JP2006336894A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2006336894A
JP2006336894A JP2005159305A JP2005159305A JP2006336894A JP 2006336894 A JP2006336894 A JP 2006336894A JP 2005159305 A JP2005159305 A JP 2005159305A JP 2005159305 A JP2005159305 A JP 2005159305A JP 2006336894 A JP2006336894 A JP 2006336894A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pipe
hot water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005159305A
Other languages
Japanese (ja)
Other versions
JP4211041B2 (en
Inventor
Takayuki Yoshida
孝行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005159305A priority Critical patent/JP4211041B2/en
Publication of JP2006336894A publication Critical patent/JP2006336894A/en
Application granted granted Critical
Publication of JP4211041B2 publication Critical patent/JP4211041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve service performance by improving efficiency of a heat exchanging unit by reducing heat loss from a hot water supply heat exchanger to an internal heat exchanger, and preventing fracture of water piping caused by freezing by reducing the quantity of redidual water in draining from the hot water supply heat exchanger. <P>SOLUTION: This heat pump water heater comprises a refrigerating cycle formed by successively connecting a compressor 23, the hot water supply heat exchanger 1, a throttle valve 28 and an evaporator 21, the internal heat exchanger 15 for exchanging the heat between a refrigerant from a refrigerant outlet side of the hot water supply heat exchanger 1 to an inlet side of the throttle valve 18, and a refrigerant from a refrigerant outlet side of the evaporator 21 to a suction side of the compressor 23, and a flow control valve 30 mounted on an internal heat exchanger bypass circuit 29 connecting the refrigerant outlet side of the hot water supply heat exchanger 1 and an outlet side of the throttle valve 28. The hot water supply heat exchanger 1 and the internal heat exchanger 15 are mounted at a lower portion of an air supply chamber and a machine chamber, and the internal heat exchanger 15 is mounted near an outlet of refrigerant piping of the hot water supply heat exchanger 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱交換器を備えたヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater provided with a heat exchanger.

従来のヒートポンプ給湯機に、圧縮機、四方弁、水熱交換器、減圧器および空気熱交換器を順次接続して冷凍サイクルを構成するとともに、上記水熱交換器、貯湯タンクおよび水循環ポンプを順次接続して水サイクルを構成したヒートポンプ式給湯機において、ユニット本体内の上記圧縮機、空気熱交換器および送風機の上部に水熱交換器を設置し、この水熱交換器を扁平環状に巻回したパイプによって形成し、このパイプの内側にモータカバーで囲繞した水循環ポンプを設置したものがある(例えば、特許文献1参照)。   A compressor, four-way valve, water heat exchanger, pressure reducer, and air heat exchanger are connected to a conventional heat pump water heater in order to form a refrigeration cycle, and the water heat exchanger, hot water storage tank, and water circulation pump are sequentially connected. In a heat pump water heater connected to form a water cycle, a water heat exchanger is installed above the compressor, air heat exchanger, and blower in the unit body, and the water heat exchanger is wound in a flat ring shape. There is one in which a water circulation pump formed by a pipe is installed and surrounded by a motor cover inside the pipe (see, for example, Patent Document 1).

実開昭59−175945号公報(第2−4頁、図1、図2)Japanese Utility Model Publication No. 59-175945 (page 2-4, FIGS. 1 and 2)

特許文献1に記載のヒートポンプ給湯機は、空気熱交換器(給湯用熱交換器)の上部に水熱交換器(内部熱交換器)が設置されているため、給湯用熱交換器の高圧高温冷媒の温度と内部熱交換器の低圧側冷媒の温度(外気温より3〜10deg低い)との温度差が非常に大きく、このため、給湯用熱交換器から内部熱交換器への熱交換が発生する。これは、水を加熱するための熱をロスしていることになる。特に、水を高温に加熱するための高圧高温冷媒からの熱のロスは、熱交換ユニットの効率を著しく低下させるという問題があった。   The heat pump water heater described in Patent Document 1 has a water heat exchanger (internal heat exchanger) installed above the air heat exchanger (heat exchanger for hot water supply). The temperature difference between the temperature of the refrigerant and the temperature of the low-pressure side refrigerant of the internal heat exchanger (3 to 10 deg lower than the outside air temperature) is very large. Therefore, heat exchange from the hot water supply heat exchanger to the internal heat exchanger appear. This means that heat for heating the water is lost. In particular, the loss of heat from the high-pressure and high-temperature refrigerant for heating water to a high temperature has a problem of significantly reducing the efficiency of the heat exchange unit.

また、冬季にヒートポンプ給湯機を長期間使用しない場合は、水の凍結による配管の破壊を防止するため水抜きを行うが、給湯用熱交換器が熱交換ユニットの最下部に配置されている場合は、水が十分に抜けにくく、残水により給湯用熱交換器の水配管が破損し易いという問題もある。
さらに、内部熱交換器が送風室や機械室の上部に配置されているので、電気部品やファンモータ、あるいはサーミスタ交換などのサービスの際に、トップパネルを開けただけではこれらの作業ができないため、サービス性に問題があった。
In addition, when the heat pump water heater is not used for a long time in winter, drain water to prevent the pipe from being damaged due to water freezing, but the hot water heat exchanger is located at the bottom of the heat exchange unit. However, there is also a problem that water is not easily drained and the water piping of the heat exchanger for hot water supply is easily damaged by the remaining water.
In addition, since the internal heat exchanger is located at the top of the blower room and machine room, these services cannot be performed simply by opening the top panel during services such as replacing electrical components, fan motors, or thermistors. There was a problem with serviceability.

本発明は、上記の課題を解決するためになされたもので、給湯用熱交換器から内部熱交換器への熱ロスを低減することにより熱交換器ユニットの効率を向上させると共に、給湯用熱交換器からの水抜きの際に残水量を低減して凍結による水配管の破壊を防止し、その上サービス性を改善することのできるヒートポンプ給湯機を提供することを目的としたものである。   The present invention has been made to solve the above-described problems, and improves the efficiency of the heat exchanger unit by reducing the heat loss from the hot water supply heat exchanger to the internal heat exchanger, and the hot water supply heat. It is an object of the present invention to provide a heat pump water heater that can reduce the amount of residual water when draining water from an exchanger, prevent water piping from being broken due to freezing, and improve serviceability.

本発明に係るヒートポンプ給湯機は、圧縮機、給湯用熱交換器、絞り弁及び蒸発器を順次接続した冷凍サイクルと、前記給湯用熱交換器の冷媒出口側から前記絞り弁の入口側までの冷媒と前記蒸発器の冷媒出口側から前記圧縮機の吸入側までの冷媒を熱交換する内部熱交換器と、前記給湯用熱交換器の冷媒出口側と前記絞り弁の出口側を接続する内部熱交換器バイパス回路に設けられた流量調節弁とを備え、前記給湯用熱交換器と内部熱交換器とを送風室と機械室の下部に設置すると共に、前記内部熱交換器を給湯用熱交換器の冷媒配管の出口付近に配置したものである。   The heat pump water heater according to the present invention includes a refrigeration cycle in which a compressor, a heat exchanger for hot water supply, a throttle valve, and an evaporator are sequentially connected, and a refrigerant outlet side of the hot water supply heat exchanger to an inlet side of the throttle valve. An internal heat exchanger for exchanging heat between the refrigerant and the refrigerant from the refrigerant outlet side of the evaporator to the suction side of the compressor, and an interior connecting the refrigerant outlet side of the hot water supply heat exchanger and the outlet side of the throttle valve A flow control valve provided in a heat exchanger bypass circuit, and the heat exchanger for hot water supply and the internal heat exchanger are installed in the lower part of the blower chamber and the machine room, and the internal heat exchanger is heated for hot water supply It is arranged near the outlet of the refrigerant pipe of the exchanger.

本発明に係るヒートポンプ給湯機は、内部熱交換器を、給湯用熱交換器の底温である下部に隣接して配置したので、給湯用熱交換器と内部熱交換器との温度差を小さくできるため、給湯用熱交換器から内部熱交換器への伝熱による熱ロスを低減できると同時に、サービス性を向上することができる。また、給湯用熱交換器が内部熱交換器の上に配置されているので、水抜き栓と給湯用熱交換器との間に高低差が得られるため、水抜きの際に残水を少なくできる。さらに、内部熱交換器を機械室に配置しなくてもよいため、機械室内の他の配管の占有スペースを確保できるので構造設計が容易となり、配管どうしの当たりによる異常音の発生を防止することができ、配管の振動応力の裕度が大きくなって信頼性を向上することができる。   In the heat pump water heater according to the present invention, the internal heat exchanger is disposed adjacent to the lower part, which is the bottom temperature of the hot water heat exchanger, so that the temperature difference between the hot water heat exchanger and the internal heat exchanger is reduced. Therefore, heat loss due to heat transfer from the hot water supply heat exchanger to the internal heat exchanger can be reduced, and at the same time, serviceability can be improved. In addition, since the hot water supply heat exchanger is arranged on the internal heat exchanger, there is a difference in height between the water drain plug and the hot water supply heat exchanger, so there is little residual water when draining water. it can. Furthermore, since it is not necessary to place an internal heat exchanger in the machine room, it is possible to secure space occupied by other pipes in the machine room, facilitating structural design, and preventing abnormal noise from being caused between pipes. Therefore, the tolerance of the vibration stress of the pipe is increased and the reliability can be improved.

[実施の形態1]
図1は本発明の実施の形態1に係る給湯用熱交換器を備えた給湯室外機の分解斜視図、図2は図1の冷凍サイクル回路と給湯回路の配管系統図である。
図1の給湯室外機の最下段には給湯用熱交換器ユニット11が配置されており、その上部の左側には蒸発器21と外気との熱交換をするために風を送る送風機22が配設された送風室が設けられている。また、給湯用熱交換器ユニット11の上部の右側には送風機22に隣接して圧縮機23が設置され、右側手前には給湯回路の水を循環するポンプ24が配置された機械室が設けられており、給湯タンク(図示せず)からの水を水入口バルブ25を介して室内機内に取入れ、給湯用熱交換器ユニット11に設けた給湯用熱交換器1の水配管2を経て、給湯出口バルブ31から給湯タンクへ戻るようになっている。
また、外郭は、前面にグリル19、左側面に外気の吸込み口を備えたフロントパネル18、右側面から蒸発器21の端部までを覆うバックパネル20、さらにバルブ類を覆うサービスパネル26がそれぞれ取付けられており、最上部にはトップパネル27が配設されている。
[Embodiment 1]
1 is an exploded perspective view of a hot water supply outdoor unit equipped with a hot water supply heat exchanger according to Embodiment 1 of the present invention, and FIG. 2 is a piping system diagram of the refrigeration cycle circuit and hot water supply circuit of FIG.
A hot water supply heat exchanger unit 11 is arranged at the lowermost stage of the hot water supply outdoor unit in FIG. 1, and a blower 22 for sending wind to exchange heat between the evaporator 21 and the outside air is arranged on the left side of the upper part. An air blowing chamber is provided. A compressor 23 is installed adjacent to the blower 22 on the right side of the upper part of the hot water supply heat exchanger unit 11, and a machine room in which a pump 24 for circulating water in the hot water supply circuit is arranged on the right side. Water from a hot water supply tank (not shown) is taken into the indoor unit via a water inlet valve 25, passed through the water pipe 2 of the hot water supply heat exchanger 1 provided in the hot water supply heat exchanger unit 11, and supplied with hot water. The outlet valve 31 returns to the hot water supply tank.
The outer shell includes a grille 19 on the front, a front panel 18 having an air inlet on the left side, a back panel 20 that covers from the right side to the end of the evaporator 21, and a service panel 26 that covers valves. A top panel 27 is disposed at the top.

図2において、圧縮機23、給湯用熱交換器1、絞り弁28及び蒸発器21は順次接続されて冷凍サイクルを形成しており、また、給湯用熱交換器1の冷媒出口側から絞り弁28の冷媒入口側までの冷媒と、蒸発器21の冷媒出口側と圧縮機23の吸入側までの冷媒を熱交換する内部熱交換器15が設けられている。そして、給湯用熱交換器1の冷媒出口側と絞り弁28の冷媒出口側との間に設けられた内部熱交換器バイパス回路29には流量調節弁31が設けられている。   In FIG. 2, a compressor 23, a hot water supply heat exchanger 1, a throttle valve 28, and an evaporator 21 are sequentially connected to form a refrigeration cycle, and the throttle valve from the refrigerant outlet side of the hot water supply heat exchanger 1. An internal heat exchanger 15 for exchanging heat between the refrigerant up to the refrigerant inlet side 28 and the refrigerant outlet side of the evaporator 21 and the refrigerant up to the suction side of the compressor 23 is provided. A flow rate adjustment valve 31 is provided in the internal heat exchanger bypass circuit 29 provided between the refrigerant outlet side of the hot water supply heat exchanger 1 and the refrigerant outlet side of the throttle valve 28.

上記のように構成した給湯設備において、圧縮機23により高温、高圧になった加熱ガス冷媒は、給湯用熱交換器1の冷媒配管5に流入し、ポンプ24により水入口バルブ25から取り入れられた給湯タンクの水が、給湯用熱交換器1の水配管2を通過する際に熱交換されて水が加熱され、給湯出口バルブ31を経て給湯タンクへ戻る。
また、水へ熱を伝えた冷媒は、絞り弁28により減圧されて蒸発器21に流入し、送風機22により送風された外気から吸熱し、蒸発ガス化されて内部熱交換器15で再加熱されて圧縮機23へ戻る。なお、内部熱交換器15へ流入する高圧冷媒の流量は、流量調整弁30で調整される。
In the hot water supply equipment configured as described above, the heated gas refrigerant that has become high temperature and high pressure by the compressor 23 flows into the refrigerant pipe 5 of the hot water supply heat exchanger 1 and is taken in from the water inlet valve 25 by the pump 24. When the water in the hot water supply tank passes through the water pipe 2 of the hot water supply heat exchanger 1, heat is exchanged to heat the water, and the water returns to the hot water supply tank via the hot water supply outlet valve 31.
In addition, the refrigerant that has transferred heat to the water is decompressed by the throttle valve 28 and flows into the evaporator 21, absorbs heat from the outside air blown by the blower 22, is evaporated and is reheated by the internal heat exchanger 15. The process returns to the compressor 23. The flow rate of the high-pressure refrigerant flowing into the internal heat exchanger 15 is adjusted by the flow rate adjustment valve 30.

図3は上記の給湯用熱交換器ユニットの組込み状態を示す斜視図、図4は図3の給湯用熱交換器の説明図、図5は給湯用熱交換器を構成する水配管で、2bは2aを左右方向に裏返した状態を示す。
この水配管2は図6に示すように、外周に複数条(例えば、2〜4条)の山部3aと谷部3bが交互に設けられた山谷部3が、各条ごとに連続して螺旋状に設けられており、両端部には山谷部3が無い平滑部(接続部)が形成され、一方の平滑部の端部は袋状に拡管され後続する水配管2の平滑部が挿入されて連続的に接続できるようになっている。
3 is a perspective view showing an assembled state of the above-described hot water supply heat exchanger unit, FIG. 4 is an explanatory diagram of the hot water supply heat exchanger of FIG. 3, and FIG. 5 is a water pipe constituting the hot water supply heat exchanger. Indicates a state in which 2a is turned upside down.
As shown in FIG. 6, the water pipe 2 has a plurality of (for example, 2 to 4) crests 3 a and troughs 3 b alternately provided on the outer periphery, and the crests 3 are continuously provided for each of the crests. Provided in a spiral shape, smooth parts (connecting parts) having no peaks and valleys 3 are formed at both ends, and the end of one smooth part is expanded into a bag shape and the smooth part of the subsequent water pipe 2 is inserted. Has been able to connect continuously.

再び図4において、高圧冷媒入口部7は、接続部6aを介して複数の冷媒配管5に分岐され、水配管2の外周に設けた各条ごとの山谷部3の谷部3bに嵌め込んで全長にわたって巻き付けられる。そして、冷媒配管5が巻き付けられた水配管2は図5に示すように長円渦巻状に曲げ加工されて接続され、複数の冷媒配管5は合流する接続部6bを介して高圧冷媒出口部8に接続される。なお、4は複数の水配管2の接続部で、長円渦巻状の直線部に位置している。この給湯用熱交換器1においては、給水管2を流れる水と、冷媒配管5を流れる冷媒とは、対向流になるように構成されている。   In FIG. 4 again, the high-pressure refrigerant inlet portion 7 is branched into a plurality of refrigerant pipes 5 through the connecting portions 6a, and is fitted into the valley portions 3b of the mountain valley portions 3 provided on the outer periphery of the water pipe 2. Wound over the entire length. Then, the water pipe 2 around which the refrigerant pipe 5 is wound is bent and connected in an oval spiral shape as shown in FIG. Connected to. In addition, 4 is a connection part of the some water piping 2, and is located in the ellipse spiral-shaped linear part. In the hot water supply heat exchanger 1, the water flowing through the water supply pipe 2 and the refrigerant flowing through the refrigerant pipe 5 are configured to face each other.

図7は内部熱交換器15の平面図及び側面図で、この内部熱交換器15は2重管構造となっており、高圧冷媒配管16である内管には高圧冷媒が流れ、低圧冷媒配管17である外管には低圧冷媒が流れるようになっている。16aは高圧冷媒入口部、16bは同じく出口部、17aは低圧冷媒入口部、17bは同じく出口部である。なお、高圧冷媒配管(内管)16に低圧冷媒が流れ、低圧冷媒配管(外管)17に高圧冷媒が流れるようにしてもよい。   FIG. 7 is a plan view and a side view of the internal heat exchanger 15. The internal heat exchanger 15 has a double-pipe structure. A high-pressure refrigerant flows through the inner pipe, which is the high-pressure refrigerant pipe 16, and the low-pressure refrigerant pipe. A low-pressure refrigerant flows through the outer pipe 17. 16a is a high-pressure refrigerant inlet, 16b is an outlet, 17a is a low-pressure refrigerant inlet, and 17b is an outlet. The low-pressure refrigerant may flow through the high-pressure refrigerant pipe (inner pipe) 16 and the high-pressure refrigerant may flow through the low-pressure refrigerant pipe (outer pipe) 17.

図8は給湯用熱交換器1と内部熱交換器15の配置を示す説明図である。
給湯用熱交換器1の下部には、断熱材13を介して内部熱交換器15が配置されており、圧縮機23から吐出された高温高圧の冷媒は、給湯用熱交換器1の上部の高圧冷媒入口部7から流入し、水配管2内を流れる水を加熱して下部の高圧冷媒出口部8から流出したのち、高圧冷媒入口部16aから内部熱交換器15の高圧冷媒配管16に流入し、低圧冷媒配管17内の低圧冷媒と熱交換したのち高圧冷媒出口部16bから流出する。
FIG. 8 is an explanatory view showing the arrangement of the hot water supply heat exchanger 1 and the internal heat exchanger 15.
An internal heat exchanger 15 is disposed below the hot water supply heat exchanger 1 via a heat insulating material 13, and the high-temperature and high-pressure refrigerant discharged from the compressor 23 is disposed at the upper part of the hot water supply heat exchanger 1. The water flowing in from the high-pressure refrigerant inlet 7 and heating the water flowing in the water pipe 2 to flow out from the lower high-pressure refrigerant outlet 8, then flows into the high-pressure refrigerant pipe 16 of the internal heat exchanger 15 from the high-pressure refrigerant inlet 16 a. Then, after exchanging heat with the low-pressure refrigerant in the low-pressure refrigerant pipe 17, it flows out from the high-pressure refrigerant outlet 16b.

一方、蒸発器21より流出した低圧冷媒は、低圧冷媒入口部17aから低圧冷媒配管17に流入し高圧冷媒配管16を流れる高圧冷媒より熱回収したのち、低圧冷媒出口部17bから流出し、圧縮機23に吸入される。また、水配管2を流れる水は、水配管流入部2cから流入し、冷媒配管5を流れる高温高圧冷媒により加熱されたのち、水配管流出部2dより流出する。なお、12は水抜き栓であり、給湯用熱交換器ユニット11の最下部に設けられ、給湯用熱交換器1の下部と配管接続されている。   On the other hand, the low-pressure refrigerant that has flowed out of the evaporator 21 flows into the low-pressure refrigerant pipe 17 from the low-pressure refrigerant inlet portion 17a, recovers heat from the high-pressure refrigerant flowing through the high-pressure refrigerant pipe 16, and then flows out of the low-pressure refrigerant outlet portion 17b. 23 is inhaled. The water flowing through the water pipe 2 flows in from the water pipe inflow part 2c, is heated by the high-temperature and high-pressure refrigerant flowing through the refrigerant pipe 5, and then flows out from the water pipe outflow part 2d. In addition, 12 is a drain plug, is provided in the lowest part of the heat exchanger unit 11 for hot water supply, and is connected with the lower part of the heat exchanger 1 for hot water supply by piping.

図9は冷媒に二酸化炭素を用いた場合の給湯用熱交換器1と内部熱交換器15の流路長と温度との関係を示す線図である。図の上部は給湯用熱交換器1内の温度を示し、下部左側は内部熱交換器15内の温度を示す。高温高圧で超臨界状態の冷媒の流れ方向は右から左で、実線で示すように、流入後急激に温度が低下し、その後ピンチポイントを経て徐々に温度が低下していく。流入時の温度は環境条件にもよるが80〜150℃であり、流入後の急激な温度の低下は冷媒の物性値(比熱等)によるものである。   FIG. 9 is a diagram showing the relationship between the channel length and temperature of the hot water supply heat exchanger 1 and the internal heat exchanger 15 when carbon dioxide is used as the refrigerant. The upper part of the figure shows the temperature in the hot water supply heat exchanger 1, and the lower left part shows the temperature in the internal heat exchanger 15. The flow direction of the refrigerant in the supercritical state at high temperature and pressure is from right to left, as shown by the solid line, the temperature rapidly decreases after inflow, and then gradually decreases through a pinch point. Although the temperature at the time of inflow depends on environmental conditions, it is 80 to 150 ° C., and the rapid decrease in temperature after inflow is due to the physical property value (specific heat, etc.) of the refrigerant.

一方、水は冷媒に対して対向流のため流れ方向は左から右で、破線で示すように、流れ方向に対して徐々に加熱される。水の最大加熱温度は約90℃である。
高圧冷媒は給湯用熱交換器1を流出後、図の左下にある内部熱交換器15に右端から流入し低圧冷媒と熱交換する。低圧冷媒は高圧冷媒の流れ方向に対して対向流のため流れ方向は左から右で、1点鎖線で示すように、流れ方向に対して徐々に加熱される。
On the other hand, since water flows counter to the refrigerant, the flow direction is left to right and gradually heated with respect to the flow direction as indicated by a broken line. The maximum heating temperature of water is about 90 ° C.
The high-pressure refrigerant flows out of the hot water supply heat exchanger 1 and then flows into the internal heat exchanger 15 at the lower left of the figure from the right end to exchange heat with the low-pressure refrigerant. Since the low-pressure refrigerant is opposed to the flow direction of the high-pressure refrigerant, the flow direction is left to right and gradually heated with respect to the flow direction as indicated by a one-dot chain line.

本実施の形態においては、給湯用熱交換器1の冷媒及び水が最も低温の位置(下側)に内部熱交換器15を配置したので、内部熱交換器15の低圧側冷媒温度(外気温より3〜10deg低い)との温度差が最も小さく、このため、給湯用熱交換器1から内部熱交換器15への熱交換が最少限に抑制される。これにより、冷媒の熱エネルギーを無駄なく水を加熱するために熱交換することができる。特に、高温に水を加熱する際に高温冷媒からの熱ロスがないので、給湯用熱交換器ユニット11の沸き上げ効率を向上することができる。   In the present embodiment, since the internal heat exchanger 15 is disposed at the position (lower side) where the refrigerant and water in the hot water supply heat exchanger 1 are at the lowest temperature (lower side), the low-pressure side refrigerant temperature (outside temperature) of the internal heat exchanger 15 The temperature difference between the heat exchanger 1 for hot water supply 1 and the internal heat exchanger 15 is minimized. Thereby, heat can be exchanged in order to heat water without wasting the heat energy of the refrigerant. In particular, since there is no heat loss from the high-temperature refrigerant when heating water to a high temperature, the boiling efficiency of the hot water supply heat exchanger unit 11 can be improved.

また、冬期にヒートポンプ給湯機を長期間使用しない場合は、水の凍結による配管の破壊防止のため水抜きを行うが、給湯用熱交換器1が内部熱交換器15の上に配置されているので、水抜き栓12と給湯用熱交換器1との間に高低差が得られるため、水抜きの際に残水を少なくすることができる。このため、残水の凍結による配管の破壊を防止することができ、信頼性を向上することができる。   In addition, when the heat pump water heater is not used for a long time in winter, water is drained to prevent the pipe from being destroyed due to water freezing, but the hot water heat exchanger 1 is disposed on the internal heat exchanger 15. Therefore, since a height difference is obtained between the drain plug 12 and the hot water supply heat exchanger 1, residual water can be reduced during draining. For this reason, it is possible to prevent the pipe from being broken due to freezing of the remaining water, and to improve the reliability.

さらに、内部熱交換器15を機械室に配置しなくてもよいため、機械室内の他の配管の占有スペースを確保できるので配管の構造設計が容易になり、配管どうしの当たりによる異常音の発生を防止することができ、配管の振動応力が大きくなって信頼性を向上することができる。   Furthermore, since the internal heat exchanger 15 does not have to be arranged in the machine room, the space occupied by other pipes in the machine room can be secured, so that the structure design of the pipes becomes easy and abnormal noise is generated due to contact between the pipes. Can be prevented, and the vibrational stress of the pipe can be increased to improve the reliability.

[実施の形態2]
図10は本発明の実施の形態2に係る給湯用熱交換器の説明図、図11は同じく内部熱交換器の説明図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
給湯用熱交換器1は、実施の形態1の場合と同様に、水配管2の外周に螺旋状に連続的に設けた複数条の山谷部3の谷部3bにそれぞれ冷媒配管5を嵌め込んで巻き付け、長円コイル状に曲げ加工して形成したものである。なお、水配管2の接続部4は長円コイル状の直線部に位置しており、冷媒と水とは対向流になるように構成されている。
また、内部熱交換器15は低圧冷媒配管17の外周に、高圧冷媒配管16を螺旋状に巻き付けて曲げ加工したものである。なお、低圧冷媒配管17の外周に水配管2の場合と同様に山谷部を設け、その谷部に沿って高圧冷媒配管16を巻き付けてもよい。
[Embodiment 2]
FIG. 10 is an explanatory view of a hot water supply heat exchanger according to Embodiment 2 of the present invention, and FIG. 11 is an explanatory view of the internal heat exchanger. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
As in the case of the first embodiment, the hot water supply heat exchanger 1 is fitted with the refrigerant pipes 5 in the valley portions 3b of the plurality of mountain valley portions 3 continuously provided in a spiral manner on the outer periphery of the water pipe 2, respectively. And is formed by bending into an elliptical coil shape. In addition, the connection part 4 of the water piping 2 is located in the ellipse coil-like linear part, and it is comprised so that a refrigerant | coolant and water may become a counterflow.
Further, the internal heat exchanger 15 is obtained by bending a high-pressure refrigerant pipe 16 around the outer periphery of the low-pressure refrigerant pipe 17 in a spiral manner. In addition, as in the case of the water pipe 2, a crest / valley part may be provided on the outer periphery of the low-pressure refrigerant pipe 17, and the high-pressure refrigerant pipe 16 may be wound along the trough part.

図12は給湯用熱交換器1と内部熱交換器15の配置を示す説明図で、内部熱交換器15は給湯用熱交換器1の下部側方に配置されている。この場合内部熱交換器15の高さを給湯用熱交換器1の高さの2分の1以下とすることが望ましい。
圧縮機23から吐出された高温高圧の冷媒は、給湯用熱交換器1の上部の高圧冷媒入口部7から流入して水配管2内の水を加熱し、下部の高圧冷媒出口部8から流出したのち、内部熱交換器15の高圧冷媒配管16に流入して低圧冷媒配管17内の低圧冷媒と熱交換し、高圧冷媒出口部8から流出する。
FIG. 12 is an explanatory view showing the arrangement of the hot water supply heat exchanger 1 and the internal heat exchanger 15. The internal heat exchanger 15 is arranged on the lower side of the hot water supply heat exchanger 1. In this case, it is desirable that the height of the internal heat exchanger 15 is not more than half of the height of the hot water supply heat exchanger 1.
The high-temperature and high-pressure refrigerant discharged from the compressor 23 flows in from the high-pressure refrigerant inlet 7 at the upper part of the hot water supply heat exchanger 1 to heat the water in the water pipe 2 and flows out from the lower high-pressure refrigerant outlet 8. After that, the refrigerant flows into the high-pressure refrigerant pipe 16 of the internal heat exchanger 15, exchanges heat with the low-pressure refrigerant in the low-pressure refrigerant pipe 17, and flows out from the high-pressure refrigerant outlet portion 8.

一方、蒸発器21から流出した低圧冷媒は、低圧冷媒入口部17aから低圧冷媒配管17に流入し、高圧冷媒配管16を流れる高圧冷媒より熱回収したのち低圧配管出口部17bより流出し、圧縮機23に吸入される。また、水は給湯用熱交換器1の下部の水配管流入部2cから水配管2に流入し、冷媒配管5を流れる高圧高温冷媒により加熱され、上部の水配管流出部2dから流出する。なお、水抜き栓12は、給湯用熱交換器ユニット11の下部に配管接続されている。本実施の形態に係る給湯用熱交換器1と内部熱交換器15の流路長と温度との関係は、図9の場合と同様である。
本実施の形態の効果は、実施の形態1の場合と同様である。
On the other hand, the low-pressure refrigerant flowing out of the evaporator 21 flows into the low-pressure refrigerant pipe 17 from the low-pressure refrigerant inlet part 17a, recovers heat from the high-pressure refrigerant flowing through the high-pressure refrigerant pipe 16, and then flows out from the low-pressure pipe outlet part 17b. 23 is inhaled. Further, water flows into the water pipe 2 from the lower water pipe inflow part 2c of the hot water supply heat exchanger 1, is heated by the high-pressure high-temperature refrigerant flowing through the refrigerant pipe 5, and flows out from the upper water pipe outflow part 2d. The drain plug 12 is connected to the lower portion of the hot water supply heat exchanger unit 11 by piping. The relationship between the channel length and the temperature of the hot water supply heat exchanger 1 and the internal heat exchanger 15 according to the present embodiment is the same as in the case of FIG.
The effect of this embodiment is the same as that of the first embodiment.

[実施の形態3]
図13は本発明の実施の形態3に係る給湯用熱交換器の要部断面図、図14は図13の一部拡大図である。なお、実施の形態1と同じ部分にはこれと同じ符号が付してある。
本実施の形態は、外周に設けた複数条(図には3条の場合が示してある)の山谷部3を各条ごとに連続して螺旋状に設けた水配管2に、3パスの冷媒配管5a,5b,5cを各条の谷部3bに沿ってそれぞれ螺旋状に巻き付け、水配管2と冷媒配管5a,5b,5cとの接触面積を拡大したものである。なお、本実施の形態においては、山谷部3の谷部3bをほぼ逆台形状に形成した。
[Embodiment 3]
FIG. 13 is a cross-sectional view of a main part of a heat exchanger for hot water supply according to Embodiment 3 of the present invention, and FIG. 14 is a partially enlarged view of FIG. The same parts as those in the first embodiment are denoted by the same reference numerals.
In this embodiment, the water pipe 2 provided with a plurality of ridges and valleys 3 provided on the outer periphery (three cases are shown in the figure) continuously spirally for each row is provided with three passes. The refrigerant pipes 5a, 5b, 5c are spirally wound along the valleys 3b of the respective strips to enlarge the contact area between the water pipe 2 and the refrigerant pipes 5a, 5b, 5c. In the present embodiment, the valley portion 3b of the mountain valley portion 3 is formed in a substantially inverted trapezoidal shape.

そして、水配管2内の水の流れ方向(矢印で示す)に対して、入口で分岐した冷媒は冷媒配管5a,5b,5c内をそれぞれ螺旋状に対向流となるように逆方向に流れ、出口で再び合流して1本になる。この場合、冷媒にはCO2、HFC、HCFC、HC、H2O等を用いることができるが、これに限定するものではない。 Then, with respect to the flow direction of water in the water pipe 2 (indicated by arrows), the refrigerant branched at the inlet flows in the opposite direction so as to be spirally opposed in the refrigerant pipes 5a, 5b, 5c, It merges again at the exit and becomes one. In this case, CO 2 , HFC, HCFC, HC, H 2 O, or the like can be used as the refrigerant, but the refrigerant is not limited to this.

図14において、水配管2の外周に設けた山谷部3の山部3aの高さHは、冷媒配管5の半径Ro/2以上で直径Ro以下となるようにした。すなわち、谷部3bの山部側斜面3cと冷媒配管5との接触面積を安定して確保するために、山部3aの高さを冷媒配管5の半径Ro/2より大きくしたものである。また、山部3aのスパイラルピッチPは、冷媒配管5の直径Ro以上で直径Roの2倍以下となっている。 In FIG. 14, the height H of the crest 3 a of the crest portion 3 provided on the outer periphery of the water pipe 2 is set to be not less than the radius R o / 2 and not more than the diameter R o of the refrigerant pipe 5. That is, the height of the crest 3a is made larger than the radius R o / 2 of the refrigerant pipe 5 in order to stably secure the contact area between the crest 3c of the valley 3b and the refrigerant pipe 5. . Further, the spiral pitch P of the crest 3a is equal to or less than 2 times the diameter R o at least the diameter R o of the refrigerant pipe 5.

このように、水配管2の外周に特定範囲のピッチPで、特定範囲の山部3aの高さHで形成した山谷部3に沿って冷媒配管5を巻き付けるので、山谷部3がガイドとなって冷媒配管5を容易に所定の位置に巻き付けて固定することができ、冷媒配管5の過度の偏平化や座屈の発生を防止することができる。   As described above, the refrigerant pipe 5 is wound around the outer periphery of the water pipe 2 at the pitch P in the specific range and at the height H of the peak part 3a in the specific range, so that the mountain valley part 3 serves as a guide. Thus, the refrigerant pipe 5 can be easily wound and fixed at a predetermined position, and excessive flattening and buckling of the refrigerant pipe 5 can be prevented.

また、山谷部3の谷部3bの底部3dの幅Bを、冷媒配管5の内径Ri以上で、外径Ro+0.24mm以下とした。このように、内径マンドレルの挿入等によって谷部3bの幅Bを冷媒配管5の内径Ri以上とすることにより、冷媒配管5が谷部3bの底部3dに確実に接触すると共に、冷媒配管5を巻き付けるときの張力によって底部3dへの押し付け力が発生し易くなるので、接触熱抵抗を低減することができる。 Furthermore, the width B of the bottom 3d of the valley portion 3b of the peaks and valleys portion 3, at least the inside diameter R i of the refrigerant pipe 5, and the following outer diameter R o + 0.24 mm. Thus, by setting the width B of the valley portion 3b to be equal to or larger than the inner diameter R i of the refrigerant pipe 5 by inserting an inner diameter mandrel or the like, the refrigerant pipe 5 is reliably in contact with the bottom 3d of the valley portion 3b and the refrigerant pipe 5 Since the pressing force to the bottom 3d is easily generated by the tension at the time of winding, the contact thermal resistance can be reduced.

本実施の形態において、水配管2の外周に設けた山谷部3の山部3aの高さHが高すぎて冷媒配管5の直径Roを超えると、熱交換器としてのスペース効率が悪くなってコンパクト化を妨げると共に、山部3aのピッチPが冷媒配管5の直径Ro以下だと冷媒配管5を谷部3bの奥まで嵌め込むことができず、このため、冷媒配管5が谷部3bの底部3dに接触できないため、冷媒配管5と水配管2との接触伝熱面積が低下し、本来の目的を果すことができない。また、山部3aのピッチPが大きすぎて冷媒配管5の直径Roの2倍を超えると、水配管2の単位長さ当たりに対する冷媒配管5の全長が短かくなるので、給湯用熱交換器としての性能が低下し、好ましくない。 In this embodiment, the height H of the ridges 3a of the peaks and valleys portion 3 provided on the outer circumference of the water pipe 2 is too high than a diameter R o of the refrigerant pipe 5, space efficiency of the heat exchanger is deteriorated converting mechanism prevents the compact, the pitch P of the crest 3a can not be fitted the refrigerant pipe 5 that it follows the diameter R o of the refrigerant pipe 5 deep valleys 3b, Thus, the refrigerant pipe 5 is valley Since the bottom 3d of 3b cannot be contacted, the contact heat transfer area between the refrigerant pipe 5 and the water pipe 2 is reduced, and the original purpose cannot be achieved. In addition, if the pitch P of the crest 3a is too large and exceeds twice the diameter Ro of the refrigerant pipe 5, the total length of the refrigerant pipe 5 per unit length of the water pipe 2 becomes short. The performance as a vessel is lowered, which is not preferable.

また、本実施の形態は、水配管2の谷部3bと冷媒配管5の接触面積をロウ付け等によって拡大する場合にも、谷部3bの山部側傾斜面3cと冷媒配管5と間のロウ付け隙間を設計することができる。一般に、ロウ付け品質を確保するためには、ロウ付け隙間は0.08mm〜0.12mmとするのが工作上望ましく、このため、冷媒配管5と山部側傾斜面3cとの隙間を両側で0.16mm〜0.24mmとすればよく、したがって、谷部3bの底部3dの幅Bを冷媒配管5の直径Ro+0.16〜0.24mmとすれば好適である。これにより、少ないロウ材で谷部3bと冷媒配管5との接触面積を拡大することができる。 Further, in the present embodiment, even when the contact area between the valley 3b of the water pipe 2 and the refrigerant pipe 5 is enlarged by brazing or the like, the gap between the mountain side inclined surface 3c of the valley 3b and the refrigerant pipe 5 is increased. A brazing gap can be designed. In general, in order to ensure brazing quality, it is desirable from the viewpoint of work that the brazing gap is 0.08 mm to 0.12 mm. For this reason, the gap between the refrigerant pipe 5 and the ridge side inclined surface 3c is formed on both sides. 0.16mm~0.24mm Tosureba well, thus, the width B of the bottom 3d of the valley 3b is preferred if the diameter R o + 0.16~0.24mm the refrigerant pipe 5. Thereby, the contact area of the trough part 3b and the refrigerant | coolant piping 5 can be expanded with few brazing materials.

また、水配管2の外周に設けた山谷部3は、図13に示すように、水配管2の内部に乱流が発生し易い形状となっているため、乱流促進効果により伝熱性能を向上することができる。
さらに、水配管2に設けた山谷部3の山部3aは、熱交換フインとしても作用するので、フイン効率アップ効果により熱伝導性が向上する。
Further, as shown in FIG. 13, the mountain valley portion 3 provided on the outer periphery of the water pipe 2 has a shape in which turbulent flow is likely to occur inside the water pipe 2. Can be improved.
Furthermore, since the peak part 3a of the peak part 3 provided in the water piping 2 acts also as a heat exchange fin, thermal conductivity improves by the fin efficiency improvement effect.

本実施の形態によれば、冷媒配管5は水配管1の外周に設けた谷部3bの底部3dに接触すると共に、谷部3bの山部側傾斜面3cと冷媒配管5との最小隙間部分が、直接又はロウ付け等により接触するので、接触部分が3箇所となって伝熱的に接合される。このため、従来の平滑水配管に冷媒配管を巻き付けた給湯用熱交換器に比べて、有効接触伝熱面積を3倍以上に拡大することができ、このため、前述の乱流促進効果やフイン効率向上も相乗効果として作用することにより、単位水配管長さ当りのAK値(伝熱面積×熱通過率)を大幅に向上することができる。   According to the present embodiment, the refrigerant pipe 5 is in contact with the bottom 3d of the valley 3b provided on the outer periphery of the water pipe 1, and the minimum gap portion between the mountain side inclined surface 3c of the valley 3b and the refrigerant pipe 5 is used. However, since contact is made directly or by brazing or the like, there are three contact portions and heat transfer is joined. As a result, the effective contact heat transfer area can be increased by more than three times compared to a conventional hot water supply heat exchanger in which a refrigerant pipe is wrapped around a smooth water pipe. Since the efficiency improvement also acts as a synergistic effect, the AK value (heat transfer area × heat passage rate) per unit water pipe length can be greatly improved.

ここで、水配管2は、燐脱酸銅平滑管の両端部を固定し、内径側にマンドレルを挿入して捩り加工を加えることにより製造したが、これに限定するものではなく、液圧バルジ加工や鋳鍛造、切削加工、転造加工等、他の配管加工技術により水配管2を製造してもよい。また、水配管2の原材料を内面溝付き管とすれば、好適な効果を奏することができる。
また、水配管2及び冷媒配管5の材質は、燐脱酸銅に限定するものではなく、用途に応じて、銅、アルミニウム、鉄、ステンレス、チタンなどの配管用金属又はそれらの合金等を用いてもよい。
以下に、本実施の形態の実施例について説明する。
Here, the water pipe 2 was manufactured by fixing both ends of the phosphorous deoxidized copper smooth pipe, inserting a mandrel on the inner diameter side, and adding a twisting process, but the invention is not limited to this. The water pipe 2 may be manufactured by other pipe processing techniques such as processing, cast forging, cutting, and rolling. Moreover, if the raw material of the water pipe 2 is an internally grooved pipe, a suitable effect can be obtained.
Further, the material of the water pipe 2 and the refrigerant pipe 5 is not limited to phosphorous deoxidized copper, and pipe metals such as copper, aluminum, iron, stainless steel, titanium, or alloys thereof are used depending on the application. May be.
Examples of the present embodiment will be described below.

水配管2は、山谷部3の山部3aの外径SRo:14.0mm、内径SRi:8.0mm、条数:4、山部3aの高さH:2.5mm、山部3aのピッチP:4.8mm、谷部3bの底部3dの幅B:3.0mm、また、冷媒配管5は、外径Ro:3.2mm、内径Ri:2.0mm、冷媒は4パスで、ロウ付けは無し。
本実施例においては、水配管2の山谷部3と冷媒配管5の寸法関係を圧入気味に設定することにより、両者の間にロウ付けを行わなくても、比較的優れた伝熱性能を発揮できた。
The water pipe 2 has an outer diameter SR o : 14.0 mm, an inner diameter SR i : 8.0 mm, a number of ridges: 4, a height H of the mountain part 3a: 2.5 mm, and a mountain part 3a. Pitch P: 4.8 mm, bottom portion 3d width B: 3.0 mm, refrigerant pipe 5 has outer diameter R o : 3.2 mm, inner diameter R i : 2.0 mm, and refrigerant has four passes And there is no brazing.
In this embodiment, by setting the dimensional relationship between the crest and valley portion 3 of the water pipe 2 and the refrigerant pipe 5 to be indented, a relatively excellent heat transfer performance is exhibited without brazing between them. did it.

水配管2は、外径SRo:14.0mm、内径SRi:8.0mm、条数:3、山部3aの高さH:3.0mm、山部3aのピッチP:5.8mm、谷部3bの底部3dの幅B:3.5mm、また、冷媒配管5は、外径Ro:3.6mm、内径Ri:2.4mm、冷媒は3パスで、φ0.8のりん銅を螺旋状に巻き付けてロウ付けした。 The water pipe 2 has an outer diameter SR o : 14.0 mm, an inner diameter SR i : 8.0 mm, the number of ridges: 3, the height H of the ridge 3a: 3.0 mm, the pitch P of the ridge 3a: 5.8 mm, Width B of the bottom portion 3d of the valley portion 3b: 3.5 mm, the refrigerant pipe 5 has an outer diameter R o : 3.6 mm, an inner diameter R i : 2.4 mm, the refrigerant has three passes, and a phosphor copper of φ0.8 Was spirally wound and brazed.

本実施例においては、伝熱接触部にロウ付けにより伝熱接合を施したので、伝熱性能がさらに向上した。ロウ付けにあたっては、図15(a)に示すように、水配管2の山部3aと冷媒配管5との隙間、あるいは図15(b)に示すように、水配管2の谷部3bの底部3dと冷媒配管5との間の隙間に、ロウ材9又はハンダ材等を巻き付けてもよく、さらには、図16に示すように、水配管2の谷部3bの底部3dと冷媒配管5との間に、リボン状のロウ材9又はハンダ材等を巻き付けるなど、適宜実施することができる。   In this example, heat transfer performance was further improved because heat transfer bonding was performed by brazing the heat transfer contact portion. In brazing, as shown in FIG. 15A, the gap between the crest 3a of the water pipe 2 and the refrigerant pipe 5, or as shown in FIG. 15B, the bottom of the trough 3b of the water pipe 2. A brazing material 9 or solder material or the like may be wound around the gap between 3d and the refrigerant pipe 5, and further, as shown in FIG. 16, the bottom 3d of the valley 3b of the water pipe 2 and the refrigerant pipe 5 In the meantime, a ribbon-like brazing material 9 or a solder material can be appropriately wound.

水配管2は、外径SRo:15.0mm、内径SRi:9.0mm、条数:2、山部3aの高さH:3.5mm、山部3aのピッチP:6.2mm、谷部3bの底部3dの幅B:4.0mm、また、冷媒配管5は、外径Ro:4.0mm、内径Ri:2.8mm、冷媒は2パスで、幅:3.5mm、厚み:0.2mmのリボン状のハンダ材9を、図16に示すようにセットしてハンダ付けした。 Water pipe 2 has an outer diameter SR o: 15.0 mm, inner diameter SR i: 9.0 mm, Conditions: 2, crest 3a height H: 3.5 mm, crest 3a of the pitch P: 6.2 mm, The width B of the bottom portion 3d of the valley portion 3b is 4.0 mm, the refrigerant pipe 5 has an outer diameter R o : 4.0 mm, an inner diameter R i : 2.8 mm, the refrigerant has two passes, and a width: 3.5 mm. A ribbon-shaped solder material 9 having a thickness of 0.2 mm was set and soldered as shown in FIG.

水配管2は、外径SRo:18.0mm、内径SRi:10.0mm、条数:4、山部3aの高さH:3.5mm、山部3aのピッチP:7.2mm、谷部3bの底部3dの幅B:5.0mm、また、冷媒配管5は、外径Ro:5.0mm、内径Ri:4.0mm、冷媒は2パスで、図16に示すように、水配管2の谷部3bの底部3dと冷媒配管5との間に、例えば、アルミニウム、ハンダ、ロウ材等のリボン状の低融点金属9を巻き付けて接合した。 Water pipe 2 has an outer diameter SR o: 18.0 mm, inner diameter SR i: 10.0 mm, Conditions: 4, crest 3a height H: 3.5 mm, crest 3a of the pitch P: 7.2 mm, As shown in FIG. 16, the width B of the bottom 3d of the valley portion 3b is 5.0 mm, the refrigerant pipe 5 has an outer diameter R o of 5.0 mm, an inner diameter R i of 4.0 mm, and the refrigerant has two passes. The ribbon-shaped low melting point metal 9 such as aluminum, solder, brazing material or the like is wound between and joined to the bottom 3 d of the valley 3 b of the water pipe 2 and the refrigerant pipe 5.

実施例4においては、水配管2の谷部3bの底部3dと冷媒配管5との間に、アルミニウム、ハンダ、ロウ材等の塑性変形能力の高い低融点金属9を挟むようにしたので、加圧力が十分な場合には、実施例1の場合と同様に、加熱ロウ付けを行わなくても優れた伝熱接合を実現することができる。なお、実施例に示してないが、実験結果によれば、水配管2の山谷部3の山部3aの外径SRoは内径SRiの1.5倍以上2.5倍以下とすることが望ましく、また、水配管2の内径SRiは8mm以上12mm以下とすることが望ましい。 In Example 4, since the low melting point metal 9 having high plastic deformation ability such as aluminum, solder, brazing material, etc. is sandwiched between the bottom 3d of the valley 3b of the water pipe 2 and the refrigerant pipe 5, When the pressure is sufficient, an excellent heat transfer bonding can be realized without performing heat brazing as in the case of the first embodiment. Although not shown in the examples, according to the experimental results, the outer diameter SR o of the crest 3 a of the crest 3 of the water pipe 2 is 1.5 times or more and 2.5 times or less than the inner diameter SR i. In addition, the inner diameter SR i of the water pipe 2 is preferably 8 mm or more and 12 mm or less.

図17は水配管2の谷部3bに冷媒配管5を加熱ロウ付けした状態を示す説明図である。加熱ロウ付けは、炉中ロウ付け、高周波ロウ付け、ガスバーナーロウ付け等により行うことができる。なお、ハンダ付けの場合も同様である。   FIG. 17 is an explanatory view showing a state in which the refrigerant pipe 5 is heated and brazed to the valley 3 b of the water pipe 2. Heat brazing can be performed by in-furnace brazing, high-frequency brazing, gas burner brazing, or the like. The same applies to soldering.

本実施の形態によれば、水配管2の外周に設けた山谷部3及びこれに巻き付けられる冷媒配管5の寸法を適宜設定することにより、両者の間にロウ付けを行うことなく、又は両者の間にアルミニウム、ハンダ、ロウ材等の塑性変形能力の高い低融点金属を介装することにより、加熱ロウ付けを行い、若しくは加圧力により両者を一体に接合するようにしたので、伝熱接合する際に顕著な生産性向上や品質の向上をはかることができ、優れた伝熱性能を発揮することができる。なお、本実施の形態は実施の形態1,2に適用しうることは云う迄もない。   According to the present embodiment, by appropriately setting the dimensions of the mountain valley portion 3 provided on the outer periphery of the water pipe 2 and the refrigerant pipe 5 wound around this, without brazing between them or both By interposing a low-melting-point metal with high plastic deformation ability such as aluminum, solder, brazing material in between, heat brazing is performed, or both are integrally joined by pressure, so heat transfer joining is performed. In particular, the productivity and quality can be improved remarkably, and excellent heat transfer performance can be exhibited. Needless to say, this embodiment can be applied to the first and second embodiments.

[実施の形態4]
図18は本発明の実施の形態4に係る水配管の外周に設けた山谷部の条数と、これに巻き付ける冷媒配管のパスパターンの事例を示す説明図である。
図18(a)は山谷部3が2条、冷媒配管5が2パスの例、図18(b)は山谷部3が3条、冷媒配管5が3パスの例を示し、図18(c)は山谷部3が3条、冷媒配管5が2パスの例、図18(d)は山谷部3が4条、冷媒配管5が4パスの例、図18(e)は山谷部3が4条、冷媒配管5が2パスの例をそれぞれ示す。これら2〜4パスに分岐された冷媒配管5は、前述のように入口及び出口で統合されてそれぞれ1本になる。
このような水配管2の山谷部3の条数と、これに巻き付けられる冷媒配管5のパス数は、冷媒の流量、流速、圧損などの特性に応じて好適に選択することができる。
[Embodiment 4]
FIG. 18 is an explanatory diagram showing an example of the number of ridges and valleys provided on the outer periphery of the water pipe according to Embodiment 4 of the present invention and the path pattern of the refrigerant pipe wound around this.
FIG. 18A shows an example in which the mountain valley portion 3 has two lines and the refrigerant pipe 5 has two passes, and FIG. 18B shows an example in which the mountain valley portion 3 has three lines and the refrigerant pipe 5 has three passes. ) Is an example in which the mountain valley portion 3 has three lines and the refrigerant pipe 5 has two passes, FIG. 18D shows an example in which the mountain valley portion 3 has four lines and the refrigerant pipe 5 has four passes, and FIG. 4 and an example in which the refrigerant pipe 5 has two passes is shown. As described above, the refrigerant pipes 5 branched into these 2 to 4 paths are integrated at the inlet and the outlet, and become one each.
The number of ridges and valleys 3 of the water pipe 2 and the number of passes of the refrigerant pipe 5 wound around the water pipe 2 can be suitably selected according to characteristics such as the flow rate, flow velocity, and pressure loss of the refrigerant.

上述した本発明に係る給湯用熱交換器は、ヒートポンプ式給湯機用の熱交換器に限定するものではなく、水と冷媒に係る熱交換器に広く適用することができる。なお、本発明に係る熱交換器は、外周に断熱テープを巻いたり、断熱材で覆たりすることにより、熱交換性能をさらに向上させることができる。   The heat exchanger for hot water supply according to the present invention described above is not limited to a heat exchanger for a heat pump type hot water heater, and can be widely applied to heat exchangers related to water and refrigerant. In addition, the heat exchanger which concerns on this invention can further improve heat exchange performance by winding a heat insulation tape around an outer periphery, or covering with a heat insulating material.

本発明の実施の形態1に係る給湯用熱交換器を備えた給湯室外機の分解斜視図である。It is a disassembled perspective view of the hot water supply outdoor unit provided with the heat exchanger for hot water supply which concerns on Embodiment 1 of this invention. 図1の冷凍サイクル回路と給湯回路の配管系統図である。FIG. 2 is a piping system diagram of the refrigeration cycle circuit and hot water supply circuit of FIG. 1. 図1の給湯用熱交換器ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of the heat exchanger unit for hot water supply of FIG. 図3の給湯用熱交換器の説明図である。It is explanatory drawing of the heat exchanger for hot water supply of FIG. 図4の給湯用熱交換器を構成する水配管の説明図である。It is explanatory drawing of the water piping which comprises the heat exchanger for hot water supply of FIG. 図5の水配管の拡大図である。It is an enlarged view of the water piping of FIG. 図3の内部熱交換器の平面図及び側面図である。It is the top view and side view of an internal heat exchanger of FIG. 給湯用熱交換器と内部熱交換器の配置を示す説明図である。It is explanatory drawing which shows arrangement | positioning of the heat exchanger for hot water supply, and an internal heat exchanger. 給湯用熱交換器と内部熱交換器の流路長と温度との関係を示す線図である。It is a diagram which shows the relationship between the flow path length and temperature of the heat exchanger for hot water supply, and an internal heat exchanger. 本発明の実施の形態2に係る給湯用熱交換器の説明図である。It is explanatory drawing of the heat exchanger for hot water supply which concerns on Embodiment 2 of this invention. 実施の形態2に係る内部熱交換器の説明図である。It is explanatory drawing of the internal heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2の給湯用熱交換器と内部熱交換器の配置を示す説明図である。It is explanatory drawing which shows arrangement | positioning of the heat exchanger for hot water supply of Embodiment 2, and an internal heat exchanger. 本発明の実施の形態3に係る熱交換器の要部断面図である。It is principal part sectional drawing of the heat exchanger which concerns on Embodiment 3 of this invention. 図13の一部拡大図である。FIG. 14 is a partially enlarged view of FIG. 13. 実施例2の説明図である。FIG. 6 is an explanatory diagram of Example 2. 実施例4の説明図である。It is explanatory drawing of Example 4. FIG. 水配管の谷部と冷媒配管とを加熱ロウ付けにより接合した状態を示す説明図である。It is explanatory drawing which shows the state which joined the trough part of water piping, and refrigerant | coolant piping by heating brazing. 本発明の実施の形態4に係る水配管の山谷部の条数とこれに巻き付ける冷媒配管のパスパターンの事例を示す説明図である。It is explanatory drawing which shows the example of the path | route pattern of the refrigerant | coolant piping wound around this with the number of the threads of the water piping which concerns on Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 給湯用熱交換器、2 水配管、3 山谷部、3a 山部、3b 谷部、3c 山部側傾斜面、3d 底部、4 接続部、5 冷媒配管、15 内部熱交換器、16 高圧冷媒配管、17 低圧冷媒配管。
DESCRIPTION OF SYMBOLS 1 Heat exchanger for hot water supply, 2 water piping, 3 mountain valley part, 3a mountain part, 3b valley part, 3c mountain part side inclined surface, 3d bottom part, 4 connection part, 5 refrigerant piping, 15 internal heat exchanger, 16 high pressure refrigerant | coolant Piping, 17 Low pressure refrigerant piping.

Claims (15)

圧縮機、給湯用熱交換器、絞り弁及び蒸発器を順次接続した冷凍サイクルと、前記給湯用熱交換器の冷媒出口側から前記絞り弁の入口側までの冷媒と前記蒸発器の冷媒出口側から前記圧縮機の吸入側までの冷媒を熱交換する内部熱交換器と、前記給湯用熱交換器の冷媒出口側と前記絞り弁の出口側を接続する内部熱交換器バイパス回路に設けられた流量調節弁とを備え、
前記給湯用熱交換器と内部熱交換器とを送風室と機械室の下部に設置すると共に、前記内部熱交換器を給湯用熱交換器の冷媒配管の出口付近に配置したことを特徴とするヒートポンプ給湯機。
A refrigeration cycle in which a compressor, a hot water supply heat exchanger, a throttle valve, and an evaporator are sequentially connected, a refrigerant from a refrigerant outlet side of the hot water heat exchanger to an inlet side of the throttle valve, and a refrigerant outlet side of the evaporator An internal heat exchanger that exchanges heat from the refrigerant to the compressor suction side, and an internal heat exchanger bypass circuit that connects the refrigerant outlet side of the hot water heat exchanger and the outlet side of the throttle valve A flow control valve,
The hot water supply heat exchanger and the internal heat exchanger are installed below the blower chamber and the machine room, and the internal heat exchanger is disposed in the vicinity of the outlet of the refrigerant pipe of the hot water supply heat exchanger. Heat pump water heater.
前記内部熱交換器を、給湯用熱交換器の下側に配置したことを特徴とする請求項1記載のヒートポンプ給湯機。   The heat pump water heater according to claim 1, wherein the internal heat exchanger is disposed below the hot water heat exchanger. 前記内部熱交換器を、給湯用熱交換器の2分の1の高さ以下で前記給湯用熱交換器の側方に配置したことを特徴とする請求項1記載のヒートポンプ給湯機。   The heat pump water heater according to claim 1, wherein the internal heat exchanger is disposed at a side of the heat exchanger for hot water supply at a height equal to or less than a half of the heat exchanger for hot water supply. 前記給湯用熱交換器は、外周に複数条の山谷部を毎条ごとに連続して螺旋状に設けた水配管と、該水配管の山谷部に沿って螺旋状に巻き付けられる冷媒配管とを備え、前記冷媒配管を水配管の山谷部の谷部に嵌め込んで巻き付けたことを特徴とする請求項1〜3のいずれかに記載のヒートポンプ給湯機。   The heat exchanger for hot water supply includes a water pipe in which a plurality of valleys and valleys are continuously provided spirally on the outer circumference, and a refrigerant pipe that is spirally wound along the valleys of the water pipe. The heat pump water heater according to any one of claims 1 to 3, wherein the refrigerant pipe is fitted and wound around a valley of a valley of a water pipe. 前記熱交換用水配管に巻き付ける冷媒配管を複数パスとしたことを特徴とする請求項4記載のヒートポンプ給湯機。   The heat pump water heater according to claim 4, wherein a plurality of refrigerant pipes are wound around the heat exchange water pipe. 前記熱交換用水配管を流れる水と、前記冷媒配管を流れる冷媒とが対向流となるように構成したことを特徴とする請求項4又は5記載のヒートポンプ給湯機。   The heat pump water heater according to claim 4 or 5, wherein water flowing through the heat exchange water pipe and a refrigerant flowing through the refrigerant pipe are opposed to each other. 前記水配管の山谷部の山部の外径を、その内径の1.5倍以上2.5倍以下としたことを特徴とする請求項4〜6のいずれかに記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 4 to 6, wherein an outer diameter of a crest portion of a mountain valley portion of the water pipe is set to be 1.5 times or more and 2.5 times or less of an inner diameter thereof. 前記水配管の山谷部の山部の高さを、冷媒配管の外径の1/2以上で外径以下に形成したことを特徴とする請求項4〜7のいずれかに記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 4 to 7, wherein a height of a crest portion of a crest and trough portion of the water pipe is formed to be not less than 1/2 of the outer diameter of the refrigerant pipe and not more than the outer diameter. . 前記水配管の山谷部の山部のピッチを、冷媒配管の外径以上で外径の2倍以下に形成したことを特徴とする請求項4〜8のいずれかに記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 4 to 8, wherein the pitch of the crests of the crests and valleys of the water pipe is formed to be not less than the outer diameter of the refrigerant pipe and not more than twice the outer diameter. 前記水配管の山谷部の谷部の底部の幅を、冷媒配管の内径以上で外径+0.16mm〜0.24mm以下に形成したことを特徴とする請求項4〜9のいずれかに記載のヒートポンプ給湯機。   The width of the bottom part of the valley part of the peak part of the said water piping was formed in the outer diameter + 0.16mm-0.24mm or less more than the internal diameter of refrigerant | coolant piping, The any one of Claims 4-9 characterized by the above-mentioned. Heat pump water heater. 前記水配管の山谷部の山側傾斜面と冷媒配管との間に形成された最小隙間部分を伝熱的に接合したことを特徴とする請求項4〜10のいずれかに記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 4 to 10, wherein a minimum gap portion formed between a mountain-side inclined surface of a mountain-valley portion of the water pipe and the refrigerant pipe is heat-transferred. 前記水配管の山谷部とこれに巻き付けられた冷媒配管とを、低融点金属により接合したことを特徴とする請求項4〜11記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 4 to 11, wherein a mountain valley portion of the water pipe and a refrigerant pipe wound around the water pipe are joined by a low melting point metal. 前記水配管の肉厚を0.5mm以上1.0mm以下としたことを特徴とする請求項4〜12記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 4 to 12, wherein a thickness of the water pipe is 0.5 mm or more and 1.0 mm or less. 前記水配管の内径が8mm以上12mm以下であることを特徴とする請求項4〜13記載のヒートポンプ給湯機。   14. The heat pump water heater according to claim 4, wherein an inner diameter of the water pipe is 8 mm or more and 12 mm or less. 前記冷媒配管を流れる冷媒は、二酸化炭素冷媒であることを特徴とする請求項1〜14記載のヒートポンプ給湯機。
The heat pump water heater according to claim 1, wherein the refrigerant flowing through the refrigerant pipe is a carbon dioxide refrigerant.
JP2005159305A 2005-05-31 2005-05-31 Heat pump water heater Expired - Fee Related JP4211041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159305A JP4211041B2 (en) 2005-05-31 2005-05-31 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159305A JP4211041B2 (en) 2005-05-31 2005-05-31 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2006336894A true JP2006336894A (en) 2006-12-14
JP4211041B2 JP4211041B2 (en) 2009-01-21

Family

ID=37557599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159305A Expired - Fee Related JP4211041B2 (en) 2005-05-31 2005-05-31 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4211041B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180460A (en) * 2007-01-25 2008-08-07 Daikin Ind Ltd Method for producing heat exchanger, and heat exchange produced by the method
JP2009041880A (en) * 2007-08-10 2009-02-26 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2009236328A (en) * 2008-03-25 2009-10-15 Tokyo Electric Power Co Inc:The Industrial drying system
JP2010121844A (en) * 2008-11-19 2010-06-03 Panasonic Corp Refrigerating cycle device
JP2011021868A (en) * 2009-07-15 2011-02-03 Atago Seisakusho:Kk Heat exchanger for heat pump water heater
JP2011106776A (en) * 2009-11-19 2011-06-02 Mitsubishi Electric Corp Double tube type heat exchanger
JP2011122797A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Twisted tube-shaped heat exchanger and method for manufacturing the same
JP2011174631A (en) * 2010-02-23 2011-09-08 Mitsubishi Electric Corp Hot water supply device and draining method of the same
JP2016085029A (en) * 2014-10-28 2016-05-19 ダイキン工業株式会社 Outdoor unit
WO2018042482A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Heat pump system
WO2019102595A1 (en) * 2017-11-24 2019-05-31 三菱電機株式会社 Heat pump device
CN110145862A (en) * 2019-06-13 2019-08-20 深圳市英尼克电器有限公司 A kind of double throttle, accurate immediate heating type pure water boiler and heating means
JPWO2021130957A1 (en) * 2019-12-26 2021-07-01

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180460A (en) * 2007-01-25 2008-08-07 Daikin Ind Ltd Method for producing heat exchanger, and heat exchange produced by the method
JP2009041880A (en) * 2007-08-10 2009-02-26 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2009236328A (en) * 2008-03-25 2009-10-15 Tokyo Electric Power Co Inc:The Industrial drying system
JP2010121844A (en) * 2008-11-19 2010-06-03 Panasonic Corp Refrigerating cycle device
JP2011021868A (en) * 2009-07-15 2011-02-03 Atago Seisakusho:Kk Heat exchanger for heat pump water heater
JP2011106776A (en) * 2009-11-19 2011-06-02 Mitsubishi Electric Corp Double tube type heat exchanger
JP2011122797A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Twisted tube-shaped heat exchanger and method for manufacturing the same
JP2011174631A (en) * 2010-02-23 2011-09-08 Mitsubishi Electric Corp Hot water supply device and draining method of the same
JP2016085029A (en) * 2014-10-28 2016-05-19 ダイキン工業株式会社 Outdoor unit
WO2018042482A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Heat pump system
JPWO2018042482A1 (en) * 2016-08-29 2018-11-15 三菱電機株式会社 Heat pump system
WO2019102595A1 (en) * 2017-11-24 2019-05-31 三菱電機株式会社 Heat pump device
JPWO2019102595A1 (en) * 2017-11-24 2020-04-02 三菱電機株式会社 Heat pump equipment
CN110145862A (en) * 2019-06-13 2019-08-20 深圳市英尼克电器有限公司 A kind of double throttle, accurate immediate heating type pure water boiler and heating means
CN110145862B (en) * 2019-06-13 2023-10-31 深圳市英尼克电器有限公司 Double-throttling accurate instant-heating type pure water boiler and heating method
JPWO2021130957A1 (en) * 2019-12-26 2021-07-01
WO2021130957A1 (en) * 2019-12-26 2021-07-01 三菱電機株式会社 Heat exchanger and heat pump type water heater

Also Published As

Publication number Publication date
JP4211041B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP4211041B2 (en) Heat pump water heater
JP4449856B2 (en) Twisted tube heat exchanger
JP3953074B2 (en) Heat exchanger
JP6687022B2 (en) Refrigeration cycle equipment
US20090032224A1 (en) Heat exchanger
JP2002228370A (en) Heat exchanger
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2005133999A (en) Heat pump type hot-water supplier
CN103025451A (en) Bending work method for heat exchanger and heat exchanger
JP4437487B2 (en) Twisted tube heat exchanger and heat pump water heater
JP2004190922A (en) Heat exchanger
JP2003028582A (en) Heat exchanger
JP2010091266A (en) Twisted tube type heat exchanger
JP2005201625A (en) Heat exchanger and its manufacturing method
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
JP3922214B2 (en) Heat exchanger and heat pump water heater using the same
JP7133063B1 (en) Heat exchanger
JP2005133966A (en) Heat exchanger
JP2008249163A (en) Heat exchanger for supplying hot water
JP2005061667A (en) Heat exchanger
KR101016696B1 (en) turn fin type heat exchanger and manufacturing method for turn fin type heat exchanger
JP2007078252A (en) Heat exchanger
KR100575278B1 (en) A tube for heat exchange with a capillary-type heat pipe
CN218495150U (en) Heat exchange device and air conditioner
JP2010078171A (en) Internal heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4211041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees