JP3966889B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3966889B2
JP3966889B2 JP2005378539A JP2005378539A JP3966889B2 JP 3966889 B2 JP3966889 B2 JP 3966889B2 JP 2005378539 A JP2005378539 A JP 2005378539A JP 2005378539 A JP2005378539 A JP 2005378539A JP 3966889 B2 JP3966889 B2 JP 3966889B2
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
heat pump
water
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005378539A
Other languages
Japanese (ja)
Other versions
JP2007178088A (en
Inventor
敦史 柿内
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2005378539A priority Critical patent/JP3966889B2/en
Publication of JP2007178088A publication Critical patent/JP2007178088A/en
Application granted granted Critical
Publication of JP3966889B2 publication Critical patent/JP3966889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B13/00Compression machines, plant or systems with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B9/00Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plant or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plant or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2313/00Compression machines, plant, or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2313/00Compression machines, plant, or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0213Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2313/00Compression machines, plant, or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plant, or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plant, or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Description

本発明は,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機に関し,特に,熱交換効率やエネルギ消費効率などの特性の異なる冷媒を用いた二つのヒートポンプサイクルを具備するヒートポンプ式給湯機に関するものである。   The present invention relates to a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like. The present invention relates to a heat pump type hot water heater having two heat pump cycles using refrigerants having different characteristics.
従来から,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機が周知である。前記冷媒は,例えば炭酸ガス冷媒やHFC冷媒などである。
ここに,前記炭酸ガス冷媒は,その冷媒の特性として水を高温(例えば90℃程度)まで加熱することができる。一方,前記HFC冷媒は,冷媒の特性上比較的低温(例えば65℃程度)までしか水を加熱することができない。しかし,空調用機器に用いた場合,エネルギ消費効率(COP)は,前記炭酸ガス冷媒を用いるよりも前記HFC冷媒を用いる方が優れている。
2. Description of the Related Art Conventionally, a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like is well known. The refrigerant is, for example, a carbon dioxide refrigerant or an HFC refrigerant.
Here, the carbon dioxide refrigerant can heat water to a high temperature (for example, about 90 ° C.) as a characteristic of the refrigerant. On the other hand, the HFC refrigerant can only heat water to a relatively low temperature (for example, about 65 ° C.) due to the characteristics of the refrigerant. However, when used in air conditioning equipment, the energy consumption efficiency (COP) is superior to using the HFC refrigerant rather than using the carbon dioxide refrigerant.
一方,特許文献1には,CO2冷媒(炭酸ガス冷媒の一例)が用いられたヒートポンプサイクル(以下,「CO2サイクル」という)と,R410A冷媒(HFC冷媒の一例)が用いられたヒートポンプサイクル(以下,「R410Aサイクル」という)とを併せ持つヒートポンプ式給湯システムが示されている。前記ヒートポンプ式給湯システムでは,高温の温水が必要な場合にCO2サイクルが用いられ,低温の温水でよい場合にはR410Aサイクルが用いられる。
さらに,前記特許文献1の発明では,前記R410Aサイクルに温水暖房用の閉回路を接続し,前記R410Aサイクルを給湯及び温水暖房で共用することが提案されている。
特開2005−83585号公報
On the other hand, Patent Document 1 discloses a heat pump cycle using a CO 2 refrigerant (an example of a carbon dioxide refrigerant) (hereinafter referred to as “CO 2 cycle”) and a heat pump cycle using an R410A refrigerant (an example of an HFC refrigerant). (Hereinafter referred to as “R410A cycle”) is shown. In the heat pump hot water supply system, the CO 2 cycle is used when high-temperature hot water is required, and the R410A cycle is used when low-temperature hot water is sufficient.
Further, in the invention of Patent Document 1, it is proposed that a closed circuit for hot water heating is connected to the R410A cycle, and the R410A cycle is shared by hot water supply and hot water heating.
Japanese Patent Laying-Open No. 2005-83585
しかしながら,前記特許文献1に示された前記ヒートポンプ式給湯システムでは,前記R410Aサイクル内における前記R410A冷媒の循環方向が一定である。そのため,前記R410Aサイクルを給湯や温水暖房に用いることはできても,該R410Aサイクルを冷房に用いることはできなかった。   However, in the heat pump hot water supply system disclosed in Patent Document 1, the circulation direction of the R410A refrigerant in the R410A cycle is constant. Therefore, even though the R410A cycle can be used for hot water supply or hot water heating, the R410A cycle cannot be used for cooling.
また,前記特許文献1に示された前記ヒートポンプ式給湯システムでは,前記R410Aサイクルが,給湯及び温水暖房のいずれか一方に選択的に用いられ,給湯及び温水暖房を同時に行うことはできなかった。
しかも,前記ヒートポンプ式給湯システムは,前記CO2サイクル及び前記R410Aサイクルのいずれか一方だけが選択的に用いられる構成である。したがって,前記ヒートポンプ式給湯システムにおける水の加熱効率は,前記CO2サイクル及び前記R410Aサイクルの個々による水の加熱効率が限界である。そのため,仮に前記R410AサイクルでR410A冷媒を分配して給湯及び温水暖房を同時に行った場合には,水の加熱効率が低下するため十分な給湯温度や給湯量を得ることができないという問題が生じる。もちろん,このときにも十分な給湯温度が得られるように前記R410Aサイクルを構成することも考えられるが,前記R410Aサイクルで十分な給湯温度や給湯量を得るためには,装置の拡大やコストの増大という問題が生じる。
従って,本発明は上記事情に鑑みてなされたものであり,第一の目的は,給湯用のヒートポンプサイクルを冷暖房(空調)に用いることのできるヒートポンプ式給湯機を提供することにある。そして,本発明の第二の目的は,前記ヒートポンプ式給湯機において暖房と同時に給湯を行う際に十分な給湯温度や給湯量を得ることにある。
In the heat pump hot water supply system disclosed in Patent Document 1, the R410A cycle is selectively used for either hot water supply or hot water heating, and hot water supply and hot water heating cannot be performed simultaneously.
Moreover, the heat pump hot water supply system is configured such that only one of the CO 2 cycle and the R410A cycle is selectively used. Therefore, the heating efficiency of water in the heat pump hot water supply system is limited by the heating efficiency of water by each of the CO 2 cycle and the R410A cycle. For this reason, if the R410A refrigerant is distributed in the R410A cycle and hot water supply and hot water heating are performed simultaneously, the heating efficiency of water is lowered, so that a sufficient hot water supply temperature and hot water supply amount cannot be obtained. Of course, it is conceivable to configure the R410A cycle so that a sufficient hot water supply temperature can be obtained at this time as well, but in order to obtain a sufficient hot water supply temperature and amount of hot water in the R410A cycle, the expansion of the apparatus and the cost increase are required. The problem of increase arises.
Accordingly, the present invention has been made in view of the above circumstances, and a first object thereof is to provide a heat pump type hot water heater that can use a heat pump cycle for hot water supply for air conditioning. A second object of the present invention is to obtain a sufficient hot water supply temperature and amount of hot water when hot water is supplied simultaneously with heating in the heat pump type hot water heater.
上記目的を達成するために本発明は,炭酸ガス冷媒が少なくとも圧縮機及び膨張器を経て循環される第一のヒートポンプサイクルと,HFC冷媒が少なくとも圧縮機及び膨張器を経て循環される第二のヒートポンプサイクルと,前記炭酸ガス冷媒及び前記HFC冷媒と水との間で熱交換を行う水熱交換器と,前記水熱交換器で加熱された温水を貯留する貯留タンクと,を備えてなり,前記第二のヒートポンプサイクルが,前記水熱交換器を通過する第一の循環経路と,前記HFC冷媒と室内空気との間で熱交換を行う室内空気熱交換器を通過する第二の循環経路と,当該第二のヒートポンプサイクルにおける前記HFC冷媒の循環方向を切り替える循環方向切替手段と,を含んでなり,前記第一のヒートポンプサイクルに前記炭酸ガス冷媒を循環させることにより前記水熱交換器で前記炭酸ガス冷媒によって加熱された温水を前記貯留タンクに貯留する貯湯運転と,前記第二のヒートポンプサイクルの前記第一の循環経路に前記HFC冷媒を循環させることにより前記水熱交換器で前記HFC冷媒によって加熱された温水を前記貯留タンクを経由せずに直接給湯口に出力する瞬間給湯運転と,前記第二のヒートポンプサイクルの前記第二の循環経路に前記HFC冷媒を循環させることにより前記室内空気熱交換器で前記HFC冷媒によって室内空気を加熱する暖房運転又は室内空気を冷却する冷房運転と,を実行するヒートポンプ式給湯機であって,前記暖房運転又は前記冷房運転が実行されているときに前記瞬間給湯運転の要求が行われた場合に,前記第二のヒートポンプサイクルに循環される前記HFC冷媒を前記第一の循環経路及び前記第二の循環経路に分配して循環させることを特徴とするヒートポンプ式給湯機として構成される
本発明によれば,前記第二のヒートポンプサイクルにおける前記HFC冷媒の循環方向を切り替えることができるため,該第二のヒートポンプサイクルを用いて冷暖房(空調)を行うことが可能となる。
さらに,前記暖房運転又は前記冷房運転が実行されているときに前記瞬間給湯運転の要求が行われた場合に,前記第二のヒートポンプサイクルに循環される前記HFC冷媒を前記第一の循環経路及び前記第二の循環経路に分配して循環させることにより,前記暖房運転又は前記冷房運転と前記瞬間給湯運転とを同時に運転することができる。
また,水を前記水熱交換器において前記炭酸ガス冷媒及び前記HFC冷媒と同時に熱交換させることも可能な構成であるため,前記第一の循環経路に加えて前記第二の循環経路に前記HFC冷媒を分配して循環させても,十分な給湯温度や給湯量を得ることができる。
具体的には,前記暖房運転又は前記冷房運転と前記瞬間給湯運転とを同時運転する場合に,前記第一のヒートポンプサイクルに前記炭酸ガス冷媒を循環させることにより前記水熱交換器で前記HFC冷媒及び前記炭酸ガス冷媒によって水を加熱させることが望ましい。
To achieve the above object, the present invention provides a first heat pump cycle in which carbon dioxide refrigerant is circulated through at least a compressor and an expander, and a second heat pump cycle in which HFC refrigerant is circulated through at least a compressor and an expander. A heat pump cycle, a water heat exchanger that performs heat exchange between the carbon dioxide refrigerant and the HFC refrigerant and water, and a storage tank that stores hot water heated by the water heat exchanger , The second heat pump cycle passes through a first circulation path that passes through the water heat exchanger, and a second circulation path that passes through an indoor air heat exchanger that performs heat exchange between the HFC refrigerant and room air. When a circulating direction switching means for switching the circulating direction of the HFC refrigerant in the second heat pump cycle, Ri name contains, the carbon dioxide refrigerant in the first heat pump cycle Circulating the hot water storage operation in which the hot water heated by the carbon dioxide refrigerant in the water heat exchanger is stored in the storage tank, and circulating the HFC refrigerant in the first circulation path of the second heat pump cycle Thus, the hot water heated by the HFC refrigerant in the water heat exchanger is directly output to the hot water supply port without passing through the storage tank, and the second circulation path of the second heat pump cycle A heat pump water heater that performs a heating operation in which room air is heated by the HFC refrigerant in the indoor air heat exchanger or a cooling operation in which indoor air is cooled by circulating the HFC refrigerant, wherein the heating operation is performed. Or the second heat pump cycle when the request for the instantaneous hot water supply operation is made while the cooling operation is being performed. The HFC refrigerant is circulated by circulating distributes to the first circulation path and the second circulation path configured as a heat pump water heater according to claim.
According to the present invention, since the circulation direction of the HFC refrigerant in the second heat pump cycle can be switched, it is possible to perform air conditioning (air conditioning) using the second heat pump cycle.
Furthermore, when the instantaneous hot water supply operation is requested when the heating operation or the cooling operation is being performed, the HFC refrigerant circulated to the second heat pump cycle is supplied to the first circulation path and By distributing and circulating in the second circulation path, the heating operation or the cooling operation and the instantaneous hot water supply operation can be performed simultaneously.
Further, since water is also configurable to the cause carbon dioxide gas refrigerant and the HFC refrigerant at the same time as heat exchange in the water heat exchanger, the said second circulation path in addition to the first circulation path HFC Even if the refrigerant is distributed and circulated , a sufficient hot water supply temperature and amount of hot water can be obtained.
Specifically, when the heating operation or the cooling operation and the instantaneous hot water supply operation are simultaneously performed, the HFC refrigerant is circulated in the water heat exchanger by circulating the carbon dioxide refrigerant in the first heat pump cycle. And it is desirable to heat water by the carbon dioxide refrigerant.
本発明によれば,前記第二のヒートポンプサイクルを用いて冷暖房(空調)を行うことが可能となる。さらに,前記暖房運転又は前記冷房運転が実行されているときに前記瞬間給湯運転の要求が行われた場合に,前記第二のヒートポンプサイクルに循環される前記HFC冷媒を前記第一の循環経路及び前記第二の循環経路に分配して循環させることにより,前記暖房運転又は前記冷房運転と前記瞬間給湯運転とを同時に運転することができる。また,前記暖房運転又は前記冷房運転と前記瞬間給湯運転とを同時運転する場合に,前記第一のヒートポンプサイクルに前記炭酸ガス冷媒を循環させることにより前記水熱交換器で前記HFC冷媒及び前記炭酸ガス冷媒によって水を加熱させることで,十分な給湯温度や給湯量を得ることができる。 According to the present invention, air conditioning can be performed using the second heat pump cycle. Furthermore, when the instantaneous hot water supply operation is requested when the heating operation or the cooling operation is being performed, the HFC refrigerant circulated to the second heat pump cycle is supplied to the first circulation path and By distributing and circulating in the second circulation path, the heating operation or the cooling operation and the instantaneous hot water supply operation can be performed simultaneously. Further, when the heating operation or the cooling operation and the instantaneous hot water supply operation are performed simultaneously, the HFC refrigerant and the carbon dioxide are circulated in the water heat exchanger by circulating the carbon dioxide refrigerant in the first heat pump cycle. By heating the water with a gas refrigerant, a sufficient hot water supply temperature and amount of hot water can be obtained.
以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成図である。
図1に示すように,前記ヒートポンプ式給湯機Xは,冷媒が循環される二つのヒートポンプサイクル1(第一のヒートポンプサイクルの一例),2(第二のヒートポンプサイクルの一例),流水経路30a〜30d,貯留タンク31,水熱交換器32,循環ポンプ34及び切換弁41〜45を備えて概略構成されている。また,前記ヒートポンプ式給湯機Xは,CPUやRAM,ROMなどを有する不図示の制御部を備えている。
前記水熱交換器32は,前記ヒートポンプサイクル1に接続された配管14に流れる冷媒や,前記ヒートポンプサイクル2に接続された配管25に流れる冷媒と,給水口から給湯口への流水経路30b,又は前記貯留タンク31に戻る流水経路30a上を流れる水との間で熱交換を行うものである。ここに,前記流水経路30aは,前記給水口から前記貯留タンク31,循環ポンプ34,切換弁45,水熱交換器32,切換弁43,貯留タンク31が順に接続された水の流水経路である。また,前記流水経路30bは,前記給水口から切換弁45,水熱交換器32,切換弁43,前記給湯口が順に接続された水の流水経路である。なお,前記流水経路30cは,前記貯留タンク31から前記切換弁44を経て前記給湯口に続く温水の流通経路,前記流通経路30dは,前記給水口から前記切換弁44を経て前記給湯口に続く水の流通経路である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a schematic configuration diagram of a heat pump type hot water heater X according to the embodiment of the present invention.
As shown in FIG. 1, the heat pump type hot water heater X includes two heat pump cycles 1 (an example of a first heat pump cycle), 2 (an example of a second heat pump cycle) in which refrigerant is circulated, and a flowing water path 30a˜ 30d, the storage tank 31, the water heat exchanger 32, the circulation pump 34, and the switching valves 41-45 are comprised roughly. The heat pump type water heater X includes a control unit (not shown) having a CPU, a RAM, a ROM, and the like.
The water heat exchanger 32 includes a refrigerant flowing in the pipe 14 connected to the heat pump cycle 1, a refrigerant flowing in the pipe 25 connected to the heat pump cycle 2, and a flowing water path 30b from the water supply port to the hot water supply port, or Heat exchange is performed with water flowing on the flowing water path 30a returning to the storage tank 31. Here, the water flow path 30a is a water flow path in which the storage tank 31, the circulation pump 34, the switching valve 45, the water heat exchanger 32, the switching valve 43, and the storage tank 31 are sequentially connected from the water supply port. . The flowing water path 30b is a flowing water path in which the switching valve 45, the water heat exchanger 32, the switching valve 43, and the hot water supply port are sequentially connected from the water supply port. The flowing water path 30c passes from the storage tank 31 through the switching valve 44 to the hot water supply port, and the flowing path 30d passes from the water supply port through the switching valve 44 to the hot water supply port. It is a distribution channel for water.
前記貯留タンク31の上層には前記水熱交換器32において前記冷媒との熱交換によって加熱された温水が,前記貯留タンク31の下層には給水口から供給される水が貯留される。
当該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記各構成要素が制御されることにより,給水口から供給された水を前記流水経路30b上で前記水熱交換器32によって加熱して給湯口から直接給湯する瞬間給湯運転や,給水口から供給された水を前記流水経路30a上で前記水熱交換器32によって加熱して前記貯留タンク31に貯留する貯湯運転などが行われる。
ここで,前記瞬間給湯運転では,前記切換弁43及び45が前記制御部によって制御されることにより,前記給水口から供給された水が前記流水経路30bに沿って破線矢印方向に流通することとなる。但し,前記瞬間給湯運転が開始してからの一定時間は,前記水熱交換器32による加熱量が十分得られない。そのため,瞬間運転開始後の一定時間は,前記貯留タンク31に貯留された温水が,前記流水経路30cを経て切換弁44において,前記給水口から前記流水経路30dを経て供給される水と混合されて温度調節された後,前記給湯口に供給される。これにより,前記給湯口から瞬時に温水を給湯することが可能である。そして,前記水熱交換器32によって給水口から供給された水を十分に加熱することが可能となった時点で,前記貯留タンク31の給水は停止され,その後は,前記給水口から前記水熱交換器32を経て前記給湯口に続く流水経路30bを用いて瞬間給湯が行われる。なお,前記貯留タンク31に貯留された高温の温水を前記給水口から供給される水と混合することなく,そのまま給湯することも可能である。
また,前記貯湯運転では,前記循環ポンプ34が駆動されることにより,前記流水経路30aに沿って実線矢印方向に水が流通することにより,貯留タンク31に温水が貯留される。
Hot water heated by heat exchange with the refrigerant in the water heat exchanger 32 is stored in the upper layer of the storage tank 31, and water supplied from the water supply port is stored in the lower layer of the storage tank 31.
In the heat pump type water heater X, each component is controlled by the control unit (not shown), so that water supplied from the water supply port is heated by the water heat exchanger 32 on the flowing water path 30b. Then, an instantaneous hot water supply operation in which hot water is supplied directly from the hot water supply port, a hot water storage operation in which water supplied from the water supply port is heated by the hydrothermal exchanger 32 on the flowing water path 30a and stored in the storage tank 31 are performed.
Here, in the instantaneous hot water supply operation, the control valves 43 and 45 are controlled by the control unit so that water supplied from the water supply port flows along the flowing water path 30b in the direction of the dashed arrow. Become. However, a sufficient amount of heating by the water heat exchanger 32 cannot be obtained for a certain time after the instantaneous hot water supply operation is started. Therefore, for a certain period of time after the start of the instantaneous operation, the hot water stored in the storage tank 31 is mixed with the water supplied from the water supply port through the water flow path 30d in the switching valve 44 through the water flow path 30c. After the temperature is adjusted, the hot water supply port is supplied. Thereby, hot water can be instantaneously supplied from the hot water supply port. And when it becomes possible to fully heat the water supplied from the water supply port by the water heat exchanger 32, the water supply to the storage tank 31 is stopped, and thereafter, the water heat is supplied from the water supply port. Instantaneous hot water supply is performed using a flowing water path 30b that passes through the exchanger 32 and continues to the hot water supply port. It is also possible to supply hot water as it is without mixing the hot water stored in the storage tank 31 with the water supplied from the water supply port.
Further, in the hot water storage operation, when the circulation pump 34 is driven, water flows in the direction of the solid arrow along the flowing water path 30a, whereby hot water is stored in the storage tank 31.
前記ヒートポンプサイクル1(以下,「CO2サイクル」という)は,圧縮機11,前記水熱交換器32,膨張器12及び室外空気熱交換器13が順に接続された循環経路10を有している。
前記循環経路10では,前記制御部(不図示)によって前記圧縮機11が駆動されることにより,炭酸ガス冷媒の一例であるCO2媒が図示する矢印方向に循環される。ここに,前記CO2冷媒は,後述するR410A冷媒と異なる特性を持ち,冷媒の特性として水を高温(90℃程度)まで加熱することができるが,エネルギ消費効率が比較的低い。そのため,前記CO2サイクル1は,主に前記貯湯運転における水の加熱に用いられる。
具体的には,前記圧縮機11において圧縮して吐出された高温高圧の前記CO2冷媒が,前記水熱交換器32において前記流水経路30aまたは30b上を流れる水と熱交換されて冷却された後,前記膨張器12において膨張する。その後,前記膨張器12で膨張した低温低圧の前記CO2冷媒は,前記室外空気熱交換器13において室外の空気と熱交換
されて吸熱し気化した後,再度前記圧縮機11に流入する。
前記CO2サイクル1では,前記のように前記CO2冷媒が前記循環経路10に循環されることにより,前記流水経路30aまたは30b上を矢印方向に流れる水が,前記水熱交換器32における前記CO2冷媒との熱交換によって90℃程度まで加熱される。なお,前記水熱交換器32における前記CO2冷媒と水との流通方向が反対であるため,該CO2冷媒と水との熱交換は効率的に行われる。
このとき,前記瞬間給湯運転においては,前記流水経路30bを通るよう前記制御部(不図示)によって前記切換弁45が制御され,前記制御部(不図示)によって前記切換弁43が制御されることにより前記水熱交換器32において加熱された温水が前記給湯口に供給される。また,前記貯湯運転においては,前記流水経路30aを通るよう前記制御部(不図示)によって前記切換弁45が制御され,前記制御部(不図示)によって前記切換弁43が制御されることにより,前記水熱交換器32において加熱された温水が前記貯留タンク31に貯留されるように切り替えられる。
The heat pump cycle 1 (hereinafter referred to as “CO 2 cycle”) has a circulation path 10 in which a compressor 11, the water heat exchanger 32, an expander 12, and an outdoor air heat exchanger 13 are connected in order. .
In the circulation path 10 by the compressor 11 is driven by the control unit (not shown), CO 2 refrigerant which is an example of a carbon dioxide refrigerant is circulated in the direction of the arrow shown. Here, the CO 2 refrigerant has characteristics different from the R410A refrigerant described later, and can heat water to a high temperature (about 90 ° C.) as a characteristic of the refrigerant, but has a relatively low energy consumption efficiency. Therefore, the CO 2 cycle 1 is mainly used for heating water in the hot water storage operation.
Specifically, the high-temperature and high-pressure CO 2 refrigerant compressed and discharged by the compressor 11 is cooled by heat exchange with water flowing on the flowing water path 30a or 30b in the water heat exchanger 32. Thereafter, the expander 12 expands. Thereafter, the low-temperature and low-pressure CO 2 refrigerant expanded in the expander 12 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 to absorb heat and vaporize, and then flows into the compressor 11 again.
In the CO 2 cycle 1, the CO 2 refrigerant is circulated through the circulation path 10 as described above, so that water flowing in the direction of the arrow on the flowing water path 30 a or 30 b is transferred to the water heat exchanger 32. It is heated to about 90 ° C. by heat exchange with the CO 2 refrigerant. In addition, since the flow direction of the CO 2 refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the CO 2 refrigerant and water is performed efficiently.
At this time, in the instantaneous hot water supply operation, the switching valve 45 is controlled by the control unit (not shown) so as to pass through the flowing water path 30b, and the switching valve 43 is controlled by the control unit (not shown). Thus, hot water heated in the water heat exchanger 32 is supplied to the hot water supply port. Further, in the hot water storage operation, the switching valve 45 is controlled by the control unit (not shown) so as to pass through the flowing water path 30a, and the switching valve 43 is controlled by the control unit (not shown), The hot water heated in the water heat exchanger 32 is switched so as to be stored in the storage tank 31.
一方,前記ヒートポンプサイクル2(以下,「R410Aサイクル」という)は,HFC冷媒の一例であるR410A冷媒が循環される循環経路20(第一の循環経路の一例)及び循環経路40(第二の循環経路の一例)を有している。ここに,前記R410A冷媒は,前記CO2冷媒と異なる特性を持ち,CO2冷媒に比べて水を低温(65℃程度)までしか加熱することができないが,エネルギ消費効率(COP)は高いので,比較的低い沸上げ温度に適している。そのため,前記R410Aサイクル2は,主に前記瞬間給湯運転における水の加熱に用いられる。なお,前記R410A冷媒の他の例としては,例えばR407C/E,R404A,R507A,R134a等がある。また,前記ヒートポンプ式給湯機Xに用いられる二つの異なる冷媒は,炭酸ガス冷媒及びHFC冷媒に限られるものではなく,熱交換効率やエネルギ消費効率などの特性が異なる二つの冷媒を用いればよい。 Meanwhile, the heat pump cycle 2 (hereinafter, referred to as "R410A cycle"), the (an example of the first circulation path) circulation path 20 which R410A refrigerant is an example of HFC refrigerant is circulated and a circulation path 40 (second An example of a circulation path). Here, the R410A refrigerant, the CO 2 has a refrigerant different properties, but can only heat the water compared to the CO 2 refrigerant to a low temperature (about 65 ° C.), since the energy consumption efficiency (COP) is high , Suitable for relatively low boiling temperature. Therefore, the R410A cycle 2 is mainly used for heating water in the instantaneous hot water supply operation. Other examples of the R410A refrigerant include R407C / E, R404A, R507A, and R134a. Further, the two different refrigerants used in the heat pump type hot water heater X are not limited to the carbon dioxide refrigerant and the HFC refrigerant, and two refrigerants having different characteristics such as heat exchange efficiency and energy consumption efficiency may be used.
前記循環経路20は,圧縮機21,四方弁24,切換弁41,水熱交換器32,切換弁42,膨張器(例えば膨張弁)22,室外空気熱交換器23及び前記四方弁24が順に接続されて構成されている。
前記循環経路20では,前記制御部(不図示)によって制御されて前記圧縮機21が駆動されることにより,前記R410A冷媒が図示する実線矢印方向に循環される。具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記切換弁41を経て前記水熱交換器32に達する。そして,前記R410A冷媒は,前記水熱交換器32において前記流水経路30aまたは30b上を流れる水と熱交換されて冷却される。その後,前記R410A冷媒は,前記切換弁42を経て前記膨張器22において膨張される。そして,前記膨張器22で膨張した低温低圧の前記R410A冷媒は,前記室外空気熱交換器23において室外空気と熱交換されて吸熱し気化した後,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記循環経路20において実線矢印方向に循環されることにより,前記流水経路30aまたは30b上を矢印方向に流れる水が,前記水熱交換器32における前記R410A冷媒との熱交換によって65℃程度まで加熱される。なお,前記水熱交換器32における前記R410A冷媒と水との流通方向が反対であるため,該R410A冷媒と水との熱交換は効率的に行われる。
The circulation path 20 includes a compressor 21, a four-way valve 24, a switching valve 41, a water heat exchanger 32, a switching valve 42, an expander (for example, an expansion valve) 22, an outdoor air heat exchanger 23, and the four-way valve 24 in this order. Connected and configured.
In the circulation path 20, the R <b> 410 </ b> A refrigerant is circulated in the direction indicated by the solid arrow as illustrated in FIG. Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the water heat exchanger 32 through the four-way valve 24 and the switching valve 41. The R410A refrigerant is cooled by heat exchange with water flowing on the flowing water path 30a or 30b in the water heat exchanger 32. Thereafter, the R410A refrigerant is expanded in the expander 22 via the switching valve 42. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 23 to absorb heat and vaporize, and then returns to the compressor 21 again through the four-way valve 24. Inflow.
In the R410A cycle 2, as described above, the R410A refrigerant is circulated in the direction of the solid arrow in the circulation path 20, so that the water flowing in the direction of the arrow on the flowing water path 30a or 30b is transferred to the water heat exchanger 32. Is heated to about 65 ° C. by heat exchange with the R410A refrigerant. Since the flow direction of the R410A refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the R410A refrigerant and water is performed efficiently.
また,前記水熱交換器32は,前記CO2サイクル1及び前記R410Aサイクル2に共通するものであって,これらに循環される前記CO2冷媒及び前記R410A冷媒と,前記流水経路30a又は前記流水経路30b上を流れる水とを同時に熱交換させることが可能である。具体的には,前記水熱交換器32が,該水熱交換器32内に設けられた前記CO2冷媒の配管14と前記流水経路30a,30b上に設けられた配管33,前記R410A冷媒の配管25と前記配管33が共に接触するように構成されている。
したがって,前記ヒートポンプ式給湯機Xでは,前記CO2サイクル1及び前記R410Aサイクル2を同時に用いることにより,個々の熱交換効率以上の熱交換効率で水を加熱することができる。これにより,前記瞬間給湯運転時における給湯量を増加させることができる。
The water heat exchanger 32 is common to the CO 2 cycle 1 and the R410A cycle 2, and the CO 2 refrigerant and the R410A refrigerant circulated therethrough, the flowing water path 30a or the flowing water. It is possible to simultaneously exchange heat with water flowing on the path 30b. Specifically, the water heat exchanger 32 includes the pipe 14 of the CO 2 refrigerant provided in the water heat exchanger 32, the pipe 33 provided on the flowing water paths 30a and 30b, the R410A refrigerant. The pipe 25 and the pipe 33 are configured to come into contact with each other.
Therefore, in the heat pump type hot water supply apparatus X, water can be heated with a heat exchange efficiency higher than the individual heat exchange efficiency by using the CO 2 cycle 1 and the R410A cycle 2 at the same time. Thereby, the hot water supply amount at the time of the instantaneous hot water supply operation can be increased.
他方,前記循環経路40は,前記圧縮機21,前記四方弁24,前記切換弁41,室内空気熱交換器4,前記切換弁42,前記膨張器22,前記室外空気熱交換器23及び前記四方弁24が順に接続されて構成されている。
ここに,前記室内空気熱交換器4は,室内の冷暖房を行う空気調和機(不図示)に設けられ,前記循環経路40内に循環される前記R410A冷媒と室内空気との間で熱交換を行うことにより室内空気を加熱或いは冷却するものである。
ところで,前記のように構成されたヒートポンプ式給湯機Xでは,前記R410Aサイクル2における前記R410A冷媒の循環方向が一定であれば,該R410Aサイクル2を前記空気調和機(不図示)で行われる冷暖房(空調)に用いることはできない。具体的には,前記R410A冷媒の循環方向が,前記循環経路20と同様の方向(図1の実線矢印方向)だけである構成では,暖房のみが可能であって冷房を行うことはできない。
しかし,本発明の実施の形態に係る前記ヒートポンプ式給湯機Xでは,前記四方弁24が前記制御部(不図示)によって制御され,前記循環経路40における前記R410A冷媒の循環方向が図示する実線矢印方向又は破線矢印方向に切り替えられる。ここに,前記R410A冷媒の循環方向を切り替えるときの前記制御部及び前記四方弁24が循環方向切替手段に相当する。
On the other hand, the circulation path 40 includes the compressor 21, the four-way valve 24, the switching valve 41, the indoor air heat exchanger 4, the switching valve 42, the expander 22, the outdoor air heat exchanger 23, and the four-way. Valves 24 are connected in order.
Here, the indoor air heat exchanger 4 is provided in an air conditioner (not shown) that performs indoor heating and cooling, and exchanges heat between the R410A refrigerant circulated in the circulation path 40 and room air. By doing so, the indoor air is heated or cooled.
By the way, in the heat pump type hot water heater X configured as described above, if the circulation direction of the R410A refrigerant in the R410A cycle 2 is constant, the cooling and heating performed in the air conditioner (not shown) in the R410A cycle 2 It cannot be used for (air conditioning). Specifically, in the configuration in which the circulation direction of the R410A refrigerant is only the same direction as the circulation path 20 (the direction indicated by the solid line in FIG. 1), only heating is possible and cooling cannot be performed.
However, in the heat pump type water heater X according to the embodiment of the present invention, the four-way valve 24 is controlled by the control unit (not shown), and the circulation arrow of the R410A refrigerant in the circulation path 40 is illustrated. The direction is switched to the direction of the direction or the broken arrow. Here, the control unit and the four-way valve 24 when switching the circulation direction of the R410A refrigerant correspond to the circulation direction switching means.
以下,前記ヒートポンプ式給湯機Xの前記R410Aサイクル2において実現される暖房運転及び冷房運転について説明する。
(1)暖房運転について
ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から暖房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の循環経路40において前記R410A冷媒の実線矢印方向の循環が開始される。このとき,前記四方弁24内部では図示する実線経路が確立されている。
これにより,前記循環経路40では,図示する実線矢印方向に前記R410A冷媒が循環される。具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記切換弁41を経て前記室内空気熱交換器4に達する。そして,前記R410A冷媒は,前記室内空気熱交換器4において室内の空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記切換弁42を経て前記膨張器22において膨張される。そして,前記膨張器22において膨張した低温低圧の前記R410A冷媒は,前記室外空気熱交換器23において室外の空気と熱交換されて吸熱し気化した後,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記循環経路40において実線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって加熱される。即ち,前記ヒートポンプ式給湯機Xによって暖房が実現される。
Hereinafter, the heating operation and the cooling operation realized in the R410A cycle 2 of the heat pump type water heater X will be described.
(1) Heating operation When the user requests the heat pump water heater X to start a heating operation from an operation unit (not shown), in the heat pump water heater X, the control unit (not shown) The compressor 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the solid arrow in the circulation path 40 of the R410A cycle 2 is started. At this time, the illustrated solid line path is established inside the four-way valve 24.
As a result, the R410A refrigerant is circulated in the circulation path 40 in the direction of the solid arrow shown in the figure. Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the indoor air heat exchanger 4 through the four-way valve 24 and the switching valve 41. The R410A refrigerant is cooled by heat exchange with indoor air in the indoor air heat exchanger 4. Thereafter, the R410A refrigerant is expanded in the expander 22 via the switching valve 42. Then, the low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 23 to absorb heat and vaporize, and then passes through the four-way valve 24 and again to the compressor 21. Flow into.
In the R410A cycle 2, the R410A refrigerant is circulated in the direction of the solid arrow in the circulation path 40 as described above, whereby the indoor air is exchanged with the R410A refrigerant in the indoor air heat exchanger 4. Heated. That is, heating is realized by the heat pump type hot water heater X.
ところで,前述したように,従来装置(例えば,特許文献1参照)では前記R410Aサイクル2を用いて,瞬間給湯と暖房とを同時に行うことはできなかった。また,前記R410A冷媒を分配して瞬間給湯と暖房とを同時に行うことも考えられるが,この場合には十分な給湯温度や給湯量が得ることができないという課題が伴う。
しかし,前記ヒートポンプ式給湯機Xでは,瞬間給湯と暖房とを同時に行う際,前記水熱交換器32において,前記CO2サイクル1に循環する前記CO2冷媒と,前記R410Aサイクル2に循環するR410A冷媒とで同時に水が加熱される。これにより,瞬間給湯と暖房とを同時に行う際に,十分な給湯温度や給湯量を得ることができる。以下,この点について詳説する。
By the way, as described above, in the conventional apparatus (for example, refer to Patent Document 1), instantaneous hot water supply and heating cannot be performed simultaneously using the R410A cycle 2. In addition, it is conceivable that the R410A refrigerant is distributed to perform instantaneous hot water supply and heating at the same time. However, in this case, there is a problem that a sufficient hot water supply temperature and hot water supply amount cannot be obtained.
However, in the heat pump type water heater X, when the instantaneous hot water supply and the heating are performed simultaneously, the CO 2 refrigerant that circulates in the CO 2 cycle 1 and the R410A that circulates in the R410A cycle 2 in the water heat exchanger 32. Water is heated simultaneously with the refrigerant. Thereby, when performing instantaneous hot water supply and heating simultaneously, sufficient hot water supply temperature and amount of hot water supply can be obtained. This point will be described in detail below.
まず,前記ヒートポンプ式給湯機Xにおいて前記R410Aサイクル2によって暖房運転が行われているときに,ユーザによって不図示の操作部に対して瞬間給湯の要求が行われると,該ヒートポンプ式給湯機Xでは,前記切換弁41,42が前記制御部(不図示)によって制御され,前記R410Aサイクル2の循環経路20における前記R410A冷媒の実線矢印方向の循環が開始される。このとき,前記R410A冷媒は,前記R410Aサイクル2において前記循環経路20及び40に分配して循環される。そのため,前記水熱交換器32における前記循環経路20を循環する前記R410A冷媒による水の加熱が十分に行われないおそれがある。
そこで,前記ヒートポンプ式給湯機Xでは,前記R410Aサイクル2によって暖房運転が行われているときに,ユーザによって不図示の操作部に対して瞬間給湯の要求が行われると,前記制御部(不図示)によって前記CO2サイクル1の圧縮機11の駆動が制御されて,前記CO2サイクル1における前記CO2冷媒の循環が開始される。
これにより,前記水熱交換器32では,前記R410A冷媒と前記CO2冷媒との両方で水が加熱されることとなる。即ち,前記R410Aサイクル1における瞬間給湯と暖房の同時運転時の水の加熱効率の低下は,前記CO2サイクル1を循環する前記CO2冷媒と水との熱交換によって補われる。したがって,前記R410Aサイクル2において瞬間給湯と暖房とを同時に行う際に,十分な給湯温度や給湯量を得ることができる。
First, in the heat pump type hot water heater X, when a heating operation is performed by the R410A cycle 2, if a user requests instantaneous hot water supply to an operation unit (not shown), the heat pump type hot water heater X The switching valves 41 and 42 are controlled by the control unit (not shown), and the circulation of the R410A refrigerant in the direction of the solid arrow in the circulation path 20 of the R410A cycle 2 is started. At this time, the R410A refrigerant is distributed and circulated to the circulation paths 20 and 40 in the R410A cycle 2. Therefore, there is a possibility that the water is not sufficiently heated by the R410A refrigerant circulating through the circulation path 20 in the water heat exchanger 32.
Therefore, in the heat pump type hot water heater X, when the heating operation is performed by the R410A cycle 2, if the user requests instantaneous hot water supply to the operation unit (not shown), the control unit (not shown) ) is driven to control the compressor 11 of the CO 2 cycle 1 by the circulation of the CO 2 refrigerant in the CO 2 cycle 1 is started.
Thereby, in the water heat exchanger 32, water is heated by both the R410A refrigerant and the CO 2 refrigerant. That is, the decrease in the heating efficiency of water during the simultaneous operation of instantaneous hot water supply and heating in the R410A cycle 1 is compensated by heat exchange between the CO 2 refrigerant circulating in the CO 2 cycle 1 and water. Therefore, when performing instantaneous hot water supply and heating simultaneously in the R410A cycle 2, a sufficient hot water supply temperature and amount of hot water supply can be obtained.
(2)冷房運転について
一方,ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から冷房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の循環経路40において前記R410A冷媒の破線矢印方向の循環が開始される。このとき,前記四方弁24内部では図示する破線経路が確立されている。
これにより,前記循環経路40では,図示する破線矢印方向に前記R410A冷媒が循環される。具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24を経て前記室外空気熱交換器23に達する。そして,前記R410A冷媒は,前記室外空気熱交換器23において室外空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記膨張器22において膨張される。そして,前記膨張器22において膨張した低温低圧の前記R410A冷媒は,前記切換弁42を経て前記室内空気熱交換器4において室内空気と熱交換されて吸熱し気化した後,前記切換弁41及び前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記循環経路40において破線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって冷却される。即ち,前記ヒートポンプ式給湯機Xによって冷房が実現される。
(2) Cooling operation On the other hand, when the user requests the heat pump water heater X to start the cooling operation from an operation unit (not shown), the heat pump water heater X has the control unit (not shown). ), The compressor 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the broken line arrow is started in the circulation path 40 of the R410A cycle 2. At this time, the illustrated broken line path is established inside the four-way valve 24.
Thereby, in the circulation path 40, the R410A refrigerant is circulated in the direction of the broken arrow shown in the figure. Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the outdoor air heat exchanger 23 via the four-way valve 24. The R410A refrigerant is cooled by exchanging heat with outdoor air in the outdoor air heat exchanger 23. Thereafter, the R410A refrigerant is expanded in the expander 22. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is subjected to heat exchange with the indoor air in the indoor air heat exchanger 4 via the switching valve 42, and absorbs and vaporizes. It flows into the compressor 21 again through the four-way valve 24.
In the R410A cycle 2, the R410A refrigerant is circulated in the direction of the broken line arrow in the circulation path 40 as described above, so that the indoor air is exchanged with the R410A refrigerant in the indoor air heat exchanger 4. To be cooled. That is, cooling is realized by the heat pump type hot water heater X.
なお,このとき前記ヒートポンプ式給湯機Xでは,前記切換弁41及び42が前記制御部(不図示)によって制御されることにより,前記循環経路20における前記R410A冷媒の循環は阻止される。したがって,前記R410Aサイクル2によって冷房が行われている場合であっても,前記CO2サイクル1による前記貯湯運転に支障はない。
また,前記ヒートポンプ式給湯機XのR410Aサイクル2では,前記四方弁24によって前記循環経路20及び40における前記R410A冷媒の循環方向が共に切り替えられる。そのため,前記ヒートポンプ式給湯機Xでは,冷房及び瞬間給湯を同時に行うことはできない。しかし,後述する実施例のように前記R410Aサイクル2を構成すれば,冷房及び瞬間給湯の同時運転も可能となる。
At this time, in the heat pump type hot water heater X, the switching valves 41 and 42 are controlled by the control unit (not shown), thereby preventing the circulation of the R410A refrigerant in the circulation path 20. Therefore, even when the cooling is performed by the R410A cycle 2, the hot water storage operation by the CO 2 cycle 1 is not hindered.
In the R410A cycle 2 of the heat pump type hot water heater X, the circulation direction of the R410A refrigerant in the circulation paths 20 and 40 is switched by the four-way valve 24. Therefore, the heat pump type hot water heater X cannot perform cooling and instantaneous hot water supply at the same time. However, if the R410A cycle 2 is configured as in an embodiment described later, simultaneous operation of cooling and instantaneous hot water supply is possible.
ここに,図2は,本発明の実施例に係るヒートポンプ式給湯機X1の概略構成図である。なお,前記実施の形態で説明した前記ヒートポンプ式給湯機Xと同様の構成要素については,同じ符号を付してその説明を省略する。
図2に示すように,前記ヒートポンプ式給湯機X1は,前記ヒートポンプ式給湯機XのR410Aサイクル2に換えてR410Aサイクル5を有している。前記R410Aサイクル5には,前記制御部(不図示)によって制御される切換弁51〜56,二つの膨張器22a及び22bが設けられている。
このように構成された前記R410Aサイクル5では,前記循環経路20における前記R410A冷媒の循環方向と,前記循環経路40における前記R410A冷媒の循環方向とを独立して制御することが可能である。したがって,前記R410Aサイクル5では,冷房又は暖房と瞬間給湯とを同時に行うことが可能である。以下,具体的に説明する。
FIG. 2 is a schematic configuration diagram of the heat pump type water heater X1 according to the embodiment of the present invention. In addition, about the component similar to the said heat pump type water heater X demonstrated in the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIG. 2, the heat pump type water heater X1 has an R410A cycle 5 instead of the R410A cycle 2 of the heat pump type hot water heater X. The R410A cycle 5 is provided with switching valves 51 to 56 controlled by the control unit (not shown) and two expanders 22a and 22b.
In the R410A cycle 5 configured as described above, the circulation direction of the R410A refrigerant in the circulation path 20 and the circulation direction of the R410A refrigerant in the circulation path 40 can be controlled independently. Therefore, in the R410A cycle 5, it is possible to simultaneously perform cooling or heating and instantaneous hot water supply. This will be specifically described below.
(1)暖房と瞬間給湯との同時運転について
暖房と瞬間給湯との同時運転時,前記R410Aサイクル5では,前記制御部(不図示)によって前記圧縮機21,前記四方弁24及び前記切換弁51〜56が制御されることにより,前記R410A冷媒が図2に示す実線矢印方向に循環される。
具体的には,前記循環経路20では,前記R410A冷媒が,圧縮機21,四方弁24,切換弁51,切換弁52,水熱交換器32,膨張器22a,切換弁53,切換弁54,室外空気熱交換器23,切換弁56,四方弁24,圧縮機21の順に循環される。これにより,前記水熱交換器32において前記流水経路30aまたは30b上を流れる水が加熱される。
一方,前記循環経路40では,前記R410A冷媒は,圧縮機21,四方弁24,切換弁51,室内空気熱交換器4,切換弁55,膨張器22b,切換弁54,室外空気熱交換器23,切換弁56,四方弁24,圧縮機21の順に循環される。これにより,前記室内空気熱交換器4において室内空気が加熱されて暖房が行われる。
このように,前記R410Aサイクル5では,前記切換弁51で前記R410A冷媒を分配することによって暖房と瞬間給湯とを同時に行うことができる。なお,前述したように,前記R410A冷媒の分配による前記水熱交換器32における水の加熱効率の低下は,前記CO2サイクル1によって補うことができる。
(2)冷房と瞬間給湯の同時運転について
冷房と瞬間給湯との同時運転時,前記R410Aサイクル5では,前記制御部(不図示)によって前記圧縮機21,前記四方弁24及び前記切換弁51〜56が制御されることにより,前記R410A冷媒が図2に示す破線矢印方向に循環される。
具体的には,前記循環経路20では,前記R410A冷媒が,圧縮機21,四方弁24,切換弁56,切換弁52,水熱交換器32,膨張器22a,切換弁53,切換弁55,室内空気熱交換器4,切換弁51,四方弁24,圧縮機21の順に循環される。これにより,前記水熱交換器32において前記流水経路30aまたは30b上を流れる水が加熱される。
一方,前記循環経路40では,前記R410A冷媒は,圧縮機21,四方弁24,切換弁56,室外空気熱交換器23,切換弁54,膨張器22b,切換弁55,室内空気熱交換器4,切換弁51,四方弁24,圧縮機21の順に循環される。これにより,前記室内空気熱交換器4において室内空気が冷却されて冷房が行われる。
このように,前記R410Aサイクル5では,前記切換弁56で前記R410A冷媒を分配することによって冷房と瞬間給湯とを同時に行うことができる。なお,前述したように,前記R410A冷媒の分配による前記水熱交換器32における水の加熱効率の低下は,前記CO2サイクル1によって補うことができる。
なお,本実施例及び前記実施の形態では切換弁を用いているが,用いないで機能を縮小して同様の効果を得ることも可能である。
(1) Simultaneous operation of heating and instantaneous hot water supply During simultaneous operation of heating and instantaneous hot water supply, in the R410A cycle 5, the compressor 21, the four-way valve 24, and the switching valve 51 are controlled by the control unit (not shown). By controlling .about.56, the R410A refrigerant is circulated in the direction of the solid arrow shown in FIG.
Specifically, in the circulation path 20, the R410A refrigerant flows into the compressor 21, the four-way valve 24, the switching valve 51, the switching valve 52, the water heat exchanger 32, the expander 22a, the switching valve 53, the switching valve 54, The outdoor air heat exchanger 23, the switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, the water flowing on the flowing water path 30a or 30b is heated in the water heat exchanger 32.
On the other hand, in the circulation path 40, the R410A refrigerant flows into the compressor 21, the four-way valve 24, the switching valve 51, the indoor air heat exchanger 4, the switching valve 55, the expander 22b, the switching valve 54, and the outdoor air heat exchanger 23. , The switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, in the said indoor air heat exchanger 4, indoor air is heated and heating is performed.
Thus, in the R410A cycle 5, heating and instantaneous hot water supply can be performed simultaneously by distributing the R410A refrigerant by the switching valve 51. As described above, the CO 2 cycle 1 can compensate for a decrease in the heating efficiency of the water in the water heat exchanger 32 due to the distribution of the R410A refrigerant.
(2) Simultaneous operation of cooling and instantaneous hot water supply During simultaneous operation of cooling and instantaneous hot water supply, in the R410A cycle 5, the control unit (not shown) performs the compressor 21, the four-way valve 24, and the switching valve 51-51. By controlling 56, the R410A refrigerant is circulated in the direction of the broken arrow shown in FIG.
Specifically, in the circulation path 20, the R410A refrigerant flows into the compressor 21, the four-way valve 24, the switching valve 56, the switching valve 52, the water heat exchanger 32, the expander 22a, the switching valve 53, the switching valve 55, The indoor air heat exchanger 4, the switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, the water flowing on the flowing water path 30a or 30b is heated in the water heat exchanger 32.
On the other hand, in the circulation path 40, the R410A refrigerant is supplied from the compressor 21, the four-way valve 24, the switching valve 56, the outdoor air heat exchanger 23, the switching valve 54, the expander 22b, the switching valve 55, and the indoor air heat exchanger 4. , The switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order. As a result, the indoor air heat exchanger 4 cools the room air by cooling it.
As described above, in the R410A cycle 5, the R410A refrigerant is distributed by the switching valve 56, whereby cooling and instantaneous hot water supply can be performed simultaneously. As described above, the CO 2 cycle 1 can compensate for a decrease in the heating efficiency of the water in the water heat exchanger 32 due to the distribution of the R410A refrigerant.
Although the switching valve is used in the present embodiment and the above embodiment, it is possible to obtain the same effect by reducing the function without using it.
本発明の実施の形態に係るヒートポンプ式給湯機の概略構成図。The schematic block diagram of the heat pump type hot water heater which concerns on embodiment of this invention. 本発明の実施例に係るヒートポンプ式給湯機の概略構成図。The schematic block diagram of the heat pump type hot water heater which concerns on the Example of this invention.
符号の説明Explanation of symbols
1…ヒートポンプサイクル(第一のヒートポンプサイクルの一例)
2,5…ヒートポンプサイクル(第二のヒートポンプサイクルの一例)
4…室内空気熱交換器
11,21…圧縮機
12,22,22a,22b…膨張器
13,23…室外空気熱交換器
14,25,33…配管
20…循環経路(第一の循環経路の一例)
40…循環経路(第二の循環経路の一例)
24…四方弁
30a〜30d…流水経路
31…貯留タンク
41〜45,51〜56…切換弁
1 ... heat pump cycle (an example of a first heat pump cycle)
2, 5 ... Heat pump cycle (example of second heat pump cycle)
4 ... indoor air heat exchangers 11, 21 ... compressors 12, 22, 22a, 22b ... expanders 13, 23 ... outdoor air heat exchangers 14, 25, 33 ... piping 20 ... circulation path (of the first circulation path) One case)
40 ... circulation route (example of second circulation route)
24 ... Four-way valve 30a-30d ... Flowing water path 31 ... Storage tank 41-45, 51-56 ... Switching valve

Claims (2)

  1. 炭酸ガス冷媒が少なくとも圧縮機及び膨張器を経て循環される第一のヒートポンプサイクルと,HFC冷媒が少なくとも圧縮機及び膨張器を経て循環される第二のヒートポンプサイクルと,前記炭酸ガス冷媒及び前記HFC冷媒と水との間で熱交換を行う水熱交換器と,前記水熱交換器で加熱された温水を貯留する貯留タンクと,を備えてなり,
    前記第二のヒートポンプサイクルが,前記水熱交換器を通過する第一の循環経路と,前記HFC冷媒と室内空気との間で熱交換を行う室内空気熱交換器を通過する第二の循環経路と,当該第二のヒートポンプサイクルにおける前記HFC冷媒の循環方向を切り替える循環方向切替手段と,を含んでなり,
    前記第一のヒートポンプサイクルに前記炭酸ガス冷媒を循環させることにより前記水熱交換器で前記炭酸ガス冷媒によって加熱された温水を前記貯留タンクに貯留する貯湯運転と,
    前記第二のヒートポンプサイクルの前記第一の循環経路に前記HFC冷媒を循環させることにより前記水熱交換器で前記HFC冷媒によって加熱された温水を前記貯留タンクを経由せずに直接給湯口に出力する瞬間給湯運転と,
    前記第二のヒートポンプサイクルの前記第二の循環経路に前記HFC冷媒を循環させることにより前記室内空気熱交換器で前記HFC冷媒によって室内空気を加熱する暖房運転又は室内空気を冷却する冷房運転と,
    を実行するヒートポンプ式給湯機であって,
    前記暖房運転又は前記冷房運転が実行されているときに前記瞬間給湯運転の要求が行われた場合に,前記第二のヒートポンプサイクルに循環される前記HFC冷媒を前記第一の循環経路及び前記第二の循環経路に分配して循環させることを特徴とするヒートポンプ式給湯機。
    A first heat pump cycle in which carbon dioxide refrigerant is circulated through at least a compressor and an expander; a second heat pump cycle in which HFC refrigerant is circulated through at least a compressor and an expander; the carbon dioxide refrigerant and the HFC A water heat exchanger that exchanges heat between the refrigerant and water, and a storage tank that stores hot water heated by the water heat exchanger ,
    The second heat pump cycle passes through a first circulation path that passes through the water heat exchanger, and a second circulation path that passes through an indoor air heat exchanger that performs heat exchange between the HFC refrigerant and room air. If, Ri name includes a circulating direction switching means for switching the circulating direction of the HFC refrigerant in the second heat pump cycle, and
    A hot water storage operation in which hot water heated by the carbon dioxide refrigerant in the water heat exchanger is stored in the storage tank by circulating the carbon dioxide refrigerant in the first heat pump cycle;
    By circulating the HFC refrigerant in the first circulation path of the second heat pump cycle, the hot water heated by the HFC refrigerant in the water heat exchanger is directly output to the hot water supply port without passing through the storage tank. Instantaneous hot water operation,
    Heating operation for heating indoor air with the HFC refrigerant in the indoor air heat exchanger or cooling operation for cooling indoor air by circulating the HFC refrigerant in the second circulation path of the second heat pump cycle;
    A heat pump water heater that performs
    When the instantaneous hot water supply operation is requested when the heating operation or the cooling operation is being performed, the HFC refrigerant circulated to the second heat pump cycle is supplied to the first circulation path and the first A heat pump type hot water heater characterized by being distributed and circulated in two circulation paths .
  2. 前記暖房運転又は前記冷房運転と前記瞬間給湯運転とを同時運転する場合に,前記第一のヒートポンプサイクルに前記炭酸ガス冷媒を循環させることにより前記水熱交換器で前記HFC冷媒及び前記炭酸ガス冷媒によって水を加熱させてなる請求項1に記載のヒートポンプ式給湯機。 When the heating operation or the cooling operation and the instantaneous hot water supply operation are performed simultaneously, the HFC refrigerant and the carbon dioxide refrigerant are circulated in the water heat exchanger by circulating the carbon dioxide refrigerant in the first heat pump cycle. The heat pump type water heater according to claim 1, wherein water is heated by the heat pump.
JP2005378539A 2005-12-28 2005-12-28 Heat pump water heater Expired - Fee Related JP3966889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378539A JP3966889B2 (en) 2005-12-28 2005-12-28 Heat pump water heater

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005378539A JP3966889B2 (en) 2005-12-28 2005-12-28 Heat pump water heater
PCT/JP2006/323099 WO2007077687A1 (en) 2005-12-28 2006-11-20 Heat pump hot water supply device
EP06832949.9A EP1972862B1 (en) 2005-12-28 2006-11-20 Heat pump hot water supply device
CN 200680049376 CN101346592B (en) 2005-12-28 2006-11-20 Heat pump hot water supply device

Publications (2)

Publication Number Publication Date
JP2007178088A JP2007178088A (en) 2007-07-12
JP3966889B2 true JP3966889B2 (en) 2007-08-29

Family

ID=38228045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378539A Expired - Fee Related JP3966889B2 (en) 2005-12-28 2005-12-28 Heat pump water heater

Country Status (4)

Country Link
EP (1) EP1972862B1 (en)
JP (1) JP3966889B2 (en)
CN (1) CN101346592B (en)
WO (1) WO2007077687A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873594B1 (en) 2011-12-14 2018-07-02 엘지전자 주식회사 A cascade heat pump

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551882B2 (en) * 2009-02-24 2014-07-16 ダイキン工業株式会社 Heat pump system
JP5729910B2 (en) * 2010-03-05 2015-06-03 三菱重工業株式会社 Hot water heat pump and control method thereof
KR20120136854A (en) * 2011-06-10 2012-12-20 삼성전자주식회사 Water supply apparatus
CN102759220B (en) * 2012-07-30 2014-10-15 广东麦科尔新能源科技有限公司 Carbon dioxide compressor-based triple power supply system applicable to harsh environment
CN103939999B (en) * 2014-04-16 2017-01-11 广东美的制冷设备有限公司 Double-refrigerant air conditioner system and control method thereof
CN111795423B (en) * 2020-03-26 2021-09-03 同济大学 Carbon dioxide heat pump heating system based on three-fluid heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083585A (en) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp Heat pump-type hot water supply system
JP2005147409A (en) * 2003-11-11 2005-06-09 Tokyo Electric Power Co Inc:The Heat pump type cooler/heater
JP4088790B2 (en) * 2003-12-17 2008-05-21 日立アプライアンス株式会社 Heat pump type water heater and its operating method
JP4599910B2 (en) * 2004-07-01 2010-12-15 ダイキン工業株式会社 Water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873594B1 (en) 2011-12-14 2018-07-02 엘지전자 주식회사 A cascade heat pump

Also Published As

Publication number Publication date
EP1972862A4 (en) 2013-09-11
CN101346592B (en) 2011-08-03
JP2007178088A (en) 2007-07-12
WO2007077687A1 (en) 2007-07-12
EP1972862A1 (en) 2008-09-24
CN101346592A (en) 2009-01-14
EP1972862B1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
KR100810870B1 (en) Hot-water supply device
JP3966889B2 (en) Heat pump water heater
JP2007178091A (en) Heat pump water heater
JP2007232282A (en) Heat pump type water heater
JP5460701B2 (en) Air conditioner
JP6000373B2 (en) Air conditioner
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JPWO2011104870A1 (en) Air conditioner and air conditioning hot water supply system
JP4413188B2 (en) Heat pump water heater
JP2010025503A (en) Heat pump air conditioning system
JP4890320B2 (en) Heat pump hot water supply system
JP2011163654A (en) Hot water supply air conditioner
JP4749228B2 (en) Heat pump water heater
JP4753791B2 (en) Heat pump water heater
JP4455518B2 (en) Heat pump water heater
KR100613502B1 (en) Heat pump type air conditioner
WO2020174618A1 (en) Air-conditioning device
JP2015215117A (en) Heat pump type air cooling device
JP2007155203A (en) Air conditioner
JP2009250580A (en) Heat pump device
KR100448542B1 (en) Cooling and heating system
JP4372762B2 (en) Heat pump water heater
JP2008032333A (en) Heat pump type water heater
JP2007278582A (en) Heat pump device and its operation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees