JP2007178090A - Heat pump-type water heater - Google Patents

Heat pump-type water heater Download PDF

Info

Publication number
JP2007178090A
JP2007178090A JP2005378637A JP2005378637A JP2007178090A JP 2007178090 A JP2007178090 A JP 2007178090A JP 2005378637 A JP2005378637 A JP 2005378637A JP 2005378637 A JP2005378637 A JP 2005378637A JP 2007178090 A JP2007178090 A JP 2007178090A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
outdoor air
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005378637A
Other languages
Japanese (ja)
Other versions
JP4413188B2 (en
Inventor
Etsuo Shibata
悦雄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005378637A priority Critical patent/JP4413188B2/en
Publication of JP2007178090A publication Critical patent/JP2007178090A/en
Application granted granted Critical
Publication of JP4413188B2 publication Critical patent/JP4413188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of saving an installation space, with respect to the heat pump-type water heater comprising two heat pump cycles using two different refrigerants. <P>SOLUTION: This heat pump-type water heater X comprises a CO<SB>2</SB>cycle 1 in which the CO<SB>2</SB>refrigerant is circulated, a R410A cycle 2 in which a R410A refrigerant is circulated, a heat exchanger 32 exchanging heat between the CO<SB>2</SB>refrigerant or the R410A refrigerant and the water, and a common outdoor air heat exchanger 13 exchanging heat between the CO<SB>2</SB>refrigerant or the R410A refrigerant and the outdoor air. Alternatively, the outdoor air heat exchanger exchanging heat between the CO<SB>2</SB>refrigerant and the outdoor air, and the outdoor air heat exchanger exchanging heat between the R410A refrigerant and the outdoor air are disposed in the common outdoor unit. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機に関し,特に,熱交換効率やエネルギ消費効率などの特性の異なる冷媒を用いた二つのヒートポンプサイクルを具備するヒートポンプ式給湯機に関するものである。   The present invention relates to a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like. The present invention relates to a heat pump type hot water heater having two heat pump cycles using refrigerants having different characteristics.

従来から,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機が周知である。前記冷媒は,例えば炭酸ガス冷媒やHFC冷媒などである。
ここに,前記炭酸ガス冷媒は,その冷媒の特性として水を高温(例えば90℃程度)まで加熱することができる。一方,前記HFC冷媒は,冷媒の特性上比較的低温(例えば65℃程度)までしか水を加熱することができない。しかし,空調用機器に用いた場合,エネルギ消費効率(COP)は,前記炭酸ガス冷媒を用いるよりも前記HFC冷媒を用いる方が優れている。
2. Description of the Related Art Conventionally, a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like is well known. The refrigerant is, for example, a carbon dioxide refrigerant or an HFC refrigerant.
Here, the carbon dioxide refrigerant can heat water to a high temperature (for example, about 90 ° C.) as a characteristic of the refrigerant. On the other hand, the HFC refrigerant can only heat water to a relatively low temperature (for example, about 65 ° C.) due to the characteristics of the refrigerant. However, when used in air conditioning equipment, the energy consumption efficiency (COP) is superior to using the HFC refrigerant rather than using the carbon dioxide refrigerant.

一方,特許文献1には,CO2冷媒(炭酸ガス冷媒の一例)が用いられたヒートポンプサイクル(以下「CO2サイクル」という)と,R410A冷媒(HFC冷媒の一例)が用いられたヒートポンプサイクル(以下「R410Aサイクル」という)とを併せ持つヒートポンプ式給湯システムが示されている。前記ヒートポンプ式給湯システムでは,前記CO2サイクルに循環するCO2冷媒と室外空気との熱交換を行う室外機(以下「CO2冷媒室外機」という)と,前記R410Aサイクルに循環するR410A冷媒と室外空気との熱交換を行う室外機(以下「R410A冷媒室外機」という)とが別々に設けられている。
特開2005−83585号公報
On the other hand, Patent Document 1 discloses a heat pump cycle (hereinafter referred to as “CO 2 cycle”) using a CO 2 refrigerant (an example of a carbon dioxide gas refrigerant) and a heat pump cycle (an example of an HFC refrigerant) using an R410A refrigerant (an example of an HFC refrigerant). Hereinafter, a heat pump type hot water supply system having both “R410A cycle”) is shown. In the heat pump hot water supply system, an outdoor unit that exchanges heat between the CO 2 refrigerant circulating in the CO 2 cycle and outdoor air (hereinafter referred to as “CO 2 refrigerant outdoor unit”), an R410A refrigerant that circulates in the R410A cycle, An outdoor unit that performs heat exchange with outdoor air (hereinafter referred to as “R410A refrigerant outdoor unit”) is provided separately.
Japanese Patent Laying-Open No. 2005-83585

しかしながら,前記CO2冷媒室外機及び前記R410A冷媒室外機が別々に設けられている前記ヒートポンプ式給湯システムでは,前記CO2冷媒室外機及び前記R410A冷媒室外機各々の設置スペースを確保する必要が生じる。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,異なる二つの冷媒を用いる二つのヒートポンプサイクルを備えたヒートポンプ式給湯機であって,設置スペースを省減することのできるヒートポンプ式給湯機を提供することにある。
However, in the heat pump hot water supply system in which the CO 2 refrigerant outdoor unit and the R410A refrigerant outdoor unit are separately provided, it is necessary to secure installation spaces for the CO 2 refrigerant outdoor unit and the R410A refrigerant outdoor unit. .
Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is a heat pump type water heater provided with two heat pump cycles using two different refrigerants, and saves installation space. It is in providing the heat pump type hot water heater which can be used.

上記目的を達成するために本発明は,第一の冷媒が少なくとも圧縮機及び膨張器を経て循環される第一のヒートポンプサイクルと,前記第一の冷媒と異なる特性を持つ第二の冷媒が少なくとも圧縮機及び膨張器を経て循環される第二のヒートポンプサイクルと,前記第一の冷媒及び/又は前記第二の冷媒と水との間で熱交換を行う水熱交換器と,を備えてなるヒートポンプ式給湯機に適用されるものであって,前記第一の冷媒及び/又は前記第二の冷媒と室外空気との間で熱交換を行う共通の室外機を備えてなることを特徴とするヒートポンプ式給湯機として構成される。ここで,具体的には,前記第一の冷媒が炭酸ガス冷媒であって,前記第二の冷媒がHFC冷媒であることが考えられる。
本発明によれば,前記室外機が前記第一の冷媒(第一のヒートポンプサイクル)及び前記第二の冷媒(第二のヒートポンプサイクル)に共通するため,従来のように別々に室外機を設ける場合に比べて当該ヒートポンプ式給湯機の設置スペースを省減することが可能である。また,前記室外機を共通化することで,送風ファンなどを共通化して構成要素を省減することも可能となる。
To achieve the above object, the present invention provides a first heat pump cycle in which the first refrigerant is circulated through at least a compressor and an expander, and at least a second refrigerant having characteristics different from those of the first refrigerant. A second heat pump cycle that is circulated through a compressor and an expander, and a water heat exchanger that exchanges heat between the first refrigerant and / or the second refrigerant and water. It is applied to a heat pump type hot water heater, and is provided with a common outdoor unit that exchanges heat between the first refrigerant and / or the second refrigerant and outdoor air. It is configured as a heat pump type hot water heater. Specifically, it is conceivable that the first refrigerant is a carbon dioxide gas refrigerant and the second refrigerant is an HFC refrigerant.
According to the present invention, since the outdoor unit is common to the first refrigerant (first heat pump cycle) and the second refrigerant (second heat pump cycle), the outdoor unit is provided separately as in the prior art. Compared to the case, it is possible to reduce the installation space of the heat pump hot water heater. In addition, by sharing the outdoor unit, it is possible to reduce the number of components by using a common fan.

具体的には,前記室外機が,前記第一の冷媒が循環される第一の配管及び該第一の配管が貫装された複数の第一の伝熱板を有する第一の室外空気熱交換器と,前記第二の冷媒が循環される第二の配管及び該第二の配管が貫装された複数の第二の伝熱板を有する第二の室外空気熱交換器と,前記第一の室外空気熱交換器及び前記第二の室外空気熱交換器に室外空気を送風する共通の送風ファンと,を含んでなる構成が考えられる。このような構成によれば,別々に室外機を設ける場合に比べて当該ヒートポンプ式給湯機の構成要素や設置スペースを省減することができる。
より詳細には,前記第一の室外空気熱交換器及び前記第二の室外空気熱交換器を,前記送風ファンによる室外空気の送風方向に並設すればよい。但し,この場合には,前記室外空気の送風方向の上流側に配設された熱交換器で冷媒と熱交換された後の空気が,下流側に配設された熱交換器における冷媒との熱交換の対象となる。そのため,前記第一の冷媒及び前記第二の冷媒のいずれか一方の熱交換効率が悪くなることが考えられる。
そこで,前記第一の室外空気熱交換器及び前記第二の室外空気熱交換器が前記送風ファンによる室外空気の送風方向に並設される場合には,前記第一の配管及び前記第二の配管を,前記第一の伝熱板及び前記第二の伝熱板に略交互に貫装することが望ましい。これにより,前記第一の冷媒及び前記第二の冷媒の両方が前記室外空気の送風方向の上流側に設けられた熱交換器において該室内空気と熱交換されることとなる。
Specifically, the outdoor unit has a first outdoor air heat having a first pipe through which the first refrigerant is circulated and a plurality of first heat transfer plates through which the first pipe is inserted. A second outdoor air heat exchanger having a exchanger, a second pipe through which the second refrigerant is circulated, and a plurality of second heat transfer plates through which the second pipe is inserted; A configuration including one outdoor air heat exchanger and a common blower fan that blows outdoor air to the second outdoor air heat exchanger is conceivable. According to such a structure, the component and installation space of the said heat pump type hot water heater can be reduced compared with the case where an outdoor unit is provided separately.
More specifically, the first outdoor air heat exchanger and the second outdoor air heat exchanger may be juxtaposed in the direction in which outdoor air is blown by the blower fan. However, in this case, the air after heat exchange with the refrigerant in the heat exchanger arranged on the upstream side in the blowing direction of the outdoor air is exchanged with the refrigerant in the heat exchanger arranged on the downstream side. Subject to heat exchange. Therefore, it is conceivable that the heat exchange efficiency of any one of the first refrigerant and the second refrigerant deteriorates.
Therefore, when the first outdoor air heat exchanger and the second outdoor air heat exchanger are arranged in parallel in the blowing direction of the outdoor air by the blower fan, the first pipe and the second It is desirable that the pipes are alternately inserted through the first heat transfer plate and the second heat transfer plate. As a result, both the first refrigerant and the second refrigerant are heat-exchanged with the room air in the heat exchanger provided on the upstream side in the blowing direction of the outdoor air.

また,他の構成として,前記室外機が,前記第一の冷媒が循環される第一の配管及び前記第二の冷媒が循環される第二の配管と前記第一の配管及び前記第二の配管が貫装された共通の伝熱板とを有する共通の室外空気熱交換器と,前記共通の室外空気熱交換器に室外空気を送風する共通の送風ファンと,を含んでなる構成も考えられる。このような構成によっても,別々に室外機を設ける場合に比べて当該ヒートポンプ式給湯機の構成要素や設置スペースを省減することができる。また,この場合には,前記第一の配管に流通する第一の冷媒と前記第二の配管に流通する第二の冷媒との間で熱交換を行うことができる。例えば,前記第一のヒートポンプサイクルで給湯を行い,前記第二のヒートポンプサイクルで冷房を行う場合に,前記第一の配管に流通する低温の冷媒と,前記第二の配管に流通する高温の冷媒との間で熱交換を行うことも可能となる。即ち,冷房による排熱を給湯に利用することができる。
さらに,前記第一の配管と前記第二の配管を,前記伝熱板に略交互に貫装して配置すれば,前記第一の配管に流通する第一の冷媒と前記第二の配管に流通する第二の冷媒との間で効率的に熱交換が行われる。
As another configuration, the outdoor unit includes a first pipe through which the first refrigerant is circulated, a second pipe through which the second refrigerant is circulated, the first pipe, and the second pipe. A configuration comprising a common outdoor air heat exchanger having a common heat transfer plate through which piping is provided and a common blower fan for blowing outdoor air to the common outdoor air heat exchanger is also considered. It is done. Even with such a configuration, it is possible to reduce the components and installation space of the heat pump type hot water heater as compared with the case where an outdoor unit is provided separately. In this case, heat exchange can be performed between the first refrigerant flowing through the first pipe and the second refrigerant flowing through the second pipe. For example, when hot water is supplied in the first heat pump cycle and cooling is performed in the second heat pump cycle, a low-temperature refrigerant flowing through the first pipe and a high-temperature refrigerant flowing through the second pipe It is also possible to exchange heat between the two. That is, the exhaust heat from cooling can be used for hot water supply.
Furthermore, if the first pipe and the second pipe are arranged so as to be alternately inserted through the heat transfer plate, the first refrigerant and the second pipe flowing through the first pipe are arranged. Heat exchange is efficiently performed with the circulating second refrigerant.

また,前記炭酸冷媒などの第一の冷媒は圧縮率が高く高圧となるため,前記第一の配管の肉厚は,前記第二の配管の肉厚よりも大きい関係にあることが望ましい。一方,前記第一の配管の管径は,前記第二の配管の管径よりも小さい関係にあってよい。
ここで,前記第一の配管と前記第二の配管との管径や肉厚が異なる場合には,前記第一の配管及び前記第二の配管のいずれか一方の両端を前記共通の室外空気熱交換器の一端に配置し,他方の両端を前記共通の室外空気熱交換器の他端に配置することが望ましい。これにより,当該ヒートポンプ式給湯機の組み立て時などに,前記第一の配管や前記第二の配管に誤った冷媒を流通させるおそれを低減することができる。
In addition, since the first refrigerant such as the carbonic acid refrigerant has a high compressibility and a high pressure, it is desirable that the thickness of the first pipe is larger than the thickness of the second pipe. On the other hand, the pipe diameter of the first pipe may be smaller than the pipe diameter of the second pipe.
Here, when the pipe diameter and the wall thickness of the first pipe are different from those of the second pipe, either end of either the first pipe or the second pipe is connected to the common outdoor air. It is desirable to arrange at one end of the heat exchanger and to arrange the other end at the other end of the common outdoor air heat exchanger. As a result, when the heat pump type hot water heater is assembled, it is possible to reduce the risk of causing an incorrect refrigerant to flow through the first pipe or the second pipe.

本発明によれば,前記室外機が前記第一の冷媒(第一のヒートポンプサイクル)及び前記第二の冷媒(第二のヒートポンプサイクル)に共通するため,従来のように別々に室外機を設ける場合に比べて当該ヒートポンプ式給湯機の設置スペースを省減することが可能である。また,前記室外機を共通化することで,送風ファンなどを共通化して構成要素を省減することも可能となる。
さらに,前記室外機が,前記第一の冷媒が循環される第一の配管及び前記第二の冷媒が循環される第二の配管と前記第一の配管及び前記第二の配管が貫装された共通の伝熱板とを有する共通の室外空気熱交換器と,前記共通の室外空気熱交換器に室外空気を送風する共通の送風ファンとを含む構成では,前記第一の配管に流通する第一の冷媒と前記第二の配管に流通する第二の冷媒との間で熱交換を行うことができる。
According to the present invention, since the outdoor unit is common to the first refrigerant (first heat pump cycle) and the second refrigerant (second heat pump cycle), the outdoor unit is provided separately as in the prior art. Compared to the case, it is possible to reduce the installation space of the heat pump hot water heater. In addition, by sharing the outdoor unit, it is possible to reduce the number of components by using a common fan.
Further, the outdoor unit includes a first pipe through which the first refrigerant is circulated, a second pipe through which the second refrigerant is circulated, the first pipe, and the second pipe. In a configuration including a common outdoor air heat exchanger having a common heat transfer plate and a common blower fan for blowing outdoor air to the common outdoor air heat exchanger, the first outdoor pipe is circulated. Heat exchange can be performed between the first refrigerant and the second refrigerant flowing through the second pipe.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成図,図2は前記ヒートポンプ式給湯機Xに設けられた室外機6の内部構成図,図3は前記室外機6に設けられた室外空気熱交換器13の部品図,図4は前記室外空気熱交換器13に設けられた配管61及び配管62の形状を説明するための模式図である。
図1に示すように,前記ヒートポンプ式給湯機Xは,冷媒が循環される二つのヒートポンプサイクル1(第一のヒートポンプサイクルの一例),2(第二のヒートポンプサイクルの一例),流水経路30a〜30d,貯留タンク31,循環ポンプ34,前記ヒートポンプサイクル1及び2に共通する水熱交換器32,前記ヒートポンプサイクル1及び2に共通する室外空気熱交換器13(共通の室外空気熱交換器の一例)及び切換弁41〜45を備えて概略構成されている。また,前記ヒートポンプ式給湯機Xは,CPUやRAM,ROMなどを有する不図示の制御部を備えている。
前記水熱交換器32は,前記ヒートポンプサイクル1や前記ヒートポンプサイクル2に循環される冷媒と,給水口から給湯口への流水経路30b,又は前記貯留タンク31に戻る流水経路30a上を流れる水との間で熱交換を行うものである。ここに,前記流水経路30aは,前記給水口から前記貯留タンク31,循環ポンプ34,切換弁45,水熱交換器32,切換弁43,貯留タンク31が順に接続された水の流水経路である。また,前記流水経路30bは,前記給水口から切換弁45,水熱交換器32,切換弁43,前記給湯口が順に接続された水の流水経路である。なお,前記流水経路30cは,前記貯留タンク31から前記切換弁44を経て前記給湯口に続く温水の流通経路,前記流通経路30dは,前記給水口から前記切換弁44を経て前記給湯口に続く水の流通経路である。
前記室外空気熱交換器13は,前記ヒートポンプサイクル1や前記ヒートポンプサイクル2に循環される冷媒と室外空気との間で熱交換を行うものである。なお,前記室外空気熱交換器13については後段で詳述する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a schematic configuration diagram of a heat pump type hot water heater X according to an embodiment of the present invention, FIG. 2 is an internal configuration diagram of an outdoor unit 6 provided in the heat pump type hot water heater X, and FIG. FIG. 4 is a schematic diagram for explaining the shapes of the pipe 61 and the pipe 62 provided in the outdoor air heat exchanger 13.
As shown in FIG. 1, the heat pump type hot water heater X includes two heat pump cycles 1 (an example of a first heat pump cycle), 2 (an example of a second heat pump cycle) in which refrigerant is circulated, and a flowing water path 30a˜ 30d, storage tank 31, circulation pump 34, water heat exchanger 32 common to the heat pump cycles 1 and 2, outdoor air heat exchanger 13 common to the heat pump cycles 1 and 2 (an example of a common outdoor air heat exchanger) ) And switching valves 41 to 45. The heat pump type water heater X includes a control unit (not shown) having a CPU, a RAM, a ROM, and the like.
The water heat exchanger 32 includes a refrigerant circulated in the heat pump cycle 1 and the heat pump cycle 2, a water flow path 30 b from the water supply port to the hot water supply port, or water flowing on the water flow path 30 a returning to the storage tank 31. Heat exchange. Here, the water flow path 30a is a water flow path in which the storage tank 31, the circulation pump 34, the switching valve 45, the water heat exchanger 32, the switching valve 43, and the storage tank 31 are sequentially connected from the water supply port. . The flowing water path 30b is a flowing water path in which the switching valve 45, the water heat exchanger 32, the switching valve 43, and the hot water supply port are sequentially connected from the water supply port. The flowing water path 30c passes from the storage tank 31 through the switching valve 44 to the hot water supply port, and the flowing path 30d passes from the water supply port through the switching valve 44 to the hot water supply port. It is a distribution channel for water.
The outdoor air heat exchanger 13 performs heat exchange between the refrigerant circulated in the heat pump cycle 1 and the heat pump cycle 2 and outdoor air. The outdoor air heat exchanger 13 will be described in detail later.

前記貯留タンク31の上層には前記水熱交換器32において前記冷媒との熱交換によって加熱された温水が,前記貯留タンク31の下層には給水口から供給される水が貯留される。
当該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記各構成要素が制御されることにより,給水口から供給された水を前記流水経路30b上に流した後,前記水熱交換器32によって加熱して給湯口から直接給湯する瞬間給湯運転や,給水口から供給された水を前記流水経路30a上に流した後,前記水熱交換器32によって加熱して前記貯留タンク31に貯留する貯湯運転などが行われる。
ここで,前記瞬間給湯運転では,前記切換弁43及び45が前記制御部によって制御されることにより,前記給水口から供給された水が前記流水経路30bに沿って破線矢印方向に流通することとなる。但し,前記瞬間給湯運転が開始してからの一定時間は,前記水熱交換器32による加熱量が十分得られない。そのため,瞬間運転開始後の一定時間は,前記貯留タンク31に貯留された温水が,前記流水経路30cを経て切換弁44において,前記給水口から前記流水経路30dを経て供給される水と混合されて温度調節された後,前記給湯口に供給される。これにより,前記給湯口から瞬時に温水を給湯することが可能である。そして,前記水熱交換器32によって給水口から供給された水を十分に加熱することが可能となった時点で,前記貯留タンク31の給水は停止され,その後は,前記給水口から前記水熱交換器32を経て前記給湯口に続く流水経路30bを用いて瞬間給湯が行われる。なお,前記貯留タンク31に貯留された高温の温水を前記給水口から供給される水と混合することなく,そのまま給湯することも可能である。
また,前記貯湯運転では,前記循環ポンプ34が駆動されることにより,前記流水経路30aに沿って実線矢印方向に水が流通することにより,貯留タンク31に温水が貯留される。
Hot water heated by heat exchange with the refrigerant in the water heat exchanger 32 is stored in the upper layer of the storage tank 31, and water supplied from the water supply port is stored in the lower layer of the storage tank 31.
In the heat pump type hot water heater X, the components are controlled by the control unit (not shown) so that the water supplied from the water supply port flows on the water flow path 30b, and then the water heat exchanger Instantaneous hot water supply operation in which the water is heated by 32 and directly supplied from the hot water supply port, or the water supplied from the water supply port is made to flow on the flowing water path 30a and then heated by the water heat exchanger 32 and stored in the storage tank 31. Hot water storage operation is performed.
Here, in the instantaneous hot water supply operation, the control valves 43 and 45 are controlled by the control unit so that water supplied from the water supply port flows along the flowing water path 30b in the direction of the dashed arrow. Become. However, a sufficient amount of heating by the water heat exchanger 32 cannot be obtained for a certain time after the instantaneous hot water supply operation is started. Therefore, for a certain period of time after the start of the instantaneous operation, the hot water stored in the storage tank 31 is mixed with the water supplied from the water supply port through the water flow path 30d in the switching valve 44 through the water flow path 30c. After the temperature is adjusted, the hot water supply port is supplied. Thereby, hot water can be instantaneously supplied from the hot water supply port. And when it becomes possible to fully heat the water supplied from the water supply port by the water heat exchanger 32, the water supply to the storage tank 31 is stopped, and thereafter, the water heat is supplied from the water supply port. Instantaneous hot water supply is performed using a flowing water path 30b that passes through the exchanger 32 and continues to the hot water supply port. It is also possible to supply hot water as it is without mixing the hot water stored in the storage tank 31 with the water supplied from the water supply port.
Further, in the hot water storage operation, when the circulation pump 34 is driven, water flows in the direction of the solid arrow along the flowing water path 30a, whereby hot water is stored in the storage tank 31.

前記ヒートポンプサイクル1(以下,「CO2サイクル」という)は,圧縮機11,前記水熱交換器32,膨張器12及び前記室外空気熱交換器13が順に接続された循環経路10を有している。
前記循環経路10では,前記制御部(不図示)によって前記圧縮機11が駆動されることにより,炭酸ガス冷媒の一例であるCO2冷媒(第一の冷媒の一例)が図示する矢印方向に循環される。ここに,前記CO2冷媒は,後述するR410A冷媒と異なる特性を持ち,冷媒の特性として水を高温(90℃程度)まで加熱することができるが,エネルギ消費効率が比較的低い。そのため,前記CO2サイクル1は,主に前記貯湯運転における水の加熱に用いられる。
具体的には,前記圧縮機11において圧縮して吐出された高温高圧の前記CO2冷媒が,前記水熱交換器32において前記流水経路30aまたは30b上を流れる水と熱交換されて冷却された後,前記膨張器12において膨張する。その後,前記膨張器12で膨張した低温低圧の前記CO2冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,再度前記圧縮機11に流入する。
前記CO2サイクル1では,前記のように前記CO2冷媒が前記循環経路10に循環されることにより,前記流水経路30aまたは30b上を矢印方向に流れる水が,前記水熱交換器32における前記CO2冷媒との熱交換によって90℃程度まで加熱される。なお,前記水熱交換器32における前記CO2冷媒と水との流通方向が反対であるため,該CO2冷媒と水との熱交換は効率的に行われる。
このとき,前記瞬間給湯運転においては,前記流水経路30bを通るよう前記制御部(不図示)によって前記切換弁45が制御され,前記制御部(不図示)によって前記切換弁43が制御されることにより前記水熱交換器32において加熱された温水が前記給湯口に供給される。また,前記貯湯運転においては,前記流水経路30aを通るよう前記制御部(不図示)によって前記切換弁45が制御され,前記制御部(不図示)によって前記切換弁43が制御されることにより,前記水熱交換器32において加熱された温水が前記貯留タンク31に貯留されるように切り替えられる。
The heat pump cycle 1 (hereinafter referred to as “CO 2 cycle”) has a circulation path 10 in which a compressor 11, the water heat exchanger 32, an expander 12, and the outdoor air heat exchanger 13 are connected in order. Yes.
In the circulation path 10, when the compressor 11 is driven by the control unit (not shown), a CO 2 refrigerant (an example of a first refrigerant), which is an example of a carbon dioxide refrigerant, circulates in an arrow direction shown in the drawing. Is done. Here, the CO 2 refrigerant has characteristics different from the R410A refrigerant described later, and can heat water to a high temperature (about 90 ° C.) as a characteristic of the refrigerant, but has a relatively low energy consumption efficiency. Therefore, the CO 2 cycle 1 is mainly used for heating water in the hot water storage operation.
Specifically, the high-temperature and high-pressure CO 2 refrigerant compressed and discharged by the compressor 11 is cooled by heat exchange with water flowing on the flowing water path 30a or 30b in the water heat exchanger 32. Thereafter, the expander 12 expands. Thereafter, the low-temperature and low-pressure CO 2 refrigerant expanded in the expander 12 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 to absorb heat and vaporize, and then flows into the compressor 11 again.
In the CO 2 cycle 1, the CO 2 refrigerant is circulated through the circulation path 10 as described above, so that water flowing in the direction of the arrow on the flowing water path 30 a or 30 b is transferred to the water heat exchanger 32. It is heated to about 90 ° C. by heat exchange with the CO 2 refrigerant. In addition, since the flow direction of the CO 2 refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the CO 2 refrigerant and water is performed efficiently.
At this time, in the instantaneous hot water supply operation, the switching valve 45 is controlled by the control unit (not shown) so as to pass through the flowing water path 30b, and the switching valve 43 is controlled by the control unit (not shown). Thus, hot water heated in the water heat exchanger 32 is supplied to the hot water supply port. Further, in the hot water storage operation, the switching valve 45 is controlled by the control unit (not shown) so as to pass through the flowing water path 30a, and the switching valve 43 is controlled by the control unit (not shown), The hot water heated in the water heat exchanger 32 is switched so as to be stored in the storage tank 31.

一方,前記ヒートポンプサイクル2(以下,「R410Aサイクル」という)は,HFC冷媒の一例であるR410A冷媒(第二の冷媒の一例)が循環される循環経路20及び循環経路40を有している。ここに,前記R410A冷媒は,前記CO2冷媒と異なる特性を持ち,CO2冷媒に比べて水を低温(65℃程度)までしか加熱することができないが,エネルギ消費効率(COP)は高いので,比較的低い沸上げ温度に適している。そのため,前記R410Aサイクル2は,主に前記瞬間給湯運転における水の加熱に用いられる。なお,前記R410A冷媒の他の例としては,例えばR407C/E,R404A,R507A,R134a等がある。また,前記ヒートポンプ式給湯機Xに用いられる二つの異なる冷媒は,炭酸ガス冷媒及びHFC冷媒に限られるものではなく,熱交換効率やエネルギ消費効率などの特性が異なる二つの冷媒を用いればよい。 On the other hand, the heat pump cycle 2 (hereinafter referred to as “R410A cycle”) has a circulation path 20 and a circulation path 40 through which an R410A refrigerant (an example of a second refrigerant), which is an example of an HFC refrigerant, is circulated. Here, the R410A refrigerant, the CO 2 has a refrigerant different properties, but can only heat the water compared to the CO 2 refrigerant to a low temperature (about 65 ° C.), since the energy consumption efficiency (COP) is high , Suitable for relatively low boiling temperature. Therefore, the R410A cycle 2 is mainly used for heating water in the instantaneous hot water supply operation. Other examples of the R410A refrigerant include R407C / E, R404A, R507A, and R134a. Further, the two different refrigerants used in the heat pump type hot water heater X are not limited to the carbon dioxide refrigerant and the HFC refrigerant, and two refrigerants having different characteristics such as heat exchange efficiency and energy consumption efficiency may be used.

前記循環経路20は,圧縮機21,四方弁24,切換弁41,前記水熱交換器32,切換弁42,膨張器(例えば膨張弁)22,前記室外空気熱交換器13及び前記四方弁24が順に接続されて構成されている。
前記循環経路20では,前記制御部(不図示)によって制御されて前記圧縮機21が駆動されることにより,前記R410A冷媒が図示する実線矢印方向に循環される。具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記切換弁41を経て前記水熱交換器32に達する。そして,前記R410A冷媒は,前記水熱交換器32において前記流水経路30aまたは30b上を流れる水と熱交換されて冷却される。その後,前記R410A冷媒は,前記切換弁42を経て前記膨張器22において膨張する。そして,前記膨張器22で膨張した低温低圧の前記R410A冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記循環経路20において実線矢印方向に循環されることにより,前記流水経路30aまたは30b上を矢印方向に流れる水が,前記水熱交換器32における前記R410A冷媒との熱交換によって65℃程度まで加熱される。なお,前記水熱交換器32における前記R410A冷媒と水との流通方向が反対であるため,該R410A冷媒と水との熱交換は効率的に行われる。
The circulation path 20 includes a compressor 21, a four-way valve 24, a switching valve 41, the water heat exchanger 32, a switching valve 42, an expander (for example, an expansion valve) 22, the outdoor air heat exchanger 13, and the four-way valve 24. Are connected in order.
In the circulation path 20, the R <b> 410 </ b> A refrigerant is circulated in the direction indicated by the solid arrow as illustrated in FIG. Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the water heat exchanger 32 through the four-way valve 24 and the switching valve 41. The R410A refrigerant is cooled by heat exchange with water flowing on the flowing water path 30a or 30b in the water heat exchanger 32. Thereafter, the R410A refrigerant expands in the expander 22 via the switching valve 42. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 to absorb heat and vaporize, and then passes again through the four-way valve 24 to the compressor 21 again. Inflow.
In the R410A cycle 2, as described above, the R410A refrigerant is circulated in the direction of the solid arrow in the circulation path 20, so that the water flowing in the direction of the arrow on the flowing water path 30a or 30b is transferred to the water heat exchanger 32. Is heated to about 65 ° C. by heat exchange with the R410A refrigerant. Since the flow direction of the R410A refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the R410A refrigerant and water is performed efficiently.

また,前記水熱交換器32は,前記CO2サイクル1及び前記R410Aサイクル2に共通するものであって,これらに循環される前記CO2冷媒及び前記R410A冷媒と,前記流水経路30a又は前記流水経路30b上を流れる水とを同時に熱交換させることが可能である。具体的には,前記水熱交換器32が,該水熱交換器32内に設けられた前記CO2冷媒の配管14と前記流水経路30a,30b上に設けられた配管33,前記R410A冷媒の配管25と前記配管33が共に接触するように構成されている。
したがって,前記ヒートポンプ式給湯機Xでは,前記CO2サイクル1及び前記R410Aサイクル2を同時に用いることにより,個々の熱交換効率以上の熱交換効率で水を加熱することができる。これにより,前記瞬間給湯運転時における給湯量を増加させることができる。
The water heat exchanger 32 is common to the CO 2 cycle 1 and the R410A cycle 2, and the CO 2 refrigerant and the R410A refrigerant circulated therethrough, the flowing water path 30a or the flowing water. It is possible to simultaneously exchange heat with water flowing on the path 30b. Specifically, the water heat exchanger 32 includes the pipe 14 of the CO 2 refrigerant provided in the water heat exchanger 32, the pipe 33 provided on the flowing water paths 30a and 30b, the R410A refrigerant. The pipe 25 and the pipe 33 are configured to come into contact with each other.
Therefore, in the heat pump type hot water supply apparatus X, water can be heated with a heat exchange efficiency higher than the individual heat exchange efficiency by using the CO 2 cycle 1 and the R410A cycle 2 at the same time. Thereby, the hot water supply amount at the time of the instantaneous hot water supply operation can be increased.

他方,前記循環経路40は,前記圧縮機21,前記四方弁24,前記切換弁41,室内空気熱交換器4,前記切換弁42,前記膨張器22,前記室外空気熱交換器13及び前記四方弁24が順に接続されて構成されている。
ここに,前記室内空気熱交換器4は,室内の冷暖房を行う空気調和機(不図示)に設けられ,前記循環経路40内に循環される前記R410A冷媒と室内空気との間で熱交換を行うことにより室内空気を加熱或いは冷却するものである。
On the other hand, the circulation path 40 includes the compressor 21, the four-way valve 24, the switching valve 41, the indoor air heat exchanger 4, the switching valve 42, the expander 22, the outdoor air heat exchanger 13, and the four-way. Valves 24 are connected in order.
Here, the indoor air heat exchanger 4 is provided in an air conditioner (not shown) that performs indoor heating and cooling, and exchanges heat between the R410A refrigerant circulated in the circulation path 40 and room air. By doing so, the indoor air is heated or cooled.

ここで,図2〜4を用いて,前記室外空気熱交換器13について詳説する。
図2に示すように,前記室外空気熱交換器13は,前記圧縮機11,21,前記膨張器12,22,送風ファン64等と共に室外機6に内蔵されている。前記送風ファン64は,不図示のモータによって回転駆動されることにより前記室外空気熱交換器13に室外空気を送風する。このように,前記ヒートポンプ式給湯機Xでは,前記室外機6が前記CO2サイクル1及び前記R410Aサイクル2で共通している。なお,図示しないが,前記室外機6には,前記水熱交換器32や前記貯湯タンク31を内蔵してもよい。
図3に示すように,前記室外空気熱交換器13は,前記CO2サイクル1に循環されるCO2冷媒が流通する配管61(第一の配管の一例)と,前記R410Aサイクル2に循環されるR410A冷媒が流通する配管62(第二の配管の一例)と,前記配管61及び前記配管62が貫装された複数の伝熱フィン(伝熱板)63と,を備えて構成されている。前記室外空気熱交換器13では,前記伝熱フィン63を介して,前記配管61に流通するCO2冷媒や前記配管62に流通するR410A冷媒と前記送風ファン64によって送風された室外空気との間で熱交換が行われる。
前記配管61は,前記伝熱フィン63に貫装された複数の配管が前記室外空気熱交換器13の両端でベンド管61a,61bによって連結されて構成されている。同じく,前記配管62は,前記伝熱フィン63に貫装された複数の配管が前記室外空気熱交換器13の両端でベンド管62a,62bによって連結されて構成されている。ここで,前記配管61及び前記配管62の各々は,前記室外空気熱交換器13において室外空気の流通方向と垂直な方向に配置された複数の配管が二本毎に交互に接続されたものである。これにより,前記配管61及び前記配管62の各々は,前記伝熱フィン63に交互に貫装された状態で配置されている。
このように,前記ヒートポンプ式給湯機Xでは,前記室外機6が前記CO2サイクル1及び前記R410Aサイクル2に共通するため,従来のように別々に室外機が設けられていた場合に比べて設置スペースが省減される。また,前記室外空気熱交換器13や前記送風ファン64などを共通化して構成要素を省減することが可能である。
Here, the outdoor air heat exchanger 13 will be described in detail with reference to FIGS.
As shown in FIG. 2, the outdoor air heat exchanger 13 is built in the outdoor unit 6 together with the compressors 11, 21, the expanders 12 and 22, the blower fan 64, and the like. The blower fan 64 is driven to rotate by a motor (not shown) to blow outdoor air to the outdoor air heat exchanger 13. Thus, in the heat pump type hot water heater X, the outdoor unit 6 is shared by the CO 2 cycle 1 and the R410A cycle 2. Although not shown, the outdoor unit 6 may incorporate the water heat exchanger 32 and the hot water storage tank 31.
As shown in FIG. 3, the outdoor air heat exchanger 13 is circulated in a pipe 61 (an example of a first pipe) through which the CO 2 refrigerant circulated in the CO 2 cycle 1 circulates and the R410A cycle 2. A pipe 62 (an example of a second pipe) through which the R410A refrigerant flows, and a plurality of heat transfer fins (heat transfer plates) 63 through which the pipe 61 and the pipe 62 are inserted. . In the outdoor air heat exchanger 13, between the CO 2 refrigerant flowing through the pipe 61 and the R410A refrigerant flowing through the pipe 62 and the outdoor air blown by the blower fan 64 through the heat transfer fins 63. Heat exchange takes place at.
The pipe 61 is configured by connecting a plurality of pipes penetrating the heat transfer fins 63 by bend pipes 61 a and 61 b at both ends of the outdoor air heat exchanger 13. Similarly, the pipe 62 is configured by connecting a plurality of pipes penetrating the heat transfer fins 63 at both ends of the outdoor air heat exchanger 13 by bend pipes 62a and 62b. Here, each of the pipe 61 and the pipe 62 is formed by alternately connecting a plurality of pipes arranged in a direction perpendicular to the outdoor air flow direction in the outdoor air heat exchanger 13 every two pipes. is there. Thereby, each of the said piping 61 and the said piping 62 is arrange | positioned in the state penetrated by the said heat-transfer fin 63 alternately.
Thus, in the heat pump type hot water heater X, since the outdoor unit 6 is common to the CO 2 cycle 1 and the R410A cycle 2, it is installed in comparison with the case where the outdoor unit is provided separately as in the prior art. Space is saved. In addition, the outdoor air heat exchanger 13 and the blower fan 64 can be shared to reduce the number of components.

ところで,前記配管61には圧縮率の高い前記CO2冷媒が流通するため高い耐圧性能が要求される。そのため,図4(a)に示すように,前記配管61の肉厚は,前記配管62の肉厚よりも大きい関係にある。一方,前記配管61に流れる前記CO2冷媒は圧縮率が高いため,前記配管61の管径は,図4(a)に示すように前記配管62の管径よりも小さくてもよい。例えば,前記配管62には肉厚が0.3mm,管径が9mmである配管が用いられるのに対し,前記配管61には肉厚が0.6mm,管径は6mmである配管が用いられる。
なお,図4(b),(c)に示すように,前記配管61の肉厚が前記配管62の肉厚よりも大きい関係(図4(a)),前記配管61の管径が前記配管62の管径よりも小さい関係(図4(b))のいずれか一方を採用した構成であってもよい。
By the way, since the CO 2 refrigerant having a high compression ratio flows through the pipe 61, a high pressure resistance is required. Therefore, as shown in FIG. 4A, the thickness of the pipe 61 is larger than the thickness of the pipe 62. On the other hand, since the CO 2 refrigerant flowing in the pipe 61 has a high compressibility, the pipe diameter of the pipe 61 may be smaller than the pipe diameter of the pipe 62 as shown in FIG. For example, a pipe having a wall thickness of 0.3 mm and a pipe diameter of 9 mm is used for the pipe 62, whereas a pipe having a wall thickness of 0.6 mm and a pipe diameter of 6 mm is used for the pipe 61. .
As shown in FIGS. 4B and 4C, the thickness of the pipe 61 is larger than the thickness of the pipe 62 (FIG. 4A), and the pipe 61 has a diameter of the pipe. The structure which employ | adopted any one of the relationships (FIG.4 (b)) smaller than the pipe diameter of 62 may be sufficient.

次に,前記水熱交換器32について詳説する。
前記水熱交換器32は,前記CO2サイクル1に循環される前記CO2冷媒が流通する配管14と,前記R410Aサイクル2に循環される前記R410A冷媒が流通する配管25と,前記流水経路30a,30b上に流れる水が流通する配管33と,を備えている。
前記配管14は前記配管33に内蔵されている。一方,前記配管25は前記配管33に内蔵されている。このように,前記水熱交換器32では,前記配管14,前記配管25及び前記配管33が,前記配管14に流通するCO2冷媒と前記配管33に流通する水との間,前記配管25に流通するR410A冷媒と前記配管33に流通する水との間で同時に熱交換が可能な状態で配置されている。
なお,前述したように,前記配管14には圧縮率の高い前記CO2冷媒が流通するため高い耐圧性能が要求される。そのため,前記配管14の肉厚は,前記配管25の肉厚よりも大きいことが望ましい。一方,前記配管14の管径は前記配管25の管径よりも小さくてよい。
このように構成された前記水熱交換器32では,前記配管14に流通するCO2冷媒及び前記配管25に流通するR410A冷媒のいずれか一方又は両方と,前記流水経路30a,30b上を流れる水との間で熱交換が行われる。したがって,前記ヒートポンプ式給湯機Xでは,前記CO2サイクル1及び前記R410Aサイクル2を同時に用いることにより,個々の熱交換効率以上の熱交換効率で水を加熱することが可能である。これにより,前記瞬間給湯運転時における給湯量を増加させることができる。また,前記水熱交換器32が前記CO2冷媒及び前記R410A冷媒に共通するため,別々に熱交換器を設ける場合に比べて当該ヒートポンプ式給湯機Xの構成要素や設置スペースを省減することが可能である。
Next, the water heat exchanger 32 will be described in detail.
The water heat exchanger 32 includes a pipe 14 through which the CO 2 refrigerant circulated in the CO 2 cycle 1 circulates, a pipe 25 through which the R410A refrigerant circulated through the R410A cycle 2 circulates, and the flowing water path 30a. , 30b, and a pipe 33 through which water flows.
The pipe 14 is built in the pipe 33. On the other hand, the pipe 25 is built in the pipe 33. Thus, in the water heat exchanger 32, the pipe 14, the pipe 25, and the pipe 33 are connected to the pipe 25 between the CO 2 refrigerant flowing through the pipe 14 and the water flowing through the pipe 33. It arrange | positions in the state in which heat exchange is simultaneously possible between the R410A refrigerant | coolant which distribute | circulates, and the water which distribute | circulates the said piping 33 simultaneously.
As described above, the piping 14 is required to have high pressure resistance because the CO 2 refrigerant having a high compression ratio flows therethrough. Therefore, it is desirable that the thickness of the pipe 14 is larger than the thickness of the pipe 25. On the other hand, the pipe diameter of the pipe 14 may be smaller than the pipe diameter of the pipe 25.
In the water heat exchanger 32 configured as described above, either or both of the CO 2 refrigerant flowing through the pipe 14 and the R410A refrigerant flowing through the pipe 25 and water flowing on the water flow paths 30a and 30b. Heat exchange with the Therefore, in the heat pump type hot water heater X, by using the CO 2 cycle 1 and the R410A cycle 2 at the same time, it is possible to heat water with a heat exchange efficiency higher than the individual heat exchange efficiency. Thereby, the hot water supply amount at the time of the instantaneous hot water supply operation can be increased. Further, since the water heat exchanger 32 is common to the CO 2 refrigerant and the R410A refrigerant, the components and installation space of the heat pump type hot water heater X can be reduced as compared with the case where a separate heat exchanger is provided. Is possible.

以下,前記ヒートポンプ式給湯機Xの前記R410Aサイクル2において実現される暖房運転及び冷房運転について説明する。
(1)暖房運転について
ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から暖房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の循環経路40において前記R410A冷媒の実線矢印方向の循環が開始される。このとき,前記四方弁24内部では図示する実線経路が確立されている。
これにより,前記循環経路40では,図示する実線矢印方向に前記R410A冷媒が循環される。具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記切換弁41を経て前記室内空気熱交換器4に達する。そして,前記R410A冷媒は,前記室内空気熱交換器4において室内の空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記切換弁42を経て前記膨張器22において膨張する。そして,前記膨張器22において膨張した低温低圧の前記R410A冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記循環経路40において実線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって加熱される。即ち,前記ヒートポンプ式給湯機Xによって暖房が実現される。
Hereinafter, the heating operation and the cooling operation realized in the R410A cycle 2 of the heat pump type water heater X will be described.
(1) Heating operation When the user requests the heat pump water heater X to start a heating operation from an operation unit (not shown), in the heat pump water heater X, the control unit (not shown) The compressor 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the solid arrow in the circulation path 40 of the R410A cycle 2 is started. At this time, the illustrated solid line path is established inside the four-way valve 24.
As a result, the R410A refrigerant is circulated in the circulation path 40 in the direction of the solid arrow shown in the figure. Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the indoor air heat exchanger 4 through the four-way valve 24 and the switching valve 41. The R410A refrigerant is cooled by heat exchange with indoor air in the indoor air heat exchanger 4. Thereafter, the R410A refrigerant expands in the expander 22 via the switching valve 42. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 to absorb heat and vaporize, and then passes again through the four-way valve 24 to the compressor 21 again. Inflow.
In the R410A cycle 2, the R410A refrigerant is circulated in the direction of the solid arrow in the circulation path 40 as described above, whereby the indoor air is exchanged with the R410A refrigerant in the indoor air heat exchanger 4. Heated. That is, heating is realized by the heat pump type hot water heater X.

ところで,従来装置(例えば,特許文献1参照)では前記R410Aサイクル2を用いて,瞬間給湯と暖房とを同時に行うことはできなかった。また,前記R410A冷媒を分配して瞬間給湯と暖房とを同時に行うことも考えられるが,この場合には十分な給湯温度や給湯量が得ることができないという課題が伴う。
しかし,前記ヒートポンプ式給湯機Xでは,瞬間給湯と暖房とを同時に行う際,前記水熱交換器32において,前記CO2サイクル1に循環する前記CO2冷媒と,前記R410Aサイクル2に循環するR410A冷媒とで同時に水を加熱することが可能である。これにより,瞬間給湯と暖房とを同時に行う際に,十分な給湯温度や給湯量を得ることができる。以下,この点について詳説する。
By the way, in the conventional apparatus (for example, refer patent document 1), instantaneous hot water supply and heating were not able to be performed simultaneously using the said R410A cycle 2. FIG. In addition, it is conceivable that the R410A refrigerant is distributed to perform instantaneous hot water supply and heating at the same time. However, in this case, there is a problem that a sufficient hot water supply temperature and hot water supply amount cannot be obtained.
However, in the heat pump type water heater X, when the instantaneous hot water supply and the heating are performed simultaneously, the CO 2 refrigerant that circulates in the CO 2 cycle 1 and the R410A that circulates in the R410A cycle 2 in the water heat exchanger 32. It is possible to heat water simultaneously with the refrigerant. Thereby, when performing instantaneous hot water supply and heating simultaneously, sufficient hot water supply temperature and amount of hot water supply can be obtained. This point will be described in detail below.

まず,前記ヒートポンプ式給湯機Xにおいて前記R410Aサイクル2によって暖房運転が行われているときに,ユーザによって不図示の操作部に対して瞬間給湯の要求が行われると,該ヒートポンプ式給湯機Xでは,前記切換弁41,42が前記制御部(不図示)によって制御され,前記R410Aサイクル2の循環経路20における前記R410A冷媒の実線矢印方向の循環が開始される。このとき,前記R410A冷媒は,前記R410Aサイクル2において前記循環経路20及び40に分配して循環される。そのため,前記水熱交換器32における前記循環経路20を循環する前記R410A冷媒による水の加熱が十分に行われないおそれがある。
そこで,前記ヒートポンプ式給湯機Xでは,前記R410Aサイクル2によって暖房運転が行われているときに,ユーザによって不図示の操作部に対して瞬間給湯の要求が行われると,前記制御部(不図示)によって前記CO2サイクル1の圧縮機11の駆動が制御されて,前記CO2サイクル1における前記CO2冷媒の循環が開始される。
これにより,前記水熱交換器32では,前述したように前記R410A冷媒と前記CO2冷媒との両方で水が加熱されることとなる。即ち,前記R410Aサイクル1における瞬間給湯と暖房の同時運転時の水の加熱効率の低下は,前記CO2サイクル1を循環する前記CO2冷媒と水との熱交換によって補われる。したがって,前記R410Aサイクル2において瞬間給湯と暖房とを同時に行う際に,十分な給湯温度や給湯量を得ることができる。
First, in the heat pump type hot water heater X, when a heating operation is performed by the R410A cycle 2, if a user requests instantaneous hot water supply to an operation unit (not shown), the heat pump type hot water heater X The switching valves 41 and 42 are controlled by the control unit (not shown), and the circulation of the R410A refrigerant in the direction of the solid arrow in the circulation path 20 of the R410A cycle 2 is started. At this time, the R410A refrigerant is distributed and circulated to the circulation paths 20 and 40 in the R410A cycle 2. Therefore, there is a possibility that the water is not sufficiently heated by the R410A refrigerant circulating through the circulation path 20 in the water heat exchanger 32.
Therefore, in the heat pump type hot water heater X, when the heating operation is performed by the R410A cycle 2, if the user requests instantaneous hot water supply to the operation unit (not shown), the control unit (not shown) ) is driven to control the compressor 11 of the CO 2 cycle 1 by the circulation of the CO 2 refrigerant in the CO 2 cycle 1 is started.
Thereby, in the water heat exchanger 32, as described above, water is heated by both the R410A refrigerant and the CO 2 refrigerant. That is, the decrease in the heating efficiency of water during the simultaneous operation of instantaneous hot water supply and heating in the R410A cycle 1 is compensated by heat exchange between the CO 2 refrigerant circulating in the CO 2 cycle 1 and water. Therefore, when performing instantaneous hot water supply and heating simultaneously in the R410A cycle 2, a sufficient hot water supply temperature and amount of hot water supply can be obtained.

(2)冷房運転について
一方,ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から冷房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の循環経路40において前記R410A冷媒の破線矢印方向の循環が開始される。このとき,前記四方弁24内部では図示する破線経路が確立されている。
これにより,前記循環経路40では,図示する破線矢印方向に前記R410A冷媒が循環される。具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24を経て前記室外空気熱交換器13に達する。そして,前記R410A冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記膨張器22において膨張する。そして,前記膨張器22において膨張した低温低圧の前記R410A冷媒は,前記切換弁42を経て前記室内空気熱交換器4において室内空気と熱交換されて吸熱し気化した後,前記切換弁41及び前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記循環経路40において破線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって冷却される。即ち,前記ヒートポンプ式給湯機Xによって冷房が実現される。
(2) Cooling operation On the other hand, when the user requests the heat pump water heater X to start the cooling operation from an operation unit (not shown), the heat pump water heater X has the control unit (not shown). ), The compressor 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the broken line arrow is started in the circulation path 40 of the R410A cycle 2. At this time, the illustrated broken line path is established inside the four-way valve 24.
Thereby, in the circulation path 40, the R410A refrigerant is circulated in the direction of the broken arrow shown in the figure. Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the outdoor air heat exchanger 13 through the four-way valve 24. The R410A refrigerant is cooled by exchanging heat with outdoor air in the outdoor air heat exchanger 13. Thereafter, the R410A refrigerant expands in the expander 22. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is subjected to heat exchange with the indoor air in the indoor air heat exchanger 4 via the switching valve 42, and absorbs and vaporizes. It flows into the compressor 21 again through the four-way valve 24.
In the R410A cycle 2, the R410A refrigerant is circulated in the direction of the broken line arrow in the circulation path 40 as described above, so that the indoor air is exchanged with the R410A refrigerant in the indoor air heat exchanger 4. To be cooled. That is, cooling is realized by the heat pump type hot water heater X.

なお,このとき前記ヒートポンプ式給湯機Xでは,前記切換弁41及び42が前記制御部(不図示)によって制御されることにより,前記循環経路20における前記R410A冷媒の循環は阻止される。
したがって,前記R410Aサイクル2によって冷房が行われている場合であっても,前記CO2サイクル1による前記貯湯運転に支障はない。しかも,前記R410Aサイクル2で冷房運転が行われているときに前記CO2サイクル1で給湯を行う場合には,前記配管61には低温のCO2冷媒が流通し,前記配管62には高温のR410A冷媒が流通することになる。したがって,前記CO2冷媒と前記R410A冷媒との間でも前記伝熱フィン63を介して熱交換が行われる。即ち,前記R410Aサイクル2による冷房運転の排熱を,前記CO2サイクル1による前記貯湯運転などに利用することが可能である。
At this time, in the heat pump type hot water heater X, the switching valves 41 and 42 are controlled by the control unit (not shown), thereby preventing the circulation of the R410A refrigerant in the circulation path 20.
Therefore, even when the cooling is performed by the R410A cycle 2, the hot water storage operation by the CO 2 cycle 1 is not hindered. In addition, when hot water is supplied in the CO 2 cycle 1 while the cooling operation is being performed in the R410A cycle 2, a low-temperature CO 2 refrigerant flows through the pipe 61, and a high temperature flows through the pipe 62. The R410A refrigerant will circulate. Therefore, heat exchange is also performed between the CO 2 refrigerant and the R410A refrigerant via the heat transfer fins 63. That is, the exhaust heat of the cooling operation by the R410A cycle 2 can be used for the hot water storage operation by the CO 2 cycle 1 and the like.

ここに,図5は,本発明の実施例1に係るヒートポンプ式給湯機X1の概略構成図である。なお,前記実施の形態で説明した前記ヒートポンプ式給湯機Xと同様の構成要素については,同じ符号を付してその説明を省略する。
図5に示すように,前記ヒートポンプ式給湯機X1は,前記ヒートポンプ式給湯機XのR410Aサイクル2に換えてR410Aサイクル5を有している。前記R410Aサイクル5には,前記制御部(不図示)によって制御される切換弁51〜56,二つの膨張器22a及び22bが設けられている。
このように構成された前記R410Aサイクル5では,前記循環経路20における前記R410A冷媒の循環方向と,前記循環経路40における前記R410A冷媒の循環方向とを独立して制御することが可能である。したがって,前記R410Aサイクル5では,冷房又は暖房と瞬間給湯とを同時に行うことが可能である。以下,具体的に説明する。
FIG. 5 is a schematic configuration diagram of the heat pump type water heater X1 according to the first embodiment of the present invention. In addition, about the component similar to the said heat pump type water heater X demonstrated in the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIG. 5, the heat pump type hot water heater X1 has an R410A cycle 5 instead of the R410A cycle 2 of the heat pump type hot water heater X. The R410A cycle 5 is provided with switching valves 51 to 56 controlled by the control unit (not shown) and two expanders 22a and 22b.
In the R410A cycle 5 configured as described above, the circulation direction of the R410A refrigerant in the circulation path 20 and the circulation direction of the R410A refrigerant in the circulation path 40 can be controlled independently. Therefore, in the R410A cycle 5, it is possible to simultaneously perform cooling or heating and instantaneous hot water supply. This will be specifically described below.

(1)暖房と瞬間給湯との同時運転について
暖房と瞬間給湯との同時運転時,前記R410Aサイクル5では,前記制御部(不図示)によって前記圧縮機21,前記四方弁24及び前記切換弁51〜56が制御されることにより,前記R410A冷媒が図5に示す実線矢印方向に循環される。
具体的には,前記循環経路20では,前記R410A冷媒が,圧縮機21,四方弁24,切換弁51,切換弁52,水熱交換器32,膨張器22a,切換弁53,切換弁54,室外空気熱交換器13,切換弁56,四方弁24,圧縮機21の順に循環される。これにより,前記水熱交換器32において前記流水経路30b上を流れる水が加熱される。
一方,前記循環経路40では,前記R410A冷媒は,圧縮機21,四方弁24,切換弁51,室内空気熱交換器4,切換弁55,膨張器22b,切換弁54,室外空気熱交換器13,切換弁56,四方弁24,圧縮機21の順に循環される。これにより,前記室内空気熱交換器4において室内空気が加熱されて暖房が行われる。
このように,前記R410Aサイクル5では,前記切換弁51で前記R410A冷媒を分配することによって暖房と瞬間給湯とを同時に行うことができる。なお,前述したように,前記R410A冷媒の分配による前記水熱交換器32における水の加熱効率の低下は,前記CO2サイクル1によって補うことができる。
(2)冷房と瞬間給湯の同時運転について
冷房と瞬間給湯との同時運転時,前記R410Aサイクル5では,前記制御部(不図示)によって前記圧縮機21,前記四方弁24及び前記切換弁51〜56が制御されることにより,前記R410A冷媒が図5に示す破線矢印方向に循環される。
具体的には,前記循環経路20では,前記R410A冷媒が,圧縮機21,四方弁24,切換弁56,切換弁52,水熱交換器32,膨張器22a,切換弁53,切換弁55,室内空気熱交換器4,切換弁51,四方弁24,圧縮機21の順に循環される。これにより,前記水熱交換器32において前記流水経路30b上を流れる水が加熱される。
一方,前記循環経路40では,前記R410A冷媒は,圧縮機21,四方弁24,切換弁56,室外空気熱交換器13,切換弁54,膨張器22b,切換弁55,室内空気熱交換器4,切換弁51,四方弁24,圧縮機21の順に循環される。これにより,前記室内空気熱交換器4において室内空気が冷却されて冷房が行われる。
このように,前記R410Aサイクル5では,前記切換弁56で前記R410A冷媒を分配することによって冷房と瞬間給湯とを同時に行うことができる。なお,前述したように,前記R410A冷媒の分配による前記水熱交換器32における水の加熱効率の低下は,前記CO2サイクル1によって補うことができる。また,前述したように,前記R410Aサイクル5による冷房運転の排熱は前記CO2サイクル1で利用可能である。
(1) Simultaneous operation of heating and instantaneous hot water supply During simultaneous operation of heating and instantaneous hot water supply, in the R410A cycle 5, the compressor 21, the four-way valve 24, and the switching valve 51 are controlled by the control unit (not shown). By controlling .about.56, the R410A refrigerant is circulated in the direction of the solid arrow shown in FIG.
Specifically, in the circulation path 20, the R410A refrigerant flows into the compressor 21, the four-way valve 24, the switching valve 51, the switching valve 52, the water heat exchanger 32, the expander 22a, the switching valve 53, the switching valve 54, The outdoor air heat exchanger 13, the switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, the water flowing on the flowing water path 30b is heated in the water heat exchanger 32.
On the other hand, in the circulation path 40, the R410A refrigerant flows into the compressor 21, the four-way valve 24, the switching valve 51, the indoor air heat exchanger 4, the switching valve 55, the expander 22b, the switching valve 54, and the outdoor air heat exchanger 13. , The switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, in the said indoor air heat exchanger 4, indoor air is heated and heating is performed.
Thus, in the R410A cycle 5, heating and instantaneous hot water supply can be performed simultaneously by distributing the R410A refrigerant by the switching valve 51. As described above, the CO 2 cycle 1 can compensate for a decrease in the heating efficiency of the water in the water heat exchanger 32 due to the distribution of the R410A refrigerant.
(2) Simultaneous operation of cooling and instantaneous hot water supply During simultaneous operation of cooling and instantaneous hot water supply, in the R410A cycle 5, the control unit (not shown) performs the compressor 21, the four-way valve 24, and the switching valve 51-51. By controlling 56, the R410A refrigerant is circulated in the direction of the broken arrow shown in FIG.
Specifically, in the circulation path 20, the R410A refrigerant flows into the compressor 21, the four-way valve 24, the switching valve 56, the switching valve 52, the water heat exchanger 32, the expander 22a, the switching valve 53, the switching valve 55, The indoor air heat exchanger 4, the switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, the water flowing on the flowing water path 30b is heated in the water heat exchanger 32.
On the other hand, in the circulation path 40, the R410A refrigerant is supplied from the compressor 21, the four-way valve 24, the switching valve 56, the outdoor air heat exchanger 13, the switching valve 54, the expander 22b, the switching valve 55, and the indoor air heat exchanger 4. , The switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order. As a result, the indoor air heat exchanger 4 cools the room air by cooling it.
As described above, in the R410A cycle 5, the R410A refrigerant is distributed by the switching valve 56, whereby cooling and instantaneous hot water supply can be performed simultaneously. As described above, the CO 2 cycle 1 can compensate for a decrease in the heating efficiency of the water in the water heat exchanger 32 due to the distribution of the R410A refrigerant. Further, as described above, the exhaust heat of the cooling operation by the R410A cycle 5 can be used in the CO 2 cycle 1.

本実施例2では,図6を用いて前記室外空気熱交換器13(図3参照)の変形例である室外空気熱交換器131について説明する。ここに,図6は,本実施例2に係る前記室外空気熱交換器131の部品図である。
前記実施の形態では,前記室外空気熱交換器13において,前記配管61及び前記配管62の両端が共に,該室外空気熱交換器13の一端に配置されている例について説明した。
しかし,前記のように,前記配管61と前記配管62との肉厚や管径を異ならせる場合には,当該ヒートポンプ式給湯機Xの組み立て時などに,前記CO2サイクル1や前記R410Aサイクル2に誤って配管が接続されると,前記CO2冷媒が十分な耐圧性能の確保されていない前記配管62を流通することとなる。そこで,このような事態を阻止するため,前記室外空気熱交換器131では,前記配管61の両端(始端及び終端)を該熱交換器6の一端に,前記配管62の両端(始端及び終端)を該熱交換器6の他端に配置している。このように前記配管61の両端と前記配管62の両端とを,前記室外空気熱交換器131の両端に分けて配置することで,誤って逆のサイクルに接続するおそれを低減することができる。
In the second embodiment, an outdoor air heat exchanger 131 which is a modification of the outdoor air heat exchanger 13 (see FIG. 3) will be described with reference to FIG. FIG. 6 is a component diagram of the outdoor air heat exchanger 131 according to the second embodiment.
In the embodiment, the example in which both ends of the pipe 61 and the pipe 62 are arranged at one end of the outdoor air heat exchanger 13 in the outdoor air heat exchanger 13 has been described.
However, as described above, when the pipe 61 and the pipe 62 have different wall thicknesses and pipe diameters, the CO 2 cycle 1 and the R410A cycle 2 are used when the heat pump type water heater X is assembled. If the pipe is mistakenly connected, the CO 2 refrigerant flows through the pipe 62 in which sufficient pressure resistance is not ensured. Therefore, in order to prevent such a situation, in the outdoor air heat exchanger 131, both ends (start and end) of the pipe 61 are connected to one end of the heat exchanger 6 and both ends (start and end) of the pipe 62 are connected. Is disposed at the other end of the heat exchanger 6. Thus, by arranging the both ends of the pipe 61 and the both ends of the pipe 62 separately at both ends of the outdoor air heat exchanger 131, it is possible to reduce the possibility of erroneous connection to the reverse cycle.

本実施例3では,図7を用いて前記室外機6(図2参照)の変形例である室外機106について説明する。ここに,図7は,本実施例3に係る前記室外機106の内部構成図である。
図7に示すように,前記室外機106は,前記圧縮機11,21,前記膨張器12,22,室外空気熱交換器132(第一の熱交換器の一例),室外空気熱交換器133(第一の熱交換器の一例),前記送風ファン64等を内蔵している。前記室外空気熱交換器132及び前記室外空気熱交換器133は,上下に積み重ねられた状態で配置されている。なお,図示しないが,前記室外機106には,前記水熱交換器32や前記貯湯タンク31を内蔵してもよい。
前記室外空気熱交換器132は,図示しないが,前記CO2冷媒が循環される配管及び該配管が貫装された複数の伝熱フィンを有しており,前記伝熱フィンを介して,前記CO2サイクル1に循環されるCO2冷媒と室外空気との間で熱交換を行うものである。また,前記室外空気熱交換器133は,前記R410A冷媒が循環される配管及び該配管が貫装された複数の伝熱フィンを有しており,前記伝熱フィンを介して,前記R410Aサイクル2に循環されるR410A冷媒と室外空気との間で熱交換を行うものである。
このように,前記室外空気熱交換器132,133を共に前記室外機106に設ける構成により,該室外空気熱交換器132,133を別々の室外機を設ける場合に比べて当該ヒートポンプ式給湯機Xの設置スペースを省減することができる。また,前記室外空気熱交換器132及び133を,共通の前記室外機106に内蔵しているため,前記送風ファン64を共通化して構成要素を省減することが可能である。
In the third embodiment, an outdoor unit 106 that is a modification of the outdoor unit 6 (see FIG. 2) will be described with reference to FIG. FIG. 7 is an internal configuration diagram of the outdoor unit 106 according to the third embodiment.
As shown in FIG. 7, the outdoor unit 106 includes the compressors 11, 21, the expanders 12 and 22, an outdoor air heat exchanger 132 (an example of a first heat exchanger), and an outdoor air heat exchanger 133. (One example of a first heat exchanger), the blower fan 64 and the like are incorporated. The outdoor air heat exchanger 132 and the outdoor air heat exchanger 133 are arranged so as to be stacked one above the other. Although not shown, the outdoor unit 106 may incorporate the water heat exchanger 32 and the hot water storage tank 31.
Although not shown, the outdoor air heat exchanger 132 has a pipe through which the CO 2 refrigerant is circulated and a plurality of heat transfer fins through which the pipe is inserted. Heat exchange is performed between the CO 2 refrigerant circulated in the CO 2 cycle 1 and the outdoor air. Further, the outdoor air heat exchanger 133 has a pipe through which the R410A refrigerant is circulated and a plurality of heat transfer fins through which the pipe is inserted, and the R410A cycle 2 is passed through the heat transfer fins. Heat exchange is performed between the R410A refrigerant circulated in the air and outdoor air.
As described above, the outdoor air heat exchangers 132 and 133 are both provided in the outdoor unit 106, so that the heat pump type hot water heater X is compared with the case where the outdoor air heat exchangers 132 and 133 are provided as separate outdoor units. The installation space can be saved. Further, since the outdoor air heat exchangers 132 and 133 are built in the common outdoor unit 106, it is possible to reduce the number of components by using the blower fan 64 in common.

本実施例4では,図8及び図9を用いて前記室外機6(図2参照)の変形例である室外機206について説明する。ここに,図8は,本実施例4に係る前記室外機206の内部構成図,図9は前記室外機206の他の構成を説明するための模式図である。
図8に示すように,前記室外機206は,前記圧縮機11,21,前記膨張器12,22,室外空気熱交換器134(第一の熱交換器の一例),室外空気熱交換器135(第一の熱交換器の一例),前記送風ファン64等を内蔵している。前記室外空気熱交換器134及び前記室外空気熱交換器135は,前記送風ファン64による室外空気の送風方向(図示する矢印S方向)に並設されている。なお,図示しないが,前記室外機206には,前記水熱交換器32や前記貯湯タンク31を内蔵してもよい。
前記室外空気熱交換器134は,図示しないが,前記CO2冷媒が循環される配管及び該配管が貫装された複数の伝熱フィンを有しており,前記伝熱フィンを介して,前記CO2サイクル1に循環されるCO2冷媒と室外空気との間で熱交換を行うものである。また,前記室外空気熱交換器135は,前記R410A冷媒が循環される配管及び該配管が貫装された複数の伝熱フィンを有しており,前記伝熱フィンを介して,前記R410Aサイクル2に循環されるR410A冷媒と室外空気との間で熱交換を行うものである。
このような構成であっても,前記室外空気熱交換器134,135が,共通の前記室外機206に設けられているため,該室外空気熱交換器134,135を別々の室外機を設ける場合に比べて当該ヒートポンプ式給湯機Xの設置スペースを省減することができる。また,前記室外空気熱交換器134及び135を,共通の前記室外機206に内蔵しているため,前記送風ファン64を共通化して構成要素を省減することが可能である。
In the fourth embodiment, an outdoor unit 206, which is a modified example of the outdoor unit 6 (see FIG. 2), will be described with reference to FIGS. FIG. 8 is an internal configuration diagram of the outdoor unit 206 according to the fourth embodiment, and FIG. 9 is a schematic diagram for explaining another configuration of the outdoor unit 206.
As shown in FIG. 8, the outdoor unit 206 includes the compressors 11, 21, the expanders 12 and 22, an outdoor air heat exchanger 134 (an example of a first heat exchanger), and an outdoor air heat exchanger 135. (One example of a first heat exchanger), the blower fan 64 and the like are incorporated. The outdoor air heat exchanger 134 and the outdoor air heat exchanger 135 are arranged side by side in the direction in which outdoor air is blown by the blower fan 64 (in the direction of arrow S in the figure). Although not shown, the outdoor unit 206 may incorporate the water heat exchanger 32 and the hot water storage tank 31.
Although not shown, the outdoor air heat exchanger 134 has a pipe through which the CO 2 refrigerant is circulated and a plurality of heat transfer fins through which the pipe is inserted. Heat exchange is performed between the CO 2 refrigerant circulated in the CO 2 cycle 1 and the outdoor air. Further, the outdoor air heat exchanger 135 has a pipe through which the R410A refrigerant is circulated and a plurality of heat transfer fins through which the pipe is inserted, and through the heat transfer fins, the R410A cycle 2 Heat exchange is performed between the R410A refrigerant circulated in the air and outdoor air.
Even in such a configuration, since the outdoor air heat exchangers 134 and 135 are provided in the common outdoor unit 206, the outdoor air heat exchangers 134 and 135 are provided as separate outdoor units. Compared to the above, the installation space of the heat pump type hot water heater X can be saved. Further, since the outdoor air heat exchangers 134 and 135 are built in the common outdoor unit 206, the blower fan 64 can be shared to reduce the number of components.

但し,前記室外機206では,前記送風ファン64による室外空気の送風方向の上流側に配設された前記室外空気熱交換器134で前記CO2冷媒と熱交換された後の空気が,下流側に配設された前記室外空気熱交換器135におけるR410A冷媒との熱交換の対象となる。そのため,前記R410A冷媒の熱交換効率だけが低下する。なお,前記室外空気熱交換器134及び135の配置が逆である場合には,前記CO2冷媒の熱交換効率だけが低下する。
そこで,前記室外機206の他の構成として,図9に示すように,前記配管61(図示する実線)及び前記配管62(図示する破線)を,前記室外空気熱交換器134の伝熱フィン63及び前記室外空気熱交換器135の伝熱フィン63に二本毎に交互に貫装することが考えられる。このような構成によれば,前記CO2冷媒及び前記R410A冷媒が共に,前記送風ファン64による送風方向の上流側で室外空気と熱交換されるため,いずれか一方の冷媒だけの熱交換効率が著しく低下することはない。また,前記CO2冷媒及び前記R410A冷媒のいずれか一方の冷媒を用いる場合には,前記室外空気熱交換器134の伝熱フィン64及び前記室外空気熱交換器135の伝熱フィン64で効率良く熱交換を行うことができる。
However, in the outdoor unit 206, the air after heat exchange with the CO 2 refrigerant is performed on the downstream side by the outdoor air heat exchanger 134 disposed on the upstream side in the blowing direction of the outdoor air by the blower fan 64. It becomes the object of heat exchange with the R410A refrigerant in the outdoor air heat exchanger 135 disposed in the room. Therefore, only the heat exchange efficiency of the R410A refrigerant is reduced. Note that when the arrangement of the outdoor air heat exchangers 134 and 135 is reversed, only the heat exchange efficiency of the CO 2 refrigerant is lowered.
Therefore, as another configuration of the outdoor unit 206, as shown in FIG. 9, the pipe 61 (solid line shown) and the pipe 62 (broken line shown) are connected to the heat transfer fins 63 of the outdoor air heat exchanger 134. In addition, it is conceivable that the heat transfer fins 63 of the outdoor air heat exchanger 135 are alternately inserted every two. According to such a configuration, since both the CO 2 refrigerant and the R410A refrigerant are heat-exchanged with outdoor air on the upstream side in the blowing direction by the blower fan 64, the heat exchange efficiency of only one of the refrigerants is high. There is no significant decrease. Further, when one of the CO 2 refrigerant and the R410A refrigerant is used, the heat transfer fins 64 of the outdoor air heat exchanger 134 and the heat transfer fins 64 of the outdoor air heat exchanger 135 are efficiently used. Heat exchange can be performed.

本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成図。1 is a schematic configuration diagram of a heat pump type water heater X according to an embodiment of the present invention. 本発明の実施の形態に係るヒートポンプ式給湯機Xに設けられた室外機6の内部構成図。The internal block diagram of the outdoor unit 6 provided in the heat pump type water heater X which concerns on embodiment of this invention. 室外機6に設けられた室外空気熱交換器13の部品図。FIG. 3 is a component diagram of an outdoor air heat exchanger 13 provided in the outdoor unit 6. 室外空気熱交換器13に設けられた配管61及び配管62の形状を説明するための模式図。The schematic diagram for demonstrating the shape of the piping 61 and the piping 62 provided in the outdoor air heat exchanger 13. FIG. 本発明の実施例1に係るヒートポンプ式給湯機X1の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the heat pump type water heater X1 which concerns on Example 1 of this invention. 室外空気熱交換器13の変形例である室外空気熱交換器131の部品図。FIG. 6 is a component diagram of an outdoor air heat exchanger 131 that is a modification of the outdoor air heat exchanger 13. 室外機6の変形例である室外機106の内部構成図。The internal block diagram of the outdoor unit 106 which is a modification of the outdoor unit 6. FIG. 室外機6の変形例である室外機206の内部構成図。The internal block diagram of the outdoor unit 206 which is a modification of the outdoor unit 6. FIG. 室外機206の他の構成を説明するための模式図。The schematic diagram for demonstrating the other structure of the outdoor unit 206. FIG.

符号の説明Explanation of symbols

1…ヒートポンプサイクル(第一のヒートポンプサイクルの一例)
2,5…ヒートポンプサイクル(第二のヒートポンプサイクルの一例)
4…室内空気熱交換器
6,106,206…室外機
11,21…圧縮機
12,22,22a,22b…膨張器
13,131…室外空気熱交換器(共通の室外空気熱交換器の一例)
132,134…室外空気熱交換器(第一の室外空気熱交換器の一例)
133,135…室外空気熱交換器(第二の室外空気熱交換器の一例)
14,25,33…配管
20,40…循環経路
24…四方弁
30a〜30d…流水経路
31…貯留タンク
32…水熱交換器
41〜45,51〜56…切換弁
61…配管(第一の配管の一例)
62…配管(第二の配管の一例)
63…伝熱フィン(伝熱板)
64…送風ファン
1 ... heat pump cycle (an example of a first heat pump cycle)
2, 5 ... Heat pump cycle (example of second heat pump cycle)
4 ... indoor air heat exchangers 6, 106, 206 ... outdoor units 11, 21 ... compressors 12, 22, 22a, 22b ... expanders 13, 131 ... outdoor air heat exchangers (an example of a common outdoor air heat exchanger) )
132, 134 ... outdoor air heat exchanger (an example of a first outdoor air heat exchanger)
133, 135 ... outdoor air heat exchanger (an example of a second outdoor air heat exchanger)
14, 25, 33 ... piping 20, 40 ... circulation path 24 ... four-way valve 30a-30d ... flowing water path 31 ... storage tank 32 ... water heat exchangers 41-45, 51-56 ... switching valve 61 ... piping (first Example of piping)
62 ... Piping (an example of the second piping)
63 ... Heat transfer fin (heat transfer plate)
64 ... Blower fan

Claims (10)

第一の冷媒が少なくとも圧縮機及び膨張器を経て循環される第一のヒートポンプサイクルと,前記第一の冷媒と異なる特性を持つ第二の冷媒が少なくとも圧縮機及び膨張器を経て循環される第二のヒートポンプサイクルと,前記第一の冷媒及び/又は前記第二の冷媒と水との間で熱交換を行う水熱交換器と,を備えてなるヒートポンプ式給湯機であって,
前記第一の冷媒及び/又は前記第二の冷媒と室外空気との間で熱交換を行う共通の室外機を備えてなることを特徴とするヒートポンプ式給湯機。
A first heat pump cycle in which the first refrigerant is circulated through at least the compressor and the expander, and a second refrigerant having characteristics different from the first refrigerant are circulated through at least the compressor and the expander. A heat pump water heater comprising: two heat pump cycles; and a water heat exchanger that exchanges heat between the first refrigerant and / or the second refrigerant and water,
A heat pump type hot water heater comprising a common outdoor unit that exchanges heat between the first refrigerant and / or the second refrigerant and outdoor air.
前記第一の冷媒が炭酸ガス冷媒であって,前記第二の冷媒がHFC冷媒である請求項1に記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to claim 1, wherein the first refrigerant is a carbon dioxide refrigerant, and the second refrigerant is an HFC refrigerant. 前記室外機が,前記第一の冷媒が循環される第一の配管及び該第一の配管が貫装された複数の第一の伝熱板を有する第一の室外空気熱交換器と,前記第二の冷媒が循環される第二の配管及び該第二の配管が貫装された複数の第二の伝熱板を有する第二の室外空気熱交換器と,前記第一の室外空気熱交換器及び前記第二の室外空気熱交換器に室外空気を送風する共通の送風ファンと,を含んでなる請求項1又は2のいずれかに記載のヒートポンプ式給湯機。   The outdoor unit includes a first outdoor air heat exchanger having a first pipe through which the first refrigerant is circulated and a plurality of first heat transfer plates through which the first pipe is inserted; A second outdoor air heat exchanger having a second pipe through which the second refrigerant is circulated and a plurality of second heat transfer plates through which the second pipe is inserted; and the first outdoor air heat The heat pump type hot water heater according to any one of claims 1 and 2, further comprising a common blower fan that blows outdoor air to the exchanger and the second outdoor air heat exchanger. 前記第一の室外空気熱交換器及び前記第二の室外空気熱交換器が,前記送風ファンによる室外空気の送風方向に並設されてなる請求項3に記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to claim 3, wherein the first outdoor air heat exchanger and the second outdoor air heat exchanger are arranged in parallel in a blowing direction of outdoor air by the blower fan. 前記第一の配管及び前記第二の配管が,前記第一の伝熱板及び前記第二の伝熱板に略交互に貫装されてなる請求項4に記載のヒートポンプ式給湯機。   The heat pump type water heater according to claim 4, wherein the first pipe and the second pipe are substantially alternately inserted through the first heat transfer plate and the second heat transfer plate. 前記室外機が,前記第一の冷媒が循環される第一の配管及び前記第二の冷媒が循環される第二の配管と前記第一の配管及び前記第二の配管が貫装された共通の伝熱板とを有する共通の室外空気熱交換器と,前記共通の室外空気熱交換器に室外空気を送風する共通の送風ファンと,を含んでなる請求項1又は2のいずれかに記載のヒートポンプ式給湯機。   The outdoor unit includes a first pipe through which the first refrigerant is circulated, a second pipe through which the second refrigerant is circulated, the first pipe, and the second pipe. A common outdoor air heat exchanger having a heat transfer plate and a common blower fan for blowing outdoor air to the common outdoor air heat exchanger. Heat pump water heater. 前記第一の配管と前記第二の配管が,前記伝熱板に略交互に貫装されて配置されてなる請求項6に記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to claim 6, wherein the first pipe and the second pipe are arranged so as to penetrate the heat transfer plate substantially alternately. 前記第一の配管の肉厚が,前記第二の配管の肉厚よりも大きい関係にある請求項6又は7のいずれかに記載のヒートポンプ式給湯機。   The heat pump type water heater according to claim 6 or 7, wherein the thickness of the first pipe is larger than the thickness of the second pipe. 前記第一の配管の管径が,前記第二の配管の管径よりも小さい関係にある請求項6〜8のいずれかに記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to any one of claims 6 to 8, wherein a pipe diameter of the first pipe is smaller than a pipe diameter of the second pipe. 前記第一の配管及び前記第二の配管のいずれか一方の両端が前記共通の室外空気熱交換器の一端に配置され,他方の両端が前記共通の室外空気熱交換器の他端に配置されてなる請求項8又は9のいずれかに記載のヒートポンプ式給湯機。   Either one end of the first pipe or the second pipe is disposed at one end of the common outdoor air heat exchanger, and the other end is disposed at the other end of the common outdoor air heat exchanger. The heat pump type water heater according to any one of claims 8 and 9.
JP2005378637A 2005-12-28 2005-12-28 Heat pump water heater Expired - Fee Related JP4413188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378637A JP4413188B2 (en) 2005-12-28 2005-12-28 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378637A JP4413188B2 (en) 2005-12-28 2005-12-28 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2007178090A true JP2007178090A (en) 2007-07-12
JP4413188B2 JP4413188B2 (en) 2010-02-10

Family

ID=38303454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378637A Expired - Fee Related JP4413188B2 (en) 2005-12-28 2005-12-28 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4413188B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210133A (en) * 2008-02-29 2009-09-17 Mitsubishi Electric Corp Heat pump water heater
KR101266675B1 (en) * 2009-12-31 2013-05-28 엘지전자 주식회사 Water circulation system associated with refrigerant cycle
JP2014194306A (en) * 2013-03-29 2014-10-09 Hitachi Appliances Inc Heat exchange device and heat pump water heater
CN104457033A (en) * 2014-10-30 2015-03-25 浙江理工大学 Blade type heat exchanger
WO2016185689A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Air conditioning and hot water supplying system
CN106705489A (en) * 2017-01-20 2017-05-24 上海理工大学 Variable refrigerant flow system combined with air source heat pump hot water and control method of variable refrigerant flow system
WO2023275917A1 (en) * 2021-06-28 2023-01-05 三菱電機株式会社 Air-refrigerant heat exchanger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210133A (en) * 2008-02-29 2009-09-17 Mitsubishi Electric Corp Heat pump water heater
KR101266675B1 (en) * 2009-12-31 2013-05-28 엘지전자 주식회사 Water circulation system associated with refrigerant cycle
US8800313B2 (en) 2009-12-31 2014-08-12 Lg Electronics Inc. Water circulation system associated with refrigerant cycle
JP2014194306A (en) * 2013-03-29 2014-10-09 Hitachi Appliances Inc Heat exchange device and heat pump water heater
CN104457033A (en) * 2014-10-30 2015-03-25 浙江理工大学 Blade type heat exchanger
CN104457033B (en) * 2014-10-30 2016-11-23 浙江理工大学 Blade type heat exchanger
WO2016185689A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Air conditioning and hot water supplying system
CN106705489A (en) * 2017-01-20 2017-05-24 上海理工大学 Variable refrigerant flow system combined with air source heat pump hot water and control method of variable refrigerant flow system
WO2023275917A1 (en) * 2021-06-28 2023-01-05 三菱電機株式会社 Air-refrigerant heat exchanger

Also Published As

Publication number Publication date
JP4413188B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP2007232282A (en) Heat pump type water heater
KR100810870B1 (en) Hot-water supply device
JP4413188B2 (en) Heat pump water heater
WO2012070192A1 (en) Air conditioner
EP1555494B1 (en) Heating and cooling system
JP5519205B2 (en) Heat exchanger and heat pump device using the same
JP2007178091A (en) Heat pump water heater
JP4428341B2 (en) Refrigeration cycle equipment
JP5734524B2 (en) Air conditioner
JP3966889B2 (en) Heat pump water heater
JP4182494B2 (en) Large temperature difference air conditioning system
JP2010014351A (en) Refrigerating air conditioner
JP4785630B2 (en) Heat pump water heater
JP4749228B2 (en) Heat pump water heater
JP4753791B2 (en) Heat pump water heater
JP2012237518A (en) Air conditioner
JP4455518B2 (en) Heat pump water heater
JP2011052850A (en) Heat pump type warm water heating device
JP2007155203A (en) Air conditioner
JP2016095039A (en) Refrigeration cycle device
JP2010078256A (en) Fin tube type heat exchanger, and refrigerating cycle device and air conditioner using the same
KR101173739B1 (en) Heat exchanger and cooling system using the same
JP2009109061A (en) Heat pump type air conditioning device comprising heating panel
JP2006162086A (en) Heat pump water heater
JP4372762B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees