JP4650171B2 - Geothermal heat pump water heater - Google Patents

Geothermal heat pump water heater Download PDF

Info

Publication number
JP4650171B2
JP4650171B2 JP2005250069A JP2005250069A JP4650171B2 JP 4650171 B2 JP4650171 B2 JP 4650171B2 JP 2005250069 A JP2005250069 A JP 2005250069A JP 2005250069 A JP2005250069 A JP 2005250069A JP 4650171 B2 JP4650171 B2 JP 4650171B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
brine
water
refrigerant heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005250069A
Other languages
Japanese (ja)
Other versions
JP2007064540A (en
Inventor
丈二 黒木
昌宏 高津
正人 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005250069A priority Critical patent/JP4650171B2/en
Publication of JP2007064540A publication Critical patent/JP2007064540A/en
Application granted granted Critical
Publication of JP4650171B2 publication Critical patent/JP4650171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

本発明は、冷媒圧縮式冷凍サイクルを用いて給湯用水の加熱を行うとともに、冷媒への吸熱に地熱を利用した地熱利用ヒートポンプ式給湯器に関するもので、特に圧縮機の遮音構造に関するものである。   The present invention relates to a geothermal heat pump water heater that uses hot water for hot water supply using a refrigerant compression refrigeration cycle and uses geothermal heat to absorb heat to the refrigerant, and more particularly to a sound insulation structure of a compressor.

図6は、従来のヒートポンプ式給湯器本体ユニット1aの平面構造図である。その構造を見ると、圧縮機2や冷媒回路部品3・4・6、給湯回路部品7、図示しない電気回路部品などが収められた圧縮機室Cと、空気冷媒熱交換器50とその熱交換器50に外気を送風するファン&モータ51が収められた熱交換器室HEとが、通風部分を仕切るための仕切り板Sによって分割されている。また近年、冷媒への吸熱に地中の地熱を利用したヒートポンプ式給湯器がある。そして、これらのヒートポンプ式給湯器の本体ユニットにおいては、各部品毎に発生する音を遮音することで運転時の騒音を低減している。   FIG. 6 is a plan view of a conventional heat pump hot water supply body unit 1a. The structure shows that the compressor chamber C in which the compressor 2, the refrigerant circuit parts 3, 4, 6 and the hot water supply circuit parts 7, the electric circuit parts (not shown) and the like are housed, the air refrigerant heat exchanger 50 and its heat exchange. A heat exchanger chamber HE in which a fan & motor 51 that blows outside air is stored in the chamber 50 is divided by a partition plate S for partitioning a ventilation portion. In recent years, there is a heat pump type water heater that uses underground geothermal heat to absorb heat into the refrigerant. And in the main body unit of these heat pump type water heaters, noise during operation is reduced by insulating sound generated for each part.

しかしながら、上記従来のヒートポンプ式給湯器の本体ユニットは、各部品に遮音材などを取り付けるため、ユニットが大型化し、コストが嵩むという問題点がある。本発明は、上記従来の問題点に鑑みて成されたものであり、その目的は、地熱利用のヒートポンプ式給湯器に適した本体ユニット内の配置として、本体ユニットの小型化、およびコストを抑えることのできる地熱利用ヒートポンプ式給湯器を提供することにある。   However, the main unit of the conventional heat pump type hot water heater has a problem that the sound insulation material and the like are attached to the respective parts, so that the unit becomes large and the cost increases. The present invention has been made in view of the above-described conventional problems, and its purpose is to reduce the size and cost of the main unit as an arrangement in the main unit suitable for a heat pump type water heater using geothermal heat. An object of the present invention is to provide a geothermal heat pump type hot water heater that can be used.

本発明は上記目的を達成するために、請求項1ないし請求項5に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、冷媒を圧縮する圧縮機(2)、水冷媒熱交換器(3)の冷媒通路(3a)、減圧手段(4)、およびブライン冷媒熱交換器(5)の冷媒通路(5a)を冷媒配管で環状に接続した冷媒回路(R)と、
水冷媒熱交換器(3)の湯水通路(3b)、貯湯側から湯を貯湯して行く貯湯タンク(8)、および水循環ポンプ(7)を湯水配管で環状に接続した給湯回路(K)と、
ブライン冷媒熱交換器(5)のブライン通路(5b)、ブライン循環ポンプ(10)、および地中の地熱を吸熱するための地中熱交換器(11)をブライン配管で環状に接続したブライン回路(B)とを備え、
圧縮機(2)および両循環ポンプ(7、10)を作動させて冷媒通路(3a)を通過する高温の冷媒により湯水通路(3b)を通過する湯水を加熱する地熱利用ヒートポンプ式給湯器であり、
水冷媒熱交換器(3)の湯水通路(3b)およびブライン冷媒熱交換器(5)のブライン通路(5b)は、それぞれ浅底容器形の銅板からなる上下2枚のプレート(21、22)を有する薄型矩形の箱体であり、
少なくとも圧縮機(2)、水冷媒熱交換器(3)、およびブライン冷媒熱交換器(5)を同一の筐体(1a)内に収めるとともに、水冷媒熱交換器(3)の平面と、それに対向させて配置したブライン冷媒熱交換器(5)の平面とを結んだ間の空間内に圧縮機(2)を配設したことを特徴としている。
In order to achieve the above object, the present invention employs technical means described in claims 1 to 5. That is, in the invention described in claim 1, the compressor (2) for compressing the refrigerant, the refrigerant passage (3a) of the water refrigerant heat exchanger (3), the decompression means (4), and the brine refrigerant heat exchanger (5) A refrigerant circuit (R) in which the refrigerant passage (5a) is annularly connected by refrigerant piping;
A hot water passage (3b) of the water-refrigerant heat exchanger (3), a hot water storage tank (8) for storing hot water from the hot water storage side, and a hot water supply circuit (K) in which a water circulation pump (7) is annularly connected by hot water piping. ,
A brine circuit in which a brine passage (5b) of the brine refrigerant heat exchanger (5), a brine circulation pump (10), and a geothermal heat exchanger (11) for absorbing the geothermal heat in the ground are connected in an annular manner by a brine pipe. (B)
A geothermal heat pump type water heater that operates hot water passing through the hot water passage (3b) by a high-temperature refrigerant passing through the refrigerant passage (3a) by operating the compressor (2) and both circulation pumps (7, 10). ,
The hot water passage (3b) of the water refrigerant heat exchanger (3) and the brine passage (5b) of the brine refrigerant heat exchanger (5) are two upper and lower plates (21, 22) each made of a shallow vessel-shaped copper plate. A thin rectangular box having
At least the compressor (2), the water refrigerant heat exchanger (3), and the brine refrigerant heat exchanger (5) are housed in the same housing (1a), and the plane of the water refrigerant heat exchanger (3); The compressor (2) is disposed in a space between the brine refrigerant heat exchanger (5) and the plane of the brine refrigerant heat exchanger (5) disposed so as to face it.

これは、地熱利用であることから、冷凍サイクルの放熱側も給熱側も冷媒と水もしくはブライン水との熱交換器となり、空気との熱交換のように通風性の必要ない、言い換えれば表裏で貫通する部分のない熱交換器を複数構成することとなる。これにより、まず送風しながらの熱交換がなくなることで第1の音源である送風(通風)による音がなくなる。   Since this is geothermal use, both the heat release side and the heat supply side of the refrigeration cycle become a heat exchanger between the refrigerant and water or brine water, and air exchange is not necessary like heat exchange with air. Thus, a plurality of heat exchangers having no penetrating part are formed. As a result, there is no sound exchanged by the first sound source (ventilation) by eliminating heat exchange while blowing.

また、表裏で貫通する部分のない熱交換器にて圧縮機(2)を挟むことにより熱交換器が遮音壁となって第2の音源である圧縮機(2)の運転音を遮音して運転時の騒音を低減することができる。また、循環ポンプ(7、10)を本体ユニット(1a)内に内蔵していれば、完全ではないまでも、この循環ポンプ(7、10)の運転音に対しても同様の遮音効果が得られる。   In addition, the compressor (2) is sandwiched between heat exchangers that do not penetrate through the front and back, so that the heat exchanger acts as a sound insulation wall and the operation sound of the compressor (2) as the second sound source is cut off. Noise at the time can be reduced. In addition, if the circulation pumps (7, 10) are built in the main unit (1a), a similar sound insulation effect can be obtained for the operation sound of the circulation pumps (7, 10), if not completely. It is done.

さらに、ヒートポンプサイクル運転時に冷媒が配管内を通過することによって生じる冷媒通過音に対しても同様の遮音効果が得られる。これらのことより、この請求項1に記載の発明によれば、従来構成していた仕切り板Sや各部品の遮音材などをなくすことができ、本体ユニット(1a)を小型化できるうえ、コストを抑えることができる。   Furthermore, the same sound insulation effect can be obtained with respect to the refrigerant passing sound generated when the refrigerant passes through the pipe during the heat pump cycle operation. Therefore, according to the first aspect of the present invention, the partition plate S and the sound insulation material of each component that have been conventionally configured can be eliminated, the main unit (1a) can be reduced in size, and the cost can be reduced. Can be suppressed.

また、請求項2に記載の発明では、請求項1に記載の地熱利用ヒートポンプ式給湯器において、水冷媒熱交換器(3)およびブライン冷媒熱交換器(5)を板状に製作したことを特徴としている。この請求項2に記載の発明によれば、両熱交換器(3、5)を遮音壁として利用することが可能となる。   Moreover, in invention of Claim 2, in the heat pump type water heater using geothermal heat of Claim 1, the water refrigerant heat exchanger (3) and the brine refrigerant heat exchanger (5) are manufactured in a plate shape. It is a feature. According to the second aspect of the present invention, both heat exchangers (3, 5) can be used as a sound insulation wall.

また、請求項3に記載の発明では、請求項1または請求項2に記載の地熱利用ヒートポンプ式給湯器において、水冷媒熱交換器(3)およびブライン冷媒熱交換器(5)は、筐体(1a)の前後方向に配置したことを特徴としている。この請求項3に記載の発明によれば、圧縮機(2)の運転音が前後方向に放射されるのを効果的に遮断することができる。   According to a third aspect of the present invention, in the geothermal heat pump water heater according to the first or second aspect, the water refrigerant heat exchanger (3) and the brine refrigerant heat exchanger (5) are a casing. It is characterized by being arranged in the front-rear direction of (1a). According to the third aspect of the present invention, the operation sound of the compressor (2) can be effectively blocked from being emitted in the front-rear direction.

また、請求項4に記載の発明では、請求項1ないし請求項3のうちいずれか1項に記載の地熱利用ヒートポンプ式給湯器において、水冷媒熱交換器(3)およびブライン冷媒熱交換器(5)の外面を断熱部材(25)で覆ったことを特徴としている。この請求項4に記載の発明によれば、両熱交換器(3、5)を発泡材などの断熱部材(25)で覆うことにより、この断熱部材(25)を吸音材として利用することが可能であり、コストと騒音を抑えて性能を向上させることができる。   Moreover, in invention of Claim 4, in the geothermal heat pump water heater of any one of Claims 1 thru | or 3, a water refrigerant | coolant heat exchanger (3) and a brine refrigerant | coolant heat exchanger ( The outer surface of 5) is covered with a heat insulating member (25). According to the fourth aspect of the present invention, by covering the heat exchangers (3, 5) with a heat insulating member (25) such as a foam material, the heat insulating member (25) can be used as a sound absorbing material. It is possible to improve the performance by reducing the cost and noise.

また、請求項5に記載の発明では、請求項1ないし請求項4のうちいずれか1項に記載の地熱利用ヒートポンプ式給湯器において、水冷媒熱交換器(3)、ブライン冷媒熱交換器(5)のいずれか一方、もしくは両方を複数に分割し、これらで圧縮機(2)を取り囲むように配置したことを特徴としている。   Moreover, in invention of Claim 5, in the heat pump type water heater using geothermal heat described in any one of Claims 1 to 4, a water refrigerant heat exchanger (3), a brine refrigerant heat exchanger ( Any one of 5) or both are divided into a plurality of parts, and these are arranged so as to surround the compressor (2).

この請求項5に記載の発明によれば、この分割した両熱交換器(3、5)を圧縮機(2)の左右方向にも配置することで、前後方向に配置された両熱交換器(3、5)で反射された圧縮機(2)の運転音が左右方向に放射されるのを効果的に遮断することができる。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   According to the fifth aspect of the present invention, by arranging the divided heat exchangers (3, 5) also in the left-right direction of the compressor (2), the both heat exchangers arranged in the front-rear direction. The operation sound of the compressor (2) reflected by (3, 5) can be effectively blocked from being emitted in the left-right direction. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.

(第1実施形態)
本発明の第1実施形態(請求項1〜4に対応)を、図1〜図4に基づいて説明する。図1は、本発明の実施形態に係わる地熱利用ヒートポンプ式給湯器(以下、給湯器と略す)1の構成を示す模式図であり、図2は、図1中の水冷媒熱交換器3の一例を示す正面図である。また図3は、図2の水冷媒熱交換器3の下面図であり、図4は、本発明の第1実施形態における給湯器の本体ユニット1aの平面構造図である。
(First embodiment)
A first embodiment (corresponding to claims 1 to 4) of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a configuration of a geothermal heat pump water heater (hereinafter abbreviated as a water heater) 1 according to an embodiment of the present invention, and FIG. 2 is a diagram of a water refrigerant heat exchanger 3 in FIG. It is a front view which shows an example. 3 is a bottom view of the water-refrigerant heat exchanger 3 of FIG. 2, and FIG. 4 is a plan view of the main unit 1a of the water heater in the first embodiment of the present invention.

給湯器1は、大別して本体ユニット1aと貯湯タンクユニット1bとからなる。本体ユニット1aには、冷媒を圧縮するコンプレッサ(圧縮機)2、水冷媒熱交換器3の冷媒通路3a、減圧手段としての電気式膨張弁4、およびブライン冷媒熱交換器5の冷媒通路5aを冷媒配管で環状に接続して冷媒回路Rとしている。   The water heater 1 is roughly divided into a main unit 1a and a hot water storage tank unit 1b. The main unit 1a includes a compressor (compressor) 2 for compressing the refrigerant, a refrigerant passage 3a for the water refrigerant heat exchanger 3, an electric expansion valve 4 as decompression means, and a refrigerant passage 5a for the brine refrigerant heat exchanger 5. A refrigerant circuit R is formed by connecting the refrigerant pipes in an annular shape.

なお本実施形態では、ブライン冷媒熱交換器5の下流側に、ブライン冷媒熱交換器5で蒸発した冷媒を気液分離してサイクル中の余剰冷媒を蓄えるとともに、ガス冷媒のみコンプレッサ2に吸引させるためのアキュームレータ6を配設している。また、水冷媒熱交換器3の湯水通路3b、水循環ポンプ7、および貯湯タンク8を湯水配管で環状に接続して給湯回路Kとしている。   In the present embodiment, the refrigerant evaporated in the brine refrigerant heat exchanger 5 is gas-liquid separated on the downstream side of the brine refrigerant heat exchanger 5 to store surplus refrigerant in the cycle, and only the gas refrigerant is sucked into the compressor 2. An accumulator 6 is provided for this purpose. The hot water passage 3b, the water circulation pump 7, and the hot water storage tank 8 of the water refrigerant heat exchanger 3 are connected in a ring shape with hot water piping to form a hot water supply circuit K.

また、本実施形態の特徴の一つとして、ブライン冷媒熱交換器5のブライン通路5b、ブライン循環ポンプ10、および地中の地熱を吸熱するための地中熱交換器11をブライン配管で環状に接続してブライン回路Bとしている。なお地中熱交換器11は、地中の10〜100m程まで掘られたボアホールBHの中にUパイプを入れたものである。流通させるブラインとしてはエチレングリコールを用いている。また、本実施形態では、ブライン冷媒熱交換器5の下流側に、ブラインの温度による体積変化を吸収する液溜めとしての膨張タンク9を配設している。   Further, as one of the features of the present embodiment, the brine passage 5b of the brine refrigerant heat exchanger 5, the brine circulation pump 10, and the underground heat exchanger 11 for absorbing the geothermal heat in the ground are annularly formed by brine piping. A brine circuit B is connected. In addition, the underground heat exchanger 11 puts a U pipe in the borehole BH dug to about 10-100 m in the ground. Ethylene glycol is used as the circulating brine. Further, in the present embodiment, an expansion tank 9 is disposed on the downstream side of the brine refrigerant heat exchanger 5 as a liquid reservoir that absorbs a volume change due to the temperature of the brine.

そして、コンプレッサ2、電気式膨張弁4、水循環ポンプ7、およびブライン循環ポンプ10を制御する図示しない制御手段としての制御装置を備えている。その制御装置が、コンプレッサ2、電気式膨張弁4、水循環ポンプ7、ブライン循環ポンプ10を制御してヒートポンプ運転を行い、水冷媒熱交換器3の冷媒通路3aを通過する高温の冷媒と、湯水通路3bを通過する湯水とを熱交換して湯水を加熱する。   And the control apparatus as a control means (not shown) which controls the compressor 2, the electric expansion valve 4, the water circulation pump 7, and the brine circulation pump 10 is provided. The control device controls the compressor 2, the electric expansion valve 4, the water circulation pump 7, and the brine circulation pump 10 to perform the heat pump operation, the high-temperature refrigerant passing through the refrigerant passage 3 a of the water-refrigerant heat exchanger 3, and hot water The hot water is heated by exchanging heat with the hot water passing through the passage 3b.

コンプレッサ2は、図示しない電気モータによって駆動される電動コンプレッサであり、吸引したガス冷媒を臨界圧力以上に圧縮して吐出する。なお本実施例では、冷媒として臨界圧力の低い二酸化炭素(CO)冷媒を用いているため、コンプレッサ2は、吐出側の高圧冷媒圧力が冷媒の臨界点を越える圧力となるように運転されている。このため、水冷媒熱交換器3の出口側の冷媒が超臨界状態となるので、熱交換の状態により冷媒がどの相域にも変化する。なお、コンプレッサ2の冷媒吐出量は、電気モータの回転数に応じて可変可能である。 The compressor 2 is an electric compressor that is driven by an electric motor (not shown), and compresses and discharges the sucked gas refrigerant to a critical pressure or higher. In the present embodiment, since the carbon dioxide (CO 2 ) refrigerant having a low critical pressure is used as the refrigerant, the compressor 2 is operated so that the high-pressure refrigerant pressure on the discharge side exceeds the critical point of the refrigerant. Yes. For this reason, since the refrigerant on the outlet side of the water refrigerant heat exchanger 3 is in a supercritical state, the refrigerant changes into any phase region depending on the state of heat exchange. In addition, the refrigerant | coolant discharge amount of the compressor 2 can be changed according to the rotation speed of an electric motor.

水冷媒熱交換器3は、コンプレッサ2で圧縮された高温高圧のガス冷媒と給湯用水とを熱交換するものであり、冷媒が通過する冷媒通路3aと、湯水が通過する湯水通路3bとが隣接して設けられ、冷媒の流れ方向と湯水の流れ方向とが対向する様に構成されている。   The water-refrigerant heat exchanger 3 exchanges heat between the high-temperature and high-pressure gas refrigerant compressed by the compressor 2 and hot water supply water, and the refrigerant passage 3a through which the refrigerant passes and the hot-water passage 3b through which the hot water passes are adjacent to each other. The refrigerant flow direction is opposite to the hot water flow direction.

より具体的には図2・3に示すように、銅板を浅底容器形に絞り成形した上下2枚のプレート(上プレート21、下プレート22)を、その周縁を接合して薄型矩形の箱体3bを形成し、箱体の周縁に入口23を開口し、その対向辺に出口24を開口し、入口23から出口24に至る湯水通路3bを形成している。   More specifically, as shown in FIGS. 2 and 3, a thin rectangular box is formed by joining two upper and lower plates (upper plate 21 and lower plate 22) obtained by drawing a copper plate into a shallow container shape and joining the peripheral edges thereof. The body 3b is formed, the inlet 23 is opened at the peripheral edge of the box, the outlet 24 is opened at the opposite side, and the hot water passage 3b from the inlet 23 to the outlet 24 is formed.

箱体3b内には、銅板を波形成形した図示しないコルゲート板が収納され、このコルゲート板は、上下折り返し面(山面、谷面)を平坦状とし、断面を連続する矩形波としたプレーン型に形成され、その外形(縦×横×高さ)が箱体3bの内寸に適合している。コルゲート板は箱体3b内に収納され、上下折り返し面をそれぞれ上下プレート21・22に接合している。   A corrugated plate (not shown) obtained by corrugating a copper plate is accommodated in the box 3b. The corrugated plate has a plane shape in which the upper and lower folded surfaces (mountains and valleys) are flat and the cross section is a continuous rectangular wave. The outer shape (length × width × height) is adapted to the inner size of the box 3b. The corrugated plate is housed in the box 3b, and the upper and lower folded surfaces are joined to the upper and lower plates 21 and 22, respectively.

冷媒通路3aは、密着並置した2本の銅製細管3aを、箱体3bの外周に螺旋状に巻装して形成され、細管3aは、箱体3bの両平坦面(表側及び裏側)に接合されている。そして、箱体3bの外周に巻かれた細管3aのさらに外周側は、発泡材などの断熱部材25で覆っている。   The refrigerant passage 3a is formed by spirally winding two copper thin tubes 3a arranged in close contact with each other on the outer periphery of the box 3b. The thin tubes 3a are joined to both flat surfaces (front side and back side) of the box 3b. Has been. And the further outer peripheral side of the thin tube 3a wound around the outer periphery of the box 3b is covered with a heat insulating member 25 such as a foam material.

この水冷媒熱交換器3は、コルゲート板を収納し、上下プレート21・22の周縁に形成したフランジを当接して箱体3bを仮組みし、箱体3bに細管3aを巻装し、各接合面にロウ材を設置して所定治具で組み立てる。この組立品を加熱炉内に投入してロウ付けし、一度の工程で一括した接合で製作される。   The water-refrigerant heat exchanger 3 houses a corrugated plate, abuts flanges formed on the peripheral edges of the upper and lower plates 21 and 22 to temporarily assemble the box 3b, winds the thin tube 3a around the box 3b, A brazing material is placed on the joint surface and assembled with a predetermined jig. This assembly is put into a heating furnace, brazed, and manufactured in a single process in a batch.

以上のように構成した水冷媒熱交換器3において、入口23から箱体3b内に流入した水は通水路を流通し、箱体3bに螺旋状に巻装した細管3a内を高温・高圧冷媒が流通し、箱体3bの両平坦面を介して熱交換が行われてコルゲート板の壁面が伝熱フィンとして機能し、水が加熱されて出口24から出湯する。なお、上述した水冷媒熱交換器3の具体的な構造は一例であり、本発明はこの構造に限られるものではない。   In the water-refrigerant heat exchanger 3 configured as described above, the water flowing into the box 3b from the inlet 23 flows through the water passage, and the high-temperature / high-pressure refrigerant passes through the narrow tube 3a spirally wound around the box 3b. Circulates, heat exchange is performed via both flat surfaces of the box 3b, the wall surface of the corrugated plate functions as a heat transfer fin, water is heated, and hot water is discharged from the outlet 24. In addition, the specific structure of the water refrigerant heat exchanger 3 described above is an example, and the present invention is not limited to this structure.

膨張弁4は、水冷媒熱交換器3の冷媒通路3aとブライン冷媒熱交換器5の冷媒通路5aとの間を接続する冷媒回路中に設けられており、水冷媒熱交換器3の冷媒通路3aを通過して冷却された冷媒が膨張弁4を通過する際に減圧されてブライン冷媒熱交換器5の冷媒通路5aに送られる。なお、膨張弁4は、制御装置からの出力によって弁開度を可変制御できる電気式膨張弁となっている。   The expansion valve 4 is provided in a refrigerant circuit that connects between the refrigerant passage 3 a of the water refrigerant heat exchanger 3 and the refrigerant passage 5 a of the brine refrigerant heat exchanger 5, and the refrigerant passage of the water refrigerant heat exchanger 3. The refrigerant that has passed through 3a and is cooled is reduced in pressure when passing through the expansion valve 4 and is sent to the refrigerant passage 5a of the brine refrigerant heat exchanger 5. The expansion valve 4 is an electric expansion valve that can variably control the valve opening degree according to the output from the control device.

ブライン冷媒熱交換器5は、地中熱交換器11で地中の地熱を吸熱したブラインと、膨張弁4で減圧された冷媒とを熱交換して冷媒を蒸発させるものであり、冷媒が通過する冷媒通路5aと、ブラインが通過するブライン通路5bとが隣接して設けられ、冷媒の流れ方向とブラインの流れ方向とが対向する様に構成されている。なお、具体的な構造は上述した水冷媒熱交換器3と全く同じ構造である。なおブラインを流通させるブライン循環ポンプ10も制御装置からの出力によって駆動制御されている。   The brine refrigerant heat exchanger 5 evaporates the refrigerant by exchanging heat between the brine that has absorbed the geothermal heat in the ground with the underground heat exchanger 11 and the refrigerant that has been decompressed by the expansion valve 4, and the refrigerant passes through it. The refrigerant passage 5a and the brine passage 5b through which the brine passes are provided adjacent to each other, and the refrigerant flow direction and the brine flow direction are opposed to each other. The specific structure is exactly the same as that of the water refrigerant heat exchanger 3 described above. The brine circulation pump 10 for circulating the brine is also driven and controlled by the output from the control device.

水循環ポンプ7は、貯湯タンク8内の給湯用水が、底部出口8aから水冷媒熱交換器3の湯水通路3bを経て、上部入口8bから貯湯タンク8内へ戻る水流を発生させる。制御装置は、水循環ポンプ7の回転数を図示しないポンプモータへの通電量を制御することによって行い、図示しない沸き上げ温度センサで検出する沸き上げ温度が目標給湯温度となるよう給湯回路Kの循環流量の調整を行う。   The water circulation pump 7 generates a water flow in which the hot water in the hot water storage tank 8 returns from the bottom outlet 8 a to the hot water storage tank 8 through the hot water passage 3 b of the water refrigerant heat exchanger 3 and from the upper inlet 8 b. The control device controls the rotation speed of the water circulation pump 7 by controlling the amount of power supplied to a pump motor (not shown), and circulates the hot water supply circuit K so that the boiling temperature detected by a boiling temperature sensor (not shown) becomes the target hot water temperature. Adjust the flow rate.

貯湯タンク8は、耐蝕性に優れた金属(例えばステンレス)で形成され、給湯用の温水を長時間に亘って保温可能な断熱構造を備える。そして、貯湯タンク8内の温水は、台所・風呂・床暖房・室内暖房・浴室乾燥などに用いられる。   The hot water storage tank 8 is formed of a metal (for example, stainless steel) having excellent corrosion resistance, and includes a heat insulating structure that can keep hot water for hot water supply for a long time. The hot water in the hot water storage tank 8 is used for kitchen, bath, floor heating, indoor heating, bathroom drying, and the like.

次に、本発明の要部について図4を用いて説明する。本体ユニット1aの内部において、コンプレッサ2・水冷媒熱交換器3・膨張弁4・アキュームレータ6・水循環ポンプ7は、図6で示した従来のヒートポンプ式給湯器の本体ユニット1aと同様に圧縮機室Cであった部分に納めている。そして、空気冷媒熱交換器50が配置されていた部分には代わりにブライン冷媒熱交換器5を配置し、熱交換器室HEであった部分には膨張タンク9とブライン循環ポンプ10とを収めるようにしたものである。   Next, the main part of the present invention will be described with reference to FIG. Inside the main body unit 1a, the compressor 2, the water refrigerant heat exchanger 3, the expansion valve 4, the accumulator 6, and the water circulation pump 7 are in the compressor chamber in the same manner as the main body unit 1a of the conventional heat pump water heater shown in FIG. I put it in the part that was C. The brine refrigerant heat exchanger 5 is disposed instead of the portion where the air refrigerant heat exchanger 50 is disposed, and the expansion tank 9 and the brine circulation pump 10 are accommodated in the portion which is the heat exchanger chamber HE. It is what I did.

なお、水冷媒熱交換器3もブライン冷媒熱交換器5も板状に形成され、その両熱交換器3・5がユニット1aの前後方向で対向するように配置しているうえ、その両熱交換器3・5の平面同士を結んだ間の空間内にコンプレッサ2を配設している。また、通風部分は無くなるため、従来の空間分割のための仕切り板は無くしている。   In addition, both the water refrigerant heat exchanger 3 and the brine refrigerant heat exchanger 5 are formed in a plate shape, and both the heat exchangers 3 and 5 are arranged so as to face each other in the front-rear direction of the unit 1a. The compressor 2 is disposed in the space between the planes of the exchangers 3 and 5. Moreover, since there is no ventilation part, the partition plate for the conventional space division is eliminated.

次に、本実施形態での特徴と、その効果について述べる。まず、少なくともコンプレッサ2・水冷媒熱交換器3・ブライン冷媒熱交換器5を同一の筐体の本体ユニット1a内に収めるとともに、水冷媒熱交換器3の平面と、それに対向させて配置したブライン冷媒熱交換器5の平面とを結んだ間の空間内にコンプレッサ2を配設している。   Next, features and effects of this embodiment will be described. First, at least the compressor 2, the water refrigerant heat exchanger 3, and the brine refrigerant heat exchanger 5 are housed in the main unit 1 a of the same housing, and the plane of the water refrigerant heat exchanger 3 and the brine arranged to face the plane The compressor 2 is disposed in the space between the plane of the refrigerant heat exchanger 5 and the plane.

これは、地熱利用であることから、冷凍サイクルの放熱側も給熱側も冷媒と水もしくはブライン水との熱交換器となり、空気との熱交換のように通風性の必要ない、言い換えれば表裏で貫通する部分のない熱交換器3・5の複数で構成することとなる。これにより、まず送風しながらの熱交換がなくなることで第1の音源である送風(通風)による音がなくなる。   Since this is geothermal use, both the heat release side and the heat supply side of the refrigeration cycle become a heat exchanger between the refrigerant and water or brine water, and air exchange is not necessary like heat exchange with air. Thus, the heat exchangers 3 and 5 having no penetrating portion are used. As a result, there is no sound exchanged by the first sound source (ventilation) by eliminating heat exchange while blowing.

また、表裏で貫通する部分のない熱交換器3・5にてコンプレッサ2を挟むことにより熱交換器3・5が遮音壁となって第2の音源であるコンプレッサ2の運転音を遮音して運転時の騒音を低減することができる。また、循環ポンプ7・10を本体ユニット1a内に内蔵しており、完全ではないまでも、この循環ポンプ7・10の運転音に対しても同様の遮音効果が得られる。   In addition, when the compressor 2 is sandwiched between the heat exchangers 3 and 5 that do not penetrate through the front and back surfaces, the heat exchangers 3 and 5 serve as sound insulation walls, and the operation sound of the compressor 2 that is the second sound source is insulated. Noise at the time can be reduced. Further, since the circulation pumps 7 and 10 are built in the main unit 1a, the same sound insulation effect can be obtained for the operation sound of the circulation pumps 7 and 10 if not completely.

さらに、ヒートポンプサイクル運転時に冷媒が配管内を通過することによって生じる冷媒通過音に対しても同様の遮音効果が得られる。これらのことより、従来構成していた仕切り板Sや各部品の遮音材などをなくすことができ、本体ユニット1aを小型化できるうえ、コストを抑えることができる。   Furthermore, the same sound insulation effect can be obtained with respect to the refrigerant passing sound generated when the refrigerant passes through the pipe during the heat pump cycle operation. From these things, the partition board S currently comprised conventionally, the sound-insulating material of each component, etc. can be eliminated, and the main body unit 1a can be reduced in size and the cost can be suppressed.

また水冷媒熱交換器3およびブライン冷媒熱交換器5を板状に製作している。これによれば、両熱交換器3・5を遮音壁として利用することが可能となる。また、水冷媒熱交換器3およびブライン冷媒熱交換器5は、本体ユニットの筐体1aの前後方向に配置している。これによれば、コンプレッサ2の運転音が前後方向に放射されるのを効果的に遮断することができる。   Further, the water refrigerant heat exchanger 3 and the brine refrigerant heat exchanger 5 are manufactured in a plate shape. According to this, it becomes possible to use both the heat exchangers 3 and 5 as a sound insulation wall. The water refrigerant heat exchanger 3 and the brine refrigerant heat exchanger 5 are arranged in the front-rear direction of the housing 1a of the main unit. According to this, it is possible to effectively block the operation sound of the compressor 2 from being emitted in the front-rear direction.

また、水冷媒熱交換器3およびブライン冷媒熱交換器5の外面を断熱部材25で覆っている。これによれば、両熱交換器3・5を発泡材などの断熱部材25で覆うことにより、この断熱部材25を吸音材として利用することが可能であり、コストと騒音を抑えて性能を向上させることができる。   Further, the outer surfaces of the water refrigerant heat exchanger 3 and the brine refrigerant heat exchanger 5 are covered with a heat insulating member 25. According to this, by covering both heat exchangers 3 and 5 with a heat insulating member 25 such as a foam material, it is possible to use this heat insulating member 25 as a sound absorbing material, and the performance is improved while suppressing cost and noise. Can be made.

(第2実施形態)
図5は、本発明の第2実施形態(請求項5に対応)における地熱利用ヒートポンプ式給湯器1の本体ユニット1aの平面構造図である。上述した第1実施形態と異なる特徴部分を説明する。本実施形態では、水冷媒熱交換器3、ブライン冷媒熱交換器5のいずれか一方、もしくは両方を複数に分割し、これらでコンプレッサ2を取り囲むように配置している。
(Second Embodiment)
FIG. 5 is a plan structural view of the main unit 1a of the geothermal heat pump water heater 1 according to the second embodiment (corresponding to claim 5) of the present invention. Features that are different from the above-described first embodiment will be described. In this embodiment, one or both of the water refrigerant heat exchanger 3 and the brine refrigerant heat exchanger 5 are divided into a plurality of parts, and these are arranged so as to surround the compressor 2.

これによれば、この分割した両熱交換器31・32・51・52をコンプレッサ2の左右方向にも配置することで、前後方向に配置された両熱交換器3・5で反射されたコンプレッサ2の運転音が左右方向に放射されるのを効果的に遮断することができる。   According to this, the divided heat exchangers 31, 32, 51, 52 are also arranged in the left-right direction of the compressor 2, so that the compressor reflected by the heat exchangers 3, 5 arranged in the front-rear direction. It is possible to effectively block the operation sound 2 from being radiated in the left-right direction.

(その他の実施形態)
上述の実施形態では、貯湯式の給湯器としているが、本発明は上述した実施形態に限定されるものではなく、貯湯式ではない給湯器に適用しても良いし、貯湯タンク8の代わりにパネルヒータや床暖房パネルなどを接続したヒートポンプ式暖房(乾燥)装置に適用しても良いし、その他の用途で流体を加熱するヒートポンプ式加熱装置に適用しても良い。
(Other embodiments)
In the above-described embodiment, a hot water storage type hot water heater is used. However, the present invention is not limited to the above embodiment, and may be applied to a non-hot water storage type water heater. You may apply to the heat pump type heating (drying) apparatus which connected the panel heater, the floor heating panel, etc., and may apply to the heat pump type heating apparatus which heats a fluid by other uses.

また、上述の実施例では、給湯器本体ユニット1a内に水循環ポンプ7を内蔵しているが、このポンプ7はタンクユニット1b側に構成しても良い。また、ブライン循環ポンプ10と膨張タンク9は本体ユニット1a外に設けても良い。また逆に、圧縮機2に吸入される低温冷媒と水冷媒熱交換器3から流出する高温冷媒とを熱交換させる内部熱交換器を本体ユニット1a内に構成しても良い。また、上述の実施形態では減圧手段として電気式膨張弁を用いているが、機械温度式膨張弁、キャピラリーチューブ、エジェクターなど、他の減圧手段を用いても良い。   Moreover, in the above-mentioned Example, although the water circulation pump 7 is incorporated in the water heater main body unit 1a, you may comprise this pump 7 in the tank unit 1b side. The brine circulation pump 10 and the expansion tank 9 may be provided outside the main unit 1a. Conversely, an internal heat exchanger for exchanging heat between the low-temperature refrigerant sucked into the compressor 2 and the high-temperature refrigerant flowing out of the water refrigerant heat exchanger 3 may be configured in the main unit 1a. In the above-described embodiment, an electric expansion valve is used as the pressure reducing means. However, other pressure reducing means such as a mechanical temperature expansion valve, a capillary tube, and an ejector may be used.

本発明の実施形態に係わる地熱利用ヒートポンプ式給湯器1の構成を示す模式図である。It is a schematic diagram which shows the structure of the geothermal utilization heat pump type water heater 1 concerning embodiment of this invention. 図1中の水冷媒熱交換器3の一例を示す正面図である。It is a front view which shows an example of the water refrigerant | coolant heat exchanger 3 in FIG. 図2の水冷媒熱交換器3の下面図である。It is a bottom view of the water-refrigerant heat exchanger 3 of FIG. 本発明の第1実施形態における地熱利用ヒートポンプ式給湯器1の本体ユニット1aの平面構造図である。It is a top view of the main unit 1a of the geothermal heat pump type water heater 1 in the first embodiment of the present invention. 本発明の第2実施形態における地熱利用ヒートポンプ式給湯器1の本体ユニット1aの平面構造図である。It is a top view of the main unit 1a of the geothermal heat pump water heater 1 according to the second embodiment of the present invention. 従来のヒートポンプ式給湯器の本体ユニット1aの平面構造図である。It is a top view of the main unit 1a of the conventional heat pump type water heater.

符号の説明Explanation of symbols

1a…給湯器本体ユニット(筐体)
2…コンプレッサ(圧縮機)
3…水冷媒熱交換器
3a…冷媒通路、銅製細管
3b…湯水通路、箱体
4…電気式膨張弁(減圧手段)
5…ブライン冷媒熱交換器
5a…冷媒通路
5b…ブライン通路
7…水循環ポンプ
8…貯湯タンク
10…ブライン循環ポンプ
11…地中熱交換器
25…断熱部材
B…ブライン回路
K…給湯回路
R…冷媒回路
1a: Water heater body unit (housing)
2 ... Compressor
DESCRIPTION OF SYMBOLS 3 ... Water refrigerant | coolant heat exchanger 3a ... Refrigerant channel | path, copper thin tube 3b ... Hot water channel | path, box 4 ... Electric expansion valve (pressure reduction means)
DESCRIPTION OF SYMBOLS 5 ... Brine refrigerant | coolant heat exchanger 5a ... Refrigerant channel | path 5b ... Brine channel | path 7 ... Water circulation pump 8 ... Hot water storage tank 10 ... Brine circulation pump 11 ... Underground heat exchanger 25 ... Thermal insulation member B ... Brine circuit K ... Hot water supply circuit R ... Refrigerant circuit

Claims (5)

冷媒を圧縮する圧縮機(2)、水冷媒熱交換器(3)の冷媒通路(3a)、減圧手段(4)、およびブライン冷媒熱交換器(5)の冷媒通路(5a)を冷媒配管で環状に接続した冷媒回路(R)と、
前記水冷媒熱交換器(3)の湯水通路(3b)、貯湯側から湯を貯湯して行く貯湯タンク(8)、および水循環ポンプ(7)を湯水配管で環状に接続した給湯回路(K)と、
前記ブライン冷媒熱交換器(5)のブライン通路(5b)、ブライン循環ポンプ(10)、および地中の地熱を吸熱するための地中熱交換器(11)をブライン配管で環状に接続したブライン回路(B)とを備え、
前記圧縮機(2)および前記両循環ポンプ(7、10)を作動させて前記冷媒通路(3a)を通過する高温の冷媒により前記湯水通路(3b)を通過する湯水を加熱する地熱利用ヒートポンプ式給湯器であり、
前記水冷媒熱交換器(3)の湯水通路(3b)および前記ブライン冷媒熱交換器(5)のブライン通路(5b)は、それぞれ浅底容器形の銅板からなる上下2枚のプレート(21、22)を有する薄型矩形の箱体であり、
少なくとも前記圧縮機(2)、前記水冷媒熱交換器(3)、および前記ブライン冷媒熱交換器(5)を同一の筐体(1a)内に収めるとともに、前記水冷媒熱交換器(3)の平面と、それに対向させて配置した前記ブライン冷媒熱交換器(5)の平面とを結んだ間の空間内に前記圧縮機(2)を配設したことを特徴とする地熱利用ヒートポンプ式給湯器。
A refrigerant pipe is provided for the compressor (2) for compressing the refrigerant, the refrigerant passage (3a) of the water refrigerant heat exchanger (3), the decompression means (4), and the refrigerant passage (5a) of the brine refrigerant heat exchanger (5). An annularly connected refrigerant circuit (R);
Hot water passage (3b) of the water-refrigerant heat exchanger (3), a hot water storage tank (8) for storing hot water from the hot water storage side, and a hot water supply circuit (K) in which a water circulation pump (7) is annularly connected by hot water piping. When,
Brine in which a brine passage (5b) of the brine refrigerant heat exchanger (5), a brine circulation pump (10), and a geothermal heat exchanger (11) for absorbing geothermal heat in the ground are connected in a ring shape with a brine pipe. A circuit (B),
The geothermal heat pump type heats the hot water passing through the hot water passage (3b) by the high-temperature refrigerant passing through the refrigerant passage (3a) by operating the compressor (2) and the circulation pumps (7, 10). A water heater,
The hot water passage (3b) of the water refrigerant heat exchanger (3) and the brine passage (5b) of the brine refrigerant heat exchanger (5) are respectively composed of two upper and lower plates (21, 21) each made of a shallow vessel-shaped copper plate. 22) a thin rectangular box having
At least the compressor (2), the water refrigerant heat exchanger (3), and the brine refrigerant heat exchanger (5) are housed in the same housing (1a), and the water refrigerant heat exchanger (3). And the compressor (2) is disposed in a space between the plane of the brine refrigerant heat exchanger (5) and the plane of the brine refrigerant heat exchanger (5) disposed to face each other. vessel.
前記水冷媒熱交換器(3)および前記ブライン冷媒熱交換器(5)を板状に製作したことを特徴とする請求項1に記載の地熱利用ヒートポンプ式給湯器。   The geothermal heat pump water heater according to claim 1, wherein the water refrigerant heat exchanger (3) and the brine refrigerant heat exchanger (5) are manufactured in a plate shape. 前記水冷媒熱交換器(3)および前記ブライン冷媒熱交換器(5)は、前記筐体(1a)の前後方向に配置したことを特徴とする請求項1または請求項2に記載の地熱利用ヒートポンプ式給湯器。   The geothermal utilization according to claim 1 or 2, wherein the water refrigerant heat exchanger (3) and the brine refrigerant heat exchanger (5) are arranged in the front-rear direction of the casing (1a). Heat pump water heater. 前記水冷媒熱交換器(3)および前記ブライン冷媒熱交換器(5)の外面を断熱部材(25)で覆ったことを特徴とする請求項1ないし請求項3のうちいずれか1項に記載の地熱利用ヒートポンプ式給湯器。   The outer surface of the water refrigerant heat exchanger (3) and the brine refrigerant heat exchanger (5) is covered with a heat insulating member (25), according to any one of claims 1 to 3. Heat pump type water heater using geothermal heat. 前記水冷媒熱交換器(3)、前記ブライン冷媒熱交換器(5)のいずれか一方、もしくは両方を複数に分割し、これらで前記圧縮機(2)を取り囲むように配置したことを特徴とする請求項1ないし請求項4のうちいずれか1項に記載の地熱利用ヒートポンプ式給湯器。   One of the water refrigerant heat exchanger (3) and the brine refrigerant heat exchanger (5), or both, is divided into a plurality of parts and arranged so as to surround the compressor (2). The geothermal heat pump type water heater according to any one of claims 1 to 4.
JP2005250069A 2005-08-30 2005-08-30 Geothermal heat pump water heater Expired - Fee Related JP4650171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005250069A JP4650171B2 (en) 2005-08-30 2005-08-30 Geothermal heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005250069A JP4650171B2 (en) 2005-08-30 2005-08-30 Geothermal heat pump water heater

Publications (2)

Publication Number Publication Date
JP2007064540A JP2007064540A (en) 2007-03-15
JP4650171B2 true JP4650171B2 (en) 2011-03-16

Family

ID=37926938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250069A Expired - Fee Related JP4650171B2 (en) 2005-08-30 2005-08-30 Geothermal heat pump water heater

Country Status (1)

Country Link
JP (1) JP4650171B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236403A (en) * 2008-03-27 2009-10-15 Denso Corp Geothermal use heat pump device
KR100963221B1 (en) 2008-10-06 2010-06-10 강인구 Heat pump system using terrestrial heat source
JP2013044507A (en) 2011-08-26 2013-03-04 Panasonic Corp Heat pump hot water apparatus
WO2019211894A1 (en) * 2018-05-01 2019-11-07 三菱電機株式会社 Geothermal heat pump system
WO2023043605A1 (en) * 2021-08-30 2023-03-23 Energy Water Solutions, LLC Geothermal heat retainment system and method for direct use in spray evaporation of water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212548Y2 (en) * 1982-12-21 1990-04-09
JP2003214722A (en) * 2002-01-21 2003-07-30 Jmc Geothermal Engineering Co Ltd Air conditioning/hot water supply method and system using water heat source heat pump
JP2004085183A (en) * 2002-06-24 2004-03-18 Denso Corp Vapor compression type refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212548Y2 (en) * 1982-12-21 1990-04-09
JP2003214722A (en) * 2002-01-21 2003-07-30 Jmc Geothermal Engineering Co Ltd Air conditioning/hot water supply method and system using water heat source heat pump
JP2004085183A (en) * 2002-06-24 2004-03-18 Denso Corp Vapor compression type refrigerator

Also Published As

Publication number Publication date
JP2007064540A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US5937663A (en) Multipurpose heat pump system
US10508842B2 (en) Heat pump device with separately spaced components
JP4650171B2 (en) Geothermal heat pump water heater
EP2770278B1 (en) Water heater
EP2770277B1 (en) Water heater
JP2005077042A (en) Cooling system, and construction method of cooling system
JP4985341B2 (en) Heat pump water heater
JP2009092258A (en) Refrigerating cycle device
JP5637903B2 (en) Hot water system
US10495360B2 (en) Heat pump device
JP5217945B2 (en) Refrigeration cycle equipment
JP2004132670A (en) Hot-water storage type heat pump hot-water supplier
JP6938396B2 (en) Heat pump outdoor unit
JP4661908B2 (en) Heat pump unit and heat pump water heater
JP2008517247A (en) The shape of the gas cooler integrated in the heat pump chassis
JP2007218462A (en) Heat pump heat storage device
JP5611676B2 (en) Heat pump type water heater
WO2019167136A1 (en) Heat pump apparatus
KR101286699B1 (en) heating and cooling system and using a heat pump
JP7327630B2 (en) Heat pump device and hot water storage type water heater
JP2020118395A (en) Hot water storage type hot water supply device
JP2007333270A (en) Heat-pump heat source equipment
JP4148217B2 (en) Heat pump equipment
JP2006004254A (en) Automatic vending machine
JP2000329399A (en) Hot water storage apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees