WO2019102595A1 - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
WO2019102595A1
WO2019102595A1 PCT/JP2017/042262 JP2017042262W WO2019102595A1 WO 2019102595 A1 WO2019102595 A1 WO 2019102595A1 JP 2017042262 W JP2017042262 W JP 2017042262W WO 2019102595 A1 WO2019102595 A1 WO 2019102595A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
heat exchanger
passage
insulating material
Prior art date
Application number
PCT/JP2017/042262
Other languages
French (fr)
Japanese (ja)
Inventor
周二 茂木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019556059A priority Critical patent/JP6798628B2/en
Priority to PCT/JP2017/042262 priority patent/WO2019102595A1/en
Publication of WO2019102595A1 publication Critical patent/WO2019102595A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the present invention relates to a heat pump device.
  • a heat pump apparatus which heats a heat medium by exchanging heat between a refrigerant compressed by a compressor and a heat medium such as water.
  • the following heat pump apparatus is disclosed by the following patent document 1.
  • FIG. The refrigerant pipe between the evaporator (17) and the compressor (13) is led to a position in non-contact with the refrigerant-water heat exchanger (14).
  • a heat absorbing means (18) is provided to absorb the radiant heat emitted from the refrigerant-water heat exchanger (14).
  • the heat absorbing means (18) applies heat to the refrigerant drawn into the compressor (13).
  • symbol in patent document 1 is shown in a parenthesis.
  • Patent Document 1 has the following problems. Since a part of the radiant heat emitted from the refrigerant-water heat exchanger (14) is dissipated to the space without being absorbed by the heat absorption means (18), the loss of thermal energy is large. Since the heat absorption means (18) is located in the inner space of the cylindrical refrigerant-water heat exchanger (14), its size is limited. For this reason, it is difficult to provide sufficient heat to the refrigerant drawn into the compressor (13). The air in the internal space of the cylindrical refrigerant-water heat exchanger (14) is cooled by the heat absorption means (18) to lower its temperature. As a result, the amount of heat to be given to the water passing through the refrigerant-water heat exchanger (14) is reduced, and the loss of thermal energy is large.
  • the present invention has been made to solve the problems as described above, and provides a heat pump device capable of providing heat to a refrigerant sucked into a compressor with a configuration with little loss of thermal energy. With the goal.
  • the heat pump apparatus of the present invention comprises at least a compressor for compressing a refrigerant, a first heat exchanger for exchanging heat between a heat medium and a refrigerant compressed by the compressor, and a first heat exchanger.
  • a decompression device that decompresses the refrigerant downstream of the first heat exchanger, a second heat exchanger that evaporates the refrigerant downstream of the decompression device, an outlet of the second heat exchanger, and compression
  • a suction refrigerant passage which is a passage connecting the suction port of the machine, the heat insulating material has an inner surface facing the first heat exchanger, an outer surface opposite to the inner surface, and the suction refrigerant passage
  • a heat absorption passage which is a passage passing between the inner surface and the outer surface of the heat insulating material.
  • the heat absorption passage which is a passage passing between the inner surface and the outer surface of the heat insulating material covering the first heat exchanger, is configured to include the suction refrigerant passage. And heat can be given to the refrigerant drawn into the compressor.
  • FIG. 1 is a front view showing an internal structure of a heat pump device according to Embodiment 1.
  • FIG. 1 is a plan view showing an internal structure of a heat pump device according to a first embodiment.
  • FIG. 2 is a plan view showing a water-refrigerant heat exchanger and a heat insulating material provided in the heat pump device according to the first embodiment.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3;
  • FIG. 2 is a plan view showing a water-refrigerant heat exchanger and a heat insulating material provided in the heat pump device according to the first embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the external appearance perspective view which looked at the heat pump apparatus by Embodiment 1 diagonally.
  • FIG. 7 is a front view showing an internal structure of a heat pump device according to Embodiment 2.
  • FIG. 7 is a plan view showing an internal structure of a heat pump device according to Embodiment 2.
  • FIG. 7 is a figure which shows the refrigerant circuit and water circuit of a heat pump hot-water supply system provided with the heat pump apparatus by Embodiment 2.
  • FIG. 7 is a front view showing an internal structure of a heat pump device according to Embodiment 2.
  • FIG. 7 is a plan view showing an internal structure of a heat pump device according to Embodiment 2.
  • FIG. 2 shows the refrigerant circuit and water circuit of a heat pump hot-water supply system provided with the heat pump apparatus by Embodiment 2.
  • FIG. 1 is a front view showing the internal structure of the heat pump device 1 according to the first embodiment.
  • FIG. 2 is a plan view showing the internal structure of the heat pump device 1 according to the first embodiment.
  • FIG. 3 is a plan view showing the water-refrigerant heat exchanger 8 and the heat insulating material 12 provided in the heat pump device 1 according to the first embodiment.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a plan view showing the water-refrigerant heat exchanger 8 and the heat insulating material 12 provided in the heat pump device 1 according to the first embodiment.
  • FIG. 6 is an external perspective view of the heat pump device 1 according to the first embodiment as viewed obliquely from the front.
  • FIG. 1 is a front view showing the internal structure of the heat pump device 1 according to the first embodiment.
  • FIG. 2 is a plan view showing the internal structure of the heat pump device 1 according to the first embodiment.
  • FIG. 3 is a plan view
  • FIG. 7 is an external perspective view of the heat pump device 1 according to the first embodiment as viewed obliquely from behind.
  • FIG. 8 is a diagram showing a refrigerant circuit and a water circuit of a heat pump hot water supply system provided with the heat pump device 1 according to the first embodiment.
  • the heat pump apparatus 1 corresponds to a heat pump outdoor unit installed outdoors.
  • the heat pump apparatus 1 heats a liquid heat medium.
  • the heat medium in the present embodiment is water.
  • the heat pump apparatus 1 heats water to generate hot water.
  • the heat medium in the present invention may be, for example, a liquid other than water, such as an aqueous solution of calcium chloride, an aqueous solution of ethylene glycol, an aqueous solution of propylene glycol, and an alcohol.
  • the heat pump apparatus 1 includes a compressor 2, an air-refrigerant heat exchanger 7, a water-refrigerant heat exchanger 8, and an expansion valve 10 as components of a refrigerant circuit.
  • the casing forming the outer shell of the heat pump device 1 includes a base 17 corresponding to the bottom of the casing. As shown in FIGS. 1 and 2, on the base 17, a machine room 14 is formed on the right side and a fan room 15 is formed on the left side, as viewed from the front. The machine room 14 and the fan room 15 are separated by a partition plate 16.
  • the housing includes a front panel 18, a back panel 19, and a top panel 20 in addition to the base 17.
  • Each of these components of the housing may, for example, be made of sheet metal.
  • the front panel 18 has a front surface portion 18a forming the front surface of the housing and a left surface portion 18b forming the left side surface of the housing.
  • the back panel 19 has a rear surface 19a that forms the rear surface of the housing and a right surface 19b that forms the right surface of the housing.
  • the top panel 20 forms the upper surface of the housing.
  • the outer surface of the heat pump apparatus 1 is covered by this casing except for the air-refrigerant heat exchanger 7 disposed on the rear side.
  • An exhaust port for discharging the air having passed through the fan chamber 15 is formed on the front surface portion 18a of the front panel 18, and a lattice 18c is attached to the exhaust port.
  • 1 and 2 show a state in which the front panel 18 and the top panel 20 are removed. Moreover, in FIG. 1 and FIG. 2, illustration of a part of component components is omitted.
  • the compressor 2 As shown in FIGS. 1 and 2, the compressor 2, the expansion valve 10 (not shown in FIGS. 1 and 2), the refrigerant pipe connecting these, and other refrigerant circuit components are provided in the machine chamber 14 Is incorporated.
  • the compressor 2 includes a compression unit and a motor.
  • the compression unit compresses the refrigerant.
  • the motor drives the compression unit. Electric power supplied from the outside drives the motor of the compressor 2.
  • the low pressure refrigerant is drawn into the compressor 2.
  • a coil incorporating member is attached to the outer side surface of its main body. The flow path opening of the refrigerant is adjusted by energizing the coil from the outside.
  • the expansion valve 10 can adjust the pressure of the high pressure refrigerant on the upstream side thereof and the pressure of the low pressure refrigerant on the downstream side thereof.
  • the expansion valve 10 corresponds to a pressure reducing device that converts the high pressure refrigerant on the downstream side of the water-refrigerant heat exchanger 8 into a low pressure refrigerant by expanding and reducing the pressure.
  • the fan room 15 has a space larger than the machine room 14 in order to secure an air path.
  • the blower 6 is incorporated in the blower chamber 15.
  • the blower 6 includes two to three propeller blades and a motor that rotationally drives the propeller blades. The electric power supplied from the outside rotates the motor and propeller blades.
  • an air-refrigerant heat exchanger 7 is installed on the rear surface side of the fan chamber 15 so as to face the fan 6.
  • the air-refrigerant heat exchanger 7 is provided with a large number of thin aluminum plate fins and a long long refrigerant pipe closely attached to the thin aluminum plate fins and reciprocated several times.
  • the air-refrigerant heat exchanger 7 has a flat plate-like outer shape bent in an L shape in plan view.
  • the air-refrigerant heat exchanger 7 is installed from the rear surface to the left surface of the heat pump device 1. In the air-refrigerant heat exchanger 7, heat is exchanged between the refrigerant in the refrigerant pipe and the air around the fins.
  • the air flow of the air flowing between the fins is increased by the blower 6 and adjusted, and the amount of heat exchange is increased and adjusted.
  • the refrigerant piping of the air-refrigerant heat exchanger 7 is mainly made of a metal material such as a copper material.
  • the air-refrigerant heat exchanger 7 corresponds to a second heat exchanger or evaporator that evaporates the refrigerant.
  • a water-refrigerant heat exchanger 8 is installed on the base 17 in the lower part of the fan room 15.
  • the water-refrigerant heat exchanger 8 corresponds to a first heat exchanger that exchanges heat between the high-temperature and high-pressure refrigerant compressed by the compressor 2 and water as a heat medium. The water is heated in the water-refrigerant heat exchanger 8 to generate hot water.
  • the water-refrigerant heat exchanger 8 may have, for example, a bend-formed configuration in which a long water pipe and a long refrigerant pipe are in close contact with each other.
  • the water-refrigerant heat exchanger 8 is covered with a heat insulating material 12.
  • the heat insulator 12 at least partially covers the water-refrigerant heat exchanger 8.
  • the heat insulating material 12 of the present embodiment is formed in a shape like a container having a substantially rectangular outer shape.
  • the heat insulating material 12 may be made of, for example, a heat insulating material made of foamed polyurethane such as foamed polyurethane or polystyrene foam.
  • the thermal insulation 12 may be made of other thermal insulation material, such as vacuum insulation, glass wool, for example.
  • the heat insulating material 12 may be made by combining a plurality of heat insulating materials.
  • the outer side of the heat insulating material 12 is covered with a metal case, but in the present disclosure, the illustration of the case is omitted.
  • a blower 6 is disposed above the heat insulating material 12.
  • the inlet of the refrigerant of the water-refrigerant heat exchanger 8 is connected to the discharge port of the compressor 2 via a refrigerant passage.
  • the refrigerant outlet of the water-refrigerant heat exchanger 8 is connected to the inlet of the expansion valve 10 via a refrigerant passage.
  • the outlet of the expansion valve 10 is connected to the inlet of the refrigerant of the air-refrigerant heat exchanger 7 via a refrigerant passage.
  • the refrigerant outlet of the air-refrigerant heat exchanger 7 is connected to the suction port of the compressor 2 via a refrigerant passage.
  • suction refrigerant passage the refrigerant passage connecting the outlet of the refrigerant of the air-refrigerant heat exchanger 7 and the suction port of the compressor 2 is referred to as “suction refrigerant passage”.
  • the suction refrigerant passage includes a heat absorption passage 11.
  • the heat absorption passage 11 passes through the inside of the heat insulating material 12.
  • the heat absorption passage 11 constitutes a part of a suction refrigerant passage. It is desirable that the refrigerant pipe forming the heat absorption passage 11 and the like be made of metal such as copper, for example.
  • the heat insulating material 12 has an upper surface wall 12a, a lower surface wall 12b, a front wall 12c, a rear surface wall 12d, a right surface wall 12e, and a left surface wall 12f.
  • the upper surface wall 12 a covers the upper surface of the water-refrigerant heat exchanger 8.
  • the lower wall 12b covers the lower surface of the water-refrigerant heat exchanger 8.
  • the front wall 12 c covers the front of the water-refrigerant heat exchanger 8.
  • the rear wall 12 d covers the rear surface of the water-refrigerant heat exchanger 8.
  • the right side wall 12e covers the right side of the water-refrigerant heat exchanger 8.
  • the left wall 12f covers the left side of the water-refrigerant heat exchanger 8.
  • the “side surface of the water-refrigerant heat exchanger 8” refers to a surface of the outer surface of the water-refrigerant heat exchanger 8 other than the upper surface and the lower surface.
  • each of the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f corresponds to a side wall covering the side of the water-refrigerant heat exchanger 8.
  • the heat absorption passage 11 passes through the inside of the lower wall 12b, the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f in the heat insulating material 12.
  • the lower wall 12b has an inner surface 12g and an outer surface 12h.
  • the inner surface 12g is a surface facing the water-refrigerant heat exchanger 8, and corresponds to the upper surface of the lower surface wall 12b.
  • the outer surface 12h is a surface opposite to the inner surface 12g, and corresponds to the lower surface of the lower surface wall 12b.
  • a portion of the heat absorption passage 11 passes between the inner surface 12g and the outer surface 12h of the lower surface wall 12b.
  • the heat absorption passage 11 passes between the inner surface and the outer surface.
  • the water-refrigerant heat exchanger 8 has a high temperature because a high temperature refrigerant flows inside.
  • the inner surface of each wall of the heat insulating material 12 is hotter than the outer surface. For this reason, heat conduction from the inner surface to the outer surface of each wall of the heat insulating material 12 occurs. Part of the heat is given to the refrigerant passing through the heat absorption passage 11. Thereby, the following effects can be obtained.
  • the temperature of the refrigerant drawn into the compressor 2 can be raised. As a result, since the target value of the discharge refrigerant temperature can be achieved at a relatively low compression ratio, the energy required to drive the compressor 2 can be reduced.
  • the liquid compression can be reliably prevented from occurring.
  • the vibration of the heat pump device 1 low frequency noise and noise may increase.
  • the possibility of breakage of the compression part of the compressor 2 can be reliably reduced while suppressing the increase in the material cost and the assembly cost of the heat pump device 1.
  • the heat absorption passage 11 by disposing the heat absorption passage 11 inside the heat insulating material 12, the heat transmitted from the water-refrigerant heat exchanger 8 to the heat insulation material 12 is wasted with respect to the refrigerant passing through the heat absorption passage 11. Can be given without. For this reason, when heating the refrigerant drawn into the compressor 2, the thermal energy can be effectively used, and the loss of the thermal energy is small.
  • the heat absorption passage 11 is in contact with the water-refrigerant heat exchanger 8 via the heat insulating material 12, and the high temperature water-refrigerant heat exchanger 8 is in direct contact with the heat absorption passage 11. There is not. For this reason, it is possible to reliably prevent the heat absorption passage 11 from being supplied with the heat amount to be supplied from the high temperature refrigerant to the water in the water-refrigerant heat exchanger 8. Therefore, the reduction of the heating capacity of the water-refrigerant heat exchanger 8 can be reliably prevented. In order to achieve the above effects more reliably, it is desirable that the heat absorption passage 11 and the water-refrigerant heat exchanger 8 be configured not to have direct contact with each other.
  • the outer surface of the heat absorption passage 11 is the heat insulating material constituting the lower wall 12b, the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f of the heat insulating material 12. Close contact without gaps. Therefore, thermal energy can be transmitted from the heat insulating material 12 to the heat absorption passage 11 without waste. If at least a part of the outer surface of the heat absorption passage 11 contacts the heat insulating material 12 without a gap, an effect similar to the above effect can be obtained.
  • the heat absorption passage 11 may be formed so as to be embedded in the heat insulating material 12 by performing insert molding at the time of manufacturing the heat insulating material 12.
  • a tube forming the heat absorption passage 11 is disposed in a mold for forming the heat insulating material 12 made of foamed plastic, and the material of the heat insulating material 12 is filled so as to surround the tube.
  • the heat absorption passage 11 can be integrally molded with the heat insulating material 12, and can be easily manufactured.
  • the heat insulating material 12 may be manufactured as follows. Two heat insulation panels made of foamed plastic are prepared, with grooves formed on one side according to the shape of heat absorption passage 11, and the two heat insulation panels are pasted so as to sandwich the tube forming heat absorption passage 11 between them. Match. As a result, the heat absorption passage 11 can be embedded inside the heat insulating material 12 made of foamed plastic.
  • the top wall 12 a of the heat insulating material 12 is removable from the other parts of the heat insulating material 12.
  • the heat absorption passage 11 is not embedded in the upper surface wall 12a.
  • the heat absorption passage 11 has an inlet 11a and an outlet 11c. As shown in FIG. 5, the inlet 11a is located at the edge of the lower wall 12b.
  • the heat absorption passage 11 passing through the inside of the lower surface wall 12 b has a plurality of folded portions 11 b.
  • the folded back portion 11 b is curved in a circular arc having a central angle of 180 °.
  • the bending directions of the plurality of folded portions 11 b alternate in a first direction and a second direction opposite to the first direction.
  • the heat absorption passage 11 inside the lower surface wall 12 b is arranged to meander.
  • the length of the heat absorption passage 11 can be made sufficiently long. Therefore, the heat transmitted from the water-refrigerant heat exchanger 8 to the lower surface wall 12b of the heat insulating material 12 Can be applied to the refrigerant of the heat absorption passage 11 more efficiently. If the heat absorption passage 11 has at least one folded portion 11 b located inside the heat insulating material 12, an effect similar to the above effect can be obtained.
  • the heat absorption passage 11 may be disposed in a spiral shape inside the lower surface wall 12b. Even in such a case, since the length of the heat absorption passage 11 can be made sufficiently long, an effect similar to the above effect can be obtained.
  • the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f of the heat insulating material 12 cover the entire circumference of the side surface of the water-refrigerant heat exchanger 8.
  • the heat absorption passage 11 having passed through the lower wall 12b extends inside the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f.
  • the heat absorption passage 11 is disposed to rotate around the water-refrigerant heat exchanger 8 a plurality of times. As shown in FIG.
  • the refrigerant in the heat absorption passage 11 rotates around the water-refrigerant heat exchanger 8 in a counterclockwise direction in plan view. As shown in FIG. 4, the refrigerant in the heat absorption passage 11 moves upward while rotating around the water-refrigerant heat exchanger 8, and reaches the outlet 11c. As described above, in the inside of the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f, the heat absorption passage 11 is disposed in a spiral or spiral shape.
  • the heat absorption passage 11 can be made sufficiently long by arranging the heat absorption passage 11 to rotate around the water-refrigerant heat exchanger 8 a plurality of times. Therefore, the heat transmitted from the water-refrigerant heat exchanger 8 to the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f of the heat insulator 12 is more efficiently applied to the refrigerant of the heat absorption passage 11 It becomes possible to give. If the heat absorption passage 11 is disposed so as to make at least one turn around the water-refrigerant heat exchanger 8, an effect similar to the above effect can be obtained.
  • the inlet 11 a of the heat absorption passage 11 is connected to the outlet of the refrigerant of the air-refrigerant heat exchanger 7 via the refrigerant passage 51.
  • the outlet 11 c of the heat absorption passage 11 is connected to the suction port of the compressor 2 via the refrigerant passage 52.
  • the suction refrigerant passage in the present embodiment includes the refrigerant passage 51, the heat absorption passage 11, and the refrigerant passage 52.
  • an electrical component storage box 9 is installed at the top of the machine room 14.
  • An electronic substrate 24 is accommodated in the electrical component storage box 9.
  • Electronic parts, electric parts and the like that constitute modules that drive and control the compressor 2, the expansion valve 10, the blower 6 and the like are attached to the electronic substrate 24.
  • Each module is controlled, for example, as follows.
  • the rotation speed of the motor of the compressor 2 is changed to a predetermined rotation speed of about several tens rps (Hz) to one hundred rps (Hz).
  • the opening degree of the expansion valve 10 is changed to a predetermined amount.
  • the rotation speed of the blower 6 is changed to a predetermined rotation speed of about several hundred rpm to about 1,000 rpm.
  • the electrical component storage box 9 is provided with a terminal block 9a for connecting external electrical wiring. As shown in FIGS. 6 and 7, a service panel 27 for protecting a terminal block 9a and a water inlet valve 28 and a hot water outlet valve 29 described later is attached to the right surface 19b of the back panel 19. .
  • the refrigerant may be, for example, a CO 2 refrigerant which is in a supercritical state on the high pressure side.
  • water circuit components including an inner pipe 30 and an inner pipe 31 are incorporated.
  • the inner pipe 30 connects between the water inlet valve 28 and the water inlet of the water-refrigerant heat exchanger 8.
  • the internal pipe 31 connects the hot water outlet of the water-refrigerant heat exchanger 8 and the hot water outlet valve 29.
  • the heat pump device 1 and the hot water storage device 33 constitute a heat pump hot water supply system.
  • the hot water storage device 33 includes, for example, a hot water storage tank 34 having a capacity of about several hundreds of liters, and a water pump 35 for feeding water in the hot water storage tank 34 to the heat pump device 1.
  • the heat pump device 1 and the hot water storage device 33 are connected via an external pipe 36, an external pipe 37, and electrical wiring (not shown).
  • the lower portion of the hot water storage tank 34 is connected to the inlet of the water pump 35 via a pipe 38.
  • the external pipe 36 connects between the outlet of the water pump 35 and the water inlet valve 28 of the heat pump device 1.
  • the external pipe 37 connects between the hot water outlet valve 29 of the heat pump device 1 and the hot water storage device 33.
  • the external pipe 37 can communicate with the upper portion of the hot water storage tank 34 via the pipe 39 in the hot water storage device 33.
  • the hot water storage device 33 further includes a mixing valve 40.
  • a hot water supply pipe 41 branched from the pipe 39, a water supply pipe 42 through which water supplied from a water source such as a water pipe passes, and a hot water supply pipe 43 through which hot water supplied to the user passes are connected to the mixing valve 40 There is.
  • the mixing valve 40 regulates the hot water supply temperature by adjusting the mixing ratio of hot water flowing from the hot water supply pipe 41, that is, high temperature water, and low temperature water flowing from the water supply pipe 42.
  • the hot water mixed by the mixing valve 40 is sent through the hot water supply pipe 43 to a user-side terminal such as a bath, a shower, a faucet, and a dishwasher.
  • the water supply pipe 44 branched from the water supply pipe 42 is connected to the lower part of the hot water storage tank 34. The water flowing in from the water supply pipe 44 is stored at the lower side in the hot water storage tank 34.
  • the hot water storage operation is an operation of storing thermal energy in the hot water storage tank 34 by causing the hot water heated by the heat pump device 1 to flow into the hot water storage tank 34 of the hot water storage device 33.
  • the compressor 2, the blower 6 and the water pump 35 are operated.
  • the rotational speed of the motor of the compressor 2 can be varied in the range of several tens rps (Hz) to hundreds rps (Hz).
  • the heating capacity can be adjusted and controlled by changing the flow rate of the refrigerant.
  • the rotational speed of the motor of the blower 6 changes to about several hundred rpm to about 1,000 rpm, and the flow rate of the air passing through the air-refrigerant heat exchanger 7 is changed to change the refrigerant and air in the air-refrigerant heat exchanger 7 Control the amount of heat exchange.
  • the air is drawn in from the rear of the air-refrigerant heat exchanger 7 installed behind the blower 6, passes through the air-refrigerant heat exchanger 7, passes through the fan chamber 15, and It is discharged to the front of the front portion 18 a of the opposite front panel 18.
  • the expansion valve 10 adjusts the flow path opening degree of the refrigerant. Thereby, the pressure of the high pressure refrigerant on the upstream side of the expansion valve 10 and the pressure of the low pressure refrigerant on the downstream side can be adjusted and controlled.
  • the rotational speed of the compressor 2, the rotational speed of the blower 6, and the flow path opening degree of the expansion valve 10 are controlled in accordance with the installation environment and use condition of the heat pump device 1.
  • the low pressure refrigerant is drawn into the compressor 2 through the refrigerant passage 51, the heat absorption passage 11, and the refrigerant passage 52.
  • the low pressure refrigerant is compressed in the compression section in the compressor 2 to become a high temperature high pressure refrigerant.
  • the high temperature and high pressure refrigerant is discharged from the compressor 2 and flows into the refrigerant inlet portion of the water-refrigerant heat exchanger 8.
  • the high-temperature high-pressure refrigerant exchanges heat with water in the water-refrigerant heat exchanger 8 to heat the water and generate hot water.
  • the refrigerant lowers the enthalpy while passing through the water-refrigerant heat exchanger 8 to lower the temperature.
  • the temperature-reduced high-pressure refrigerant flows from the refrigerant outlet of the water-refrigerant heat exchanger 8 through the refrigerant pipe and into the inlet of the expansion valve 10.
  • the high-pressure refrigerant is reduced in temperature by the expansion valve 10 to a predetermined pressure, and becomes a low-temperature low-pressure refrigerant in a gas-liquid two-phase state with a relatively low dryness.
  • the low-temperature low-pressure refrigerant flows from the outlet of the expansion valve 10 through the refrigerant pipe to the inlet of the air-refrigerant heat exchanger 7.
  • the low-temperature low-pressure refrigerant exchanges heat with air in the air-refrigerant heat exchanger 7, the enthalpy is enhanced, and the dryness is enhanced.
  • the low-temperature low-pressure refrigerant is drawn into the compressor 2 from the outlet of the air-refrigerant heat exchanger 7 via the refrigerant passage 51, the heat absorption passage 11, and the refrigerant passage 52.
  • the heat transferred from the water-refrigerant heat exchanger 8 to the heat insulating material 12 is given to the low-temperature low-pressure refrigerant passing through the heat absorption passage 11, whereby the low-temperature low-pressure refrigerant is enthalpy and the temperature is raised to be in a gaseous state and the compressor 2 Inhaled by Thus, the refrigerant circulates to perform the heat pump cycle.
  • the lower water in the hot water storage tank 34 passes through the pipe 38, the outer pipe 36, the water inlet valve 28 and the inner pipe 30 to the water inlet of the water-refrigerant heat exchanger 8.
  • This water exchanges heat with the refrigerant in the water-refrigerant heat exchanger 8 and is heated to generate hot water.
  • the hot water flows into the upper portion of the hot water storage tank 34 through the inner pipe 31, the hot water outlet valve 29, the outer pipe 37 and the pipe 39.
  • the hot water heated by the heat pump device 1 may be supplied directly to the user without being stored in the hot water storage tank 34. Further, the heat medium heated by the heat pump device 1 may be used for heating or the like.
  • the heat pump apparatus 1 of the present embodiment does not include the internal heat exchanger.
  • the internal heat exchanger exchanges heat between the high pressure refrigerant between the water-refrigerant heat exchanger 8 and the expansion valve 10 and the low pressure refrigerant between the air-refrigerant heat exchanger 7 and the compressor 2 To heat the low pressure refrigerant.
  • the heat absorption passage 11 by providing the heat absorption passage 11, a sufficient amount of heat can be given to the low pressure refrigerant without using the internal heat exchanger, and the temperature of the low pressure refrigerant can be made relatively high.
  • the temperature of the high-pressure refrigerant discharged from the compressor 2 is sufficiently high even if the compressor 2 is operated at a relatively low compression ratio It can be at a temperature (eg, 100 ° C. or higher).
  • the internal heat exchanger has, for example, a structure in which a high pressure refrigerant pipe of a predetermined length and a low pressure refrigerant pipe of a predetermined length are joined, or a double pipe structure. Providing the internal heat exchanger tends to increase the material cost and the assembly cost of the heat pump device 1. The present embodiment is advantageous for reducing the material cost and the assembly cost of the heat pump device 1 since it is not necessary to provide the internal heat exchanger.
  • FIG. 9 is a front view showing the internal structure of the heat pump device 50 according to the second embodiment.
  • FIG. 10 is a plan view showing the internal structure of the heat pump device 50 according to the second embodiment.
  • FIG. 11 is a view showing a refrigerant circuit and a water circuit of a heat pump hot water supply system provided with the heat pump device 50 according to the second embodiment.
  • the heat pump device 50 according to the second embodiment is the same as the heat pump device 1 according to the first embodiment except for further including an internal heat exchanger 13.
  • the internal heat exchanger 13 may be further provided, for example, when the heat absorption passage 11 alone lacks the ability to heat the low pressure refrigerant.
  • the size of the internal heat exchanger 13 may be smaller than that of the conventional heat pump apparatus. For this reason, even when the internal heat exchanger 13 is provided, an increase in the material cost and the assembly cost of the heat pump device 1 can be suppressed.
  • the internal heat exchanger 13 is disposed in the machine room 14.
  • the internal heat exchanger 13 has a high pressure refrigerant pipe and a low pressure refrigerant pipe.
  • the high-pressure refrigerant that has passed through the water-refrigerant heat exchanger 8 flows into the high-pressure refrigerant pipe of the internal heat exchanger 13 through the refrigerant passage 53.
  • the high pressure refrigerant that has passed through the high pressure refrigerant pipe of the internal heat exchanger 13 flows into the expansion valve 10 through the refrigerant passage 54.
  • the low pressure refrigerant leaving the air-refrigerant heat exchanger 7 flows through the refrigerant passage 51 into the heat absorption passage 11 from the inlet 11a.
  • the suction refrigerant passage in the second embodiment includes a refrigerant passage 51, a heat absorption passage 11, a refrigerant passage 55, a low pressure refrigerant pipe of the internal heat exchanger 13, and a refrigerant passage 56.
  • the internal heat exchanger 13 has a structure in which a high pressure refrigerant pipe and a low pressure refrigerant pipe are joined, or a double pipe structure. Inside the internal heat exchanger 13, heat is exchanged between the high pressure refrigerant in the high pressure refrigerant pipe and the low pressure refrigerant in the low pressure refrigerant pipe, and the high pressure refrigerant gives heat to the low pressure refrigerant.
  • the internal heat exchanger 13 is mainly made of a metal material such as a copper material. Since the high-pressure refrigerant pipe and the low-pressure refrigerant pipe of the internal heat exchanger 13 may be short as compared with the case where the heat absorption passage 11 is not provided, the internal heat exchanger 13 can be miniaturized. Even if the internal heat exchanger 13 is downsized, since the heat absorption passage 11 is provided, a sufficient amount of heat can be given to the low pressure refrigerant, and the same effect as the effect described in the first embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Housings, Intake/Discharge, And Installation Of Fluid Heaters (AREA)

Abstract

The purpose of the present invention is to provide a heat pump device with which, by means of a configuration having little heat energy loss, heat can be applied to a refrigerant sucked into a compressor. This heat pump device (1) comprises: a compressor (2) that compresses a refrigerant; a first heat exchanger (8) that exchanges heat between a heat medium and the refrigerant compressed by the compressor (2); a heat-insulating material (12) at least partially covering the first heat exchanger (8); a decompression device (10) that decompresses the refrigerant on the downstream side of the first heat exchange (8); a second heat exchanger (7) that vaporizes the refrigerant on the downstream side of the decompression device (10); and an intake refrigerant passage (51, 11, 52), which is a passage connecting an outlet of the second heat exchanger (7) and an intake opening of the compressor (2). The heat-insulating material (12) has an inner surface facing the first heat exchanger (8) and an outer surface on the opposite side from the inner surface. The intake refrigerant passage (51, 11, 52) includes a heat absorption passage (11), which is a passage running between the inner surface and the outer surface of the heat-insulating material (12).

Description

ヒートポンプ装置Heat pump equipment
 本発明は、ヒートポンプ装置に関する。 The present invention relates to a heat pump device.
 圧縮機により圧縮された冷媒と、例えば水のような熱媒体との間で熱を交換することにより熱媒体を加熱するヒートポンプ装置が広く用いられている。下記特許文献1には、以下のようなヒートポンプ装置が開示されている。蒸発器(17)と圧縮機(13)の間の冷媒配管を冷媒-水熱交換器(14)と非接触で近接する位置に導く。冷媒-水熱交換器(14)より発する輻射熱を吸収する吸熱手段(18)を設ける。吸熱手段(18)は、圧縮機(13)に吸入される冷媒に熱を与える。なお、括弧内は特許文献1での符号を示す。 A heat pump apparatus is widely used which heats a heat medium by exchanging heat between a refrigerant compressed by a compressor and a heat medium such as water. The following heat pump apparatus is disclosed by the following patent document 1. FIG. The refrigerant pipe between the evaporator (17) and the compressor (13) is led to a position in non-contact with the refrigerant-water heat exchanger (14). A heat absorbing means (18) is provided to absorb the radiant heat emitted from the refrigerant-water heat exchanger (14). The heat absorbing means (18) applies heat to the refrigerant drawn into the compressor (13). In addition, the code | symbol in patent document 1 is shown in a parenthesis.
日本特開2007-240090号公報Japanese Patent Laid-Open No. 2007-240090
 特許文献1の技術では、以下のような課題がある。冷媒-水熱交換器(14)から発した輻射熱の一部は、吸熱手段(18)に吸収されることなく、空間へ散逸してしまうので、熱エネルギーのロスが大きい。吸熱手段(18)は、円筒形の冷媒-水熱交換器(14)の内部空間に位置されているので、その大きさが制限される。このため、圧縮機(13)に吸入される冷媒に対して十分に熱を与えることが困難である。円筒形の冷媒-水熱交換器(14)の内部空間の空気は、吸熱手段(18)によって冷却されることで、温度が低下する。その結果、冷媒-水熱交換器(14)内を通る水に与えられるべき熱量が減少し、熱エネルギーのロスが大きい。 The technology of Patent Document 1 has the following problems. Since a part of the radiant heat emitted from the refrigerant-water heat exchanger (14) is dissipated to the space without being absorbed by the heat absorption means (18), the loss of thermal energy is large. Since the heat absorption means (18) is located in the inner space of the cylindrical refrigerant-water heat exchanger (14), its size is limited. For this reason, it is difficult to provide sufficient heat to the refrigerant drawn into the compressor (13). The air in the internal space of the cylindrical refrigerant-water heat exchanger (14) is cooled by the heat absorption means (18) to lower its temperature. As a result, the amount of heat to be given to the water passing through the refrigerant-water heat exchanger (14) is reduced, and the loss of thermal energy is large.
 本発明は、上述のような課題を解決するためになされたもので、熱エネルギーのロスの少ない構成で、圧縮機に吸入される冷媒に対して熱を与えることのできるヒートポンプ装置を提供することを目的とする。 The present invention has been made to solve the problems as described above, and provides a heat pump device capable of providing heat to a refrigerant sucked into a compressor with a configuration with little loss of thermal energy. With the goal.
 本発明のヒートポンプ装置は、冷媒を圧縮する圧縮機と、熱媒体と、圧縮機により圧縮された冷媒との間で熱を交換する第一熱交換器と、第一熱交換器を少なくとも部分的に覆う断熱材と、第一熱交換器の下流側の冷媒を減圧させる減圧装置と、減圧装置の下流側の冷媒を蒸発させる第二熱交換器と、第二熱交換器の出口と、圧縮機の吸入口との間を繋ぐ通路である吸込冷媒通路と、を備え、断熱材は、第一熱交換器に対向する内面と、内面と反対側の外面とを有し、吸込冷媒通路は、断熱材の内面と外面との間を通る通路である吸熱通路を含むものである。 The heat pump apparatus of the present invention comprises at least a compressor for compressing a refrigerant, a first heat exchanger for exchanging heat between a heat medium and a refrigerant compressed by the compressor, and a first heat exchanger. , A decompression device that decompresses the refrigerant downstream of the first heat exchanger, a second heat exchanger that evaporates the refrigerant downstream of the decompression device, an outlet of the second heat exchanger, and compression A suction refrigerant passage which is a passage connecting the suction port of the machine, the heat insulating material has an inner surface facing the first heat exchanger, an outer surface opposite to the inner surface, and the suction refrigerant passage And a heat absorption passage which is a passage passing between the inner surface and the outer surface of the heat insulating material.
 本発明によれば、第一熱交換器を覆う断熱材の内面と外面との間を通る通路である吸熱通路を吸込冷媒通路が含むように構成したことで、熱エネルギーのロスの少ない構成で、圧縮機に吸入される冷媒に対して熱を与えることが可能となる。 According to the present invention, the heat absorption passage, which is a passage passing between the inner surface and the outer surface of the heat insulating material covering the first heat exchanger, is configured to include the suction refrigerant passage. And heat can be given to the refrigerant drawn into the compressor.
実施の形態1によるヒートポンプ装置の内部構造を示す前面図である。FIG. 1 is a front view showing an internal structure of a heat pump device according to Embodiment 1. 実施の形態1によるヒートポンプ装置の内部構造を示す平面図である。FIG. 1 is a plan view showing an internal structure of a heat pump device according to a first embodiment. 実施の形態1によるヒートポンプ装置が備える水-冷媒熱交換器及び断熱材を示す平面図である。FIG. 2 is a plan view showing a water-refrigerant heat exchanger and a heat insulating material provided in the heat pump device according to the first embodiment. 図3中のA-A線での断面図である。FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3; 実施の形態1によるヒートポンプ装置が備える水-冷媒熱交換器及び断熱材を示す平面図である。FIG. 2 is a plan view showing a water-refrigerant heat exchanger and a heat insulating material provided in the heat pump device according to the first embodiment. 実施の形態1によるヒートポンプ装置を斜め前から見た外観斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the external appearance perspective view which looked at the heat pump apparatus by Embodiment 1 diagonally. 実施の形態1によるヒートポンプ装置を斜め後ろから見た外観斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the external appearance perspective view which looked at the heat pump apparatus by Embodiment 1 from diagonally back. 実施の形態1によるヒートポンプ装置を備えたヒートポンプ給湯システムの冷媒回路及び水回路を示す図である。It is a figure which shows the refrigerant circuit and water circuit of a heat pump hot-water supply system provided with the heat pump apparatus by Embodiment 1. FIG. 実施の形態2によるヒートポンプ装置の内部構造を示す前面図である。FIG. 7 is a front view showing an internal structure of a heat pump device according to Embodiment 2. 実施の形態2によるヒートポンプ装置の内部構造を示す平面図である。FIG. 7 is a plan view showing an internal structure of a heat pump device according to Embodiment 2. 実施の形態2によるヒートポンプ装置を備えたヒートポンプ給湯システムの冷媒回路及び水回路を示す図である。It is a figure which shows the refrigerant circuit and water circuit of a heat pump hot-water supply system provided with the heat pump apparatus by Embodiment 2. FIG.
 以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、重複する説明を簡略化または省略する。本開示は、以下の各実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得る。 Hereinafter, embodiments will be described with reference to the drawings. The same or corresponding elements in the drawings are denoted by the same reference numerals, and redundant description will be simplified or omitted. The present disclosure can include any combination of configurations that can be combined among the configurations described in the following embodiments.
実施の形態1.
 図1は、実施の形態1によるヒートポンプ装置1の内部構造を示す前面図である。図2は、実施の形態1によるヒートポンプ装置1の内部構造を示す平面図である。図3は、実施の形態1によるヒートポンプ装置1が備える水-冷媒熱交換器8及び断熱材12を示す平面図である。図4は、図3中のA-A線での断面図である。図5は、実施の形態1によるヒートポンプ装置1が備える水-冷媒熱交換器8及び断熱材12を示す平面図である。図6は、実施の形態1によるヒートポンプ装置1を斜め前から見た外観斜視図である。図7は、実施の形態1によるヒートポンプ装置1を斜め後ろから見た外観斜視図である。図8は、実施の形態1によるヒートポンプ装置1を備えたヒートポンプ給湯システムの冷媒回路及び水回路を示す図である。
Embodiment 1
FIG. 1 is a front view showing the internal structure of the heat pump device 1 according to the first embodiment. FIG. 2 is a plan view showing the internal structure of the heat pump device 1 according to the first embodiment. FIG. 3 is a plan view showing the water-refrigerant heat exchanger 8 and the heat insulating material 12 provided in the heat pump device 1 according to the first embodiment. FIG. 4 is a cross-sectional view taken along line AA in FIG. FIG. 5 is a plan view showing the water-refrigerant heat exchanger 8 and the heat insulating material 12 provided in the heat pump device 1 according to the first embodiment. FIG. 6 is an external perspective view of the heat pump device 1 according to the first embodiment as viewed obliquely from the front. FIG. 7 is an external perspective view of the heat pump device 1 according to the first embodiment as viewed obliquely from behind. FIG. 8 is a diagram showing a refrigerant circuit and a water circuit of a heat pump hot water supply system provided with the heat pump device 1 according to the first embodiment.
 これらの図に示す実施の形態1によるヒートポンプ装置1は、室外に設置されるヒートポンプ室外機に相当する。ヒートポンプ装置1は、液状の熱媒体を加熱する。本実施の形態での熱媒体は、水である。ヒートポンプ装置1は、水を加熱して湯を生成する。本発明における熱媒体は、例えば塩化カルシウム水溶液、エチレングリコール水溶液、プロピレングリコール水溶液、アルコールのような、水以外の液体でもよい。 The heat pump apparatus 1 according to the first embodiment shown in these figures corresponds to a heat pump outdoor unit installed outdoors. The heat pump apparatus 1 heats a liquid heat medium. The heat medium in the present embodiment is water. The heat pump apparatus 1 heats water to generate hot water. The heat medium in the present invention may be, for example, a liquid other than water, such as an aqueous solution of calcium chloride, an aqueous solution of ethylene glycol, an aqueous solution of propylene glycol, and an alcohol.
 これらの図に示すように、ヒートポンプ装置1は、圧縮機2、空気-冷媒熱交換器7、水-冷媒熱交換器8、膨張弁10を、冷媒回路の構成要素として備える。ヒートポンプ装置1の外郭を形成する筐体は、筐体の底部に相当するベース17を備える。図1及び図2に示すように、ベース17上には、前方から見て、右側に機械室14が形成され、左側に送風機室15が形成されている。機械室14と送風機室15とは、仕切板16により隔てられている。 As shown in these figures, the heat pump apparatus 1 includes a compressor 2, an air-refrigerant heat exchanger 7, a water-refrigerant heat exchanger 8, and an expansion valve 10 as components of a refrigerant circuit. The casing forming the outer shell of the heat pump device 1 includes a base 17 corresponding to the bottom of the casing. As shown in FIGS. 1 and 2, on the base 17, a machine room 14 is formed on the right side and a fan room 15 is formed on the left side, as viewed from the front. The machine room 14 and the fan room 15 are separated by a partition plate 16.
 図6及び図7に示すように、当該筐体は、ベース17に加えて、フロントパネル18、バックパネル19、及びトップパネル20を備える。筐体のこれらの各構成要素は、例えば板金材から作られていてもよい。フロントパネル18は、筺体の前面を形成する前面部18aと、筺体の左側面を形成する左面部18bとを有する。バックパネル19は、筺体の後面を形成する後面部19aと、筐体の右側面を形成する右面部19bとを有する。トップパネル20は、筺体の上面を形成する。ヒートポンプ装置1の外面は、後面側に配置された空気-冷媒熱交換器7を除いて、この筐体によって覆われている。フロントパネル18の前面部18aには、送風機室15を通過した空気を排出するための排気口が形成され、この排気口には格子18cが取り付けられている。なお、図1及び図2は、フロントパネル18及びトップパネル20を取り外した状態を示している。また、図1及び図2では、一部の構成機器の図示を省略している。 As shown in FIGS. 6 and 7, the housing includes a front panel 18, a back panel 19, and a top panel 20 in addition to the base 17. Each of these components of the housing may, for example, be made of sheet metal. The front panel 18 has a front surface portion 18a forming the front surface of the housing and a left surface portion 18b forming the left side surface of the housing. The back panel 19 has a rear surface 19a that forms the rear surface of the housing and a right surface 19b that forms the right surface of the housing. The top panel 20 forms the upper surface of the housing. The outer surface of the heat pump apparatus 1 is covered by this casing except for the air-refrigerant heat exchanger 7 disposed on the rear side. An exhaust port for discharging the air having passed through the fan chamber 15 is formed on the front surface portion 18a of the front panel 18, and a lattice 18c is attached to the exhaust port. 1 and 2 show a state in which the front panel 18 and the top panel 20 are removed. Moreover, in FIG. 1 and FIG. 2, illustration of a part of component components is omitted.
 図1及び図2に示すように、機械室14内には、圧縮機2と、膨張弁10(図1及び図2では省略)と、これらを接続する冷媒配管と、その他の冷媒回路部品とが組み込まれている。 As shown in FIGS. 1 and 2, the compressor 2, the expansion valve 10 (not shown in FIGS. 1 and 2), the refrigerant pipe connecting these, and other refrigerant circuit components are provided in the machine chamber 14 Is incorporated.
 圧縮機2は、圧縮部及びモータを備える。圧縮部は、冷媒の圧縮動作を行う。モータは、圧縮部を駆動する。外部から供給される電力により圧縮機2のモータが駆動される。低圧冷媒が圧縮機2に吸入される。膨張弁10は、その本体の外側面にコイル組み込み部材が取り付けられている。コイルに外部から通電することにより、冷媒の流路開度を調節する。膨張弁10により、その上流側の高圧冷媒の圧力と、その下流側の低圧冷媒の圧力とを調節できる。膨張弁10は、水-冷媒熱交換器8の下流側の高圧冷媒を膨張及び減圧させることにより低圧冷媒にする減圧装置に相当する。 The compressor 2 includes a compression unit and a motor. The compression unit compresses the refrigerant. The motor drives the compression unit. Electric power supplied from the outside drives the motor of the compressor 2. The low pressure refrigerant is drawn into the compressor 2. In the expansion valve 10, a coil incorporating member is attached to the outer side surface of its main body. The flow path opening of the refrigerant is adjusted by energizing the coil from the outside. The expansion valve 10 can adjust the pressure of the high pressure refrigerant on the upstream side thereof and the pressure of the low pressure refrigerant on the downstream side thereof. The expansion valve 10 corresponds to a pressure reducing device that converts the high pressure refrigerant on the downstream side of the water-refrigerant heat exchanger 8 into a low pressure refrigerant by expanding and reducing the pressure.
 送風機室15は、風路を確保するため、機械室14よりも大きな空間を有する。送風機室15内には、送風機6が組み込まれている。送風機6は、2枚~3枚のプロペラ翼と、プロペラ翼を回転駆動させるモータとを備える。外部から供給される電力によりモータ及びプロペラ翼が回転する。 The fan room 15 has a space larger than the machine room 14 in order to secure an air path. The blower 6 is incorporated in the blower chamber 15. The blower 6 includes two to three propeller blades and a motor that rotationally drives the propeller blades. The electric power supplied from the outside rotates the motor and propeller blades.
 図2に示すように、送風機室15の後面側には、送風機6に対向して、空気-冷媒熱交換器7が設置されている。空気-冷媒熱交換器7は、多数のアルミ薄板のフィンと、アルミ薄板のフィンに多数密着して数回往復する長い冷媒管とを備える。空気-冷媒熱交換器7は、平面視でL字状に曲がった平板状の外形を有する。空気-冷媒熱交換器7は、ヒートポンプ装置1の後面から左側面にかけて設置されている。空気-冷媒熱交換器7では、冷媒管内の冷媒とフィン周辺の空気との間で熱を交換する。送風機6により各フィン間を流れて通過する空気の風量が増やされて調節され、熱交換の量が増やされて調節されている。空気-冷媒熱交換器7の冷媒配管は主に銅材等の金属材製である。空気-冷媒熱交換器7は、冷媒を蒸発させる第二熱交換器すなわち蒸発器に相当する。 As shown in FIG. 2, an air-refrigerant heat exchanger 7 is installed on the rear surface side of the fan chamber 15 so as to face the fan 6. The air-refrigerant heat exchanger 7 is provided with a large number of thin aluminum plate fins and a long long refrigerant pipe closely attached to the thin aluminum plate fins and reciprocated several times. The air-refrigerant heat exchanger 7 has a flat plate-like outer shape bent in an L shape in plan view. The air-refrigerant heat exchanger 7 is installed from the rear surface to the left surface of the heat pump device 1. In the air-refrigerant heat exchanger 7, heat is exchanged between the refrigerant in the refrigerant pipe and the air around the fins. The air flow of the air flowing between the fins is increased by the blower 6 and adjusted, and the amount of heat exchange is increased and adjusted. The refrigerant piping of the air-refrigerant heat exchanger 7 is mainly made of a metal material such as a copper material. The air-refrigerant heat exchanger 7 corresponds to a second heat exchanger or evaporator that evaporates the refrigerant.
 送風機室15の下部のベース17の上に、水-冷媒熱交換器8が設置されている。水-冷媒熱交換器8は、圧縮機2により圧縮された高温高圧の冷媒と、熱媒体である水との間で熱を交換する第一熱交換器に相当する。水-冷媒熱交換器8内で水が加熱されることにより高温の湯が生成する。水-冷媒熱交換器8は、例えば、長い水管と長い冷媒管とが密着した状態で曲げ成形された構成を有するものでもよい。 A water-refrigerant heat exchanger 8 is installed on the base 17 in the lower part of the fan room 15. The water-refrigerant heat exchanger 8 corresponds to a first heat exchanger that exchanges heat between the high-temperature and high-pressure refrigerant compressed by the compressor 2 and water as a heat medium. The water is heated in the water-refrigerant heat exchanger 8 to generate hot water. The water-refrigerant heat exchanger 8 may have, for example, a bend-formed configuration in which a long water pipe and a long refrigerant pipe are in close contact with each other.
 水-冷媒熱交換器8は、断熱材12に覆われている。断熱材12は、水-冷媒熱交換器8を少なくとも部分的に覆う。断熱材12を備えたことで、水-冷媒熱交換器8から周囲の空間に散逸する熱量を低減できる。本実施の形態の断熱材12は、実質的に直方体の外形を有する容器のような形状に形成されている。断熱材12は、例えば、発泡ポリウレタン、発泡ポリスチレンのような発泡プラスチックからなる断熱材料で作られたものでもよい。あるいは、断熱材12は、例えば真空断熱材、グラスウールのような他の断熱材料で作られたものでもよい。断熱材12は、複数の断熱材料を組み合わせて作られたものでもよい。断熱材12の外側は、金属製のケースに覆われているが、本開示では当該ケースの図示を省略する。断熱材12の上方に送風機6が配置されている。 The water-refrigerant heat exchanger 8 is covered with a heat insulating material 12. The heat insulator 12 at least partially covers the water-refrigerant heat exchanger 8. By providing the heat insulating material 12, the amount of heat dissipated from the water-refrigerant heat exchanger 8 to the surrounding space can be reduced. The heat insulating material 12 of the present embodiment is formed in a shape like a container having a substantially rectangular outer shape. The heat insulating material 12 may be made of, for example, a heat insulating material made of foamed polyurethane such as foamed polyurethane or polystyrene foam. Alternatively, the thermal insulation 12 may be made of other thermal insulation material, such as vacuum insulation, glass wool, for example. The heat insulating material 12 may be made by combining a plurality of heat insulating materials. The outer side of the heat insulating material 12 is covered with a metal case, but in the present disclosure, the illustration of the case is omitted. A blower 6 is disposed above the heat insulating material 12.
 図8に示すように、水-冷媒熱交換器8の冷媒の入口は、冷媒通路を介して、圧縮機2の吐出口に接続されている。水-冷媒熱交換器8の冷媒の出口は、冷媒通路を介して、膨張弁10の入口に接続されている。膨張弁10の出口は、冷媒通路を介して、空気-冷媒熱交換器7の冷媒の入口に接続されている。空気-冷媒熱交換器7の冷媒の出口は、冷媒通路を介して、圧縮機2の吸入口に接続されている。以下の説明では、空気-冷媒熱交換器7の冷媒の出口と、圧縮機2の吸入口との間を繋ぐ冷媒通路を「吸込冷媒通路」と称する。吸込冷媒通路は、吸熱通路11を含む。吸熱通路11は、断熱材12の内部を通っている。吸熱通路11は、吸込冷媒通路の一部を構成する。吸熱通路11等を形成する冷媒管は、例えば銅のような金属で作られていることが望ましい。 As shown in FIG. 8, the inlet of the refrigerant of the water-refrigerant heat exchanger 8 is connected to the discharge port of the compressor 2 via a refrigerant passage. The refrigerant outlet of the water-refrigerant heat exchanger 8 is connected to the inlet of the expansion valve 10 via a refrigerant passage. The outlet of the expansion valve 10 is connected to the inlet of the refrigerant of the air-refrigerant heat exchanger 7 via a refrigerant passage. The refrigerant outlet of the air-refrigerant heat exchanger 7 is connected to the suction port of the compressor 2 via a refrigerant passage. In the following description, the refrigerant passage connecting the outlet of the refrigerant of the air-refrigerant heat exchanger 7 and the suction port of the compressor 2 is referred to as “suction refrigerant passage”. The suction refrigerant passage includes a heat absorption passage 11. The heat absorption passage 11 passes through the inside of the heat insulating material 12. The heat absorption passage 11 constitutes a part of a suction refrigerant passage. It is desirable that the refrigerant pipe forming the heat absorption passage 11 and the like be made of metal such as copper, for example.
 図3から図5に示すように、断熱材12は、上面壁部12a、下面壁部12b、前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fを有する。上面壁部12aは、水-冷媒熱交換器8の上面を覆う。下面壁部12bは、水-冷媒熱交換器8の下面を覆う。前面壁部12cは、水-冷媒熱交換器8の前面を覆う。後面壁部12dは、水-冷媒熱交換器8の後面を覆う。右面壁部12eは、水-冷媒熱交換器8の右側面を覆う。左面壁部12fは、水-冷媒熱交換器8の左側面を覆う。 As shown in FIGS. 3 to 5, the heat insulating material 12 has an upper surface wall 12a, a lower surface wall 12b, a front wall 12c, a rear surface wall 12d, a right surface wall 12e, and a left surface wall 12f. The upper surface wall 12 a covers the upper surface of the water-refrigerant heat exchanger 8. The lower wall 12b covers the lower surface of the water-refrigerant heat exchanger 8. The front wall 12 c covers the front of the water-refrigerant heat exchanger 8. The rear wall 12 d covers the rear surface of the water-refrigerant heat exchanger 8. The right side wall 12e covers the right side of the water-refrigerant heat exchanger 8. The left wall 12f covers the left side of the water-refrigerant heat exchanger 8.
 本実施の形態において、「水-冷媒熱交換器8の側面」とは、水-冷媒熱交換器8の外面のうち上面及び下面以外の面を言うものとする。本実施の形態において、前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fの各壁部は、水-冷媒熱交換器8の側面を覆う側壁部に相当する。 In the present embodiment, the “side surface of the water-refrigerant heat exchanger 8” refers to a surface of the outer surface of the water-refrigerant heat exchanger 8 other than the upper surface and the lower surface. In the present embodiment, each of the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f corresponds to a side wall covering the side of the water-refrigerant heat exchanger 8.
 本実施の形態において、吸熱通路11は、断熱材12のうち、下面壁部12b、前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fの内部を通っている。図4に示すように、下面壁部12bは、内面12g及び外面12hを有する。内面12gは、水-冷媒熱交換器8に対向する面であり、下面壁部12bの上面に相当する。外面12hは、内面12gと反対側の面であり、下面壁部12bの下面に相当する。吸熱通路11の一部は、下面壁部12bの内面12gと外面12hとの間を通っている。同様にして、前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fの各壁部においても、その内面及び外面の間に吸熱通路11が通っている。 In the present embodiment, the heat absorption passage 11 passes through the inside of the lower wall 12b, the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f in the heat insulating material 12. As shown in FIG. 4, the lower wall 12b has an inner surface 12g and an outer surface 12h. The inner surface 12g is a surface facing the water-refrigerant heat exchanger 8, and corresponds to the upper surface of the lower surface wall 12b. The outer surface 12h is a surface opposite to the inner surface 12g, and corresponds to the lower surface of the lower surface wall 12b. A portion of the heat absorption passage 11 passes between the inner surface 12g and the outer surface 12h of the lower surface wall 12b. Similarly, in each of the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f, the heat absorption passage 11 passes between the inner surface and the outer surface.
 水-冷媒熱交換器8は、高温の冷媒が内部を流れるため、高温になる。断熱材12の各壁部の内面は、外面よりも高温になる。このため、断熱材12の各壁部の内面から外面へ向かう熱伝導が生じる。その熱の一部は、吸熱通路11を通る冷媒に与えられる。これにより、以下の効果が得られる。圧縮機2に吸入される冷媒の温度を上昇させることができる。その結果、比較的低い圧縮比で吐出冷媒温度の目標値を達成できるので、圧縮機2を駆動するために必要なエネルギーを低減できる。また、圧縮機2に吸入される冷媒が気液二相状態になる頻度を低減できるので、液圧縮が生ずることを確実に防止できる。圧縮機2内部の圧縮部で液圧縮による異常昇圧が発生すると、ヒートポンプ装置1の振動、低周波音及び騒音が増大する可能性がある。本実施の形態であれば、そのような液圧縮に起因する振動、低周波音及び騒音の増大を確実に防止できる。また、ヒートポンプ装置1の材料コスト及び組立コストの増大を抑制しながら、圧縮機2の圧縮部の破損の可能性を確実に低減できる。 The water-refrigerant heat exchanger 8 has a high temperature because a high temperature refrigerant flows inside. The inner surface of each wall of the heat insulating material 12 is hotter than the outer surface. For this reason, heat conduction from the inner surface to the outer surface of each wall of the heat insulating material 12 occurs. Part of the heat is given to the refrigerant passing through the heat absorption passage 11. Thereby, the following effects can be obtained. The temperature of the refrigerant drawn into the compressor 2 can be raised. As a result, since the target value of the discharge refrigerant temperature can be achieved at a relatively low compression ratio, the energy required to drive the compressor 2 can be reduced. In addition, since the frequency at which the refrigerant sucked into the compressor 2 is in the gas-liquid two-phase state can be reduced, the liquid compression can be reliably prevented from occurring. When an abnormal pressure increase due to liquid compression occurs in the compression unit inside the compressor 2, the vibration of the heat pump device 1, low frequency noise and noise may increase. According to the present embodiment, it is possible to reliably prevent the increase in vibration, low frequency noise and noise resulting from such liquid compression. Moreover, the possibility of breakage of the compression part of the compressor 2 can be reliably reduced while suppressing the increase in the material cost and the assembly cost of the heat pump device 1.
 本実施の形態であれば、断熱材12の内部に吸熱通路11を配置したことで、水-冷媒熱交換器8から断熱材12に伝わった熱を、吸熱通路11を通る冷媒に対して無駄なく与えることができる。このため、圧縮機2に吸入される冷媒を加熱する上で、熱エネルギーを有効に活用でき、熱エネルギーのロスが少ない。 In the present embodiment, by disposing the heat absorption passage 11 inside the heat insulating material 12, the heat transmitted from the water-refrigerant heat exchanger 8 to the heat insulation material 12 is wasted with respect to the refrigerant passing through the heat absorption passage 11. Can be given without. For this reason, when heating the refrigerant drawn into the compressor 2, the thermal energy can be effectively used, and the loss of the thermal energy is small.
 また、本実施の形態であれば、吸熱通路11は断熱材12を介して水-冷媒熱交換器8に接しており、高温の水-冷媒熱交換器8が吸熱通路11に直接接触してはいない。このため、水-冷媒熱交換器8内で高温冷媒から水へ与えられるべき熱量が、吸熱通路11に与えられてしまうことを確実に防止できる。よって、水-冷媒熱交換器8の加熱能力の低下を確実に防止できる。上記のような効果をより確実に奏するためには、吸熱通路11と水-冷媒熱交換器8とが直接接触する箇所を有しないように構成することが望ましい。 Further, in the case of the present embodiment, the heat absorption passage 11 is in contact with the water-refrigerant heat exchanger 8 via the heat insulating material 12, and the high temperature water-refrigerant heat exchanger 8 is in direct contact with the heat absorption passage 11. There is not. For this reason, it is possible to reliably prevent the heat absorption passage 11 from being supplied with the heat amount to be supplied from the high temperature refrigerant to the water in the water-refrigerant heat exchanger 8. Therefore, the reduction of the heating capacity of the water-refrigerant heat exchanger 8 can be reliably prevented. In order to achieve the above effects more reliably, it is desirable that the heat absorption passage 11 and the water-refrigerant heat exchanger 8 be configured not to have direct contact with each other.
 本実施の形態では、吸熱通路11の外面は、断熱材12の下面壁部12b、前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fを構成する断熱材料に対して隙間なく密着している。このため、断熱材12から吸熱通路11に対して熱エネルギーを無駄なく伝達することができる。なお、吸熱通路11の外面の少なくとも一部が断熱材12に対して隙間なく接触していれば、上記効果に類似した効果が得られる。 In the present embodiment, the outer surface of the heat absorption passage 11 is the heat insulating material constituting the lower wall 12b, the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f of the heat insulating material 12. Close contact without gaps. Therefore, thermal energy can be transmitted from the heat insulating material 12 to the heat absorption passage 11 without waste. If at least a part of the outer surface of the heat absorption passage 11 contacts the heat insulating material 12 without a gap, an effect similar to the above effect can be obtained.
 断熱材12の製造時にインサート成形を行うことにより、吸熱通路11を断熱材12に埋め込むように成形してもよい。例えば、発泡プラスチック製の断熱材12を成形する金型内に、吸熱通路11を形成する管を配置し、この管を取り囲むようにして断熱材12の材料を充填する。これにより、吸熱通路11を断熱材12に対して一体成形することができ、容易に製造することができる。 The heat absorption passage 11 may be formed so as to be embedded in the heat insulating material 12 by performing insert molding at the time of manufacturing the heat insulating material 12. For example, a tube forming the heat absorption passage 11 is disposed in a mold for forming the heat insulating material 12 made of foamed plastic, and the material of the heat insulating material 12 is filled so as to surround the tube. Thereby, the heat absorption passage 11 can be integrally molded with the heat insulating material 12, and can be easily manufactured.
 あるいは、次のようにして断熱材12を製造してもよい。吸熱通路11の形状に合わせた溝を一面に形成した、発泡プラスチック製の断熱パネルを2枚用意し、その2枚の断熱パネルを、吸熱通路11を形成する管を間に挟み込むようにして貼り合わせる。これにより、発泡プラスチック製の断熱材12の内部に吸熱通路11を埋め込むことができる。 Alternatively, the heat insulating material 12 may be manufactured as follows. Two heat insulation panels made of foamed plastic are prepared, with grooves formed on one side according to the shape of heat absorption passage 11, and the two heat insulation panels are pasted so as to sandwich the tube forming heat absorption passage 11 between them. Match. As a result, the heat absorption passage 11 can be embedded inside the heat insulating material 12 made of foamed plastic.
 断熱材12の上面壁部12aは、断熱材12のそれ以外の部分から、取り外し可能になっている。上面壁部12aの内部には、吸熱通路11は埋め込まれていない。組み立ての際には、上面壁部12aを取り外した状態で、断熱材12の中に水-冷媒熱交換器8を収納した後、上面壁部12aを取り付ける。このようにして、容易に組み立てることができる。 The top wall 12 a of the heat insulating material 12 is removable from the other parts of the heat insulating material 12. The heat absorption passage 11 is not embedded in the upper surface wall 12a. When assembling, with the top wall 12a removed, the water-refrigerant heat exchanger 8 is accommodated in the heat insulating material 12, and then the top wall 12a is attached. In this way, it can be easily assembled.
 図4及び図5に示すように、吸熱通路11は、入口部11a及び出口部11cを有する。図5に示すように、入口部11aは、下面壁部12bのエッジ部分に位置する。下面壁部12bの内部を通る吸熱通路11は、複数の折り返し部11bを有する。折り返し部11bは、中心角が180°の円弧状に湾曲している。複数の折り返し部11bの湾曲方向は、第一方向と、この第一方向と反対の第二方向とに、交互になっている。冷媒が折り返し部11bを通過すると、冷媒の進行方向が反転する。図5中では、冷媒が折り返し部11bを通過すると、冷媒の進行方向が、上方向から下方向へ、あるいは下方向から上方向へ、反転する。下面壁部12bの内部の吸熱通路11は、蛇行するように配置されている。本実施の形態であれば、このような構成により、吸熱通路11の長さを十分に長くすることができるので、水-冷媒熱交換器8から断熱材12の下面壁部12bに伝わった熱を、より効率良く吸熱通路11の冷媒に与えることが可能となる。なお、吸熱通路11が、断熱材12の内部に位置する少なくとも一つの折り返し部11bを有していれば、上記効果に類似した効果が得られる。また、図示の構成に代えて、下面壁部12bの内部において吸熱通路11を渦巻き状に配置してもよい。その場合でも、吸熱通路11の長さを十分に長くすることができるので、上記効果に類似した効果が得られる。 As shown in FIGS. 4 and 5, the heat absorption passage 11 has an inlet 11a and an outlet 11c. As shown in FIG. 5, the inlet 11a is located at the edge of the lower wall 12b. The heat absorption passage 11 passing through the inside of the lower surface wall 12 b has a plurality of folded portions 11 b. The folded back portion 11 b is curved in a circular arc having a central angle of 180 °. The bending directions of the plurality of folded portions 11 b alternate in a first direction and a second direction opposite to the first direction. When the refrigerant passes through the turnback portion 11b, the traveling direction of the refrigerant is reversed. In FIG. 5, when the refrigerant passes through the turnback portion 11b, the traveling direction of the refrigerant reverses from the upper direction to the lower direction or from the lower direction to the upper direction. The heat absorption passage 11 inside the lower surface wall 12 b is arranged to meander. In the present embodiment, with such a configuration, the length of the heat absorption passage 11 can be made sufficiently long. Therefore, the heat transmitted from the water-refrigerant heat exchanger 8 to the lower surface wall 12b of the heat insulating material 12 Can be applied to the refrigerant of the heat absorption passage 11 more efficiently. If the heat absorption passage 11 has at least one folded portion 11 b located inside the heat insulating material 12, an effect similar to the above effect can be obtained. Further, instead of the configuration shown in the drawing, the heat absorption passage 11 may be disposed in a spiral shape inside the lower surface wall 12b. Even in such a case, since the length of the heat absorption passage 11 can be made sufficiently long, an effect similar to the above effect can be obtained.
 本実施の形態において、断熱材12の前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fは、水-冷媒熱交換器8の側面の全周を覆っている。図3及び図4に示すように、下面壁部12bを通過した吸熱通路11は、前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fの内部に延びている。前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fの内部において、吸熱通路11は、水-冷媒熱交換器8の周りを複数回回るように配置されている。図3に示すように、吸熱通路11内の冷媒は、水-冷媒熱交換器8の周りを平面視で反時計回りに回る。図4に示すように、吸熱通路11内の冷媒は、水-冷媒熱交換器8の周りを回りながら上方へ移行し、出口部11cに到達する。このように、前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fの内部において、吸熱通路11は、螺旋状または渦巻き状に配置されている。 In the present embodiment, the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f of the heat insulating material 12 cover the entire circumference of the side surface of the water-refrigerant heat exchanger 8. As shown in FIGS. 3 and 4, the heat absorption passage 11 having passed through the lower wall 12b extends inside the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f. Inside the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f, the heat absorption passage 11 is disposed to rotate around the water-refrigerant heat exchanger 8 a plurality of times. As shown in FIG. 3, the refrigerant in the heat absorption passage 11 rotates around the water-refrigerant heat exchanger 8 in a counterclockwise direction in plan view. As shown in FIG. 4, the refrigerant in the heat absorption passage 11 moves upward while rotating around the water-refrigerant heat exchanger 8, and reaches the outlet 11c. As described above, in the inside of the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f, the heat absorption passage 11 is disposed in a spiral or spiral shape.
 本実施の形態であれば、吸熱通路11が水-冷媒熱交換器8の周りを複数回回るように配置したことで、吸熱通路11の長さを十分に長くすることができる。このため、水-冷媒熱交換器8から断熱材12の前面壁部12c、後面壁部12d、右面壁部12e、及び左面壁部12fに伝わった熱を、より効率良く吸熱通路11の冷媒に与えることが可能となる。なお、吸熱通路11が水-冷媒熱交換器8の周りを少なくとも1周するように配置すれば、上記効果に類似した効果が得られる。 In the present embodiment, the heat absorption passage 11 can be made sufficiently long by arranging the heat absorption passage 11 to rotate around the water-refrigerant heat exchanger 8 a plurality of times. Therefore, the heat transmitted from the water-refrigerant heat exchanger 8 to the front wall 12c, the rear wall 12d, the right wall 12e, and the left wall 12f of the heat insulator 12 is more efficiently applied to the refrigerant of the heat absorption passage 11 It becomes possible to give. If the heat absorption passage 11 is disposed so as to make at least one turn around the water-refrigerant heat exchanger 8, an effect similar to the above effect can be obtained.
 図8に示すように、吸熱通路11の入口部11aは、冷媒通路51を介して、空気-冷媒熱交換器7の冷媒の出口に接続されている。吸熱通路11の出口部11cは、冷媒通路52を介して、圧縮機2の吸入口に接続されている。このように、本実施の形態における吸込冷媒通路は、冷媒通路51、吸熱通路11、及び冷媒通路52を含む。 As shown in FIG. 8, the inlet 11 a of the heat absorption passage 11 is connected to the outlet of the refrigerant of the air-refrigerant heat exchanger 7 via the refrigerant passage 51. The outlet 11 c of the heat absorption passage 11 is connected to the suction port of the compressor 2 via the refrigerant passage 52. As described above, the suction refrigerant passage in the present embodiment includes the refrigerant passage 51, the heat absorption passage 11, and the refrigerant passage 52.
 図1に示すように、機械室14の上部には、電気品収納箱9が設置されている。電気品収納箱9には、電子基板24が収納されている。電子基板24には、圧縮機2、膨張弁10、送風機6等を駆動制御する各モジュールを構成する電子部品及び電気部品等が取り付けられている。各モジュールは、例えば以下のように制御する。圧縮機2のモータの回転数を数十rps(Hz)~百rps(Hz)程度の所定の回転数に変化させる。膨張弁10の開度を所定の量に変化させる。送風機6の回転数を数百rpm~千rpm程度の所定の回転数に変化させる。電気品収納箱9には、外部電気配線を接続する端子台9aが設けられている。図6及び図7に示すように、バックパネル19の右面部19bには、端子台9aと、後述する水入口バルブ28及び湯出口バルブ29とを保護するためのサービスパネル27が取り付けられている。 As shown in FIG. 1, an electrical component storage box 9 is installed at the top of the machine room 14. An electronic substrate 24 is accommodated in the electrical component storage box 9. Electronic parts, electric parts and the like that constitute modules that drive and control the compressor 2, the expansion valve 10, the blower 6 and the like are attached to the electronic substrate 24. Each module is controlled, for example, as follows. The rotation speed of the motor of the compressor 2 is changed to a predetermined rotation speed of about several tens rps (Hz) to one hundred rps (Hz). The opening degree of the expansion valve 10 is changed to a predetermined amount. The rotation speed of the blower 6 is changed to a predetermined rotation speed of about several hundred rpm to about 1,000 rpm. The electrical component storage box 9 is provided with a terminal block 9a for connecting external electrical wiring. As shown in FIGS. 6 and 7, a service panel 27 for protecting a terminal block 9a and a water inlet valve 28 and a hot water outlet valve 29 described later is attached to the right surface 19b of the back panel 19. .
 ヒートポンプ装置1が備える冷媒回路の密閉空間内には、所定の量の冷媒が封入されている。冷媒は、例えば、高圧側で超臨界状態となるCO冷媒でもよい。 A predetermined amount of refrigerant is enclosed in the sealed space of the refrigerant circuit included in the heat pump device 1. The refrigerant may be, for example, a CO 2 refrigerant which is in a supercritical state on the high pressure side.
 次に、ヒートポンプ装置1及び貯湯装置33の水回路について説明する。図1に示すように、機械室14内には、内部管30、及び内部管31を含む水回路部品が組み込まれている。ベース17の右側部には、水入口バルブ28が下側、湯出口バルブ29が上側になるように両者が併設されている。内部管30は、水入口バルブ28と、水-冷媒熱交換器8の水入口部との間を接続している。内部管31は、水-冷媒熱交換器8の湯出口部と、湯出口バルブ29との間を接続している。 Next, the water circuit of the heat pump device 1 and the hot water storage device 33 will be described. As shown in FIG. 1, in the machine room 14, water circuit components including an inner pipe 30 and an inner pipe 31 are incorporated. On the right side of the base 17, both are juxtaposed so that the water inlet valve 28 is on the lower side and the hot water outlet valve 29 is on the upper side. The inner pipe 30 connects between the water inlet valve 28 and the water inlet of the water-refrigerant heat exchanger 8. The internal pipe 31 connects the hot water outlet of the water-refrigerant heat exchanger 8 and the hot water outlet valve 29.
 図8に示すように、ヒートポンプ装置1及び貯湯装置33により、ヒートポンプ給湯システムが構成される。貯湯装置33は、例えば数百リットル程度の容量を有する貯湯タンク34と、貯湯タンク34内の水をヒートポンプ装置1に送るための水ポンプ35とを備える。ヒートポンプ装置1と貯湯装置33との間は、外部管36と、外部管37と、電気配線(図示省略)とを介して接続される。 As shown in FIG. 8, the heat pump device 1 and the hot water storage device 33 constitute a heat pump hot water supply system. The hot water storage device 33 includes, for example, a hot water storage tank 34 having a capacity of about several hundreds of liters, and a water pump 35 for feeding water in the hot water storage tank 34 to the heat pump device 1. The heat pump device 1 and the hot water storage device 33 are connected via an external pipe 36, an external pipe 37, and electrical wiring (not shown).
 貯湯タンク34の下部は、管38を介して、水ポンプ35の入口に接続されている。外部管36は、水ポンプ35の出口と、ヒートポンプ装置1の水入口バルブ28との間を接続している。外部管37は、ヒートポンプ装置1の湯出口バルブ29と、貯湯装置33との間を接続している。外部管37は、貯湯装置33内の管39を介して、貯湯タンク34の上部に連通可能になっている。 The lower portion of the hot water storage tank 34 is connected to the inlet of the water pump 35 via a pipe 38. The external pipe 36 connects between the outlet of the water pump 35 and the water inlet valve 28 of the heat pump device 1. The external pipe 37 connects between the hot water outlet valve 29 of the heat pump device 1 and the hot water storage device 33. The external pipe 37 can communicate with the upper portion of the hot water storage tank 34 via the pipe 39 in the hot water storage device 33.
 貯湯装置33は、混合弁40を更に備えている。混合弁40には、管39から分岐した給湯管41と、水道等の水源から供給される水が通る給水管42と、ユーザ側に供給される湯が通る給湯管43とがそれぞれ接続されている。混合弁40は、給湯管41から流入する湯すなわち高温水と、給水管42から流入する低温水との混合比を調整することで給湯温度を調節する。混合弁40により混合された湯は、給湯管43を通って、例えば、浴槽、シャワー、蛇口、食器洗い機などのユーザ側の端末に送られる。貯湯タンク34の下部には、給水管42から分岐した給水管44が接続されている。貯湯タンク34内の下側には、給水管44から流入した水が貯留される。 The hot water storage device 33 further includes a mixing valve 40. A hot water supply pipe 41 branched from the pipe 39, a water supply pipe 42 through which water supplied from a water source such as a water pipe passes, and a hot water supply pipe 43 through which hot water supplied to the user passes are connected to the mixing valve 40 There is. The mixing valve 40 regulates the hot water supply temperature by adjusting the mixing ratio of hot water flowing from the hot water supply pipe 41, that is, high temperature water, and low temperature water flowing from the water supply pipe 42. The hot water mixed by the mixing valve 40 is sent through the hot water supply pipe 43 to a user-side terminal such as a bath, a shower, a faucet, and a dishwasher. The water supply pipe 44 branched from the water supply pipe 42 is connected to the lower part of the hot water storage tank 34. The water flowing in from the water supply pipe 44 is stored at the lower side in the hot water storage tank 34.
 次に、貯湯運転におけるヒートポンプ装置1の動作について説明する。貯湯運転は、ヒートポンプ装置1で加熱された湯を貯湯装置33の貯湯タンク34に流入させることにより、貯湯タンク34に熱エネルギーを貯える運転である。貯湯運転では、以下のようになる。圧縮機2、送風機6及び水ポンプ35が運転される。圧縮機2のモータの回転速度は、数十rps(Hz)~百rps(Hz)程度の範囲で変化できる。これにより、冷媒の流量を変化させることで、加熱能力を調節制御できる。 Next, the operation of the heat pump device 1 in the hot water storage operation will be described. The hot water storage operation is an operation of storing thermal energy in the hot water storage tank 34 by causing the hot water heated by the heat pump device 1 to flow into the hot water storage tank 34 of the hot water storage device 33. In hot water storage operation, it becomes as follows. The compressor 2, the blower 6 and the water pump 35 are operated. The rotational speed of the motor of the compressor 2 can be varied in the range of several tens rps (Hz) to hundreds rps (Hz). Thus, the heating capacity can be adjusted and controlled by changing the flow rate of the refrigerant.
 送風機6のモータの回転速度は数百rpm~千rpm程度に変化し、空気-冷媒熱交換器7を通過する空気の流量を変化させることで、空気-冷媒熱交換器7での冷媒と空気の熱交換量を調節制御できる。空気は、送風機6の後方に設置された空気-冷媒熱交換器7の後方から吸い込まれ、空気-冷媒熱交換器7を通過し、送風機室15を通過し、空気-冷媒熱交換器7と反対側のフロントパネル18の前面部18aの前方へ排出される。 The rotational speed of the motor of the blower 6 changes to about several hundred rpm to about 1,000 rpm, and the flow rate of the air passing through the air-refrigerant heat exchanger 7 is changed to change the refrigerant and air in the air-refrigerant heat exchanger 7 Control the amount of heat exchange. The air is drawn in from the rear of the air-refrigerant heat exchanger 7 installed behind the blower 6, passes through the air-refrigerant heat exchanger 7, passes through the fan chamber 15, and It is discharged to the front of the front portion 18 a of the opposite front panel 18.
 膨張弁10は、冷媒の流路開度を調節する。これにより、膨張弁10の上流側の高圧冷媒及び下流側の低圧冷媒の圧力を調節制御できる。圧縮機2の回転速度、送風機6の回転速度、膨張弁10の流路開度は、ヒートポンプ装置1の設置環境及び使用条件などに応じて制御される。 The expansion valve 10 adjusts the flow path opening degree of the refrigerant. Thereby, the pressure of the high pressure refrigerant on the upstream side of the expansion valve 10 and the pressure of the low pressure refrigerant on the downstream side can be adjusted and controlled. The rotational speed of the compressor 2, the rotational speed of the blower 6, and the flow path opening degree of the expansion valve 10 are controlled in accordance with the installation environment and use condition of the heat pump device 1.
 低圧冷媒は、冷媒通路51、吸熱通路11、及び冷媒通路52を通って圧縮機2へ吸入される。低圧冷媒は圧縮機2内の圧縮部で圧縮され、高温高圧冷媒になる。この高温高圧冷媒が圧縮機2から吐出され、水-冷媒熱交換器8の冷媒入口部に流入する。高温高圧冷媒は、水-冷媒熱交換器8内で水と熱交換することで水を加熱し湯を生成させる。冷媒は、水-冷媒熱交換器8を通過する間にエンタルピを低下させ、温度を低下させる。この温度低下した高圧冷媒は、水-冷媒熱交換器8の冷媒出口部から、冷媒管を通り、膨張弁10の入口部に流入する。この高圧冷媒は、膨張弁10で所定の圧力に減圧されることで温度降下し、気液二相状態で比較的低い乾き度の状態の低温低圧冷媒となる。この低温低圧冷媒は、膨張弁10の出口部から、冷媒管を通り、空気-冷媒熱交換器7の入口部に流入する。低温低圧冷媒は、空気-冷媒熱交換器7で空気と熱交換し、エンタルピが高められ、乾き度が高められる。低温低圧冷媒は、空気-冷媒熱交換器7の出口部から、冷媒通路51、吸熱通路11、及び冷媒通路52を経由して、圧縮機2に吸入される。水-冷媒熱交換器8から断熱材12へ伝わった熱が吸熱通路11を通る低温低圧冷媒に与えられることで、低温低圧冷媒は、エンタルピ及び温度が高められ、気体状態となって圧縮機2に吸入される。このように冷媒が循環してヒートポンプサイクルが行われる。 The low pressure refrigerant is drawn into the compressor 2 through the refrigerant passage 51, the heat absorption passage 11, and the refrigerant passage 52. The low pressure refrigerant is compressed in the compression section in the compressor 2 to become a high temperature high pressure refrigerant. The high temperature and high pressure refrigerant is discharged from the compressor 2 and flows into the refrigerant inlet portion of the water-refrigerant heat exchanger 8. The high-temperature high-pressure refrigerant exchanges heat with water in the water-refrigerant heat exchanger 8 to heat the water and generate hot water. The refrigerant lowers the enthalpy while passing through the water-refrigerant heat exchanger 8 to lower the temperature. The temperature-reduced high-pressure refrigerant flows from the refrigerant outlet of the water-refrigerant heat exchanger 8 through the refrigerant pipe and into the inlet of the expansion valve 10. The high-pressure refrigerant is reduced in temperature by the expansion valve 10 to a predetermined pressure, and becomes a low-temperature low-pressure refrigerant in a gas-liquid two-phase state with a relatively low dryness. The low-temperature low-pressure refrigerant flows from the outlet of the expansion valve 10 through the refrigerant pipe to the inlet of the air-refrigerant heat exchanger 7. The low-temperature low-pressure refrigerant exchanges heat with air in the air-refrigerant heat exchanger 7, the enthalpy is enhanced, and the dryness is enhanced. The low-temperature low-pressure refrigerant is drawn into the compressor 2 from the outlet of the air-refrigerant heat exchanger 7 via the refrigerant passage 51, the heat absorption passage 11, and the refrigerant passage 52. The heat transferred from the water-refrigerant heat exchanger 8 to the heat insulating material 12 is given to the low-temperature low-pressure refrigerant passing through the heat absorption passage 11, whereby the low-temperature low-pressure refrigerant is enthalpy and the temperature is raised to be in a gaseous state and the compressor 2 Inhaled by Thus, the refrigerant circulates to perform the heat pump cycle.
 同時に、水ポンプ35の駆動により、貯湯タンク34内の下部の水が、管38、外部管36、水入口バルブ28及び内部管30を通って、水-冷媒熱交換器8の水入口部に流入する。この水が水-冷媒熱交換器8で冷媒と熱交換し加熱されて湯が生成する。この湯は、内部管31、湯出口バルブ29、外部管37及び管39を通り、貯湯タンク34の上部に流入する。このような貯湯運転を行うことで、貯湯タンク34内に上部から下部に向かって高温の湯が蓄積していく。 At the same time, by driving the water pump 35, the lower water in the hot water storage tank 34 passes through the pipe 38, the outer pipe 36, the water inlet valve 28 and the inner pipe 30 to the water inlet of the water-refrigerant heat exchanger 8. To flow. This water exchanges heat with the refrigerant in the water-refrigerant heat exchanger 8 and is heated to generate hot water. The hot water flows into the upper portion of the hot water storage tank 34 through the inner pipe 31, the hot water outlet valve 29, the outer pipe 37 and the pipe 39. By performing such a hot water storage operation, high temperature hot water accumulates in the hot water storage tank 34 from the top toward the bottom.
 なお、ヒートポンプ装置1で加熱された湯を貯湯タンク34に溜めることなくユーザ側に直接供給しても良い。また、ヒートポンプ装置1で加熱された熱媒体を暖房等に利用しても良い。 The hot water heated by the heat pump device 1 may be supplied directly to the user without being stored in the hot water storage tank 34. Further, the heat medium heated by the heat pump device 1 may be used for heating or the like.
 本実施の形態のヒートポンプ装置1は、内部熱交換器を備えていない。内部熱交換器は、水-冷媒熱交換器8と膨張弁10との間の高圧冷媒と、空気-冷媒熱交換器7と圧縮機2との間の低圧冷媒との間で熱を交換することにより、低圧冷媒を加熱するためのものである。本実施の形態であれば、吸熱通路11を設けたことで、内部熱交換器を用いなくても、十分な熱量が低圧冷媒に与えられ、低圧冷媒の温度を比較的高くすることができる。その結果、水を高温(例えば、90℃程度)に加熱する運転の場合に、比較的低い圧縮比で圧縮機2を運転しても、圧縮機2から吐出される高圧冷媒の温度を十分高い温度(例えば、100℃以上)にすることができる。 The heat pump apparatus 1 of the present embodiment does not include the internal heat exchanger. The internal heat exchanger exchanges heat between the high pressure refrigerant between the water-refrigerant heat exchanger 8 and the expansion valve 10 and the low pressure refrigerant between the air-refrigerant heat exchanger 7 and the compressor 2 To heat the low pressure refrigerant. In the present embodiment, by providing the heat absorption passage 11, a sufficient amount of heat can be given to the low pressure refrigerant without using the internal heat exchanger, and the temperature of the low pressure refrigerant can be made relatively high. As a result, in the operation of heating water to a high temperature (for example, about 90 ° C.), the temperature of the high-pressure refrigerant discharged from the compressor 2 is sufficiently high even if the compressor 2 is operated at a relatively low compression ratio It can be at a temperature (eg, 100 ° C. or higher).
 内部熱交換器は、例えば、所定長さの高圧冷媒配管と、所定長さの低圧冷媒配管を接合させた構造、あるいは2重管構造を有する。内部熱交換器を設けると、ヒートポンプ装置1の材料コスト及び組立コストが増大しやすい。本実施の形態であれば、内部熱交換器を備える必要がないので、ヒートポンプ装置1の材料コスト及び組立コストの低減に有利である。 The internal heat exchanger has, for example, a structure in which a high pressure refrigerant pipe of a predetermined length and a low pressure refrigerant pipe of a predetermined length are joined, or a double pipe structure. Providing the internal heat exchanger tends to increase the material cost and the assembly cost of the heat pump device 1. The present embodiment is advantageous for reducing the material cost and the assembly cost of the heat pump device 1 since it is not necessary to provide the internal heat exchanger.
実施の形態2.
 次に、図9から図11を参照して、実施の形態2について説明するが、前述した実施の形態1との相違点を中心に説明し、同一部分または相当部分については説明を簡略化または省略する。
Second Embodiment
Next, the second embodiment will be described with reference to FIGS. 9 to 11, but differences from the above-described first embodiment will be mainly described, and the description of the same or corresponding parts will be simplified or I omit it.
 図9は、実施の形態2によるヒートポンプ装置50の内部構造を示す前面図である。図10は、実施の形態2によるヒートポンプ装置50の内部構造を示す平面図である。図11は、実施の形態2によるヒートポンプ装置50を備えたヒートポンプ給湯システムの冷媒回路及び水回路を示す図である。 FIG. 9 is a front view showing the internal structure of the heat pump device 50 according to the second embodiment. FIG. 10 is a plan view showing the internal structure of the heat pump device 50 according to the second embodiment. FIG. 11 is a view showing a refrigerant circuit and a water circuit of a heat pump hot water supply system provided with the heat pump device 50 according to the second embodiment.
 実施の形態2によるヒートポンプ装置50は、実施の形態1のヒートポンプ装置1と比べて、内部熱交換器13をさらに備えること以外は同様である。吸熱通路11だけでは低圧冷媒を加熱する能力が不足する場合などには、本実施の形態のように、内部熱交換器13をさらに設けてもよい。この場合、内部熱交換器13の大きさは、従来のヒートポンプ装置よりも小さくてよい。このため、内部熱交換器13を設けた場合でも、ヒートポンプ装置1の材料コスト及び組立コストの増大を抑制できる。 The heat pump device 50 according to the second embodiment is the same as the heat pump device 1 according to the first embodiment except for further including an internal heat exchanger 13. As in the case of the present embodiment, the internal heat exchanger 13 may be further provided, for example, when the heat absorption passage 11 alone lacks the ability to heat the low pressure refrigerant. In this case, the size of the internal heat exchanger 13 may be smaller than that of the conventional heat pump apparatus. For this reason, even when the internal heat exchanger 13 is provided, an increase in the material cost and the assembly cost of the heat pump device 1 can be suppressed.
 図9及び図10に示すように、内部熱交換器13は、機械室14内に配置されている。内部熱交換器13は、高圧冷媒配管及び低圧冷媒配管を有する。図11に示すように、水-冷媒熱交換器8を通過した高圧冷媒は、冷媒通路53を通って内部熱交換器13の高圧冷媒配管に流入する。内部熱交換器13の高圧冷媒配管を通過した高圧冷媒は、冷媒通路54を通って膨張弁10に流入する。空気-冷媒熱交換器7を出た低圧冷媒は、冷媒通路51を通って、入口部11aから吸熱通路11に流入する。吸熱通路11の出口部11cを出た低圧冷媒は、冷媒通路55を通って内部熱交換器13の低圧冷媒配管に流入する。内部熱交換器13の低圧冷媒配管を通過した低圧冷媒は、冷媒通路56を通って圧縮機2の吸入口へ流入する。実施の形態2における吸込冷媒通路は、冷媒通路51、吸熱通路11、冷媒通路55、内部熱交換器13の低圧冷媒配管、及び冷媒通路56を含む。 As shown in FIGS. 9 and 10, the internal heat exchanger 13 is disposed in the machine room 14. The internal heat exchanger 13 has a high pressure refrigerant pipe and a low pressure refrigerant pipe. As shown in FIG. 11, the high-pressure refrigerant that has passed through the water-refrigerant heat exchanger 8 flows into the high-pressure refrigerant pipe of the internal heat exchanger 13 through the refrigerant passage 53. The high pressure refrigerant that has passed through the high pressure refrigerant pipe of the internal heat exchanger 13 flows into the expansion valve 10 through the refrigerant passage 54. The low pressure refrigerant leaving the air-refrigerant heat exchanger 7 flows through the refrigerant passage 51 into the heat absorption passage 11 from the inlet 11a. The low pressure refrigerant leaving the outlet 11 c of the heat absorption passage 11 flows into the low pressure refrigerant piping of the internal heat exchanger 13 through the refrigerant passage 55. The low pressure refrigerant that has passed through the low pressure refrigerant pipe of the internal heat exchanger 13 flows through the refrigerant passage 56 into the suction port of the compressor 2. The suction refrigerant passage in the second embodiment includes a refrigerant passage 51, a heat absorption passage 11, a refrigerant passage 55, a low pressure refrigerant pipe of the internal heat exchanger 13, and a refrigerant passage 56.
 内部熱交換器13は、高圧冷媒配管と低圧冷媒配管が接合された構造、または2重管構造を有する。内部熱交換器13の内部では、高圧冷媒配管内の高圧冷媒と、低圧冷媒配管の低圧冷媒との間で熱を交換し、高圧冷媒から低圧冷媒に熱を与える。内部熱交換器13は、主として、銅材等の金属材製である。吸熱通路11がない場合と比較して、内部熱交換器13の高圧冷媒配管及び低圧冷媒配管は短くてよいので、内部熱交換器13を小型化することが可能である。内部熱交換器13を小さくしても、吸熱通路11があるので、十分な熱量を低圧冷媒に対して与えることができ、実施の形態1で述べた効果と同様の効果が得られる。 The internal heat exchanger 13 has a structure in which a high pressure refrigerant pipe and a low pressure refrigerant pipe are joined, or a double pipe structure. Inside the internal heat exchanger 13, heat is exchanged between the high pressure refrigerant in the high pressure refrigerant pipe and the low pressure refrigerant in the low pressure refrigerant pipe, and the high pressure refrigerant gives heat to the low pressure refrigerant. The internal heat exchanger 13 is mainly made of a metal material such as a copper material. Since the high-pressure refrigerant pipe and the low-pressure refrigerant pipe of the internal heat exchanger 13 may be short as compared with the case where the heat absorption passage 11 is not provided, the internal heat exchanger 13 can be miniaturized. Even if the internal heat exchanger 13 is downsized, since the heat absorption passage 11 is provided, a sufficient amount of heat can be given to the low pressure refrigerant, and the same effect as the effect described in the first embodiment can be obtained.
 以上説明した各実施の形態によれば、省エネルギー性能面、静粛性能面、信頼性面、コスト面で優れたヒートポンプ装置を得ることができる。ヒートポンプ装置の性能、品質には使用者の関心が高く、本発明は著しく貢献する。 According to each embodiment described above, it is possible to obtain a heat pump device excellent in energy saving performance, quiet performance, reliability, and cost. The performance and quality of the heat pump system are of high user interest, and the present invention contributes significantly.
1 ヒートポンプ装置、 2 圧縮機、 6 送風機、 7 空気-冷媒熱交換器、 8 水-冷媒熱交換器、 9 電気品収納箱、 10 膨張弁、 11 吸熱通路、 11a 入口部、 11b 折り返し部、 11c 出口部、 12 断熱材、 12a 上面壁部、 12b 下面壁部、 12c 前面壁部、 12d 後面壁部、 12e 右面壁部、 12f 左面壁部、 12g 内面、 12h 外面、 13 内部熱交換器、 14 機械室、 15 送風機室、 16 仕切板、 17 ベース、 18 フロントパネル、 19 バックパネル、 20 トップパネル、 24 電子基板、 27 サービスパネル、 28 水入口バルブ、 29 湯出口バルブ、 33 貯湯装置、 34 貯湯タンク、 35 水ポンプ、 40 混合弁、 41 給湯管、 42 給水管、 43 給湯管、 44 給水管、 50 ヒートポンプ装置 DESCRIPTION OF SYMBOLS 1 heat pump apparatus, 2 compressor, 6 blower, 7 air-refrigerant heat exchanger, 8 water-refrigerant heat exchanger, 9 electric goods storage box, 10 expansion valve, 11 heat absorption path, 11a inlet part, 11b folded part, 11c Outlet, 12 thermal insulation, 12a upper surface wall, 12b lower wall, 12c front wall, 12d rear wall, 12e right wall, 12f left wall, 12g inner surface, 12h outer surface, 13 internal heat exchanger, 14 Machine Room, 15 Blower Room, 16 Partition Plate, 17 Base, 18 Front Panel, 19 Back Panel, 20 Top Panel, 24 Electronic Board, 27 Service Panel, 28 Water Inlet Valve, 29 Hot Water Outlet Valve, 33 Hot Water Storage Device, 34 Hot Water Storage Tank, 35 Water pump, 40 mixing valve, 41 hot water supply pipe, 42 water supply pipe, 43 hot water supply pipe, 44 water supply pipe, 50 a heat pump apparatus

Claims (9)

  1.  冷媒を圧縮する圧縮機と、
     熱媒体と、前記圧縮機により圧縮された冷媒との間で熱を交換する第一熱交換器と、
     前記第一熱交換器を少なくとも部分的に覆う断熱材と、
     前記第一熱交換器の下流側の冷媒を減圧させる減圧装置と、
     前記減圧装置の下流側の冷媒を蒸発させる第二熱交換器と、
     前記第二熱交換器の出口と、前記圧縮機の吸入口との間を繋ぐ通路である吸込冷媒通路と、
     を備え、
     前記断熱材は、前記第一熱交換器に対向する内面と、前記内面と反対側の外面とを有し、
     前記吸込冷媒通路は、前記断熱材の前記内面と前記外面との間を通る通路である吸熱通路を含む
     ヒートポンプ装置。
    A compressor for compressing a refrigerant,
    A first heat exchanger for exchanging heat between a heat medium and a refrigerant compressed by the compressor;
    A thermal insulator at least partially covering the first heat exchanger;
    A decompressor for decompressing the refrigerant downstream of the first heat exchanger;
    A second heat exchanger for evaporating the refrigerant downstream of the pressure reducing device;
    A suction refrigerant passage which is a passage connecting the outlet of the second heat exchanger and the suction port of the compressor;
    Equipped with
    The heat insulating material has an inner surface opposite to the first heat exchanger, and an outer surface opposite to the inner surface,
    The heat pump device, wherein the suction refrigerant passage includes a heat absorption passage that is a passage passing between the inner surface and the outer surface of the heat insulating material.
  2.  前記吸熱通路の外面の少なくとも一部は、前記断熱材に対して隙間なく接触している請求項1に記載のヒートポンプ装置。 The heat pump device according to claim 1, wherein at least a part of the outer surface of the heat absorption passage is in close contact with the heat insulating material without a gap.
  3.  前記断熱材は、前記第一熱交換器の側面を覆う側壁部を備え、
     前記吸熱通路の少なくとも一部は、前記側壁部の内部を通る請求項1または請求項2に記載のヒートポンプ装置。
    The heat insulating material includes a side wall covering a side surface of the first heat exchanger,
    The heat pump device according to claim 1, wherein at least a part of the heat absorption passage passes through the inside of the side wall portion.
  4.  前記側壁部は、前記第一熱交換器の側面の全周を覆い、
     前記吸熱通路の少なくとも一部は、前記第一熱交換器の周りを少なくとも1周するように配置されている請求項3に記載のヒートポンプ装置。
    The side wall portion covers the entire circumference of the side surface of the first heat exchanger,
    The heat pump device according to claim 3, wherein at least a part of the heat absorption passage is disposed so as to go around at least one time around the first heat exchanger.
  5.  前記側壁部は、前記第一熱交換器の側面の全周を覆い、
     前記吸熱通路の少なくとも一部は、前記第一熱交換器の周りを複数回回るように配置されている請求項3に記載のヒートポンプ装置。
    The side wall portion covers the entire circumference of the side surface of the first heat exchanger,
    The heat pump device according to claim 3, wherein at least a part of the heat absorption passage is disposed to rotate around the first heat exchanger a plurality of times.
  6.  前記断熱材は、前記第一熱交換器の下面を覆う下面壁部を備え、
     前記吸熱通路の少なくとも一部は、前記下面壁部の内部を通る請求項1から請求項5のいずれか一項に記載のヒートポンプ装置。
    The heat insulating material comprises a lower surface wall covering the lower surface of the first heat exchanger;
    The heat pump device according to any one of claims 1 to 5, wherein at least a part of the heat absorption passage passes through the inside of the lower wall portion.
  7.  前記吸熱通路は、前記断熱材の内部に位置する少なくとも一つの折り返し部を有し、
     冷媒が前記少なくとも一つの折り返し部を通過すると、冷媒の進行方向が反転する請求項1から請求項6のいずれか一項に記載のヒートポンプ装置。
    The heat absorption passage has at least one folded portion located inside the heat insulating material,
    The heat pump apparatus according to any one of claims 1 to 6, wherein the advancing direction of the refrigerant is reversed when the refrigerant passes through the at least one turnaround portion.
  8.  前記吸熱通路は、前記断熱材の内部において渦巻き状に配置された部分を有する請求項1から請求項7のいずれか一項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 7, wherein the heat absorption passage has a portion spirally disposed inside the heat insulating material.
  9.  前記吸熱通路は、前記断熱材を介して前記第一熱交換器に接しており、
     前記吸熱通路と前記第一熱交換器とが直接接触する箇所を有しない請求項1から請求項8のいずれか一項に記載のヒートポンプ装置。
    The heat absorption passage is in contact with the first heat exchanger via the heat insulating material,
    The heat pump apparatus according to any one of claims 1 to 8, wherein there is no place where the heat absorption passage and the first heat exchanger are in direct contact with each other.
PCT/JP2017/042262 2017-11-24 2017-11-24 Heat pump device WO2019102595A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019556059A JP6798628B2 (en) 2017-11-24 2017-11-24 Heat pump device
PCT/JP2017/042262 WO2019102595A1 (en) 2017-11-24 2017-11-24 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042262 WO2019102595A1 (en) 2017-11-24 2017-11-24 Heat pump device

Publications (1)

Publication Number Publication Date
WO2019102595A1 true WO2019102595A1 (en) 2019-05-31

Family

ID=66631944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042262 WO2019102595A1 (en) 2017-11-24 2017-11-24 Heat pump device

Country Status (2)

Country Link
JP (1) JP6798628B2 (en)
WO (1) WO2019102595A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166467U (en) * 1986-04-04 1987-10-22
JP2006090658A (en) * 2004-09-24 2006-04-06 Denso Corp Heat pump apparatus
JP2006336894A (en) * 2005-05-31 2006-12-14 Mitsubishi Electric Corp Heat pump water heater
JP2007285611A (en) * 2006-04-18 2007-11-01 Daikin Ind Ltd Heat pump type hot water supplier
JP2012237504A (en) * 2011-05-12 2012-12-06 Chofu Seisakusho Co Ltd Heat pump type heat source machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166467U (en) * 1986-04-04 1987-10-22
JP2006090658A (en) * 2004-09-24 2006-04-06 Denso Corp Heat pump apparatus
JP2006336894A (en) * 2005-05-31 2006-12-14 Mitsubishi Electric Corp Heat pump water heater
JP2007285611A (en) * 2006-04-18 2007-11-01 Daikin Ind Ltd Heat pump type hot water supplier
JP2012237504A (en) * 2011-05-12 2012-12-06 Chofu Seisakusho Co Ltd Heat pump type heat source machine

Also Published As

Publication number Publication date
JPWO2019102595A1 (en) 2020-04-02
JP6798628B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
CN104379999B (en) The mounting structure of air-conditioning device and air-conditioning device
US10458674B2 (en) Decorative panel and air-conditioner indoor unit provided with same
CN107636404B (en) Heat pump device
EP3431897B1 (en) Heat pump apparatus
JP4650171B2 (en) Geothermal heat pump water heater
EP3734194B1 (en) Heat pump hot water supplying outdoor unit
JP5423509B2 (en) Heat pump water heater
WO2019102595A1 (en) Heat pump device
JP7173316B2 (en) heat pump equipment
JP2009085528A (en) Heat-pump hot-water supply device
JP2014031902A (en) Heat pump hot water supply outdoor unit
JP6743968B2 (en) Water-refrigerant heat exchanger and heat pump device including water heat exchanger
WO2019167136A1 (en) Heat pump apparatus
JP6669306B2 (en) Heat pump equipment
CN209744564U (en) Cooling and heating window type air conditioner
JP5630427B2 (en) Heat pump water heater outdoor unit
WO2018073917A1 (en) Heat pump device
JP2012247186A (en) Heat pump water heater
US20240271798A1 (en) Heating apparatus
JP2000329399A (en) Hot water storage apparatus
WO2020136825A1 (en) Heat pump device
JP6590078B2 (en) Heat pump equipment
KR100442262B1 (en) Piping structure of air-conditioner
CN118623391A (en) Indoor unit and cabinet air conditioner
JP2002098357A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932842

Country of ref document: EP

Kind code of ref document: A1