WO2016098263A1 - Heat exchanger and heat pump type hot water generating device using same - Google Patents

Heat exchanger and heat pump type hot water generating device using same Download PDF

Info

Publication number
WO2016098263A1
WO2016098263A1 PCT/JP2014/083799 JP2014083799W WO2016098263A1 WO 2016098263 A1 WO2016098263 A1 WO 2016098263A1 JP 2014083799 W JP2014083799 W JP 2014083799W WO 2016098263 A1 WO2016098263 A1 WO 2016098263A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat exchanger
heat
refrigerant
hot water
Prior art date
Application number
PCT/JP2014/083799
Other languages
French (fr)
Japanese (ja)
Inventor
焦 石井
村越 康司
速彦 高城
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to EP14908473.3A priority Critical patent/EP3220074A4/en
Priority to PCT/JP2014/083799 priority patent/WO2016098263A1/en
Priority to JP2016564659A priority patent/JPWO2016098263A1/en
Publication of WO2016098263A1 publication Critical patent/WO2016098263A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0075Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the same heat exchange medium flowing through sections having different heat exchange capacities or for heating or cooling the same heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent

Definitions

  • the present invention relates to, for example, a heat exchanger that generates hot water using the heat of condensation of a refrigerant in a heat pump hot water supply device, and a heat pump hot water generator using the heat exchanger.
  • a heat pump hot water generator such as a heat pump hot water supply device uses a refrigeration circuit that circulates a refrigerant as a heat pump unit to generate hot water supplied to hot water supply or the like.
  • a first pipe through which a refrigerant such as carbon dioxide circulates and a second pipe through which water (hot water) to be heated circulates are arranged so that heat can be exchanged.
  • the refrigerant flowing through the first pipe and the water flowing through the second pipe are arranged so as to face each other in consideration of thermal efficiency. Therefore, the hot water immediately after exchanging heat with the high-temperature refrigerant is sent out from the outlet of the second pipe.
  • the water flowing in the second pipe is often tap water or groundwater, and contains mineral components such as calcium and magnesium.
  • the mineral component mainly deposits calcium carbonate or the like as a so-called scale on the outlet side where the temperature is high in the second pipe.
  • the scale accumulated on the inner wall of the second pipe is left unattended, the scale may block the second pipe. Therefore, in areas where water with a large amount of scale component is used, the problem becomes significant due to scale deposition, and frequent maintenance work is forced.
  • the heat pump water heater of Patent Document 1 includes a heat pump circuit including at least a compressor, a radiator, an expansion valve, and an evaporator, and the radiator is a refrigerant water heat exchanger that radiates heat to water to obtain hot water.
  • the inside of the water outlet pipe connected to the water side outlet is configured to expand in accordance with the direction of water flow. Adopting this configuration eliminates the part of the water-side flow path of the heat pump water heater where the water flow at the high-temperature outlet, which tends to adhere to the scale, becomes stagnation, and is reliable for adhesion of the scale, etc. I was trying to improve.
  • the inventors of the present invention as a result of earnest research, have a heat exchanger that can effectively suppress the precipitation of scale without adversely affecting the hot water supply performance, and a heat pump type hot water generator including the heat exchanger. It came to offer.
  • the heat exchanger includes a first pipe through which a heat medium flows and a second pipe through which water that exchanges heat with the heat medium flows.
  • the heat medium flowing through the second pipe and the water flowing through the second pipe form a counterflow, and the first pipe flows into the first pipe and the heat medium flowing upstream from the first pipe.
  • an internal heat exchanger for exchanging heat with the heated medium.
  • the heat medium of the first pipe it is preferable to exchange heat between the heat medium flowing in any position within the range of 4% to 50% from the inlet side end and the heat medium flowing upstream from the first pipe.
  • the heat exchanger according to the present invention is a double pipe in which a heat conductive inner pipe constituting the first pipe is arranged in an outer pipe constituting the second pipe, and the internal heat exchanger It is preferable that the pipe is connected to the inner pipe drawn out to the outside through the outer pipe.
  • the heat exchanger is more preferably one in which a plurality of inner pipes constituting the first pipe are arranged in an outer pipe constituting the second pipe.
  • the first pipe itself is a double pipe.
  • the first pipe and the second pipe are in contact with the outer walls, the heat medium flowing inside the first pipe, and the water flowing inside the second pipe. It is also preferable that they are arranged so that heat exchange is possible.
  • the heat pump type hot water generating device includes a compressor, a use side heat exchanger, a pressure reducing device, a heat source side heat exchanger, a refrigerant circuit in which a refrigerant is enclosed, and hot water generating water.
  • the medium is a refrigerant discharged from the compressor of the refrigerant circuit, and the water flowing in the second pipe is water for generating hot water of the heat medium circuit.
  • the refrigerant is preferably a carbon dioxide refrigerant.
  • the first pipe is a heat medium flowing upstream from the first pipe.
  • an internal heat exchanger that exchanges heat with the heat medium that has flowed into the first pipe, thereby suppressing a decrease in the heat exchange efficiency of the entire heat exchanger and the heat of the first pipe that is the highest temperature. It becomes possible to lower the temperature in the vicinity of the medium inlet. Therefore, it is possible to avoid the disadvantage that the water in the vicinity of the water outlet of the second pipe that performs heat exchange with the vicinity of the heat medium inlet of the first pipe is locally high in temperature, and the scale is formed in the vicinity of the water outlet of the second pipe. It is possible to effectively suppress the precipitation. Therefore, the maintenance work required by the precipitation of scale can be simplified.
  • the present invention can effectively suppress the precipitation of scale without adversely affecting the hot water supply performance.
  • a heat pump type hot water generating device includes a compressor, a use side heat exchanger, a pressure reducing device, a heat source side heat exchanger, a refrigerant circuit in which a refrigerant is enclosed, and hot water generation A heat medium circuit through which water is circulated, wherein the heat exchanger according to the present invention is adopted as the use-side heat exchanger, the refrigerant of the refrigerant circuit is caused to flow in the first pipe, and the second pipe It is possible to lower the temperature in the vicinity of the refrigerant inlet of the first pipe, which is the highest temperature, by flowing warm water generating water for the heat medium circuit through the first pipe.
  • the hot water generating water in the vicinity of the water outlet of the second pipe that performs heat exchange with the vicinity of the refrigerant inlet of the first pipe is locally high in the vicinity of the water outlet of the second pipe. It is possible to effectively suppress the precipitation of scale. Therefore, also for the heat pump hot water generator, the maintenance work required by the deposition of scale can be simplified.
  • FIG. 1 shows a schematic configuration diagram of a heat pump type hot water supply apparatus H as the present embodiment.
  • the heat pump type hot water supply apparatus H according to the present embodiment of the present invention includes a heat pump unit 1 including a refrigerant circuit 10 and a tank unit 2 including a heat medium circuit 20.
  • the refrigerant circuit 10 constituting the heat pump unit 1 includes a compressor 11, a use side heat exchanger 12, an expansion valve 13 as a pressure reducing device, and a heat source side heat exchanger 14.
  • the heat source side heat exchanger 14 employs an air cooling method in which heat is taken from air ventilated by a blower 15 installed in the vicinity to evaporate the refrigerant.
  • a predetermined amount of refrigerant is sealed in the refrigerant circuit 10.
  • the refrigerant is preferably a carbon dioxide refrigerant that is one of natural refrigerants.
  • the refrigerant adopted in the heat pump hot water supply apparatus in the present invention is not limited to the carbon dioxide refrigerant, and any refrigerant can be used.
  • the heat medium circuit 20 constituting the tank unit 2 is configured by pipe-connecting a hot water storage tank 21, a circulation pump 22, and the above-described use-side heat exchanger 12 in an annular manner.
  • the hot water storage tank 21 is supplied with hot water supply water as hot water generation water such as tap water and groundwater according to consumption of hot water, and a predetermined amount of hot water supply water is stored.
  • the hot water supplied from the hot water storage tank 21 is circulated in the heat medium circuit 20 by the operation of the circulation pump 22.
  • the utilization side heat exchanger 12 constituting the refrigerant circuit 10 and the heat medium circuit 20 described above is constituted by a heat exchanger according to the present invention.
  • the use side heat exchanger 12 according to the present embodiment will be described in detail with reference to FIG.
  • the use-side heat exchanger 12 includes a first pipe 12a through which a heat medium, that is, a high-temperature high-temperature refrigerant in the refrigerant circuit 10 flows, and water that performs heat exchange with the heat medium therein. That is, the second pipe 12b through which the hot water supply water in the heat medium circuit 20 flows is provided.
  • the use-side heat exchanger 12 is composed of a double pipe in which a heat conductive inner pipe constituting the first pipe 12a is arranged in an outer pipe constituting the second pipe 12b. It is preferable.
  • the use side heat exchanger 12 When the use side heat exchanger 12 is configured by a double pipe, the refrigerant flows through the inner pipe constituting the first pipe 12a, and hot water supply water is provided between the inner wall of the second pipe 12b and the outer wall of the first pipe 12a. Circulate.
  • the first pipe 12a as the inner pipe through which the refrigerant flows is disposed in the second pipe 12b as the outer pipe through which the hot water supply water flows.
  • a plurality may be provided.
  • the use side heat exchanger 12 is constituted by a double pipe, it may be constituted by a multiple pipe in which the first pipe 12a disposed in the second pipe 12b itself is a double pipe.
  • the utilization side heat exchanger 12 in this Embodiment has mentioned and demonstrated as an example the case where it comprised by multiple piping containing double piping, it is not limited to this, For example, 1st piping
  • the second pipe adopts a configuration in which the outer walls are in contact with each other and brazed, and the heat medium flowing inside the first pipe and the water flowing inside the second pipe are arranged so as to be able to exchange heat. Also good.
  • the first pipe through which the heat medium flows is constituted by a thin pipe branched into a plurality, and heat exchange is performed by winding the thin pipe constituting the first pipe around the second pipe. It may be possible.
  • the narrow pipes are once joined together to exchange heat with the heat medium flowing upstream from the first pipe, and then the first pipe is again connected to the narrow pipe. You may branch to and wind around the second pipe.
  • the said use side heat exchanger 12 is comprised so that the refrigerant
  • the hot water supply water is arranged so as to exchange heat with the refrigerant of a relatively low temperature flowing on the outlet side of the first pipe 12a.
  • the refrigerant flowing through the first pipe 12a flows into the first pipe 12a at 100 ° C., and flows out of the first pipe 12a in a state of being lowered to about 10 ° C. by performing heat exchange with hot water.
  • the hot water supply water which flows through the 2nd piping 12b flows in into the 2nd piping 12b at 5 degreeC, and flows out out of the 2nd piping 12b in the state heated to about 65 degreeC by exchanging heat with a high temperature refrigerant
  • the second pipe 12b constituting the heat exchanger 12 according to the present invention has a uniform pipe diameter at least from the inlet side to the outlet side of the hot water supply water.
  • the first pipe 12a in which the refrigerant flows inside heats the high-temperature refrigerant that flows upstream from the first pipe 12a and the refrigerant that flows into the first pipe 12a.
  • An internal heat exchanger 16 to be replaced is provided.
  • the use side heat exchanger 12 in the present embodiment is configured by a double pipe in which the refrigerant flows into the first pipe 12a that is the inner pipe and the hot water supply water flows into the second pipe 12b that is the outer pipe. Therefore, the internal heat exchanger 16 is pipe-connected to the first pipe 12a that is an inner pipe drawn through the second pipe 12b that is an outer pipe.
  • the refrigerant that has flowed into the first pipe 12a that exchanges heat with the high-temperature refrigerant that flows upstream from the first pipe 12a has the length of the first pipe 12a that is used for heat exchange with the second pipe 12b. It is preferable that the refrigerant flow in any position within the range of 4% to 50% from the refrigerant (heat medium) inlet side end of the first pipe 12a when 100%. That is, the internal heat exchanger 16 is 4% to 50% from the refrigerant inlet side end of the first pipe 12a when the length of the first pipe 12a in the portion used for heat exchange with the second pipe 12b is 100%. It is preferable to be connected to any position in the range of%.
  • the refrigerant flowing into the first pipe 12a that exchanges heat with the high-temperature refrigerant before flowing into the first pipe 12a in the internal heat exchanger 16 is used for heat exchange with the second pipe 12b.
  • the refrigerant flows through any position in the range of 4% to 40% from the refrigerant (heat medium) inlet side end of the first pipe 12a. Is preferred.
  • the position where the internal heat exchange is performed is too close to the refrigerant outlet side of the first pipe 12a, and it is difficult to suppress the occurrence of a locally high temperature, and the second pipe 12b through which hot water supply water flows This is because the effect of suppressing the scale deposited on the inner wall is difficult to obtain.
  • the heat exchange efficiency is less than 90% compared to the case where the internal heat exchanger 16 is not provided.
  • the refrigerant flowing into the first pipe 12a that exchanges heat with the high-temperature refrigerant before flowing into the first pipe 12a in the internal heat exchanger 16 is used for heat exchange with the second pipe 12b.
  • the length of the portion of the first pipe 12a to be used is 100%, the refrigerant flowing through a position of 50% from the refrigerant (heat medium) inlet side end of the first pipe 12a, that is, the intermediate position of the first pipe 12a A flowing refrigerant is preferred.
  • a heat exchanger is configured by joining a plurality of pipes. When one first pipe 12a is formed by joining two members, an internal heat exchanger 16 is connected to the joint portion. This is because production efficiency is improved.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 flows into the internal heat exchanger 16 and is already in the first pipe of the use side heat exchanger 12. Heat is exchanged with the refrigerant flowing into 12a.
  • the internal heat exchanger 16 it is preferable to radiate 10 deg to 25 deg of the high-temperature refrigerant that will flow into the first pipe 12a of the use side heat exchanger 12 from now on.
  • the refrigerant that has passed through the internal heat exchanger 16 flows into the first pipe 12a of the use side heat exchanger 12 and exchanges heat with the hot water for water flowing through the second pipe 12b of the use side heat exchanger 12. Heat is dissipated.
  • the refrigerant flowing from the inlet of the first pipe 12 a is once radiated by the internal heat exchanger 16, so that the refrigerant temperature is the value before flowing into the internal heat exchanger 16. Lower than the refrigerant temperature.
  • the refrigerant returns to the refrigerant downstream side in the first pipe 12a from the position drawn to the internal heat exchanger 16.
  • the temperature distribution of the refrigerant flowing in the first pipe 12a of the use side heat exchanger 12 does not tend to decrease uniformly from the inlet side to the outlet side, and the internal heat exchanger 16 is not provided.
  • the refrigerant temperature at the inlet side is low and has a peak again at the location where the refrigerant flows after passing through the internal heat exchanger 16.
  • the refrigerant since the carbon dioxide refrigerant is used as the refrigerant, the refrigerant is compressed to the supercritical pressure in the compressor 11 and is not condensed in the use-side heat exchanger 12, and the supercritical pressure is maintained. .
  • the refrigerant exiting the use side heat exchanger 12 is decompressed by the expansion valve 13, and in the process, the carbon dioxide refrigerant enters a gas-liquid mixed state and flows into the heat source side heat exchanger 14.
  • the refrigerant that has flowed into the heat source side heat exchanger 14 exchanges heat with the outside air ventilated by the blower 15, evaporates, and draws up heat from the outside air.
  • the refrigerant evaporated in the heat source side heat exchanger 14 is repeatedly sucked into the compressor 11, compressed and discharged again to the internal heat exchanger 16.
  • the hot water supply water in the hot water storage tank 21 sent from the circulation pump 22 flows into the second pipe 12 b of the use side heat exchanger 12.
  • the hot water supply water that has flowed into the second pipe 12b of the use side heat exchanger 12 exchanges heat with the high-temperature refrigerant in the refrigerant circuit 10 that flows in the counterflow in the first pipe 12a.
  • the hot water supply water returns to the hot water storage tank 21. Then, the circulation is repeated until the temperature of the hot water supply water in the hot water storage tank 21 reaches a predetermined temperature.
  • the refrigerant once radiated by the internal heat exchanger 16 flows into the first pipe 12a from the refrigerant inlet side, and then heated through the internal heat exchanger 16.
  • the refrigerant that has flowed into the first pipe 12a again flows. Therefore, the hot water supply water flowing in the second pipe 12b in a heat exchange oppositely to the refrigerant flowing in the first pipe 12a is gradually heated from the inlet side to rise in temperature, and the internal heat exchanger 16 is The temperature rises sharply at a position where heat exchange with the refrigerant flowing through the first pipe 12a immediately after being heated is performed.
  • the high-temperature refrigerant flowing into the first pipe 12a of the use side heat exchanger 12 is heat-exchanged with the refrigerant after flowing into the first pipe 12a.
  • the hot water supply water flowing in the vicinity of the outlet side of the second pipe 12b that exchanges heat with the refrigerant is prevented from being heated to a high temperature of 90 ° C. or more even when locally, It is possible to effectively suppress the disadvantage that mainly contained calcium carbonate or the like is deposited on the inner wall of the second pipe 12b as a scale. Therefore, the maintenance work required by the precipitation of scale can be simplified.
  • the refrigerant flowing upstream from the first pipe 12a in the internal heat exchanger 16 without expanding the diameter near the water outlet of the second pipe as in the prior art, and in the first pipe 12a By exchanging heat with the refrigerant that has flown into the first pipe 12a, the temperature near the refrigerant inlet of the first pipe 12a can be lowered. Therefore, it is not necessary to reduce the flow rate of hot water flowing through the second pipe 12b. Therefore, the present invention can effectively suppress the precipitation of scale without adversely affecting the hot water supply performance.
  • the heat pump type hot water supply apparatus H according to the present embodiment described above was used.
  • the arrangement position of the internal heat exchanger 16 with respect to the first pipe 12a of the use side heat exchanger 12 is provided at a different position. Specifically, when the arrangement position of the internal heat exchanger 16 is 100% of the length of the first pipe 12a in the portion used for heat exchange with the second pipe 12b, the refrigerant inlet of the first pipe 12a. It provided in the position of 5%, 8%, 13%, 25%, 38%, 50% from the side edge part.
  • FIG. 4 shows a temperature change from the inlet side to the outlet side of hot water supply water and refrigerant when the internal heat exchanger 16 is provided at the refrigerant inlet side end of the first pipe 12a.
  • the refrigerant flows into the first pipe 12a of the use side heat exchanger 12 at 92 ° C.
  • the temperature gradually decreases toward the outlet and then flows out at 15 ° C.
  • the hot water supply water flows into the second pipe 12b of the use side heat exchanger 12 at 10 ° C, gradually increases in temperature toward the outlet, and flows out at 65 ° C. Therefore, since the temperature in the vicinity of the inlet of the first pipe 12a rises to 92 ° C., a local high temperature state occurs, and the outlet of the second pipe 12b that exchanges heat with the refrigerant flowing in the vicinity of the inlet of the first pipe 12a.
  • the hot-water supply water flowing in the vicinity becomes locally high in temperature, and the mineral components contained in the hot-water supply water become scales and easily deposit on the inner wall of the second pipe 12b.
  • FIG. 5 shows a temperature change from the inlet side to the outlet side of hot water and refrigerant when the internal heat exchanger 16 is provided at a position 8% from the refrigerant inlet side end of the first pipe 12a.
  • FIG. 6 shows the case where it is provided at a position of 50%.
  • the first pipe 12 a of the use side heat exchanger 12 has a refrigerant Flows in at 78 ° C. and then decreases to 65 ° C. by heat exchange with hot water, and then again reaches 80 ° C. by heat exchange with the high-temperature refrigerant before flowing into the first pipe 12a in the internal heat exchanger 16. To rise. Thereafter, it gradually decreases toward the outlet and flows out at 18 ° C.
  • the hot water supply water flows into the second pipe b of the use side heat exchanger 12 at 12 ° C., and gradually rises in temperature, at a position 8% from the refrigerant inlet side end of the first pipe 12a, that is, The temperature rapidly rises to 61 ° C. at a position of 8% from the end of the second pipe 12b at the hot water outlet side. Thereafter, the temperature rises slowly toward the outlet and flows out at 65 ° C. Therefore, the first pipe 12a can heat the hot water supply water flowing through the second pipe 12b to 65 ° C. without raising the temperature up to 80 ° C. at the maximum.
  • the hot water supply water flowing through the pipe 12b can effectively suppress the inconvenience of locally high temperature. Therefore, as shown in the said FIG. 5, according to this invention, it understands that the mineral component contained in the hot water supply water can effectively suppress the inconvenience which deposits on the inner wall of the said 2nd piping 12b as a scale. it can.
  • the first pipe 12a of the use side heat exchanger 12 has Then, after the refrigerant flows in at 81 ° C. and then decreases to 52 ° C. by heat exchange with hot water, 61 again by heat exchange with the high-temperature refrigerant before flowing into the first pipe 12a in the internal heat exchanger 16 Rise to °C. Thereafter, it gradually decreases toward the outlet and flows out at 22 ° C. Then, the hot water supply water flows into the second pipe b of the use side heat exchanger 12 at 11 ° C.
  • the first pipe 12a can heat the hot water supply water flowing through the second pipe 12b to 65 ° C. without raising the temperature to 80 ° C. at the maximum.
  • the position of the first pipe 12a is 50% from the end on the refrigerant inlet side. Since the heat exchange efficiency is reduced to 78.0% as compared with the case where the internal heat exchanger 16 is not provided, the heat exchange efficiency is considered as described above.
  • the arrangement position of the internal heat exchanger 16 is 4% to 40% from the end portion on the refrigerant inlet side when the length of the first pipe 12a used for heat exchange with the second pipe 12b is 100%. It can be seen that the range is preferred.
  • one first pipe 12a is constituted by joining two members, it is advantageous in terms of production efficiency to join the internal heat exchanger 16 between the members constituting the first pipe 12a. It is. As described above, scale deposition can be effectively suppressed even when the internal heat exchanger 16 is provided at a position 50% from the refrigerant inlet side end of the first pipe 12a. It can also be said that it is advantageous to provide the internal heat exchanger 16 at a position 50% from the end on the refrigerant inlet side.
  • a heat pump type hot water supply apparatus is cited as an example of an apparatus that employs the heat exchanger according to the present invention.
  • the heat pump type hot water supply apparatus supplies hot water by heat exchange between water and a heat medium. It was only mentioned as an example of the heat pump type hot water generating device to be generated. Therefore, the heat pump type hot water generating device according to the present invention is not limited to the hot water supply device described above, a heat pump type heating device that generates hot water by heat exchange between water and a heat medium and uses it for heating, and these It includes the concept of a heat pump hot water supply / heating device that is also used.
  • the heat exchanger according to the present invention can effectively suppress the precipitation of scale without expanding the diameter of the second pipe through which water flows. Therefore, it is particularly useful for utilization of a heat pump type hot water supply apparatus and the like that are required to be reduced in size, improved in hot water supply performance, and improved in workability.
  • Heat pump type hot water supply device 1 Heat pump unit 2 Tank unit 10 Refrigerant circuit 11 Compressor 12 Use side heat exchanger (heat exchanger) 12a First pipe (inner pipe) 12b Second pipe (outer pipe) 13 Pressure reducing device (expansion valve) 14 Heat Source Side Heat Exchanger 15 Blower 16 Internal Heat Exchanger 20 Heat Transfer Circuit 21 Hot Water Storage Tank 22 Circulation Pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

The purpose of the invention is to provide a heat exchanger and a heat pump type hot water generating device using the heat exchanger that can effectively suppress deposition of scaling without decreasing the flow rate of water flowing inside and that allow maintenance work to be simplified. To achieve this purpose, provided is a heat exchanger comprising a first pipe that has a heating medium flowing therein and a second pipe that has water to perform heat exchange with the heating medium flowing therein, wherein the heating medium flowing in the first pipe and the water flowing in the second pipe form a counter flow, and the first pipe comprises an internal heat exchanger by which the heating medium flowing on the upstream side of the first pipe exchanges heat with the heating medium flowing into the first pipe.

Description

熱交換器及びこれを用いたヒートポンプ式温水生成装置Heat exchanger and heat pump type hot water generator using the same
 本件発明は、例えばヒートポンプ式給湯装置において、冷媒の凝縮熱を用いて温水を生成する熱交換器、及び、これを用いたヒートポンプ式温水生成装置に関する。 The present invention relates to, for example, a heat exchanger that generates hot water using the heat of condensation of a refrigerant in a heat pump hot water supply device, and a heat pump hot water generator using the heat exchanger.
 従来より、ヒートポンプ式給湯装置等のヒートポンプ式温水生成装置は、冷媒を循環させる冷凍回路をヒートポンプユニットとして用い、給湯等に供される湯水を生成している。この場合、冷凍回路を構成する熱交換器は、二酸化炭素等の冷媒が循環する第1配管と、被加熱対象となる水(湯水)が循環する第2配管とが熱交換可能に配設されている。一般に、第1配管を流れる冷媒と、第2配管を流れる水とは、熱効率を考慮して、対向流となるように配設されている。よって、第2配管の出口からは、高温の冷媒と熱交換した直後の湯水が送出される。 Conventionally, a heat pump hot water generator such as a heat pump hot water supply device uses a refrigeration circuit that circulates a refrigerant as a heat pump unit to generate hot water supplied to hot water supply or the like. In this case, in the heat exchanger constituting the refrigeration circuit, a first pipe through which a refrigerant such as carbon dioxide circulates and a second pipe through which water (hot water) to be heated circulates are arranged so that heat can be exchanged. ing. Generally, the refrigerant flowing through the first pipe and the water flowing through the second pipe are arranged so as to face each other in consideration of thermal efficiency. Therefore, the hot water immediately after exchanging heat with the high-temperature refrigerant is sent out from the outlet of the second pipe.
 この際、当該第2配管内を流れる水は、水道水や地下水であることが多く、カルシウムやマグネシウム等のミネラル成分が含まれている。当該ミネラル成分は、第2配管のうち高温となる出口側において、主に炭酸カルシウムなどがいわゆるスケールとして析出する。 At this time, the water flowing in the second pipe is often tap water or groundwater, and contains mineral components such as calcium and magnesium. The mineral component mainly deposits calcium carbonate or the like as a so-called scale on the outlet side where the temperature is high in the second pipe.
 熱の伝達面となる第2配管の内壁にスケールが堆積すると、第1配管との熱交換効率の低下を招く。熱交換効率が低下すると、目標とする出湯温度が得られ難くなり、当該出湯温度を目標温度とするために、必要以上にエネルギーが消費されることとなる。 If scale accumulates on the inner wall of the second pipe that becomes the heat transfer surface, the heat exchange efficiency with the first pipe will be reduced. When the heat exchange efficiency is lowered, it becomes difficult to obtain a target hot water temperature, and energy is consumed more than necessary in order to set the hot water temperature as the target temperature.
 また、第2配管の内壁に堆積したスケールを放置すると、当該スケールが第2配管を閉塞するおそれがある。ゆえに、スケール成分の含有量が多い水を用いている地域では、スケール析出により問題が顕著となり、頻繁なメンテナンス作業が強いられる。 Also, if the scale accumulated on the inner wall of the second pipe is left unattended, the scale may block the second pipe. Therefore, in areas where water with a large amount of scale component is used, the problem becomes significant due to scale deposition, and frequent maintenance work is forced.
 そこで、当該スケール析出を抑制する技術として、特許文献1に開示されたヒートポンプ給湯機がある。当該特許文献1のヒートポンプ給湯機は、少なくとも圧縮機、放熱器、膨張弁、蒸発器から構成されるヒートポンプ回路を備え、前記放熱器は冷媒が水に放熱し温水を得る冷媒水熱交換器であると共に、その水側出口に接続する水出口配管の内部は、水の流れ方向に従って拡大するように構成されている。当該構成を採用することにより、ヒートポンプ給湯機の水側流路内において、スケール等の付着しやすい高温出口部分の水の流れが淀みとなるような部分を排除してスケール等の付着に対する信頼性の向上を図っていた。 Therefore, there is a heat pump water heater disclosed in Patent Document 1 as a technique for suppressing the scale deposition. The heat pump water heater of Patent Document 1 includes a heat pump circuit including at least a compressor, a radiator, an expansion valve, and an evaporator, and the radiator is a refrigerant water heat exchanger that radiates heat to water to obtain hot water. In addition, the inside of the water outlet pipe connected to the water side outlet is configured to expand in accordance with the direction of water flow. Adopting this configuration eliminates the part of the water-side flow path of the heat pump water heater where the water flow at the high-temperature outlet, which tends to adhere to the scale, becomes stagnation, and is reliable for adhesion of the scale, etc. I was trying to improve.
特開2005-77062号公報Japanese Patent Laid-Open No. 2005-77062
 上述したように、特許文献1の構成では、水出口配管を水の流れ方向に従って拡大するように構成しているため、水の流速の低下を招き、給湯性能が低下する問題がある。また、当該構成は、スケールの析出を抑制するものではなく、スケールにより配管を完全に閉塞するまでの時間を遅延させるだけのものである。さらに、当該構成は、水配管自体の大きさが大きくなるため、熱交換自体の大型化や、コストの増大を招く問題がある。 As described above, in the configuration of Patent Document 1, since the water outlet pipe is configured to expand in accordance with the water flow direction, there is a problem in that the flow rate of water is decreased and the hot water supply performance is decreased. Moreover, the said structure does not suppress precipitation of a scale, but only delays time until piping is completely obstruct | occluded with a scale. Furthermore, since the size of the water pipe itself is large, this configuration has a problem of increasing the size of heat exchange and increasing costs.
  よって、市場からは、内部を流れる水の流速を低下させることなく、効果的にスケールの析出を抑制することができ、メンテナンス作業性を簡素化することを可能とする熱交換器及び当該熱交換器を備えたヒートポンプ式温水生成装置の開発が要望されてきた。 Therefore, from the market, it is possible to effectively suppress the precipitation of scale without reducing the flow rate of the water flowing inside, and the heat exchanger and the heat exchange that can simplify the maintenance workability. There has been a demand for the development of a heat pump type hot water generator equipped with a vessel.
 そこで、本件発明者等は、鋭意研究の結果、給湯性能に悪影響を及ぼすことなく、効果的にスケールの析出を抑制することができる熱交換器及び当該熱交換器を備えたヒートポンプ式温水生成装置を提供することに至った。 Therefore, the inventors of the present invention, as a result of earnest research, have a heat exchanger that can effectively suppress the precipitation of scale without adversely affecting the hot water supply performance, and a heat pump type hot water generator including the heat exchanger. It came to offer.
 すなわち、本件発明に係る熱交換器は、内部に熱媒体が流れる第1配管と、内部に当該熱媒体と熱交換を行う水が流れる第2配管とを備えるものであって、当該第1配管を流れる熱媒体と、当該第2配管内を流れる水とは、対向流を形成すると共に、当該第1配管は、当該第1配管より上流側を流れる熱媒体と、当該第1配管内に流入した熱媒体とを熱交換する内部熱交換器を備えることを特徴とする。 That is, the heat exchanger according to the present invention includes a first pipe through which a heat medium flows and a second pipe through which water that exchanges heat with the heat medium flows. The heat medium flowing through the second pipe and the water flowing through the second pipe form a counterflow, and the first pipe flows into the first pipe and the heat medium flowing upstream from the first pipe. And an internal heat exchanger for exchanging heat with the heated medium.
 また、本件発明に係る熱交換器は、前記内部熱交換器が、前記第2配管との熱交換に用いる部分の前記第1配管の長さを100%としたとき当該第1配管の熱媒体入口側端部から4%~50%の範囲のいずれかの位置を流れる熱媒体と、当該第1配管より上流側を流れる熱媒体とを熱交換することが好ましい。 In the heat exchanger according to the present invention, when the internal heat exchanger has a length of the first pipe of a portion used for heat exchange with the second pipe as 100%, the heat medium of the first pipe It is preferable to exchange heat between the heat medium flowing in any position within the range of 4% to 50% from the inlet side end and the heat medium flowing upstream from the first pipe.
 また、本件発明に係る熱交換器は、前記第2配管を構成する外管内に、前記第1配管を構成する熱伝導性の内管を配設した二重配管からなり、前記内部熱交換器は、外管を貫通して外部に引き出された内管に配管接続されることが好ましい。 The heat exchanger according to the present invention is a double pipe in which a heat conductive inner pipe constituting the first pipe is arranged in an outer pipe constituting the second pipe, and the internal heat exchanger It is preferable that the pipe is connected to the inner pipe drawn out to the outside through the outer pipe.
 また、当該熱交換器は、記第2配管を構成する外管内に、前記第1配管を構成する内管を複数配設したものであることがより好ましい。 Further, the heat exchanger is more preferably one in which a plurality of inner pipes constituting the first pipe are arranged in an outer pipe constituting the second pipe.
 さらに、当該熱交換器は、第1配管自体が二重配管からなることがより好ましい。 Furthermore, in the heat exchanger, it is more preferable that the first pipe itself is a double pipe.
 また、本件発明に係る熱交換器は、前記第1配管と、前記第2配管とが、外壁同士を当接して、第1配管内部に流れる熱媒体と、第2配管内部に流れる水とを熱交換可能に配置してなるものであることも好ましい。 Further, in the heat exchanger according to the present invention, the first pipe and the second pipe are in contact with the outer walls, the heat medium flowing inside the first pipe, and the water flowing inside the second pipe. It is also preferable that they are arranged so that heat exchange is possible.
 本件発明に係るヒートポンプ式温水生成装置は、圧縮機と、利用側熱交換器と、減圧装置と、熱源側熱交換器とを備え、内部に冷媒が封入された冷媒回路と、温水生成用水が流通する熱媒回路とを備えたものであって、前記利用側熱交換器は、請求項1~請求項3のいずれかに記載の熱交換器であり、当該第1配管内に流れる前記熱媒体は、当該冷媒回路の前記圧縮機から吐出された冷媒であり、当該第2配管内に流れる前記水は、当該熱媒回路の温水生成用水であることを特徴とする。 The heat pump type hot water generating device according to the present invention includes a compressor, a use side heat exchanger, a pressure reducing device, a heat source side heat exchanger, a refrigerant circuit in which a refrigerant is enclosed, and hot water generating water. A heat medium circuit that circulates, wherein the use side heat exchanger is the heat exchanger according to any one of claims 1 to 3, wherein the heat flowing in the first pipe is provided. The medium is a refrigerant discharged from the compressor of the refrigerant circuit, and the water flowing in the second pipe is water for generating hot water of the heat medium circuit.
 また、本件発明に係るヒートポンプ式温水生成装置は、前記冷媒が、二酸化炭素冷媒であることが好ましい。 In the heat pump hot water generator according to the present invention, the refrigerant is preferably a carbon dioxide refrigerant.
 本件発明によれば、第1配管を流れる熱媒体と、第2配管内を流れる水とが対向流を形成する熱交換器において、第1配管は、当該第1配管より上流側を流れる熱媒体と、当該第1配管内に流入した熱媒体とを熱交換する内部熱交換器を備えることにより、熱交換器全体の熱交換効率の低下を抑制しつつ、最も高温となる第1配管の熱媒体入口付近の温度を下げることが可能となる。よって、当該第1配管の熱媒体入口付近と熱交換を行う第2配管の水出口付近の水が局所的に高温になる不都合を回避することができ、当該第2配管の水出口付近にスケールが析出することを効果的に抑制することが可能となる。従って、スケールの析出により必要となるメンテナンス作業を簡素化することができる。 According to the present invention, in the heat exchanger in which the heat medium flowing through the first pipe and the water flowing through the second pipe form a counter flow, the first pipe is a heat medium flowing upstream from the first pipe. And an internal heat exchanger that exchanges heat with the heat medium that has flowed into the first pipe, thereby suppressing a decrease in the heat exchange efficiency of the entire heat exchanger and the heat of the first pipe that is the highest temperature. It becomes possible to lower the temperature in the vicinity of the medium inlet. Therefore, it is possible to avoid the disadvantage that the water in the vicinity of the water outlet of the second pipe that performs heat exchange with the vicinity of the heat medium inlet of the first pipe is locally high in temperature, and the scale is formed in the vicinity of the water outlet of the second pipe. It is possible to effectively suppress the precipitation. Therefore, the maintenance work required by the precipitation of scale can be simplified.
 また、本件発明では、従来のように、第2配管の水出口付近の径を拡張することなく、内部熱交換器において第1配管より上流側を流れる熱媒体と、当該第1配管内に流入した熱媒体とを熱交換することにより、第1配管の熱媒体入口付近の温度を下げることを可能とするため、当該第2配管内を流れる水の流速を低下させる必要がない。よって、本件発明は、給湯性能に悪影響を及ぼすことなく、効果的にスケールの析出を抑制することが可能となる。 Further, in the present invention, the heat medium flowing upstream from the first pipe in the internal heat exchanger and flowing into the first pipe without expanding the diameter near the water outlet of the second pipe as in the prior art. By exchanging heat with the heat medium, it is possible to lower the temperature in the vicinity of the heat medium inlet of the first pipe, so there is no need to reduce the flow rate of the water flowing in the second pipe. Therefore, the present invention can effectively suppress the precipitation of scale without adversely affecting the hot water supply performance.
 本件発明に係るヒートポンプ式温水生成装置は、圧縮機と、利用側熱交換器と、減圧装置と、熱源側熱交換器とを備え、且つ、内部に冷媒が封入された冷媒回路と、温水生成用水が流通する熱媒回路とを備えたものであって、当該利用側熱交換器として本件発明に係る熱交換器を採用し、第1配管内に冷媒回路の冷媒を流し、第2配管内に熱媒回路の温水生成用水を流すことにより、最も高温となる第1配管の冷媒入口付近の温度を下げることが可能となる。よって、当該第1配管の冷媒入口付近と熱交換を行う第2配管の水出口付近の温水生成用水が局所的に高温になる不都合を回避することができ、当該第2配管の水出口付近にスケールが析出することを効果的に抑制することが可能となる。従って、当該ヒートポンプ式温水生成装置についても、スケールの析出により必要となるメンテナンス作業を簡素化することができる。 A heat pump type hot water generating device according to the present invention includes a compressor, a use side heat exchanger, a pressure reducing device, a heat source side heat exchanger, a refrigerant circuit in which a refrigerant is enclosed, and hot water generation A heat medium circuit through which water is circulated, wherein the heat exchanger according to the present invention is adopted as the use-side heat exchanger, the refrigerant of the refrigerant circuit is caused to flow in the first pipe, and the second pipe It is possible to lower the temperature in the vicinity of the refrigerant inlet of the first pipe, which is the highest temperature, by flowing warm water generating water for the heat medium circuit through the first pipe. Therefore, it is possible to avoid the inconvenience that the hot water generating water in the vicinity of the water outlet of the second pipe that performs heat exchange with the vicinity of the refrigerant inlet of the first pipe is locally high in the vicinity of the water outlet of the second pipe. It is possible to effectively suppress the precipitation of scale. Therefore, also for the heat pump hot water generator, the maintenance work required by the deposition of scale can be simplified.
本発明の実施の形態としてのヒートポンプ式給湯装置の概略構成図である。It is a schematic block diagram of the heat pump type hot-water supply apparatus as embodiment of this invention. 図1の利用側熱交換器の概略構成図である。It is a schematic block diagram of the utilization side heat exchanger of FIG. 各位置に内部熱交換器を配設した場合の利用側熱交換器全体の熱交換器の性能を示す図である。It is a figure which shows the performance of the heat exchanger of the whole utilization side heat exchanger at the time of arrange | positioning an internal heat exchanger in each position. 冷媒入口側端部に内部熱交換器を設けた場合(比較例)の冷媒及び給湯用水の温度変化を示す図である。It is a figure which shows the temperature change of the refrigerant | coolant and water supply water at the time of providing an internal heat exchanger in a refrigerant | coolant inlet side edge part (comparative example). 冷媒入口側端部から8%の位置に内部熱交換器を設けた場合(実施例)の冷媒及び給湯用水の温度変化を示す図である。It is a figure which shows the temperature change of a refrigerant | coolant and water supply water when an internal heat exchanger is provided in the position of 8% from the refrigerant | coolant inlet side edge part (Example). 冷媒入口側端部から50%の位置に内部熱交換器を設けた場合(実施例)の冷媒及び給湯用水の温度変化を示す図である。It is a figure which shows the temperature change of a refrigerant | coolant and water supply water at the time of providing an internal heat exchanger in the position of 50% from the refrigerant | coolant inlet side edge part (Example).
 以下、本発明の熱交換器の実施の形態として、本発明に係る熱交換器を備えたヒートポンプ式温水生成装置の一例としてのヒートポンプ式給湯装置Hを例に挙げて説明する。図1は本実施の形態としてのヒートポンプ式給湯装置Hの概略構成図を示している。本発明に係る本実施の形態のヒートポンプ式給湯装置Hは、冷媒回路10を備えたヒートポンプユニット1と、熱媒回路20を備えたタンクユニット2とを備えている。 Hereinafter, as an embodiment of the heat exchanger of the present invention, a heat pump type hot water supply apparatus H as an example of a heat pump type hot water generation apparatus including the heat exchanger according to the present invention will be described as an example. FIG. 1 shows a schematic configuration diagram of a heat pump type hot water supply apparatus H as the present embodiment. The heat pump type hot water supply apparatus H according to the present embodiment of the present invention includes a heat pump unit 1 including a refrigerant circuit 10 and a tank unit 2 including a heat medium circuit 20.
 ヒートポンプユニット1を構成する冷媒回路10は、圧縮機11と、利用側熱交換器12と、減圧装置としての膨張弁13と、熱源側熱交換器14とを備え、これらを順次環状に配管接続して周知の冷媒回路を構成する。当該熱源側熱交換器14は、近傍に設置された送風機15により通風される空気から熱を奪って冷媒を蒸発させる空冷方式を採用する。この冷媒回路10内には、冷媒が所定量封入されている。当該冷媒は、自然冷媒の一つである二酸化炭素冷媒を用いることが好ましい。しかし、本件発明におけるヒートポンプ式給湯装置において採用する冷媒は、二酸化炭素冷媒に限定されるものではなく、いずれの冷媒を用いることができる。 The refrigerant circuit 10 constituting the heat pump unit 1 includes a compressor 11, a use side heat exchanger 12, an expansion valve 13 as a pressure reducing device, and a heat source side heat exchanger 14. Thus, a known refrigerant circuit is configured. The heat source side heat exchanger 14 employs an air cooling method in which heat is taken from air ventilated by a blower 15 installed in the vicinity to evaporate the refrigerant. A predetermined amount of refrigerant is sealed in the refrigerant circuit 10. The refrigerant is preferably a carbon dioxide refrigerant that is one of natural refrigerants. However, the refrigerant adopted in the heat pump hot water supply apparatus in the present invention is not limited to the carbon dioxide refrigerant, and any refrigerant can be used.
 タンクユニット2を構成する熱媒回路20は、貯湯タンク21、循環ポンプ22と、上述した利用側熱交換器12とを順次環状に配管接続して構成される。貯湯タンク21には、湯水の消費に応じて水道水や地下水等の温水生成用水としての給湯用水が供給され、所定量の給湯用水が貯留されている。そして、循環ポンプ22の運転により熱媒回路20内には、貯湯タンク21から送出された給湯用水が循環している。 The heat medium circuit 20 constituting the tank unit 2 is configured by pipe-connecting a hot water storage tank 21, a circulation pump 22, and the above-described use-side heat exchanger 12 in an annular manner. The hot water storage tank 21 is supplied with hot water supply water as hot water generation water such as tap water and groundwater according to consumption of hot water, and a predetermined amount of hot water supply water is stored. The hot water supplied from the hot water storage tank 21 is circulated in the heat medium circuit 20 by the operation of the circulation pump 22.
 上述した冷媒回路10及び熱媒回路20を構成する利用側熱交換器12は、本件発明に係る熱交換器により構成される。以下、図2を参照して、本実施の形態に係る利用側熱交換器12について詳述する。 The utilization side heat exchanger 12 constituting the refrigerant circuit 10 and the heat medium circuit 20 described above is constituted by a heat exchanger according to the present invention. Hereinafter, the use side heat exchanger 12 according to the present embodiment will be described in detail with reference to FIG.
 本実施の形態に係る利用側熱交換器12は、内部に熱媒体、すなわち、冷媒回路10内の高圧側の高温冷媒が流れる第1配管12aと、内部に当該熱媒体と熱交換を行う水、すなわち、熱媒回路20内の給湯用水が流れる第2配管12bとを備える。本実施の形態では、具体的に利用側熱交換器12は、第2配管12bを構成する外管内に、第1配管12aを構成する熱伝導性の内管を配設した二重配管からなることが好ましい。二重配管により利用側熱交換器12を構成した場合、第1配管12aを構成する内管内に冷媒が流通し、第2配管12bの内壁と第1配管12aの外壁との間に給湯用水が流通する。なお、ここでは、給湯用水が流通する外管としての第2配管12b内に、冷媒が流通する内管としての第1配管12aを単一で配設しているが、当該第1配管12aは、複数配設しても良い。さらに、利用側熱交換器12を二重配管により構成しているが、第2配管12b内に配設される第1配管12a自体を二重配管とした多重配管により構成しても良い。第1配管12a自体を二重配管とする場合には、冷媒の漏洩検出を行うことを目的として行われる場合があるからである。また、本実施の形態における利用側熱交換器12は、二重配管を含む多重配管により構成した場合を例に挙げて説明してるが、これに限定されるものではなく、例えば、第1配管と、第2配管とは、外壁同士を当接してろう付けし、第1配管内部に流れる熱媒体と、第2配管内部に流れる水とを熱交換可能に配置してなる構成を採用しても良い。外壁同士を当接して配設する場合、内部に熱媒体が流れる第1配管を複数に分岐した細配管により構成し、当該第1配管を構成する細配管を第2配管に巻き付けることにより熱交換可能としても良い。なお、この際、内部熱交換器に引き出す際には、各細配管を一旦合流させて当該第1配管より上流側を流れる熱媒体と熱交換させた後、再度当該第1配管を各細配管に分岐して、第2配管に巻き付けてもよい。 The use-side heat exchanger 12 according to the present embodiment includes a first pipe 12a through which a heat medium, that is, a high-temperature high-temperature refrigerant in the refrigerant circuit 10 flows, and water that performs heat exchange with the heat medium therein. That is, the second pipe 12b through which the hot water supply water in the heat medium circuit 20 flows is provided. In the present embodiment, specifically, the use-side heat exchanger 12 is composed of a double pipe in which a heat conductive inner pipe constituting the first pipe 12a is arranged in an outer pipe constituting the second pipe 12b. It is preferable. When the use side heat exchanger 12 is configured by a double pipe, the refrigerant flows through the inner pipe constituting the first pipe 12a, and hot water supply water is provided between the inner wall of the second pipe 12b and the outer wall of the first pipe 12a. Circulate. In this case, the first pipe 12a as the inner pipe through which the refrigerant flows is disposed in the second pipe 12b as the outer pipe through which the hot water supply water flows. A plurality may be provided. Furthermore, although the use side heat exchanger 12 is constituted by a double pipe, it may be constituted by a multiple pipe in which the first pipe 12a disposed in the second pipe 12b itself is a double pipe. This is because when the first pipe 12a itself is a double pipe, it may be performed for the purpose of detecting leakage of the refrigerant. Moreover, although the utilization side heat exchanger 12 in this Embodiment has mentioned and demonstrated as an example the case where it comprised by multiple piping containing double piping, it is not limited to this, For example, 1st piping And the second pipe adopts a configuration in which the outer walls are in contact with each other and brazed, and the heat medium flowing inside the first pipe and the water flowing inside the second pipe are arranged so as to be able to exchange heat. Also good. When the outer walls are arranged in contact with each other, the first pipe through which the heat medium flows is constituted by a thin pipe branched into a plurality, and heat exchange is performed by winding the thin pipe constituting the first pipe around the second pipe. It may be possible. At this time, when pulling out to the internal heat exchanger, the narrow pipes are once joined together to exchange heat with the heat medium flowing upstream from the first pipe, and then the first pipe is again connected to the narrow pipe. You may branch to and wind around the second pipe.
 そして、当該利用側熱交換器12は、第1配管12a内を流れる冷媒と、第2配管12bを流れる給湯用水とは、対向流を形成するように構成されている。すなわち、第1配管12aの入口側を流れる高温冷媒は、第2配管12bの出口側を流れる比較的温度が上昇した状態の給湯用水と熱交換を行い、第2配管12bの入口側を流れる低温の給湯用水は、第1配管12aの出口側を流れる比較的温度が低下した状態の冷媒と熱交換を行うように配置する。例えば、第1配管12aを流れる冷媒は、100℃で第1配管12a内に流入し、給湯用水と熱交換を行うことにより、10℃付近まで低下した状態で第1配管12aから流出する。そして、第2配管12bを流れる給湯用水は、5℃で第2配管12b内に流入し、高温冷媒と熱交換を行うことにより、65℃付近まで加熱された状態で第2配管12bから流出する。 And the said use side heat exchanger 12 is comprised so that the refrigerant | coolant which flows through the inside of the 1st piping 12a, and the hot water supply water which flows through the 2nd piping 12b may form a counterflow. That is, the high-temperature refrigerant that flows through the inlet side of the first pipe 12a exchanges heat with hot water that is relatively heated and flows through the outlet side of the second pipe 12b, and the low-temperature refrigerant that flows through the inlet side of the second pipe 12b. The hot water supply water is arranged so as to exchange heat with the refrigerant of a relatively low temperature flowing on the outlet side of the first pipe 12a. For example, the refrigerant flowing through the first pipe 12a flows into the first pipe 12a at 100 ° C., and flows out of the first pipe 12a in a state of being lowered to about 10 ° C. by performing heat exchange with hot water. And the hot water supply water which flows through the 2nd piping 12b flows in into the 2nd piping 12b at 5 degreeC, and flows out out of the 2nd piping 12b in the state heated to about 65 degreeC by exchanging heat with a high temperature refrigerant | coolant. .
 また、本件発明に係る熱交換器12を構成する第2配管12bは、少なくとも給湯用水の入口側から出口側に至るまで管径が一様であることが好ましい。 Further, it is preferable that the second pipe 12b constituting the heat exchanger 12 according to the present invention has a uniform pipe diameter at least from the inlet side to the outlet side of the hot water supply water.
 そして、本件発明に係る熱交換器12は、内部に冷媒が流れる第1配管12aが、当該第1配管12aより上流側を流れる高温冷媒と、当該第1配管12a内に流入した冷媒とを熱交換する内部熱交換器16を備えることを特徴とする。本実施の形態における利用側熱交換器12は、内管である第1配管12a内に冷媒が流入し、外管である第2配管12b内に給湯用水が流入する二重配管により構成されているため、内部熱交換器16は、外管である第2配管12bを貫通して外部に引き出された内管である第1配管12aに配管接続される。 In the heat exchanger 12 according to the present invention, the first pipe 12a in which the refrigerant flows inside heats the high-temperature refrigerant that flows upstream from the first pipe 12a and the refrigerant that flows into the first pipe 12a. An internal heat exchanger 16 to be replaced is provided. The use side heat exchanger 12 in the present embodiment is configured by a double pipe in which the refrigerant flows into the first pipe 12a that is the inner pipe and the hot water supply water flows into the second pipe 12b that is the outer pipe. Therefore, the internal heat exchanger 16 is pipe-connected to the first pipe 12a that is an inner pipe drawn through the second pipe 12b that is an outer pipe.
 第1配管12aより上流側を流れる高温冷媒と熱交換する第1配管12a内に流入した冷媒は、具体的に、第2配管12bとの熱交換に用いる部分の第1配管12aの長さを100%としたときに当該第1配管12aの冷媒(熱媒体)入口側端部から4%~50%の範囲のいずれかの位置を流れる冷媒であることが好ましい。即ち、内部熱交換器16は、第2配管12bとの熱交換に用いる部分の第1配管12aの長さを100%としたときに第1配管12aの冷媒入口側端部から4%~50%の範囲のいずれかの位置に接続されることが好ましい。 Specifically, the refrigerant that has flowed into the first pipe 12a that exchanges heat with the high-temperature refrigerant that flows upstream from the first pipe 12a has the length of the first pipe 12a that is used for heat exchange with the second pipe 12b. It is preferable that the refrigerant flow in any position within the range of 4% to 50% from the refrigerant (heat medium) inlet side end of the first pipe 12a when 100%. That is, the internal heat exchanger 16 is 4% to 50% from the refrigerant inlet side end of the first pipe 12a when the length of the first pipe 12a in the portion used for heat exchange with the second pipe 12b is 100%. It is preferable to be connected to any position in the range of%.
 この際、熱効率を考慮すると、当該内部熱交換器16において第1配管12aに流入する前の高温冷媒と熱交換する第1配管12a内に流入した冷媒は、第2配管12bとの熱交換に用いる部分の第1配管12aの長さを100%としたときに第1配管12aの冷媒(熱媒体)入口側端部から4%~40%の範囲のいずれかの位置を流れる冷媒であることが好ましい。4%を下回る場合、内部熱交換を行う位置が第1配管12aの冷媒出口側に近すぎて、局所的に高温となる箇所の発生を抑制しにくくなり、給湯用水が流れる第2配管12bの内壁に析出するスケールの抑制効果の実効が得られにくくなるからである。一方、40%を超える場合、熱交換効率が内部熱交換器16を設けない場合と比較して90%を下回るからである。 At this time, considering the thermal efficiency, the refrigerant flowing into the first pipe 12a that exchanges heat with the high-temperature refrigerant before flowing into the first pipe 12a in the internal heat exchanger 16 is used for heat exchange with the second pipe 12b. When the length of the first pipe 12a in the portion to be used is 100%, the refrigerant flows through any position in the range of 4% to 40% from the refrigerant (heat medium) inlet side end of the first pipe 12a. Is preferred. If it is less than 4%, the position where the internal heat exchange is performed is too close to the refrigerant outlet side of the first pipe 12a, and it is difficult to suppress the occurrence of a locally high temperature, and the second pipe 12b through which hot water supply water flows This is because the effect of suppressing the scale deposited on the inner wall is difficult to obtain. On the other hand, when it exceeds 40%, the heat exchange efficiency is less than 90% compared to the case where the internal heat exchanger 16 is not provided.
 一方、生産効率を考慮すると、当該内部熱交換器16において第1配管12aに流入する前の高温冷媒と熱交換する第1配管12a内に流入した冷媒は、第2配管12bとの熱交換に用いる部分の第1配管12aの長さを100%としたときに第1配管12aの冷媒(熱媒体)入口側端部から50%の位置を流れる冷媒、即ち、第1配管12aの中間位置を流れる冷媒であることが好ましい。一般に、熱交換器は、複数の配管を接合して構成されるものであるが、一つの第1配管12aを2部材を接合して構成する場合、その接合部分に内部熱交換器16を接続することが可能となり、生産効率が向上するからである。 On the other hand, in consideration of production efficiency, the refrigerant flowing into the first pipe 12a that exchanges heat with the high-temperature refrigerant before flowing into the first pipe 12a in the internal heat exchanger 16 is used for heat exchange with the second pipe 12b. When the length of the portion of the first pipe 12a to be used is 100%, the refrigerant flowing through a position of 50% from the refrigerant (heat medium) inlet side end of the first pipe 12a, that is, the intermediate position of the first pipe 12a A flowing refrigerant is preferred. In general, a heat exchanger is configured by joining a plurality of pipes. When one first pipe 12a is formed by joining two members, an internal heat exchanger 16 is connected to the joint portion. This is because production efficiency is improved.
 以上の構成により、圧縮機11が運転されると、この圧縮機11で圧縮された高温高圧のガス冷媒は、内部熱交換器16に流入して、既に利用側熱交換器12の第1配管12a内に流入した冷媒と熱交換する。この際、内部熱交換器16では、これから利用側熱交換器12の第1配管12a内に流入する高温冷媒を10deg~25deg放熱することが好ましい。そして、内部熱交換器16を経た冷媒は、利用側熱交換器12の第1配管12a内に流入し、利用側熱交換器12の第2配管12b内を流れる給湯用水と熱交換することによる放熱される。 With the above configuration, when the compressor 11 is operated, the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 flows into the internal heat exchanger 16 and is already in the first pipe of the use side heat exchanger 12. Heat is exchanged with the refrigerant flowing into 12a. At this time, in the internal heat exchanger 16, it is preferable to radiate 10 deg to 25 deg of the high-temperature refrigerant that will flow into the first pipe 12a of the use side heat exchanger 12 from now on. The refrigerant that has passed through the internal heat exchanger 16 flows into the first pipe 12a of the use side heat exchanger 12 and exchanges heat with the hot water for water flowing through the second pipe 12b of the use side heat exchanger 12. Heat is dissipated.
 当該利用側熱交換器12では、第1配管12aの入口から流入する冷媒は、一旦、内部熱交換器16により放熱されているため、当該冷媒温度は、内部熱交換器16に流入する前の冷媒温度よりも低い。第1配管12aの入口側から流入し、その後、外部に引き出されて内部熱交換器16を経た後、再び第1配管12a内に流入した冷媒は、第1配管12a内に流入する前の高温冷媒と熱交換することにより、再度、加熱された状態で、内部熱交換器16に引き出された位置よりも第1配管12a内の冷媒下流側に戻る。よって、利用側熱交換器12の第1配管12a内を流れる冷媒の温度分布は、入口側から出口側にかけて一様な低下傾向とはならずに、内部熱交換器16を備えていないものと比較すると、入口側の冷媒温度が低く、且つ、内部熱交換器16を経た後の冷媒が流入する箇所において再度、ピークを有するものとなる。なお、本実施の形態では、冷媒として二酸化炭素冷媒を用いているため、圧縮機11において、冷媒は超臨界圧力まで圧縮され、利用側熱交換器12では凝縮せず、超臨界圧力を維持する。 In the usage-side heat exchanger 12, the refrigerant flowing from the inlet of the first pipe 12 a is once radiated by the internal heat exchanger 16, so that the refrigerant temperature is the value before flowing into the internal heat exchanger 16. Lower than the refrigerant temperature. The refrigerant that has flowed in from the inlet side of the first pipe 12a, then drawn out to the outside, passed through the internal heat exchanger 16, and then flowed into the first pipe 12a again has a high temperature before flowing into the first pipe 12a. By exchanging heat with the refrigerant, in a heated state again, the refrigerant returns to the refrigerant downstream side in the first pipe 12a from the position drawn to the internal heat exchanger 16. Therefore, the temperature distribution of the refrigerant flowing in the first pipe 12a of the use side heat exchanger 12 does not tend to decrease uniformly from the inlet side to the outlet side, and the internal heat exchanger 16 is not provided. In comparison, the refrigerant temperature at the inlet side is low and has a peak again at the location where the refrigerant flows after passing through the internal heat exchanger 16. In the present embodiment, since the carbon dioxide refrigerant is used as the refrigerant, the refrigerant is compressed to the supercritical pressure in the compressor 11 and is not condensed in the use-side heat exchanger 12, and the supercritical pressure is maintained. .
 その後、利用側熱交換器12を出た冷媒は膨張弁13にて減圧された後、その過程で二酸化炭素冷媒は気液混合状態となり、熱源側熱交換器14に流入する。熱源側熱交換器14に流入した冷媒は、送風機15にて通風される外気と熱交換し、蒸発して外気から熱をくみ上げる。この熱源側熱交換器14にて蒸発した冷媒は、圧縮機11に吸い込まれ、圧縮されて再び内部熱交換器16に吐出される循環を繰り返す。 Thereafter, the refrigerant exiting the use side heat exchanger 12 is decompressed by the expansion valve 13, and in the process, the carbon dioxide refrigerant enters a gas-liquid mixed state and flows into the heat source side heat exchanger 14. The refrigerant that has flowed into the heat source side heat exchanger 14 exchanges heat with the outside air ventilated by the blower 15, evaporates, and draws up heat from the outside air. The refrigerant evaporated in the heat source side heat exchanger 14 is repeatedly sucked into the compressor 11, compressed and discharged again to the internal heat exchanger 16.
 一方、熱媒回路20は、循環ポンプ22が運転されることにより、循環ポンプ22から送出された貯湯タンク21内の給湯用水は、利用側熱交換器12の第2配管12b内に流入する。利用側熱交換器12の第2配管12b内に流入した給湯用水は、第1配管12a内を対向流で流れる冷媒回路10の高温冷媒と熱交換する。当該利用側熱交換器12において加熱された後、給湯用水は、貯湯タンク21内に帰還する。そして、当該貯湯タンク21内の給湯用水の温度が所定の温度となるまで、当該循環を繰り返す。 On the other hand, in the heat medium circuit 20, when the circulation pump 22 is operated, the hot water supply water in the hot water storage tank 21 sent from the circulation pump 22 flows into the second pipe 12 b of the use side heat exchanger 12. The hot water supply water that has flowed into the second pipe 12b of the use side heat exchanger 12 exchanges heat with the high-temperature refrigerant in the refrigerant circuit 10 that flows in the counterflow in the first pipe 12a. After being heated in the use side heat exchanger 12, the hot water supply water returns to the hot water storage tank 21. Then, the circulation is repeated until the temperature of the hot water supply water in the hot water storage tank 21 reaches a predetermined temperature.
 この際、第1配管12a内には、上述したように、冷媒入口側から一旦、内部熱交換器16により放熱されてた冷媒が流入し、その後、内部熱交換器16を経て加熱された後、再び第1配管12a内に流入した冷媒が流れている。よって、当該第1配管12a内を流れる冷媒と対向流で交熱的に第2配管12b内を流れる給湯用水は、入口側から徐々に加熱されて昇温していき、内部熱交換器16を経て加熱された直後の第1配管12aを流れる冷媒と熱交換する位置で温度上昇が急峻となる。その後は、第1配管12aの入口側から流入する冷媒と対向流で熱交換することにより、第2配管12bの出口に向かうに従って、緩慢に温度が上昇する。第1配管12aの入口側から流入する冷媒は、一旦、内部熱交換器16を経て放熱された状態の冷媒であるため、当該第1配管12aの入口側付近は、局所的に高温となることが抑制される。 At this time, as described above, the refrigerant once radiated by the internal heat exchanger 16 flows into the first pipe 12a from the refrigerant inlet side, and then heated through the internal heat exchanger 16. The refrigerant that has flowed into the first pipe 12a again flows. Therefore, the hot water supply water flowing in the second pipe 12b in a heat exchange oppositely to the refrigerant flowing in the first pipe 12a is gradually heated from the inlet side to rise in temperature, and the internal heat exchanger 16 is The temperature rises sharply at a position where heat exchange with the refrigerant flowing through the first pipe 12a immediately after being heated is performed. After that, heat is exchanged in a counter flow with the refrigerant flowing in from the inlet side of the first pipe 12a, so that the temperature rises slowly toward the outlet of the second pipe 12b. Since the refrigerant flowing in from the inlet side of the first pipe 12a is a refrigerant once radiated through the internal heat exchanger 16, the vicinity of the inlet side of the first pipe 12a becomes locally high in temperature. Is suppressed.
 このように、本件発明では、内部熱交換器16において、利用側熱交換器12の第1配管12a内に流入する高温冷媒を、第1配管12a内に流入した後の冷媒と熱交換することにより、利用側熱交換器12全体の熱交換効率の低下を抑制しつつ、最も高温となっていた第1配管12aの冷媒入口付近の温度を下げることが可能となる。よって、当該冷媒と熱交換する第2配管12bの出口側付近を流れる給湯用水は、局所的であっても90℃以上の高温にまで昇温されることが回避されて、当該給湯用水中に含まれる主に炭酸カルシウムなどがスケールとして第2配管12bの内壁に析出する不都合を効果的に抑制することができる。従って、スケールの析出により必要となるメンテナンス作業を簡素化することができる。 As described above, in the present invention, in the internal heat exchanger 16, the high-temperature refrigerant flowing into the first pipe 12a of the use side heat exchanger 12 is heat-exchanged with the refrigerant after flowing into the first pipe 12a. Thus, it is possible to lower the temperature near the refrigerant inlet of the first pipe 12a, which is the highest temperature, while suppressing a decrease in the heat exchange efficiency of the entire use side heat exchanger 12. Therefore, the hot water supply water flowing in the vicinity of the outlet side of the second pipe 12b that exchanges heat with the refrigerant is prevented from being heated to a high temperature of 90 ° C. or more even when locally, It is possible to effectively suppress the disadvantage that mainly contained calcium carbonate or the like is deposited on the inner wall of the second pipe 12b as a scale. Therefore, the maintenance work required by the precipitation of scale can be simplified.
 また、本件発明では、従来のように、第2配管の水出口付近の径を拡張することなく、内部熱交換器16において第1配管12aより上流側を流れる冷媒と、当該第1配管12a内に流入した冷媒とを熱交換することにより、第1配管12aの冷媒入口付近の温度を下げることを可能とするため、当該第2配管12b内を流れる給湯用水の流速を低下させる必要がない。よって、本件発明は、給湯性能に悪影響を及ぼすことなく、効果的にスケールの析出を抑制することが可能となる。 In the present invention, the refrigerant flowing upstream from the first pipe 12a in the internal heat exchanger 16 without expanding the diameter near the water outlet of the second pipe as in the prior art, and in the first pipe 12a By exchanging heat with the refrigerant that has flown into the first pipe 12a, the temperature near the refrigerant inlet of the first pipe 12a can be lowered. Therefore, it is not necessary to reduce the flow rate of hot water flowing through the second pipe 12b. Therefore, the present invention can effectively suppress the precipitation of scale without adversely affecting the hot water supply performance.
 次に、本発明に係るヒートポンプ式給湯装置Hを用いた実施例について述べる。本実施例では、上述した本実施の形態に係るヒートポンプ式給湯装置Hを用いた。本実施例では、利用側熱交換器12の第1配管12aに対する内部熱交換器16の配設位置をそれぞれ異なる位置に設けた。具体的には、内部熱交換器16の配設位置を、第2配管12bとの熱交換に用いる部分の第1配管12aの長さを100%としたときに、第1配管12aの冷媒入口側端部から5%、8%、13%、25%、38%、50%の位置に設けた。 Next, an embodiment using the heat pump type hot water supply apparatus H according to the present invention will be described. In this example, the heat pump type hot water supply apparatus H according to the present embodiment described above was used. In the present embodiment, the arrangement position of the internal heat exchanger 16 with respect to the first pipe 12a of the use side heat exchanger 12 is provided at a different position. Specifically, when the arrangement position of the internal heat exchanger 16 is 100% of the length of the first pipe 12a in the portion used for heat exchange with the second pipe 12b, the refrigerant inlet of the first pipe 12a. It provided in the position of 5%, 8%, 13%, 25%, 38%, 50% from the side edge part.
比較例Comparative example
 比較例として、内部熱交換器16を第2配管12bとの熱交換に用いる部分の第1配管12aの長さを100%としたときに、第1配管12aの冷媒入口側端部から0%の位置、すなわち、第1配管12aの冷媒入口側端部に内部熱交換器16を設けた。 As a comparative example, when the length of the first pipe 12a in the portion where the internal heat exchanger 16 is used for heat exchange with the second pipe 12b is 100%, 0% from the refrigerant inlet side end of the first pipe 12a. The internal heat exchanger 16 was provided at the position of the refrigerant inlet side of the first pipe 12a.
 以下に、図3を参照して、各位置に内部熱交換器16を配設した場合の利用側熱交換器12全体の熱交換器の性能について述べる。各位置に内部熱交換器16を配設した利用側熱交換器12としての性能は、内部熱交換器16を設けなかった場合の熱交換効率を100%としたときに、内部熱交換器16の配設位置が第1配管12a入口側から出口側に向かう位置に設けられるに従って、熱交換器としての性能は低下する。この内部熱交換器16を第1配管12aの冷媒入口側端部に設けた場合の給湯用水と冷媒についての入口側から出口側に至る温度変化を図4に示す。 Hereinafter, the performance of the heat exchanger of the entire use side heat exchanger 12 when the internal heat exchanger 16 is disposed at each position will be described with reference to FIG. The performance as the use-side heat exchanger 12 in which the internal heat exchanger 16 is disposed at each position is as follows. When the heat exchange efficiency when the internal heat exchanger 16 is not provided is 100%, the internal heat exchanger 16 Is provided at a position from the inlet side to the outlet side of the first pipe 12a, the performance as a heat exchanger decreases. FIG. 4 shows a temperature change from the inlet side to the outlet side of hot water supply water and refrigerant when the internal heat exchanger 16 is provided at the refrigerant inlet side end of the first pipe 12a.
 図4に示すように、内部熱交換器16を第1配管12aの冷媒入口側端部に設けた場合には、利用側熱交換器12の第1配管12aには、冷媒が92℃で流入し、出口に向かうに従って徐々に温度低下した後、15℃で流出する。そして、利用側熱交換器12の第2配管12bには、給湯用水が10℃で流入し、出口に向かうに従って徐々に昇温し、65℃で流出する。ゆえに、第1配管12aの入口付近の温度は、92℃まで上昇するため、局所的な高温状態が発生し、当該第1配管12aの入口付近を流れる冷媒と熱交換する第2配管12bの出口付近を流れる給湯用水は、局所的に高温となって、当該給湯用水に含まれるミネラル成分がスケールとなって当該第2配管12bの内壁に析出しやすくなる。 As shown in FIG. 4, when the internal heat exchanger 16 is provided at the refrigerant inlet side end of the first pipe 12a, the refrigerant flows into the first pipe 12a of the use side heat exchanger 12 at 92 ° C. The temperature gradually decreases toward the outlet and then flows out at 15 ° C. And the hot water supply water flows into the second pipe 12b of the use side heat exchanger 12 at 10 ° C, gradually increases in temperature toward the outlet, and flows out at 65 ° C. Therefore, since the temperature in the vicinity of the inlet of the first pipe 12a rises to 92 ° C., a local high temperature state occurs, and the outlet of the second pipe 12b that exchanges heat with the refrigerant flowing in the vicinity of the inlet of the first pipe 12a. The hot-water supply water flowing in the vicinity becomes locally high in temperature, and the mineral components contained in the hot-water supply water become scales and easily deposit on the inner wall of the second pipe 12b.
 一方、図3に示すように、内部熱交換器15を設けない場合の熱交換器としての性能を100%としたとき、内部熱交換器16を第1配管12aの冷媒入口側端部から8%の位置に設けた場合、熱交換器としての性能は、99.6%であった。同様に、内部熱交換器16を第1配管12aの冷媒入口側端部から13%の位置に設けた場合、99.2%、25%の位置に設けた場合、96.9%、38%の位置に設けた場合、91.3%、50%の位置に設けた場合、77.5%であった。 On the other hand, as shown in FIG. 3, when the performance as a heat exchanger when the internal heat exchanger 15 is not provided is 100%, the internal heat exchanger 16 is moved from the end of the refrigerant inlet side of the first pipe 12a to 8%. %, The performance as a heat exchanger was 99.6%. Similarly, when the internal heat exchanger 16 is provided at a position 13% from the refrigerant inlet side end of the first pipe 12a, when it is provided at a position 99.2% and 25%, 96.9% and 38%. When provided at the position of 91.3%, it was 77.5% when provided at the position of 50%.
 例として、この内部熱交換器16を第1配管12aの冷媒入口側端部から8%の位置に設けた場合の給湯用水と冷媒についての入口側から出口側に至る温度変化を図5に示し、50%の位置に設けた場合について図6に示す。 As an example, FIG. 5 shows a temperature change from the inlet side to the outlet side of hot water and refrigerant when the internal heat exchanger 16 is provided at a position 8% from the refrigerant inlet side end of the first pipe 12a. FIG. 6 shows the case where it is provided at a position of 50%.
 図5に示すように、内部熱交換器16を第1配管12aの冷媒入口側端部から8%の位置に設けた場合には、利用側熱交換器12の第1配管12aには、冷媒が78℃で流入し、その後、給湯用水との熱交換により65℃にまで低下した後、再度、内部熱交換器16における第1配管12a流入前の高温冷媒との熱交換により、80℃まで上昇する。その後、出口に向かうに従って徐々に低下し、18℃で流出する。そして、利用側熱交換器12の第2配管bには、給湯用水が12℃で流入し、徐々に昇温していき、第1配管12aの冷媒入口側端部から8%の位置、即ち、第2配管12bの給湯用水出口側端部から8%の位置において急峻に61℃まで温度上昇する。その後、出口に向かうに従って緩慢に温度上昇して、65℃で流出する。ゆえに、第1配管12aは全体を通して、最高でも80℃までした昇温することなく、第2配管12bを流れる給湯用水を65℃まで加熱することができる。 As shown in FIG. 5, when the internal heat exchanger 16 is provided at a position 8% from the refrigerant inlet side end of the first pipe 12 a, the first pipe 12 a of the use side heat exchanger 12 has a refrigerant Flows in at 78 ° C. and then decreases to 65 ° C. by heat exchange with hot water, and then again reaches 80 ° C. by heat exchange with the high-temperature refrigerant before flowing into the first pipe 12a in the internal heat exchanger 16. To rise. Thereafter, it gradually decreases toward the outlet and flows out at 18 ° C. Then, the hot water supply water flows into the second pipe b of the use side heat exchanger 12 at 12 ° C., and gradually rises in temperature, at a position 8% from the refrigerant inlet side end of the first pipe 12a, that is, The temperature rapidly rises to 61 ° C. at a position of 8% from the end of the second pipe 12b at the hot water outlet side. Thereafter, the temperature rises slowly toward the outlet and flows out at 65 ° C. Therefore, the first pipe 12a can heat the hot water supply water flowing through the second pipe 12b to 65 ° C. without raising the temperature up to 80 ° C. at the maximum.
 よって、図5から本件発明に相当する本実施例は、冷媒が流れる第1配管12aに局所的な高温状態が発生させることがないため、当該第1配管12aに流れる冷媒と熱交換する第2配管12bを流れる給湯用水が、局所的に高温となる不都合を効果的に抑制することができることがわかる。ゆえに、当該図5に示すように、本願発明によれば、給湯用水に含まれるミネラル成分がスケールとなって当該第2配管12bの内壁に析出する不都合を効果的に抑制することができることが理解できる。 Accordingly, in the present embodiment corresponding to the present invention from FIG. 5, since the local high temperature state does not occur in the first pipe 12a through which the refrigerant flows, the second exchanges heat with the refrigerant flowing through the first pipe 12a. It can be seen that the hot water supply water flowing through the pipe 12b can effectively suppress the inconvenience of locally high temperature. Therefore, as shown in the said FIG. 5, according to this invention, it understands that the mineral component contained in the hot water supply water can effectively suppress the inconvenience which deposits on the inner wall of the said 2nd piping 12b as a scale. it can.
 一方、図6に示すように、内部熱交換器16を第1配管12aの冷媒入口側端部から50%の位置に設けた場合には、利用側熱交換器12の第1配管12aには、冷媒が81℃で流入し、その後、給湯用水との熱交換により52℃にまで低下した後、再度、内部熱交換器16における第1配管12a流入前の高温冷媒との熱交換により、61℃まで上昇する。その後、出口に向かうに従って徐々に低下し、22℃で流出する。そして、利用側熱交換器12の第2配管bには、給湯用水が11℃で流入し、徐々に昇温していき、第1配管12aの冷媒入口側端部から50%の位置、即ち、第2配管12bの給湯用水出口側端部から50%の位置において急峻に51℃まで温度上昇する。その後、出口に向かうに従って緩慢に温度上昇して、65℃で流出する。ゆえに、この場合においても、第1配管12aは全体を通して、最高でも80℃までした昇温することなく、第2配管12bを流れる給湯用水を65℃まで加熱することができる。 On the other hand, as shown in FIG. 6, when the internal heat exchanger 16 is provided at a position 50% from the refrigerant inlet side end of the first pipe 12a, the first pipe 12a of the use side heat exchanger 12 has Then, after the refrigerant flows in at 81 ° C. and then decreases to 52 ° C. by heat exchange with hot water, 61 again by heat exchange with the high-temperature refrigerant before flowing into the first pipe 12a in the internal heat exchanger 16 Rise to ℃. Thereafter, it gradually decreases toward the outlet and flows out at 22 ° C. Then, the hot water supply water flows into the second pipe b of the use side heat exchanger 12 at 11 ° C. and gradually rises in temperature, and is located at a position of 50% from the refrigerant inlet side end of the first pipe 12a, that is, The temperature rises steeply to 51 ° C. at a position 50% from the end of the second pipe 12b at the hot water outlet side. Thereafter, the temperature rises slowly toward the outlet and flows out at 65 ° C. Therefore, also in this case, the first pipe 12a can heat the hot water supply water flowing through the second pipe 12b to 65 ° C. without raising the temperature to 80 ° C. at the maximum.
 ただし、当該内部熱交換器16を第2配管12bとの熱交換に用いる部分の第1配管12aの長さを100%としたときに第1配管12aの冷媒入口側端部から50%の位置に設けた場合には、内部熱交換器16を設けなかった場合と比較して熱交換効率は、78.0%にまで低下してしまうため、上述したように、当該熱交換効率を考慮すると、内部熱交換器16の配設位置は、第2配管12bとの熱交換に用いる部分の第1配管12aの長さを100%としたときに冷媒入口側端部から4%~40%の範囲が好ましいことがわかる。一方、一つの第1配管12aを2部材を接合して構成することを考慮すると、当該第1配管12aを構成する部材の間に内部熱交換器16を接合することが生産効率の面で有利である。上述したように、内部熱交換器16を第1配管12aの冷媒入口側端部から50%の位置に設けた場合においても、有効にスケールの析出を抑制することができることから、生産効率の観点から冷媒入口側端部から50%の位置に内部熱交換器16を設けることも有利であることがいえる。 However, when the length of the first pipe 12a in the portion where the internal heat exchanger 16 is used for heat exchange with the second pipe 12b is 100%, the position of the first pipe 12a is 50% from the end on the refrigerant inlet side. Since the heat exchange efficiency is reduced to 78.0% as compared with the case where the internal heat exchanger 16 is not provided, the heat exchange efficiency is considered as described above. The arrangement position of the internal heat exchanger 16 is 4% to 40% from the end portion on the refrigerant inlet side when the length of the first pipe 12a used for heat exchange with the second pipe 12b is 100%. It can be seen that the range is preferred. On the other hand, considering that one first pipe 12a is constituted by joining two members, it is advantageous in terms of production efficiency to join the internal heat exchanger 16 between the members constituting the first pipe 12a. It is. As described above, scale deposition can be effectively suppressed even when the internal heat exchanger 16 is provided at a position 50% from the refrigerant inlet side end of the first pipe 12a. It can also be said that it is advantageous to provide the internal heat exchanger 16 at a position 50% from the end on the refrigerant inlet side.
 なお、本実施の形態では、本発明に係る熱交換器を採用した装置の一例としてヒートポンプ式給湯装置を挙げているが、当該ヒートポンプ式給湯装置は、水と熱媒体との熱交換により湯を生成するヒートポンプ式温水生成装置の一例として挙げたにすぎない。そのため、本件発明に係るヒートポンプ式温水生成装置は、上述した給湯装置に限定されるものではなく、水と熱媒体との熱交換により湯を生成し暖房に用いるヒートポンプ式暖房装置、及び、これらを兼ね備えたヒートポンプ式給湯暖房装置の概念を含むものである。 In the present embodiment, a heat pump type hot water supply apparatus is cited as an example of an apparatus that employs the heat exchanger according to the present invention. However, the heat pump type hot water supply apparatus supplies hot water by heat exchange between water and a heat medium. It was only mentioned as an example of the heat pump type hot water generating device to be generated. Therefore, the heat pump type hot water generating device according to the present invention is not limited to the hot water supply device described above, a heat pump type heating device that generates hot water by heat exchange between water and a heat medium and uses it for heating, and these It includes the concept of a heat pump hot water supply / heating device that is also used.
 本件発明にかかる熱交換器は、格別に水が流れる第2配管の管径を拡張させることなく、効率的にスケールの析出を抑制することができるものである。よって、小型化、給湯性能の向上、メンテナンス作業性の向上が要求されるヒートポンプ式給湯装置などの利用に特に有用である。 The heat exchanger according to the present invention can effectively suppress the precipitation of scale without expanding the diameter of the second pipe through which water flows. Therefore, it is particularly useful for utilization of a heat pump type hot water supply apparatus and the like that are required to be reduced in size, improved in hot water supply performance, and improved in workability.
  H  ヒートポンプ式給湯装置
  1  ヒートポンプユニット
  2  タンクユニット
 10  冷媒回路
 11  圧縮機
 12  利用側熱交換器(熱交換器)
 12a 第1配管(内管)
 12b 第2配管(外管)
 13  減圧装置(膨張弁)
 14  熱源側熱交換器
 15  送風機
 16  内部熱交換器
 20  熱媒回路
 21  貯湯タンク
 22  循環ポンプ
H Heat pump type hot water supply device 1 Heat pump unit 2 Tank unit 10 Refrigerant circuit 11 Compressor 12 Use side heat exchanger (heat exchanger)
12a First pipe (inner pipe)
12b Second pipe (outer pipe)
13 Pressure reducing device (expansion valve)
14 Heat Source Side Heat Exchanger 15 Blower 16 Internal Heat Exchanger 20 Heat Transfer Circuit 21 Hot Water Storage Tank 22 Circulation Pump

Claims (8)

  1.  内部に熱媒体が流れる第1配管と、内部に当該熱媒体と熱交換を行う水が流れる第2配管とを備える熱交換器であって、
     当該第1配管を流れる熱媒体と、当該第2配管内を流れる水とは、対向流を形成すると共に、
     当該第1配管は、当該第1配管より上流側を流れる熱媒体と、当該第1配管内に流入した熱媒体とを熱交換する内部熱交換器を備えることを特徴とする熱交換器。
    A heat exchanger comprising a first pipe through which a heat medium flows and a second pipe through which water that exchanges heat with the heat medium flows.
    The heat medium flowing through the first pipe and the water flowing through the second pipe form a counter flow,
    The first pipe is provided with an internal heat exchanger for exchanging heat between the heat medium flowing upstream from the first pipe and the heat medium flowing into the first pipe.
  2.  前記内部熱交換器は、前記第2配管との熱交換に用いる部分の前記第1配管の長さを100%としたとき当該第1配管の熱媒体入口側端部から4%~50%の範囲のいずれかの位置を流れる熱媒体と、当該第1配管より上流側を流れる熱媒体とを熱交換する請求項1に記載の熱交換器。 The internal heat exchanger has a length of 4% to 50% from a heat medium inlet side end of the first pipe when the length of the first pipe of the portion used for heat exchange with the second pipe is 100%. The heat exchanger according to claim 1, wherein heat exchange between the heat medium flowing in any position of the range and the heat medium flowing upstream from the first pipe is performed.
  3.  前記第2配管を構成する外管内に、前記第1配管を構成する熱伝導性の内管を配設した二重配管からなり、
     前記内部熱交換器は、外管を貫通して外部に引き出された内管に配管接続される請求項1又は請求項2に記載の熱交換器。
    The outer pipe constituting the second pipe is composed of a double pipe provided with the heat conductive inner pipe constituting the first pipe,
    The heat exchanger according to claim 1 or 2, wherein the internal heat exchanger is connected by piping to an inner pipe that passes through the outer pipe and is drawn to the outside.
  4.  前記第2配管を構成する外管内に、前記第1配管を構成する内管を複数配設した請求項3に記載の熱交換器。 The heat exchanger according to claim 3, wherein a plurality of inner pipes constituting the first pipe are arranged in an outer pipe constituting the second pipe.
  5.  前記第1配管自体が二重配管からなる請求項3又は請求項4に記載の熱交換器。 The heat exchanger according to claim 3 or 4, wherein the first pipe itself is a double pipe.
  6.  前記第1配管と、前記第2配管とは、外壁同士を当接して、第1配管内部に流れる熱媒体と、第2配管内部に流れる水とを熱交換可能に配置してなる請求項1又は請求項2に記載の熱交換器。 The first pipe and the second pipe are arranged such that the outer walls are in contact with each other and the heat medium flowing inside the first pipe and the water flowing inside the second pipe can be exchanged with each other. Or the heat exchanger of Claim 2.
  7.  圧縮機と、利用側熱交換器と、減圧装置と、熱源側熱交換器とを備え、内部に冷媒が封入された冷媒回路と、温水生成用水が流通する熱媒回路とを備えたヒートポンプ式温水生成装置であって、
     前記利用側熱交換器は、請求項1~請求項6のいずれかに記載の熱交換器であり、当該第1配管内に流れる前記熱媒体は、当該冷媒回路の前記圧縮機から吐出された冷媒であり、当該第2配管内に流れる前記水は、当該熱媒回路の温水生成用水であることを特徴とするヒートポンプ式温水生成装置。
    A heat pump type comprising a compressor, a use side heat exchanger, a pressure reducing device, a heat source side heat exchanger, a refrigerant circuit in which a refrigerant is enclosed, and a heat medium circuit through which hot water generation water flows. A hot water generator,
    The use side heat exchanger is the heat exchanger according to any one of claims 1 to 6, wherein the heat medium flowing into the first pipe is discharged from the compressor of the refrigerant circuit. The heat pump type hot water generating apparatus, wherein the water that is a refrigerant and flows into the second pipe is hot water generating water for the heat medium circuit.
  8.  前記冷媒は、二酸化炭素冷媒である請求項7に記載のヒートポンプ式温水生成装置。 The heat pump hot water generator according to claim 7, wherein the refrigerant is a carbon dioxide refrigerant.
PCT/JP2014/083799 2014-12-19 2014-12-19 Heat exchanger and heat pump type hot water generating device using same WO2016098263A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14908473.3A EP3220074A4 (en) 2014-12-19 2014-12-19 Heat exchanger and heat pump type hot water generating device using same
PCT/JP2014/083799 WO2016098263A1 (en) 2014-12-19 2014-12-19 Heat exchanger and heat pump type hot water generating device using same
JP2016564659A JPWO2016098263A1 (en) 2014-12-19 2014-12-19 Heat exchanger and heat pump type hot water generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083799 WO2016098263A1 (en) 2014-12-19 2014-12-19 Heat exchanger and heat pump type hot water generating device using same

Publications (1)

Publication Number Publication Date
WO2016098263A1 true WO2016098263A1 (en) 2016-06-23

Family

ID=56126180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083799 WO2016098263A1 (en) 2014-12-19 2014-12-19 Heat exchanger and heat pump type hot water generating device using same

Country Status (3)

Country Link
EP (1) EP3220074A4 (en)
JP (1) JPWO2016098263A1 (en)
WO (1) WO2016098263A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978704B2 (en) 2020-03-31 2021-12-08 ダイキン工業株式会社 Water heating system
CN113739416A (en) * 2021-09-08 2021-12-03 耿现军 Heat pump water boiling equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201275A (en) * 2000-01-21 2001-07-27 Daikin Ind Ltd Double tube heat exchanger
JP2008180447A (en) * 2007-01-25 2008-08-07 Fujitsu General Ltd Coolant circuit
JP2009264644A (en) * 2008-04-24 2009-11-12 Panasonic Corp Heat exchanger
WO2010119642A1 (en) * 2009-04-13 2010-10-21 パナソニック株式会社 Heat pump type heating device
JP2011242056A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Refrigeration device
JP2012233685A (en) * 2012-07-19 2012-11-29 Mitsubishi Electric Corp Water heater
JP2012255603A (en) * 2011-06-09 2012-12-27 Denso Corp Refrigeration cycle
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889298B1 (en) * 2005-07-28 2010-11-26 Airbus France THERMAL EXCHANGER, PROPELLER ASSEMBLY, AND AIRCRAFT HAVING SUCH A PROPELLER ASSEMBLY
JP5003645B2 (en) * 2008-10-03 2012-08-15 ダイキン工業株式会社 Heat exchanger and hot water system
JP5969270B2 (en) * 2012-05-31 2016-08-17 サンデンホールディングス株式会社 Heat pump equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201275A (en) * 2000-01-21 2001-07-27 Daikin Ind Ltd Double tube heat exchanger
JP2008180447A (en) * 2007-01-25 2008-08-07 Fujitsu General Ltd Coolant circuit
JP2009264644A (en) * 2008-04-24 2009-11-12 Panasonic Corp Heat exchanger
WO2010119642A1 (en) * 2009-04-13 2010-10-21 パナソニック株式会社 Heat pump type heating device
JP2011242056A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Refrigeration device
JP2012255603A (en) * 2011-06-09 2012-12-27 Denso Corp Refrigeration cycle
JP2012233685A (en) * 2012-07-19 2012-11-29 Mitsubishi Electric Corp Water heater
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3220074A4 *

Also Published As

Publication number Publication date
EP3220074A1 (en) 2017-09-20
EP3220074A4 (en) 2018-08-15
JPWO2016098263A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US20100000709A1 (en) Heating and heat recovery unit for an air conditioning system
JP5920251B2 (en) Heating and hot water supply equipment
JP2007232282A (en) Heat pump type water heater
EP2770278B1 (en) Water heater
JPWO2016046882A1 (en) Refrigeration cycle equipment
KR101405271B1 (en) Instant hot water possible Heat pump type hot water supplier
JP2014163567A (en) Water heater
WO2016098263A1 (en) Heat exchanger and heat pump type hot water generating device using same
CN204962942U (en) Carbon dioxide heat pump heating device
JP5171280B2 (en) Heat exchanger and heat pump type water heater using the same
KR20140115714A (en) Hybrid Type Heat-Pump System using air heat
CN104180599B (en) Refrigerator and hot cabinet heat recovery system for supermarket
CN203848501U (en) Heat pump water heater
WO2016144912A3 (en) Energy recovery in air conditioning and other energy producing systems
JP2008185276A (en) Heat pump type hot water supply apparatus
CN102121770B (en) Working medium evaporation system for carbon dioxide heat pump water heating equipment
KR20190077692A (en) heat transmitter
CN201992815U (en) Working medium evaporating system of carbon dioxide heat pump water heating equipment
KR101175635B1 (en) An air conditioning system with non-defrost
JP2011133186A (en) Heat pump type water heater
JP2009250580A (en) Heat pump device
JP2006258378A (en) Heat exchanger
WO2013080498A1 (en) Refrigeration cycle device and hot water production device equipped with same
JP2018017436A (en) Air-conditioning equipment and labor saving construction method using the same
CN205825423U (en) A kind of intelligent two-layer equation Household water circulation heat pump water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908473

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016564659

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014908473

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE