 are joined together.
 本実施形態のコンテナ型CAES発電装置2によると、発電時間によって必要容量が変わる蓄熱タンク33a,33bをコンテナ4外に配置することで、必要発電時間の短長によるCAES発電設備の設計変更を不要にできる。従って、同じパッケージを使用でき、経済的である。 According to the container type CAES power generation device 2 of the present embodiment, the heat storage tanks 33a and 33b whose required capacity changes depending on the power generation time are arranged outside the container 4, so that the design change of the CAES power generation facility due to the short required power generation time is unnecessary. Can be. Therefore, the same package can be used and it is economical.
 第1熱交換器30a~30cのレイアウトについて説明する。図6A,Bは、第1熱交換器30a~30cと圧縮機5a~5cのレイアウトを示す正面図及び側面図である。本実施形態で使用する圧縮機5a~5cは、2段型であり、低圧段圧縮部38と高圧段圧縮部40を有する。第1熱交換器30a~30cは、圧縮空気に対して、低圧段圧縮部38による1段階目の圧縮熱を熱回収して冷却するインタークーラ及び高圧段圧縮部40による2段階目の圧縮熱を熱回収して冷却するアフタークーラとしての役割を果たす。ただし、圧縮機5a~5cは2段型に限らず、3段型以上であってもよいし、又は単段型であってもよい。 The layout of the first heat exchangers 30a to 30c will be described. 6A and 6B are a front view and a side view showing a layout of the first heat exchangers 30a to 30c and the compressors 5a to 5c. The compressors 5a to 5c used in the present embodiment are of a two-stage type, and have a low-pressure stage compression unit 38 and a high-pressure stage compression unit 40. The first heat exchangers 30a to 30c are an intercooler that recovers and cools the first stage compression heat generated by the low pressure stage compression unit 38 with respect to the compressed air, and a second stage compression heat generated by the high pressure stage compression unit 40. It serves as an aftercooler that recovers and cools the heat. However, the compressors 5a to 5c are not limited to the two-stage type, and may be a three-stage type or a single-stage type.
 第2熱交換器32a~32cのレイアウトについては、第1熱交換器30a~30cと同様である。即ち、図6A,Bにおいて、第1熱交換器30a~30cを第2熱交換器32a~32cに置換し、圧縮機5a~5cを発電機9a~9cに置換したものと同様である。ただし、第2熱交換器32a~32cは、第1熱交換器30a~30cとは異なり圧縮空気に対してヒータの役割を果たす。即ち、高圧段圧縮部40による1段階目の膨張前に熱供給するプレヒータ及び低圧段膨張部38による2段階目の膨張前に熱供給するインターヒータとしての役割を果たす。 The layout of the second heat exchangers 32a to 32c is the same as that of the first heat exchangers 30a to 30c. 6A and 6B, the first heat exchangers 30a to 30c are replaced with the second heat exchangers 32a to 32c, and the compressors 5a to 5c are replaced with the generators 9a to 9c. However, unlike the first heat exchangers 30a to 30c, the second heat exchangers 32a to 32c serve as a heater for the compressed air. That is, it functions as a preheater that supplies heat before the first stage expansion by the high-pressure stage compression unit 40 and an interheater that supplies heat before the second stage expansion by the low-pressure stage expansion unit 38.
 第1熱交換器30a~30c(第2熱交換器32a~32c)は、図6A,Bに示すように、圧縮機5a~5c(発電機9a~9c)と重なるようにその下方側に配置されている。従って、このように重ねて配置することで、コンテナ4内の設置面積を大きく占有せずに空間を有効利用できる。また、圧縮機5a~5cと第1熱交換器30a~30c又は発電機9a~9cと第2熱交換器32a~32cを重ねて近接配置していることでこれらを接続する空気供給管14の長さを短縮できるため、内部を流れる圧縮空気の圧力損失及び熱損失を低減できる。 As shown in FIGS. 6A and 6B, the first heat exchangers 30a to 30c (second heat exchangers 32a to 32c) are arranged below the compressors 5a to 5c (generators 9a to 9c). Has been. Therefore, by arranging in such a manner, the space can be effectively used without occupying a large installation area in the container 4. Further, the compressors 5a to 5c and the first heat exchangers 30a to 30c or the generators 9a to 9c and the second heat exchangers 32a to 32c are arranged in close proximity to each other, so that the air supply pipe 14 that connects them is provided. Since the length can be shortened, the pressure loss and heat loss of the compressed air flowing inside can be reduced.
 CAES発電設備をコンテナ4内に収容する場合、圧縮機5a~5c(又は発電機9a~9c)などが発熱するため、コンテナ4内の温度が上昇し、制御装置12などの電子機器が高熱に晒されるおそれがある。しかし、ACAES発電設備を使用して熱回収を行う場合、コンテナ4内の温度上昇を抑制できるため、制御装置12などの電子機器を熱によるダメージから守ることができる。さらに言えば、特願2014-172836号で本願出願人が提案している発生する熱を全て回収する全熱回収型のACAES発電設備を使用すれば、コンテナ4内における放熱が殆ど存在しないため、換気扇や空調設備が不要である。従って、空気の出入りが可能な通気口を設けるだけでよい。 When the CAES power generation facility is accommodated in the container 4, the compressors 5 a to 5 c (or the generators 9 a to 9 c) generate heat, so that the temperature in the container 4 rises and the electronic equipment such as the control device 12 becomes hot. There is a risk of exposure. However, when heat recovery is performed using the ACAES power generation facility, an increase in temperature in the container 4 can be suppressed, so that electronic devices such as the control device 12 can be protected from damage due to heat. Furthermore, if a total heat recovery type ACAES power generation facility that recovers all generated heat proposed by the applicant of this application in Japanese Patent Application No. 2014-172836 is used, there is almost no heat dissipation in the container 4, Ventilation fans and air conditioning equipment are not required. Therefore, it is only necessary to provide a vent hole through which air can enter and exit.
(第3実施形態)
 図7A~C及び図8は、本発明の第3実施形態に係るコンテナ型CAES発電装置2を示す。本実施形態のコンテナ型CAES発電装置2は、コンテナ4(第1コンテナ4a及び第2コンテナ4b)に関する部分以外の構成は図3A~C及び図4の第2実施形態と同様である。従って、図3A~C及び図4に示した構成と同様の部分については同様の符号を付して説明を省略する。
(Third embodiment)
7A to C and FIG. 8 show a container type CAES power generator 2 according to a third embodiment of the present invention. The container-type CAES power generation apparatus 2 of the present embodiment is the same as the second embodiment of FIGS. 3A to 3C and FIG. 4 except for the portion related to the container 4 (the first container 4a and the second container 4b). Therefore, the same components as those shown in FIGS. 3A to 3C and FIG.
 図7A~C及び図8を参照して、本実施形態のコンテナ型CAES発電装置2は、第1コンテナ4a及び第2コンテナ4bを備える。第1コンテナ4a及び第2コンテナ4bは、多種類の一般貨物輸送に使用される長さが20フィートのコンテナである。第1コンテナ4a及び第2コンテナ4bのサイズに関しては、これに限定されず、例えば長さが40フィートのコンテナなど、他に通常よく使用されるコンテナを使用してもよい。 7A to 7C and FIG. 8, the container-type CAES power generator 2 of the present embodiment includes a first container 4a and a second container 4b. The first container 4a and the second container 4b are containers having a length of 20 feet used for various types of general cargo transportation. The size of the first container 4a and the second container 4b is not limited to this, and other commonly used containers such as a container having a length of 40 feet may be used.
 第1コンテナ4a内には、圧縮機能に関する設備が収納されている。圧縮機能に関する設備には、圧縮機5a~5c、第1熱交換器30a~30c、及びこれらを制御する制御装置12aが含まれている。 In the first container 4a, equipment relating to the compression function is stored. Equipment related to the compression function includes the compressors 5a to 5c, the first heat exchangers 30a to 30c, and the control device 12a for controlling them.
 第2コンテナ4b内には、発電機能に関する設備が収納されている。発電機能に関する設備には、発電機9a~9c、第2熱交換器32a~32c、及びこれらを制御する制御装置12bが含まれている。 The facility relating to the power generation function is stored in the second container 4b. Equipment related to the power generation function includes generators 9a to 9c, second heat exchangers 32a to 32c, and a control device 12b for controlling them.
 空気供給管14及び蓄熱流体供給管34の第1コンテナ4a及び第2コンテナ4bの内外の配管については、第2実施形態と同様である。即ち、空気供給管14は、第1コンテナ4a及び第2コンテナ4b内で合流してもよいし(図8の一点鎖線4A参照)、第1コンテナ4a及び第2コンテナ4b外で合流してもよい(図8の二点鎖線4B参照)。蓄熱流体供給管34もまた同様である。ポンプ36a~36fについても、図8では第1コンテナ4a及び第2コンテナ4b内に配置されているが、第1コンテナ4a及び第2コンテナ4b外に配置されてもよいことは第2実施形態と同様である(図4及び図5参照)。 The piping inside and outside the first container 4a and the second container 4b of the air supply pipe 14 and the heat storage fluid supply pipe 34 is the same as in the second embodiment. That is, the air supply pipe 14 may merge within the first container 4a and the second container 4b (see the dashed line 4A in FIG. 8), or may merge outside the first container 4a and the second container 4b. Good (see two-dot chain line 4B in FIG. 8). The same applies to the heat storage fluid supply pipe 34. The pumps 36a to 36f are also arranged in the first container 4a and the second container 4b in FIG. 8, but may be arranged outside the first container 4a and the second container 4b as in the second embodiment. The same applies (see FIGS. 4 and 5).
 このコンテナ型CAES発電装置2によれば、圧縮機能を有する第1コンテナ4aと発電機能を有する第2コンテナ4bを備えることで、各コンテナ4a,4bを小型化できる。この小型化により搬送がさらに容易になるとともに、各コンテナ4a,4bを設置するレイアウトの自由度を拡張できる。 According to this container-type CAES power generator 2, each container 4a, 4b can be reduced in size by including the first container 4a having a compression function and the second container 4b having a power generation function. This downsizing further facilitates the conveyance and expands the degree of freedom of layout for installing the containers 4a and 4b.
(第4実施形態)
 図9は、本発明の第4実施形態に係るコンテナ型CAES発電装置2を示す。本実施形態のコンテナ型CAES発電装置2は、蓄熱用コンテナ41に関する部分以外の構成は図5の第2実施形態と同様である。従って図5に示した構成と同様の部分については同様の符号を付して説明を省略する。
(Fourth embodiment)
FIG. 9 shows a container-type CAES power generator 2 according to a fourth embodiment of the present invention. The container-type CAES power generator 2 of this embodiment is the same as that of 2nd Embodiment of FIG. 5 except the part regarding the container 41 for thermal storage. Accordingly, parts similar to those in the configuration shown in FIG.
 図9を参照して、本実施形態のコンテナ型CAES発電装置2は、蓄熱用コンテナ41を備える。蓄熱用コンテナ41は、第1蓄熱タンク33a及び第2蓄熱タンク33bを収納している。本実施形態においても、図5のコンテナ4A,4Bのように、蓄熱流体供給管34の配管に応じてそのサイズ及び構成を変更してもよい。例えば、二点鎖線41Bで示すように、蓄熱流体供給管34を蓄熱用コンテナ41内で合流させた後、蓄熱用コンテナ41外へ取り出してもよい。また、一点鎖線41Aで示すように、蓄熱流体供給管34を蓄熱コンテナ41外へ取り出した後、蓄熱用コンテナ41外で合流させてもよい。従って、蓄熱流体供給管34の配管の処理や蓄熱用コンテナ41内の余剰スペースの必要性を考慮してサイズ及び構成を変更してもよい。 Referring to FIG. 9, the container type CAES power generator 2 of the present embodiment includes a heat storage container 41. The heat storage container 41 houses a first heat storage tank 33a and a second heat storage tank 33b. Also in the present embodiment, the size and configuration may be changed according to the piping of the heat storage fluid supply pipe 34 as in the containers 4A and 4B in FIG. For example, as indicated by a two-dot chain line 41B, the heat storage fluid supply pipe 34 may be merged in the heat storage container 41 and then taken out of the heat storage container 41. Further, as indicated by a one-dot chain line 41 </ b> A, the heat storage fluid supply pipe 34 may be taken out of the heat storage container 41 and then merged outside the heat storage container 41. Therefore, the size and configuration may be changed in consideration of the processing of the piping of the heat storage fluid supply pipe 34 and the need for the extra space in the heat storage container 41.
 蓄熱用コンテナ41は、内側に断熱材を設けた断熱コンテナ(サーマルコンテナともいう。)であり、第1蓄熱タンク33a及び第2蓄熱タンク33bを分けて収納するよう内部に仕切り42を備える。第1蓄熱タンク33a及び第2蓄熱タンク33bは、内部に貯蔵する蓄熱流体の温度がそれぞれ異なっているため、仕切り42を設けることで空間を分けることができ、放熱による熱損失を防止できる。仕切り42も断熱材により構成することでさらに熱損失を防止できる。 The heat storage container 41 is a heat insulating container (also referred to as a thermal container) provided with a heat insulating material on the inside, and includes a partition 42 inside so as to store the first heat storage tank 33a and the second heat storage tank 33b separately. Since the first heat storage tank 33a and the second heat storage tank 33b have different temperatures of the heat storage fluid stored inside, the space can be divided by providing the partition 42, and heat loss due to heat radiation can be prevented. By configuring the partition 42 with a heat insulating material, heat loss can be further prevented.
 また、本実施形態では、ポンプ36a~36fが蓄熱用コンテナ41内に設けられている。このようにすることで、運搬及び施工が容易になる。しかし、ポンプ36a~36fは必ずしも蓄熱用コンテナ41内に限らず、図4のようにコンテナ4内に設けられていてもよいし、コンテナ4,41の外部に配置されてもよい。好ましくは、より施行を容易にするためにいずれかのコンテナ4,41内に配置するのがよい。 In this embodiment, the pumps 36 a to 36 f are provided in the heat storage container 41. By doing in this way, conveyance and construction become easy. However, the pumps 36a to 36f are not necessarily provided in the heat storage container 41, and may be provided in the container 4 as shown in FIG. Preferably, it is preferable to arrange in one of the containers 4 and 41 for easier enforcement.
(第5実施形態)
 図10は、本発明の第5実施形態に係るコンテナ型CAES発電装置2を示す。本実施形態のコンテナ型CAES発電装置2は、蓄熱用コンテナ41(第3コンテナ41a及び第4コンテナ41b)に関する部分以外の構成は図9の第4実施形態と同様である。従って、図9に示した構成と同様の部分については同様の符号を付して説明を省略する。
(Fifth embodiment)
FIG. 10 shows a container-type CAES power generator 2 according to a fifth embodiment of the present invention. The container-type CAES power generation device 2 of the present embodiment is the same as the fourth embodiment of FIG. 9 except for the portion related to the heat storage container 41 (the third container 41a and the fourth container 41b). Therefore, the same parts as those shown in FIG.
 図10を参照して、本実施形態のコンテナ型CAES発電装置2は、蓄熱用コンテナ41を備える。蓄熱用コンテナ41は、第3コンテナ41a及び第4コンテナ41bを備える。第3コンテナ41aは、第1蓄熱タンク33aを収納している。第4コンテナ41bは、第2蓄熱タンク33bを収納している。蓄熱流体供給管34の第3コンテナ41a及び第4コンテナ41bの内外の配管については、第4実施形態と同様である。即ち、蓄熱流体供給管34は、第3コンテナ41a及び第4コンテナ41b内で合流してもよいし(図10の二点鎖線41B参照)、第3コンテナ41a及び第4コンテナ41b外で合流してもよい(図10の一点鎖線41A参照)。ポンプ36a~36fについても、図10では蓄熱用コンテナ41内に配置されているが、蓄熱用コンテナ41外に配置されてもよいことは第2実施形態と同様である。 Referring to FIG. 10, the container type CAES power generator 2 of the present embodiment includes a heat storage container 41. The heat storage container 41 includes a third container 41a and a fourth container 41b. The third container 41a houses the first heat storage tank 33a. The fourth container 41b houses the second heat storage tank 33b. The piping inside and outside the third container 41a and the fourth container 41b of the heat storage fluid supply pipe 34 is the same as in the fourth embodiment. That is, the heat storage fluid supply pipe 34 may merge within the third container 41a and the fourth container 41b (see the two-dot chain line 41B in FIG. 10), or merge outside the third container 41a and the fourth container 41b. (See the alternate long and short dash line 41A in FIG. 10). The pumps 36a to 36f are also arranged in the heat storage container 41 in FIG. 10, but may be arranged outside the heat storage container 41 as in the second embodiment.
 第3コンテナ41a及び第4コンテナ41bは、内側に断熱材を設けた断熱コンテナである。第1蓄熱タンク33a及び第2蓄熱タンク33bは、内部に貯蔵する蓄熱流体の温度がそれぞれ異なっているため、第3コンテナ41a及び第4コンテナ41bのように空間を分けることで、放熱による熱損失を防止できる。また、第1蓄熱タンク33aを収納する第3コンテナ41aと第2蓄熱タンク33bを収納する第4コンテナ41bを備えることで、各コンテナ41a,41bを小型化できる。この小型化により搬送がさらに容易になるとともに、各コンテナ41a,41bを設置するレイアウトの自由度を拡張できる。 The 3rd container 41a and the 4th container 41b are heat insulation containers which provided the heat insulating material inside. Since the first heat storage tank 33a and the second heat storage tank 33b are different in temperature of the heat storage fluid stored therein, dividing the space like the third container 41a and the fourth container 41b, heat loss due to heat radiation Can be prevented. Moreover, each container 41a, 41b can be reduced in size by providing the 3rd container 41a which accommodates the 1st heat storage tank 33a, and the 4th container 41b which accommodates the 2nd heat storage tank 33b. This downsizing further facilitates the conveyance and expands the degree of freedom of layout for installing the containers 41a and 41b.
 ここで記載した各実施形態では、圧縮機5a~5cと発電機9a~9cの台数が等しいものを説明した。しかし、圧縮機5a~5cと発電機9a~9cの台数・容量は揃える必要はなく、圧縮機5a~5c側を小さく(又は少なく)して発電機9a~9c側を大きく(又は多く)することも可能であるし、その反対も可能である。特に第3実施形態では、圧縮機能を有する第1コンテナ4aの数と発電機能を有する第2コンテナ4bの数を変えて使用してもよい。 In the embodiments described here, the compressors 5a to 5c and the generators 9a to 9c are equal in number. However, the number and capacity of the compressors 5a to 5c and the generators 9a to 9c do not need to be equalized, and the compressors 5a to 5c are made smaller (or less) and the generators 9a to 9c are made larger (or more). It is possible, and vice versa. In particular, in the third embodiment, the number of first containers 4a having a compression function and the number of second containers 4b having a power generation function may be changed.
 また、本実施形態では、タンク8をコンテナ外部に隣接して設置したものを例示した。しかし、タンクはこの態様に限定されず、地下に埋設したものであってもよく、また、坑道、地下空洞をタンクとして利用してもよい。 In this embodiment, the tank 8 is installed adjacent to the outside of the container. However, the tank is not limited to this mode, and may be buried underground, or a mine shaft or underground cavity may be used as the tank.
  2 コンテナ型圧縮空気貯蔵発電装置(コンテナ型CAES発電装置)
  4,4A,4B コンテナ
  4a 第1コンテナ
  4b 第2コンテナ
  5a,5b,5c 圧縮機
  6a,6b,6c 圧縮機本体部
  8 タンク
  9a,9b,9c 発電機
  10a,10b,10c 発電機本体部
  12,12a,12b 制御装置
  14 空気供給管
  16a,16b,16c モータ
  18a,18b,18c,18d,18e,18f 弁
  20a,20b,20c 膨張機
  22 制御盤
  24 インバータ
  26 リアクトル
  28 コンバータ
  30a,30b,30c 第1熱交換器
  32a,32b,32c 第2熱交換器
  33a 第1蓄熱タンク
  33b 第2蓄熱タンク
  34 蓄熱流体供給管
  36a,36b,36c,36d,36e,36f ポンプ
  38 低圧段圧縮部
  40 高圧段圧縮部
  41 蓄熱用コンテナ
  41a 第3コンテナ
  41b 第4コンテナ
  42 仕切り
2 Container type compressed air storage generator (container type CAES generator)
4, 4A, 4B Container 4a 1st container 4b 2nd container 5a, 5b, 5c Compressor 6a, 6b, 6c Compressor body 8 Tank 9a, 9b, 9c Generator 10a, 10b, 10c Generator body 12, 12a, 12b Control device 14 Air supply pipe 16a, 16b, 16c Motor 18a, 18b, 18c, 18d, 18e, 18f Valve 20a, 20b, 20c Expander 22 Control panel 24 Inverter 26 Reactor 28 Converter 30a, 30b, 30c 1st Heat exchangers 32a, 32b, 32c Second heat exchanger 33a First heat storage tank 33b Second heat storage tank 34 Heat storage fluid supply pipe 36a, 36b, 36c, 36d, 36e, 36f Pump 38 Low pressure stage compression section 40 High pressure stage compression section 41 Heat storage container 41a Third container 1b fourth container 42 partition

Claims (10)

  1.  空気を圧縮する圧縮機と、
     前記圧縮機により圧縮された空気を貯蔵するタンクと、
     前記タンクから供給される空気によって駆動する発電機と、
     前記圧縮機及び前記発電機を駆動制御する制御装置と、
     コンテナと
     を備え、
     前記コンテナ内に前記圧縮機及び前記発電機のうちの少なくとも一方を収納し、前記コンテナ外に前記タンクを設けている、コンテナ型圧縮空気貯蔵発電装置。
    A compressor for compressing air;
    A tank for storing air compressed by the compressor;
    A generator driven by air supplied from the tank;
    A control device for driving and controlling the compressor and the generator;
    A container and
    A container-type compressed air storage power generation apparatus, wherein at least one of the compressor and the generator is housed in the container, and the tank is provided outside the container.
  2.  前記コンテナ内に前記圧縮機及び前記発電機の両方を収納している、請求項1に記載のコンテナ型圧縮空気貯蔵発電装置。 The container-type compressed air storage power generator according to claim 1, wherein both the compressor and the generator are accommodated in the container.
  3.  前記コンテナは、
     前記圧縮機を収納する第1コンテナと、
     前記発電機を収納する第2コンテナと
     を備える、請求項2に記載のコンテナ型圧縮空気貯蔵発電装置。
    The container is
    A first container for storing the compressor;
    The container type compressed air storage power generator according to claim 2 provided with the 2nd container which stores said generator.
  4.  前記圧縮機で圧縮及び昇温されて前記タンクに供給される空気と蓄熱流体とで熱交換して前記蓄熱流体を加熱する第1熱交換器と、
     前記タンクから前記発電機へ供給される空気と前記蓄熱流体とで熱交換して当該空気を加熱する第2熱交換器と、
     前記蓄熱流体を貯蔵可能であり、前記第1熱交換器及び前記第2熱交換器と流体的に接続されている蓄熱部と
     をさらに備え、
     前記圧縮機を収納する前記コンテナ内に前記第1熱交換器を収納し、前記発電機を収納する前記コンテナ内に前記第2熱交換器を収納し、前記圧縮機を収納する前記コンテナ外かつ前記発電機を収納する前記コンテナ外に前記蓄熱部を設けている、請求項2又は3に記載のコンテナ型圧縮空気貯蔵発電装置。
    A first heat exchanger that heats the heat storage fluid by exchanging heat between the air that is compressed and heated by the compressor and supplied to the tank and the heat storage fluid;
    A second heat exchanger that heats the air by exchanging heat between the air supplied from the tank to the generator and the heat storage fluid;
    A heat storage section capable of storing the heat storage fluid and fluidly connected to the first heat exchanger and the second heat exchanger;
    The first heat exchanger is housed in the container that houses the compressor, the second heat exchanger is housed in the container that houses the generator, and the outside of the container that houses the compressor; The container-type compressed air storage power generator according to claim 2 or 3, wherein the heat storage unit is provided outside the container that houses the generator.
  5.  前記蓄熱部は、
     前記第1熱交換器で加熱され、昇温した蓄熱流体を貯蔵し、この貯蔵した蓄熱流体を前記第2熱交換器に供給するよう流体的に接続された第1蓄熱タンクと、
     前記第2熱交換器で熱回収され、降温した蓄熱流体を貯蔵し、この貯蔵した蓄熱流体を前記第1熱交換器に供給するよう流体的に接続された第2蓄熱タンクと
     を備える、請求項4に記載のコンテナ型圧縮空気貯蔵発電装置。
    The heat storage unit is
    A first heat storage tank that is fluidly connected to store the stored heat storage fluid heated and heated in the first heat exchanger and to supply the stored heat storage fluid to the second heat exchanger;
    A second heat storage tank fluidly connected to store the heat storage fluid that has been heat-recovered and lowered in temperature by the second heat exchanger and to supply the stored heat storage fluid to the first heat exchanger. Item 5. The container-type compressed air storage power generator according to Item 4.
  6.  前記蓄熱部を収納する蓄熱用コンテナをさらに備える、請求項4に記載のコンテナ型圧縮空気貯蔵発電装置。 The container-type compressed air storage power generator according to claim 4, further comprising a heat storage container for storing the heat storage unit.
  7.  前記蓄熱部を収納する蓄熱用コンテナをさらに備え、
     前記蓄熱用コンテナは、前記第1蓄熱タンク及び前記第2蓄熱タンクを分けて収納するよう内部に仕切りを備える、請求項5に記載のコンテナ型圧縮空気貯蔵発電装置。
    A heat storage container for storing the heat storage section;
    6. The container-type compressed air storage power generator according to claim 5, wherein the heat storage container includes a partition inside so as to store the first heat storage tank and the second heat storage tank separately.
  8.  前記蓄熱部を収納する蓄熱用コンテナをさらに備え、
     前記蓄熱用コンテナは、
     前記第1蓄熱タンクを収納する第3コンテナと、
     前記第2蓄熱タンクを収納する第4コンテナと
     を備える、請求項5に記載のコンテナ型圧縮空気貯蔵発電装置。
    A heat storage container for storing the heat storage section;
    The heat storage container is
    A third container for storing the first heat storage tank;
    The container type compressed air storage power generator according to claim 5 provided with the 4th container which stores said 2nd heat storage tank.
  9.  前記蓄熱部を収納する前記蓄熱用コンテナは、前記蓄熱用コンテナの内側に断熱材を設けた断熱コンテナである、請求項6に記載のコンテナ型圧縮空気貯蔵発電装置。 The container type compressed air storage power generation device according to claim 6, wherein the heat storage container for storing the heat storage unit is a heat insulating container provided with a heat insulating material inside the heat storage container.
  10.  前記第1熱交換器を前記圧縮機の下方側に重なるように設置し、前記第2熱交換器を前記発電機の下方側に重なるように設置した、請求項4に記載のコンテナ型圧縮空気貯蔵発電装置。 The container-type compressed air according to claim 4, wherein the first heat exchanger is installed so as to overlap a lower side of the compressor, and the second heat exchanger is installed so as to overlap a lower side of the generator. Storage power generator.
PCT/JP2015/076771 2014-09-25 2015-09-18 Container-type compressed air storage power generation device WO2016047630A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580051965.6A CN106715869B (en) 2014-09-25 2015-09-18 Box compressed air stores power generator
US15/508,301 US10145334B2 (en) 2014-09-25 2015-09-18 Container-type compressed air storage power generation device
EP15843216.1A EP3199780B1 (en) 2014-09-25 2015-09-18 Container-type compressed air storage power generation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-195842 2014-09-25
JP2014195842 2014-09-25
JP2015001043A JP6452450B2 (en) 2014-09-25 2015-01-06 Container type compressed air storage power generator
JP2015-001043 2015-01-06

Publications (1)

Publication Number Publication Date
WO2016047630A1 true WO2016047630A1 (en) 2016-03-31

Family

ID=55581155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076771 WO2016047630A1 (en) 2014-09-25 2015-09-18 Container-type compressed air storage power generation device

Country Status (1)

Country Link
WO (1) WO2016047630A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4111057A4 (en) * 2020-02-25 2024-03-20 Kamyar Rouindej Systems and methods for compressed air energy storage and control thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849648A (en) * 1987-08-24 1989-07-18 Columbia Energy Storage, Inc. Compressed gas system and method
JPH07119485A (en) * 1993-10-22 1995-05-09 Central Res Inst Of Electric Power Ind Compressed air storage generating system
JP2000297657A (en) * 1999-04-14 2000-10-24 Ishikawajima Harima Heavy Ind Co Ltd Electric power storage type gas turbine generator facility
US20060262465A1 (en) * 2003-09-12 2006-11-23 Alstom Technology Ltd. Power-station installation
JP2012097736A (en) * 2010-10-29 2012-05-24 Nuovo Pignone Spa Inlet air cooling and moisture removal method and device in advance adiabatic compressed air energy storage system
WO2013119327A1 (en) * 2012-02-09 2013-08-15 Leonid Goldstein Thermodynamic energy storage
JP2014522938A (en) * 2011-06-28 2014-09-08 ブライト エナジー ストレージ テクノロジーズ,エルエルピー. Quasi-isothermal compression engine with separate combustor and expander and corresponding system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849648A (en) * 1987-08-24 1989-07-18 Columbia Energy Storage, Inc. Compressed gas system and method
JPH07119485A (en) * 1993-10-22 1995-05-09 Central Res Inst Of Electric Power Ind Compressed air storage generating system
JP2000297657A (en) * 1999-04-14 2000-10-24 Ishikawajima Harima Heavy Ind Co Ltd Electric power storage type gas turbine generator facility
US20060262465A1 (en) * 2003-09-12 2006-11-23 Alstom Technology Ltd. Power-station installation
JP2012097736A (en) * 2010-10-29 2012-05-24 Nuovo Pignone Spa Inlet air cooling and moisture removal method and device in advance adiabatic compressed air energy storage system
JP2014522938A (en) * 2011-06-28 2014-09-08 ブライト エナジー ストレージ テクノロジーズ,エルエルピー. Quasi-isothermal compression engine with separate combustor and expander and corresponding system and method
WO2013119327A1 (en) * 2012-02-09 2013-08-15 Leonid Goldstein Thermodynamic energy storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4111057A4 (en) * 2020-02-25 2024-03-20 Kamyar Rouindej Systems and methods for compressed air energy storage and control thereof

Similar Documents

Publication Publication Date Title
JP6452450B2 (en) Container type compressed air storage power generator
JP6456236B2 (en) Compressed air storage generator
JP6511378B2 (en) Compressed air storage power generation device and compressed air storage power generation method
US10168078B2 (en) Refrigeration system
KR102045273B1 (en) Heat pump
JP6276060B2 (en) Gas supply system and hydrogen station
CN104520649B (en) The outdoor unit of freezing cycle device
ES2955994T3 (en) Electric energy thermal accumulator with a fixed bed heat accumulator and a fixed bed cold accumulator, and operating method of an electric energy thermal accumulator
JP6276160B2 (en) Gas supply system and hydrogen station
WO2015125585A1 (en) Gas supply system and hydrogen station
CN203758012U (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply system
US20230358425A1 (en) Modular encapsulated heat pumps
US10570783B2 (en) Power generation system using supercritical carbon dioxide
WO2019163348A1 (en) Compressed air energy storage and power generation device
US20160187893A1 (en) System and method using parallel compressor units
WO2016047630A1 (en) Container-type compressed air storage power generation device
US11280524B2 (en) Systems for a chiller electrical enclosure
US11952941B2 (en) Compressed air energy storage power generation device
JP6906013B2 (en) heat pump
US20120205918A1 (en) Power Generator
TWM497760U (en) Solar energy refrigerant device for cooling and heating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15508301

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015843216

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843216

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE