JP2011017476A - Double tube type heat exchanger - Google Patents

Double tube type heat exchanger Download PDF

Info

Publication number
JP2011017476A
JP2011017476A JP2009161640A JP2009161640A JP2011017476A JP 2011017476 A JP2011017476 A JP 2011017476A JP 2009161640 A JP2009161640 A JP 2009161640A JP 2009161640 A JP2009161640 A JP 2009161640A JP 2011017476 A JP2011017476 A JP 2011017476A
Authority
JP
Japan
Prior art keywords
tube
arc portion
pipe
double
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009161640A
Other languages
Japanese (ja)
Inventor
Naoe Sasaki
直栄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2009161640A priority Critical patent/JP2011017476A/en
Publication of JP2011017476A publication Critical patent/JP2011017476A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compact double tube type heat exchanger of high performance with no problem resulting from the eccentricity of an inner tube.SOLUTION: The double tube type heat exchanger is obtained by working a double tube 10 including the inner tube with a first fluid flowing through inside, and an outer tube arranged outside the inner tube to allow a second fluid to flow through a clearance between itself and the inner tube, into shape having first circular arc parts 11a, 11b, 11c repeated by turns, and second circular arc parts 12a, 12b, 12c having reverse curvature to the first circular arc parts.

Description

本発明は、内管と該内管の外側に配置される外管とからなり、該内管の内側に第一の流体を流通させ、該外管と該内管の間隙に第二の流体を流通させて、該第一の流体と該第二の流体の間で熱交換を行う二重管式熱交換器に関する。   The present invention comprises an inner tube and an outer tube disposed on the outer side of the inner tube, a first fluid is circulated inside the inner tube, and a second fluid is disposed in the gap between the outer tube and the inner tube. It is related with the double pipe type heat exchanger which distributes heat and performs heat exchange between this 1st fluid and this 2nd fluid.

従来から、熱交換媒体(冷媒)と水等の流体との間で熱交換する熱交換器として、冷媒を流通させる流路と水等の熱交換により加熱される流体の流路とを、2つの伝熱管を組み合わせて構成し、水等と冷媒との間で熱交換が行われるようにした熱交換器が、各種用いられていた。   2. Description of the Related Art Conventionally, as a heat exchanger for exchanging heat between a heat exchange medium (refrigerant) and a fluid such as water, a flow path for circulating a refrigerant and a flow path for a fluid heated by heat exchange such as water are provided. Various heat exchangers configured by combining two heat transfer tubes so as to exchange heat between water or the like and a refrigerant have been used.

このような冷媒と水との間で熱交換を行う方式の熱交換器としては、各種の形状のものが提案されており、その中でも、内管と該内管の外側に設置される外管とからなる二重管式熱交換器は、構造が簡単で作製し易く、且つ、熱交換性能が良好である。   Various types of heat exchangers that exchange heat between the refrigerant and water have been proposed. Among them, an inner tube and an outer tube installed outside the inner tube are proposed. The double-tube heat exchanger consisting of the above has a simple structure, is easy to produce, and has good heat exchange performance.

例えば、特開2006−170571号公報(特許文献1)には、スパイラル状に捩じられた複数の内管と、該内管が内挿される外管とからなる二重多管が、矩形の渦巻き状に巻かれた二重多管式熱交換器が開示されている。   For example, in Japanese Patent Laid-Open No. 2006-170571 (Patent Document 1), a double multi-tube including a plurality of inner tubes twisted in a spiral shape and an outer tube into which the inner tubes are inserted has a rectangular shape. A spirally wound double multi-tube heat exchanger is disclosed.

また、特開2005−147566号公報には、内管と、該内管の外に設置される外管とからなる二重多管が、矩形の渦巻き状に巻かれた二重多管式熱交換器が開示されている。   JP 2005-147466 A discloses a double multi-tube heat in which a double multi-tube composed of an inner tube and an outer tube installed outside the inner tube is wound in a rectangular spiral shape. An exchanger is disclosed.

特開2006−170571号公報(特許請求の範囲、図1)JP 2006-170571 A (Claims, FIG. 1) 特開2995−147566号公報(特許請求の範囲、図3)Japanese Patent Laying-Open No. 2995-147666 (Claims, FIG. 3)

上記特許文献1又は2の二重管式熱交換器は、高温側となる冷媒流路管が低温側となる水流路管の中に完全に封じ込められているため、冷媒の熱が外気へと放出されてしまうことが抑えられるという利点を有しているものの、水側への伝熱面積を増加させることが困難であるという欠点を有している。   In the double tube heat exchanger of Patent Document 1 or 2, the refrigerant channel tube on the high temperature side is completely enclosed in the water channel tube on the low temperature side, so that the heat of the refrigerant is transferred to the outside air. Although it has the advantage that it is suppressed from being released, it has the disadvantage that it is difficult to increase the heat transfer area to the water side.

水側への伝熱面積を増加させる手段としては、例えば、特開2001−201275号公報(特許文献3)には、水流路となる外管と内管の間隙に、らせん状の伝熱促進体を介設した二重管式熱交換器が開示されている。   As a means for increasing the heat transfer area to the water side, for example, in Japanese Patent Laid-Open No. 2001-201275 (Patent Document 3), helical heat transfer is promoted in the gap between the outer tube and the inner tube serving as a water flow path. A double-pipe heat exchanger with a body interposed therein is disclosed.

しかし、特許文献3の二重管式熱交換器には、水流路にスケールが形成し易いという問題があるため、好ましくない。   However, the double-pipe heat exchanger of Patent Document 3 is not preferable because there is a problem that a scale is easily formed in the water flow path.

そのため、水側の伝熱面積を増加させるためには、熱交換器の長さを長くするという手段に頼らざるを得ないのが現状である。   Therefore, in order to increase the heat transfer area on the water side, it is currently necessary to rely on means for increasing the length of the heat exchanger.

ところが、特許文献1又は2の熱交換器の長さを長くするということは、矩形の巻きの数を平面方向又は高さ方向に増やすこと又は矩形の巻きの径を大きくすることになるので、熱交換器の大きさが大きくなり、また、重量が重くなる。そのため、昨今、求められているコンパクト化に逆行することになる。   However, increasing the length of the heat exchanger of Patent Document 1 or 2 increases the number of rectangular windings in the plane direction or the height direction, or increases the diameter of the rectangular windings. The size of the heat exchanger increases and the weight increases. Therefore, it goes against the recent demand for compactness.

また、二重管を矩形の渦巻き状に加工する際に、内管が外管に対して渦巻きの中心側に偏心する。図9には、二重管が矩形の渦巻き状に加工された二重管式熱交換器の平面図を示す。また、図10は、図9中のy−y断面で、流体の流通方向に対して垂直な面で切ったときの曲げ部63の断面図である。   Further, when the double tube is processed into a rectangular spiral shape, the inner tube is eccentric to the center side of the spiral with respect to the outer tube. FIG. 9 shows a plan view of a double tube heat exchanger in which the double tube is processed into a rectangular spiral shape. FIG. 10 is a cross-sectional view of the bending portion 63 taken along a plane perpendicular to the fluid flow direction in the yy cross section in FIG. 9.

図9中、二重管式熱交換器61は、内管と該内管の外側に配置される外管とからなる二重管62が、矩形の渦巻き状に加工されたものである。該二重管62は、直線部64と、曲げ部63とからなる。図10に示すように、内管67は、外管68内で、矩形の渦巻きの中心側66に偏心している。   In FIG. 9, a double-pipe heat exchanger 61 is obtained by processing a double tube 62 composed of an inner tube and an outer tube disposed outside the inner tube into a rectangular spiral shape. The double pipe 62 includes a straight portion 64 and a bent portion 63. As shown in FIG. 10, the inner tube 67 is eccentric to the central side 66 of the rectangular spiral within the outer tube 68.

該二重管式熱交換器61で、該内管67内に冷媒を流通させ、該外管68と該内管67との間隙に水を流通させると、該曲げ部63で、該内管67が該外管68に対して偏心しているため、該矩形の渦巻きの中心側66と矩形の渦巻きの外側65とで、水流路面積(水流路の方向に対して垂直な断面で見たとき面積)が異なり、該矩形の渦巻きの外側65の水流路面積が大きく、該矩形の渦巻きの中心側66の水流路面積が小さくなる。そして、該曲げ部63では、常に、水流路の該矩形の渦巻きの外側65の水流路面積が大きく、該矩形の渦巻きの中心側66の水流路面積が小さくなる。   When the double pipe heat exchanger 61 allows the refrigerant to flow through the inner pipe 67 and the water to flow through the gap between the outer pipe 68 and the inner pipe 67, the bent section 63 causes the inner pipe to 67 is eccentric with respect to the outer tube 68, the water channel area (when viewed in a cross section perpendicular to the direction of the water channel) between the rectangular spiral center side 66 and the rectangular spiral outer side 65. Area) is different, the water channel area on the outer side 65 of the rectangular spiral is large, and the water channel area on the center side 66 of the rectangular spiral is small. In the bent portion 63, the water channel area on the outer side 65 of the rectangular spiral of the water channel is always large, and the water channel area on the center side 66 of the rectangular spiral is small.

このため、特許文献1又は2の熱交換器のような矩形の渦巻き状の二重管式熱交換器には、流路面積(流路の方向に対して垂直な断面で見たとき面積)の偏りが一方向にのみ起こる結果、流路の一方向にのみ速度境界層や温度境界層の薄い領域が存在することになり、これらの境界層の更新が妨げられるために、十分な乱流促進効果が得られないという問題があり、また、水の流動抵抗が大きい内側の壁面過熱度の増加により、スケールが析出し易くなるという問題もある。   For this reason, a rectangular spiral double tube heat exchanger such as the heat exchanger of Patent Document 1 or 2 has a flow path area (area when viewed in a cross section perpendicular to the flow path direction). As a result, the turbulent flow is sufficient because there is a thin region of the velocity boundary layer and temperature boundary layer in only one direction of the flow path and the renewal of these boundary layers is prevented. There is a problem that an accelerating effect cannot be obtained, and there is also a problem that scale is likely to precipitate due to an increase in the degree of superheating of the inner wall surface where the flow resistance of water is large.

従って、本発明の目的は、内管の偏心に起因する問題がなく、且つ、単位長さ当たりの熱交換性能が高く、コンパクトで高性能な二重管式熱交換器を提供することにある。   Accordingly, an object of the present invention is to provide a compact and high-performance double-pipe heat exchanger that is free from problems due to the eccentricity of the inner tube, has high heat exchange performance per unit length, and is compact. .

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、内管と該内管の外側に配置される外管とからなる二重管を、交互に繰り返される第一円弧部と、該第一円弧部とは逆の曲率を有する第二円弧部と、からなる形状に加工して得られる二重管式熱交換器は、該内管が該外管に対して編心していても、その偏心している方向が、比較的短い間隔で、繰り返し逆転するので、(1)該内管の偏心による問題が起こらないこと、そのため、(2)壁面過熱度増加によるスケール析出を抑制できること、更に、(3)熱交換器の均熱化が図られ、熱交換性能が向上すること等を見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the problems in the prior art, the present inventors have repeated a double tube consisting of an inner tube and an outer tube arranged outside the inner tube alternately. A double pipe heat exchanger obtained by processing into a shape comprising one arc portion and a second arc portion having a curvature opposite to that of the first arc portion is such that the inner tube is in relation to the outer tube. Even if it is knitted, the eccentric direction is repeatedly reversed at relatively short intervals, so that (1) the problem due to the eccentricity of the inner tube does not occur, and therefore (2) the scale due to the increase in the degree of superheat on the wall surface The inventors have found that precipitation can be suppressed, and that (3) the heat exchanger is soaked and heat exchange performance is improved, and the present invention has been completed.

すなわち、本発明は、内側に第一の流体が流通する内管と、該内管の外側に配置され、該内管との間隙に第二の流体が流通する外管と、からなる二重管を、交互に繰り返される第一円弧部と、該第一円弧部とは逆の曲率を有する第二円弧部と、からなる形状に加工して得られる二重管式熱交換器を提供するものである。   That is, the present invention provides a double pipe comprising an inner tube through which a first fluid flows and an outer tube disposed outside the inner tube and through which a second fluid flows in a gap with the inner tube. Provided is a double-tube heat exchanger obtained by processing a tube into a shape consisting of a first arc portion that is alternately repeated and a second arc portion having a curvature opposite to that of the first arc portion. Is.

本発明によれば、内管の偏心に起因する問題がなく、且つ、単位長さ当たりの熱交換性能が高く、コンパクトで高性能な二重管式熱交換器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, there is no problem resulting from the eccentricity of an inner pipe | tube, and the heat exchange performance per unit length is high, and a compact and high performance double pipe type heat exchanger can be provided.

本発明の二重管式熱交換器に係る二重管の形状に加工される前の二重管の模式的な断面図である。It is a typical sectional view of a double tube before being processed into the shape of a double tube concerning a double tube type heat exchanger of the present invention. 加工後の二重管の平面方向の伸長形状の形態例であり、加工後の二重管を平面視した模式図である。It is the example of the expansion | extension shape of the planar direction of the double pipe after a process, and is the schematic diagram which planarly viewed the double pipe after a process. 図2中の第一円弧部及び第二円弧部の1つ分を抜き出した図である。It is the figure which extracted one part of the 1st circular arc part and the 2nd circular arc part in FIG. 図2及び図3中の該加工後の二重管の断面図である。It is sectional drawing of the double pipe after the said process in FIG.2 and FIG.3. 加工後の二重管の平面方向の伸長形状の他の形態例の模式図である。It is a schematic diagram of the other example of the expansion | extension shape of the planar direction of the double pipe after a process. 該第一円弧部と該第二円弧部とが直線部を介して繋がっている形態例の模式図である。It is a schematic diagram of the form example which this 1st circular arc part and this 2nd circular arc part are connected via the linear part. 2本の内管と、該内管の外側に配置される外管と、からなる二重管の模式的な断面図である。It is a typical sectional view of a double pipe which consists of two inner pipes and an outer pipe arranged on the outside of the inner pipe. 2段式の熱交換器を示す模式図である。It is a schematic diagram which shows a two-stage heat exchanger. 従来の二重管式熱交換器を示す図である。It is a figure which shows the conventional double pipe type heat exchanger. 図9中、y−y断面で、流体の流通方向に対して垂直な面で切ったときの曲げ部63の断面図である。FIG. 10 is a cross-sectional view of the bending portion 63 taken along a plane perpendicular to the fluid flow direction in the yy cross section in FIG.

本発明の二重管式熱交換器は、内側に第一の流体が流通する内管と、該内管の外側に配置され、該内管との間隙に第二の流体が流通する外管と、からなる二重管を、交互に繰り返される第一円弧部と、該第一円弧部とは逆の曲率を有する第二円弧部と、からなる形状に加工して得られる二重管式熱交換器である。   The double pipe heat exchanger of the present invention includes an inner pipe through which a first fluid flows, and an outer pipe arranged outside the inner pipe and through which a second fluid flows through a gap between the inner pipe and the inner pipe. And a double tube type obtained by processing a double tube comprising a first arc portion that is alternately repeated and a second arc portion having a curvature opposite to that of the first arc portion. It is a heat exchanger.

本発明の二重管式熱交換器は、該内管と該内管の外側に配置される該外管とからなる該二重管を加工することにより得られる二重管式熱交換器である。   The double pipe heat exchanger of the present invention is a double pipe heat exchanger obtained by processing the double pipe comprising the inner pipe and the outer pipe arranged outside the inner pipe. is there.

図1に、本発明の二重管式熱交換器に係る二重管の形状に加工される前の二重管の模式的な断面図を示す。図1中、本発明の二重管式熱交換器に係る二重管の形状に加工される前の二重管(加工前の二重管)3は、内管1と、該内管1の外側に配置される外管2と、からなる。そして、該加工前の二重管3を加工した後の該内管1の内部4が、該第一の流体が流通される流路であり、該外管2と該内管1との間隙5が、該第二の流体が流通される流路である。該内管1の内部4に、該第一の流体を流通し、該外管2と該内管1との間隙5に、該第二の流体を流通することにより、該第一の流体と該第二の流体との間で熱交換が行われる。   FIG. 1 shows a schematic cross-sectional view of a double tube before being processed into a double tube shape according to the double tube heat exchanger of the present invention. In FIG. 1, a double tube (double tube before processing) 3 before being processed into the shape of a double tube according to the double tube heat exchanger of the present invention includes an inner tube 1 and the inner tube 1. And an outer tube 2 disposed on the outer side of the tube. The inner tube 4 after processing the double tube 3 before processing is a flow path through which the first fluid flows, and the gap between the outer tube 2 and the inner tube 1 5 is a flow path through which the second fluid flows. The first fluid is circulated through the interior 4 of the inner tube 1, and the second fluid is circulated through the gap 5 between the outer tube 2 and the inner tube 1. Heat exchange is performed with the second fluid.

本発明の二重管式熱交換器に係る二重管(加工後の二重管)の形状を、図2〜図4を参照して説明する。図2〜図4は、該加工後の二重管の平面方向の伸長形状の形態例であり、図2は、該加工後の二重管を平面視した模式図であり、図3は、図2中の第一円弧部及び第二円弧部の1つ分を抜き出した図であり、図4は、図2及び図3中の該加工後の二重管の断面図である。なお、本発明において、該加工後の二重管の形状とは、該外管の形状である。また、該外管の内側には、該内管が配置されている。   The shape of the double pipe (double pipe after processing) according to the double pipe heat exchanger of the present invention will be described with reference to FIGS. 2 to 4 are configuration examples of the elongated shape in the planar direction of the double tube after the processing, FIG. 2 is a schematic view in plan view of the double tube after the processing, FIG. FIG. 4 is a diagram in which one portion of the first arc portion and the second arc portion in FIG. 2 is extracted, and FIG. 4 is a cross-sectional view of the double pipe after the processing in FIGS. 2 and 3. In the present invention, the shape of the double pipe after processing is the shape of the outer pipe. Further, the inner pipe is disposed inside the outer pipe.

図2中、該加工後の二重管10の形状は、第一円弧部11と、第二円弧部12と、からなる形状である。そして、図2に示すように、順に、第一円弧部11a、第二円弧部12a、第一円弧部11b、第二円弧部12b、第一円弧部11c、第二円弧部12cとのように、該第一円弧部11と該第二円弧部12とが、交互に繰り返されている。なお、変曲点13aから変曲点13bまでが、該第一円弧部11aであり、変曲点13bから変曲点13cまでが、該第二円弧部12aであり、変曲点13cから変曲点13dまでが、該第一円弧部11bであり、変曲点13dから変曲点13eまでが、該第二円弧部12bであり、変曲点13eから変曲点13fまでが、該第一円弧部11cであり、変曲点13fから変曲点13gまでが、該第二円弧部12cである。なお、図2に示す該加工後の二重管10の形状では、該第一円弧部11と該第二円弧部12とが、該変曲点13で、直接繋がっている。   In FIG. 2, the shape of the double pipe 10 after processing is a shape including a first arc portion 11 and a second arc portion 12. Then, as shown in FIG. 2, the first arc portion 11a, the second arc portion 12a, the first arc portion 11b, the second arc portion 12b, the first arc portion 11c, and the second arc portion 12c in this order. The first arc portion 11 and the second arc portion 12 are alternately repeated. The inflection point 13a to the inflection point 13b is the first arc portion 11a, and the inflection point 13b to the inflection point 13c is the second arc portion 12a. The inflection point 13d is the first arc portion 11b, the inflection point 13d to the inflection point 13e is the second arc portion 12b, and the inflection point 13e to the inflection point 13f is the first arc portion 11b. One arc portion 11c, and from the inflection point 13f to the inflection point 13g is the second arc portion 12c. In the shape of the double pipe 10 after processing shown in FIG. 2, the first arc portion 11 and the second arc portion 12 are directly connected at the inflection point 13.

そして、該加工後の二重管10では、該第二の流体15が、該外管と該内管との間隙を、該外管と該内管との間隙の一端14aから、該外管と該内管との間隙の他端14bに向けて流通する。また、該第一の流体は、通常、該第二の流体15とは反対向きに、該内管の内側を、該内管の一端から該内管の他端に向けて流通する。   In the processed double pipe 10, the second fluid 15 passes through the gap between the outer pipe and the inner pipe from one end 14 a of the gap between the outer pipe and the inner pipe. And flows toward the other end 14b of the gap between the inner pipe and the inner pipe. In addition, the first fluid normally flows in the opposite direction to the second fluid 15 from the one end of the inner tube toward the other end of the inner tube.

図3は、図2中の該第一円弧部11a及び該第二円弧部12aを、つまり、該変曲点13aから該変曲点13cまでの部分を抜き出した図である。該第一円弧部11aと該第二円弧部12aとは、逆の曲率を有する。なお、本発明において、円弧の曲率が逆であるということについて、図2及び図3を用いて説明すると、円弧の曲率が逆であるとは、円弧の曲率中心の位置が、該外管と該内管との間隙を流通する該第二の流体の進行方向の左右反対にある関係を言う。つまり、該外管と該内管との間隙を該第二の流体が流れるときに、該第二の流体の流れる方向が右にカーブする円弧と左にカーブする円弧の関係を、円弧の曲率が逆であると言う。例えば、図3では、該第一円弧部11aの曲率中心は、符号16aで示す位置であり、該第二の流体の流通方向17の右側にある。一方、該第二円弧部12aの曲率中心は、符号16bで示す位置であり、該第二の流体の流通方向17の左側にある。   FIG. 3 is a diagram in which the first arc portion 11a and the second arc portion 12a in FIG. 2, that is, a portion from the inflection point 13a to the inflection point 13c are extracted. The first arc portion 11a and the second arc portion 12a have opposite curvatures. In the present invention, the fact that the curvature of the arc is reversed will be described with reference to FIGS. 2 and 3. When the curvature of the arc is reversed, the position of the center of curvature of the arc is the same as that of the outer tube. A relationship that is opposite to the left and right in the direction of travel of the second fluid flowing through the gap with the inner pipe. That is, when the second fluid flows through the gap between the outer tube and the inner tube, the relationship between the arc that curves to the right and the arc that curves to the left is the curvature of the arc. Says the opposite. For example, in FIG. 3, the center of curvature of the first arc portion 11 a is the position indicated by reference numeral 16 a and is on the right side in the flow direction 17 of the second fluid. On the other hand, the center of curvature of the second arc portion 12a is the position indicated by reference numeral 16b, and is on the left side in the flow direction 17 of the second fluid.

該加工前の二重管を加工する際、該外管は冶具で拘束されているのに対し、該内管は中空に浮いた状態にある。そのため、該内管は、曲がり難いので、該内管の曲がりが、該外管の曲がりに比べ緩やかになる。よって、該外管内で、該内管は該外管に対して偏心する。   When the double pipe before processing is processed, the outer pipe is restrained by a jig, while the inner pipe is in a state of floating in the hollow. Therefore, since the inner tube is difficult to bend, the bending of the inner tube becomes gentler than the bending of the outer tube. Therefore, in the outer tube, the inner tube is eccentric with respect to the outer tube.

該内管の偏心について、図4を参照して説明する。図4中、該加工後の二重管10のA点〜I点までのx−x線の断面図が、(A)〜(I)である。なお、図4中の(A)〜(I)は、該加工後の二重管10を、該第二の流体の流通方向に対して垂直な面で切ったときの断面図であり、該第二の流体の流通方向に見た断面図である。つまり、図4中の(A)〜(I)では、紙面の表面から裏面への方向が、該第二の流体の流通方向である。   The eccentricity of the inner tube will be described with reference to FIG. In FIG. 4, sectional views taken along line xx from point A to point I of the double tube 10 after processing are (A) to (I). 4 (A) to (I) are cross-sectional views of the processed double pipe 10 taken along a plane perpendicular to the flow direction of the second fluid, It is sectional drawing seen in the distribution direction of the 2nd fluid. That is, in (A) to (I) in FIG. 4, the direction from the front surface to the back surface of the paper is the flow direction of the second fluid.

図4中、(A)は、A点、つまり、該変曲点13aの断面図であり、該第二の流体の該第一円弧部11aへの入口部分の断面図である。(A)に示すように、該A点では、該内管は、該外管に対して偏心していない。そのため、該外管と該内管との間隙を流通する該第二の流体の流路面積(流路の方向に対して垂直な断面で見たとき面積)は、左右のどちらにも偏っていない。   4A is a cross-sectional view of the point A, that is, the inflection point 13a, and is a cross-sectional view of the inlet portion of the second fluid to the first arc portion 11a. As shown in (A), at the point A, the inner tube is not eccentric with respect to the outer tube. Therefore, the flow area of the second fluid flowing through the gap between the outer pipe and the inner pipe (the area when viewed in a cross section perpendicular to the direction of the flow path) is biased to the left and right. Absent.

B点は、該A点から該第一円弧部11aを該第二の流体の流通方向に少し進んだ位置であるが、(B)に示すように、該内管は、該外管に対して右側に少し偏心している。そのため、該外管と該内管との間隙を流通する該第二の流体の流路面積には、左右に偏りがあり、左側に比べ右側が小さくなっている。   Point B is a position slightly advanced from the point A through the first circular arc portion 11a in the direction of flow of the second fluid. As shown in (B), the inner pipe is located with respect to the outer pipe. Is slightly eccentric to the right. Therefore, the flow path area of the second fluid flowing through the gap between the outer tube and the inner tube is uneven on the left and right, and the right side is smaller than the left side.

C点は、該B点から該第一円弧部11aを該第二の流体の流通方向に更に進んだ位置であり、該第一円弧部11aの中間点である。このとき、(C)に示すように、該内管は、該外管に対して右側に大きく偏心し、その偏心の度合が、該第一円弧部11a中で最大になる。よって、該外管と該内管との間隙を流通する該第二の流体の流路面積の左右の偏りが、該第一円弧部11a中で最大になる。   The point C is a position further advanced from the point B through the first arc portion 11a in the flow direction of the second fluid, and is an intermediate point of the first arc portion 11a. At this time, as shown in (C), the inner tube is greatly decentered to the right with respect to the outer tube, and the degree of decentering is maximized in the first arc portion 11a. Therefore, the left-right deviation of the flow path area of the second fluid flowing through the gap between the outer tube and the inner tube is maximized in the first arc portion 11a.

D点は、該C点から該第一円弧部11aを該第二の流体の流通方向に更に進んだ位置であるが、(D)に示すように、該内管は、該外管に対して右側に少し偏心しており、その偏心の度合は、該C点に比べ小さくなっている。そのため、該外管と該内管との間隙を流通する該第二の流体の流路面積の左右の偏りが、該C点に比べ小さくなっている。   The point D is a position further advanced from the point C through the first circular arc portion 11a in the direction of flow of the second fluid. As shown in (D), the inner pipe is located with respect to the outer pipe. It is slightly eccentric to the right side, and the degree of eccentricity is smaller than the point C. Therefore, the left and right deviations in the flow area of the second fluid flowing through the gap between the outer tube and the inner tube are smaller than the point C.

E点は、該変曲点13bであり、該第二の流体の該第一円弧部11aの出口部分である。(E)に示すように、該E点では、該内管は、該外管に対して偏心していない。そのため、該外管と該内管との間隙を流通する該第二の流体の流路面積は、左右のどちらにも偏っていない。なお、該E点は、該第二の流体の該第二円弧部12aへの入口部分でもある。   Point E is the inflection point 13b, and is the exit portion of the first arc portion 11a of the second fluid. As shown in (E), at the point E, the inner tube is not eccentric with respect to the outer tube. Therefore, the flow area of the second fluid flowing through the gap between the outer tube and the inner tube is not biased to the left or right. The point E is also an entrance portion of the second fluid into the second arc portion 12a.

F点は、該E点から該第二円弧部12aを該第二の流体の流通方向に少し進んだ位置であるが、(F)に示すように、該内管は、該外管に対して今度は左側に少し偏心している。そのため、該外管と該内管との間隙を流通する該第二の流体の流路面積は、右側に比べ左側が小さくなっている。   The point F is a position slightly advanced from the point E through the second arcuate portion 12a in the second fluid flow direction. As shown in (F), the inner pipe is located with respect to the outer pipe. This time it is slightly eccentric to the left. Therefore, the flow channel area of the second fluid flowing through the gap between the outer tube and the inner tube is smaller on the left side than on the right side.

G点は、該F点から該第二円弧部12aを該第二の流体の流通方向に更に進んだ位置であり、該第二円弧部12aの中間点である。このとき、(G)に示すように、該内管は、該外管に対して左側に大きく偏心し、その偏心の度合が、該第二円弧部12a中で最大になる。よって、該外管と該内管との間隙を流通する該第二の流体の流路面積の左右の偏りが、該第二円弧部12a中で最大になる。   Point G is a position further advanced from the point F through the second arc portion 12a in the flow direction of the second fluid, and is an intermediate point of the second arc portion 12a. At this time, as shown in (G), the inner tube is greatly decentered to the left with respect to the outer tube, and the degree of decentering is maximized in the second arc portion 12a. Therefore, the left-right deviation of the flow path area of the second fluid flowing through the gap between the outer tube and the inner tube is maximized in the second arc portion 12a.

H点は、該G点から該第二円弧部12aを該第二の流体の流通方向に更に進んだ位置であるが、(H)に示すように、該内管は、該外管に対して左側に少し偏心しており、その偏心の度合は、該G点に比べ小さくなっている。そのため、該外管と該内管との間隙を流通する該第二の流体の流路面積の左右の偏りが、該G点に比べ小さくなっている。   The point H is a position further advanced from the point G through the second arcuate portion 12a in the second fluid flow direction. As shown in (H), the inner tube is located with respect to the outer tube. The left side is slightly eccentric, and the degree of eccentricity is smaller than the point G. Therefore, the right and left bias of the flow area of the second fluid flowing through the gap between the outer tube and the inner tube is smaller than the point G.

I点は、該変曲点13cであり、該第二の流体の該第二円弧部12aの出口部分である。(I)に示すように、該I点では、該内管は、該外管に対して偏心していない。そのため、該外管と該内管との間隙を流通する該第二の流体の流路面積は、左右のどちらにも偏っていない。なお、該I点は、該第二の流体の該第一円弧部11bへの入口部分でもある。   Point I is the inflection point 13c, and is the exit portion of the second arc portion 12a of the second fluid. As shown in (I), at the point I, the inner tube is not eccentric with respect to the outer tube. Therefore, the flow area of the second fluid flowing through the gap between the outer tube and the inner tube is not biased to the left or right. The point I is also an entrance portion of the second fluid into the first arc portion 11b.

図4に示すように、本発明の二重管式熱交換器では、円弧の曲率が互いに逆である該第一円弧部と該第二円弧部が交互に繰り返されているので、該外管内で、該内管が該外管に対して偏心していても、その偏心している方向が、比較的短い間隔で、繰り返し逆転するので、該内管の偏心による問題が起こらない。つまり、偏心が短い周期で逆転するので、温度境界層や速度境界層を更新する乱流促進効果が得られることから、熱交換器の均熱化が図られ、熱交換性能が高くなる。また、流路面積が小さくなる方向が一方向にのみに偏ることがないので、壁面過熱度増加の結果生じるスケール析出を抑制する効果が得られる。   As shown in FIG. 4, in the double pipe heat exchanger according to the present invention, the first arc portion and the second arc portion whose arc curvatures are opposite to each other are alternately repeated. Thus, even if the inner tube is eccentric with respect to the outer tube, the eccentric direction is repeatedly reversed at a relatively short interval, so that the problem due to the eccentricity of the inner tube does not occur. In other words, since the eccentricity is reversed in a short cycle, the effect of promoting turbulent flow that updates the temperature boundary layer and the velocity boundary layer is obtained, so that the heat exchanger is soaked and the heat exchange performance is improved. Further, since the direction in which the flow path area is reduced is not biased to only one direction, an effect of suppressing scale deposition resulting from an increase in the degree of superheating of the wall surface can be obtained.

図3中、該第一円弧部11aの中心角(°)及び該第二円弧部12aの中心角(°)を、θで示す。該第一円弧部11aの中心角θは、該第一円弧部11aの一端(該第一円弧部11の始点)、つまり、該変曲点13aと、該第一円弧部11aの曲率中心16aと、該第一円弧部11aの他端(該第一円弧部11の終点)、つまり、該変曲点13bとがなす角である。同様に、該第二円弧部12aの中心角θは、該第二円弧部12aの一端(該第二円弧部12の始点)、つまり、該変曲点13bと、該第二円弧部12bの曲率中心16bと、該第二円弧部12aの他端(該第二円弧部12の終点)、つまり、該変曲点13cとがなす角である。   In FIG. 3, the central angle (°) of the first arc portion 11a and the central angle (°) of the second arc portion 12a are denoted by θ. The central angle θ of the first arc portion 11a is one end of the first arc portion 11a (the start point of the first arc portion 11), that is, the inflection point 13a and the center of curvature 16a of the first arc portion 11a. And the other end of the first arc portion 11a (the end point of the first arc portion 11), that is, the angle formed by the inflection point 13b. Similarly, the central angle θ of the second arc portion 12a is equal to one end of the second arc portion 12a (the start point of the second arc portion 12), that is, the inflection point 13b and the second arc portion 12b. This is the angle formed by the curvature center 16b and the other end of the second arc portion 12a (the end point of the second arc portion 12), that is, the inflection point 13c.

また、図3中、該第一円弧部11aの曲率半径(mm)及び該第二円弧部12aの曲率半径(mm)を、Rで示す。なお、該第一円弧部11aの曲率半径Rとは、該第一円弧部11aの該外管の中心線と、該第一円弧部11aの曲率中心16aとの距離である。該外管の中心線とは、該第二の流体の流通方向に対して垂直な断面における該外管の中心が、該第二の流体の流通方向に繋がった線である。また、該第二円弧部12aの曲率半径についても同様である。   Further, in FIG. 3, the radius of curvature (mm) of the first arc portion 11a and the radius of curvature (mm) of the second arc portion 12a are denoted by R. The radius of curvature R of the first arc portion 11a is the distance between the center line of the outer tube of the first arc portion 11a and the center of curvature 16a of the first arc portion 11a. The center line of the outer pipe is a line in which the center of the outer pipe in a cross section perpendicular to the flow direction of the second fluid is connected to the flow direction of the second fluid. The same applies to the radius of curvature of the second arcuate portion 12a.

図5には、該第一円弧部及び該第二円弧部のθが180°の場合の形態例を示す。   FIG. 5 shows an example in which θ of the first arc portion and the second arc portion is 180 °.

本発明の二重管式熱交換器では、該外管の外径をD(mm)とするとき、下記式(1):
1≦R/D≦10 (1)
を満たすことが好ましく、2≦R/D≦7であることが特に好ましい。R/Dの値が上記範囲内にあることにより、乱流促進効果及びスケール析出の抑制効果が高くなる。一方、R/Dの値が、上記範囲を超えると、これらの効果が低くなり易く、また、上記範囲未満だと、伝熱管の座屈などの障害が発生し易くなり、信頼性の低下を招き易くなるとともに、内管の偏心が大きくなり過ぎて部分的な閉塞が起こり易くなる。なお、該外管の外径Dとは、該外管を水の流通方向に対して垂直な面で切ったときの断面の外径である。
In the double pipe heat exchanger of the present invention, when the outer diameter of the outer pipe is D (mm), the following formula (1):
1 ≦ R / D ≦ 10 (1)
Is preferably satisfied, and 2 ≦ R / D ≦ 7 is particularly preferable. When the value of R / D is within the above range, the effect of promoting turbulent flow and the effect of suppressing scale precipitation are enhanced. On the other hand, if the value of R / D exceeds the above range, these effects are likely to be low, and if it is less than the above range, failures such as buckling of the heat transfer tube are likely to occur, resulting in a decrease in reliability. In addition to being easily invited, the eccentricity of the inner tube becomes too large and partial blockage is likely to occur. The outer diameter D of the outer tube is an outer diameter of a cross section when the outer tube is cut along a plane perpendicular to the water flow direction.

θは、60〜290°が好ましく、180〜290°が特に好ましい。θが上記範囲内にあることにより、乱流促進効果及びスケール析出の抑制効果が高くなる。   θ is preferably 60 to 290 °, particularly preferably 180 to 290 °. When θ is in the above range, the effect of promoting turbulence and the effect of suppressing scale precipitation are enhanced.

なお、本発明の二重管式熱交換器では、該二重管の加工の際に、該第一円弧部と該第二円弧部の長さに差が生じることがあるが、本発明の効果を損なわない範囲で、該第一円弧部と該第二円弧部の長さに差があってもよい。そして、本発明の二重管式熱交換器では、該第一円弧部の長さをX1(mm)、該第二円弧部の長さをX2(mm)とするとき、下記式(2):
0.9≦X1/X2≦1.1 (2)
を満たすことが好ましく、0.95≦X1/X2≦1.0であることが特に好ましい。X1/X2の値が上記範囲内にあることにより、乱流促進効果及びスケール析出の抑制効果が高くなり、熱交換性能が高くなる。
In the double pipe heat exchanger of the present invention, there may be a difference in length between the first arc part and the second arc part when the double pipe is processed. There may be a difference in the lengths of the first arc portion and the second arc portion as long as the effect is not impaired. In the double-tube heat exchanger of the present invention, when the length of the first arc portion is X1 (mm) and the length of the second arc portion is X2 (mm), the following formula (2) :
0.9 ≦ X1 / X2 ≦ 1.1 (2)
It is preferable that 0.95 ≦ X1 / X2 ≦ 1.0. When the value of X1 / X2 is within the above range, the effect of promoting turbulent flow and the effect of suppressing scale precipitation are enhanced, and the heat exchange performance is enhanced.

図2及び図3に示す形態例では、該第一円弧部11と該第二円弧部12とが、該変曲点13で、直接繋がっているので、該第一円弧部11の端部と該第二円弧部12の端部との距離(該第一円弧部11の始点と該第二円弧部12の終点との距離及び該第一円弧部11の終点と該第二円弧部12の始点との距離)は、0(mm)である。   In the embodiment shown in FIGS. 2 and 3, the first arc portion 11 and the second arc portion 12 are directly connected at the inflection point 13. The distance from the end of the second arc portion 12 (the distance between the start point of the first arc portion 11 and the end point of the second arc portion 12 and the end point of the first arc portion 11 and the second arc portion 12 The distance from the start point) is 0 (mm).

また、本発明の二重管式熱交換器では、該加工後の二重管の形状は、該第一円弧部と該第二円弧部とが、直接繋がっていなくてもよく、図6に示す形態例のように、直線部を介して繋がっていてもよい。なお、図6は、該加工後の二重管の形状のうち、直線部を介して繋がっている第一円弧部21、第二円弧部22及び該直線部25の1つづつを抜き出して示したものであり、実際は、該第一円弧部21、該直線部25、該第二円弧部22、該直線部25、該第一円弧部21、該直線部25、該第二円弧部22、該直線部25・・・とのように、該直線部25を間に挟んで、該第一円弧部21と該第二円弧部22とが、交互に繰り返されている。   In the double tube heat exchanger of the present invention, the shape of the double tube after processing may be such that the first arc portion and the second arc portion are not directly connected to each other. It may be connected via a straight line portion as shown in the embodiment. In addition, FIG. 6 extracts and shows one each of the 1st circular arc part 21, the 2nd circular arc part 22, and this linear part 25 which are connected via the linear part among the shapes of this double pipe after processing. Actually, the first arc portion 21, the straight portion 25, the second arc portion 22, the straight portion 25, the first arc portion 21, the straight portion 25, the second arc portion 22, Like the straight line portions 25, the first arc portion 21 and the second arc portion 22 are alternately repeated with the straight portion 25 interposed therebetween.

なお、図6に示す形態例の該直線部25では、該外管に対して該内管は偏心していない。   In the linear portion 25 of the embodiment shown in FIG. 6, the inner tube is not eccentric with respect to the outer tube.

端部間長さLについて、図6を用いて説明する。該第一円弧部21の端部と該第二円弧部22の端部との距離(該第一円弧部21の始点と該第二円弧部22の終点との距離及び該第一円弧部21の終点と該第二円弧部22の始点との距離)を、第一円弧部の端部と第二円弧部の端部との端部間長さL(mm)とする。図6中、該第一円弧部21と該第二円弧部22とは、該直線部25の両端に繋がっている。つまり、該第一円弧部21の一端(第一円弧部の終点)と該直線部の一端が接続点24で繋がっており、且つ、該直線部25の他端と該第二円弧部22の一端(第二円弧部の始点)が接続点26で繋がっている。そして、第一円弧部の端部と第二円弧部の端部との端部間長さLは、該直線部25の長さである。   The length L between ends will be described with reference to FIG. The distance between the end of the first arc 21 and the end of the second arc 22 (the distance between the start point of the first arc 21 and the end of the second arc 22 and the first arc 21 The distance between the end point of the second arc part 22 and the start point of the second arc part 22) is defined as a length L (mm) between the end part of the first arc part and the end part of the second arc part. In FIG. 6, the first arc portion 21 and the second arc portion 22 are connected to both ends of the linear portion 25. That is, one end of the first arc portion 21 (end point of the first arc portion) and one end of the linear portion are connected by the connection point 24, and the other end of the linear portion 25 and the second arc portion 22 One end (the start point of the second arc portion) is connected at the connection point 26. An end-to-end length L between the end of the first arc portion and the end of the second arc portion is the length of the linear portion 25.

そして、本発明の二重管式熱交換器では、該第一円弧部の端部と該第二円弧部の端部との端部間長さLと、該第一円弧部及び該第二円弧部の曲率半径Rとが、下記式(3):
0≦L/R≦1 (3)
を満たすことが好ましく、0≦L/R≦0.5であることが特に好ましい。
In the double tube heat exchanger of the present invention, the length L between the end of the first arc portion and the end of the second arc portion, the first arc portion and the second arc portion The radius of curvature R of the arc portion is the following formula (3):
0 ≦ L / R ≦ 1 (3)
It is preferable that 0 ≦ L / R ≦ 0.5.

該第一円弧部と該第二円弧部とは、直接繋がっていることがより好ましい。該第一円弧部と該第二円弧部とが直接繋がっている場合は、該端部間長さLは0mmである。つまり、L/Rの値は0であることがより好ましい。   More preferably, the first arc portion and the second arc portion are directly connected. When the first arc portion and the second arc portion are directly connected, the length L between the end portions is 0 mm. That is, the value of L / R is more preferably 0.

なお、図2〜図6では、該第一円弧部及び該第二円弧部は、真円の円弧の一部であるが、本発明の二重管式熱交換器では、該二重管の加工の際に、該第一円弧部及び該第二円弧部が、真円が変形した形状になることもあるが、本発明の効果を損なわない範囲であれば、該第一円弧部及び該第二円弧部は、真円の円弧から少し変形した形状であってもよい。   2 to 6, the first arc portion and the second arc portion are part of a perfect circular arc. However, in the double tube heat exchanger of the present invention, the double tube During the processing, the first arc portion and the second arc portion may have a shape obtained by deforming a perfect circle, but the first arc portion and the second arc portion are within a range that does not impair the effects of the present invention. The second arc portion may have a shape slightly deformed from a perfect circular arc.

図1〜図6では、外管の内部に配置される内管が1本である二重管の形態例を示しているが、本発明の二重管式熱交換器に係る該二重管は、これに限定されるものではなく、他には、例えば、図7に示すような、2本の内管31と、該内管31の外側に配置される外管32と、からなる二重管が挙げられる。更に、該二重管としては、該内管の数が3本以上のものであってもよい。該外管の内側に設置される該内管の数が2本以上の場合、2本以上の該内管がスパイラル状に捩じられた形状であってもよい。   Although FIGS. 1-6 shows the example of the form of the double tube | pipe with one inner tube arrange | positioned inside an outer tube | pipe, this double tube | pipe which concerns on the double tube | pipe type heat exchanger of this invention Is not limited to this. For example, there are two types including two inner pipes 31 and an outer pipe 32 disposed outside the inner pipe 31 as shown in FIG. A heavy pipe is mentioned. Further, the double pipe may have three or more inner pipes. When the number of the inner tubes installed inside the outer tube is two or more, the shape may be such that two or more inner tubes are twisted in a spiral shape.

また、本発明の二重管式熱交換器では、該内管には、漏洩検知構造が設けられてもよい。   In the double tube heat exchanger of the present invention, the inner tube may be provided with a leakage detection structure.

本発明の二重管式熱交換器では、該内管の内側に該第一の流体が流通し、該内管と該外管との間隙に該第二の流体が流通する。そして、該第一の流体と該第二の流体との間で熱交換が行われる。   In the double tube heat exchanger of the present invention, the first fluid flows inside the inner tube, and the second fluid flows in the gap between the inner tube and the outer tube. Then, heat exchange is performed between the first fluid and the second fluid.

該第二の流体としては、特に制限されない。本発明の二重管式熱交換器が給湯用である場合においては、該第二の流体は水である。   The second fluid is not particularly limited. In the case where the double pipe heat exchanger of the present invention is for hot water supply, the second fluid is water.

該第一の流体としては、特に制限されない。該第一の流体を、二酸化炭素を主成分とする冷媒とすることも可能である。該二酸化炭素を主成分とする冷媒は、二酸化炭素単独か、あるいは、冷凍機油を0〜15質量%含有する二酸化炭素冷媒である。   The first fluid is not particularly limited. The first fluid may be a refrigerant mainly composed of carbon dioxide. The refrigerant mainly composed of carbon dioxide is carbon dioxide alone or a carbon dioxide refrigerant containing 0 to 15% by mass of refrigerating machine oil.

本発明の二重管式熱交換器のうち、該第二の流体が水であり、該外管の材質及び該内管の材質が、銅又は銅合金である場合、該外管の内面及び該内管の外面に、錫メッキが施されていることが、管材質である銅又は銅合金が2価の銅イオンとして水に溶け出してしまうことを抑制することが可能であり、その結果、熱交換器の青水発生の抑制や耐食性を有利に確保することができるという点で好ましい。   In the double pipe heat exchanger of the present invention, when the second fluid is water, and the material of the outer tube and the material of the inner tube are copper or a copper alloy, the inner surface of the outer tube and The outer surface of the inner tube is tin-plated, so that it is possible to suppress the copper or copper alloy that is the tube material from being dissolved into water as divalent copper ions. It is preferable in that the suppression of blue water generation and the corrosion resistance of the heat exchanger can be advantageously ensured.

図2では、該第一円弧部及び該第二円弧部が、1つの平面で繰り返される形態例を示したが、本発明の二重管式熱交換器は、これに限定されるものではなく、該第一円弧部及び該第二円弧部が2つ以上の平面で繰り返されていてもよい。図8は、2段式の熱交換器に係る二重管の形状を示す模式図である。図8中、該第一円弧部及び該第二円弧部が繰り返されている1段目41の上に、該第一円弧部及び該第二円弧部が繰り返されている2段目42が配置されており、該1段目41の内管の一端と該2段目42の内管の一端、及び該1段目41の外管の一端と該2段目42の外管の一端とは、二重管になっている継手43により繋がっている。なお、図8では、該1段目41を黒で示し、該2段目42を濃い灰色で示し、該継手43を薄い灰色で示した。   FIG. 2 shows an example in which the first arc portion and the second arc portion are repeated on one plane, but the double-tube heat exchanger of the present invention is not limited to this. The first arc portion and the second arc portion may be repeated on two or more planes. FIG. 8 is a schematic diagram showing the shape of a double tube according to a two-stage heat exchanger. In FIG. 8, the second stage 42 in which the first arc part and the second arc part are repeated is arranged on the first stage 41 in which the first arc part and the second arc part are repeated. One end of the inner pipe of the first stage 41 and one end of the inner pipe of the second stage 42, and one end of the outer pipe of the first stage 41 and one end of the outer pipe of the second stage 42 are They are connected by a joint 43 that is a double pipe. In FIG. 8, the first stage 41 is shown in black, the second stage 42 is shown in dark gray, and the joint 43 is shown in light gray.

本発明の二重管式熱交換器に係る該二重管は、通常、継目無管の二重管を加工して得られるので、該外管及び該内管は、連続した1つの管体である。よって、該二重管(該外管)の該第一円弧部及び該第二円弧部が1つの平面で繰り返されている場合、通常、該外管及び該内管は、連続した継目無管で形成されている。また、該二重管(該外管)の該第一円弧部及び該第二円弧部が2つ以上の平面で繰り返されている多段の場合、通常、各段の該外管及び該内管は、連続した1つの継目無管で形成されているか、あるいは、該外管及び該内管が、2以上の段に亘って、連続した1つの継目無管で形成されている。   Since the double pipe according to the double pipe heat exchanger of the present invention is usually obtained by processing a seamless double pipe, the outer pipe and the inner pipe are one continuous tube body. It is. Therefore, when the first arc portion and the second arc portion of the double pipe (the outer pipe) are repeated in one plane, the outer pipe and the inner pipe are usually a continuous seamless pipe. It is formed with. In the case of a multi-stage in which the first arc portion and the second arc portion of the double pipe (the outer pipe) are repeated on two or more planes, the outer pipe and the inner pipe at each stage are usually used. Is formed by one continuous seamless pipe, or the outer pipe and the inner pipe are formed by one continuous seamless pipe over two or more stages.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例1及び比較例1)
<実施例1の熱交換器の作製>
図2に示す二重管(外管)の形状を有する熱交換器を、下記寸法諸元にて作製した。
・二重環式熱交換器
・外管:外径(D)=16mm、肉厚=0.7mm、材質はりん脱酸銅
・内管:外径=6mm、肉厚=0.5mm、材質はりん脱酸銅
・外管の第一円弧部及び第二円弧部の曲率半径R=64mm
・外管の第一円弧部及び第二円弧部の中心角θ=290°
・外管の第一円弧部の数=3個、外管の第二円弧部の数=3個
・外管の端部間長さL=0mm
・R/D=4、L/R=0
・二重管の全長=2300mm
・二重管の平面占有面積S=130000mm(二重管の平面占有幅W1=520mm、二重管の平面占有奥行T1=250mm)
(Example 1 and Comparative Example 1)
<Production of Heat Exchanger of Example 1>
A heat exchanger having the shape of a double pipe (outer pipe) shown in FIG. 2 was produced with the following dimensions.
-Double ring heat exchanger-Outer tube: outer diameter (D) = 16 mm, wall thickness = 0.7 mm, material is phosphorous deoxidized copper-Inner tube: outer diameter = 6 mm, wall thickness = 0.5 mm, material Is the radius of curvature R of the first and second arcs of phosphorus-deoxidized copper / outer tube R = 64mm
・ Center angle θ = 290 ° of the first and second arc portions of the outer tube
・ The number of first arcs of the outer tube = 3, the number of second arcs of the outer tube = 3, and the length L between the ends of the outer tube = 0 mm.
・ R / D = 4, L / R = 0
・ Overall length of double pipe = 2300mm
-Plane occupation area S of double pipe S = 130,000 mm 2 (Plane occupation width W1 of double pipe = 520 mm, plane occupation depth T1 of double pipe = 250 mm)

<比較例1の熱交換器の作製>
図9に示す熱交換器を下記寸法諸元にて作製した。
・二重環式熱交換器
・外管:外径(D)=16mm、肉厚=0.7mm、材質は脱酸銅
・内管:外径=6mm、肉厚=0.5mm、材質は脱酸銅
・矩形の渦巻き状、四重巻き
・二重管の全長=4500mm
・二重管の平面占有面積S=130000mm(二重管の平面占有幅W2=520mm、二重管の平面占有奥行T2=250mm)
<Production of Heat Exchanger of Comparative Example 1>
The heat exchanger shown in FIG. 9 was produced with the following dimensions.
-Double ring heat exchanger-Outer tube: outer diameter (D) = 16 mm, wall thickness = 0.7 mm, material is deoxidized copper-Inner tube: outer diameter = 6 mm, wall thickness = 0.5 mm, material is Deoxidized copper, rectangular spiral, quadruple, double tube total length = 4500mm
-Plane occupied area S of double pipe S = 130,000 mm 2 (Plane occupied width W2 of double pipe = 520 mm, plane occupied depth T2 of double pipe = 250 mm)

<性能評価>
・評価方法
内管の内側に二酸化炭素冷媒ガスを、内管と外管の間の環状部に水を、表1に示す条件で流通させて、熱交換性能を測定した。
<Performance evaluation>
-Evaluation method The carbon dioxide refrigerant gas was circulated inside the inner pipe, and water was passed through the annular portion between the inner pipe and the outer pipe under the conditions shown in Table 1, and the heat exchange performance was measured.

<評価結果>
実施例1と比較例1の水流量1L/分における熱交換量を比較したところ、実施例1の熱交換量は、比較例の熱交換量より、50%多かった。これを熱交換器の単位質量当たり(単位長さ当たり)の熱交換量で比較すると、実施例1の熱交換器の単位質量当たりの熱交換量は、比較例1の2.9倍であった。
<Evaluation results>
When the heat exchange amount of Example 1 and Comparative Example 1 at a water flow rate of 1 L / min was compared, the heat exchange amount of Example 1 was 50% greater than the heat exchange amount of the Comparative Example. When this is compared with the heat exchange amount per unit mass (per unit length) of the heat exchanger, the heat exchange amount per unit mass of the heat exchanger of Example 1 is 2.9 times that of Comparative Example 1. It was.

本発明によれば、熱交換性能に優れる二重管式熱交換器を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the double pipe type heat exchanger excellent in heat exchange performance can be manufactured.

1、31 内管
2、32 外管
3 二重管
4 該内管1の内側
5 該外管2と該内管1との間隙
11、21 第一円弧部
12、22 第二円弧部
13 変曲点
14 該外管と該内管との間隙の一端
15 第二の流体
16 曲率中心
17 該第二の流体の流通方向
24、26 接続点
25 直線部
41 1段目
42 2段目
43 継手
61 熱交換器
62 二重管
63 曲線部分
64 直線部分
1, 31 Inner tube 2, 32 Outer tube 3 Double tube 4 Inside 5 of inner tube 1 Gap 11, 21 between outer tube 2 and inner tube 1 First arc portion 12, 22 Second arc portion 13 Bend point 14 One end 15 of the gap between the outer pipe and the inner pipe 15 Second fluid 16 Center of curvature 17 Flow direction 24, 26 of the second fluid Connection point 25 Straight line portion 41 First stage 42 Second stage 43 Joint 61 Heat exchanger 62 Double pipe 63 Curved portion 64 Straight portion

Claims (6)

内側に第一の流体が流通する内管と、該内管の外側に配置され、該内管との間隙に第二の流体が流通する外管と、からなる二重管を、交互に繰り返される第一円弧部と、該第一円弧部とは逆の曲率を有する第二円弧部と、からなる形状に加工して得られる二重管式熱交換器。   A double pipe consisting of an inner pipe through which the first fluid flows and an outer pipe arranged outside the inner pipe and through which the second fluid flows through the gap between the inner pipe and the inner pipe is alternately repeated. A double-tube heat exchanger obtained by processing the first arc portion and the second arc portion having a curvature opposite to that of the first arc portion. 前記外管の前記第一円弧部及び前記第二円弧部の曲率半径をR(mm)、前記外管の外径をD(mm)とするとき、下記式(1):
1≦R/D≦10 (1)
を満たすことを特徴とする請求項1記載の二重管式熱交換器。
When the radius of curvature of the first arc portion and the second arc portion of the outer tube is R (mm) and the outer diameter of the outer tube is D (mm), the following formula (1):
1 ≦ R / D ≦ 10 (1)
The double pipe heat exchanger according to claim 1, wherein:
前記外管の前記第一円弧部の長さをX1(mm)、前記外管の前記第二円弧部の長さをX2(mm)とするとき、下記式(2):
0.9≦X1/X2≦1.1 (2)
を満たすことを特徴とする請求項1又は2いずれか1項記載の二重管式熱交換器。
When the length of the first arc portion of the outer tube is X1 (mm) and the length of the second arc portion of the outer tube is X2 (mm), the following formula (2):
0.9 ≦ X1 / X2 ≦ 1.1 (2)
The double pipe heat exchanger according to claim 1, wherein:
前記第二の流体が水であることを特徴とする請求項1〜3いずれか1項記載の二重管式熱交換器。   The double pipe heat exchanger according to any one of claims 1 to 3, wherein the second fluid is water. 前記第二の流体が水であり、前記第一の流体が二酸化炭素を主成分とする冷媒であることを特徴とする請求項1〜4いずれか1項記載の二重管式熱交換器。   5. The double-tube heat exchanger according to claim 1, wherein the second fluid is water and the first fluid is a refrigerant mainly composed of carbon dioxide. 前記第二の流体が水であり、前記外管の材質及び前記内管の材質が、銅又は銅合金であり、該外管の内面及び該内管の外面に、錫めっきが施されていることを特徴とする請求項4又は5いずれか1項記載の二重管式熱交換器。   The second fluid is water, the material of the outer tube and the material of the inner tube are copper or a copper alloy, and tin plating is applied to the inner surface of the outer tube and the outer surface of the inner tube. The double-tube heat exchanger according to any one of claims 4 and 5, wherein
JP2009161640A 2009-07-08 2009-07-08 Double tube type heat exchanger Pending JP2011017476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161640A JP2011017476A (en) 2009-07-08 2009-07-08 Double tube type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161640A JP2011017476A (en) 2009-07-08 2009-07-08 Double tube type heat exchanger

Publications (1)

Publication Number Publication Date
JP2011017476A true JP2011017476A (en) 2011-01-27

Family

ID=43595401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161640A Pending JP2011017476A (en) 2009-07-08 2009-07-08 Double tube type heat exchanger

Country Status (1)

Country Link
JP (1) JP2011017476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107824A (en) * 2010-11-18 2012-06-07 Furukawa Electric Co Ltd:The Double pipe
CN104567483A (en) * 2015-01-27 2015-04-29 东南大学 Double-pipe heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107824A (en) * 2010-11-18 2012-06-07 Furukawa Electric Co Ltd:The Double pipe
CN104567483A (en) * 2015-01-27 2015-04-29 东南大学 Double-pipe heat exchanger

Similar Documents

Publication Publication Date Title
JP4449856B2 (en) Twisted tube heat exchanger
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
WO2012117440A1 (en) Heat exchanger, refrigerator with the heat exchanger, and air conditioner with the heat exchanger
JP2008164245A (en) Heat exchanger
JP2008261566A (en) Double-pipe heat exchanger
JP2009270755A (en) Heat-transfer pipe for heat exchanger and heat exchanger using the same
JP2005164210A (en) Heat exchanger, multiple pipe for use in the device, and manufacturing method of the same
JP2013053804A (en) Structure of triple pipe, and heat exchanger
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2008139008A (en) Heat exchanger tube and heat exchanger using the same
JP2011017476A (en) Double tube type heat exchanger
JP2011106746A (en) Heat transfer tube, heat exchanger, and processed product of heat transfer tube
JP2009216309A (en) Heat exchanger
TWI524952B (en) Flexible stainless steel tube
JP2012077917A (en) Inner grooved corrugated tube, and heat exchanger
JP2010091266A (en) Twisted tube type heat exchanger
JP2020016393A (en) Heat exchanger
JP2011021844A (en) Inner face grooved heat transfer tube and cross fin tube type heat exchanger for evaporator
JP6207833B2 (en) Heat exchanger
JP2007218523A (en) Heat exchanger
JP2012122686A (en) Twisted tube type heat exchanger
JP5431210B2 (en) Heat transfer tube and heat exchanger
JP2012052784A (en) Double pipe for heat exchanger
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP2011017475A (en) Heat exchanger for hot water supply