JP2008185276A - Heat pump type hot water supply apparatus - Google Patents

Heat pump type hot water supply apparatus Download PDF

Info

Publication number
JP2008185276A
JP2008185276A JP2007019996A JP2007019996A JP2008185276A JP 2008185276 A JP2008185276 A JP 2008185276A JP 2007019996 A JP2007019996 A JP 2007019996A JP 2007019996 A JP2007019996 A JP 2007019996A JP 2008185276 A JP2008185276 A JP 2008185276A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
refrigerant
refrigerant heat
coolant heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007019996A
Other languages
Japanese (ja)
Other versions
JP4892365B2 (en
Inventor
Koichi Yamaguchi
山口  広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007019996A priority Critical patent/JP4892365B2/en
Publication of JP2008185276A publication Critical patent/JP2008185276A/en
Application granted granted Critical
Publication of JP4892365B2 publication Critical patent/JP4892365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a COP by lowering the uppermost pressure of a coolant side to a predetermined pressure or less without enlarging a heat exchanger. <P>SOLUTION: The heat pump type hot water supply apparatus is comprised by providing a refrigeration cycle composed by sequentially connecting a compressor 1, a first water-coolant heat exchanger 2, an expansion valve 3, an evaporator 4, and a second water-coolant heat exchanger 6, an aqueduct 8 sending water to the first water-coolant heat exchanger 2, a tank 10 storing water sent by the aqueduct 8 and heated by the first water-coolant heat exchanger 2, and a circulation passage 12 circulating water between the first water-coolant heat exchanger 2 and the second water-coolant heat exchanger 6, and dissipating heat obtained in the first water-coolant heat exchanger 2 in the second water-coolant heat exchanger 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷媒として例えば、二酸化炭素を用いるヒートポンプ式給湯機に関する。   The present invention relates to a heat pump type water heater using, for example, carbon dioxide as a refrigerant.

この種のヒートポンプ式給湯機としては、水と冷媒を対向流で流すことにより効率的な熱交換を可能とし、成績効率(以下、COPという)を向上できるようにしたものが知られている(例えば、特許文献1参照。)。   As this type of heat pump type hot water heater, one that enables efficient heat exchange by flowing water and a refrigerant in a counterflow and that improves performance efficiency (hereinafter referred to as COP) is known ( For example, see Patent Document 1.)

ところで、一般に、水冷媒熱交換時においては、水の温度変化履歴と冷媒の温度変化履歴とは異なり、両者間には最小温度差が発生する。
特開平1−193561号公報
By the way, generally, at the time of water-refrigerant heat exchange, the temperature change history of water and the temperature change history of the refrigerant are different, and a minimum temperature difference occurs between them.
JP-A-1-193561

しかしながら、現在、上記した最小温度差は1.5℃程度であり、これを更に小さくするには、かなりの熱交換器の大型化が必要となる。   However, at present, the above-mentioned minimum temperature difference is about 1.5 ° C., and in order to further reduce this, it is necessary to enlarge the heat exchanger considerably.

また、当然であるが、熱交換器の大きさにかかわらず、最小温度差が0℃となる様な圧力以下に二酸化炭素冷媒の高圧側圧力を下げることはできず、成績係数(COP)の改善には限界があった。   Of course, regardless of the size of the heat exchanger, the high-pressure side pressure of the carbon dioxide refrigerant cannot be lowered below the pressure at which the minimum temperature difference becomes 0 ° C., and the coefficient of performance (COP) There was a limit to improvement.

本発明は上記事情に着目してなされたもので、その目的とするところは、第1の水冷媒熱交換器にて、水側の温度変化履歴の一部を熱損失を伴わずに、ごくわずかだけ変化させることにより、熱交換器を大型化させずに、所定圧力以下に冷媒側の高圧圧力を低下させ、COPを改善することができるようにしたヒートポンプ式の給湯機を提供することにある。   The present invention has been made paying attention to the above circumstances, and the object of the present invention is to use a first water-refrigerant heat exchanger to remove a part of the temperature change history on the water side without causing heat loss. To provide a heat pump type hot water heater capable of improving the COP by reducing the high pressure on the refrigerant side below a predetermined pressure without increasing the size of the heat exchanger by slightly changing the heat exchanger. is there.

上記課題を解決するため、請求項1記載のものは、圧縮機、第1の水冷媒熱交換器、膨張弁、蒸発器、及び第2の水冷媒熱交換器を順次接続して構成される冷凍サイクルと、前記第1の水冷媒熱交換器へ水を送水する送水路と、この送水路によって送水されて前記第1の水冷媒熱交換器にて加熱された水を貯えるタンクと、前記第1の水冷媒熱交換器と前記第2の水冷媒熱交換器との間で水を循環させ、前記第1の水冷媒熱交換器で得た熱を前記第2の水冷媒熱交換器で放出させる循環水路とを具備してなることを特徴とする。   In order to solve the above-mentioned problems, the invention according to claim 1 is configured by sequentially connecting a compressor, a first water refrigerant heat exchanger, an expansion valve, an evaporator, and a second water refrigerant heat exchanger. A refrigeration cycle, a water supply path for supplying water to the first water refrigerant heat exchanger, a tank for storing water supplied by the water supply path and heated in the first water refrigerant heat exchanger, Water is circulated between the first water refrigerant heat exchanger and the second water refrigerant heat exchanger, and the heat obtained by the first water refrigerant heat exchanger is converted into the second water refrigerant heat exchanger. And a circulating water channel to be discharged at the same time.

本発明によれば、水冷媒熱交換器の大型化することなく、成績係数(COP)を改善できる。   According to the present invention, the coefficient of performance (COP) can be improved without increasing the size of the water-refrigerant heat exchanger.

以下、本発明を図面に示す実施の形態を参照して詳細に説明する。
(第1の実施例)
図1は本発明の一実施の形態であるヒートポンプ式給湯機の冷凍サイクルの構成を示すもので、冷媒としては二酸化炭素が用いられる。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
(First embodiment)
FIG. 1 shows a configuration of a refrigeration cycle of a heat pump type water heater according to an embodiment of the present invention, and carbon dioxide is used as a refrigerant.

この冷凍サイクルは、圧縮機1を備え、この圧縮機1に冷媒管13を介して順次、第1の水冷媒熱交換器2、膨張弁3、蒸発器4、内部熱交換器5、及び第2の水冷媒熱交換器6を接続することにより構成されている。   The refrigeration cycle includes a compressor 1, and the compressor 1 is sequentially provided with a first water refrigerant heat exchanger 2, an expansion valve 3, an evaporator 4, an internal heat exchanger 5, and a first through a refrigerant pipe 13. 2 water refrigerant heat exchangers 6 are connected.

第1の水冷媒熱交換器2には送水路としての水流路8が挿通されている。水流路8の第1の水冷媒熱交換器2の上流側にはポンプ7が設けられ、下流側にはタンク10が接続されている。   A water flow path 8 as a water supply path is inserted into the first water refrigerant heat exchanger 2. A pump 7 is provided on the upstream side of the first water refrigerant heat exchanger 2 in the water flow path 8, and a tank 10 is connected on the downstream side.

また、第1の水冷媒熱交換器2と第2の水冷媒熱交換器6とは、循環水路12を介して接続されている。循環水路12の中途部には水を矢印に沿って循環させるポンプ9が設けられている。   Further, the first water refrigerant heat exchanger 2 and the second water refrigerant heat exchanger 6 are connected via a circulation water channel 12. A pump 9 that circulates water along the arrow is provided in the middle of the circulation channel 12.

図2は、第1の水冷媒熱交換器2の構成を示すものである。   FIG. 2 shows the configuration of the first water refrigerant heat exchanger 2.

この第1の水冷媒熱交換器2は、冷媒管13とこの冷媒管13の上面部側に接合する水流路8とによって構成され、水流路8には流出口部8aと流入口部8bが設けられている。循環水路12はその一端部を水流路8の流出口部8a、他端部を流入口部8bに接続する。   The first water-refrigerant heat exchanger 2 includes a refrigerant pipe 13 and a water flow path 8 joined to the upper surface side of the refrigerant pipe 13, and the water flow path 8 includes an outlet portion 8a and an inlet portion 8b. Is provided. The circulating water channel 12 has one end connected to the outlet 8a of the water channel 8 and the other end connected to the inlet 8b.

上記した構成において、圧縮機1が駆動されると、冷媒である二酸化炭素ガスが圧縮されて吐出され、第1の水冷媒熱交換器2に送られる。第1の水冷媒熱交換器2に送られた冷媒ガスは放熱したのち、内部熱交換器5及び膨張弁3を介して蒸発器4に送られる。蒸発器4に送られた冷媒液は吸熱して蒸発したのち、内部熱交換器5及び第2の熱交換器6を介して圧縮機1に吸い込まれて圧縮される
また、このときには、水流路8のポンプ7と、循環水路12のポンプ9がそれぞれ稼動される。ポンプ7の稼動により、水流路8に沿って水が第1の水冷媒熱交換器2に送られ、第1の水冷媒熱交換器2で冷媒管13に沿って流れる高圧冷媒ガスによって加熱されて温水となって貯湯タンク10内に収容される。また、ポンプ9の稼動により、第1の水冷媒熱交換器2で加熱された温水の一部が水流路8から循環水路12を介して第2の熱交換器6に送られる。この第2の熱交換器6に送られた温水によって冷媒ガスが加熱されてから圧縮機1に吸い込まれて圧縮される。
In the above-described configuration, when the compressor 1 is driven, carbon dioxide gas that is a refrigerant is compressed and discharged, and is sent to the first water-refrigerant heat exchanger 2. The refrigerant gas sent to the first water-refrigerant heat exchanger 2 is radiated and then sent to the evaporator 4 via the internal heat exchanger 5 and the expansion valve 3. The refrigerant liquid sent to the evaporator 4 absorbs heat and evaporates, and then is sucked into the compressor 1 through the internal heat exchanger 5 and the second heat exchanger 6 and compressed. 8 pump 7 and circulating water channel 12 pump 9 are respectively operated. With the operation of the pump 7, water is sent along the water flow path 8 to the first water refrigerant heat exchanger 2, and is heated by the high-pressure refrigerant gas flowing along the refrigerant pipe 13 in the first water refrigerant heat exchanger 2. The hot water is then stored in the hot water storage tank 10. In addition, due to the operation of the pump 9, a part of the hot water heated by the first water refrigerant heat exchanger 2 is sent from the water channel 8 to the second heat exchanger 6 through the circulation channel 12. The refrigerant gas is heated by the hot water sent to the second heat exchanger 6 and then sucked into the compressor 1 and compressed.

上記したポンプ9の稼働により、第1の水冷媒熱交換器2内の一部で水流量が変化し、これにより、水の温度変化履歴の一部が変化される。   By the operation of the pump 9 described above, the water flow rate changes in a part of the first water refrigerant heat exchanger 2, thereby changing a part of the temperature change history of the water.

図3は、便宜上、冷媒の高圧側圧力を同一とした場合の水冷媒の温度変化の様子を従来と比較して示すものである。   FIG. 3 shows, for convenience, the state of temperature change of the water refrigerant when the high-pressure side pressure of the refrigerant is the same, as compared with the conventional case.

図3から分かるように本発明では、従来タイプのものよりも水の温度変化履歴を一部分で緩やかにするとともに、冷媒側の流入温度を熱回収により高くでき、結果、水冷媒間の最小温度差を見かけ上拡大することができる。   As can be seen from FIG. 3, in the present invention, the temperature change history of the water can be made gentler than that of the conventional type, and the inflow temperature on the refrigerant side can be increased by heat recovery, resulting in a minimum temperature difference between the water and refrigerant. It can be apparently enlarged.

このことは、同一の水冷媒最小温度差の場合は、高圧側圧力を下げることができ、その分だけCOPを改善することができることになる。   This means that in the case of the same water refrigerant minimum temperature difference, the high-pressure side pressure can be lowered, and the COP can be improved accordingly.

図4は、循環水路12を循環する循環水流量が水流路8を流れるメイン流量の30パーセント時におけるCOPの改善割合を示したものである。   FIG. 4 shows the improvement rate of COP when the circulating water flow rate circulating through the circulating water channel 12 is 30% of the main flow rate flowing through the water flow channel 8.

従来例のCOP4.5に対し、4.7のCOPを得ることができる。   A COP of 4.7 can be obtained with respect to COP4.5 of the conventional example.

なお、図4における分岐流入温度℃は、図1のA部における温水の流入温度である。   In addition, the branch inflow temperature ° C in FIG. 4 is the inflow temperature of warm water in the A part of FIG.

図5は、冬期高温加熱時の循環水流量の比(メイン水流量/循環水流量)に対するCOPの改善割合を示したものである。   FIG. 5 shows the improvement rate of the COP with respect to the ratio of the circulating water flow rate (main water flow rate / circulating water flow rate) during high-temperature heating in winter.

循環水路12におけるポンプ9は、コストの観点からは、定水流量制御でも構わないものの、図5に示されるように、COPの改善割合が良くなる流量比があることから、より効率を狙う場合は、メインのポンプ7の水流量を検知して、その流量との比が一定となるようにポンプ9を制御する方がより好ましい。   The pump 9 in the circulation channel 12 may be controlled at a constant water flow rate from the viewpoint of cost. However, as shown in FIG. 5, there is a flow rate ratio at which the improvement rate of COP is improved. More preferably, the water flow rate of the main pump 7 is detected and the pump 9 is controlled so that the ratio with the flow rate is constant.

上記したように、この実施の形態によれば、第1の水冷媒熱交換器2における水流路8内の水の温度変化履歴を一部分で緩やかにするとともに、冷媒側の流入温度を熱回収により高くできる。従って、水冷媒間の最小温度差を見かけ上拡大することができ、高圧側圧力を下げて成績係数(COP)を改善することができる利点がある。   As described above, according to this embodiment, the temperature change history of the water in the water flow path 8 in the first water-refrigerant heat exchanger 2 is partially moderated, and the inflow temperature on the refrigerant side is reduced by heat recovery. Can be high. Therefore, there is an advantage that the minimum temperature difference between the water refrigerant can be apparently increased, and the coefficient of performance (COP) can be improved by lowering the high-pressure side pressure.

図6、本発明の他の実施の形態である第1の水冷媒熱交換器2Aの構成例を示すものである。   FIG. 6 shows a configuration example of a first water refrigerant heat exchanger 2A which is another embodiment of the present invention.

この第1の水冷媒熱交換器2Aは、冷媒管13の上面部側に水流路8を接合し、下面部側に循環水路12を接合している。   In the first water refrigerant heat exchanger 2A, the water flow path 8 is joined to the upper surface portion side of the refrigerant pipe 13, and the circulating water passage 12 is joined to the lower surface portion side.

この実施の形態では、冷媒管13内を流れる高圧冷媒ガスによって水流路8内を流れる水、及び循環水路12内を流れる水がそれぞれ加熱されて温水となる。   In this embodiment, the water flowing in the water channel 8 and the water flowing in the circulation channel 12 are heated by the high-pressure refrigerant gas flowing in the refrigerant pipe 13 to become hot water.

なお、この発明は、上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、上述した実施の形態に示される全構成要素から幾つかの構成要素を削除しても良い。更に、異なる実施の形態に亘る構成要素を適宜組み合わせても良い。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, you may delete some components from all the components shown by embodiment mentioned above. Furthermore, you may combine the component covering different embodiment suitably.

本発明の一実施の形態であるヒートポンプ式給湯器の冷凍サイクルを示す図。The figure which shows the refrigerating cycle of the heat pump type water heater which is one embodiment of this invention. 図1の冷凍サイクルの第1の水冷媒熱交換器を示す図。The figure which shows the 1st water-refrigerant heat exchanger of the refrigerating cycle of FIG. 図2の第1の水冷媒熱交換器における水と冷媒の温度変化履歴を従来と比較して示すグラフ図。The graph which shows the temperature change log | history of the water and the refrigerant | coolant in the 1st water refrigerant | coolant heat exchanger of FIG. 2 compared with the past. 成績係数(COP)の改善効果を示すグラフ図。The graph which shows the improvement effect of a coefficient of performance (COP). 成績係数(COP)と循環水流量比との関係を示すグラフ図。The graph which shows the relationship between a coefficient of performance (COP) and a circulating water flow rate ratio. 本発明の他の実施の形態である第1の水冷媒熱交換器を示す図。The figure which shows the 1st water-refrigerant heat exchanger which is other embodiment of this invention.

符号の説明Explanation of symbols

1…圧縮機、2…第1の水冷媒熱交換器、3…膨張弁、4…蒸発器、6…第2の水冷媒熱交換器、8…送水路、10…タンク、12…循環水路。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 1st water refrigerant heat exchanger, 3 ... Expansion valve, 4 ... Evaporator, 6 ... 2nd water refrigerant heat exchanger, 8 ... Water supply path, 10 ... Tank, 12 ... Circulation water path .

Claims (1)

圧縮機、第1の水冷媒熱交換器、膨張弁、蒸発器、及び第2の水冷媒熱交換器を順次接続して構成される冷凍サイクルと、
前記第1の水冷媒熱交換器へ水を送水する送水路と、
この送水路によって送水されて前記第1の水冷媒熱交換器にて加熱された水を貯えるタンクと、
前記第1の水冷媒熱交換器と前記第2の水冷媒熱交換器との間で水を循環させ、前記第1の水冷媒熱交換器で得た熱を前記第2の水冷媒熱交換器で放出させる循環水路と
を具備してなることを特徴とするヒートポンプ式給湯機。
A refrigeration cycle configured by sequentially connecting a compressor, a first water refrigerant heat exchanger, an expansion valve, an evaporator, and a second water refrigerant heat exchanger;
A water supply channel for supplying water to the first water refrigerant heat exchanger;
A tank for storing water supplied by the water supply passage and heated by the first water refrigerant heat exchanger;
Water is circulated between the first water refrigerant heat exchanger and the second water refrigerant heat exchanger, and heat obtained by the first water refrigerant heat exchanger is exchanged with the second water refrigerant heat exchanger. A heat pump type hot water heater comprising: a circulating water channel that is discharged by a water heater.
JP2007019996A 2007-01-30 2007-01-30 Heat pump water heater Expired - Fee Related JP4892365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019996A JP4892365B2 (en) 2007-01-30 2007-01-30 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019996A JP4892365B2 (en) 2007-01-30 2007-01-30 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2008185276A true JP2008185276A (en) 2008-08-14
JP4892365B2 JP4892365B2 (en) 2012-03-07

Family

ID=39728444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019996A Expired - Fee Related JP4892365B2 (en) 2007-01-30 2007-01-30 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4892365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091129A (en) * 2008-10-03 2010-04-22 Daikin Ind Ltd Heat exchanger and water heating system
JP2011237162A (en) * 2010-04-13 2011-11-24 Mitsubishi Heavy Industries Air-Conditioning & Thermal Systems Corp Air-source heat pump air conditioner, and method for operating the same
JP2013203099A (en) * 2012-03-27 2013-10-07 Panasonic Corp Air conditioning device for vehicle, and compression apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329398A (en) * 1999-05-20 2000-11-30 Denso Corp Heat pump cycle
JP2003269813A (en) * 2002-03-18 2003-09-25 Toto Ltd Heat pump system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329398A (en) * 1999-05-20 2000-11-30 Denso Corp Heat pump cycle
JP2003269813A (en) * 2002-03-18 2003-09-25 Toto Ltd Heat pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091129A (en) * 2008-10-03 2010-04-22 Daikin Ind Ltd Heat exchanger and water heating system
JP2011237162A (en) * 2010-04-13 2011-11-24 Mitsubishi Heavy Industries Air-Conditioning & Thermal Systems Corp Air-source heat pump air conditioner, and method for operating the same
JP2013203099A (en) * 2012-03-27 2013-10-07 Panasonic Corp Air conditioning device for vehicle, and compression apparatus

Also Published As

Publication number Publication date
JP4892365B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP2014196849A (en) Heat pump water heater
JP2007232282A (en) Heat pump type water heater
JP2007178091A (en) Heat pump water heater
JP2009092258A (en) Refrigerating cycle device
JP4892365B2 (en) Heat pump water heater
CN103148584B (en) Two-stage compression heat pump Hot water units
JP2008256281A (en) Heat pump type water heater
JP2007178090A (en) Heat pump-type water heater
JP2007178088A (en) Heat pump type water heater
JP2005308344A (en) Heat pump water heater
KR101528160B1 (en) Duality for refrigerating/heating cycle type Heat pump system
JP5575190B2 (en) Water heater
JP5111221B2 (en) Water heater
JP5081787B2 (en) Heating system
JP6302725B2 (en) Heat pump type water heater and heat pump unit
JP2007155275A (en) Heat pump hot water feeder
JP2014190612A (en) Heating apparatus and heat exchanger
KR101424353B1 (en) Hybrid Heat Pump Boiler System
WO2016098263A1 (en) Heat exchanger and heat pump type hot water generating device using same
JP2022051011A (en) Heat exchanger and hot water supply machine including the same
JP2005069608A (en) Hot water utilizing system
JP2009085476A (en) Heat pump water heater
JP2015068577A (en) Heat pump system and hot water supply heating system
JP2008224073A (en) Heat pump hot water supply device
JP2007212098A (en) Heat pump water heater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees