JP3922214B2 - Heat exchanger and heat pump water heater using the same - Google Patents

Heat exchanger and heat pump water heater using the same Download PDF

Info

Publication number
JP3922214B2
JP3922214B2 JP2003163604A JP2003163604A JP3922214B2 JP 3922214 B2 JP3922214 B2 JP 3922214B2 JP 2003163604 A JP2003163604 A JP 2003163604A JP 2003163604 A JP2003163604 A JP 2003163604A JP 3922214 B2 JP3922214 B2 JP 3922214B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
heat exchanger
heat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003163604A
Other languages
Japanese (ja)
Other versions
JP2005003209A (en
Inventor
松本  聡
立群 毛
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003163604A priority Critical patent/JP3922214B2/en
Publication of JP2005003209A publication Critical patent/JP2005003209A/en
Application granted granted Critical
Publication of JP3922214B2 publication Critical patent/JP3922214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は熱交換器およびそれを用いたヒートポンプ給湯機に関し、特に、ヒートポンプを用いて温水を生成する給湯機や冷温水を生成する冷暖房機などに利用される冷媒対水熱交換器のような、異種媒体間の熱移動を行う熱交換器およびそれを用いたヒートポンプ給湯機に関する。
【0002】
【従来の技術】
従来、この種の熱交換器としては、図5および図6に示すような二重管式の熱交換器が提案されている。その構成について、図5および図6を参照しながら説明する(例えば、特許文献1参照)。
【0003】
熱交換器50は、例えば、冷媒の凝縮熱等を利用して給湯水の加熱を行ういわゆるヒートポンプ給湯機に利用されるものであり、内管55を外管56内に同心状に挿入した伝熱管51を環状に巻いて構成したものである。内管55内を高温高圧の冷媒が流れる流路53とする一方、内管55と外管56との間の空間を低温低圧の水が流れる流路54としている。このとき、高温冷媒は伝熱管51の内管55内に、例えば、図6に矢印で示した方向に流入し、その外側の流路54を矢印とは逆方向に流れる低温の水と熱交換を行い、この水を加熱することになる。
【0004】
【特許文献1】
特開2001−201275号公報(第6頁、図2〜図3)
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、次のような課題がある。例えば、熱交換器50の性能向上や能力拡大を図るためには、伝熱管51の全長を長くする必要がある。このとき、従来のような構成では、螺旋状に巻回した伝熱管51の巻き数を増加させたり、巻き形状を大きくして一巻き当たりの長さを長くしたりすることにより、所定の伝熱管長さを確保することになる。この場合、巻き数の増加は熱交換器の高さ増加に、巻き形状の拡大は熱交換器の設置面積の拡大にそれぞれ繋がり、いずれにしても熱交換器を収納する装置全体を大きくしてしまうという課題があった。
【0006】
本発明は、前記従来の課題を解決するもので、コンパクトで信頼性に優れた熱交換器を提供するものである。
【0007】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の熱交換器は、第1流体が流れる第1流路と第2流体が流れる第2流路とを内包し、断面形状が略円形状である第1伝熱管および第2伝熱管とを備え、前記第2伝熱管は、前記第1伝熱管の内側に配置されるとともに、前記第1伝熱管と前記第2伝熱管がともに螺旋状に巻回し、前記第2伝熱管の相当直径が前記第1伝熱管よりも小さいことを特徴とするものである。
【0008】
これによって、螺旋状に巻回した伝熱管の内側に形成される空間を有効に活用して、熱交換器の実装密度を向上させ、収納スペースの最小化を図ることができ、コンパクトで機器への収納性に優れた熱交換器を提供することができる。また、伝熱管の長尺化が容易となり、熱交換器の高性能化や能力拡大を容易に実現することができる。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、第1流体が流れる第1流路と第2流体が流れる第2流路とを内包し、断面形状が略円形状である第1伝熱管および第2伝熱管とを備え、前記第2伝熱管は、前記第1伝熱管の内側に配置されるとともに、前記第1伝熱管と前記第2伝熱管がともに螺旋状に巻回し、前記第2伝熱管の相当直径が前記第1伝熱管よりも小さいことを特徴とするものであり、螺旋状に巻回した伝熱管の内側に形成される空間を有効に活用して、熱交換器の実装密度を向上させ、収納スペースの最小化を図ることができ、コンパクトで機器への収納性に優れた熱交換器を提供することができる。また、伝熱管の長尺化が容易となり、熱交換器の高性能化や能力拡大を容易に実現することができる。さらに、二重構造の内側に、一般に小さなR形状の曲げ加工の容易な細管を配することで、よりコンパクトで収納性に優れた熱交換器を提供することができる。
【0010】
請求項2に記載の発明は、請求項1の構成に対して、特に螺旋状に巻回された第2伝熱管の曲げ半径が、第1伝熱管よりも小さいものであり、二重配置された第1伝熱管と第2伝熱管との間の空隙を最小限にすることができるため、よりコンパクトで収納性に優れた熱交換器を提供することができる。
【0011】
請求項3に記載の発明は、請求項1または2の構成に対して、特に螺旋状に巻回された第2伝熱管の巻回軸方向の高さが、第1伝熱管よりも大きいものであり、二重構造の内側に配された第2伝熱管の外部との接続が容易となるため、コンパクトかつ生産性に優れた熱交換器を提供することができる。
【0012】
請求項4に記載の発明は、請求項1〜3の構成に対して、特に第1および第2の伝熱管が巻回軸方向の鉛直上側で連通するものであり、熱交換器全体の構造として、鉛直方向下側から流入し、熱交換器内を流体が上昇して降下し、最終的に再び鉛直方向下側から流出するような、逆U字状の構成とすることができ、例えば、凍結防止対策としての重力を利用した水抜き等のメンテナンスが容易となり、コンパクトで信頼性に優れた熱交換器を提供することができる。
【0013】
請求項5に記載の発明は、請求項1〜4の構成に対して、特に第1および第2の伝熱管が継ぎ目のない連続した管体から構成されるものであり、管と管との繋ぎ部分の接合不良に伴う流体の漏洩等の可能性が低く、構成も簡素化できるため、コンパクトで信頼性と生産性に優れた熱交換器を提供することができる。
【0014】
請求項6に記載の発明は、冷媒により水を加熱するヒートポンプ給湯機であり、請求項1〜5に記載の熱交換器を、少なくとも圧縮機、放熱器、膨張弁、蒸発器から構成されるヒートポンプ回路の放熱器として用い、第1流体の冷媒により第2流体の水を加熱するものであり、コンパクトで信頼性に優れた本実施例の熱交換器を用いることにより、ヒートポンプ給湯機全体のコンパクト化と信頼性向上を実現することができる。
【0015】
請求項7に記載の発明は、請求項6の構成に対して、特に冷媒の圧力が臨界圧力以上となるものであり、熱交換器を流れる第1流体である冷媒が、圧縮機で臨界圧力以上に加圧されているので、第2流体である水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換器全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0016】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0017】
(実施例1)
図1および図2は本発明の実施例1における熱交換器10の側面図および平面図である。図1および図2において、熱交換器10は、第1流体が流れる第1流路3と第2流体が流れる第2流路4とを内包する第1および第2の伝熱管1および2を備え、これらがともに螺旋状に巻回された構成を有し、かつ第2伝熱管2は、巻回された第1伝熱管1の内側に二重配置された構成を有する。
【0018】
第1伝熱管1は、内管5と外管6からなり、内管5を外管6内に同心状に挿入して螺旋状に巻回して構成したものである。内管5内を第1流体(例えば、高温高圧の冷媒)が流れる第1流路3aとする一方、内管5と外管6との間の空間を第2流体(例えば、低温低圧の水)が流れる第2流路4aとしている。同様に、第2伝熱管2は、内管7と外管8からなり、内管7を外管8内に同心状に挿入して螺旋状に巻回して構成したものである。内管7内を第1流体(例えば、高温高圧の冷媒)が流れる第1流路3bとする一方、内管7と外管8との間の空間を第2流体(例えば、低温低圧の水)が流れる第2流路4bとしている。このとき、図1中に矢印Aで示した巻回軸方向に対して、第2伝熱管2の高さH2が、第1伝熱管1の高さH1よりも大きく構成されている。また、第1伝熱管1と第2伝熱管2の断面が略円形状を有し、第2伝熱管2の相当直径D2が、第1伝熱管1の相当直径D1よりも小さく構成されている。
【0019】
なお、第1流体が流れる第1流路3aおよび3bは、接続管11において互いに連通しており、連続した第1流路3を形成している。同様に、第2流体が流れる第2流路4aおよび4bは、接続管12において互いに連通しており、連続した第2流路4を形成している。このとき、図1中に矢印Aで示した巻回軸方向に対して、鉛直方向上方において、第1伝熱管1と第2伝熱管2とが連通する構成となっている。さらに、熱交換器10は、図2に示すように、螺旋状に巻回された第2伝熱管2の曲げ半径R2が、第1伝熱管1の曲げ半径R1よりも小さく構成される。
【0020】
このような熱交換器10を構成する管体の材質としては、熱伝導性および成形性の良い金属、例えば、銅、アルミニウム、鉄、ステンレス等が挙げられる。
【0021】
以上のように構成された熱交換器10について、以下その作用を説明する。
【0022】
第1伝熱管1および第2伝熱管2において、第1流路3には高圧側の第1流体を、第2流路4には低圧側の第2流体をそれぞれ流通させる。熱交換器10を、図3に示すような、圧縮冷媒の凝縮熱や顕熱等を利用して給湯水の加熱を行ういわゆるヒートポンプ給湯機の冷媒水熱交換器に利用するものとすると、例えば、高圧の第1流体は圧縮機から送られる二酸化炭素やフロン等の冷媒であり、低圧の第2流体は給湯用の水となる。
【0023】
ヒートポンプ給湯機は、一般に、圧縮機31、放熱器としての熱交換器10、膨張弁33、大気熱等を集熱する蒸発器34を順次接続したヒートポンプ回路35と、貯湯タンク36、水ポンプ37、前記した熱交換器10を順次接続した水回路38とから構成される。
【0024】
このようなヒートポンプ給湯機により、給湯水の加熱を行う場合、まず、蒸発器34において、送風ファンや集熱パネル等により大気熱や太陽熱等を集熱し、その内部を流れる冷媒を蒸発ガス化する。この冷媒は圧縮機31に吸引され、機械的に圧縮されて、高温高圧の冷媒として熱交換器10の第1流路3に送られる。
【0025】
貯湯タンク36下部の水は、循環用の水ポンプ37によって搬送され、熱交換器10の第2流路4に流入する。ここで、高温高圧の冷媒は、図2中に実線矢印で示すように、第1伝熱管1の内部に流入し、接続管11を経由して、第2伝熱管2から流出する。
【0026】
一方、低温低圧の水をこれとは反対方向に流すものとすると、伝熱形態としては熱交換性能に優れた対向流とすることができる。このとき、第1流路3aおよび3bを流れる高温高圧の冷媒は、これら内管5および7を介して、その周囲に位置する第2流路4aおよび4bを流れる低温低圧の水と熱交換を行うことになる。低温の給湯用の水は、第2流路4を流れる間に、高温の冷媒から熱を受けて高温の湯となり、貯湯タンク36上部に流入する。
【0027】
熱交換器10で放熱した冷媒は、膨張弁33で減圧されて蒸発器34に流入する。冷媒は、ここで再び大気熱等から吸熱し、次の圧縮機31に供される。
【0028】
なお、ヒートポンプ給湯機に用いる冷媒としては、二酸化炭素冷媒のほかにも、R410a等のフロン系冷媒、プロパン、ブタン等の炭化水素系冷媒等が挙げられる。
【0029】
本実施例によれば、第2伝熱管2を第1伝熱管1の内側に二重配置することにより、螺旋状に巻回した第1伝熱管1の内側に形成される空間を有効に活用して、熱交換器10全体の実装密度を向上させ、収納スペースの最小化を図ることができ、ヒートポンプ給湯機等の機器への収納性を十分確保することができる。また、必要に応じて伝熱管の全長を長くして、熱交換器10の高性能化や能力拡大を図る場合も、コンパクト性に優れるため、これらを容易に実現することができる。
【0030】
また、螺旋状に巻回された第2伝熱管2の曲げ半径R2が、第1伝熱管1の曲げ半径R1よりも小さいため、二重配置された第1伝熱管1と第2伝熱管2との間の空隙を最小限にすることができ、デッドスペースの削減が図られる。
【0031】
また、第2伝熱管2の曲げ半径R2が、第1伝熱管1の曲げ半径R1よりも大きい場合は、第1伝熱管1の曲げ箇所にストレート部を設けて、全体を略四角形状にする必要があり、デッドスペースの拡大を伴うとともに、曲げ加工の工程数が増大し生産性の低下を伴う。
【0032】
さらに、第1および第2伝熱管1および2の断面が略円形状を有し、第2伝熱管2の相当直径D2が、第1伝熱管1の相当直径D1よりも小さいため、内外二重構造の内側に、一般に小さなR形状の曲げ加工の容易な細管を配することで、よりコンパクトな熱交換器を構成することができる。
【0033】
ここで、本実施例の熱交換器10を、例えば、冷媒で水(特に水道水)を加熱する冷媒対水熱交換器に適用する場合を考える。一般に、カルシウムやマグネシウム等の硬度成分を多く含んだ水を、このような冷媒対水熱交換器で長期間高温に加熱すると、最も高温となる水側流路の出口部近傍においてスケールが発生する可能性がある。このようなスケールが水側流路の内周に付着すると、水の流動抵抗となって圧力損失が増大するとともに、伝熱面の熱抵抗となって熱交換器としての性能を低減させる。
【0034】
このような場合を想定して、本実施例では、水にとって高温側となる第1伝熱管1の相当直径D1を、その低温側の第2伝熱管2の相当直径D2よりも大きくし、内管5と外管6との間の第2流路4aの断面積を、内管7と外管8との間の第2流路4bの断面積よりも大きく構成しているため、万一流路内にスケール等が生成し付着した場合も、水の流動抵抗の増加を緩和し、熱交換器の長寿命化が図られる。
【0035】
また、螺旋状に巻回された第2伝熱管2の巻回軸A方向の高さH2が、第1伝熱管1の高さH1よりも大きいものであり、二重構造の内側に配された第2伝熱管2が、第1伝熱管1と干渉することなく、第1の伝熱管1または外部との配管接続が容易となるため、コンパクトかつ生産性に優れた熱交換器を提供することができる。
【0036】
さらに、第1および第2の伝熱管1および2が巻回軸A方向の鉛直上側で連通するものであり、熱交換器全体の構造として、鉛直方向下側から流入し、熱交換器内を流体が上昇して降下し、最終的に再び鉛直方向下側から流出するような、逆U字状の構成とすることができる。これは、例えば、冬場に熱交換器の凍結防止対策として水抜きを行う場合、第2流路4の両端を大気開放してやれば、熱交換器内に水がトラップされることなく、重力により容易に水抜きが可能となることを意味する。よって、水抜き等のメンテナンスが容易となる。
【0037】
また、本実施例の熱交換器10を、少なくとも圧縮機、放熱器、膨張弁、蒸発器から構成されるヒートポンプ回路の放熱器として用い、第1流体の冷媒により第2流体の水を加熱するものとすれば、コンパクトで信頼性に優れた熱交換器を用いることにより、ヒートポンプ給湯機全体のコンパクト化と信頼性向上を実現することができる。
【0038】
また、特に冷媒として二酸化酸素等を使用し、その圧力が臨界圧力以上となるものとすると、熱交換器を流れる第1流体である冷媒は、圧縮機で臨界圧力以上に加圧されているので、第2流体である水により熱を奪われて温度低下しても凝縮することがなく、熱交換器全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0039】
したがって、コンパクトで機器への収納性に優れ、さらに生産性、信頼性、伝熱性能に優れた熱交換器を提供できる。
【0040】
(実施例2)
図4は本発明の実施例2の熱交換器20の側面図である。本実施例の熱交換器の全体構成とその作用は、図1に示した熱交換器10と略同一であるので、ここでは詳細な説明を省略する。実施例1と異なるのは、第1伝熱管1と第2伝熱管2とが継ぎ目のない連続した管体から構成される点である。このような構成は、内側に配置する第2伝熱管2の形態に管体を螺旋状に巻回した後に連続して、その外周を取り巻くように第1伝熱管1の形態に管体を螺旋状に巻回すれば良く、容易に実現できるものである。
【0041】
よって、本実施例によれば、実施例1で説明したように、内外に配置された管と管との接続管を設けることなく、熱交換器を連続した管体で構成することができため、管同士の接続部分の接合不良に伴う流体の漏洩等の可能性が低く、構成の簡素化も図られる。したがって、コンパクトで信頼性と生産性に優れた熱交換器を提供することができる。
【0042】
なお、実施例1において、第1伝熱管1と第2伝熱管2とが異なる断面形状を有するものとしたが、もちろん同一断面形状であっても構わない。
【0043】
また、上記した各実施例において、第1および第2の伝熱管を内管と外管からなる二重管とするものとしたが、略管状の形態のものであれば、これに限るものではない。例えば、各伝熱管を、内管を平滑管に内面溝付き管を被覆させた二重管として構成したいわゆる三重管としてもよく、そうすれば腐食等による管体の破損に伴う流体の漏洩が、内面溝を通じて未然に検知され、さらに熱交換器の信頼性を拡大することができる。また、このような伝熱管としては他にも、丸管の外周に沿って細管を螺旋状に巻回したもの、丸管の周りに複数の細管を同心円状に配置したもの等、略管状であり螺旋状に巻回可能な形態のものであれば、どのようなものでも良い。
【0044】
【発明の効果】
以上のように、本発明によれば、螺旋状に巻回した伝熱管の内側に形成される空間を有効に活用して、熱交換器の実装密度を向上させ、収納スペースやひいては装置全体の大きさを変更することなく、コンパクトで収納性に優れた熱交換器を提供することができる。また、伝熱管の長尺化が容易となり、熱交換器の高性能化や能力拡大を容易に実現することができる。
【0045】
また、コンパクトで信頼性に優れた本発明の熱交換器を用いることにより、ヒートポンプ給湯機全体のコンパクト化と信頼性向上を実現することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1における熱交換器の側面図
【図2】 本発明の実施例1における熱交換器の平面図
【図3】 本発明の実施例1における熱交換器を用いたヒートポンプ給湯機の構成図
【図4】 本発明の実施例2における熱交換器の側面図
【図5】 従来の熱交換器の側面図
【図6】 従来の熱交換器の平面図
【符号の説明】
1 第1伝熱管
2 第2伝熱管
3、3a、3b 第1流路
4、4a、4b 第2流路
10 熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger and a heat pump water heater using the heat exchanger, and in particular, to a refrigerant-to-water heat exchanger used in a water heater that generates hot water using a heat pump, an air conditioner that generates cold / hot water, and the like. The present invention relates to a heat exchanger that performs heat transfer between different types of media and a heat pump water heater using the heat exchanger.
[0002]
[Prior art]
Conventionally, as this type of heat exchanger, a double-pipe heat exchanger as shown in FIGS. 5 and 6 has been proposed. The configuration will be described with reference to FIGS. 5 and 6 (see, for example, Patent Document 1).
[0003]
The heat exchanger 50 is used, for example, in a so-called heat pump water heater that heats hot water using the condensation heat of the refrigerant, etc., and the heat exchanger 50 has an inner tube 55 inserted concentrically into the outer tube 56. The heat pipe 51 is formed by winding it in an annular shape. While the inner pipe 55 has a flow path 53 through which high-temperature and high-pressure refrigerant flows, the space between the inner pipe 55 and the outer pipe 56 is used as a flow path 54 through which low-temperature and low-pressure water flows. At this time, the high-temperature refrigerant flows into the inner pipe 55 of the heat transfer pipe 51 in, for example, the direction indicated by the arrow in FIG. 6 and exchanges heat with low-temperature water flowing through the outer flow path 54 in the direction opposite to the arrow. This water will be heated.
[0004]
[Patent Document 1]
JP 2001-201275 A (6th page, FIGS. 2 to 3)
[0005]
[Problems to be solved by the invention]
However, the conventional configuration has the following problems. For example, in order to improve the performance and expand the capacity of the heat exchanger 50, it is necessary to lengthen the entire length of the heat transfer tube 51. At this time, in the conventional configuration, the number of turns of the heat transfer tube 51 wound spirally is increased, or the winding shape is increased to increase the length per turn, thereby increasing the predetermined length of the transfer. The heat pipe length will be secured. In this case, an increase in the number of turns leads to an increase in the height of the heat exchanger, and an increase in the winding shape leads to an increase in the installation area of the heat exchanger. There was a problem of ending up.
[0006]
The present invention solves the above-mentioned conventional problems and provides a compact and highly reliable heat exchanger.
[0007]
[Means for Solving the Problems]
In order to solve the conventional problem, the heat exchanger of the present invention includes a first flow path through which a first fluid flows and a second flow path through which a second fluid flows, and has a substantially circular cross-sectional shape. A first heat transfer tube and a second heat transfer tube , wherein the second heat transfer tube is disposed inside the first heat transfer tube, and the first heat transfer tube and the second heat transfer tube are both spirally wound. The second heat transfer tube has an equivalent diameter smaller than that of the first heat transfer tube .
[0008]
This makes it possible to effectively utilize the space formed inside the heat transfer tube wound in a spiral, improve the heat exchanger mounting density, and minimize the storage space. Can be provided. In addition, the heat transfer tube can be easily lengthened, and high performance and capacity expansion of the heat exchanger can be easily realized.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 includes a first heat transfer tube and a second heat transfer tube that include a first flow path through which the first fluid flows and a second flow path through which the second fluid flows, and have a substantially circular cross-sectional shape. The second heat transfer tube is disposed inside the first heat transfer tube, and the first heat transfer tube and the second heat transfer tube are both spirally wound to correspond to the second heat transfer tube. The diameter is smaller than that of the first heat transfer tube , and the space formed inside the heat transfer tube wound spirally is effectively used to improve the mounting density of the heat exchanger. Therefore, the storage space can be minimized, and a heat exchanger that is compact and excellent in the ability to be stored in a device can be provided. In addition, the heat transfer tube can be easily lengthened, and high performance and capacity expansion of the heat exchanger can be easily realized. Furthermore, by arranging a small R-shaped thin tube that is easy to bend in general inside the double structure, it is possible to provide a heat exchanger that is more compact and excellent in storability.
[0010]
The invention according to claim 2 is a double arrangement in which the bending radius of the second heat transfer tube wound spirally is smaller than that of the first heat transfer tube. In addition, since the gap between the first heat transfer tube and the second heat transfer tube can be minimized, a more compact and excellent heat exchanger can be provided.
[0011]
The invention according to claim 3 is the one in which the height in the winding axis direction of the second heat transfer tube wound in a spiral shape is larger than that of the first heat transfer tube in the configuration of claim 1 or 2. And since the connection with the exterior of the 2nd heat exchanger tube arranged inside the double structure becomes easy, a compact and excellent heat exchanger can be provided.
[0012]
In the invention according to claim 4 , the first and second heat transfer tubes communicate with the configuration according to claims 1 to 3 in the vertical upper side in the winding axis direction, and the structure of the entire heat exchanger As an inflow from the lower side in the vertical direction, the fluid rises and falls in the heat exchanger, and finally flows out again from the lower side in the vertical direction. Therefore, maintenance such as drainage using gravity as an anti-freezing measure is facilitated, and a compact and highly reliable heat exchanger can be provided.
[0013]
The invention according to claim 5 is the structure of the first to fourth aspects , in which the first and second heat transfer tubes are composed of a continuous continuous pipe body. Since there is a low possibility of fluid leakage or the like due to poor connection at the joint and the configuration can be simplified, a heat exchanger that is compact and excellent in reliability and productivity can be provided.
[0014]
Invention of Claim 6 is a heat pump water heater which heats water with a refrigerant | coolant, and the heat exchanger of Claims 1-5 is comprised from a compressor, a radiator, an expansion valve, and an evaporator at least. It is used as a heat pump circuit radiator and heats the second fluid water with the first fluid refrigerant. By using the compact and highly reliable heat exchanger of this embodiment, the heat pump water heater as a whole Compactness and improved reliability can be realized.
[0015]
According to the seventh aspect of the invention, in contrast to the configuration of the sixth aspect , in particular, the pressure of the refrigerant is equal to or higher than the critical pressure, and the refrigerant as the first fluid flowing through the heat exchanger is a critical pressure by a compressor. Since it is pressurized as described above, it does not condense even if the temperature is lowered due to heat being taken away by water as the second fluid. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire heat exchanger, high-temperature hot water can be obtained, and heat exchange efficiency can be increased.
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
Example 1
1 and 2 are a side view and a plan view of a heat exchanger 10 in Embodiment 1 of the present invention. 1 and 2, a heat exchanger 10 includes first and second heat transfer tubes 1 and 2 that include a first flow path 3 through which a first fluid flows and a second flow path 4 through which a second fluid flows. And the two heat transfer tubes 2 have a configuration in which the two heat transfer tubes 2 are double-arranged inside the wound first heat transfer tube 1.
[0018]
The first heat transfer tube 1 includes an inner tube 5 and an outer tube 6, and is configured by inserting the inner tube 5 concentrically into the outer tube 6 and winding it in a spiral shape. While the inner pipe 5 is used as the first flow path 3a through which the first fluid (for example, high-temperature and high-pressure refrigerant) flows, the space between the inner pipe 5 and the outer pipe 6 is used for the second fluid (for example, low-temperature and low-pressure water). ) Through which the second flow path 4a flows. Similarly, the second heat transfer tube 2 includes an inner tube 7 and an outer tube 8, and is configured by inserting the inner tube 7 concentrically into the outer tube 8 and winding it spirally. The inner pipe 7 serves as a first flow path 3b through which a first fluid (for example, a high-temperature and high-pressure refrigerant) flows, while a space between the inner pipe 7 and the outer pipe 8 serves as a second fluid (for example, low-temperature and low-pressure water). ) Through which the second flow path 4b flows. At this time, the height H2 of the second heat transfer tube 2 is configured to be greater than the height H1 of the first heat transfer tube 1 with respect to the winding axis direction indicated by the arrow A in FIG. Moreover, the cross section of the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 has a substantially circular shape, and the equivalent diameter D2 of the 2nd heat exchanger tube 2 is comprised smaller than the equivalent diameter D1 of the 1st heat exchanger tube 1. .
[0019]
Note that the first flow paths 3 a and 3 b through which the first fluid flows are in communication with each other in the connection pipe 11 to form a continuous first flow path 3. Similarly, the second flow paths 4 a and 4 b through which the second fluid flows are in communication with each other in the connection pipe 12 to form a continuous second flow path 4. At this time, the first heat transfer tube 1 and the second heat transfer tube 2 communicate with each other in the vertical direction above the winding axis direction indicated by the arrow A in FIG. Further, as shown in FIG. 2, the heat exchanger 10 is configured such that the bending radius R <b> 2 of the second heat transfer tube 2 wound spirally is smaller than the bending radius R <b> 1 of the first heat transfer tube 1.
[0020]
Examples of the material of the tube constituting the heat exchanger 10 include metals having good thermal conductivity and formability, such as copper, aluminum, iron, and stainless steel.
[0021]
The effect | action is demonstrated below about the heat exchanger 10 comprised as mentioned above.
[0022]
In the first heat transfer tube 1 and the second heat transfer tube 2, the first fluid on the high pressure side is passed through the first flow path 3, and the second fluid on the low pressure side is passed through the second flow path 4. When the heat exchanger 10 is used in a refrigerant water heat exchanger of a so-called heat pump water heater that heats hot water using the condensation heat or sensible heat of a compressed refrigerant, as shown in FIG. The first high-pressure fluid is a refrigerant such as carbon dioxide or chlorofluorocarbon sent from the compressor, and the second low-pressure fluid is water for hot water supply.
[0023]
In general, a heat pump water heater includes a heat pump circuit 35 in which a compressor 31, a heat exchanger 10 as a radiator, an expansion valve 33, an evaporator 34 for collecting atmospheric heat and the like are sequentially connected, a hot water storage tank 36, and a water pump 37. And a water circuit 38 in which the heat exchangers 10 are sequentially connected.
[0024]
When heating hot water with such a heat pump water heater, first, the evaporator 34 collects atmospheric heat, solar heat, etc. by a blower fan, a heat collecting panel, etc., and evaporates the refrigerant flowing in the air. . This refrigerant is sucked into the compressor 31, mechanically compressed, and sent to the first flow path 3 of the heat exchanger 10 as a high-temperature and high-pressure refrigerant.
[0025]
The water in the lower part of the hot water storage tank 36 is conveyed by a circulating water pump 37 and flows into the second flow path 4 of the heat exchanger 10. Here, the high-temperature and high-pressure refrigerant flows into the first heat transfer tube 1 and flows out of the second heat transfer tube 2 through the connection tube 11 as indicated by solid arrows in FIG.
[0026]
On the other hand, when low-temperature and low-pressure water is flowed in the opposite direction, a counter-current flow excellent in heat exchange performance can be obtained as a heat transfer mode. At this time, the high-temperature and high-pressure refrigerant flowing through the first flow paths 3a and 3b exchanges heat with the low-temperature and low-pressure water flowing through the second flow paths 4a and 4b located therearound via the inner pipes 5 and 7. Will do. While flowing through the second flow path 4, the low-temperature hot water supply water receives heat from the high-temperature refrigerant and becomes high-temperature hot water, and flows into the hot water storage tank 36.
[0027]
The refrigerant radiated by the heat exchanger 10 is decompressed by the expansion valve 33 and flows into the evaporator 34. Here, the refrigerant again absorbs heat from atmospheric heat or the like and is supplied to the next compressor 31.
[0028]
In addition to the carbon dioxide refrigerant, examples of the refrigerant used for the heat pump water heater include a fluorocarbon refrigerant such as R410a and a hydrocarbon refrigerant such as propane and butane.
[0029]
According to the present embodiment, by arranging the second heat transfer tube 2 inside the first heat transfer tube 1, the space formed inside the first heat transfer tube 1 wound spirally is effectively utilized. And the mounting density of the heat exchanger 10 whole can be improved, the storage space can be minimized, and the storage property to equipment such as a heat pump water heater can be sufficiently secured. Further, when the heat exchanger tube is lengthened as necessary to increase the performance and capacity of the heat exchanger 10, it is excellent in compactness, so that these can be easily realized.
[0030]
Moreover, since the bending radius R2 of the 2nd heat exchanger tube 2 wound helically is smaller than the bending radius R1 of the 1st heat exchanger tube 1, the 1st heat exchanger tube 1 and the 2nd heat exchanger tube 2 which were arrange | positioned doubly. The gap between the two can be minimized, and the dead space can be reduced.
[0031]
Moreover, when the bending radius R2 of the 2nd heat exchanger tube 2 is larger than the bending radius R1 of the 1st heat exchanger tube 1, a straight part is provided in the bending location of the 1st heat exchanger tube 1, and the whole is made into substantially square shape. This is necessary, and is accompanied by an increase in dead space, an increase in the number of bending processes, and a decrease in productivity.
[0032]
Furthermore, since the cross section of the first and second heat transfer tubes 1 and 2 has a substantially circular shape and the equivalent diameter D2 of the second heat transfer tube 2 is smaller than the equivalent diameter D1 of the first heat transfer tube 1, the inner and outer double A more compact heat exchanger can be configured by arranging small R-shaped thin tubes that are generally easy to bend inside the structure.
[0033]
Here, consider the case where the heat exchanger 10 of the present embodiment is applied to, for example, a refrigerant-to-water heat exchanger that heats water (particularly tap water) with a refrigerant. In general, when water containing a large amount of hardness components such as calcium and magnesium is heated to a high temperature for a long period of time with such a refrigerant-to-water heat exchanger, a scale is generated in the vicinity of the outlet portion of the water-side channel that is at the highest temperature. there is a possibility. When such a scale adheres to the inner periphery of the water-side flow path, it becomes water flow resistance and pressure loss increases, and it becomes heat resistance of the heat transfer surface and reduces the performance as a heat exchanger.
[0034]
Assuming such a case, in this embodiment, the equivalent diameter D1 of the first heat transfer tube 1 on the high temperature side for water is made larger than the equivalent diameter D2 of the second heat transfer tube 2 on the low temperature side. Since the cross-sectional area of the second flow path 4a between the pipe 5 and the outer pipe 6 is configured to be larger than the cross-sectional area of the second flow path 4b between the inner pipe 7 and the outer pipe 8, by any chance Even when scales or the like are generated and adhered in the channel, the increase in the flow resistance of water is mitigated, and the life of the heat exchanger is extended.
[0035]
Further, the height H2 of the second heat transfer tube 2 wound in a spiral shape in the direction of the winding axis A is larger than the height H1 of the first heat transfer tube 1, and is arranged inside the double structure. Further, since the second heat transfer tube 2 does not interfere with the first heat transfer tube 1 and the pipe connection with the first heat transfer tube 1 or the outside becomes easy, a compact and highly productive heat exchanger is provided. be able to.
[0036]
Further, the first and second heat transfer tubes 1 and 2 communicate with each other on the vertical upper side in the direction of the winding axis A. As a structure of the entire heat exchanger, the first heat transfer tubes 1 and 2 flow in from the lower side in the vertical direction. An inverted U-shaped configuration can be adopted in which the fluid rises and falls and finally flows out again from the lower side in the vertical direction. This is because, for example, when water is drained as a measure to prevent freezing of the heat exchanger in winter, if both ends of the second flow path 4 are opened to the atmosphere, water is not trapped in the heat exchanger and is easily trapped by gravity. This means that water can be drained. Therefore, maintenance such as draining becomes easy.
[0037]
Further, the heat exchanger 10 of the present embodiment is used as a radiator of a heat pump circuit including at least a compressor, a radiator, an expansion valve, and an evaporator, and the water of the second fluid is heated by the refrigerant of the first fluid. By using a compact and highly reliable heat exchanger, the heat pump water heater as a whole can be downsized and improved in reliability.
[0038]
In particular, if oxygen dioxide or the like is used as the refrigerant and the pressure thereof is equal to or higher than the critical pressure, the refrigerant that is the first fluid flowing through the heat exchanger is pressurized to the critical pressure or higher by the compressor. The heat is taken away by the water as the second fluid and does not condense even if the temperature drops, and it becomes easy to form a temperature difference between the refrigerant and the water throughout the heat exchanger, and hot water is obtained, and Heat exchange efficiency can be increased.
[0039]
Therefore, it is possible to provide a heat exchanger that is compact and excellent in storage property in equipment and that is excellent in productivity, reliability, and heat transfer performance.
[0040]
(Example 2)
FIG. 4 is a side view of the heat exchanger 20 according to the second embodiment of the present invention. Since the overall configuration and operation of the heat exchanger of the present embodiment are substantially the same as those of the heat exchanger 10 shown in FIG. 1, detailed description thereof is omitted here. The difference from the first embodiment is that the first heat transfer tube 1 and the second heat transfer tube 2 are formed of a continuous tube body without a joint. Such a configuration spirals the tube body in the form of the first heat transfer tube 1 so as to surround the outer periphery continuously after the tube body is spirally wound in the form of the second heat transfer tube 2 disposed inside. What is necessary is just to wind in the shape, and it can implement | achieve easily.
[0041]
Therefore, according to the present embodiment, as described in the first embodiment, the heat exchanger can be configured by a continuous tube body without providing a connecting pipe between the pipes arranged inside and outside. In addition, the possibility of fluid leakage or the like due to poor connection between the connecting portions of the tubes is low, and the configuration can be simplified. Therefore, it is possible to provide a heat exchanger that is compact and excellent in reliability and productivity.
[0042]
In the first embodiment, the first heat transfer tube 1 and the second heat transfer tube 2 have different cross-sectional shapes, but of course, they may have the same cross-sectional shape.
[0043]
Further, in each of the above-described embodiments, the first and second heat transfer tubes are assumed to be double tubes composed of an inner tube and an outer tube. However, the present invention is not limited to this as long as it has a substantially tubular form. Absent. For example, each heat transfer tube may be a so-called triple tube configured as a double tube in which an inner tube is covered with a smooth tube and an inner grooved tube, so that fluid leakage due to damage to the tube due to corrosion or the like may occur. It is detected in advance through the inner groove, and the reliability of the heat exchanger can be further expanded. In addition, other examples of such heat transfer tubes are substantially tubular, such as those in which a thin tube is spirally wound around the outer periphery of the round tube, and a plurality of thin tubes arranged concentrically around the round tube. Any type can be used as long as it can be wound spirally.
[0044]
【The invention's effect】
As described above, according to the present invention, the space formed inside the heat transfer tube wound spirally is effectively used to improve the mounting density of the heat exchanger, and the storage space and thus the entire apparatus can be improved. A compact and excellent heat exchanger can be provided without changing the size. In addition, the heat transfer tube can be easily lengthened, and high performance and capacity expansion of the heat exchanger can be easily realized.
[0045]
Further, by using the heat exchanger of the present invention that is compact and excellent in reliability, it is possible to realize a compact heat pump water heater and an improvement in reliability.
[Brief description of the drawings]
1 is a side view of a heat exchanger according to a first embodiment of the present invention. FIG. 2 is a plan view of a heat exchanger according to a first embodiment of the present invention. FIG. 3 uses the heat exchanger according to a first embodiment of the present invention. Fig. 4 is a side view of a heat exchanger according to a second embodiment of the present invention. Fig. 5 is a side view of a conventional heat exchanger. Fig. 6 is a plan view of a conventional heat exchanger. Explanation of]
DESCRIPTION OF SYMBOLS 1 1st heat exchanger tube 2 2nd heat exchanger tube 3, 3a, 3b 1st flow path 4, 4a, 4b 2nd flow path 10 Heat exchanger

Claims (7)

第1流体が流れる第1流路と第2流体が流れる第2流路とを内包し、断面形状が略円形状である第1伝熱管および第2伝熱管とを備え、前記第2伝熱管は、前記第1伝熱管の内側に配置されるとともに、前記第1伝熱管と前記第2伝熱管がともに螺旋状に巻回し、前記第2伝熱管の相当直径が前記第1伝熱管よりも小さいことを特徴とする熱交換器。 Enclosing a second flow path first flow path and the second fluid first fluid flow flows, and a first heat transfer pipe and the second heat transfer pipe cross section is substantially circular, the second heat transfer pipe Is arranged inside the first heat transfer tube, the first heat transfer tube and the second heat transfer tube are both spirally wound, and the equivalent diameter of the second heat transfer tube is larger than that of the first heat transfer tube. A heat exchanger characterized by being small . 螺旋状に巻回された第2伝熱管の曲げ半径が第1伝熱管よりも小さい請求項1記載の熱交換器。  The heat exchanger according to claim 1, wherein a bending radius of the second heat transfer tube wound spirally is smaller than that of the first heat transfer tube. 螺旋状に巻回された第2伝熱管の巻回軸方向の高さが、第1伝熱管よりも大きい請求項1または2に記載の熱交換器。The heat exchanger according to claim 1 or 2 , wherein a height of the second heat transfer tube wound in a spiral shape in a winding axis direction is larger than that of the first heat transfer tube. 第1伝熱管および第2伝熱管が巻回軸方向の鉛直上側で連通する請求項1〜3のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3 , wherein the first heat transfer tube and the second heat transfer tube communicate with each other vertically above the winding axis. 第1伝熱管および第2伝熱管が継ぎ目のない連続した管体から構成される請求項1〜4のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4 , wherein the first heat transfer tube and the second heat transfer tube are constituted by a continuous tubular body having no seams. 少なくとも圧縮機、放熱器、膨張弁、蒸発器から構成されるヒートポンプ回路を備え、前記放熱器は請求項1〜5のいずれか1項に記載の熱交換器を用い、第1流体の冷媒により第2流体の水を加熱するヒートポンプ給湯機。A heat pump circuit including at least a compressor, a radiator, an expansion valve, and an evaporator is provided, and the radiator uses the heat exchanger according to any one of claims 1 to 5 and uses a first fluid refrigerant. A heat pump water heater for heating the water of the second fluid. 冷媒の圧力が臨界圧力以上となる請求項6記載のヒートポンプ給湯機。The heat pump water heater according to claim 6 , wherein the pressure of the refrigerant is equal to or higher than the critical pressure.
JP2003163604A 2003-06-09 2003-06-09 Heat exchanger and heat pump water heater using the same Expired - Fee Related JP3922214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163604A JP3922214B2 (en) 2003-06-09 2003-06-09 Heat exchanger and heat pump water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163604A JP3922214B2 (en) 2003-06-09 2003-06-09 Heat exchanger and heat pump water heater using the same

Publications (2)

Publication Number Publication Date
JP2005003209A JP2005003209A (en) 2005-01-06
JP3922214B2 true JP3922214B2 (en) 2007-05-30

Family

ID=34090678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163604A Expired - Fee Related JP3922214B2 (en) 2003-06-09 2003-06-09 Heat exchanger and heat pump water heater using the same

Country Status (1)

Country Link
JP (1) JP3922214B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044365B2 (en) * 2006-11-04 2012-10-10 住友軽金属工業株式会社 Double tube heat exchanger
JP2010112596A (en) * 2008-11-05 2010-05-20 Sanden Corp Heat exchanger and hot water supply device using the same
JP2010139101A (en) * 2008-12-09 2010-06-24 Sanden Corp Heat exchanger and hot water supply device using the same
JP2011064401A (en) * 2009-09-17 2011-03-31 Yutaka Ukuta Hot water supply system by air conditioner
JP5894958B2 (en) * 2013-04-08 2016-03-30 リンナイ株式会社 Water heat exchanger
JP6159579B2 (en) * 2013-05-29 2017-07-05 リンナイ株式会社 Water heater
CN108826678A (en) * 2018-08-13 2018-11-16 珠海格力电器股份有限公司 heat exchanger structure and air energy water heater

Also Published As

Publication number Publication date
JP2005003209A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4211041B2 (en) Heat pump water heater
JP2006258368A (en) Heat exchanger and heat pump water heater using it
CN102239370A (en) In-ground heat exchanger and air conditioning system equipped with same
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
JP3922214B2 (en) Heat exchanger and heat pump water heater using the same
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2005133999A (en) Heat pump type hot-water supplier
US10495383B2 (en) Wound layered tube heat exchanger
MXPA05005354A (en) Heat exchanger.
US20060108107A1 (en) Wound layered tube heat exchanger
US20060032244A1 (en) Water-heating dehumidifier
JP2004286438A (en) Heat exchanger
CN101487649A (en) Heater
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
KR101727914B1 (en) Heat exchanger
JP2005127529A (en) Heat exchanger
JP3938053B2 (en) Heat exchanger
JP2006207936A (en) Heat exchanger
JP3966260B2 (en) Heat pump water heater
JP2005249325A (en) Heat exchanger and heat pump water heater using the same
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
JP3906797B2 (en) Heat exchanger
CN102918348B (en) Heat exchanger and heat pump that uses same
JP2007292331A (en) Heat pump water heater
CN104896974A (en) Transcritical CO&lt;2&gt; heat pump one-piece heat exchanger, water tank and water heating all-in-one machine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees