US20200362215A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
US20200362215A1
US20200362215A1 US16/954,702 US201816954702A US2020362215A1 US 20200362215 A1 US20200362215 A1 US 20200362215A1 US 201816954702 A US201816954702 A US 201816954702A US 2020362215 A1 US2020362215 A1 US 2020362215A1
Authority
US
United States
Prior art keywords
point
hfo
coordinates
refrigerant
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/954,702
Inventor
Eiji Kumakura
Takuro Yamada
Atsushi Yoshimi
Ikuhiro Iwata
Mitsushi Itano
Daisuke Karube
Yuuki YOTSUMOTO
Kazuhiro Takahashi
Tatsuya TAKAKUWA
Yuzo Komatsu
Shun OHKUBO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/037483 external-priority patent/WO2019123782A1/en
Priority claimed from PCT/JP2018/038747 external-priority patent/WO2019123805A1/en
Priority claimed from PCT/JP2018/038748 external-priority patent/WO2019123806A1/en
Priority claimed from PCT/JP2018/038746 external-priority patent/WO2019123804A1/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority claimed from PCT/JP2018/046581 external-priority patent/WO2019124379A1/en
Assigned to DAIKIN INDUSTRIES, LTD. reassignment DAIKIN INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IWATA, IKUHIRO, KUMAKURA, EIJI, YAMADA, TAKURO, YOSHIMI, ATSUSHI, TAKAKUWA, Tatsuya, KOMATSU, YUZO, TAKAHASHI, KAZUHIRO, ITANO, MITSUSHI, KARUBE, DAISUKE, OHKUBO, Shun, YOTSUMOTO, Yuuki
Publication of US20200362215A1 publication Critical patent/US20200362215A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M131/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
    • C10M131/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
    • C10M131/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/34Protection means thereof, e.g. covers for refrigerant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • F24F3/052Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0018Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/43Type R22
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus.
  • R410A is often used as a refrigerant.
  • R410A is a two-component mixed refrigerant of difluoromethane (CH 2 F 2 ; HFC-32, or R32) and pentafluoroethane (C 2 HF 5 ; HFC-125, or R125) and is a pseudo-azeotropic composition.
  • the global warming potential (GWP) of R410A is 2088, and, in recent years, because of growing concern about global warming, R32 that is a refrigerant having a lower GWP is used more often.
  • PTL 1 International Publication No. 2015/1416778 suggests various types of low-GWP refrigerant mixtures as alternatives to R410A.
  • the pipe outer diameter of each of a liquid-side connection pipe and a gas-side connection pipe that connect a heat source unit having a heat source-side heat exchanger and a service unit having a service-side heat exchanger is specifically considered and suggested.
  • the pipe outer diameter of the liquid-side connection pipe or gas-side connection pipe is not considered or suggested at all.
  • a refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a decompression part, a liquid-side connection pipe, a service-side heat exchanger, and a gas-side connection pipe are connected.
  • a refrigerant containing at least 1,2-difluoroethylene is used.
  • a pipe outer diameter of the liquid-side connection pipe and a pipe outer diameter of the gas-side connection pipe each are D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is a pipe outer diameter of a connection pipe when refrigerant R32 is used), in the liquid-side connection pipe, a range of the D 0 is “2 ⁇ D 0 ⁇ 4”, and, in the gas-side connection pipe, a range of the D 0 is “3 ⁇ D 0 ⁇ 8”.
  • the decompression part is not limited and may be an expansion valve or may be a capillary tube.
  • a range of the D 0 is “2 ⁇ D 0 ⁇ 3”, and, in the gas-side connection pipe, a range of the D 0 is “4 ⁇ D 0 ⁇ 7”.
  • This refrigeration cycle apparatus is able to suppress a decrease in capacity while sufficiently reducing a GWP by using a refrigerant containing 1,2-difluoroethylene.
  • the refrigeration cycle apparatus according to the first aspect may be configured as follows in consideration of the difference in physical properties between the refrigerant of the present disclosure and refrigerant R32.
  • a rated refrigeration capacity of the refrigeration cycle apparatus may be greater than or equal to 6.3 kW and less than or equal to 10.0 kW
  • the pipe outer diameter of the liquid-side connection pipe may be D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used)
  • the D 0 of the liquid-side connection pipe may be 3.
  • a rated refrigeration capacity of the refrigeration cycle apparatus may be less than or equal to 4.0 kW
  • the pipe outer diameter of the gas-side connection pipe may be D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used)
  • the D 0 of the gas-side connection pipe may be 4.
  • a rated refrigeration capacity of the refrigeration cycle apparatus may be greater than or equal to 6.3 kW and less than or equal to 10.0 kW
  • the pipe outer diameter of the gas-side connection pipe may be D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used)
  • the D 0 of the gas-side connection pipe may be 5.
  • a rated refrigeration capacity of the refrigeration cycle apparatus may be greater than or equal to 15.0 kW and less than or equal to 19.0 kW
  • the pipe outer diameter of the gas-side connection pipe may be D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used)
  • the D 0 of the gas-side connection pipe may be 6.
  • a rated refrigeration capacity of the refrigeration cycle apparatus may be greater than or equal to 25.0 kW
  • the pipe outer diameter of the gas-side connection pipe may be D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used)
  • the D 0 of the gas-side connection pipe may be 7.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the first aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than 5.6 kW and less than 11.2 kW, and the D 0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is 3 ⁇ 8 inches).
  • a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than or equal to 10.0 kW, and the D 0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is 3 ⁇ 8 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the first aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than 22.4 kW, and the D 0 of the gas-side connection pipe is 7 (that is, a pipe diameter is 7 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than 14.0 kW and less than 22.4 kW, and the D 0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than 5.6 kW and less than 11.2 kW, and the D 0 of the gas-side connection pipe is 5 (that is, the pipe diameter is 5 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 4.5 kW, and the D 0 of the gas-side connection pipe is 4 (that is, the pipe diameter is 1 ⁇ 2 inches).
  • a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 25.0 kW, and the D 0 of the gas-side connection pipe is 7 (that is, a pipe diameter is 7 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 15.0 kW and less than 19.0 kW, and the D 0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 10.0 kW, and the D 0 of the gas-side connection pipe is 5 (that is, the pipe diameter is 5 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 4.0 kW, and the D 0 of the gas-side connection pipe is 4 (that is, the pipe diameter is 1 ⁇ 2 inches).
  • a refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a decompression part, a liquid-side connection pipe, a service-side heat exchanger, and a gas-side connection pipe are connected.
  • a refrigerant containing at least 1,2-difluoroethylene is used.
  • a pipe outer diameter of the liquid-side connection pipe and a pipe outer diameter of the gas-side connection pipe each are D 0 /8 inches, in the liquid-side connection pipe, a range of the D 0 is “2 ⁇ D 0 ⁇ 4”, and, in the gas-side connection pipe, a range of the D 0 is “3 ⁇ D 0 ⁇ 8”.
  • the pipe outer diameter of the liquid-side connection pipe is same as a pipe outer diameter of a liquid-side connection pipe when refrigerant R410A is used, and the pipe outer diameter of the gas-side connection pipe is same as a pipe outer diameter of a gas-side connection pipe when refrigerant R410A is used.
  • the decompression part is not limited and may be an expansion valve or may be a capillary tube.
  • a range of the D 0 is “2 ⁇ D 0 ⁇ 3”, and, in the gas-side connection pipe, a range of the D 0 is “4 ⁇ D 0 ⁇ 7”.
  • This refrigeration cycle apparatus is able to suppress a decrease in capacity while sufficiently reducing a GWP by using a refrigerant containing 1,2-difluoroethylene.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the fourth aspect, and the D 0 of the liquid-side connection pipe is 2 (that is, a pipe diameter is 1 ⁇ 4 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the fourth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and the D 0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is 3 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW and the D 0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is 1 ⁇ 4 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the fourth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.0 kW and the D 0 of the gas-side connection pipe is 4 (that is, a pipe diameter is 1 ⁇ 2 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.0 kW and the D 0 of the gas-side connection pipe is 3 (that is, the pipe diameter is 3 ⁇ 8 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the fourth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 25.0 kW, and the D 0 of the gas-side connection pipe is 7 (that is, a pipe diameter is 7 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 15.0 kW and less than 25.0 kW, and the D 0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 15.0 kW, and the D 0 of the gas-side connection pipe is 5 (that is, the pipe diameter is 5 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D 0 of the gas-side connection pipe is 4 (that is, the pipe diameter is 1 ⁇ 2 inches).
  • a refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a decompression part, a liquid-side connection pipe, a service-side heat exchanger, and a gas-side connection pipe are connected.
  • a refrigerant containing at least 1,2-difluoroethylene is used.
  • a pipe outer diameter of the liquid-side connection pipe and a pipe outer diameter of the gas-side connection pipe each are D 0 /8 inches, in the liquid-side connection pipe, a range of the D 0 is “2 ⁇ D 0 ⁇ 4”, and, in the gas-side connection pipe, a range of the D 0 is “3 ⁇ D 0 ⁇ 8”.
  • the decompression part is not limited and may be an expansion valve or may be a capillary tube.
  • a range of the D 0 is “2 ⁇ D 0 ⁇ 3”, and, in the gas-side connection pipe, a range of the D 0 is “4 ⁇ D 0 ⁇ 7”.
  • This refrigeration cycle apparatus is able to suppress a decrease in capacity while sufficiently reducing a GWP by using a refrigerant containing 1,2-difluoroethylene.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the ninth aspect, and the D 0 of the liquid-side connection pipe is 2 (that is, a pipe diameter is 1 ⁇ 4 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 7.5 kW, and the D 0 of the liquid-side connection pipe is 2.5 (that is, a pipe diameter is 5/16 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 2.6 kW and less than 7.5 kW, and the D 0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is 1 ⁇ 4 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 2.6 kW, and the D 0 of the liquid-side connection pipe is 1.5 (that is, the pipe diameter is 3/16 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW, and the D 0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is 3 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D 0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is 1 ⁇ 4 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 12.5 kW, and the D 0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is 3 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 12.5 kW, and the D 0 of the liquid-side connection pipe is 2.5 (that is, the pipe diameter is 5/16 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D 0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is 1 ⁇ 4 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.0 kW, and the D 0 of the gas-side connection pipe is 4 (that is, a pipe diameter is 1 ⁇ 2 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.0 kW, and the D 0 of the gas-side connection pipe is 3 (that is, the pipe diameter is 3 ⁇ 8 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.0 kW, and the D 0 of the gas-side connection pipe is 4 (that is, a pipe diameter is 1 ⁇ 2 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 3.2 kW and less than 6.0 kW, and the D 0 of the gas-side connection pipe is 3 (that is, the pipe diameter is 3 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 3.2 kW, and the D 0 of the gas-side connection pipe is 2.5 (that is, the pipe diameter is 5/16 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 25.0 kW, and the D 0 of the gas-side connection pipe is 7 (that is, a pipe diameter is 7 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 15.0 kW and less than 25.0 kW, and the D 0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 15.0 kW, and the D 0 of the gas-side connection pipe is 5 (that is, the pipe diameter is 5 ⁇ 8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D 0 of the gas-side connection pipe is 4 (that is, the pipe diameter is 1 ⁇ 2 inches).
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
  • the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • point M (52.6, 0.0, 47.4), point M′(39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM);
  • the line segments PB′ and GM are straight lines.
  • FIG. 1 is a schematic view of an instrument used for a flammability test.
  • FIG. 2 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.
  • FIG. 3 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100 ⁇ a) mass %.
  • FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).
  • FIG. 5 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).
  • FIG. 6 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).
  • FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).
  • FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).
  • FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).
  • FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).
  • FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).
  • FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).
  • FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).
  • FIG. 14 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.
  • FIG. 15 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.
  • FIG. 16 is a schematic configuration diagram of a refrigerant circuit according to a first embodiment.
  • FIG. 17 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to the first embodiment.
  • FIG. 18 is a graph of a pressure loss in a liquid-side connection pipe during heating operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in an air conditioner according to the first embodiment.
  • FIG. 19 is a graph of a pressure loss in a gas-side connection pipe during cooling operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in the air conditioner according to the first embodiment.
  • FIG. 20 is a schematic configuration diagram of a refrigerant circuit according to a second embodiment.
  • FIG. 21 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to the second embodiment.
  • FIG. 22 is a graph of a pressure loss in a liquid-side connection pipe during heating operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in an air conditioner according to the second embodiment.
  • FIG. 23 is a graph of a pressure loss in a gas-side connection pipe during cooling operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in the air conditioner according to the second embodiment.
  • FIG. 24 is a schematic configuration diagram of a refrigerant circuit according to a third embodiment.
  • FIG. 25 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to the third embodiment.
  • FIG. 26 is a graph of a pressure loss in a liquid-side connection pipe during heating operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in an air conditioner according to the third embodiment.
  • FIG. 27 is a graph of a pressure loss in a gas-side connection pipe during cooling operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in the air conditioner according to the third embodiment.
  • refrigerant includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given.
  • Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds.
  • Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC).
  • Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.
  • composition comprising a refrigerant at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil.
  • the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants).
  • the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oil-containing working fluid” so as to distinguish it from the “refrigerant composition.”
  • the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment.
  • this type of alternative means that the same equipment is operated with an alternative refrigerant.
  • Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.
  • alterative also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.
  • refrigerating machine refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature.
  • refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.
  • a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013.
  • a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”
  • a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more.
  • RCL refers to a concentration limit in the air in consideration of safety factors.
  • RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present.
  • RCL is determined in accordance with the ASHRAE Standard.
  • RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.
  • ATEL acute toxicity exposure limit
  • ODL oxygen deprivation limit
  • FCL flammable concentration limit
  • temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a composition containing the refrigerant of the present disclosure in the heat exchanger of a refrigerant system.
  • refrigerant A any one of various refrigerants such as refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E, details of these refrigerant are to be mentioned later, can be used as the refrigerant.
  • the refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.
  • composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.
  • the refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.
  • the refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure.
  • the refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary.
  • the refrigerant composition according to the present disclosure when used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil.
  • the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.
  • the refrigerant composition according to the present disclosure may contain a small amount of water.
  • the water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant.
  • a small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.
  • a tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.
  • the refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.
  • the tracer is not limited, and can be suitably selected from commonly used tracers.
  • a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.
  • tracers examples include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N 2 O).
  • the tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.
  • FC-14 (tetrafluoromethane, CFO HCC-40 (chloromethane, CH 3 Cl) HFC-23 (trifluoromethane, CHF 3 ) HFC-41 (fluoromethane, CH 3 Cl) HFC-125 (pentafluoroethane, CF 3 CHF 2 ) HFC-134a (1,1,1,2-tetrafluoroethane, CF 3 CH 2 F) HFC-134 (1,1,2,2-tetrafluoroethane, CHF 2 CHF 2 ) HFC-143a (1,1,1-trifluoroethane, CF 3 CH 3 ) HFC-143 (1,1,2-trifluoroethane, CHF 2 CH 2 F) HFC-152a (1,1-difluoroethane, CHF 2 CH 3 ) HFC-152 (1,2-difluoroethane, CH 2 FCH 2 F) HFC-161 (fluoroethane, CH 3 CH 2 F) HFC-2
  • the tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm.
  • the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.
  • the refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.
  • the ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.
  • ultraviolet fluorescent dyes examples include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof.
  • the ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.
  • the refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.
  • the stabilizer is not limited, and can be suitably selected from commonly used stabilizers.
  • stabilizers examples include nitro compounds, ethers, and amines.
  • nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.
  • ethers examples include 1,4-dioxane.
  • amines examples include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
  • stabilizers also include butylhydroxyxylene and benzotriazole.
  • the content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • the refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.
  • the polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.
  • polymerization inhibitors examples include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.
  • the content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • the refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine.
  • the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition.
  • the refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.
  • the refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils.
  • refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.
  • the base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).
  • PAG polyalkylene glycols
  • POE polyol esters
  • PVE polyvinyl ethers
  • the refrigeration oil may further contain additives in addition to the base oil.
  • the additive may be at least one member selected from the group consisting of antioxidants, extreme-pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.
  • a refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.
  • the refrigeration oil-containing working fluid according to the present disclosure may further optionally contain at least one additive.
  • additives include compatibilizing agents described below.
  • the refrigeration oil-containing working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.
  • the compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.
  • compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes.
  • the compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.
  • each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent.
  • the alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E.
  • the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.
  • the refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • the refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • the refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements.
  • This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • Preferable refrigerant A is as follows:
  • point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), point C (32.9, 67.1, 0.0), and point O (100.0, 0.0, 0.0), or on the above line segments (excluding the points on the line CO);
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3,
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments BD, CO, and OA are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • point G (72.0, 28.0, 0.0), point I (72.0, 0.0, 28.0), point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CG);
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments GI, IA, BD, and CG are straight lines.
  • the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point N (68.6, 16.3, 15.1), point K (61.3, 5.4, 33.3), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91),
  • the line segment KA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments JP, BD, and CG are straight lines.
  • the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CJ);
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m 3 or more.
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), and point T (35.8, 44.9, 19.3), or on the above line segments (excluding the points on the line segment BF);
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
  • the line segment TP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
  • the line segments LM and BF are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m 3 or more.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point Q (62.8, 29.6, 7.6), and point R (49.8, 42.3, 7.9), or on the above line segments;
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment RP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
  • the line segments LQ and QR are straight lines.
  • the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m 3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
  • the line segment TS is represented by coordinates (x, ⁇ 0.0017x 2 ⁇ 0.7869x+70.888, ⁇ 0.0017x 2 ⁇ 0.2131x+29.112), and
  • the line segments SM and BF are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m 3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:
  • point d (87.6, 0.0, 12.4), point g (18.2, 55.1, 26.7), point h (56.7, 43.3, 0.0), and point o (100.0, 0.0, 0.0), or on the line segments Od, dg, gh, and hO (excluding the points O and h);
  • the line segment dg is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line segment gh is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point l (72.5, 10.2, 17.3), point g (18.2, 55.1, 26.7), point h (56.7, 43.3, 0.0), and point i (72.5, 27.5, 0.0) or on the line segments lg, gh, and il (excluding the points h and i);
  • the line segment lg is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line gh is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point d (87.6, 0.0, 12.4), point a (31.1, 42.9, 26.0), point f (65.5, 34.5, 0.0), and point O (100.0, 0.0, 0.0), or on the line segments Od, de, and ef (excluding the points O and f);
  • the line segment de is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line segment ef is represented by coordinates ( ⁇ 0.0064z 2 ⁇ 1.1565z+65.501, 0.0064z 2 +0.1565z+34.499, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point l (72.5, 10.2, 17.3), point e (31.1, 42.9, 26.0), point f (65.5, 34.5, 0.0), and point i (72.5, 27.5, 0.0), or on the line segments le, ef, and il (excluding the points f and i);
  • the line segment le is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line segment ef is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
  • the line segments fi and il are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point a (93.4, 0.0, 6.6), point b (55.6, 26.6, 17.8), point c (77.6, 22.4, 0.0), and point O (100.0, 0.0, 0.0), or on the line segments Oa, ab, and bc (excluding the points O and c);
  • the line segment ab is represented by coordinates (0.0052y 2 ⁇ 1.5588y+93.385, y, ⁇ 0.0052y 2 +0.5588y+6.615),
  • the line segment bc is represented by coordinates ( ⁇ 0.0032z 2 ⁇ 1.1791z+77.593, 0.0032z 2 +0.1791z+22.407, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point k (72.5, 14.1, 13.4), point b (55.6, 26.6, 17.8), and point j (72.5, 23.2, 4.3), or on the line segments kb, bj, and jk;
  • the line segment bj is represented by coordinates ( ⁇ 0.0032z 2 ⁇ 1.1791z+77.593, 0.0032z 2 +0.1791z+22.407, z), and
  • the line segment jk is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • the refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • the refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • refrigerant A is not limited to the Examples.
  • the GWP of R1234yf and a composition consisting of a mixed refrigerant R410A was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • the refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.
  • Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.
  • Example Example Example Ex. 10 20 21 Item Unit G H I HFO-1132(E) mass % 72.0 72.0 72.0 HFO-1123 mass % 28.0 14.0 0.0 R1234yf mass % 0.0 14.0 28.0 GWP — 1 1 2 COP ratio % (relative 96.6 98.2 99.9 to 410A) Refrigerating % (relative 103.1 95.1 86.6 capacity ratio to 410A) Condensation glide ° C. 0.46 1.27 1.71 Discharge pressure % (relative 108.4 98.7 88.6 to 410A) RCL g/m 3 37.4 37.0 36.6
  • Example Example Example Example Example Item Unit 39 40 41 42 43 44 45 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 HFO-1123 mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 93.0 93.7 94.5 95.5 96.5 97.6 98.7 to 410A) Refrigerating % (relative 97.7 97.4 96.8 95.9 94.7 93.4 91.9 capacity ratio to 410A) Condensation ° C.
  • Example Example Example Example Example Item Unit 53 54 55 56 57 58 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 HFO-1123 mass % 60.0 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 GWP — 2 2 2 2 2 2 COP ratio % (relative 94.3 95.0 95.9 96.8 97.8 98.9 to 410A) Refrigerating % (relative 91.9 91.5 90.8 89.9 88.7 87.3 capacity ratio to 410A) Condensation ° C.
  • Example Example Item Unit 226 227 HFO-1132(E) mass % 34.0 36.0 HFO-1123 mass % 28.0 26.0 R1234yf mass % 38.0 38.0 GWP — 2 2 COP ratio % (relative 97.4 97.6 to 410A) Refrigerating % (relative 85.6 85.3 capacity ratio to 410A) Condensation glide ° C. 4.18 4.11 Discharge pressure % (relative 91.0 90.6 to 410A) RCL g/m 3 50.9 49.8
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503)
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6)
  • the line segment C′C is represented by coordinates (x, 0.00
  • the point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.
  • the point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.
  • the point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.
  • the point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503)
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3)
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2)
  • the line segment TE is represented by coordinates (x, 0.0067
  • the point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.
  • the point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.
  • the composition preferably contains R1234yf.
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • reference numeral 901 refers to a sample cell
  • 902 refers to a high speed camera
  • 903 refers to a xenon lamp
  • 904 refers to a collimating lens
  • 905 refers to a collimating lens
  • 906 refers to a ring filter.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.
  • Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:
  • the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.
  • the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43), and the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91).
  • the point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.
  • the point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.
  • the refrigerant B according to the present disclosure is
  • a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or
  • a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • the refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability.
  • the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.
  • the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
  • the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
  • the refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.
  • additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
  • the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • refrigerant B is not limited to the Examples.
  • compositions each comprising a mixture of R410A were evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • the refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • composition of each mixture was defined as WCF.
  • a leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results.
  • the COP and refrigerating capacity are ratios relative to R410A.
  • the coefficient of performance (COP) was determined by the following formula.
  • the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • the refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements.
  • the refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.
  • Preferable refrigerant C is as follows:
  • HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • point G (0.026a 2 ⁇ 1.7478a+72.0, ⁇ 0.026a 2 +0.7478a+28.0, 0.0), point I (0.026a 2 ⁇ 1.7478a+72.0, 0.0, ⁇ 0.026a 2 +0.7478a+28.0), point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4), point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3), point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6), and point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.02a 2 ⁇ 1.6013a+71.105, ⁇ 0.02a 2 +0.6013a+28.895, 0.0)
  • point I (0.02a 2 ⁇ 1.6013a+71.105, 0.0, ⁇ 0.02a 2 +0.6013a+28.895)
  • point A (0.0112a 2 ⁇ 1.9337a+68.484, 0.0, ⁇ 0.0112a 2 +0.9337a+31.516)
  • point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801)
  • point W (0.0, 100.0-a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0135a 2 ⁇ 1.4068a+69.727, ⁇ 0.0135a 2 +0.4068a+30.273, 0.0)
  • point I (0.0135a 2 ⁇ 1.4068a+69.727, 0.0, ⁇ 0.0135a 2 +0.4068a+30.273)
  • point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695)
  • point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682)
  • point W (0.0, 100.0-a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0111a 2 ⁇ 1.3152a+68.986, ⁇ 0.0111a 2 +0.3152a+31.014, 0.0)
  • point I (0.0111a 2 ⁇ 1.3152a+68.986, 0.0, ⁇ 0.0111a 2 +0.3152a+31.014)
  • point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
  • point B 0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714) and point W (0.0, 100.0-a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0061a 2 ⁇ 0.9918a+63.902, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098, 0.0)
  • point I (0.0061a 2 ⁇ 0.9918a+63.902, 0.0, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098)
  • point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
  • point B 0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05
  • point W (0.0, 100.0-a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
  • the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.
  • the refrigerant C according to the present disclosure is preferably a refrigerant wherein
  • point J (0.0049a 2 ⁇ 0.9645a+47.1, ⁇ 0.0049a 2 ⁇ 0.0355a+52.9, 0.0)
  • point K′ (0.0514a 2 ⁇ 2.4353a+61.7, ⁇ 0.0323a 2 +0.4122a+5.9, ⁇ 0.0191a 2 +1.0231a+32.4)
  • point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3)
  • point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6)
  • point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0243a 2 ⁇ 1.4161a+49.725, ⁇ 0.0243a 2 +0.4161a+50.275, 0.0)
  • point K′ (0.0341a 2 ⁇ 2.1977a+61.187, ⁇ 0.0236a 2 +0.34a+5.636, ⁇ 0.0105a 2 +0.8577a+33.177)
  • point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801) and point W (0.0, 100.0-a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0246a 2 ⁇ 1.4476a+50.184, ⁇ 0.0246a 2 +0.4476a+49.816, 0.0)
  • point K′ (0.0196a 2 ⁇ 1.7863a+58.515, ⁇ 0.0079a 2 ⁇ 0.1136a+8.702, ⁇ 0.0117a 2 +0.8999a+32.783)
  • point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682) and point W (0.0, 100.0-a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (0.0183a 2 ⁇ 1.1399a+46.493, ⁇ 0.0183a 2 +0.1399a+53.507, 0.0)
  • point K′ ( ⁇ 0.0051a 2 +0.0929a+25.95, 0.0, 0.0051a 2 ⁇ 1.0929a+74.05)
  • point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
  • point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714)
  • point W (0.0, 100.0-a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J ( ⁇ 0.0134a 2 +1.0956a+7.13, 0.0134a 2 ⁇ 2.0956a+92.87, 0.0)
  • point K′ ( ⁇ 1.892a+29.443, 0.0, 0.892a+70.557)
  • point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
  • point B (0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05) and point W (0.0, 100.0-a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
  • the refrigerant according to the present disclosure When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.
  • the refrigerant C when the refrigerant C according to the present disclosure further contains R32 in addition to HFO-1132 (E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • point a (0.02a 2 ⁇ 2.46a+93.4, 0, ⁇ 0.02a 2 +2.46a+6.6)
  • point b′ ( ⁇ 0.008a 2 ⁇ 1.38a+56, 0.018a 2 ⁇ 0.53a+26.3, ⁇ 0.01a 2 +1.91a+17.7)
  • point c ( ⁇ 0.016a 2 +1.02a+77.6, 0.016a 2 ⁇ 1.02a+22.4, 0)
  • point o (100.0-a, 0.0, 0.0) or on the straight lines oa, ab′, and b′c (excluding point o and point c);
  • point a (0.0244a 2 ⁇ 2.5695a+94.056, 0, ⁇ 0.0244a 2 +2.5695a+5.944), point b′ (0.1161a 2 ⁇ 1.9959a+59.749, 0.014a 2 ⁇ 0.3399a+24.8, ⁇ 0.1301a 2 +2.3358a+15.451), point c ( ⁇ 0.0161a 2 +1.02a+77.6, 0.0161a 2 ⁇ 1.02a+22.4, 0), and point o (100.0-a, 0.0, 0.0), or on the straight lines oa, ab′, and b′c (excluding point o and point c); or
  • point a (0.0161a 2 ⁇ 2.3535a+92.742, 0, ⁇ 0.0161a 2 +2.3535a+7.258), point b′ ( ⁇ 0.0435a 2 ⁇ 0.0435a+50.406, 0.0304a 2 +1.8991a ⁇ 0.0661, 0.0739a 2 ⁇ 1.8556a+49.6601), point c ( ⁇ 0.0161a 2 +0.9959a+77.851, 0.0161a 2 ⁇ 0.9959a+22.149, 0), and point o (100.0-a, 0.0, 0.0), or on the straight lines oa, ab′, and b′c (excluding point o and point c).
  • point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved
  • point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%.
  • the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • the refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • the refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • refrigerant C is not limited to the Examples.
  • compositions each comprising a mixture of R410A were evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • the refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant.
  • the COP and refrigerating capacity are ratios relative to R410A.
  • the coefficient of performance (COP) was determined by the following formula.
  • HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100 ⁇ a) mass %, a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, and the point (0.0, 100.0-a, 0.0) is on the left side, if 0 ⁇ a ⁇ 11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4) and point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a 2 ⁇ 1.9337a+68.484, 0.0, ⁇ 0.0112a 2 +0.9337a+31.516) and point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801);
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695) and point B(0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682);
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207) and point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714); and
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9) and point B (0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05).
  • the COP ratio of 92.5% or more forms a curved line CD.
  • D′C a straight line that connects point C and point D′ (0, 75.4, 24.6)
  • point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.
  • composition of each mixture was defined as WCF.
  • a leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • FIGS. 3 to 13 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.
  • Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.
  • Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
  • Point B is a point where the content of HID-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.
  • Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • the refrigerant D is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • the refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment U is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0);
  • the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7);
  • the line segments JN and EI are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM);
  • the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4);
  • the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02);
  • the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4);
  • the line segments NV and GM are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488);
  • the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365);
  • the line segment UO is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments;
  • the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235);
  • the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
  • the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512);
  • the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324);
  • the line segment TL is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point P (20.5, 51.7, 27.8), point S (21.9, 39.7, 38.4), and point T (8.6, 51.6, 39.8), or on these line segments;
  • the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9);
  • the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
  • the line segment TP is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point a (71.1, 0.0, 28.9), point c (36.5, 18.2, 45.3), point f (47.6, 18.3, 34.1), and point d (72.0, 0.0, 28.0), or on these line segments;
  • the line segment ac is represented by coordinates (0.0181y 2 ⁇ 2.2288y+71.096, y, ⁇ 0.0181y 2 +1.2288y+28.904);
  • the line segment fd is represented by coordinates (0.02y 2 ⁇ 1.7y+72, y, ⁇ 0.02y 2 +0.7y+28);
  • the line segments cf and da are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point a (71.1, 0.0, 28.9), point b (42.6, 14.5, 42.9), point e (51.4, 14.6, 34.0), and point d (72.0, 0.0, 28.0), or on these line segments;
  • the line segment ab is represented by coordinates (0.0181y 2 ⁇ 2.2288y+71.096, y, ⁇ 0.0181y 2 +1.2288y+28.904);
  • the line segment ed is represented by coordinates (0.02y 2 ⁇ 1.7y+72, y, ⁇ 0.02y 2 +0.7y+28);
  • the line segments be and da are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment gi is represented by coordinates (0.02y 2 ⁇ 2.4583y+93.396, y, ⁇ 0.02y 2 +1.4583y+6.604);
  • the line segments ij and jg are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment gh is represented by coordinates (0.02y 2 ⁇ 2.4583y+93.396, y, ⁇ 0.02y 2 +1.4583y+6.604);
  • the line segments hk and kg are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • the refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.
  • additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
  • the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • refrigerant D is not limited to the Examples.
  • composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF.
  • a leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.
  • Example 21 Example Item Unit M 18 W 20 N 22 WCF HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.6 R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6 R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.8 Leak condition that results in WCFF Storage, Storage, Storage, Storage, Storage, Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° C., 0% C., 0% C., 0% C., 0% C., 0% release, on release, on release, on release, on release, on release, on release, on the gas the gas the gas the gas the gas the gas the gas the gas the gas the gas phase side phase side phase side phase side WCF HFO-1132(E) Mass % 72.0 57.8 48.7 43.6 40.6 34.9 R32 Mass %
  • Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.
  • Example 1 A B A′ B′ A′′ B′′ HFO-1132 (E) Mass % R410A 81.6 0.0 63.1 0.0 48.2 0.0 R32 Mass % 18.4 18.1 36.9 36.7 51.8 51.5 R1234yf Mass % 0.0 81.9 0.0 63.3 0.0 48.5 GWP — 2088 125 125 250 250 350 350 COP Ratio % (relative to 100 98.7 103.6 98.7 102.3 99.2 102.2 R410A) Refrigerating % (relative to 100 105.3 62.5 109.9 77.5 112.1 87.3 Capacity R410A) Ratio
  • Example 21 Example Item Unit M 18 W 20 N 22 HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.5 R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6 R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.9 GWP — 2 36 70 100 125 188 COP Ratio % (relative 100.5 100.9 100.9 100.8 100.7 100.4 to R410A) Refrigerating % (relative 77.1 74.8 75.6 77.8 80.0 85.5 Capacity Ratio to R410A)
  • Example Example 23 Example 25 26 Item Unit O 24 P S HFO-1132(E) Mass % 22.6 21.2 20.5 21.9 R32 Mass % 36.8 44.2 51.7 39.7 R1234yf Mass % 40.6 34.6 27.8 38.4 GWP — 250 300 350 270 COP Ratio % (relative 100.4 100.5 100.6 100.4 to R410A) Refrigerating % (relative 91.0 95.0 99.1 92.5 Capacity Ratio to R410A)
  • Example Example Example Example Example Example Example Item Unit 119 120 121 122 123 124 125 126 HFO-1132(E) Mass % 15.0 18.0 21.0 42.0 39.0 34.0 37.0 30.0 R32 Mass % 36.0 36.0 25.0 28.0 31.0 31.0 34.0 R1234yf Mass % 49.0 46.0 43.0 33.0 33.0 35.0 32.0 36.0 GWP — 245 245 245 170 191 211 211 231 COP Ratio % (relative 101.0 100.7 100.5 99.5 99.5 99.8 99.6 99.9 to R410A) Refrigerating % (relative 86.2 87.9 89.6 92.7 93.4 93.0 94.5 93.0 Capacity Ratio to R410A)
  • the line segment U is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0),
  • the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7), and
  • the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM),
  • the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4)
  • the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02),
  • the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488),
  • the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments,
  • the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235),
  • the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874),
  • the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512),
  • the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9),
  • the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • the refrigerant E is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).
  • the refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point I (72.0, 28.0, 0.0), point K (48.4, 33.2, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GI);
  • the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.0, z),
  • the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments KB′ and GI are straight lines.
  • the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point I (72.0, 28.0, 0.0), point J (57.7, 32.8, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GI);
  • the line segment U is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.0, ⁇ 0.025z 2 +0.7429z+28.0, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments JR and GI are straight lines.
  • the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point M (47.1, 52.9, 0.0), point P (31.8, 49.8, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GM);
  • the line segment MP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
  • the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments PB′ and GM are straight lines.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point M (47.1, 52.9, 0.0), point N (38.5, 52.1, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GM);
  • the line segment MN is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491 z 2 +0.1544z+61.5, z),
  • the line segments NR and GM are straight lines.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point P (31.8, 49.8, 18.4), point S (25.4, 56.2, 18.4), and point T (34.8, 51.0, 14.2), or on these line segments;
  • the line segment ST is represented by coordinates ( ⁇ 0.0982z 2 +0.9622z+40.931, 0.0982z 2 ⁇ 1.9622z+59.069, z),
  • the line segment TP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z), and
  • the line segment PS is a straight line.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point Q (28.6, 34.4, 37.0), point B′′ (0.0, 63.0, 37.0), point D (0.0, 67.0, 33.0), and point U (28.7, 41.2, 30.1), or on these line segments (excluding the points on the line segment B′′D);
  • the line segment DU is represented by coordinates ( ⁇ 3.4962z 2 +210.71 z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z+3246.1, z),
  • the line segment UQ is represented by coordinates (0.0135z 2 ⁇ 0.9181z+44.133, ⁇ 0.0135z 2 ⁇ 0.0819z+55.867, z), and
  • the line segments QB′′ and B′′D are straight lines.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c′(56.7, 43.3, 0.0), point d′ (52.2, 38.3, 9.5), point e′ (41.8, 39.8, 18.4), and point a′ (81.6, 0.0, 18.4), or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);
  • the line segment c′d′ is represented by coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z+56.7, 0.0297z 2 +1.1915z+43.3, z),
  • the line segment d′e′ is represented by coordinates ( ⁇ 0.0535z 2 +0.3229z+53.957, 0.0535z 2 +0.6771z+46.043, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c (77.7, 22.3, 0.0), point d (76.3, 14.2, 9.5), point e (72.2, 9.4, 18.4), and point a′ (81.6, 0.0, 18.4), or on the line segments cd, de, and ea′ (excluding the points c and a′);
  • the line segment cde is represented by coordinates ( ⁇ 0.017z 2 +0.0148z+77.684, 0.017z 2 +0.9852z+22.316, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c′(56.7, 43.3, 0.0), point d′ (52.2, 38.3, 9.5), and point a (90.5, 0.0, 9.5), or on the line segments c′d′ and d′a (excluding the points c′ and a);
  • the line segment c′d′ is represented by coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z+56.7, 0.0297z 2 +1.1915z+43.3, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c (77.7, 22.3, 0.0), point d (76.3, 14.2, 9.5), and point a (90.5, 0.0, 9.5), or on the line segments cd and da (excluding the points c and a);
  • the line segment cd is represented by coordinates ( ⁇ 0.017z 2 +0.0148z+77.684, 0.017z 2 +0.9852z+22.316, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.
  • the refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.
  • additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
  • the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • refrigerant E is not limited to the Examples.
  • composition of each mixture was defined as WCF.
  • a leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013.
  • the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments 1K and KL that connect the following 3 points:
  • the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.00, z)
  • the line segment KL is represented by coordinates (0.0098z 2 ⁇ 1.238z+67.852, ⁇ 0.0098z 2 +0.238z+32.148, z)
  • Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:
  • the line segment MP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z)
  • the line segment PQ is represented by coordinates (0.0135z 2 ⁇ 0.9181z+44.133, ⁇ 0.0135z 2 ⁇ 0.0819z+55.867, z).
  • an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates.
  • an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.
  • compositions each comprising a mixture of R410A were evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • the refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • the COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined.
  • the conditions for calculation were as described below.
  • Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.
  • Example 1 A B A′ B′ A′′ B′′ HFO-1132(E) mass % R410A 90.5 0.0 81.6 0.0 63.0 0.0 HFO-1123 mass % 0.0 90.5 0.0 81.6 0.0 63.0 R32 mass % 9.5 9.5 18.4 18.4 37.0 37.0 GWP — 2088 65 65 125 125 250 250 COP ratio % (relative 100 99.1 92.0 98.7 93.4 98.7 96.1 to R410A) Refrigerating % (relative 100 102.2 111.6 105.3 113.7 110.0 115.4 capacity ratio to R410A)
  • Example 11 Item Unit O C
  • Example 10 U 2 D HFO-1132(E) mass % 100.0 50.0 41.1 28.7 15.2 0.0 HFO-1123 mass % 0.0 31.6 34.6 41.2 52.7 67.0
  • Refrigerating % (relative 98.3 109.9 111.7 113.5 114.8 115.4 capacity ratio to R410A)
  • the refrigerant has a GWP of 250 or less.
  • the refrigerant has a GWP of 125 or less.
  • the refrigerant has a GWP of 65 or less.
  • the refrigerant has a COP ratio of 96% or more relative to that of R410A.
  • the line segment CU is represented by coordinates ( ⁇ 0.0538z 2 +0.7888z+53.701, 0.0538z 2 ⁇ 1.7888z+46.299, z)
  • the line segment UD is represented by coordinates ( ⁇ 3.4962z 2 +210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z+3246.1, z).
  • the points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the least-square method.
  • the points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the least-square method.
  • the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.
  • the line segment ET is represented by coordinates ( ⁇ 0.0547z 2 ⁇ 0.5327z+53.4, 0.0547z 2 ⁇ 0.4673z+46.6, z)
  • the line segment TF is represented by coordinates ( ⁇ 0.0982z 2 +0.9622z+40.931, 0.0982z 2 ⁇ 1.9622z+59.069, z).
  • the points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the least-square method.
  • the points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.
  • the refrigerant has a COP ratio of 93% or more relative to that of R410A.
  • the line segment GR is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and the line segment RH is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z).
  • the points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the least-square method.
  • the points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the least-square method.
  • FIG. 16 is the schematic configuration diagram of a refrigerant circuit
  • FIG. 17 is a schematic control block configuration diagram.
  • the air conditioner 1 is an apparatus that air-conditions a space to be air-conditioned by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 mainly includes an outdoor unit 20 , an indoor unit 30 , a liquid-side connection pipe 6 and a gas-side connection pipe 5 connecting the outdoor unit 20 and the indoor unit 30 , a remote control unit (not shown) serving as an input device and an output device, and a controller 7 that controls the operation of the air conditioner 1 .
  • the refrigeration cycle in which refrigerant sealed in a refrigerant circuit 10 is compressed, cooled or condensed, decompressed, heated or evaporated, and then compressed again is performed.
  • the refrigerant circuit 10 is filled with refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant is a refrigerant containing 1,2-difluoroethylene, and any one of the above-described refrigerants A to E may be used.
  • the refrigerant circuit 10 is filled with refrigerating machine oil together with the refrigerant.
  • the outdoor unit 20 has substantially a rectangular parallelepiped box shape from its appearance, and has a structure in which a fan chamber and a machine chamber are formed (so-called, trunk structure) when the inside is divided by a partition plate, or the like.
  • the outdoor unit 20 is connected to the indoor unit 30 via the liquid-side connection pipe 6 and the gas-side connection pipe 5 , and makes up part of the refrigerant circuit 10 .
  • the outdoor unit 20 mainly includes a compressor 21 , a four-way valve 22 , an outdoor heat exchanger 23 , an outdoor expansion valve 24 , an outdoor fan 25 , a liquid-side stop valve 29 , and a gas-side stop valve 28 .
  • the compressor 21 is a device that compresses low-pressure refrigerant into high pressure in the refrigeration cycle.
  • the compressor 21 is a hermetically sealed compressor in which a positive-displacement, such as a rotary type and a scroll type, compression element (not shown) is driven for rotation by a compressor motor.
  • the compressor motor is used to change the displacement.
  • the operation frequency of the compressor motor is controllable with an inverter.
  • the compressor 21 is provided with an attached accumulator (not shown) at its suction side.
  • the outdoor unit 20 of the present embodiment does not have a refrigerant container larger than the attached accumulator (a low-pressure receiver disposed at the suction side of the compressor 21 , a high-pressure receiver disposed at a liquid side of the outdoor heat exchanger 23 , or the like).
  • the four-way valve 22 is able to switch between a cooling operation connection state and a heating operation connection state by switching the status of connection.
  • a cooling operation connection state a discharge side of the compressor 21 and the outdoor heat exchanger 23 are connected, and the suction side of the compressor 21 and the gas-side stop valve 28 are connected.
  • the heating operation connection state the discharge side of the compressor 21 and the gas-side stop valve 28 are connected, and the suction side of the compressor 21 and the outdoor heat exchanger 23 are connected.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a condenser for high-pressure refrigerant in the refrigeration cycle during cooling operation and that functions as an evaporator for low-pressure refrigerant in the refrigeration cycle during heating operation.
  • the outdoor heat exchanger 23 includes a plurality of heat transfer fins and a plurality of heat transfer tubes fixedly extending through the heat transfer fins.
  • the outdoor fan 25 takes outdoor air into the outdoor unit 20 , causes the air to exchange heat with refrigerant in the outdoor heat exchanger 23 , and then generates air flow for emitting the air to the outside.
  • the outdoor fan 25 is driven for rotation by an outdoor fan motor. In the present embodiment, only one outdoor fan 25 is provided.
  • the outdoor expansion valve 24 is able to control the valve opening degree, and is provided between a liquid-side end portion of the outdoor heat exchanger 23 and the liquid-side stop valve 29 .
  • the liquid-side stop valve 29 is a manual valve disposed at a connection point at which the outdoor unit 20 is connected to the liquid-side connection pipe 6 .
  • the gas-side stop valve 28 is a manual valve disposed at a connection point at which the outdoor unit 20 is connected to the gas-side connection pipe 5 .
  • the outdoor unit 20 includes an outdoor unit control unit 27 that controls the operations of parts that make up the outdoor unit 20 .
  • the outdoor unit control unit 27 includes a microcomputer including a CPU, a memory, and the like.
  • the outdoor unit control unit 27 is connected to an indoor unit control unit 34 of indoor unit 30 via a communication line, and sends or receives control signals, or the like, to or from the indoor unit control unit 34 .
  • the outdoor unit control unit 27 is electrically connected to various sensors (not shown), and receives signals from the sensors.
  • the indoor unit 30 is placed on a wall surface, or the like, in a room that is the space to be air-conditioned.
  • the indoor unit 30 is connected to the outdoor unit 20 via the liquid-side connection pipe 6 and the gas-side connection pipe 5 , and makes up part of the refrigerant circuit 10 .
  • the indoor unit 30 includes an indoor heat exchanger 31 , an indoor fan 32 , and the like.
  • the indoor heat exchanger 31 is a heat exchanger that functions as an evaporator for low-pressure refrigerant in the refrigeration cycle during cooling operation and that functions as a condenser for high-pressure refrigerant in the refrigeration cycle during heating operation.
  • the indoor heat exchanger 31 includes a plurality of heat transfer fins and a plurality of heat transfer tubes fixedly extending through the heat transfer fins.
  • the indoor fan 32 takes indoor air into the indoor unit 30 , causes the air to exchange heat with refrigerant in the indoor heat exchanger 31 , and then generates air flow for emitting the air to the outside.
  • the indoor fan 32 is driven for rotation by an indoor fan motor (not shown).
  • the indoor unit 30 includes an indoor unit control unit 34 that controls the operations of the parts that make up the indoor unit 30 .
  • the indoor unit control unit 34 includes a microcomputer including a CPU, a memory, and the like.
  • the indoor unit control unit 34 is connected to the outdoor unit control unit 27 via a communication line, and sends or receives control signals, or the like, to or from the outdoor unit control unit 27 .
  • the indoor unit control unit 34 is electrically connected to various sensors (not shown) provided inside the indoor unit 30 , and receives signals from the sensors.
  • the outdoor unit control unit 27 and the indoor unit control unit 34 are connected via the communication line to make up the controller 7 that controls the operation of the air conditioner 1 .
  • the controller 7 mainly includes a CPU (central processing unit) and a memory such as a ROM and a RAM. Various processes and controls made by the controller 7 are implemented by various parts included in the outdoor unit control unit 27 and/or the indoor unit control unit 34 functioning together.
  • a CPU central processing unit
  • a memory such as a ROM and a RAM.
  • the operation modes include a cooling operation mode and a heating operation mode.
  • the controller 7 determines whether the operation mode is the cooling operation mode or the heating operation mode and performs the selected operation mode based on an instruction received from the remote control unit, or the like.
  • the status of connection of the four-way valve 22 is set to the cooling operation connection state where the discharge side of the compressor 21 and the outdoor heat exchanger 23 are connected and the suction side of the compressor 21 and the gas-side stop valve 28 are connected, and refrigerant filled in the refrigerant circuit 10 is mainly circulated in order of the compressor 21 , the outdoor heat exchanger 23 , the outdoor expansion valve 24 , and the indoor heat exchanger 31 .
  • refrigerant is taken into the compressor 21 , compressed, and then discharged in the refrigerant circuit 10 .
  • Gas refrigerant having flowed into the gas-side end of the outdoor heat exchanger 23 exchanges heat in the outdoor heat exchanger 23 with outdoor-side air that is supplied by the outdoor fan 25 to condense into liquid refrigerant and flows out from the liquid-side end of the outdoor heat exchanger 23 .
  • Refrigerant having flowed out from the liquid-side end of the outdoor heat exchanger 23 is decompressed when passing through the outdoor expansion valve 24 .
  • the outdoor expansion valve 24 is controlled such that the degree of subcooling of refrigerant that passes through a liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition.
  • Refrigerant decompressed in the outdoor expansion valve 24 passes through the liquid-side stop valve 29 and the liquid-side connection pipe 6 and flows into the indoor unit 30 .
  • Refrigerant having flowed into the indoor unit 30 flows into the indoor heat exchanger 31 , exchanges heat in the indoor heat exchanger 31 with indoor air that is supplied by the indoor fan 32 to evaporate into gas refrigerant, and flows out from the gas-side end of the indoor heat exchanger 31 .
  • Gas refrigerant having flowed out from the gas-side end of the indoor heat exchanger 31 flows to the gas-side connection pipe 5 .
  • Refrigerant having flowed through the gas-side connection pipe 5 passes through the gas-side stop valve 28 and the four-way valve 22 , and is taken into the compressor 21 again.
  • the status of connection of the four-way valve 22 is set to the heating operation connection state where the discharge side of the compressor 21 and the gas-side stop valve 28 are connected and the suction side of the compressor 21 and the outdoor heat exchanger 23 are connected, and refrigerant filled in the refrigerant circuit 10 is mainly circulated in order of the compressor 21 , the indoor heat exchanger 31 , the outdoor expansion valve 24 , and the outdoor heat exchanger 23 .
  • refrigerant is taken into the compressor 21 , compressed, and then discharged in the refrigerant circuit 10 .
  • Refrigerant having flowed into the indoor unit 30 flows into the gas-side end of the indoor heat exchanger 31 , exchanges heat in the indoor heat exchanger 31 with indoor air that is supplied by the indoor fan 32 to condense into refrigerant in a gas-liquid two-phase state or liquid refrigerant, and flows out from the liquid-side end of the indoor heat exchanger 31 .
  • Refrigerant having flowed out from the liquid-side end of the indoor heat exchanger 31 flows into the liquid-side connection pipe 6 .
  • Refrigerant having flowed through the liquid-side connection pipe 6 is decompressed to a low pressure in the refrigeration cycle in the liquid-side stop valve 29 and the outdoor expansion valve 24 .
  • the outdoor expansion valve 24 is controlled such that the degree of subcooling of refrigerant that passes through a liquid-side outlet of the indoor heat exchanger 31 satisfies a predetermined condition. Refrigerant decompressed in the outdoor expansion valve 24 flows into the liquid-side end of the outdoor heat exchanger 23 .
  • Refrigerant having flowed in from the liquid-side end of the outdoor heat exchanger 23 exchanges heat in the outdoor heat exchanger 23 with outdoor air that is supplied by the outdoor fan 25 to evaporate into gas refrigerant, and flows out from the gas-side end of the outdoor heat exchanger 23 .
  • Refrigerant having flowed out from the gas-side end of the outdoor heat exchanger 23 passes through the four-way valve 22 and is taken into the compressor 21 again.
  • the liquid-side connection pipe 6 of the air conditioner 1 in which the above-described refrigerants A to E are used in the first embodiment has D 0 in the range of “2 ⁇ D 0 ⁇ 4” where the pipe outer diameter is expressed by D 0 /8 inches, and has the same pipe outer diameter as a liquid-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the liquid-side connection pipe 6 is set to the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • the liquid-side connection pipe 6 of the first embodiment preferably has D 0 of 2 (that is, the pipe diameter is 1 ⁇ 4 inches).
  • the liquid-side connection pipe 6 of the present embodiment more preferably has D 0 of 2.5 (that is, the pipe diameter is 5/16 inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 7.5 kW, more preferably has D 0 of 2 (that is, the pipe diameter is 1 ⁇ 4 inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 2.6 kW and less than 7.5 kW, and more preferably has D 0 of 1.5 (that is, the pipe diameter is 3/16 inches) when the rated refrigeration capacity of the air conditioner 1 is less than 2.6 kW.
  • the gas-side connection pipe 5 of the air conditioner 1 in which the above-described refrigerants A to E are used in the first embodiment has D 0 in the range of “3 ⁇ D 0 ⁇ 8” where the pipe outer diameter is expressed by D 0 /8 inches, and has the same pipe outer diameter as the gas-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the gas-side connection pipe 5 is set to the same pipe outer diameter as the pipe outer diameter of the gas-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • the gas-side connection pipe 5 of the first embodiment preferably has D 0 of 4 (that is, the pipe diameter is 1 ⁇ 2 inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 6.0 kW, and preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 is less than 6.0 kW.
  • the gas-side connection pipe 5 of the first embodiment more preferably has D 0 of 4 (that is, the pipe diameter is 1 ⁇ 2 inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 6.0 kW, more preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 3.2 kW and less than 6.0 kW, and more preferably has D 0 of 2.5 (that is, the pipe diameter is 5/16 inches) when the rated refrigeration capacity of the air conditioner 1 is less than 3.2 kW.
  • the liquid-side connection pipe 6 and the gas-side connection pipe 5 each having the pipe outer diameter (inches) as shown in the following Table 167 and Table 168 are generally used according to the range of the rated refrigeration capacity.
  • FIG. 18 shows a pressure loss in the liquid-side connection pipe 6 during heating operation
  • FIG. 19 shows a pressure loss in the gas-side connection pipe 5 during cooling operation.
  • controlled target values of a condensation temperature, an evaporating temperature, a degree of subcooling of refrigerant at the condenser outlet, and a degree of superheating of refrigerant at the evaporator outlet are commonalized, and pressure losses of refrigerant in the connection pipes are calculated based on a refrigerant circulation amount that is required for operation at a rated capacity commensurate with a horse power.
  • the unit of horse power is HP.
  • the refrigerant A of the present disclosure containing 1,2-difluoroethylene, has an approximate behavior of pressure loss to the behavior of pressure loss of refrigerant R410A and a decrease in capacity can be suppressed when the refrigerant A is used in the air conditioner 1 .
  • This point also applies to the refrigerants B to E that are the same in containing 1,2-difluoroethylene.
  • the air conditioner including only one indoor unit is described as an example; however, the air conditioner may include a plurality of indoor units (with no indoor expansion valve) connected in parallel with each other.
  • FIG. 20 is the schematic configuration diagram of a refrigerant circuit
  • FIG. 21 is a schematic control block configuration diagram.
  • the air conditioner 1 a of the second embodiment will be described with a focus on a portion different from the air conditioner 1 of the first embodiment.
  • the refrigerant circuit 10 is filled with a refrigerant mixture that contains 1,2-difluoroethylene and that is any one of the above-described refrigerants A to E as a refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant circuit 10 is filled with refrigerating machine oil together with the refrigerant.
  • a first outdoor fan 25 a and a second outdoor fan 25 b are provided as the outdoor fans 25 .
  • the outdoor heat exchanger 23 of the outdoor unit 20 of the air conditioner 1 a has a wide heat exchange area so as to adapt to air flow coming from the first outdoor fan 25 a and the second outdoor fan 25 b.
  • a first outdoor expansion valve 44 is sequentially provided between the liquid side of the outdoor heat exchanger 23 and the liquid-side stop valve 29 .
  • the first outdoor expansion valve 44 and the second outdoor expansion valve 45 each are able to control the valve opening degree.
  • the intermediate pressure receiver 41 is a container that is able to store refrigerant. Both an end portion of a pipe extending from the first outdoor expansion valve 44 side and an end portion of a pipe extending from the second outdoor expansion valve 45 side are located in the internal space of the intermediate pressure receiver 41 .
  • the internal volume of the intermediate pressure receiver 41 is greater than the internal volume of the attached accumulator attached to the compressor 21 and is preferably greater than or equal to twice.
  • the outdoor unit 20 of the second embodiment has substantially a rectangular parallelepiped shape and has a structure in which a fan chamber and a machine chamber are formed (so-called, trunk structure) when divided by a partition plate, or the like, extending vertically.
  • the outdoor heat exchanger 23 includes, for example, a plurality of heat transfer fins and a plurality of heat transfer tubes fixedly extending through the heat transfer fins.
  • the outdoor heat exchanger 23 is disposed in an L-shape in plan view.
  • the first outdoor expansion valve 44 is, for example, controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition.
  • the second outdoor expansion valve 45 is, for example, controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition.
  • the second outdoor expansion valve 45 is, for example, controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the indoor heat exchanger 31 satisfies a predetermined condition.
  • the first outdoor expansion valve 44 is, for example, controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition.
  • the indoor unit 30 of the second embodiment is placed so as to be suspended in an upper space in a room that is a space to be air-conditioned or placed at a ceiling surface or placed on a wall surface and used.
  • the indoor unit 30 is connected to the outdoor unit 20 via the liquid-side connection pipe 6 and the gas-side connection pipe 5 , and makes up part of the refrigerant circuit 10 .
  • the indoor unit 30 includes the indoor heat exchanger 31 , the indoor fan 32 , and the like.
  • the indoor heat exchanger 31 of the second embodiment includes a plurality of heat transfer fins and a plurality of heat transfer tubes fixedly extending through the heat transfer fins.
  • the liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment may have D 0 in the range of “2 ⁇ D 0 ⁇ 4” where the pipe outer diameter is expressed by D 0 /8 inches regardless of the relationship with the pipe outer diameter when R410A or R32 is used.
  • the liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment has D 0 in the range of “2 ⁇ D 0 ⁇ 4” when the pipe outer diameter is expressed by D 0 /8 inches (where, “D 0 ⁇ 1 ⁇ 8 inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used). Since the above-described refrigerants A to E cause a pressure loss more easily than refrigerant R32 but the pipe outer diameter of the liquid-side connection pipe 6 of the air conditioner 1 a of the second embodiment is greater than or equal to the pipe outer diameter when refrigerant R32 is used, a decrease in capacity can be suppressed.
  • the liquid-side connection pipe 6 of the air conditioner 1 a preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) where the pipe outer diameter is expressed by D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used) when the rated refrigeration capacity of the air conditioner 1 a is greater than 5.6 kW and less than 11.2 kW and more preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 6.3 kW and less than or equal to 10.0 kW.
  • the liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment has D 0 in the range of “2 ⁇ D 0 ⁇ 4” where the pipe outer diameter is expressed by D 0 /8 inches, and has the same pipe outer diameter as the liquid-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the liquid-side connection pipe 6 is set to the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • the liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) where the pipe outer diameter is expressed by D 0 /8 inches when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 6.3 kW, and preferably has D 0 of 2 (that is, the pipe diameter is 1 ⁇ 4 inches) when the rated refrigeration capacity of the air conditioner 1 a is less than 6.3 kW, and more preferably has the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe when refrigerant R410A is used in each case.
  • the liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) where the pipe outer diameter is expressed by D 0 /8 inches when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 12.5 kW, preferably has D 0 of 2.5 (that is, the pipe diameter is 5/16 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 6.3 kW and less than 12.5 kW, and preferably has D 0 of 2 (that is, the pipe diameter is 1 ⁇ 4 inches) when the rated refrigeration capacity of the air conditioner 1 a is less than 6.3 kW
  • the gas-side connection pipe 5 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment may have D 0 in the range of “3 ⁇ D 0 ⁇ 8” where the pipe outer diameter is expressed by D 0 /8 inches regardless of the relationship with the pipe outer diameter when R410A or R32 is used.
  • the gas-side connection pipe 5 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment has D 0 in the range of “3 ⁇ D 0 ⁇ 8” when the pipe outer diameter is expressed by D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used). Since the above-described refrigerants A to E cause a pressure loss more easily than refrigerant R32 but the pipe outer diameter of the gas-side connection pipe 5 of the air conditioner 1 a of the second embodiment is greater than or equal to the pipe outer diameter when refrigerant R32 is used, a decrease in capacity can be suppressed.
  • the gas-side connection pipe 5 of the air conditioner 1 a preferably has D 0 of 7 (that is, the pipe diameter is 7 ⁇ 8 inches) where the pipe outer diameter is expressed by D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used) when the rated refrigeration capacity of the air conditioner 1 a is greater than 22.4 kW, preferably has D 0 of 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than 14.0 kW and less than 22.4 kW, preferably has D 0 of 5 (that is, the pipe diameter is 5 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than 5.6 kW and less than 11.2 kW, and preferably has D 0 of 4 (that is, the pipe diameter is 1 ⁇ 2 inches) when the rated refrigeration capacity of the air conditioner 1 a is less than 4.5 kW In this case, D 0 is
  • the gas-side connection pipe 5 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment has D 0 in the range of “3 ⁇ D 0 ⁇ 8” where the pipe outer diameter is expressed by D 0 /8 inches, and has the same pipe outer diameter as the gas-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the gas-side connection pipe 5 is set to the same pipe outer diameter as the pipe outer diameter of the gas-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • the gas-side connection pipe 5 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment preferably has D 0 of 7 (that is, the pipe diameter is 7 ⁇ 8 inches) when the pipe outer diameter is expressed by D 0 /8 inches when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 25.0 kW, preferably has D 0 of 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 15.0 kW and less than 25.0 kW, preferably has D 0 of 5 (that is, the pipe diameter is 5 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 6.3 kW and less than 15.0 kW, preferably has D 0 of 4 (that is, the pipe diameter is 1 ⁇ 2 inches) when the rated refrigeration capacity of the air conditioner 1 a is less than 6.3 kW, and more preferably has the same pipe outer diameter as the pipe outer diameter
  • the liquid-side connection pipe 6 and the gas-side connection pipe 5 each having the pipe outer diameter (inches) as shown in the following Table 169 and Table 170 are generally used according to the range of the rated refrigerationg capacity.
  • FIG. 22 shows a pressure loss in the liquid-side connection pipe 6 during heating operation
  • FIG. 23 shows a pressure loss in the gas-side connection pipe 5 during cooling operation.
  • controlled target values of a condensation temperature, an evaporating temperature, a degree of subcooling of refrigerant at the condenser outlet, and a degree of superheating of refrigerant at the evaporator outlet are commonalized, and pressure losses of refrigerant in the connection pipes are calculated based on a refrigerant circulation amount that is required for operation at a rated capacity commensurate with a horse power.
  • the unit of horse power is HP.
  • the refrigerant A of the present disclosure containing 1,2-difluoroethylene, has an approximate behavior of pressure loss to the behavior of pressure loss of refrigerant R410A and a decrease in capacity can be suppressed when the refrigerant A is used in the air conditioner 1 a .
  • This point also applies to the refrigerants B to E that are the same in containing 1,2-difluoroethylene.
  • the air conditioner including only one indoor unit is described as an example; however, the air conditioner may include a plurality of indoor units (with no indoor expansion valve) connected in parallel with each other.
  • FIG. 24 is the schematic configuration diagram of a refrigerant circuit
  • FIG. 25 is a schematic control block configuration diagram.
  • the air conditioner 1 b of the third embodiment will be described with a focus on a portion different from the air conditioner 1 of the first embodiment.
  • the refrigerant circuit 10 is filled with a refrigerant mixture that contains 1,2-difluoroethylene and that is any one of the above-described refrigerants A to E as a refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant circuit 10 is filled with refrigerating machine oil together with the refrigerant.
  • a low-pressure receiver 26 In the outdoor unit 20 of the air conditioner 1 b of the third embodiment, a low-pressure receiver 26 , a subcooling heat exchanger 47 , and a subcooling circuit 46 are provided in the outdoor unit 20 in the above-described first embodiment.
  • the low-pressure receiver 26 is a container that is provided between one of connection ports of the four-way valve 22 and the suction side of the compressor 21 and that is able to store refrigerant.
  • the low-pressure receiver 26 is provided separately from the attached accumulator of the compressor 21 .
  • the internal volume of the low-pressure receiver 26 is greater than the internal volume of the attached accumulator attached to the compressor 21 and is preferably greater than or equal to twice.
  • the subcooling heat exchanger 47 is provided between the outdoor expansion valve 24 and the liquid-side stop valve 29 .
  • the subcooling circuit 46 is a circuit that branches off from a main circuit between the outdoor expansion valve 24 and the subcooling heat exchanger 47 and that merges with a portion halfway from one of the connection ports of the four-way valve 22 to the low-pressure receiver 26 .
  • a subcooling expansion valve 48 that decompresses refrigerant passing therethrough is provided halfway in the subcooling circuit 46 . Refrigerant flowing through the subcooling circuit 46 and decompressed by the subcooling expansion valve 48 exchanges heat with refrigerant flowing through the main circuit side in the subcooling heat exchanger 47 . Thus, refrigerant flowing through the main circuit side is further cooled, and refrigerant flowing through the subcooling circuit 46 evaporates.
  • the outdoor unit 20 of the air conditioner 1 b according to the third embodiment may have, for example, a so-called up-blow structure that takes in air from the lower side and discharges air outward from the upper side.
  • a first indoor unit 30 and a second indoor unit 35 are provided in parallel with each other.
  • the first indoor unit 30 includes a first indoor heat exchanger 31 , a first indoor fan 32 , and a first indoor unit control unit 34 , and further includes a first indoor expansion valve 33 at the liquid side of the first indoor heat exchanger 31 .
  • the first indoor expansion valve 33 is able to control the valve opening degree.
  • the second indoor unit 35 includes a second indoor heat exchanger 36 , a second indoor fan 37 , a second indoor unit control unit 39 , and a second indoor expansion valve 38 provided at the liquid side of the second indoor heat exchanger 36 .
  • the second indoor expansion valve 38 is able to control the valve opening degree.
  • first indoor unit 30 and second indoor unit 35 of the air conditioner 1 b each have a similar configuration to the indoor unit 30 of the second embodiment except the above-described first indoor expansion valve 33 and second indoor expansion valve 38 .
  • the controller 7 of the third embodiment is made up of the outdoor unit control unit 27 , the first indoor unit control unit 34 , and the second indoor unit control unit 39 communicably connected to one another.
  • the outdoor expansion valve 24 in the cooling operation mode, is controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition.
  • the subcooling expansion valve 48 is controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition.
  • the first indoor expansion valve 33 and the second indoor expansion valve 38 are controlled to a fully open state.
  • the first indoor expansion valve 33 is controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the first indoor heat exchanger 31 satisfies a predetermined condition.
  • the second indoor expansion valve 38 is also controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the second indoor heat exchanger 36 satisfies a predetermined condition.
  • the outdoor expansion valve 45 is controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition.
  • the subcooling expansion valve 48 is controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition.
  • the liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment may have D 0 in the range of “2 ⁇ D 0 ⁇ 4” where the pipe outer diameter is expressed by D 0 /8 inches regardless of the relationship with the pipe outer diameter when R410A or R32 is used.
  • the liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment has D 0 in the range of “2 ⁇ D 0 ⁇ 4” when the pipe outer diameter is expressed by D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used). Since the above-described refrigerants A to E cause a pressure loss more easily than refrigerant R32 but the pipe outer diameter of the liquid-side connection pipe 6 of the air conditioner 1 b of the third embodiment is greater than or equal to the pipe outer diameter when refrigerant R32 is used, a decrease in capacity can be suppressed.
  • the liquid-side connection pipe 6 of the air conditioner 1 b preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) where the pipe outer diameter is expressed by D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used) when the rated refrigeration capacity of the air conditioner 1 b is greater than 5.6 kW and less than 11.2 kW and more preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW and less than or equal to 10.0 kW.
  • the liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment has D 0 in the range of “2 ⁇ D 0 ⁇ 4” where the pipe outer diameter is expressed by D 0 /8 inches, and has the same pipe outer diameter as the liquid-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the liquid-side connection pipe 6 is set to the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • the liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) where the pipe outer diameter is expressed by D 0 /8 inches when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW, and preferably has D 0 of 2 (that is, the pipe diameter is 1 ⁇ 4 inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 6.3 kW, and more preferably has the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe in the case where refrigerant R410A is used in each case.
  • the liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment preferably has D 0 of 3 (that is, the pipe diameter is 3 ⁇ 8 inches) where the pipe outer diameter is expressed by D 0 /8 inches when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 12.5 kW, preferably has D 0 of 2.5 (that is, the pipe diameter is 5/16 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW and less than 12.5 kW, and preferably has D 0 of 2 (that is, the pipe diameter is 1 ⁇ 4 inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 6.3 kW
  • the liquid-side connection pipe 5 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment may have D 0 in the range of “3 ⁇ D 0 ⁇ 8” where the pipe outer diameter is expressed by D 0 /8 inches regardless of the relationship with the pipe outer diameter when R410A or R32 is used.
  • the gas-side connection pipe 5 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment has D 0 in the range of “3 ⁇ D 0 ⁇ 8” when the pipe outer diameter is expressed by D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used). Since the above-described refrigerants A to E cause a pressure loss more easily than refrigerant R32 but the pipe outer diameter of the gas-side connection pipe 5 of the air conditioner 1 b of the third embodiment is greater than or equal to the pipe outer diameter when refrigerant R32 is used, a decrease in capacity can be suppressed.
  • the gas-side connection pipe 5 of the air conditioner 1 b preferably has D 0 of 7 (that is, the pipe diameter is 7 ⁇ 8 inches) where the pipe outer diameter is expressed by D 0 /8 inches (where, “D 0 -1 ⁇ 8 inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used) when the rated refrigeration capacity of the air conditioner 1 b is greater than 22.4 kW, preferably has D 0 of 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than 14.0 kW and less than 22.4 kW, preferably has D 0 of 5 (that is, the pipe diameter is 5 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than 5.6 kW and less than 11.2 kW, and preferably has D 0 of 4 (that is, the pipe diameter is 1 ⁇ 2 inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 4.5 kW.
  • D 0 of 7 that is
  • D 0 is more preferably 7 (that is, the pipe diameter is 7 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 25.0 kW
  • D 0 is more preferably 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 15.0 kW and less than 19.0 kW
  • D 0 is more preferably (that is, the pipe diameter is 5 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW and less than 10.0 kW
  • D 0 is more preferably 4 (that is, the pipe diameter is 1 ⁇ 2 inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 4.0 kW.
  • the gas-side connection pipe 5 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment has D 0 in the range of “3 ⁇ D 0 ⁇ 8” where the pipe outer diameter is expressed by D 0 /8 inches, and has the same pipe outer diameter as the gas-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the gas-side connection pipe 5 is set to the same pipe outer diameter as the pipe outer diameter of the gas-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • the gas-side connection pipe 5 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment preferably has D 0 of 7 (that is, the pipe diameter is 7 ⁇ 8 inches) when the pipe outer diameter is expressed by D 0 /8 inches when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 25.0 kW, preferably has D 0 of 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 15.0 kW and less than 25.0 kW, preferably has D 0 of 5 (that is, the pipe diameter is 5 ⁇ 8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW and less than 15.0 kW, preferably has D 0 of 4 (that is, the pipe diameter is 1 ⁇ 2 inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 6.3 kW, and more preferably has the same pipe outer diameter as the pipe outer diameter
  • the liquid-side connection pipe 6 and the gas-side connection pipe 5 each having the pipe outer diameter (inches) as shown in the following Table 171 and Table 172 are generally used according to the range of the rated refrigeration capacity.
  • FIG. 26 shows a pressure loss in the liquid-side connection pipe 6 during heating operation
  • FIG. 27 shows a pressure loss in the gas-side connection pipe 5 during cooling operation.
  • controlled target values of a condensation temperature, an evaporating temperature, a degree of subcooling of refrigerant at the condenser outlet, and a degree of superheating of refrigerant at the evaporator outlet are commonalized, and pressure losses of refrigerant in the connection pipes are calculated based on a refrigerant circulation amount that is required for operation at a rated capacity commensurate with a horse power.
  • the unit of horse power is HP.
  • the refrigerant A of the present disclosure containing 1,2-difluoroethylene, has an approximate behavior of pressure loss to the behavior of pressure loss of refrigerant R410A and a decrease in capacity can be suppressed when the refrigerant A is used in the air conditioner 1 b .
  • This point also applies to the refrigerants B to E that are the same in containing 1,2-difluoroethylene.
  • An air conditioner or an outdoor unit may be made up of a combination of the above-described first embodiment to third embodiment and modifications as needed.

Abstract

A refrigeration cycle apparatus that is able to suppress a decrease in capacity when a refrigerant that contains at least 1,2-difluoroethylene is used is provided. In an air conditioner (1) including a refrigerant circuit (10) in which a compressor (21), an outdoor heat exchanger (23), an outdoor expansion valve (24), a liquid-side connection pipe (6), an indoor heat exchanger (31), and a gas-side connection pipe (5) are connected, a refrigerant containing at least 1,2-difluoroethylene is used, a pipe outer diameter of the liquid-side connection pipe (6) and a pipe outer diameter of the gas-side connection pipe (5) each are D0/8 inches (where, “D0-⅛ inches” is a pipe outer diameter of a connection pipe when refrigerant R32 is used), a range of the D0 of the liquid-side connection pipe (6) is “2≤D0≤4”, and a range of the D0 of the gas-side connection pipe (5) is “3≤D0≤8”.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a refrigeration cycle apparatus.
  • BACKGROUND ART
  • Hitherto, in refrigeration cycle apparatuses, such as air conditioners, R410A is often used as a refrigerant. R410A is a two-component mixed refrigerant of difluoromethane (CH2F2; HFC-32, or R32) and pentafluoroethane (C2HF5; HFC-125, or R125) and is a pseudo-azeotropic composition.
  • However, the global warming potential (GWP) of R410A is 2088, and, in recent years, because of growing concern about global warming, R32 that is a refrigerant having a lower GWP is used more often.
  • For this reason, for example, PTL 1 (International Publication No. 2015/141678) suggests various types of low-GWP refrigerant mixtures as alternatives to R410A.
  • SUMMARY OF THE INVENTION Technical Problem
  • For existing refrigeration cycle apparatuses in which R410A or R32 is used, the pipe outer diameter of each of a liquid-side connection pipe and a gas-side connection pipe that connect a heat source unit having a heat source-side heat exchanger and a service unit having a service-side heat exchanger is specifically considered and suggested.
  • However, for a refrigeration cycle apparatus using a refrigerant containing at least 1,2-difluoroethylene as a refrigerant having a sufficiently low GWP, the pipe outer diameter of the liquid-side connection pipe or gas-side connection pipe is not considered or suggested at all.
  • The contents of the present disclosure are described in view of the above-described points, and it is an object to provide a refrigeration cycle apparatus that is able to suppress a decrease in capacity when a refrigerant containing at least 1,2-difluoroethylene is used.
  • Solution to Problem
  • A refrigeration cycle apparatus according to a first aspect includes a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a decompression part, a liquid-side connection pipe, a service-side heat exchanger, and a gas-side connection pipe are connected. In the refrigeration cycle apparatus, a refrigerant containing at least 1,2-difluoroethylene is used. A pipe outer diameter of the liquid-side connection pipe and a pipe outer diameter of the gas-side connection pipe each are D0/8 inches (where, “D0-⅛ inches” is a pipe outer diameter of a connection pipe when refrigerant R32 is used), in the liquid-side connection pipe, a range of the D0 is “2≤D0≤4”, and, in the gas-side connection pipe, a range of the D0 is “3≤D0≤8”.
  • The decompression part is not limited and may be an expansion valve or may be a capillary tube. Preferably, in the liquid-side connection pipe, a range of the D0 is “2≤D0≤3”, and, in the gas-side connection pipe, a range of the D0 is “4≤D0≤7”.
  • This refrigeration cycle apparatus is able to suppress a decrease in capacity while sufficiently reducing a GWP by using a refrigerant containing 1,2-difluoroethylene.
  • The refrigeration cycle apparatus according to the first aspect may be configured as follows in consideration of the difference in physical properties between the refrigerant of the present disclosure and refrigerant R32.
  • In the refrigeration cycle apparatus according to the first aspect, a rated refrigeration capacity of the refrigeration cycle apparatus may be greater than or equal to 6.3 kW and less than or equal to 10.0 kW, the pipe outer diameter of the liquid-side connection pipe may be D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used), and the D0 of the liquid-side connection pipe may be 3.
  • In the refrigeration cycle apparatus according to the first aspect, a rated refrigeration capacity of the refrigeration cycle apparatus may be less than or equal to 4.0 kW, the pipe outer diameter of the gas-side connection pipe may be D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used), and the D0 of the gas-side connection pipe may be 4.
  • In the refrigeration cycle apparatus according to the first aspect, a rated refrigeration capacity of the refrigeration cycle apparatus may be greater than or equal to 6.3 kW and less than or equal to 10.0 kW, the pipe outer diameter of the gas-side connection pipe may be D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used), and the D0 of the gas-side connection pipe may be 5.
  • In the refrigeration cycle apparatus according to the first aspect, a rated refrigeration capacity of the refrigeration cycle apparatus may be greater than or equal to 15.0 kW and less than or equal to 19.0 kW, the pipe outer diameter of the gas-side connection pipe may be D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used), and the D0 of the gas-side connection pipe may be 6.
  • In the refrigeration cycle apparatus according to the first aspect, a rated refrigeration capacity of the refrigeration cycle apparatus may be greater than or equal to 25.0 kW, the pipe outer diameter of the gas-side connection pipe may be D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used), and the D0 of the gas-side connection pipe may be 7.
  • A refrigeration cycle apparatus according to a second aspect is the refrigeration cycle apparatus of the first aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than 5.6 kW and less than 11.2 kW, and the D0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is ⅜ inches). Preferably, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than or equal to 10.0 kW, and the D0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is ⅜ inches).
  • A refrigeration cycle apparatus according to a third aspect is the refrigeration cycle apparatus of the first aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than 22.4 kW, and the D0 of the gas-side connection pipe is 7 (that is, a pipe diameter is ⅞ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than 14.0 kW and less than 22.4 kW, and the D0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than 5.6 kW and less than 11.2 kW, and the D0 of the gas-side connection pipe is 5 (that is, the pipe diameter is ⅝ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 4.5 kW, and the D0 of the gas-side connection pipe is 4 (that is, the pipe diameter is ½ inches). Preferably, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 25.0 kW, and the D0 of the gas-side connection pipe is 7 (that is, a pipe diameter is ⅞ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 15.0 kW and less than 19.0 kW, and the D0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 10.0 kW, and the D0 of the gas-side connection pipe is 5 (that is, the pipe diameter is ⅝ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 4.0 kW, and the D0 of the gas-side connection pipe is 4 (that is, the pipe diameter is ½ inches).
  • A refrigeration cycle apparatus according to a fourth aspect includes a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a decompression part, a liquid-side connection pipe, a service-side heat exchanger, and a gas-side connection pipe are connected. In the refrigeration cycle apparatus, a refrigerant containing at least 1,2-difluoroethylene is used. A pipe outer diameter of the liquid-side connection pipe and a pipe outer diameter of the gas-side connection pipe each are D0/8 inches, in the liquid-side connection pipe, a range of the D0 is “2≤D0≤4”, and, in the gas-side connection pipe, a range of the D0 is “3≤D0≤8”. The pipe outer diameter of the liquid-side connection pipe is same as a pipe outer diameter of a liquid-side connection pipe when refrigerant R410A is used, and the pipe outer diameter of the gas-side connection pipe is same as a pipe outer diameter of a gas-side connection pipe when refrigerant R410A is used.
  • The decompression part is not limited and may be an expansion valve or may be a capillary tube. Preferably, in the liquid-side connection pipe, a range of the D0 is “2≤D0≤3”, and, in the gas-side connection pipe, a range of the D0 is “4≤D0≤7”.
  • This refrigeration cycle apparatus is able to suppress a decrease in capacity while sufficiently reducing a GWP by using a refrigerant containing 1,2-difluoroethylene.
  • A refrigeration cycle apparatus according to a fifth aspect is the refrigeration cycle apparatus of the fourth aspect, and the D0 of the liquid-side connection pipe is 2 (that is, a pipe diameter is ¼ inches).
  • A refrigeration cycle apparatus according to a sixth aspect is the refrigeration cycle apparatus of the fourth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and the D0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is ⅜ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW and the D0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is ¼ inches).
  • A refrigeration cycle apparatus according to a seventh aspect is the refrigeration cycle apparatus of the fourth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.0 kW and the D0 of the gas-side connection pipe is 4 (that is, a pipe diameter is ½ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.0 kW and the D0 of the gas-side connection pipe is 3 (that is, the pipe diameter is ⅜ inches).
  • A refrigeration cycle apparatus according to an eighth aspect is the refrigeration cycle apparatus of the fourth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 25.0 kW, and the D0 of the gas-side connection pipe is 7 (that is, a pipe diameter is ⅞ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 15.0 kW and less than 25.0 kW, and the D0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 15.0 kW, and the D0 of the gas-side connection pipe is 5 (that is, the pipe diameter is ⅝ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D0 of the gas-side connection pipe is 4 (that is, the pipe diameter is ½ inches).
  • A refrigeration cycle apparatus according to a ninth aspect includes a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a decompression part, a liquid-side connection pipe, a service-side heat exchanger, and a gas-side connection pipe are connected. In the refrigeration cycle apparatus, a refrigerant containing at least 1,2-difluoroethylene is used. A pipe outer diameter of the liquid-side connection pipe and a pipe outer diameter of the gas-side connection pipe each are D0/8 inches, in the liquid-side connection pipe, a range of the D0 is “2≤D0≤4”, and, in the gas-side connection pipe, a range of the D0 is “3≤D0≤8”.
  • The decompression part is not limited and may be an expansion valve or may be a capillary tube. Preferably, in the liquid-side connection pipe, a range of the D0 is “2≤D0≤3”, and, in the gas-side connection pipe, a range of the D0 is “4≤D0≤7”.
  • This refrigeration cycle apparatus is able to suppress a decrease in capacity while sufficiently reducing a GWP by using a refrigerant containing 1,2-difluoroethylene.
  • A refrigeration cycle apparatus according to a tenth aspect is the refrigeration cycle apparatus of the ninth aspect, and the D0 of the liquid-side connection pipe is 2 (that is, a pipe diameter is ¼ inches).
  • A refrigeration cycle apparatus according to an eleventh aspect is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 7.5 kW, and the D0 of the liquid-side connection pipe is 2.5 (that is, a pipe diameter is 5/16 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 2.6 kW and less than 7.5 kW, and the D0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is ¼ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 2.6 kW, and the D0 of the liquid-side connection pipe is 1.5 (that is, the pipe diameter is 3/16 inches).
  • A refrigeration cycle apparatus according to a twelfth aspect is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW, and the D0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is ⅜ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is ¼ inches).
  • A refrigeration cycle apparatus according to a thirteenth aspect is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 12.5 kW, and the D0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is ⅜ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 12.5 kW, and the D0 of the liquid-side connection pipe is 2.5 (that is, the pipe diameter is 5/16 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is ¼ inches).
  • A refrigeration cycle apparatus according to a fourteenth aspect is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.0 kW, and the D0 of the gas-side connection pipe is 4 (that is, a pipe diameter is ½ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.0 kW, and the D0 of the gas-side connection pipe is 3 (that is, the pipe diameter is ⅜ inches).
  • A refrigeration cycle apparatus according to a fifteenth aspect is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.0 kW, and the D0 of the gas-side connection pipe is 4 (that is, a pipe diameter is ½ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 3.2 kW and less than 6.0 kW, and the D0 of the gas-side connection pipe is 3 (that is, the pipe diameter is ⅜ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 3.2 kW, and the D0 of the gas-side connection pipe is 2.5 (that is, the pipe diameter is 5/16 inches).
  • A refrigeration cycle apparatus according to a sixteenth aspect is the refrigeration cycle apparatus of the ninth aspect, a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 25.0 kW, and the D0 of the gas-side connection pipe is 7 (that is, a pipe diameter is ⅞ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 15.0 kW and less than 25.0 kW, and the D0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 15.0 kW, and the D0 of the gas-side connection pipe is 5 (that is, the pipe diameter is ⅝ inches), or the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D0 of the gas-side connection pipe is 4 (that is, the pipe diameter is ½ inches).
      • A refrigeration cycle apparatus according to a seventeenth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a refrigeration capacity (which may be referred to as cooling capacity or capacity) and a coefficient of performance (COP) that are equivalent to those of R410A.
      • A refrigeration cycle apparatus according to an eighteenth aspect is the refrigeration cycle apparatus according to the seventeenth aspects, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
        point A (68.6, 0.0, 31.4),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point D (0.0, 80.4, 19.6),
        point C′ (19.5, 70.5, 10.0),
        point C (32.9, 67.1, 0.0), and
        point O (100.0, 0.0, 0.0),
        or on the above line segments (excluding the points on the line segments BD, CO, and OA);
      • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
      • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
      • the line segments BD, CO, and OA are straight lines.
      • A refrigeration cycle apparatus according to a nineteenth aspect is the refrigeration cycle apparatus according to the seventeenth aspects, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
        point G (72.0, 28.0, 0.0),
        point I (72.0, 0.0, 28.0),
        point A (68.6, 0.0, 31.4),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point D (0.0, 80.4, 19.6),
        point C′ (19.5, 70.5, 10.0), and
        point C (32.9, 67.1, 0.0),
        or on the above line segments (excluding the points on the line segments IA, BD, and CG);
      • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
      • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
      • the line segments GI, IA, BD, and CG are straight lines.
      • A refrigeration cycle apparatus according to a twentieth aspect is the refrigeration cycle apparatus according to the seventeenth aspects, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
        point J (47.1, 52.9, 0.0),
        point P (55.8, 42.0, 2.2),
        point N (68.6, 16.3, 15.1),
        point K (61.3, 5.4, 33.3),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point D (0.0, 80.4, 19.6),
        point C′ (19.5, 70.5, 10.0), and
        point C (32.9, 67.1, 0.0),
        or on the above line segments (excluding the points on the line segments BD and CJ);
      • the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
      • the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
      • the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
      • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
      • the line segments JP, BD, and CG are straight lines.
      • A refrigeration cycle apparatus according to a twenty first aspect is the refrigeration cycle apparatus according to the seventeenth aspects, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
        point J (47.1, 52.9, 0.0),
        point P (55.8, 42.0, 2.2),
        point L (63.1, 31.9, 5.0),
        point M (60.3, 6.2, 33.5),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point D (0.0, 80.4, 19.6),
        point C′ (19.5, 70.5, 10.0), and
        point C (32.9, 67.1, 0.0),
        or on the above line segments (excluding the points on the line segments BD and CJ);
      • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)
      • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
      • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
      • the line segments JP, LM, BD, and CG are straight lines.
      • A refrigeration cycle apparatus according to a twenty second aspect is the refrigeration cycle apparatus according to the seventeenth aspects, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
        point P (55.8, 42.0, 2.2),
        point L (63.1, 31.9, 5.0),
        point M (60.3, 6.2, 33.5),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point F (0.0, 61.8, 38.2), and
        point T (35.8, 44.9, 19.3),
        or on the above line segments (excluding the points on the line segment BF);
      • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
      • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
      • the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
      • the line segments LM and BF are straight lines.
      • A refrigeration cycle apparatus according to a twenty third aspect is the refrigeration cycle apparatus according to the seventeenth aspects, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
        point P (55.8, 42.0, 2.2),
        point L (63.1, 31.9, 5.0),
        point Q (62.8, 29.6, 7.6), and
        point R (49.8, 42.3, 7.9),
        or on the above line segments;
      • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
      • the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
      • the line segments LQ and QR are straight lines.
      • A refrigeration cycle apparatus according to a twenty fourth aspect is the refrigeration cycle apparatus according to the seventeenth aspects, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
        point S (62.6, 28.3, 9.1),
        point M (60.3, 6.2, 33.5),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point F (0.0, 61.8, 38.2), and
        point T (35.8, 44.9, 19.3),
        or on the above line segments,
      • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
      • the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
      • the line segments SM and BF are straight lines.
      • A refrigeration cycle apparatus according to a twenty fifth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
      • the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a coefficient of performance (COP) and a refrigeration capacity (which may be referred to as cooling capacity or capacity) that are equivalent to those of R410A and is classified with lower flammability (class 2L) under the standard of American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE).
      • A refrigeration cycle apparatus according to a twenty sixth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and
      • the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a coefficient of performance (COP) and a refrigeration capacity (which may be referred to as cooling capacity or capacity) that are equivalent to those of R410A and is classified with lower flammability (class 2L) under the standard of American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE).
      • A refrigeration cycle apparatus according to a twenty seventh aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
      • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
        point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
        point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
        point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
        point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
        point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
        point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
        or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
      • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
        point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
        point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
        point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
        point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
        point W (0.0, 100.0-a, 0.0),
        or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
      • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
        point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
        point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
        point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
        point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
        point W (0.0, 100.0-a, 0.0),
        or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
      • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
        point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
        point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
        point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
        point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
        point W (0.0, 100.0-a, 0.0),
        or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
      • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
        point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
        point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
        point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
        point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
        point W (0.0, 100.0-a, 0.0),
        or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
      • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a refrigeration capacity (which may be referred to as cooling capacity or capacity) and a coefficient of performance (COP) that are equivalent to those of R410A. A refrigeration cycle apparatus according to a twenty eighth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
      • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
        point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
        point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
        point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
        point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
        point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
        or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
      • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
        point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
        point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,−0.0105a2+0.8577a+33.177),
        point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
        point W (0.0, 100.0-a, 0.0),
        or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
      • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
        point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
        point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
        point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
        point W (0.0, 100.0-a, 0.0),
        or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
      • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
        point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
        point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
        point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
        point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
        point W (0.0, 100.0-a, 0.0),
        or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
      • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
        point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
        point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
        point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
        point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
        point W (0.0, 100.0-a, 0.0),
        or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a refrigeration capacity (which may be referred to as cooling capacity or capacity) and a coefficient of performance (COP) that are equivalent to those of R410A.
      • A refrigeration cycle apparatus according to a twenty ninth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
        wherein
      • when the mass % of HID-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HID-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
        point I (72.0, 0.0, 28.0),
        point J (48.5, 18.3, 33.2),
        point N (27.7, 18.2, 54.1), and
        point E (58.3, 0.0, 41.7),
        or on these line segments (excluding the points on the line segment EI;
      • the line segment U is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
      • the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
      • the line segments JN and EI are straight lines.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a refrigeration capacity (which may be referred to as cooling capacity or capacity) equivalent to that of R410A and is classified with lower flammability (class 2L) under the standard of American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE).
  • A refrigeration cycle apparatus according to a thirtieth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
  • the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
  • point M (52.6, 0.0, 47.4),
    point M′(39.2, 5.0, 55.8),
    point N (27.7, 18.2, 54.1),
    point V (11.0, 18.1, 70.9), and
    point G (39.6, 0.0, 60.4),
    or on these line segments (excluding the points on the line segment GM);
      • the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
      • the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
      • the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
      • the line segments NV and GM are straight lines.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a refrigeration capacity (which may be referred to as cooling capacity or capacity) equivalent to that of R410A and is classified with lower flammability (class 2L) under the standard of American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE).
      • A refrigeration cycle apparatus according to a thirty first aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises HFO-1132(E), R32, and R1234yf,
        wherein
      • when the mass % of FIFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
        point O (22.6, 36.8, 40.6),
        point N (27.7, 18.2, 54.1), and
        point U (3.9, 36.7, 59.4),
        or on these line segments;
      • the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
      • the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
      • the line segment UO is a straight line.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a refrigeration capacity (which may be referred to as cooling capacity or capacity) equivalent to that of R410A and is classified with lower flammability (class 2L) under the standard of American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE).
      • A refrigeration cycle apparatus according to a thirty second aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises HFO-1132(E), R32, and R1234yf,
        wherein
      • when the mass % of FIFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of FIFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
        point Q (44.6, 23.0, 32.4),
        point R (25.5, 36.8, 37.7),
        point T (8.6, 51.6, 39.8),
        point L (28.9, 51.7, 19.4), and
        point K (35.6, 36.8, 27.6),
        or on these line segments;
      • the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
      • the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
      • the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
      • the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
      • the line segment TL is a straight line.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a refrigeration capacity (which may be referred to as cooling capacity or capacity) equivalent to that of R410A and is classified with lower flammability (class 2L) under the standard of American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE).
      • A refrigeration cycle apparatus according to a thirty third aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises HFO-1132(E), R32, and R1234yf,
        wherein
      • when the mass % of FIFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
        point P (20.5, 51.7, 27.8),
        point S (21.9, 39.7, 38.4), and
        point T (8.6, 51.6, 39.8),
        or on these line segments;
      • the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
      • the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
      • the line segment TP is a straight line.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a refrigeration capacity (which may be referred to as cooling capacity or capacity) equivalent to that of R410A and is classified with lower flammability (class 2L) under the standard of American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE).
      • A refrigeration cycle apparatus according to a thirty fourth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
        wherein
      • when the mass % of HID-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
        point I (72.0, 28.0, 0.0),
        point K (48.4, 33.2, 18.4),
        point B′ (0.0, 81.6, 18.4),
        point H (0.0, 84.2, 15.8),
        point R (23.1, 67.4, 9.5), and
        point G (38.5, 61.5, 0.0),
        or on these line segments (excluding the points on the line segments B′H and GI);
      • the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
      • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
      • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
      • the line segments KB′ and GI are straight lines.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a coefficient of performance (COP) equivalent to that of R410A.
      • A refrigeration cycle apparatus according to a thirty fifth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of HID-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
        point I (72.0, 28.0, 0.0),
        point J (57.7, 32.8, 9.5),
        point R (23.1, 67.4, 9.5), and
        point G (38.5, 61.5, 0.0),
        or on these line segments (excluding the points on the line segment GI);
      • the line segment U is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
      • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
      • the line segments JR and GI are straight lines.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a coefficient of performance (COP) equivalent to that of R410A.
      • A refrigeration cycle apparatus according to a thirty sixth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
        point M (47.1, 52.9, 0.0),
        point P (31.8, 49.8, 18.4),
        point B′ (0.0, 81.6, 18.4),
        point H (0.0, 84.2, 15.8),
        point R (23.1, 67.4, 9.5), and
        point G (38.5, 61.5, 0.0),
        or on these line segments (excluding the points on the line segments B′H and GM);
      • the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
      • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
      • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments PB′ and GM are straight lines.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a coefficient of performance (COP) equivalent to that of R410A.
      • A refrigeration cycle apparatus according to a thirty seventh aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of FIFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of FIFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
        point M (47.1, 52.9, 0.0),
        point N (38.5, 52.1, 9.5),
        point R (23.1, 67.4, 9.5), and
        point G (38.5, 61.5, 0.0),
        or on these line segments (excluding the points on the line segment GM);
      • the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
      • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
      • the line segments JR and GI are straight lines.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a coefficient of performance (COP) equivalent to that of R410A.
      • A refrigeration cycle apparatus according to a thirty eighth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
        point P (31.8, 49.8, 18.4),
        point S (25.4, 56.2, 18.4), and
        point T (34.8, 51.0, 14.2),
        or on these line segments;
      • the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
      • the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
      • the line segment PS is a straight line.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a coefficient of performance (COP) equivalent to that of R410A.
      • A refrigeration cycle apparatus according to a thirty ninth aspect is the refrigeration cycle apparatus according to any of the first through sixteenth aspects, wherein
      • the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of FIFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of FIFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
        point Q (28.6, 34.4, 37.0),
        point B″ (0.0, 63.0, 37.0),
        point D (0.0, 67.0, 33.0), and
        point U (28.7, 41.2, 30.1),
        or on these line segments (excluding the points on the line segment B″D);
      • the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
      • the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
      • the line segments QB″ and B″D are straight lines.
  • With this refrigeration cycle apparatus, a decrease in capacity can be suppressed by using a refrigerant having such performance that the refrigerant has a sufficiently low GWP and a coefficient of performance (COP) equivalent to that of R410A.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of an instrument used for a flammability test.
  • FIG. 2 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.
  • FIG. 3 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass %.
  • FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).
  • FIG. 5 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).
  • FIG. 6 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).
  • FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).
  • FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).
  • FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).
  • FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).
  • FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).
  • FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).
  • FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).
  • FIG. 14 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.
  • FIG. 15 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.
  • FIG. 16 is a schematic configuration diagram of a refrigerant circuit according to a first embodiment.
  • FIG. 17 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to the first embodiment.
  • FIG. 18 is a graph of a pressure loss in a liquid-side connection pipe during heating operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in an air conditioner according to the first embodiment.
  • FIG. 19 is a graph of a pressure loss in a gas-side connection pipe during cooling operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in the air conditioner according to the first embodiment.
  • FIG. 20 is a schematic configuration diagram of a refrigerant circuit according to a second embodiment.
  • FIG. 21 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to the second embodiment.
  • FIG. 22 is a graph of a pressure loss in a liquid-side connection pipe during heating operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in an air conditioner according to the second embodiment.
  • FIG. 23 is a graph of a pressure loss in a gas-side connection pipe during cooling operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in the air conditioner according to the second embodiment.
  • FIG. 24 is a schematic configuration diagram of a refrigerant circuit according to a third embodiment.
  • FIG. 25 is a schematic control block configuration diagram of a refrigeration cycle apparatus according to the third embodiment.
  • FIG. 26 is a graph of a pressure loss in a liquid-side connection pipe during heating operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in an air conditioner according to the third embodiment.
  • FIG. 27 is a graph of a pressure loss in a gas-side connection pipe during cooling operation for each pipe outer diameter when refrigerant R410A, refrigerant R32, and refrigerant A are used in the air conditioner according to the third embodiment.
  • DESCRIPTION OF EMBODIMENTS (1) Definition of Terms
  • In the present specification, the term “refrigerant” includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given. Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC). Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.
  • In the present specification, the phrase “composition comprising a refrigerant” at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil. In the present specification, of these three embodiments, the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants). Further, the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oil-containing working fluid” so as to distinguish it from the “refrigerant composition.”
  • In the present specification, when the term “alternative” is used in a context in which the first refrigerant is replaced with the second refrigerant, the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment. In other words, this type of alternative means that the same equipment is operated with an alternative refrigerant. Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.
  • The term “alternative” also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.
  • In the present specification, the term “refrigerating machine” refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature. In other words, refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.
  • In the present specification, a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013. Further, in the present specification, a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”
  • In the present specification, a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more. RCL refers to a concentration limit in the air in consideration of safety factors. RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present. RCL is determined in accordance with the ASHRAE Standard. More specifically, RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.
  • In the present specification, temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a composition containing the refrigerant of the present disclosure in the heat exchanger of a refrigerant system.
  • (2) Refrigerant (2-1) Refrigerant Component
  • Any one of various refrigerants such as refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E, details of these refrigerant are to be mentioned later, can be used as the refrigerant.
  • (2-2) Use of Refrigerant
  • The refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.
  • The composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.
  • (3) Refrigerant Composition
  • The refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.
  • The refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure. The refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary. As described above, when the refrigerant composition according to the present disclosure is used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil. Specifically, in the refrigerant composition according to the present disclosure, the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.
  • (3-1) Water
  • The refrigerant composition according to the present disclosure may contain a small amount of water. The water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant. A small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.
  • (3-2) Tracer
  • A tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.
  • The refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.
  • The tracer is not limited, and can be suitably selected from commonly used tracers. Preferably, a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.
  • Examples of tracers include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N2O). The tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.
  • The following compounds are preferable as the tracer.
  • FC-14 (tetrafluoromethane, CFO
    HCC-40 (chloromethane, CH3Cl)
    HFC-23 (trifluoromethane, CHF3)
    HFC-41 (fluoromethane, CH3Cl)
    HFC-125 (pentafluoroethane, CF3CHF2)
    HFC-134a (1,1,1,2-tetrafluoroethane, CF3CH2F)
    HFC-134 (1,1,2,2-tetrafluoroethane, CHF2CHF2)
    HFC-143a (1,1,1-trifluoroethane, CF3CH3)
    HFC-143 (1,1,2-trifluoroethane, CHF2CH2F)
    HFC-152a (1,1-difluoroethane, CHF2CH3)
    HFC-152 (1,2-difluoroethane, CH2FCH2F)
    HFC-161 (fluoroethane, CH3CH2F)
    HFC-245fa (1,1,1,3,3-pentafluoropropane, CF3CH2CHF2)
    HFC-236fa (1,1,1,3,3,3-hexafluoropropane, CF3CH2CF3)
    HFC-236ea (1,1,1,2,3,3-hexafluoropropane, CF3CHFCHF2)
    HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane, CF3CHFCF3)
    HCFC-22 (chlorodifluoromethane, CHClF2)
    HCFC-31 (chlorofluoromethane, CH2ClF)
    CFC-1113 (chlorotrifluoroethylene, CF2═CClF)
    HFE-125 (trifluoromethyl-difluoromethyl ether, CF3OCHF2)
    HFE-134a (trifluoromethyl-fluoromethyl ether, CF3OCH2F)
    HFE-143a (trifluoromethyl-methyl ether, CF3OCH3)
    HFE-227ea (trifluoromethyl-tetrafluoroethyl ether, CF3OCHFCF3)
    HFE-236fa (trifluoromethyl-trifluoroethyl ether, CF3OCH2CF3)
  • The tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm. Preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.
  • (3-3) Ultraviolet Fluorescent Dye
  • The refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.
  • The ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.
  • Examples of ultraviolet fluorescent dyes include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. The ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.
  • (3-4) Stabilizer
  • The refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.
  • The stabilizer is not limited, and can be suitably selected from commonly used stabilizers.
  • Examples of stabilizers include nitro compounds, ethers, and amines.
  • Examples of nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.
  • Examples of ethers include 1,4-dioxane.
  • Examples of amines include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
  • Examples of stabilizers also include butylhydroxyxylene and benzotriazole.
  • The content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • (3-5) Polymerization Inhibitor
  • The refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.
  • The polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.
  • Examples of polymerization inhibitors include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.
  • The content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • (4) Refrigeration Oil-Containing Working Fluid
  • The refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine. Specifically, the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition. The refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.
  • (4-1) Refrigeration Oil
  • The refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils. In this case, refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.
  • The base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).
  • The refrigeration oil may further contain additives in addition to the base oil. The additive may be at least one member selected from the group consisting of antioxidants, extreme-pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.
  • A refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.
  • The refrigeration oil-containing working fluid according to the present disclosure may further optionally contain at least one additive. Examples of additives include compatibilizing agents described below.
  • (4-2) Compatibilizing Agent
  • The refrigeration oil-containing working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.
  • The compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.
  • Examples of compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes. The compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.
  • (5) Various Refrigerants
  • Hereinafter, the refrigerants A to E, which are the refrigerants used in the present embodiment, will be described in detail.
  • In addition, each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent. The alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E. For example, the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.
  • (5-1) Refrigerant A
  • The refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • The refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • The refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements. This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • Requirements
  • Preferable refrigerant A is as follows:
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0),
    point C (32.9, 67.1, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line CO);
  • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments BD, CO, and OA are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
  • When the mass % of FIFO-1132(E), HFO-1123, and R1234yf, based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • point G (72.0, 28.0, 0.0),
    point I (72.0, 0.0, 28.0),
    point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point C (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segment CG);
  • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments GI, IA, BD, and CG are straight lines.
  • When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point N (68.6, 16.3, 15.1),
    point K (61.3, 5.4, 33.3),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point C (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
  • the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments JP, BD, and CG are straight lines.
  • When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point M (60.3, 6.2, 33.5),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segment CJ);
      • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
      • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
      • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
      • the line segments JP, LM, BD, and CG are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point M (60.3, 6.2, 33.5),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2), and
    point T (35.8, 44.9, 19.3),
    or on the above line segments (excluding the points on the line segment BF);
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
  • the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
  • the line segments LM and BF are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point Q (62.8, 29.6, 7.6), and
    point R (49.8, 42.3, 7.9),
    or on the above line segments;
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
  • the line segments LQ and QR are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • point S (62.6, 28.3, 9.1),
    point M (60.3, 6.2, 33.5),
    point A′(30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2), and
    point T (35.8, 44.9, 19.3),
    or on the above line segments,
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
  • the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
  • the line segments SM and BF are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:
  • point d (87.6, 0.0, 12.4),
    point g (18.2, 55.1, 26.7),
    point h (56.7, 43.3, 0.0), and
    point o (100.0, 0.0, 0.0),
    or on the line segments Od, dg, gh, and hO (excluding the points O and h);
  • the line segment dg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line segment gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
  • the line segments hO and Od are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments lg, gh, hi, and il that connect the following 4 points:
  • point l (72.5, 10.2, 17.3),
    point g (18.2, 55.1, 26.7),
    point h (56.7, 43.3, 0.0), and
    point i (72.5, 27.5, 0.0) or
    on the line segments lg, gh, and il (excluding the points h and i);
  • the line segment lg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
  • the line segments hi and it are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of FIFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of FIFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, de, ef, and fO that connect the following 4 points:
  • point d (87.6, 0.0, 12.4),
    point a (31.1, 42.9, 26.0),
    point f (65.5, 34.5, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the line segments Od, de, and ef (excluding the points O and f);
  • the line segment de is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line segment ef is represented by coordinates (−0.0064z2−1.1565z+65.501, 0.0064z2+0.1565z+34.499, z), and
  • the line segments fO and Od are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments le, ef, fi, and il that connect the following 4 points:
  • point l (72.5, 10.2, 17.3),
    point e (31.1, 42.9, 26.0),
    point f (65.5, 34.5, 0.0), and
    point i (72.5, 27.5, 0.0),
    or on the line segments le, ef, and il (excluding the points f and i);
  • the line segment le is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line segment ef is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
  • the line segments fi and il are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Oa, ab, bc, and cO that connect the following 4 points:
  • point a (93.4, 0.0, 6.6),
    point b (55.6, 26.6, 17.8),
    point c (77.6, 22.4, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the line segments Oa, ab, and bc (excluding the points O and c);
  • the line segment ab is represented by coordinates (0.0052y2−1.5588y+93.385, y, −0.0052y2+0.5588y+6.615),
  • the line segment bc is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and
  • the line segments cO and Oa are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HID-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments kb, bj, and jk that connect the following 3 points:
  • point k (72.5, 14.1, 13.4),
    point b (55.6, 26.6, 17.8), and
    point j (72.5, 23.2, 4.3),
    or on the line segments kb, bj, and jk;
      • the line segment kb is represented by coordinates (0.0052y2−1.5588y+93.385, y, and −0.0052y2+0.5588y+6.615),
  • the line segment bj is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and
  • the line segment jk is a straight line.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • The refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • The refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected.
  • The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • Examples of Refrigerant A
  • The present disclosure is described in more detail below with reference to Examples of refrigerant A. However, refrigerant A is not limited to the Examples.
  • The GWP of R1234yf and a composition consisting of a mixed refrigerant R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • Further, the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.
  • Evaporating temperature: 5° C.
    Condensation temperature: 45° C.
    Degree of superheating: 5 K
    Degree of subcooling: 5 K
    Compressor efficiency: 70%
  • Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.
  • TABLE 1
    Comp. Comp. Example Comp.
    Comp. Ex. 2 Ex. 3 Example 2 Example Ex. 4
    Item Unit Ex. 1 O A 1 A′ 3 B
    HFO-1132(E) mass % R410A 100.0 68.6 49.0 30.6 14.1 0.0
    HFO-1123 mass % 0.0 0.0 14.9 30.0 44.8 58.7
    R1234yf mass % 0.0 31.4 36.1 39.4 41.1 41.3
    GWP 2088 1 2 2 2 2 2
    COP ratio % (relative 100 99.7 100.0 98.6 97.3 96.3 95.5
    to 410A)
    Refrigerating % (relative 100 98.3 85.0 85.0 85.0 85.0 85.0
    capacity ratio to 410A)
    Condensation ° C. 0.1 0.00 1.98 3.36 4.46 5.15 5.35
    glide
    Discharge % (relative 100.0 99.3 87.1 88.9 90.6 92.1 93.2
    pressure to 410A)
    RCL g/m3 30.7 37.5 44.0 52.7 64.0 78.6
  • TABLE 2
    Comp. Example Comp. Comp. Example Comp.
    Ex. 5 Example 5 Example Ex. 6 Ex. 7 7 Ex. 8
    Item Unit C 4 C′ 6 D E E′ F
    HFO-1132(E) mass % 32.9 26.6 19.5 10.9 0.0 58.0 23.4 0.0
    HFO-1123 mass % 67.1 68.4 70.5 74.1 80.4 42.0 48.5 61.8
    R1234yf mass % 0.0 5.0 10.0 15.0 19.6 0.0 28.1 38.2
    GWP 1 1 1 1 2 1 2 2
    COP ratio % (relative 92.5 92.5 92.5 92.5 92.5 95.0 95.0 95.0
    to 410A)
    Refrigerating % (relative 107.4 105.2 102.9 100.5 97.9 105.0 92.5 86.9
    capacity ratio to 410A)
    Condensation ° C. 0.16 0.52 0.94 1.42 1.90 0.42 3.16 4.80
    glide
    Discharge % (relative 119.5 117.4 115.3 113.0 115.9 112.7 101.0 95.8
    pressure to 410A)
    RCL g/m3 53.5 57.1 62.0 69.1 81.3 41.9 46.3 79.0
  • TABLE 3
    Comp. Example Example Example Example Example
    Ex. 9 8 9 10 11 12
    Item Unit J P L N N′ K
    HFO-1132(E) mass % 47.1 55.8 63.1 68.6 65.0 61.3
    HFO-1123 mass % 52.9 42.0 31.9 16.3 7.7 5.4
    R1234yf mass % 0.0 2.2 5.0 15.1 27.3 33.3
    GWP 1 1 1 1 2 2
    COP ratio % (relative 93.8 95.0 96.1 97.9 99.1 99.5
    to 410A)
    Refrigerating % (relative 106.2 104.1 101.6 95.0 88.2 85.0
    capacity ratio to 410A)
    Condensation ° C. 0.31 0.57 0.81 1.41 2.11 2.51
    glide
    Discharge % (relative 115.8 111.9 107.8 99.0 91.2 87.7
    pressure to 410A)
    RCL g/m3 46.2 42.6 40.0 38.0 38.7 39.7
  • TABLE 4
    Example Example Example Example Example Example Example
    13 14 15 16 17 18 19
    Item Unit L M Q R S S′ T
    HFO-1132(E) mass % 63.1 60.3 62.8 49.8 62.6 50.0 35.8
    HFO-1123 mass % 31.9 6.2 29.6 42.3 28.3 35.8 44.9
    R1234yf mass % 5.0 33.5 7.6 7.9 9.1 14.2 19.3
    GWP 1 2 1 1 1 1 2
    COP ratio % (relative 96.1 99.4 96.4 95.0 96.6 95.8 95.0
    to 410A)
    Refrigerating % (relative 101.6 85.0 100.2 101.7 99.4 98.1 96.7
    capacity ratio to 410A)
    Condensation ° C. 0.81 2.58 1.00 1.00 1.10 1.55 2.07
    glide
    Discharge % (relative 107.8 87.9 106.0 109.6 105.0 105.0 105.0
    pressure to 410A)
    RCL g/m3 40.0 40.0 40.0 44.8 40.0 44.4 50.8
  • TABLE 5
    Comp. Example Example
    Ex. 10 20 21
    Item Unit G H I
    HFO-1132(E) mass % 72.0 72.0 72.0
    HFO-1123 mass % 28.0 14.0 0.0
    R1234yf mass % 0.0 14.0 28.0
    GWP 1 1 2
    COP ratio % (relative 96.6 98.2 99.9
    to 410A)
    Refrigerating % (relative 103.1 95.1 86.6
    capacity ratio to 410A)
    Condensation glide ° C. 0.46 1.27 1.71
    Discharge pressure % (relative 108.4 98.7 88.6
    to 410A)
    RCL g/m3 37.4 37.0 36.6
  • TABLE 6
    Comp. Comp. Example Example Example Example Example Comp.
    Item Unit Ex. 11 Ex. 12 22 23 24 25 26 Ex. 13
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    R1234yf mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 91.4 92.0 92.8 93.7 94.7 95.8 96.9 98.0
    to 410A)
    Refrigerating % (relative 105.7 105.5 105.0 104.3 103.3 102.0 100.6 99.1
    capacity ratio to 410A)
    Condensation ° C. 0.40 0.46 0.55 0.66 0.75 0.80 0.79 0.67
    glide
    Discharge % (relative 120.1 118.7 116.7 114.3 111.6 108.7 105.6 102.5
    pressure to 410A)
    RCL g/m3 71.0 61.9 54.9 49.3 44.8 41.0 37.8 35.1
  • TABLE 7
    Comp. Example Example Example Example Example Example Comp.
    Item Unit Ex. 14 27 28 29 30 31 32 Ex. 15
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 91.9 92.5 93.3 94.3 95.3 96.4 97.5 98.6
    to 410A)
    Refrigerating % (relative 103.2 102.9 102.4 101.5 100.5 99.2 97.8 96.2
    capacity ratio to 410A)
    Condensation ° C. 0.87 0.94 1.03 1.12 1.18 1.18 1.09 0.88
    glide
    Discharge % (relative 116.7 115.2 113.2 110.8 108.1 105.2 102.1 99.0
    pressure to 410A)
    RCL g/m3 70.5 61.6 54.6 49.1 44.6 40.8 37.7 35.0
  • TABLE 8
    Comp. Example Example Example Example Example Example Comp.
    Item Unit Ex. 16 33 34 35 36 37 38 Ex. 17
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 75.0 65.0 55.0 45.0 35.0 25.0 15.0 5.0
    R1234yf mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 92.4 93.1 93.9 94.8 95.9 97.0 98.1 99.2
    to 410A)
    Refrigerating % (relative 100.5 100.2 99.6 98.7 97.7 96.4 94.9 93.2
    capacity ratio to 410A)
    Condensation ° C. 1.41 1.49 1.56 1.62 1.63 1.55 1.37 1.05
    glide
    Discharge % (relative 113.1 111.6 109.6 107.2 104.5 101.6 98.6 95.5
    pressure to 410A)
    RCL g/m3 70.0 61.2 54.4 48.9 44.4 40.7 37.5 34.8
  • TABLE 9
    Example Example Example Example Example Example Example
    Item Unit
    39 40 41 42 43 44 45
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    GWP 2 2 2 2 2 2 2
    COP ratio % (relative 93.0 93.7 94.5 95.5 96.5 97.6 98.7
    to 410A)
    Refrigerating % (relative 97.7 97.4 96.8 95.9 94.7 93.4 91.9
    capacity ratio to 410A)
    Condensation ° C. 2.03 2.09 2.13 2.14 2.07 1.91 1.61
    glide
    Discharge % (relative 109.4 107.9 105.9 103.5 100.8 98.0 95.0
    pressure to 410A)
    RCL g/m3 69.6 60.9 54.1 48.7 44.2 40.5 37.4
  • TABLE 10
    Example Example Example Example Example Example Example
    Item Unit
    46 47 48 49 50 51 52
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 65.0 55.0 45.0 35.0 25.0 15.0 5.0
    R1234yf mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0
    GWP 2 2 2 2 2 2 2
    COP ratio % (relative 93.6 94.3 95.2 96.1 97.2 98.2 99.3
    to 410A)
    Refrigerating % (relative 94.8 94.5 93.8 92.9 91.8 90.4 88.8
    capacity ratio to 410A)
    Condensation ° C. 2.71 2.74 2.73 2.66 2.50 2.22 1.78
    glide
    Discharge % (relative 105.5 104.0 102.1 99.7 97.1 94.3 91.4
    pressure to 410A)
    RCL g/m3 69.1 60.5 53.8 48.4 44.0 40.4 37.3
  • TABLE 11
    Example Example Example Example Example Example
    Item Unit 53 54 55 56 57 58
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0
    HFO-1123 mass % 60.0 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0
    GWP 2 2 2 2 2 2
    COP ratio % (relative 94.3 95.0 95.9 96.8 97.8 98.9
    to 410A)
    Refrigerating % (relative 91.9 91.5 90.8 89.9 88.7 87.3
    capacity ratio to 410A)
    Condensation ° C. 3.46 3.43 3.35 3.18 2.90 2.47
    glide
    Discharge % (relative 101.6 100.1 98.2 95.9 93.3 90.6
    pressure to 410A)
    RCL g/m3 68.7 60.2 53.5 48.2 43.9 40.2
  • TABLE 12
    Example Example Example Example Example Comp.
    Item Unit 59 60 61 62 63 Ex. 18
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0
    HFO-1123 mass % 55.0 45.0 35.0 25.0 15.0 5.0
    R1234yf mass % 35.0 35.0 35.0 35.0 35.0 35.0
    GWP 2 2 2 2 2 2
    COP ratio % (relative 95.0 95.8 96.6 97.5 98.5 99.6
    to 410A)
    Refrigerating % (relative 88.9 88.5 87.8 86.8 85.6 84.1
    capacity ratio to 410A)
    Condensation ° C. 4.24 4.15 3.96 3.67 3.24 2.64
    glide
    Discharge % (relative 97.6 96.1 94.2 92.0 89.5 86.8
    pressure to 410A)
    RCL g/m3 68.2 59.8 53.2 48.0 43.7 40.1
  • TABLE 13
    Example Example Comp. Comp. Comp.
    Item Unit 64 65 Ex. 19 Ex. 20 Ex. 21
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0
    HFO-1123 mass % 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 40.0 40.0 40.0 40.0 40.0
    GWP 2 2 2 2 2
    COP ratio % (relative 95.9 96.6 97.4 98.3 99.2
    to 410A)
    Refrigerating % (relative 85.8 85.4 84.7 83.6 82.4
    capacity ratio to 410A)
    Condensation ° C. 5.05 4.85 4.55 4.10 3.50
    glide
    Discharge % (relative 93.5 92.1 90.3 88.1 85.6
    pressure to 410A)
    RCL g/m3 67.8 59.5 53.0 47.8 43.5
  • TABLE 14
    Example Example Example Example Example Example Example Example
    Item Unit 66 67 68 69 70 71 72 73
    HFO-1132(E) mass % 54.0 56.0 58.0 62.0 52.0 54.0 56.0 58.0
    HFO-1123 mass % 41.0 39.0 37.0 33.0 41.0 39.0 37.0 35.0
    R1234yf mass % 5.0 5.0 5.0 5.0 7.0 7.0 7.0 7.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 95.1 95.3 95.6 96.0 95.1 95.4 95.6 95.8
    to 410A)
    Refrigerating % (relative 102.8 102.6 102.3 101.8 101.9 101.7 101.5 101.2
    capacity ratio to 410A)
    Condensation ° C. 0.78 0.79 0.80 0.81 0.93 0.94 0.95 0.95
    glide
    Discharge % (relative 110.5 109.9 109.3 108.1 109.7 109.1 108.5 107.9
    pressure to 410A)
    RCL g/m3 43.2 42.4 41.7 40.3 43.9 43.1 42.4 41.6
  • TABLE 15
    Example Example Example Example Example Example Example Example
    Item Unit 74 75 76 77 78 79 80 81
    HFO-1132(E) mass % 60.0 62.0 61.0 58.0 60.0 62.0 52.0 54.0
    HFO-1123 mass % 33.0 31.0 29.0 30.0 28.0 26.0 34.0 32.0
    R1234yf mass % 7.0 7.0 10.0 12.0 12.0 12.0 14.0 14.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 96.0 96.2 96.5 96.4 96.6 96.8 96.0 96.2
    to 410A)
    Refrigerating % (relative 100.9 100.7 99.1 98.4 98.1 97.8 98.0 97.7
    capacity ratio to 410A)
    Condensation ° C. 0.95 0.95 1.18 1.34 1.33 1.32 1.53 1.53
    glide
    Discharge % (relative 107.3 106.7 104.9 104.4 103.8 103.2 104.7 104.1
    pressure to 410A)
    RCL g/m3 40.9 40.3 40.5 41.5 40.8 40.1 43.6 42.9
  • TABLE 16
    Example Example Example Example Example Example Example Example
    Item Unit 82 83 84 85 86 87 88 89
    HFO-1132(E) mass % 56.0 58.0 60.0 48.0 50.0 52.0 54.0 56.0
    HFO-1123 mass % 30.0 28.0 26.0 36.0 34.0 32.0 30.0 28.0
    R1234yf mass % 14.0 14.0 14.0 16.0 16.0 16.0 16.0 16.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 96.4 96.6 96.9 95.8 96.0 96.2 96.4 96.7
    to 410A)
    Refrigerating % (relative 97.5 97.2 96.9 97.3 97.1 96.8 96.6 96.3
    capacity ratio to 410A)
    Condensation ° C. 1.51 1.50 1.48 1.72 1.72 1.71 1.69 1.67
    glide
    Discharge % (relative 103.5 102.9 102.3 104.3 103.8 103.2 102.7 102.1
    pressure to 410A)
    RCL g/m3 42.1 41.4 40.7 45.2 44.4 43.6 42.8 42.1
  • TABLE 17
    Example Example Example Example Example Example Example Example
    Item Unit 90 91 92 93 94 95 96 97
    HFO-1132(E) mass % 58.0 60.0 42.0 44.0 46.0 48.0 50.0 52.0
    HFO-1123 mass % 26.0 24.0 40.0 38.0 36.0 34.0 32.0 30.0
    R1234yf mass % 16.0 16.0 18.0 18.0 18.0 18.0 18.0 18.0
    GWP 1 1 2 2 2 2 2 2
    COP ratio % (relative 96.9 97.1 95.4 95.6 95.8 96.0 96.3 96.5
    to 410A)
    Refrigerating % (relative 96.1 95.8 96.8 96.6 96.4 96.2 95.9 95.7
    capacity ratio to 410A)
    Condensation ° C. 1.65 1.63 1.93 1.92 1.92 1.91 1.89 1.88
    glide
    Discharge % (relative 101.5 100.9 104.5 103.9 103.4 102.9 102.3 101.8
    pressure to 410A)
    RCL g/m3 41.4 40.7 47.8 46.9 46.0 45.1 44.3 43.5
  • TABLE 18
    Example Example Example Example Example Example Example Example
    Item Unit 98 99 100 101 102 103 104 105
    HFO-1132(E) mass % 54.0 56.0 58.0 60.0 36.0 38.0 42.0 44.0
    HFO-1123 mass % 28.0 26.0 24.0 22.0 44.0 42.0 38.0 36.0
    R1234yf mass % 18.0 18.0 18.0 18.0 20.0 20.0 20.0 20.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.7 96.9 97.1 97.3 95.1 95.3 95.7 95.9
    to 410A)
    Refrigerating % (relative 95.4 95.2 94.9 94.6 96.3 96.1 95.7 95.4
    capacity ratio to 410A)
    Condensation ° C. 1.86 1.83 1.80 1.77 2.14 2.14 2.13 2.12
    glide
    Discharge % (relative 101.2 100.6 100.0 99.5 104.5 104.0 103.0 102.5
    pressure to 410A)
    RCL g/m3 42.7 42.0 41.3 40.6 50.7 49.7 47.7 46.8
  • TABLE 19
    Example Example Example Example Example Example Example Example
    Item Unit 106 107 108 109 110 111 112 113
    HFO-1132(E) mass % 46.0 48.0 52.0 54.0 56.0 58.0 34.0 36.0
    HFO-1123 mass % 34.0 32.0 28.0 26.0 24.0 22.0 44.0 42.0
    R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 22.0 22.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.1 96.3 96.7 96.9 97.2 97.4 95.1 95.3
    to 410A)
    Refrigerating % (relative 95.2 95.0 94.5 94.2 94.0 93.7 95.3 95.1
    capacity ratio to 410A)
    Condensation ° C. 2.11 2.09 2.05 2.02 1.99 1.95 2.37 2.36
    glide
    Discharge % (relative 101.9 101.4 100.3 99.7 99.2 98.6 103.4 103.0
    pressure to 410A)
    RCL g/m3 45.9 45.0 43.4 42.7 41.9 41.2 51.7 50.6
  • TABLE 20
    Example Example Example Example Example Example Example Example
    Item Unit 114 115 116 117 118 119 120 121
    HFO-1132(E) mass % 38.0 40.0 42.0 44.0 46.0 48.0 50.0 52.0
    HFO-1123 mass % 40.0 38.0 36.0 34.0 32.0 30.0 28.0 26.0
    R1234yf mass % 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 95.5 95.7 95.9 96.1 96.4 96.6 96.8 97.0
    to 410A)
    Refrigerating % (relative 94.9 94.7 94.5 94.3 94.0 93.8 93.6 93.3
    capacity ratio to 410A)
    Condensation ° C. 2.36 2.35 2.33 2.32 2.30 2.27 2.25 2.21
    glide
    Discharge % (relative 102.5 102.0 101.5 101.0 100.4 99.9 99.4 98.8
    pressure to 410A)
    RCL g/m3 49.6 48.6 47.6 46.7 45.8 45.0 44.1 43.4
  • TABLE 21
    Example Example Example Example Example Example Example Example
    Item Unit 122 123 124 125 126 127 128 129
    HFO-1132(E) mass % 54.0 56.0 58.0 60.0 32.0 34.0 36.0 38.0
    HFO-1123 mass % 24.0 22.0 20.0 18.0 44.0 42.0 40.0 38.0
    R1234yf mass % 22.0 22.0 22.0 22.0 24.0 24.0 24.0 24.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.2 97.4 97.6 97.9 95.2 95.4 95.6 95.8
    to 410A)
    Refrigerating % (relative 93.0 92.8 92.5 92.2 94.3 94.1 93.9 93.7
    capacity ratio to 410A)
    Condensation ° C. 2.18 2.14 2.09 2.04 2.61 2.60 2.59 2.58
    glide
    Discharge % (relative 98.2 97.7 97.1 96.5 102.4 101.9 101.5 101.0
    pressure to 410A)
    RCL g/m3 42.6 41.9 41.2 40.5 52.7 51.6 50.5 49.5
  • TABLE 22
    Example Example Example Example Example Example Example Example
    Item Unit 130 131 132 133 134 135 136 137
    HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0
    HFO-1123 mass % 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0
    R1234yf mass % 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.0 96.2 96.4 96.6 96.8 97.0 97.2 97.5
    to 410A)
    Refrigerating % (relative 93.5 93.3 93.1 92.8 92.6 92.4 92.1 91.8
    capacity ratio to 410A)
    Condensation ° C. 2.56 2.54 2.51 2.49 2.45 2.42 2.38 2.33
    glide
    Discharge % (relative 100.5 100.0 99.5 98.9 98.4 97.9 97.3 96.8
    pressure to 410A)
    RCL g/m3 48.5 47.5 46.6 45.7 44.9 44.1 43.3 42.5
  • TABLE 23
    Example Example Example Example Example Example Example Example
    Item Unit 138 139 140 141 142 143 144 145
    HFO-1132(E) mass % 56.0 58.0 60.0 30.0 32.0 34.0 36.0 38.0
    HFO-1123 mass % 20.0 18.0 16.0 44.0 42.0 40.0 38.0 36.0
    R1234yf mass % 24.0 24.0 24.0 26.0 26.0 26.0 26.0 26.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.7 97.9 98.1 95.3 95.5 95.7 95.9 96.1
    to 410A)
    Refrigerating % (relative 91.6 91.3 91.0 93.2 93.1 92.9 92.7 92.5
    capacity ratio to 410A)
    Condensation ° C. 2.28 2.22 2.16 2.86 2.85 2.83 2.81 2.79
    glide
    Discharge % (relative 96.2 95.6 95.1 101.3 100.8 100.4 99.9 99.4
    pressure to 410A)
    RCL g/m3 41.8 41.1 40.4 53.7 52.6 51.5 50.4 49.4
  • TABLE 24
    Example Example Example Example Example Example Example Example
    Item Unit 146 147 148 149 150 151 152 153
    HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0
    HFO-1123 mass % 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0
    R1234yf mass % 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.3 96.5 96.7 96.9 97.1 97.3 97.5 97.7
    to 410A)
    Refrigerating % (relative 92.3 92.1 91.9 91.6 91.4 91.2 90.9 90.6
    capacity ratio to 410A)
    Condensation ° C. 2.77 2.74 2.71 2.67 2.63 2.59 2.53 2.48
    glide
    Discharge % (relative 99.0 98.5 97.9 97.4 96.9 96.4 95.8 95.3
    pressure to 410A)
    RCL g/m3 48.4 47.4 46.5 45.7 44.8 44.0 43.2 42.5
  • TABLE 25
    Example Example Example Example Example Example Example Example
    Item Unit 154 155 156 157 158 159 160 161
    HFO-1132(E) mass % 56.0 58.0 60.0 30.0 32.0 34.0 36.0 38.0
    HFO-1123 mass % 18.0 16.0 14.0 42.0 40.0 38.0 36.0 34.0
    R1234yf mass % 26.0 26.0 26.0 28.0 28.0 28.0 28.0 28.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.9 98.2 98.4 95.6 95.8 96.0 96.2 96.3
    to 410A)
    Refrigerating % (relative 90.3 90.1 89.8 92.1 91.9 91.7 91.5 91.3
    capacity ratio to 410A)
    Condensation ° C. 2.42 2.35 2.27 3.10 3.09 3.06 3.04 3.01
    glide
    Discharge % (relative 94.7 94.1 93.6 99.7 99.3 98.8 98.4 97.9
    pressure to 410A)
    RCL g/m3 41.7 41.0 40.3 53.6 52.5 51.4 50.3 49.3
  • TABLE 26
    Example Example Example Example Example Example Example Example
    Item Unit 162 163 164 165 166 167 168 169
    HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0
    HFO-1123 mass % 32.0 30.0 28.0 26.0 24.0 22.0 20.0 18.0
    R1234yf mass % 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.5 96.7 96.9 97.2 97.4 97.6 97.8 98.0
    to 410A)
    Refrigerating % (relative 91.1 90.9 90.7 90.4 90.2 89.9 89.7 89.4
    capacity ratio to 410A)
    Condensation ° C. 2.98 2.94 2.90 2.85 2.80 2.75 2.68 2.62
    glide
    Discharge % (relative 97.4 96.9 96.4 95.9 95.4 94.9 94.3 93.8
    pressure to 410A)
    RCL g/m3 48.3 47.4 46.4 45.6 44.7 43.9 43.1 42.4
  • TABLE 27
    Example Example Example Example Example Example Example Example
    Item Unit 170 171 172 173 174 175 176 177
    HFO-1132(E) mass % 56.0 58.0 60.0 32.0 34.0 36.0 38.0 42.0
    HFO-1123 mass % 16.0 14.0 12.0 38.0 36.0 34.0 32.0 28.0
    R1234yf mass % 28.0 28.0 28.0 30.0 30.0 30.0 30.0 30.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 98.2 98.4 98.6 96.1 96.2 96.4 96.6 97.0
    to 410A)
    Refrigerating % (relative 89.1 88.8 88.5 90.7 90.5 90.3 90.1 89.7
    capacity ratio to 410A)
    Condensation ° C. 2.54 2.46 2.38 3.32 3.30 3.26 3.22 3.14
    glide
    Discharge % (relative 93.2 92.6 92.1 97.7 97.3 96.8 96.4 95.4
    pressure to 410A)
    RCL g/m3 41.7 41.0 40.3 52.4 51.3 50.2 49.2 47.3
  • TABLE 28
    Example Example Example Example Example Example Example Example
    Item Unit 178 179 180 181 182 183 184 185
    HFO-1132(E) mass % 44.0 46.0 48.0 50.0 52.0 54.0 56.0 58.0
    HFO-1123 mass % 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0
    R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.2 97.4 97.6 97.8 98.0 98.3 98.5 98.7
    to 410A)
    Refrigerating % (relative 89.4 89.2 89.0 88.7 88.4 88.2 87.9 87.6
    capacity ratio to 410A)
    Condensation ° C. 3.08 3.03 2.97 2.90 2.83 2.75 2.66 2.57
    glide
    Discharge % (relative 94.9 94.4 93.9 93.3 92.8 92.3 91.7 91.1
    pressure to 410A)
    RCL g/m3 46.4 45.5 44.7 43.9 43.1 42.3 41.6 40.9
  • TABLE 29
    Example Example Example Example Example Example Example Example
    Item Unit 186 187 188 189 190 191 192 193
    HFO-1132(E) mass % 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0
    HFO-1123 mass % 38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0
    R1234yf mass % 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.2 96.3 96.5 96.7 96.9 97.1 97.3 97.5
    to 410A)
    Refrigerating % (relative 89.6 89.5 89.3 89.1 88.9 88.7 88.4 88.2
    capacity ratio to 410A)
    Condensation ° C. 3.60 3.56 3.52 3.48 3.43 3.38 3.33 3.26
    glide
    Discharge % (relative 96.6 96.2 95.7 95.3 94.8 94.3 93.9 93.4
    pressure to 410A)
    RCL g/m3 53.4 52.3 51.2 50.1 49.1 48.1 47.2 46.3
  • TABLE 30
    Example Example Example Example Example Example Example Example
    Item Unit 194 195 196 197 198 199 200 201
    HFO-1132(E) mass % 46.0 48.0 50.0 52.0 54.0 56.0 58.0 60.0
    HFO-1123 mass % 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0
    R1234yf mass % 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.7 97.9 98.1 98.3 98.5 98.7 98.9 99.2
    to 410A)
    Refrigerating % (relative 88.0 87.7 87.5 87.2 86.9 86.6 86.3 86.0
    capacity ratio to 410A)
    Condensation ° C. 3.20 3.12 3.04 2.96 2.87 2.77 2.66 2.55
    glide
    Discharge % (relative 92.8 92.3 91.8 91.3 90.7 90.2 89.6 89.1
    pressure to 410A)
    RCL g/m3 45.4 44.6 43.8 43.0 42.3 41.5 40.8 40.2
  • TABLE 31
    Example Example Example Example Example Example Example Example
    Item Unit 202 203 204 205 206 207 208 209
    HFO-1132(E) mass % 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0
    HFO-1123 mass % 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0
    R1234yf mass % 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.5 96.6 96.8 97.0 97.2 97.4 97.6 97.8
    to 410A)
    Refrigerating % (relative 88.4 88.2 88.0 87.8 87.6 87.4 87.2 87.0
    capacity ratio to 410A)
    Condensation ° C. 3.84 3.80 3.75 3.70 3.64 3.58 3.51 3.43
    glide
    Discharge % (relative 95.0 94.6 94.2 93.7 93.3 92.8 92.3 91.8
    pressure to 410A)
    RCL g/m3 53.3 52.2 51.1 50.0 49.0 48.0 47.1 46.2
  • TABLE 32
    Example Example Example Example Example Example Example Example
    Item Unit 210 211 212 213 214 215 216 217
    HFO-1132(E) mass % 46.0 48.0 50.0 52.0 54.0 30.0 32.0 34.0
    HFO-1123 mass % 20.0 18.0 16.0 14.0 12.0 34.0 32.0 30.0
    R1234yf mass % 34.0 34.0 34.0 34.0 34.0 36.0 36.0 36.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 98.0 98.2 98.4 98.6 98.8 96.8 96.9 97.1
    to 410A)
    Refrigerating % (relative 86.7 86.5 86.2 85.9 85.6 87.2 87.0 86.8
    capacity ratio to 410A)
    Condensation ° C. 3.36 3.27 3.18 3.08 2.97 4.08 4.03 3.97
    glide
    Discharge % (relative 91.3 90.8 90.3 89.7 89.2 93.4 93.0 92.6
    pressure to 410A)
    RCL g/m3 45.3 44.5 43.7 42.9 42.2 53.2 52.1 51.0
  • TABLE 33
    Example Example Example Example Example Example Example Example
    Item Unit 218 219 220 221 222 223 224 225
    HFO-1132(E) mass % 36.0 38.0 40.0 42.0 44.0 46.0 30.0 32.0
    HFO-1123 mass % 28.0 26.0 24.0 22.0 20.0 18.0 32.0 30.0
    R1234yf mass % 36.0 36.0 36.0 36.0 36.0 36.0 38.0 38.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.3 97.5 97.7 97.9 98.1 98.3 97.1 97.2
    to 410A)
    Refrigerating % (relative 86.6 86.4 86.2 85.9 85.7 85.5 85.9 85.7
    capacity ratio to 410A)
    Condensation ° C. 3.91 3.84 3.76 3.68 3.60 3.50 4.32 4.25
    glide
    Discharge % (relative 92.1 91.7 91.2 90.7 90.3 89.8 91.9 91.4
    pressure to 410A)
    RCL g/m3 49.9 48.9 47.9 47.0 46.1 45.3 53.1 52.0
  • TABLE 34
    Example Example
    Item Unit 226 227
    HFO-1132(E) mass % 34.0 36.0
    HFO-1123 mass % 28.0 26.0
    R1234yf mass % 38.0 38.0
    GWP 2 2
    COP ratio % (relative 97.4 97.6
    to 410A)
    Refrigerating % (relative 85.6 85.3
    capacity ratio to 410A)
    Condensation glide ° C. 4.18 4.11
    Discharge pressure % (relative 91.0 90.6
    to 410A)
    RCL g/m3 50.9 49.8
  • These results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4),
    point A′(30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0),
    point C (32.9, 67.1, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line segment CO);
    the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
    the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,
    the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
    the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
    the line segments BD, CO, and OA are straight lines,
    the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
  • The point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.
  • The point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.
  • The point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.
  • The point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.
  • Likewise, the results indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments AA′, A′B, BF, FT, TE, EO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2),
    point T (35.8, 44.9, 19.3),
    point E (58.0, 42.0, 0.0) and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line EO);
    the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
    the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
    the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2), and
    the line segment TE is represented by coordinates (x, 0.0067x2−0.7607x+63.525, −0.0067x2−0.2393x+36.475), and
    the line segments BF, FO, and OA are straight lines,
    the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A.
  • The point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.
  • The point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.
  • The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which the sum of these components is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below the line segment LM connecting point L (63.1, 31.9, 5.0) and point M (60.3, 6.2, 33.5), the refrigerant has an RCL of 40 g/m3 or more.
  • The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123 and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment QR connecting point Q (62.8, 29.6, 7.6) and point R (49.8, 42.3, 7.9) or on the left side of the line segment, the refrigerant has a temperature glide of 1° C. or less.
  • The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment ST connecting point S (62.6, 28.3, 9.1) and point T (35.8, 44.9, 19.3) or on the right side of the line segment, the refrigerant has a discharge pressure of 105% or less relative to that of 410A.
  • In these compositions, R1234yf contributes to reducing flammability, and suppressing deterioration of polymerization etc. Therefore, the composition preferably contains R1234yf.
  • Further, the burning velocity of these mixed refrigerants whose mixed formulations were adjusted to WCF concentrations was measured according to the ANSI/ASHRAE Standard 34-2013. Compositions having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. In FIG. 1, reference numeral 901 refers to a sample cell, 902 refers to a high speed camera, 903 refers to a xenon lamp, 904 refers to a collimating lens, 905 refers to a collimating lens, and 906 refers to a ring filter. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.
  • Tables 35 and 36 show the results.
  • TABLE 35
    Item Unit G H I
    WCF HFO-1132(E) mass % 72.0 72.0 72.0
    HFO-1123 mass % 28.0 9.6 0.0
    R1234yf mass % 0.0 18.4 28.0
    Burning velocity (WCF) cm/s 10 10 10
  • TABLE 36
    Item Unit J P L N N′ K
    WCF HFO-1132(E) mass % 47.1 55.8 63.1 68.6 65.0 61.3
    HFO-1123 mass % 52.9 42.0 31.9 16.3 7.7 5.4
    R1234yf mass % 0.0 2.2 5.0 15.1 27.3 33.3
    Leak condition that results in WCFF Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping, −40°
    C., 92% C., 90% C., 90% C., 66% C., 12% C., 0%
    release, release, release, release, release, release,
    liquid phase liquid phase gas phase gas phase gas phase gas phase
    side side side side side side
    WCFF HFO-1132(E) mass % 72.0 72.0 72.0 72.0 72.0 72.0
    HFO-1123 mass % 28.0 17.8 17.4 13.6 12.3 9.8
    R1234yf mass % 0.0 10.2 10.6 14.4 15.7 18.2
    Burning velocity (WCF) cm/ s 8 or 8 or 8 or 9 9 8 or
    less less less less
    Burning velocity (WCFF) cm/s 10 10 10 10 10 10
  • The results in Table 35 clearly indicate that when a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf contains HFO-1132(E) in a proportion of 72.0 mass % or less based on their sum, the refrigerant can be determined to have a WCF lower flammability.
  • The results in Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:
  • point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0)
    point N (68.6, 16.3, 15.1)
    point N′ (65.0, 7.7, 27.3) and
    point K (61.3, 5.4, 33.3),
    the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.
    In the diagram, the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
    and the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91).
  • The point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.
  • The point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.
  • (5-2) Refrigerant B
  • The refrigerant B according to the present disclosure is
  • a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or
  • a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • The refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.
  • When the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability. When the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.
  • When the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved. When the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
  • The refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.
  • Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • Examples of Refrigerant B
  • The present disclosure is described in more detail below with reference to Examples of refrigerant B. However, the refrigerant B is not limited to the Examples.
  • Mixed refrigerants were prepared by mixing HFO-1132(E) and HFO-1123 at mass % based on their sum shown in Tables 37 and 38.
  • The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • Evaporating temperature: 5° C.
    Condensation temperature: 45° C.
    Superheating temperature: 5 K
    Subcooling temperature: 5 K
    Compressor efficiency: 70%
  • The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results. The COP and refrigerating capacity are ratios relative to R410A.
  • The coefficient of performance (COP) was determined by the following formula.

  • COP=(refrigerating capacity or heating capacity)/power consumption
  • For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • TABLE 37
    Comparative Comparative
    Example 1 Example 2 Comparative Example Example Example Example Example Comparative
    Item Unit R410A HFO-1132E Example 3 1 2 3 4 5 Example 4
    HFO-1132E mass % 100 80 72 70 68 65 62 60
    (WCF)
    HFO-1123 mass % 0 20 28 30 32 35 38 40
    (WCF)
    GWP 2088 1 1 1 1 1 1 1 1
    COP ratio % 100 99.7 97.5 96.6 96.3 96.1 95.8 95.4 95.2
    (relative
    to R410A)
    Refrigerating % 100 98.3 101.9 103.1 103.4 103.8 104.1 104.5 104.8
    capacity (relative
    ratio to R410A)
    Discharge Mpa 2.73 2.71 2.89 2.96 2.98 3.00 3.02 3.04 3.06
    pressure
    Burning cm/sec Non-flammable 20 13 10 9 9 8 8 or 8 or
    velocity less less
    (WCF)
  • TABLE 38
    Comparative
    Comparative Comparative Example Example Example Comparative Comparative Comparative Example 10
    Item Unit Example 5 Example 6 7 8 9 Example 7 Example 8 Example 9 HFO-1123
    HFO-1132E mass % 50 48 47.1 46.1 45.1 43 40 25 0
    (WCF)
    HFO-1123 mass % 50 52 52.9 53.9 54.9 57 60 75 100
    (WCF)
    GWP 1 1 1 1 1 1 1 1 1
    COP ratio % 94.1 93.9 93.8 93.7 93.6 93.4 93.1 91.9 90.6
    (relative
    to R410A)
    Refrigerating % 105.9 106.1 106.2 106.3 106.4 106.6 106.9 107.9 108.0
    capacity (relative
    ratio to R410A)
    Discharge Mpa 3.14 3.16 3.16 3.17 3.18 3.20 3.21 3.31 3.39
    pressure
    Leakage test Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    conditions (WCFF) Ship- Ship- Ship- Ship- Ship- Ship- Ship- Ship-
    ping −40° ping −40° ping −40° ping −40° ping −40° ping −40° ping −40° ping −40°
    C., 92% C., 92% C., 92% C., 92% C., 92% C., 92% C., 92% C., 90%
    release, release, release, release, release, release, release, release,
    liquid liquid liquid liquid liquid liquid liquid liquid
    phase phase phase phase phase phase phase phase
    side side side side side side side side
    HFO-1132E mass % 74 73 72 71 70 67 63 38
    (WCFF)
    HFO-1123 mass % 26 27 28 29 30 33 37 62
    (WCFF)
    Burning cm/sec 8 or 8 or 8 or 8 or 8 or 8 or 8 or 8 or 5
    velocity less less less less less less less less
    (WCF)
    Burning cm/sec 11 10.5 10.0 9.5 9.5 8.5 8 or 8 or
    velocity less less
    (WCFF)
    ASHRAE flammability 2 2 2L 2L 2L 2L 2L 2L 2L
    classification
  • The compositions each comprising 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A. Moreover, compositions each comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCFF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A.
  • (5-3) Refrigerant C
  • The refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements. The refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.
  • Requirements
  • Preferable refrigerant C is as follows:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
  • point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
    point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
    point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
    point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
    or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
    point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
    point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
    point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
    point W (0.0, 100.0-a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
    point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
    point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
    point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
    point W (0.0, 100.0-a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
    point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
    point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
    point W (0.0, 100.0-a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
    point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
    point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
    point W (0.0, 100.0-a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.
  • The refrigerant C according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
  • point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
    point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
    point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
    or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
    point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177),
    point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
    point W (0.0, 100.0-a, 0.0),
    or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
    point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
    point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
    point W (0.0, 100.0-a, 0.0),
    or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
    point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
    point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
    point W (0.0, 100.0-a, 0.0),
    or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
    point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
    point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
    point W (0.0, 100.0-a, 0.0),
    or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.
  • When the refrigerant C according to the present disclosure further contains R32 in addition to HFO-1132 (E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • if 0<a≤10.0, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines that connect the following 4 points:
  • point a (0.02a2−2.46a+93.4, 0, −0.02a2+2.46a+6.6),
    point b′ (−0.008a2−1.38a+56, 0.018a2−0.53a+26.3, −0.01a2+1.91a+17.7),
    point c (−0.016a2+1.02a+77.6, 0.016a2−1.02a+22.4, 0), and
    point o (100.0-a, 0.0, 0.0)
    or on the straight lines oa, ab′, and b′c (excluding point o and point c);
  • if 10.0<a≤16.5, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
  • point a (0.0244a2−2.5695a+94.056, 0, −0.0244a2+2.5695a+5.944),
    point b′ (0.1161a2−1.9959a+59.749, 0.014a2−0.3399a+24.8, −0.1301a2+2.3358a+15.451),
    point c (−0.0161a2+1.02a+77.6, 0.0161a2−1.02a+22.4, 0), and
    point o (100.0-a, 0.0, 0.0),
    or on the straight lines oa, ab′, and b′c (excluding point o and point c); or
  • if 16.5<a≤21.8, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
  • point a (0.0161a2−2.3535a+92.742, 0, −0.0161a2+2.3535a+7.258),
    point b′ (−0.0435a2−0.0435a+50.406, 0.0304a2+1.8991a−0.0661, 0.0739a2−1.8556a+49.6601),
    point c (−0.0161a2+0.9959a+77.851, 0.0161a2−0.9959a+22.149, 0), and
    point o (100.0-a, 0.0, 0.0),
    or on the straight lines oa, ab′, and b′c (excluding point o and point c). Note that when point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved, point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%. When the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • The refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • The refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • Examples of Refrigerant C
  • The present disclosure is described in more detail below with reference to Examples of refrigerant C. However, the refrigerant C is not limited to the Examples.
  • Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, R1234yf, and R32 at mass % based on their sum shown in Tables 39 to 96.
  • The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • For each of these mixed refrigerants, the COP ratio and the refrigerating capacity ratio relative to those of R410 were obtained. Calculation was conducted under the following conditions.
  • Evaporating temperature: 5° C.
  • Condensation temperature: 45° C.
  • Superheating temperature: 5 K
  • Subcooling temperature: 5 K
  • Compressor efficiency: 70%
  • Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant. The COP and refrigerating capacity are ratios relative to R410A.
  • The coefficient of performance (COP) was determined by the following formula.

  • COP=(refrigerating capacity or heating capacity)/power consumption
  • TABLE 39
    Comp. Comp. Comp. Comp. Comp. Comp. Comp. Ex.
    Comp. Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 1
    Item Unit Ex. 1 A B C D′ G I J K′
    HFO-1132(E) Mass % R410A 68.6 0.0 32.9 0.0 72.0 72.0 47.1 61.7
    HFO-1123 Mass % 0.0 58.7 67.1 75.4 28.0 0.0 52.9 5.9
    R1234yf Mass % 31.4 41.3 0.0 24.6 0.0 28.0 0.0 32.4
    R32 Mass % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    GWP 2088  2 2 1 2 1 2 1 2
    % (relative
    COP ratio to R410A) 100 100.0 95.5 92.5 93.1 96.6 99.9 93.8 99.4
    Refrigerating % (relative
    capacity ratio to R410A) 100 85.0 85.0 107.4 95.0 103.1 86.6 106.2 85.5
  • TABLE 40
    Comp. Comp. Comp. Comp. Comp. Comp. Comp. Ex.
    Ex. 9 Ex. 10 Ex. 11 Ex. 12 Ex. 13 Ex. 14 Ex. 15 2
    Item Unit A B C D′ G I J K′
    HFO-1132(E) Mass % 55.3 0.0 18.4 0.0 60.9 60.9 40.5 47.0
    HFO-1123 Mass % 0.0 47.8 74.5 83.4 32.0 0.0 52.4 7.2
    R1234yf Mass % 37.6 45.1 0.0 9.5 0.0 32.0 0.0 38.7
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 49 49 49 50 49 50
    COP ratio % (relative 99.8 96.9 92.5 92.5 95.9 99.6 94.0 99.2
    to R410A)
    Refrigerating % (relative 85.0 85.0 110.5 106.0 106.5 87.7 108.9 85.5
    capacity ratio to R410A)
  • TABLE 41
    Comp. Comp. Comp. Comp. Comp. Comp. Ex.
    Ex. 16 Ex. 17 Ex. 18 Ex.19 Ex. 20 Ex. 21 3
    Item Unit A B C = D′ G I J K′
    HFO-1132(E) Mass % 48.4 0.0 0.0 55.8 55.8 37.0 41.0
    HFO-1123 Mass % 0.0 42.3 88.9 33.1 0.0 51.9 6.5
    R1234yf Mass % 40.5 46.6 0.0 0.0 33.1 0.0 41.4
    R32 Mass % 11.1 11.1 11.1 11.1 11.1 11.1 11.1
    GWP 77 77 76 76 77 76 77
    COP ratio % (relative 99.8 97.6 92.5 95.8 99.5 94.2 99.3
    to R410A)
    Refrigerating % (relative 85.0 85.0 112.0 108.0 88.6 110.2 85.4
    capacity ratio to R410A)
  • TABLE 42
    Comp. Comp. Comp. Comp. Comp. Ex.
    Ex. 22 Ex. 23 Ex. 24 Ex. 25 Ex. 26 4
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 42.8 0.0 52.1 52.1 34.3 36.5
    HFO-1123 Mass % 0.0 37.8 33.4 0.0 51.2 5.6
    R1234yf Mass % 42.7 47.7 0.0 33.4 0.0 43.4
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 99 100 99 100
    COP ratio % (relative 99.9 98.1 95.8 99.5 94.4 99.5
    to R410A)
    Refrigerating % (relative 85.0 85.0 109.1 89.6 111.1 85.3
    capacity ratio to R410A)
  • TABLE 43
    Comp. Comp. Comp. Comp. Comp. Ex.
    Ex. 27 Ex. 28 Ex. 29 Ex. 30 Ex. 31 5
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 37.0 0.0 48.6 48.6 32.0 32.5
    HFO-1123 Mass % 0.0 33.1 33.2 0.0 49.8 4.0
    R1234yf Mass % 44.8 48.7 0.0 33.2 0.0 45.3
    R32 Mass % 18.2 18.2 18.2 18.2 18.2 18.2
    GWP 125 125 124 125 124 125
    COP ratio % (relative 100.0 98.6 95.9 99.4 94.7 99.8
    to R410A)
    Refrigerating % (relative 85.0 85.0 110.1 90.8 111.9 85.2
    capacity ratio to R410A)
  • TABLE 44
    Comp. Comp. Comp. Comp. Comp. Ex.
    Ex. 32 Ex. 33 Ex. 34 Ex. 35 Ex. 36 6
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 31.5 0.0 45.4 45.4 30.3 28.8
    HFO-1123 Mass % 0.0 28.5 32.7 0.0 47.8 2.4
    R1234yf Mass % 46.6 49.6 0.0 32.7 0.0 46.9
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 149 150 149 150
    COP ratio % (relative to 100.2 99.1 96.0 99.4 95.1 100.0
    R410A)
    Refrigerating % (relative to 85.0 85.0 111.0 92.1 112.6 85.1
    capacity ratio R410A)
  • TABLE 45
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 37 Ex. 38 Ex. 39 Ex. 40 Ex. 41 Ex. 42
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 24.8 0.0 41.8 41.8 29.1 24.8
    HFO-1123 Mass % 0.0 22.9 31.5 0.0 44.2 0.0
    R1234yf Mass % 48.5 50.4 0.0 31.5 0.0 48.5
    R32 Mass % 26.7 26.7 26.7 26.7 26.7 26.7
    GWP 182 182 181 182 181 182
    COP ratio % (relative 100.4 99.8 96.3 99.4 95.6 100.4
    to R410A)
    Refrigerating % (relative 85.0 85.0 111.9 93.8 113.2 85.0
    capacity ratio to R410A)
  • TABLE 46
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 43 Ex.44 Ex. 45 Ex. 46 Ex. 47 Ex. 48
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 21.3 0.0 40.0 40.0 28.8 24.3
    HFO-1123 Mass % 0.0 19.9 30.7 0.0 41.9 0.0
    R1234yf Mass % 49.4 50.8 0.0 30.7 0.0 46.4
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 200 200 198 199 198 200
    COP ratio % (relative 100.6 100.1 96.6 99.5 96.1 100.4
    to R410A)
    Refrigerating % (relative 85.0 85.0 112.4 94.8 113.6 86.7
    capacity ratio to R410A)
  • TABLE 47
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 49 Ex. 50 Ex. 51 Ex. 52 Ex. 53 Ex. 54
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 12.1 0.0 35.7 35.7 29.3 22.5
    HFO-1123 Mass % 0.0 11.7 27.6 0.0 34.0 0.0
    R1234yf Mass % 51.2 51.6 0.0 27.6 0.0 40.8
    R32 Mass % 36.7 36.7 36.7 36.7 36.7 36.7
    GWP 250 250 248 249 248 250
    COP ratio % (relative 101.2 101.0 96.4 99.6 97.0 100.4
    to R410A)
    Refrigerating % (relative 85.0 85.0 113.2 97.6 113.9 90.9
    capacity ratio to R410A)
  • TABLE 48
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 55 Ex. 56 Ex. 57 Ex. 58 Ex. 59 Ex. 60
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 3.8 0.0 32.0 32.0 29.4 21.1
    HFO-1123 Mass % 0.0 3.9 23.9 0.0 26.5 0.0
    R1234yf Mass % 52.1 52.0 0.0 23.9 0.0 34.8
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 300 300 298 299 298 299
    COP ratio % (relative 101.8 101.8 97.9 99.8 97.8 100.5
    to R410A)
    Refrigerating % (relative 85.0 85.0 113.7 100.4 113.9 94.9
    capacity ratio to R410A)
  • TABLE 49
    Comp. Comp. Comp. Comp. Comp.
    Ex. 61 Ex. 62 Ex. 63 Ex. 64 Ex. 65
    Item Unit A = B G I J K′
    HFO- Mass % 0.0 30.4 30.4 28.9 20.4
    1132(E)
    HFO-1123 Mass % 0.0 21.8 0.0 23.3 0.0
    R1234yf Mass % 52.2 0.0 21.8 0.0 31.8
    R32 Mass % 47.8 47.8 47.8 47.8 47.8
    GWP 325 323 324 323 324
    COP ratio % 102.1 98.2 100.0 98.2 100.6
    (relative
    to R410A)
    Refrigerating % 85.0 113.8 101.8 113.9 96.8
    capacity (relative
    ratio to R410A)
  • TABLE 50
    Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit Ex. 66 7 8 9 10 11 12 13
    HFO-1132(E) Mass % 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 82.9 77.9 72.9 67.9 62.9 57.9 52.9 47.9
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 92.4 92.6 92.8 93.1 93.4 93.7 94.1 94.5
    to R410A)
    Refrigerating % (relative 108.4 108.3 108.2 107.9 107.6 107.2 106.8 106.3
    capacity ratio to R410A)
  • TABLE 51
    Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex.
    Item Unit 14 15 16 17 Ex. 67 18 19 20
    HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0
    HFO-1123 Mass % 42.9 37.9 32.9 27.9 22.9 72.9 67.9 62.9
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 95.0 95.4 95.9 96.4 96.9 93.0 93.3 93.6
    to R410A)
    Refrigerating % (relative 105.8 105.2 104.5 103.9 103.1 105.7 105.5 105.2
    capacity ratio to R410A)
  • TABLE 52
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 21 22 23 24 25 26 27 28
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
    HFO-1123 Mass % 57.9 52.9 47.9 42.9 37.9 32.9 27.9 22.9
    R1234yf Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 93.9 94.2 94.6 95.0 95.5 96.0 96.4 96.9
    to R410A)
    Refrigerating % (relative 104.9 104.5 104.1 103.6 103.0 102.4 101.7 101.0
    capacity ratio to R410A)
  • TABLE 53
    Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit Ex. 68 29 30 31 32 33 34 35
    HFO-1132(E) Mass % 65.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 17.9 67.9 62.9 57.9 52.9 47.9 42.9 37.9
    R1234yf Mass % 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 97.4 93.5 93.8 94.1 94.4 94.8 95.2 95.6
    to R410A)
    Refrigerating % (relative 100.3 102.9 102.7 102.5 102.1 101.7 101.2 100.7
    capacity ratio to R410A)
  • TABLE 54
    Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex.
    Item Unit 36 37 38 39 Ex. 69 40 41 42
    HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0
    HFO-1123 Mass % 32.9 27.9 22.9 17.9 12.9 62.9 57.9 52.9
    R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 20.0 20.0 20.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 96.0 96.5 97.0 97.5 98.0 94.0 94.3 94.6
    to R410A)
    Refrigerating % (relative 100.1 99.5 98.9 98.1 97.4 100.1 99.9 99.6
    capacity ratio to R410A)
  • TABLE 55
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 43 44 45 46 47 48 49 50
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
    HFO-1123 Mass % 47.9 42.9 37.9 32.9 27.9 22.9 17.9 12.9
    R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 95.0 95.3 95.7 96.2 96.6 97.1 97.6 98.1
    to R410A)
    Refrigerating % (relative 99.2 98.8 98.3 97.8 97.2 96.6 95.9 95.2
    capacity ratio to R410A)
  • TABLE 56
    Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit Ex. 70 51 52 53 54 55 56 57
    HFO-1132(E) Mass % 65.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 7.9 57.9 52.9 47.9 42.9 37.9 32.9 27.9
    R1234yf Mass % 20.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 50 50 50 50 50 50 50
    COP ratio % (relative 98.6 94.6 94.9 95.2 95.5 95.9 96.3 96.8
    to R410A)
    Refrigerating % (relative 94.4 97.1 96.9 96.7 96.3 95.9 95.4 94.8
    capacity ratio to R410A)
  • TABLE 57
    Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex.
    Item Unit 58 59 60 61 Ex. 71 62 63 64
    HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0
    HFO-1123 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 30.0 30.0 30.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 97.2 97.7 98.2 98.7 99.2 95.2 95.5 95.8
    to R410A)
    Refrigerating % (relative 94.2 93.6 92.9 92.2 91.4 94.2 93.9 93.7
    capacity ratio to R410A)
  • TABLE 58
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 65 66 67 68 69 70 71 72
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
    HFO-1123 Mass % 37.9 32.9 27.9 22.9 17.9 12.9 7.9 2.9
    R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 96.2 96.6 97.0 97.4 97.9 98.3 98.8 99.3
    to R410A)
    Refrigerating % (relative 93.3 92.9 92.4 91.8 91.2 90.5 89.8 89.1
    capacity ratio to R410A)
  • TABLE 59
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 73 74 75 76 77 78 79 80
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 47.9 42.9 37.9 32.9 27.9 22.9 17.9 12.9
    R1234yf Mass % 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 95.9 96.2 96.5 96.9 97.2 97.7 98.1 98.5
    to R410A)
    Refrigerating % (relative 91.1 90.9 90.6 90.2 89.8 89.3 88.7 88.1
    capacity ratio to R410A)
  • TABLE 60
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 81 82 83 84 85 86 87 88
    HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 7.9 2.9 42.9 37.9 32.9 27.9 22.9 17.9
    R1234yf Mass % 35.0 35.0 40.0 40.0 40.0 40.0 40.0 40.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 99.0 99.4 96.6 96.9 97.2 97.6 98.0 98.4
    to R410A)
    Refrigerating % (relative 87.4 86.7 88.0 87.8 87.5 87.1 86.6 86.1
    capacity ratio to R410A)
  • TABLE 61
    Comp. Comp. Comp. Comp. Comp. Comp. Comp. Comp.
    Item Unit Ex. 72 Ex. 73 Ex. 74 Ex. 75 Ex. 76 Ex. 77 Ex. 78 Ex. 79
    HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 12.9 7.9 2.9 37.9 32.9 27.9 22.9 17.9
    R1234yf Mass % 40.0 40.0 40.0 45.0 45.0 45.0 45.0 45.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 98.8 99.2 99.6 97.4 97.7 98.0 98.3 98.7
    to R410A)
    Refrigerating % (relative 85.5 84.9 84.2 84.9 84.6 84.3 83.9 83.5
    capacity ratio to R410A)
  • TABLE 62
    Comp. Comp. Comp.
    Item Unit Ex. 80 Ex. 81 Ex. 82
    HFO-1132(E) Mass % 35.0 40.0 45.0
    HFO-1123 Mass % 12.9 7.9 2.9
    R1234yf Mass % 45.0 45.0 45.0
    R32 Mass % 7.1 7.1 7.1
    GWP 50 50 50
    COP ratio % (relative 99.1 99.5 99.9
    to R410A)
    Refrigerating % (relative 82.9 82.3 81.7
    capacity ratio to R410A)
  • TABLE 63
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 89 90 91 92 93 94 95 96
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 70.5 65.5 60.5 55.5 50.5 45.5 40.5 35.5
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 93.7 93.9 94.1 94.4 94.7 95.0 95.4 95.8
    to R410A)
    Refrigerating % (relative 110.2 110.0 109.7 109.3 108.9 108.4 107.9 107.3
    capacity ratio to R410A)
  • TABLE 64
    Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 97 Ex. 83 98 99 100 101 102 103
    HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 30.5 25.5 65.5 60.5 55.5 50.5 45.5 40.5
    R1234yf Mass % 5.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 96.2 96.6 94.2 94.4 94.6 94.9 95.2 95.5
    to R410A)
    Refrigerating % (relative 106.6 106.0 107.5 107.3 107.0 106.6 106.1 105.6
    capacity ratio to R410A)
  • TABLE 65
    Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex.
    Item Unit 104 105 106 Ex. 84 107 108 109 110
    HFO-1132(E) Mass % 40.0 45.0 50.0 55.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 35.5 30.5 25.5 20.5 60.5 55.5 50.5 45.5
    R1234yf Mass % 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.9 96.3 96.7 97.1 94.6 94.8 95.1 95.4
    to R410A)
    Refrigerating % (relative 105.1 104.5 103.8 103.1 104.7 104.5 104.1 103.7
    capacity ratio to R410A)
  • TABLE 66
    Ex. Ex. Ex. Ex. Ex. Comp. Ex. Ex.
    Item Unit 111 112 113 114 115 Ex. 85 116 117
    HFO-1132(E) Mass % 30.0 35.0 40.0 45.0 50.0 55.0 10.0 15.0
    HFO-1123 Mass % 40.5 35.5 30.5 25.5 20.5 15.5 55.5 50.5
    R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 15.0 20.0 20.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.7 96.0 96.4 96.8 97.2 97.6 95.1 95.3
    to R410A)
    Refrigerating % (relative 103.3 102.8 102.2 101.6 101.0 100.3 101.8 101.6
    capacity ratio to R410A)
  • TABLE 67
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp.
    Item Unit 118 119 120 121 122 123 124 Ex. 86
    HFO-1132(E) Mass % 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0
    HFO-1123 Mass % 45.5 40.5 35.5 30.5 25.5 20.5 15.5 10.5
    R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.6 95.9 96.2 96.5 96.9 97.3 97.7 98.2
    to R410A)
    Refrigerating % (relative 101.2 100.8 100.4 99.9 99.3 98.7 98.0 97.3
    capacity ratio to R410A)
  • TABLE 68
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 125 126 127 128 129 130 131 132
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 50.5 45.5 40.5 35.5 30.5 25.5 20.5 15.5
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.6 95.9 96.1 96.4 96.7 97.1 97.5 97.9
    to R410A)
    Refrigerating % (relative to 98.9 98.6 98.3 97.9 97.4 96.9 96.3 95.7
    capacity ratio R410A)
  • TABLE 69
    Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 133 Ex. 87 134 135 136 137 138 139
    HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 10.5 5.5 45.5 40.5 35.5 30.5 25.5 20.5
    R1234yf Mass % 25.0 25.0 30.0 30.0 30.0 30.0 30.0 30.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 100 100 100 100 100 100
    COP ratio % (relative 98.3 98.7 96.2 96.4 96.7 97.0 97.3 97.7
    to R410A)
    Refrigerating % (relative 95.0 94.3 95.8 95.6 95.2 94.8 94.4 93.8
    capacity ratio to R410A)
  • TABLE 70
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 140 141 142 143 144 145 146 147
    HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 15.5 10.5 5.5 40.5 35.5 30.5 25.5 20.5
    R1234yf Mass % 30.0 30.0 30.0 35.0 35.0 35.0 35.0 35.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100 100 100 100
    COP ratio % (relative 98.1 98.5 98.9 96.8 97.0 97.3 97.6 97.9
    to R410A)
    Refrigerating % (relative 93.3 92.6 92.0 92.8 92.5 92.2 91.8 91.3
    capacity ratio to R410A)
  • TABLE 71
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 148 149 150 151 152 153 154 155
    HFO-1132(E) Mass % 35.0 40.0 45.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 15.5 10.5 5.5 35.5 30.5 25.5 20.5 15.5
    R1234yf Mass % 35.0 35.0 35.0 40.0 40.0 40.0 40.0 40.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100 100 100 100
    COP ratio % (relative 98.3 98.7 99.1 97.4 97.7 98.0 98.3 98.6
    to R410A)
    Refrigerating % (relative 90.8 90.2 89.6 89.6 89.4 89.0 88.6 88.2
    capacity ratio to R410A)
  • TABLE 72
    Ex. Ex. Ex. Ex. Ex. Comp. Comp. Comp.
    Item Unit 156 157 158 159 160 Ex. 88 Ex. 89 Ex. 90
    HFO-1132(E) Mass % 35.0 40.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 10.5 5.5 30.5 25.5 20.5 15.5 10.5 5.5
    R1234yf Mass % 40.0 40.0 45.0 45.0 45.0 45.0 45.0 45.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100 100 100 100
    COP ratio % (relative 98.9 99.3 98.1 98.4 98.7 98.9 99.3 99.6
    to R410A)
    Refrigerating % (relative 87.6 87.1 86.5 86.2 85.9 85.5 85.0 84.5
    capacity ratio to R410A)
  • TABLE 73
    Comp. Comp. Comp. Comp. Comp.
    Item Unit Ex. 91 Ex. 92 Ex. 93 Ex. 94 Ex. 95
    HFO- Mass % 10.0 15.0 20.0 25.0 30.0
    1132(E)
    HFO-1123 Mass % 25.5 20.5 15.5 10.5 5.5
    R1234yf Mass % 50.0 50.0 50.0 50.0 50.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100
    COP ratio % 98.9 99.1 99.4 99.7 100.0
    (relative
    to R410A)
    Refrigerating % 83.3 83.0 82.7 82.2 81.8
    capacity (relative
    ratio to R410A)
  • TABLE 74
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 161 162 163 164 165 166 167 168
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 63.1 58.1 53.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 94.8 95.0 95.2 95.4 95.7 95.9 96.2 96.6
    to R410A)
    Refrigerating % (relative 111.5 111.2 110.9 110.5 110.0 109.5 108.9 108.3
    capacity ratio to R410A)
  • TABLE 75
    Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit Ex. 96 169 170 171 172 173 174 175
    HFO-1132(E) Mass % 50.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 23.1 58.1 53.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 96.9 95.3 95.4 95.6 95.8 96.1 96.4 96.7
    to R410A)
    Refrigerating % (relative 107.7 108.7 108.5 108.1 107.7 107.2 106.7 106.1
    capacity ratio to R410A)
  • TABLE 76
    Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 176 Ex. 97 177 178 179 180 181 182
    HFO-1132(E) Mass % 45.0 50.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 23.1 18.1 53.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 10.0 10.0 15.0 15.0 15.0 15.0 15.0 15.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 97.0 97.4 95.7 95.9 96.1 96.3 96.6 96.9
    to R410A)
    Refrigerating % (relative 105.5 104.9 105.9 105.6 105.3 104.8 104.4 103.8
    capacity ratio to R410A)
  • TABLE 77
    Ex. Ex. Comp. Ex. Ex. Ex. Ex. Ex.
    Item Unit 183 184 Ex. 98 185 186 187 188 189
    HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 23.1 18.1 13.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 15.0 15.0 15.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 97.2 97.5 97.9 96.1 96.3 96.5 96.8 97.1
    to R410A)
    Refrigerating % (relative 103.3 102.6 102.0 103.0 102.7 102.3 101.9 101.4
    capacity ratio to R410A)
  • TABLE 78
    Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex.
    Item Unit 190 191 192 Ex. 99 193 194 195 196
    HFO-1132(E) Mass % 35.0 40.0 45.0 50.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 23.1 18.1 13.1 8.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 20.0 20.0 20.0 20.0 25.0 25.0 25.0 25.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 97.4 97.7 98.0 98.4 96.6 96.8 97.0 97.3
    to R410A)
    Refrigerating % (relative 100.9 100.3 99.7 99.1 100.0 99.7 99.4 98.9
    capacity ratio to R410A)
  • TABLE 79
    Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex.
    Item Unit 197 198 199 200 Ex. 100 201 202 203
    HFO-1132(E) Mass % 30.0 35.0 40.0 45.0 50.0 10.0 15.0 20.0
    HFO-1123 Mass % 23.1 18.1 13.1 8.1 3.1 38.1 33.1 28.1
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 30.0 30.0 30.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 150 150 150
    COP ratio % (relative 97.6 97.9 98.2 98.5 98.9 97.1 97.3 97.6
    to R410A)
    Refrigerating % (relative 98.5 97.9 97.4 96.8 96.1 97.0 96.7 96.3
    capacity ratio to R410A)
  • TABLE 80
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 204 205 206 207 208 209 210 211
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 10.0 15.0 20.0
    HFO-1123 Mass % 23.1 18.1 13.1 8.1 3.1 33.1 28.1 23.1
    R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 150 150 150 150 150 150
    COP ratio % (relative 97.8 98.1 98.4 98.7 99.1 97.7 97.9 98.1
    to R410A)
    Refrigerating % (relative 95.9 95.4 94.9 94.4 93.8 93.9 93.6 93.3
    capacity ratio to R410A)
  • TABLE 81
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 212 213 214 215 216 217 218 219
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 18.1 13.1 8.1 3.1 28.1 23.1 18.1 13.1
    R1234yf Mass % 35.0 35.0 35.0 35.0 40.0 40.0 40.0 40.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 150 150 150 150 150 150
    COP ratio % (relative 98.4 98.7 99.0 99.3 98.3 98.5 98.7 99.0
    to R410A)
    Refrigerating % (relative 92.9 92.4 91.9 91.3 90.8 90.5 90.2 89.7
    capacity ratio to R410A)
  • TABLE 82
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp.
    Item Unit 220 221 222 223 224 225 226 Ex. 101
    HFO-1132(E) Mass % 30.0 35.0 10.0 15.0 20.0 25.0 30.0 10.0
    HFO-1123 Mass % 8.1 3.1 23.1 18.1 13.1 8.1 3.1 18.1
    R1234yf Mass % 40.0 40.0 45.0 45.0 45.0 45.0 45.0 50.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 150 150 150 150 150 150
    COP ratio % (relative 99.3 99.6 98.9 99.1 99.3 99.6 99.9 99.6
    to R410A)
    Refrigerating % (relative 89.3 88.8 87.6 87.3 87.0 86.6 86.2 84.4
    capacity ratio to R410A)
  • TABLE 83
    Comp. Comp. Comp.
    Item Unit Ex. 102 Ex. 103 Ex. 104
    HFO-1132(E) Mass % 15.0 20.0 25.0
    HFO-1123 Mass % 13.1 8.1 3.1
    R1234yf Mass % 50.0 50.0 50.0
    R32 Mass % 21.9 21.9 21.9
    GWP 150 150 150
    COP ratio % (relative 99.8 100.0 100.2
    to R410A)
    Refrigerating % (relative 84.1 83.8 83.4
    capacity ratio to R410A)
  • TABLE 84
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp.
    Item Unit 227 228 229 230 231 232 233 Ex. 105
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 55.7 50.7 45.7 40.7 35.7 30.7 25.7 20.7
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 95.9 96.0 96.2 96.3 96.6 96.8 97.1 97.3
    to R410A)
    Refrigerating % (relative 112.2 111.9 111.6 111.2 110.7 110.2 109.6 109.0
    capacity ratio to R410A)
  • TABLE 85
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp.
    Item Unit 234 235 236 237 238 239 240 Ex. 106
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 50.7 45.7 40.7 35.7 30.7 25.7 20.7 15.7
    R1234yf Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 96.3 96.4 96.6 96.8 97.0 97.2 97.5 97.8
    to R410A)
    Refrigerating % (relative 109.4 109.2 108.8 108.4 107.9 107.4 106.8 106.2
    capacity ratio to R410A)
  • TABLE 86
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp.
    Item Unit 241 242 243 244 245 246 247 Ex. 107
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 45.7 40.7 35.7 30.7 25.7 20.7 15.7 10.7
    R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 96.7 96.8 97.0 97.2 97.4 97.7 97.9 98.2
    to R410A)
    Refrigerating % (relative 106.6 106.3 106.0 105.5 105.1 104.5 104.0 103.4
    capacity ratio to R410A)
  • TABLE 87
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp.
    Item Unit 248 249 250 251 252 253 254 Ex. 108
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 40.7 35.7 30.7 25.7 20.7 15.7 10.7 5.7
    R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 97.1 97.3 97.5 97.7 97.9 98.1 98.4 98.7
    to R410A)
    Refrigerating % (relative 103.7 103.4 103.0 102.6 102.2 101.6 101.1 100.5
    capacity ratio to R410A)
  • TABLE 88
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 255 256 257 258 259 260 261 262
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 10.0
    HFO-1123 Mass % 35.7 30.7 25.7 20.7 15.7 10.7 5.7 30.7
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 97.6 97.7 97.9 98.1 98.4 98.6 98.9 98.1
    to R410A)
    Refrigerating % (relative 100.7 100.4 100.1 99.7 99.2 98.7 98.2 97.7
    capacity ratio to R410A)
  • TABLE 89
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 263 264 265 266 267 268 269 270
    HFO-1132(E) Mass % 15.0 20.0 25.0 30.0 35.0 10.0 15.0 20.0
    HFO-1123 Mass % 25.7 20.7 15.7 10.7 5.7 25.7 20.7 15.7
    R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 200 200 200
    COP ratio % (relative 98.2 98.4 98.6 98.9 99.1 98.6 98.7 98.9
    to R410A)
    Refrigerating % (relative 97.4 97.1 96.7 96.2 95.7 94.7 94.4 94.0
    capacity ratio to R410A)
  • TABLE 90
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 271 272 273 274 275 276 277 278
    HFO-1132(E) Mass % 25.0 30.0 10.0 15.0 20.0 25.0 10.0 15.0
    HFO-1123 Mass % 10.7 5.7 20.7 15.7 10.7 5.7 15.7 10.7
    R1234yf Mass % 35.0 35.0 40.0 40.0 40.0 40.0 45.0 45.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 200 200 200 200 200 200 200 200
    COP ratio % (relative 99.2 99.4 99.1 99.3 99.5 99.7 99.7 99.8
    to R410A)
    Refrigerating % (relative 93.6 93.2 91.5 91.3 90.9 90.6 88.4 88.1
    capacity ratio to R410A)
  • TABLE 91
    Ex. Ex. Comp. Comp.
    Item Unit 279 280 Ex. 109 Ex. 110
    HFO-1132(E) Mass % 20.0 10.0 15.0 10.0
    HFO-1123 Mass % 5.7 10.7 5.7 5.7
    R1234yf Mass % 45.0 50.0 50.0 55.0
    R32 Mass % 29.3 29.3 29.3 29.3
    GWP 200 200 200 200
    COP ratio % (relative 100.0 100.3 100.4 100.9
    to R410A)
    Refrigerating % (relative 87.8 85.2 85.0 82.0
    capacity ratio to R410A)
  • TABLE 92
    Ex. Ex. Ex. Ex. Ex. Comp. Ex. Ex.
    Item Unit 281 282 283 284 285 Ex. 111 286 287
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 10.0 15.0
    HFO-1123 Mass % 40.9 35.9 30.9 25.9 20.9 15.9 35.9 30.9
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 10.0 10.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 298 298 298 298 298 298 299 299
    COP ratio % (relative 97.8 97.9 97.9 98.1 98.2 98.4 98.2 98.2
    to R410A)
    Refrigerating % (relative 112.5 112.3 111.9 111.6 111.2 110.7 109.8 109.5
    capacity ratio to R410A)
  • TABLE 93
    Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex.
    Item Unit 288 289 290 Ex. 112 291 292 293 294
    HFO-1132(E) Mass % 20.0 25.0 30.0 35.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 25.9 20.9 15.9 10.9 30.9 25.9 20.9 15.9
    R1234yf Mass % 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 299 299 299 299 299 299 299 299
    COP ratio % (relative 98.3 98.5 98.6 98.8 98.6 98.6 98.7 98.9
    to R410A)
    Refrigerating % (relative 109.2 108.8 108.4 108.0 107.0 106.7 106.4 106.0
    capacity ratio to R410A)
  • TABLE 94
    Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 295 Ex. 113 296 297 298 299 300 301
    HFO-1132(E) Mass % 30.0 35.0 10.0 15.0 20.0 25.0 30.0 10.0
    HFO-1123 Mass % 10.9 5.9 25.9 20.9 15.9 10.9 5.9 20.9
    R1234yf Mass % 15.0 15.0 20.0 20.0 20.0 20.0 20.0 25.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 299 299 299 299 299 299 299 299
    COP ratio % (relative 99.0 99.2 99.0 99.0 99.2 99.3 99.4 99.4
    to R410A)
    Refrigerating % (relative 105.6 105.2 104.1 103.9 103.6 103.2 102.8 101.2
    capacity ratio to R410A)
  • TABLE 95
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 302 303 304 305 306 307 308 309
    HFO-1132(E) Mass % 15.0 20.0 25.0 10.0 15.0 20.0 10.0 15.0
    HFO-1123 Mass % 15.9 10.9 5.9 15.9 10.9 5.9 10.9 5.9
    R1234yf Mass % 25.0 25.0 25.0 30.0 30.0 30.0 35.0 35.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 299 299 299 299 299 299 299 299
    COP ratio % (relative 99.5 99.6 99.7 99.8 99.9 100.0 100.3 100.4
    to R410A)
    Refrigerating % (relative 101.0 100.7 100.3 98.3 98.0 97.8 95.3 95.1
    capacity ratio to R410A)
  • TABLE 96
    Ex.
    Item Unit 400
    HFO-1132(E) Mass % 10.0
    HFO-1123 Mass % 5.9
    R1234yf Mass % 40.0
    R32 Mass % 44.1
    GWP 299
    COP ratio % (relative 100.7
    to R410A)
    Refrigerating % (relative 92.3
    capacity ratio to R410A)
  • The above results indicate that the refrigerating capacity ratio relative to R410A is 85% or more in the following cases:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass %, a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, and the point (0.0, 100.0-a, 0.0) is on the left side, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4) and point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516) and point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801);
  • if 18.2a<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695) and point B(0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207) and point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9) and point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05).
  • Actual points having a refrigerating capacity ratio of 85% or more form a curved line that connects point A and point B in FIG. 3, and that extends toward the 1234yf side. Accordingly, when coordinates are on, or on the left side of, the straight line AB, the refrigerating capacity ratio relative to R410A is 85% or more.
  • Similarly, it was also found that in the ternary composition diagram, if 0<a≤11.1, when coordinates (x,y,z) are on, or on the left side of, a straight line D′C that connects point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6) and point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0); or if 11.1<a≤46.7, when coordinates are in the entire region, the COP ratio relative to that of R410A is 92.5% or more.
  • In FIG. 3, the COP ratio of 92.5% or more forms a curved line CD. In FIG. 3, an approximate line formed by connecting three points: point C (32.9, 67.1, 0.0) and points (26.6, 68.4, 5) (19.5, 70.5, 10) where the COP ratio is 92.5% when the concentration of R1234yf is 5 mass % and 10 mass was obtained, and a straight line that connects point C and point D′ (0, 75.4, 24.6), which is the intersection of the approximate line and a point where the concentration of HFO-1132(E) is 0.0 mass % was defined as a line segment D′C. In FIG. 4, point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.
  • The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • The results are shown in Tables 97 to 104.
  • TABLE 97
    Comp. Comp. Comp. Comp. Comp. Comp.
    Item Ex. 6 Ex. 13 Ex. 19 Ex. 24 Ex. 29 Ex. 34
    WCF HFO-1132(E) Mass % 72.0 60.9 55.8 52.1 48.6 45.4
    HFO-1123 Mass % 28.0 32.0 33.1 33.4 33.2 32.7
    R1234yf Mass % 0.0 0.0 0.0 0 0 0
    R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9
    Burning velocity (WCF) cm/s 10 10 10 10 10 10
  • TABLE 98
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 39 Ex. 45 Ex. 51 Ex. 57 Ex. 62
    WCF HFO-1132(E) Mass % 41.8 40 35.7 32 30.4
    HFO-1123 Mass % 31.5 30.7 23.6 23.9 21.8
    R1234yf Mass % 0 0 0 0 0
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Burning velocity (WCF) cm/s 10 10 10 10 10
  • TABLE 99
    Comp. Comp. Comp. Comp. Comp. Comp.
    Item Ex. 7 Ex. 14 Ex. 20 Ex. 25 Ex. 30 Ex. 35
    WCF HFO-1132(E) Mass % 72.0 60.9 55.8 52.1 48.6 45.4
    HFO-1123 Mass % 0.0 0.0 0.0 0 0 0
    R1234yf Mass % 28.0 32.0 33.1 33.4 33.2 32.7
    R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9
    Burning velocity (WCF) cm/s 10 10 10 10 10 10
  • TABLE 100
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 40 Ex. 46 Ex. 52 Ex. 58 Ex. 63
    WCF HFO-1132(E) Mass % 41.8 40 35.7 32 30.4
    HFO-1123 Mass % 0 0 0 0 0
    R1234yf Mass % 31.5 30.7 23.6 23.9 21.8
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Burning velocity (WCF) cm/s 10 10 10 10 10
  • TABLE 101
    Comp. Comp. Comp. Comp. Comp. Comp.
    Item Ex. 8 Ex. 15 Ex. 21 Ex. 26 Ex. 31 Ex. 36
    WCF HFO-1132(E) Mass % 47.1 40.5 37.0 34.3 32.0 30.3
    HFO-1123 Mass % 52.9 52.4 51.9 51.2 49.8 47.8
    R1234yf Mass % 0.0 0.0 0.0 0.0 0.0 0.0
    R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9
    Leak condition that results in WCFF Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40°
    C., 92% C., 92% C., 92% C., 92% C., 92% C., 92%
    release, release, release, release, release, release,
    liquid liquid liquid liquid liquid liquid
    phase side phase side phase side phase side phase side phase side
    WCFF HFO-1132(E) Mass % 72.0 62.4 56.2 50.6 45.1 40.0
    HFO-1123 Mass % 28.0 31.6 33.0 33.4 32.5 30.5
    R1234yf Mass % 0.0 0.0 0.0 20.4 0.0 0.0
    R32 Mass % 0.0 50.9 10.8 16.0 22.4 29.5
    Burning velocity (WCF) cm/ s 8 or 8 or 8 or 8 or 8 or 8 or
    less less less less less less
    Burning velocity (WCFF) cm/s 10 10 10 10 10 10
  • TABLE 102
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 41 Ex. 47 Ex. 53 Ex. 59 Ex. 64
    WCF HFO-1132(E) Mass % 29.1 28.8 29.3 29.4 28.9
    HFO-1123 Mass % 44.2 41.9 34.0 26.5 23.3
    R1234yf Mass % 0.0 0.0 0.0 0.0 0.0
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Leak condition that results in WCFF Storage/ Storage/ Storage/ Storage/ Storage/
    Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40°
    C., 92% C., 92% C., 92% C., 90% C., 86%
    release, release, release, release, release,
    liquid liquid liquid gas gas
    phase side phase side phase side phase side phase side
    WCFF HFO-1132(E) Mass % 34.6 32.2 27.7 28.3 27.5
    HFO-1123 Mass % 26.5 23.9 17.5 18.2 16.7
    R1234yf Mass % 0.0 0.0 0.0 0.0 0.0
    R32 Mass % 38.9 43.9 54.8 53.5 55.8
    Burning velocity (WCF) cm/s 8 or less 8 or less 8.3 9.3 9.6
    Burning velocity (WCFF) cm/s 10 10 10 10 10
  • TABLE 103
    Comp. Comp. Comp. Comp. Comp. Comp.
    Item Ex. 9 Ex. 16 Ex. 22 Ex. 27 Ex. 32 Ex. 37
    WCF HFO-1132(E) Mass % 61.7 47.0 41.0 36.5 32.5 28.8
    HFO-1123 Mass % 5.9 7.2 6.5 5.6 4.0 2.4
    R1234yf Mass % 32.4 38.7 41.4 43.4 45.3 46.9
    R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9
    Leak condition that results in WCFF Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40°
    C., 0% C., 0% C., 0% C., 92% C., 0% C., 0%
    release, release, release, release, release, release,
    gas gas gas liquid gas gas
    phase side phase side phase side phase side phase side phase side
    WCFF HFO-1132(E) Mass % 72.0 56.2 50.4 46.0 42.4 39.1
    HFO-1123 Mass % 10.5 12.6 11.4 10.1 7.4 4.4
    R1234yf Mass % 17.5 20.4 21.8 22.9 24.3 25.7
    R32 Mass % 0.0 10.8 16.3 21.0 25.9 30.8
    Burning velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning velocity (WCFF) cm/s 10 10 10 10 10 10
  • TABLE 104
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 42 Ex. 48 Ex. 54 Ex. 60 Ex. 65
    WCF HFO-1132(E) Mass % 24.8 24.3 22.5 21.1 20.4
    HFO-1123 Mass % 0.0 0.0 0.0 0.0 0.0
    R1234yf Mass % 48.5 46.4 40.8 34.8 31.8
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Leak condition that results in WCFF Storage/ Storage/ Storage/ Storage/ Storage/
    Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40°
    C., 0% C., 0% C., 0% C., 0% C., 0%
    release, release, release, release, release,
    gas gas gas gas gas
    phase side phase side phase side phase side phase side
    WCFF HFO-1132(E) Mass % 35.3 34.3 31.3 29.1 28.1
    HFO-1123 Mass % 0.0 0.0 0.0 0.0 0.0
    R1234yf Mass % 27.4 26.2 23.1 19.8 18.2
    R32 Mass % 37.3 39.6 45.6 51.1 53.7
    Burning velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning velocity (WCFF) cm/s 10 10 10 10 10
  • The results in Tables 97 to 100 indicate that the refrigerant has a WCF lower flammability in the following cases:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % and a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0) and point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0) and point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895); if 18.2<a_<26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0) and point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273); if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0) and point I (0.0111a2-1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014); and if 36.7<a_<46.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0) and point I (0.0061a2-0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098).
  • Three points corresponding to point G (Table 105) and point I (Table 106) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
  • TABLE 105
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 72.0 60.9 55.8 55.8 52.1 48.6 48.6 45.4 41.8
    HFO-1123 28.0 32.0 33.1 33.1 33.4 33.2 33.2 32.7 31.5
    R1234yf 0 0 0 0 0 0 0 0 0
    R32 a a a
    HFO-1132(E)  0.026a2 − 1.7478a + 72.0  0.02a2 − 1.6013a + 71.105  0.0135a2 − 1.4068a + 69.727
    Approximate
    expression
    HFO-1123 −0.026a2 + 0..7478a + 28.0 −0.02a2 + 0..6013a + 28.895 −0.0135a2 + 0.4068a + 30.273
    Approximate
    expression
    R1234yf
    0 0 0
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 41.8 40.0 35.7 35.7 32.0 30.4
    HFO-1123 31.5 30.7 27.6 27.6 23.9 21.8
    R1234yf 0 0 0 0 0 0
    R32 a a
    HFO-1132(E)  0.0111a2 − 1.3152a + 68.986  0.0061a2 − 0.9918a + 63.902
    Approximate
    expression
    HFO-1123 −0.0111a2 + 0.3152a + 31.014 −0.0061a2 − 0.0082a + 36.098
    Approximate
    expression
    R1234yf
    0 0
    Approximate
    expression
  • TABLE 106
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 72.0 60.9 55.8 55.8 52.1 48.6 48.6 45.4 41.8
    HFO-1123 0 0 0 0 0 0 0 0 0
    R1234yf 28.0 32.0 33.1 33.1 33.4 33.2 33.2 32.7 31.5
    R32 a a a
    HFO-1132(E)  0.026a2 − 1.7478a + 72.0  0.02a2 − 1.6013a + 71.105  0.0135a2 − 1.4068a + 69.727
    Approximate
    expression
    HFO-1123 0 0 0
    Approximate
    expression
    R1234yf −0.026a2 + 0.7478a + 28.0 −0.02a2 + 0.6013a + 28.895 −0.0135a2 + 0.4068a + 30.273
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 41.8 40.0 35.7 35.7 32.0 30.4
    HFO-1123 0 0 0 0 0 0
    R1234yf 31.5 30.7 23.6 23.6 23.5 21.8
    R32 x x
    HFO-1132(E)  0.0111a2 − 1.3152a + 68.986  0.0061a2 − 0.9918a + 63.902
    Approximate
    expression
    HFO-1123 0 0
    Approximate
    expression
    R1234yf −0.0111a2 + 0.3152a + 31.014 −0.0061a2 − 0.0082a + 36.098
    Approximate
    expression
  • The results in Tables 101 to 104 indicate that the refrigerant is determined to have a WCFF lower flammability, and the flammability classification according to the ASHRAE Standard is “2L (flammability)” in the following cases:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % and a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line JK′ that connects point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0) and point K′(0.0514a2-2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4); if 11.1<a≤18.2, coordinates are on a straight line JK′ that connects point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0) and point K′(0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177); if 18.2<a≤26.7, coordinates are on or below a straight line JK′ that connects point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0) and point K′ (0.0196a2−1.7863a+58.515, −0.0079a2-0.1136a+8.702, −0.0117a2+0.8999a+32.783); if 26.7<a≤36.7, coordinates are on or below a straight line JK′ that connects point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0) and point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05); and if 36.7<a≤46.7, coordinates are on or below a straight line JK′ that connects point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0) and point K′(−1.892a+29.443, 0.0, 0.892a+70.557).
  • Actual points having a WCFF lower flammability form a curved line that connects point J and point K′ (on the straight line AB) in FIG. 3 and extends toward the HFO-1132(E) side. Accordingly, when coordinates are on or below the straight line JK′, WCFF lower flammability is achieved.
  • Three points corresponding to point J (Table 107) and point K′ (Table 108) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
  • TABLE 107
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 47.1 40.5 37 37.0 34.3 32.0 32.0 30.3 29.1
    HFO-1123 52.9 52.4 51.9 51.9 51.2 49.8 49.8 47.8 44.2
    R1234yf 0 0 0 0 0 0 0 0 0
    R32 a a a
    HFO-1132(E)  0.0049a2 − 0.9645a + 47.1  0.0243a2 − 1.4161a + 49.725  0.0246a2 − 1.4476a + 50.184
    Approximate
    expression
    HFO-1123 −0.0049a2 − 0.0355a + 52.9 −0.0243a2 + 0.4161a + 50.275 −0.0246a2 + 0.4476a + 49.816
    Approximate
    expression
    R1234yf
    0 0 0
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 47.8 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 29.1 28.8 29.3 29.3 29.4 28.9
    HFO-1123 44.2 41.9 34.0 34.0 26.5 23.3
    R1234yf 0 0 0 0 0 0
    R32 a a
    HFO-1132(E)  0.0183a2 − 1.1399a + 46.493 −0.0134a2 + 1.0956a + 7.13
    Approximate
    expression
    HFO-1123 −0.0183a2 + 0.1399a + 53.507  0.0134a2 − 2.0956a + 92.87
    Approximate
    expression
    R1234yf
    0 0
    Approximate
    expression
  • TABLE 108
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 61.7 47.0 41.0 41.0 36.5 32.5 32.5 28.8 24.8
    HFO-1123 5.9 7.2 6.5 6.5 5.6 4.0 4.0 2.4 0
    R1234yf 32.4 38.7 41.4 41.4 43.4 45.3 45.3 46.9 48.5
    R32 x x x
    HFO-1132(E)  0.0514a2 − 2.4353a + 61.7  0.0341a2 − 2.1977a + 61.187  0.0196a2 − 1.7863a + 58.515
    Approximate
    expression
    HFO-1123 −0.0323a2 + 0.4122a + 5.9  −0.0236a2 + 0.34a + 5.636   −0.0079a2 − 0.1136a + 8.702 
    Approximate
    expression
    R1234yf −0.0191a2 + 1.0231a + 32.4 −0.0105a2 + 0.8577a + 33.177 −0.0117a2 + 0.8999a + 32.783
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 24.8 24.3 22.5 22.5 21.1 20.4
    HFO-1123 0 0 0 0 0 0
    R1234yf 48.5 46.4 40.8 40.8 34.8 31.8
    R32 x x
    HFO-1132(E) −0.0051a2 + 0.0929a + 25.95 −1.892a + 29.443
    Approximate
    expression
    HFO-1123 0 0
    Approximate
    expression
    R1234yf  0.0051a2 − 1.0929a + 74.05  0.892a + 70.557
    Approximate
    expression
  • FIGS. 3 to 13 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.
  • Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.
  • Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
  • TABLE 109
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 68.6 55.3 48.4 48.4 42.8 37 37 31.5 24.8
    HFO-1123 0 0 0 0 0 0 0 0 0
    R1234yf 31.4 37.6 40.5 40.5 42.7 44.8 44.8 46.6 48.5
    R32 a a a
    HFO-1132(E)  0.0134a2 − 1.9681a + 68.6  0.0112a2 − 1.9337a + 68.484  0.0107a2 − 1.9142a + 68.305
    Approximate
    expression
    HFO-1123 0 0 0
    Approximate
    expression
    R1234yf −0.0134a2 + 0.9681a + 31.4 −0.0112a2 + 0.9337a + 31.516 −0.0107a2 + 0.9142a + 31.695
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 24.8 21.3 12.1 12.1 3.8 0
    HFO-1123 0 0 0 0 0 0
    R1234yf 48.5 49.4 51.2 51.2 52.1 52.2
    R32 a a
    HFO-1132(E)  0.0103a2 − 1.9225a + 68.793  0.0085a2 − 1.8102a + 67.1
    Approximate
    expression
    HFO-1123 0 0
    Approximate
    expression
    R1234yf −0.0103a2 + 0.9225a + 31..207 −0.0085a2 + 0.8102a + 32.9
    Approximate
    expression
  • Point B is a point where the content of HID-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.
  • Three points corresponding to point B were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 110).
  • TABLE 110
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 0 0 0 0 0 0 0 0 0
    HFO-1123 58.7 47.8 42.3 42.3 37.8 33.1 33.1 28.5 22.9
    R1234yf 41.3 45.1 46.6 46.6 47.7 48.7 48.7 49.6 50.4
    R32 a a a
    HFO-1132(E) 0 0 0
    Approximate
    expression
    HFO-1123  0.0144a2 − 1.6377a + 58.7  0.0075a2 − 1.5156a + 58.199  0.009a2 − 1.6045a + 59.318
    Approximate
    expression
    R1234yf −0.0144a2 + 0.6377a + 41.3 −0.0075a2 + 0.5156a + 41.801 −0.009a2 + 0.6045a + 40.682
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 0 0 0 0 0 0
    HFO-1123 22.9 19.9 11.7 11.8 3.9 0
    R1234yf 50.4 50.8 51.6 51.5 52.0 52.2
    R32 a a
    HFO-1132(E) 0 0
    Approximate
    expression
    HFO-1123  0.0046a2 − 1.41a + 57.286  0.0012a2 − 1.1659a + 52.95
    Approximate
    expression
    R1234yf −0.0046a2 + 0.41a + 42.714 −0.0012a2 + 0.1659a + 47.05
    Approximate
    expression
  • Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • Three points corresponding to point D′ were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 111).
  • TABLE 111
    Item 11.1 ≥ R32 > 0
    R32 0 7.1 11.1
    HFO-1132(E) 0 0 0
    HFO-1123 75.4 83.4 88.9
    R1234yf 24.6 9.5 0
    R32 a
    HFO-1132(E) 0
    Approximate
    expression
    HFO-1123  0.0224a2 + 0.968a + 75.4
    Approximate
    expression
    R1234yf −0.0224a2 − 1.968a + 24.6
    Approximate
    expression
  • Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • Three points corresponding to point C were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 112).
  • TABLE 112
    Item 11.1 ≥ R32 > 0
    R32 0 7.1 11.1
    HFO-1132(E) 32.9 18.4 0
    HFO-1123 67.1 74.5 88.9
    R1234yf 0 0 0
    R32 a
    HFO-1132(E) −0.2304a2 − 0.4062a + 32.9
    Approximate
    expression
    HFO-1123  0.2304a2 − 0.5938a + 67.1
    Approximate
    expression
    R1234yf
    0
    Approximate
    expression
  • (5-4) Refrigerant D
  • The refrigerant D according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • The refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
  • point I (72.0, 0.0, 28.0),
    point J (48.5, 18.3, 33.2),
    point N (27.7, 18.2, 54.1), and
    point E (58.3, 0.0, 41.7),
    or on these line segments (excluding the points on the line segment EI);
  • the line segment U is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
  • the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
  • the line segments JN and EI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
  • point M (52.6, 0.0, 47.4),
    point M′ (39.2, 5.0, 55.8),
    point N (27.7, 18.2, 54.1),
    point V (11.0, 18.1, 70.9), and
    point G (39.6, 0.0, 60.4),
    or on these line segments (excluding the points on the line segment GM);
  • the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
  • the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
  • the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
  • the line segments NV and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
  • point O (22.6, 36.8, 40.6),
    point N (27.7, 18.2, 54.1), and
    point U (3.9, 36.7, 59.4),
    or on these line segments;
  • the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
  • the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
  • the line segment UO is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of FIFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of FIFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
  • point Q (44.6, 23.0, 32.4),
    point R (25.5, 36.8, 37.7),
    point T (8.6, 51.6, 39.8),
    point L (28.9, 51.7, 19.4), and
    point K (35.6, 36.8, 27.6),
    or on these line segments;
  • the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
  • the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
  • the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
  • the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
  • the line segment TL is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (20.5, 51.7, 27.8),
    point S (21.9, 39.7, 38.4), and
    point T (8.6, 51.6, 39.8),
    or on these line segments;
  • the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
  • the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
  • the line segment TP is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of FIFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of FIFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ac, cf, fd, and da that connect the following 4 points:
  • point a (71.1, 0.0, 28.9),
    point c (36.5, 18.2, 45.3),
    point f (47.6, 18.3, 34.1), and
    point d (72.0, 0.0, 28.0),
    or on these line segments;
  • the line segment ac is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);
  • the line segment fd is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and
  • the line segments cf and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ab, be, ed, and da that connect the following 4 points:
  • point a (71.1, 0.0, 28.9),
    point b (42.6, 14.5, 42.9),
    point e (51.4, 14.6, 34.0), and
    point d (72.0, 0.0, 28.0),
    or on these line segments;
  • the line segment ab is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);
  • the line segment ed is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and
  • the line segments be and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gi, ij, and jg that connect the following 3 points:
  • point g (77.5, 6.9, 15.6),
    point i (55.1, 18.3, 26.6), and
    point j (77.5. 18.4, 4.1),
    or on these line segments;
  • the line segment gi is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and
  • the line segments ij and jg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HID-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HID-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gh, hk, and kg that connect the following 3 points:
  • point g (77.5, 6.9, 15.6),
    point h (61.8, 14.6, 23.6), and
    point k (77.5, 14.6, 7.9),
    or on these line segments;
  • the line segment gh is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and
  • the line segments hk and kg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • The refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.
  • Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • Examples of Refrigerant D
  • The present disclosure is described in more detail below with reference to Examples of refrigerant D. However, the refrigerant D is not limited to the Examples.
  • The composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF. A leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.
  • TABLE 113
    Comparative Example Example Example
    Example 13 Example 12 Example 14 Example 16
    Item Unit I 11 J 13 K 15 L
    WCF HFO-1132(E) Mass % 72 57.2 48.5 41.2 35.6 32 28.9
    R32 Mass % 0 10 18.3 27.6 36.8 44.2 51.7
    R1234yf Mass % 28 32.8 33.2 31.2 27.6 23.8 19.4
    Burning Velocity (WCF) cm/s 10 10 10 10 10 10 10
  • TABLE 114
    Comparative Example Example
    Example 14 Example 19 Example 21 Example
    Item Unit M 18 W 20 N 22
    WCF HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.6
    R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6
    R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.8
    Leak condition that results in WCFF Storage, Storage, Storage, Storage, Storage, Storage,
    Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40°
    C., 0% C., 0% C., 0% C., 0% C., 0% C., 0%
    release, on release, on release, on release, on release, on release, on
    the gas the gas the gas the gas the gas the gas
    phase side phase side phase side phase side phase side phase side
    WCF HFO-1132(E) Mass % 72.0 57.8 48.7 43.6 40.6 34.9
    R32 Mass % 0.0 9.5 17.9 24.2 28.7 38.1
    R1234yf Mass % 28.0 32.7 33.4 32.2 30.7 27.0
    Burning Velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning Velocity (WCFF) cm/s 10 10 10 10 10 10
  • TABLE 115
    Example Example
    23 Example 25
    Item Unit O 24 P
    WCF HFO-1132(E) Mass % 22.6 21.2 20.5
    HFO-1123 Mass % 36.8 44.2 51.7
    R1234yf Mass % 40.6 34.6 27.8
    Leak condition that results in WCFF Storage, Storage, Storage,
    Shipping, −40° Shipping, −40° Shipping, −40°
    C., 0% C., 0% C., 0%
    release, on release, on release, on
    the gas the gas the gas
    phase side phase side phase side
    WCFF HFO-1132(E) Mass % 31.4 29.2 27.1
    HFO-1123 Mass % 45.7 51.1 56.4
    R1234yf Mass % 23.0 19.7 16.5
    Burning Velocity (WCF) cm/s 8 or less 8 or less 8 or less
    Burning Velocity (WCFF) cm/s 10   10   10  
  • The results indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 14 in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are on the line segment that connects point I, point J, point K, and point L, or below these line segments, the refrigerant has a WCF lower flammability.
  • The results also indicate that when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 14 are on the line segments that connect point M, point M′, point W, point J, point N, and point P, or below these line segments, the refrigerant has an ASHRAE lower flammability.
  • Mixed refrigerants were prepared by mixing HFO-1132(E), R32, and R1234yf in amounts (mass %) shown in Tables 116 to 144 based on the sum of HFO-1132(E), R32, and R1234yf. The coefficient of performance (COP) ratio and the refrigerating capacity ratio relative to R410 of the mixed refrigerants shown in Tables 116 to 144 were determined. The conditions for calculation were as described below.
  • Evaporating temperature: 5° C.
  • Condensation temperature: 45° C.
  • Degree of superheating: 5 K
  • Degree of subcooling: 5 K
  • Compressor efficiency: 70%
  • Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.
  • TABLE 116
    Comparative Comparative Comparative Comparative Comparative Comparative
    Comparative Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
    Item Unit Example 1 A B A′ B′ A″ B″
    HFO-1132 (E) Mass % R410A 81.6 0.0 63.1 0.0 48.2 0.0
    R32 Mass % 18.4 18.1 36.9 36.7 51.8 51.5
    R1234yf Mass % 0.0 81.9 0.0 63.3 0.0 48.5
    GWP 2088 125 125 250 250 350 350
    COP Ratio % (relative to  100 98.7 103.6 98.7 102.3 99.2 102.2
    R410A)
    Refrigerating % (relative to  100 105.3 62.5 109.9 77.5 112.1 87.3
    Capacity R410A)
    Ratio
  • TABLE 117
    Comparative Comparative Example Example
    Example 8 Comparative Example 10 Example 2 Example 4
    Item Unit C Example 9 C′ 1 R 3 T
    HFO-1132(E) Mass % 85.5 66.1 52.1 37.8 25.5 16.6 8.6
    R32 Mass % 0.0 10.0 18.2 27.6 36.8 44.2 51.6
    R1234yf Mass % 14.5 23.9 29.7 34.6 37.7 39.2 39.8
    GWP 1 69 125 188 250 300 350
    COP Ratio % (relative 99.8 99.3 99.3 99.6 100.2 100.8 101.4
    to R410A)
    Refrigerating % (relative 92.5 92.5 92.5 92.5 92.5 92.5 92.5
    Capacity Ratio to R410A)
  • TABLE 118
    Comparative Example Example Comparative Example
    Example 11 Example 6 Example 8 Example 12 Example 10
    Item Unit E 5 N 7 U G 9 V
    HFO-1132(E) Mass % 58.3 40.5 27.7 14.9 3.9 39.6 22.8 11.0
    R32 Mass % 0.0 10.0 18.2 27.6 36.7 0.0 10.0 18.1
    R1234yf Mass % 41.7 49.5 54.1 57.5 59.4 60.4 67.2 70.9
    GWP 2 70 125 189 250 3 70 125
    COP Ratio % (relative 100.3 100.3 100.7 101.2 101.9 101.4 101.8 102.3
    to R410A)
    Refrigerating % (relative 80.0 80.0 80.0 80.0 80.0 70.0 70.0 70.0
    Capacity Ratio to R410A)
  • TABLE 119
    Comparative Example Example Example Example
    Example 13 Example 12 Example 14 Example 16 17
    Item Unit I 11 J 13 K 15 L Q
    HFO-1132(E) Mass % 72.0 57.2 48.5 41.2 35.6 32.0 28.9 44.6
    R32 Mass % 0.0 10.0 18.3 27.6 36.8 44.2 51.7 23.0
    R1234yf Mass % 28.0 32.8 33.2 31.2 27.6 23.8 19.4 32.4
    GWP 2 69 125 188 250 300 350 157
    COP Ratio % (relative 99.9 99.5 99.4 99.5 99.6 99.8 100.1 99.4
    to R410A)
    Refrigerating % (relative 86.6 88.4 90.9 94.2 97.7 100.5 103.3 92.5
    Capacity Ratio to R410A)
  • TABLE 120
    Comparative Example Example
    Example 14 Example 19 Example 21 Example
    Item Unit M 18 W 20 N 22
    HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.5
    R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6
    R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.9
    GWP 2 36 70 100 125 188
    COP Ratio % (relative 100.5 100.9 100.9 100.8 100.7 100.4
    to R410A)
    Refrigerating % (relative 77.1 74.8 75.6 77.8 80.0 85.5
    Capacity Ratio to R410A)
  • TABLE 121
    Example Example Example
    23 Example 25 26
    Item Unit O 24 P S
    HFO-1132(E) Mass % 22.6 21.2 20.5 21.9
    R32 Mass % 36.8 44.2 51.7 39.7
    R1234yf Mass % 40.6 34.6 27.8 38.4
    GWP 250 300 350 270
    COP Ratio % (relative 100.4 100.5 100.6 100.4
    to R410A)
    Refrigerating % (relative 91.0 95.0 99.1 92.5
    Capacity Ratio to R410A)
  • TABLE 122
    Comparative Comparative Comparative Comparative Example Example Comparative Comparative
    Item Unit Example 15 Example 16 Example 17 Example 18 27 28 Example 19 Example 20
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    R32 Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R1234yf Mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    GWP 37 37 37 36 36 36 35 35
    COP Ratio % (relative 103.4 102.6 101.6 100.8 100.2 99.8 99.6 99.4
    to R410A)
    Refrigerating % (relative 56.4 63.3 69.5 75.2 80.5 85.4 90.1 94.4
    Capacity Ratio to R410A)
  • TABLE 123
    Comparative Comparative Example Comparative Example Comparative Comparative Comparative
    Item Unit Example 21 Example 22 29 Example 23 30 Example 24 Example 25 Example 26
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    R32 Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R1234yf Mass % 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    GWP 71 71 70 70 70 69 69 69
    COP Ratio % (relative 103.1 102.1 101.1 100.4 99.8 99.5 99.2 99.1
    to R410A)
    Refrigerating % (relative 61.8 68.3 74.3 79.7 84.9 89.7 94.2 98.4
    Capacity Ratio to R410A)
  • TABLE 124
    Comparative Example Comparative Example Example Comparative Comparative Comparative
    Item Unit Example 27 31 Example 28 32 33 Example 29 Example 30 Example 31
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    R32 Mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R1234yf Mass % 75.0 65.0 55.0 45.0 35.0 25.0 15.0 5.0
    GWP 104 104 104 103 103 103 103 102
    COP Ratio % (relative 102.7 101.6 100.7 100.0 99.5 99.2 99.0 98.9
    to R410A)
    Refrigerating % (relative 66.6 72.9 78.6 84.0 89.0 93.7 98.1 102.2
    Capacity Ratio to R410A)
  • TABLE 125
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 32 Example 33 Example 34 Example 35 Example 36 Example 37 Example 38 Example 39
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 10.0
    R32 Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 25.0
    R1234yf Mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0 65.0
    GWP 138 138 137 137 137 136 136 171
    COP Ratio % (relative 102.3 101.2 100.4 99.7 99.3 99.0 98.8 101.9
    to R410A)
    Refrigerating % (relative 71.0 77.1 82.7 88.0 92.9 97.5 101.7 75.0
    Capacity Ratio to R410A)
  • TABLE 126
    Example Comparative Comparative Comparative Comparative Comparative Comparative Example
    Item Unit 34 Example 40 Example 41 Example 42 Example 43 Example 44 Example 45 35
    HFO-1132(E) Mass % 20.0 30.0 40.0 50.0 60.0 70.0 10.0 20.0
    R32 Mass % 25.0 25.0 25.0 25.0 25.0 25.0 30.0 30.0
    R1234yf Mass % 55.0 45.0 35.0 25.0 15.0 5.0 60.0 50.0
    GWP 171 171 171 170 170 170 205 205
    COP Ratio % (relative 100.9 100.1 99.6 99.2 98.9 98.7 101.6 100.7
    to R410A)
    Refrigerating % (relative 81.0 86.6 91.7 96.5 101.0 105.2 78.9 84.8
    Capacity Ratio to R410A)
  • TABLE 127
    Comparative Comparative Comparative Comparative Example Example Example Comparative
    Item Unit Example 46 Example 47 Example 48 Example 49 36 37 38 Example 50
    HFO-1132(E) Mass % 30.0 40.0 50.0 60.0 10.0 20.0 30.0 40.0
    R32 Mass % 30.0 30.0 30.0 30.0 35.0 35.0 35.0 35.0
    R1234yf Mass % 40.0 30.0 20.0 10.0 55.0 45.0 35.0 25.0
    GWP 204 204 204 204 239 238 238 238
    COP Ratio % (relative 100.0 99.5 99.1 98.8 101.4 100.6 99.9 99.4
    to R410A)
    Refrigerating % (relative 90.2 95.3 100.0 104.4 82.5 88.3 93.7 98.6
    Capacity Ratio to R410A)
  • TABLE 128
    Comparative Comparative Comparative Comparative Example Comparative Comparative Comparative
    Item Unit Example 51 Example 52 Example 53 Example 54 39 Example 55 Example 56 Example 57
    HFO-1132(E) Mass % 50.0 60.0 10.0 20.0 30.0 40.0 50.0 10.0
    R32 Mass % 35.0 35.0 40.0 40.0 40.0 40.0 40.0 45.0
    R1234yf Mass % 15.0 5.0 50.0 40.0 30.0 20.0 10.0 45.0
    GWP 237 237 272 272 272 271 271 306
    COP Ratio % (relative 99.0 98.8 101.3 100.6 99.9 99.4 99.0 101.3
    to R410A)
    Refrigerating % (relative 103.2 107.5 86.0 91.7 96.9 101.8 106.3 89.3
    Capacity Ratio to R410A)
  • TABLE 129
    Example Example Comparative Comparative Comparative Example Comparative Comparative
    Item Unit 40 41 Example 58 Example 59 Example 60 42 Example 61 Example 62
    HFO-1132(E) Mass % 20.0 30.0 40.0 50.0 10.0 20.0 30.0 40.0
    R32 Mass % 45.0 45.0 45.0 45.0 50.0 50.0 50.0 50.0
    R1234yf Mass % 35.0 25.0 15.0 5.0 40.0 30.0 20.0 10.0
    GWP 305 305 305 304 339 339 339 338
    COP Ratio % (relative 100.6 100.0 99.5 99.1 101.3 100.6 100.0 99.5
    to R410A)
    Refrigerating % (relative 94.9 100.0 104.7 109.2 92.4 97.8 102.9 107.5
    Capacity Ratio to R410A)
  • TABLE 130
    Comparative Comparative Comparative Comparative Example Example Example Example
    Item Unit Example 63 Example 64 Example 65 Example 66 43 44 45 46
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 56.0 59.0 62.0 65.0
    R32 Mass % 55.0 55.0 55.0 55.0 3.0 3.0 3.0 3.0
    R1234yf Mass % 35.0 25.0 15.0 5.0 41.0 38.0 35.0 32.0
    GWP 373 372 372 372 22 22 22 22
    COP Ratio % (relative 101.4 100.7 100.1 99.6 100.1 100.0 99.9 99.8
    to R410A)
    Refrigerating % (relative 95.3 100.6 105.6 110.2 81.7 83.2 84.6 86.0
    Capacity Ratio to R410A)
  • TABLE 131
    Example Example Example Example Example Example Example Example
    Item Unit
    47 48 49 50 51 52 53 54
    HFO-1132(E) Mass % 49.0 52.0 55.0 58.0 61.0 43.0 46.0 49.0
    R32 Mass % 6.0 6.0 6.0 6.0 6.0 9.0 9.0 9.0
    R1234yf Mass % 45.0 42.0 39.0 36.0 33.0 48.0 45.0 42.0
    GWP 43 43 43 43 42 63 63 63
    COP Ratio % (relative 100.2 100.0 99.9 99.8 99.7 100.3 100.1 99.9
    to R410A)
    Refrigerating % (relative 80.9 82.4 83.9 85.4 86.8 80.4 82.0 83.5
    Capacity Ratio to R410A)
  • TABLE 132
    Example Example Example Example Example Example Example Example
    Item Unit 55 56 57 58 59 60 61 62
    HFO-1132(E) Mass % 52.0 55.0 58.0 38.0 41.0 44.0 47.0 50.0
    R32 Mass % 9.0 9.0 9.0 12.0 12.0 12.0 12.0 12.0
    R1234yf Mass % 39.0 36.0 33.0 50.0 47.0 44.0 41.0 38.0
    GWP 63 63 63 83 83 83 83 83
    COP Ratio % (relative 99.8 99.7 99.6 100.3 100.1 100.0 99.8 99.7
    to R410A)
    Refrigerating % (relative 85.0 86.5 87.9 80.4 82.0 83.5 85.1 86.6
    Capacity Ratio to R410A)
  • TABLE 133
    Example Example Example Example Example Example Example Example
    Item Unit 63 64 65 66 67 68 69 70
    HFO-1132(E) Mass % 53.0 33.0 36.0 39.0 42.0 45.0 48.0 51.0
    R32 Mass % 12.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R1234yf Mass % 35.0 52.0 49.0 46.0 43.0 40.0 37.0 34.0
    GWP 83 104 104 103 103 103 103 103
    COP Ratio % (relative 99.6 100.5 100.3 100.1 99.9 99.7 99.6 99.5
    to R410A)
    Refrigerating % (relative 88.0 80.3 81.9 83.5 85.0 86.5 88.0 89.5
    Capacity Ratio to R410A)
  • TABLE 134
    Example Example Example Example Example Example Example Example
    Item Unit 71 72 73 74 75 76 77 78
    HFO-1132(E) Mass % 29.0 32.0 35.0 38.0 41.0 44.0 47.0 36.0
    R32 Mass % 18.0 18.0 18.0 18.0 18.0 18.0 18.0 3.0
    R1234yf Mass % 53.0 50.0 47.0 44.0 41.0 38.0 35.0 61.0
    GWP 124 124 124 124 124 123 123 23
    COP Ratio % (relative 100.6 100.3 100.1 99.9 99.8 99.6 99.5 101.3
    to R410A)
    Refrigerating % (relative 80.6 82.2 83.8 85.4 86.9 88.4 89.9 71.0
    Capacity Ratio to R410A)
  • TABLE 135
    Example Example Example Example Example Example Example Example
    Item Unit 79 80 81 82 83 84 85 86
    HFO-1132(E) Mass % 39.0 42.0 30.0 33.0 36.0 26.0 29.0 32.0
    R32 Mass % 3.0 3.0 6.0 6.0 6.0 9.0 9.0 9.0
    R1234yf Mass % 58.0 55.0 64.0 61.0 58.0 65.0 62.0 59.0
    GWP 23 23 43 43 43 64 64 63
    COP Ratio % (relative 101.1 100.9 101.5 101.3 101.0 101.6 101.3 101.1
    to R410A)
    Refrigerating % (relative 72.7 74.4 70.5 72.2 73.9 71.0 72.8 74.5
    Capacity Ratio to R410A)
  • TABLE 136
    Example Example Example Example Example Example Example Example
    Item Unit 87 88 89 90 91 92 93 94
    HFO-1132(E) Mass % 21.0 24.0 27.0 30.0 16.0 19.0 22.0 25.0
    R32 Mass % 12.0 12.0 12.0 12.0 15.0 15.0 15.0 15.0
    R1234yf Mass % 67.0 64.0 61.0 58.0 69.0 66.0 63.0 60.0
    GWP 84 84 84 84 104 104 104 104
    COP Ratio % (relative 101.8 101.5 101.2 101.0 102.1 101.8 101.4 101.2
    to R410A)
    Refrigerating % (relative 70.8 72.6 74.3 76.0 70.4 72.3 74.0 75.8
    Capacity Ratio to R410A)
  • TABLE 137
    Example Example Example Example Example Example Example Example
    Item Unit
    95 96 97 98 99 100 101 102
    HFO-1132(E) Mass % 28.0 12.0 15.0 18.0 21.0 24.0 27.0 25.0
    R32 Mass % 15.0 18.0 18.0 18.0 18.0 18.0 18.0 21.0
    R1234yf Mass % 57.0 70.0 67.0 64.0 61.0 58.0 55.0 54.0
    GWP 104 124 124 124 124 124 124 144
    COP Ratio % (relative 100.9 102.2 101.9 101.6 101.3 101.0 100.7 100.7
    to R410A)
    Refrigerating % (relative 77.5 70.5 72.4 74.2 76.0 77.7 79.4 80.7
    Capacity Ratio to R410A)
  • TABLE 138
    Example Example Example Example Example Example Example Example
    Item Unit 103 104 105 106 107 108 109 110
    HFO-1132(E) Mass % 21.0 24.0 17.0 20.0 23.0 13.0 16.0 19.0
    R32 Mass % 24.0 24.0 27.0 27.0 27.0 30.0 30.0 30.0
    R1234yf Mass % 55.0 52.0 56.0 53.0 50.0 57.0 54.0 51.0
    GWP 164 164 185 185 184 205 205 205
    COP Ratio % (relative 100.9 100.6 101.1 100.8 100.6 101.3 101.0 100.8
    to R410A)
    Refrigerating % (relative 80.8 82.5 80.8 82.5 84.2 80.7 82.5 84.2
    Capacity Ratio to R410A)
  • TABLE 139
    Example Example Example Example Example Example Example Example
    Item Unit 111 112 113 114 115 116 117 118
    HFO-1132(E) Mass % 22.0 9.0 12.0 15.0 18.0 21.0 8.0 12.0
    R32 Mass % 30.0 33.0 33.0 33.0 33.0 33.0 36.0 36.0
    R1234yf Mass % 48.0 58.0 55.0 52.0 49.0 46.0 56.0 52.0
    GWP 205 225 225 225 225 225 245 245
    COP Ratio % (relative 100.5 101.6 101.3 101.0 100.8 100.5 101.6 101.2
    to R410A)
    Refrigerating % (relative 85.9 80.5 82.3 84.1 85.8 87.5 82.0 84.4
    Capacity Ratio to R410A)
  • TABLE 140
    Example Example Example Example Example Example Example Example
    Item Unit 119 120 121 122 123 124 125 126
    HFO-1132(E) Mass % 15.0 18.0 21.0 42.0 39.0 34.0 37.0 30.0
    R32 Mass % 36.0 36.0 36.0 25.0 28.0 31.0 31.0 34.0
    R1234yf Mass % 49.0 46.0 43.0 33.0 33.0 35.0 32.0 36.0
    GWP 245 245 245 170 191 211 211 231
    COP Ratio % (relative 101.0 100.7 100.5 99.5 99.5 99.8 99.6 99.9
    to R410A)
    Refrigerating % (relative 86.2 87.9 89.6 92.7 93.4 93.0 94.5 93.0
    Capacity Ratio to R410A)
  • TABLE 141
    Example Example Example Example Example Example Example Example
    Item Unit 127 128 129 130 131 132 133 134
    HFO-1132(E) Mass % 33.0 36.0 24.0 27.0 30.0 33.0 23.0 26.0
    R32 Mass % 34.0 34.0 37.0 37.0 37.0 37.0 40.0 40.0
    R1234yf Mass % 33.0 30.0 39.0 36.0 33.0 30.0 37.0 34.0
    GWP 231 231 252 251 251 251 272 272
    COP Ratio % (relative 99.8 99.6 100.3 100.1 99.9 99.8 100.4 100.2
    to R410A)
    Refrigerating % (relative 94.5 96.0 91.9 93.4 95.0 96.5 93.3 94.9
    Capacity Ratio to R410A)
  • TABLE 142
    Example Example Example Example Example Example Example Example
    Item Unit 135 136 137 138 139 140 141 142
    HFO-1132(E) Mass % 29.0 32.0 19.0 22.0 25.0 28.0 31.0 18.0
    R32 Mass % 40.0 40.0 43.0 43.0 43.0 43.0 43.0 46.0
    R1234yf Mass % 31.0 28.0 38.0 35.0 32.0 29.0 26.0 36.0
    GWP 272 271 292 292 292 292 292 312
    COP Ratio % (relative 100.0 99.8 100.6 100.4 100.2 100.1 99.9 100.7
    to R410A)
    Refrigerating % (relative 96.4 97.9 93.1 94.7 96.2 97.8 99.3 94.4
    Capacity Ratio to R410A)
  • TABLE 143
    Example Example Example Example Example Example Example Example
    Item Unit 143 144 145 146 147 148 149 150
    HFO-1132(E) Mass % 21.0 23.0 26.0 29.0 13.0 16.0 19.0 22.0
    R32 Mass % 46.0 46.0 46.0 46.0 49.0 49.0 49.0 49.0
    R1234yf Mass % 33.0 31.0 28.0 25.0 38.0 35.0 32.0 29.0
    GWP 312 312 312 312 332 332 332 332
    COP Ratio % (relative 100.5 100.4 100.2 100.0 101.1 100.9 100.7 100.5
    to R410A)
    Refrigerating % (relative 96.0 97.0 98.6 100.1 93.5 95.1 96.7 98.3
    Capacity Ratio to R410A)
  • TABLE 144
    Example Example
    Item Unit 151 152
    HFO-1132(E) Mass % 25.0 28.0
    R32 Mass % 49.0 49.0
    R1234yf Mass % 26.0 23.0
    GWP 332 332
    COP Ratio % (relative 100.3 100.1
    to R410A)
    Refrigerating % (relative 99.8 101.3
    Capacity Ratio to R410A)
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments U, JN, NE, and EI that connect the following 4 points:
  • point I (72.0, 0.0, 28.0),
    point J (48.5, 18.3, 33.2),
    point N (27.7, 18.2, 54.1), and
    point E (58.3, 0.0, 41.7),
    or on these line segments (excluding the points on the line segment EI),
  • the line segment U is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0),
  • the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7), and
  • the line segments JN and EI are straight lines, the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
  • point M (52.6, 0.0, 47.4),
    point M′ (39.2, 5.0, 55.8),
    point N (27.7, 18.2, 54.1),
    point V (11.0, 18.1, 70.9), and
    point G (39.6, 0.0, 60.4),
    or on these line segments (excluding the points on the line segment GM),
  • the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4),
  • the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02),
  • the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4), and
  • the line segments NV and GM are straight lines, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
  • point O (22.6, 36.8, 40.6),
    point N (27.7, 18.2, 54.1), and
    point U (3.9, 36.7, 59.4),
    or on these line segments,
  • the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488),
  • the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365), and
  • the line segment UO is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
  • point Q (44.6, 23.0, 32.4),
    point R (25.5, 36.8, 37.7),
    point T (8.6, 51.6, 39.8),
    point L (28.9, 51.7, 19.4), and
    point K (35.6, 36.8, 27.6),
    or on these line segments,
  • the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235),
  • the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874),
  • the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512),
  • the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324), and
  • the line segment TL is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • The results further indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (20.5, 51.7, 27.8),
    point S (21.9, 39.7, 38.4), and
    point T (8.6, 51.6, 39.8),
    or on these line segments,
  • the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9),
  • the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874), and
  • the line segment TP is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • (5-5) Refrigerant E
  • The refrigerant E according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).
  • The refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments 1K, KB′, B′H, HR, RG, and GI that connect the following 6 points:
  • point I (72.0, 28.0, 0.0),
    point K (48.4, 33.2, 18.4),
    point B′ (0.0, 81.6, 18.4),
    point H (0.0, 84.2, 15.8),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segments B′H and GI);
  • the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
  • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments KB′ and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments U, JR, RG, and GI that connect the following 4 points:
  • point I (72.0, 28.0, 0.0),
    point J (57.7, 32.8, 9.5),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segment GI);
  • the line segment U is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments JR and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
  • point M (47.1, 52.9, 0.0),
    point P (31.8, 49.8, 18.4),
    point B′ (0.0, 81.6, 18.4),
    point H (0.0, 84.2, 15.8),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segments B′H and GM);
  • the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
  • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments PB′ and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
  • point M (47.1, 52.9, 0.0),
    point N (38.5, 52.1, 9.5),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segment GM);
  • the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491 z2+0.1544z+61.5, z),
  • the line segments NR and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (31.8, 49.8, 18.4),
    point S (25.4, 56.2, 18.4), and
    point T (34.8, 51.0, 14.2),
    or on these line segments;
  • the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
  • the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
  • the line segment PS is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
  • point Q (28.6, 34.4, 37.0),
    point B″ (0.0, 63.0, 37.0),
    point D (0.0, 67.0, 33.0), and
    point U (28.7, 41.2, 30.1),
    or on these line segments (excluding the points on the line segment B″D);
  • the line segment DU is represented by coordinates (−3.4962z2+210.71 z−3146.1, 3.4962z2−211.71z+3246.1, z),
  • the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
  • the line segments QB″ and B″D are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HID-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HID-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′a′, and a′O that connect the following 5 points:
  • point O (100.0, 0.0, 0.0),
    point c′(56.7, 43.3, 0.0),
    point d′ (52.2, 38.3, 9.5),
    point e′ (41.8, 39.8, 18.4), and
    point a′ (81.6, 0.0, 18.4),
    or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);
  • the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z),
  • the line segment d′e′ is represented by coordinates (−0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z), and
  • the line segments Oc′, e′a′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HID-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HID-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′O that connect the following 5 points:
  • point O (100.0, 0.0, 0.0),
    point c (77.7, 22.3, 0.0),
    point d (76.3, 14.2, 9.5),
    point e (72.2, 9.4, 18.4), and
    point a′ (81.6, 0.0, 18.4),
    or on the line segments cd, de, and ea′ (excluding the points c and a′);
  • the line segment cde is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and
  • the line segments Oc, ea′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of FIFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of FIFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′a, and aO that connect the following 5 points:
  • point O (100.0, 0.0, 0.0),
    point c′(56.7, 43.3, 0.0),
    point d′ (52.2, 38.3, 9.5), and
    point a (90.5, 0.0, 9.5),
    or on the line segments c′d′ and d′a (excluding the points c′ and a);
  • the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z), and
  • the line segments Oc′, d′a, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HID-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HID-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and aO that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point c (77.7, 22.3, 0.0),
    point d (76.3, 14.2, 9.5), and
    point a (90.5, 0.0, 9.5),
    or on the line segments cd and da (excluding the points c and a);
  • the line segment cd is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and
  • the line segments Oc, da, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.
  • The refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.
  • Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • Examples of Refrigerant E
  • The present disclosure is described in more detail below with reference to Examples of refrigerant E. However, the refrigerant E is not limited to the Examples.
  • Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, and R32 at mass % based on their sum shown in Tables 145 and 146.
  • The composition of each mixture was defined as WCF. A leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • For each mixed refrigerant, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. When the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Tables 145 and 146 show the results.
  • TABLE 145
    Item Unit I J K L
    WCF HFO-1132(E) mass % 72.0 57.7 48.4 35.5
    HFO-1123 mass % 28.0 32.8 33.2 27.5
    R32 mass % 0.0 9.5 18.4 37.0
    Burning velocity (WCF) cm/s 10 10 10 10
  • TABLE 146
    Item Unit M N T P U Q
    WCF HFO-1132(E) mass % 47.1 38.5 34.8 31.8 28.7 28.6
    HFO-1123 mass % 52.9 52.1 51.0 49.8 41.2 34.4
    R32 mass % 0.0 9.5 14.2 18.4 30.1 37.0
    Leak condition that results in WCFF Storage, Storage, Storage, Storage, Storage, Storage,
    Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40°
    C., 92%, C., 92%, C., 92%, C., 92%, C., 92%, C., 92%,
    release, on release, on release, on release, on release, on release, on
    the liquid the liquid the liquid the liquid the liquid the liquid
    phase side phase side phase side phase side phase side phase side
    WCFF HFO-1132(E) mass % 72.0 58.9 51.5 44.6 31.4 27.1
    HFO-1123 mass % 28.0 32.4 33.1 32.6 23.2 18.3
    R32 mass % 0.0 8.7 15.4 22.8 45.4 54.6
    Burning velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning velocity (WCFF) cm/s 10 10 10 10 10 10
  • The results in Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments 1K and KL that connect the following 3 points:
  • point I (72.0, 28.0, 0.0),
    point K (48.4, 33.2, 18.4), and
    point L (35.5, 27.5, 37.0);
    the line segment IK is represented by coordinates
    (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.00, z), and
    the line segment KL is represented by coordinates
    (0.0098z2−1.238z+67.852, −0.0098z2+0.238z+32.148, z),
    it can be determined that the refrigerant has WCF lower flammability.
  • For the points on the line segment IK, an approximate curve (x=0.025z2−1.7429z+72.00) was obtained from three points, i.e., I (72.0, 28.0, 0.0), J (57.7, 32.8, 9.5), and K (48.4, 33.2, 18.4) by using the least-square method to determine coordinates (x=0.025z2−1.7429z+72.00, y=100−z−x=−0.00922z2+0.2114z+32.443, z).
  • Likewise, for the points on the line segment KL, an approximate curve was determined from three points, i.e., K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7), and L (35.5, 27.5, 37.0) by using the least-square method to determine coordinates.
  • The results in Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:
  • point M (47.1, 52.9, 0.0),
    point P (31.8, 49.8, 18.4), and
    point Q (28.6, 34.4, 37.0),
    it can be determined that the refrigerant has ASHRAE lower flammability.
  • In the above, the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and the line segment PQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z).
  • For the points on the line segment MP, an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates. For the points on the line segment PQ, an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.
  • The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • The COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined. The conditions for calculation were as described below.
  • Evaporating temperature: 5° C.
    Condensation temperature: 45° C.
    Degree of superheating: 5K
    Degree of subcooling: 5K
    Compressor efficiency: 70%
  • Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.
  • TABLE 147
    Comparative Comparative Comparative Comparative Comparative Comparative
    Comparative Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
    Item Unit Example 1 A B A′ B′ A″ B″
    HFO-1132(E) mass % R410A 90.5 0.0 81.6 0.0 63.0 0.0
    HFO-1123 mass % 0.0 90.5 0.0 81.6 0.0 63.0
    R32 mass % 9.5 9.5 18.4 18.4 37.0 37.0
    GWP 2088  65 65 125 125 250 250
    COP ratio % (relative 100 99.1 92.0 98.7 93.4 98.7 96.1
    to R410A)
    Refrigerating % (relative 100 102.2 111.6 105.3 113.7 110.0 115.4
    capacity ratio to R410A)
  • TABLE 148
    Comparative Comparative Example Comparative
    Example 8 Example 9 Comparative 1 Example Example 11
    Item Unit O C Example 10 U 2 D
    HFO-1132(E) mass % 100.0 50.0 41.1 28.7 15.2 0.0
    HFO-1123 mass % 0.0 31.6 34.6 41.2 52.7 67.0
    R32 mass % 0.0 18.4 24.3 30.1 32.1 33.0
    GWP 1 125 165 204 217 228
    COP ratio % (relative 99.7 96.0 96.0 96.0 96.0 96.0
    to R410A)
    Refrigerating % (relative 98.3 109.9 111.7 113.5 114.8 115.4
    capacity ratio to R410A)
  • TABLE 149
    Comparative Example Example Comparative
    Example 12 Comparative 3 4 Example 14
    Item Unit E Example 13 T S F
    HFO-1132(E) mass % 53.4 43.4 34.8 25.4 0.0
    HFO-1123 mass % 46.6 47.1 51.0 56.2 74.1
    R32 mass % 0.0 9.5 14.2 18.4 25.9
    GWP 1 65 97 125 176
    COP ratio % (relative 94.5 94.5 94.5 94.5 94.5
    to R410A)
    Refrigerating % (relative 105.6 109.2 110.8 112.3 114.8
    capacity ratio to R410A)
  • TABLE 150
    Comparative Comparative
    Example 15 Example 6 Example 16
    Item Unit G Example 5 R Example 7 H
    HFO-1132(E) mass % 38.5 31.5 23.1 16.9 0.0
    HFO-1123 mass % 61.5 63.5 67.4 71.1 84.2
    R32 mass % 0.0 5.0 9.5 12.0 15.8
    GWP 1 35 65 82 107
    COP ratio % (relative to 93.0 93.0 93.0 93.0 93.0
    R410A)
    Refrigerating % (relative to 107.0 109.1 110.9 111.9 113.2
    capacity ratio R410A)
  • TABLE 151
    Comparative Example Example Comparative
    Example 17 8 9 Comparative Example 19
    Item Unit I J K Example 18 L
    HFO-1132(E) mass % 72.0 57.7 48.4 41.1 35.5
    HFO-1123 mass % 28.0 32.8 33.2 31.2 27.5
    R32 mass % 0.0 9.5 18.4 27.7 37.0
    GWP 1 65 125 188 250
    COP ratio % (relative 96.6 95.8 95.9 96.4 97.1
    to R410A)
    Refrigerating % (relative 103.1 107.4 110.1 112.1 113.2
    capacity ratio to R410A)
  • TABLE 152
    Comparative Example Example Example
    Example 20 10 11 12
    Item Unit M N P Q
    HFO-1132(E) mass % 47.1 38.5 31.8 28.6
    HFO-1123 mass % 52.9 52.1 49.8 34.4
    R32 mass % 0.0 9.5 18.4 37.0
    GWP 1 65 125 250
    COP ratio % (relative 93.9 94.1 94.7 96.9
    to R410A)
    Refrigerating % (relative 106.2 109.7 112.0 114.1
    capacity ratio to R410A)
  • TABLE 153
    Comparative Comparative Comparative Example Example Example Comparative Comparative
    Item Unit Example 22 Example 23 Example 24 14 15 16 Example 25 Example 26
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    R32 mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    GWP 35 35 35 35 35 35 35 35
    COP ratio % (relative 91.7 92.2 92.9 93.7 94.6 95.6 96.7 97.7
    to R410A)
    Refrigerating % (relative 110.1 109.8 109.2 108.4 107.4 106.1 104.7 103.1
    capacity ratio to R410A)
  • TABLE 154
    Comparative Comparative Comparative Example Example Example Comparative Comparative
    Item Unit Example 27 Example 28 Example 29 17 18 19 Example 30 Example 31
    HFO-1132(E) mass % 90.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 5.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0
    R32 mass % 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    GWP 35 68 68 68 68 68 68 68
    COP ratio % (relative 98.8 92.4 92.9 93.5 94.3 95.1 96.1 97.0
    to R410A)
    Refrigerating % (relative 101.4 111.7 111.3 110.6 109.6 108.5 107.2 105.7
    capacity ratio to R410A)
  • TABLE 155
    Comparative Example Example Example Example Example Comparative Comparative
    Item Unit Example 32 20 21 22 23 24 Example 33 Example 34
    HFO-1132(E) mass % 80.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 10.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    R32 mass % 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    GWP 68 102 102 102 102 102 102 102
    COP ratio % (relative 98.0 93.1 93.6 94.2 94.9 95.6 96.5 97.4
    to R410A)
    Refrigerating % (relative 104.1 112.9 112.4 111.6 110.6 109.4 108.1 106.6
    capacity ratio to R410A)
  • TABLE 156
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 35 Example 36 Example 37 Example 38 Example 39 Example 40 Example 41 Example 42
    HFO-1132(E) mass % 80.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 5.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    R32 mass % 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    GWP 102 136 136 136 136 136 136 136
    COP ratio % (relative 98.3 93.9 94.3 94.8 95.4 96.2 97.0 97.8
    to R410A)
    Refrigerating % (relative 105.0 113.8 113.2 112.4 111.4 110.2 108.8 107.3
    capacity ratio to R410A)
  • TABLE 157
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 43 Example 44 Example 45 Example 46 Example 47 Example 48 Example 49 Example 50
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 10.0
    HFO-1123 mass % 65.0 55.0 45.0 35.0 25.0 15.0 5.0 60.0
    R32 mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30.0
    GWP 170 170 170 170 170 170 170 203
    COP ratio % (relative 94.6 94.9 95.4 96.0 96.7 97.4 98.2 95.3
    to R410A)
    Refrigerating % (relative 114.4 113.8 113.0 111.9 110.7 109.4 107.9 114.8
    capacity ratio to R410A)
  • TABLE 158
    Comparative Comparative Comparative Comparative Comparative Example Example Comparative
    Item Unit Example 51 Example 52 Example 53 Example 54 Example 55 25 26 Example 56
    HFO-1132(E) mass % 20.0 30.0 40.0 50.0 60.0 10.0 20.0 30.0
    HFO-1123 mass % 50.0 40.0 30.0 20.0 10.0 55.0 45.0 35.0
    R32 mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0
    GWP 203 203 203 203 203 237 237 237
    COP ratio % (relative 95.6 96.0 96.6 97.2 97.9 96.0 96.3 96.6
    to R410A)
    Refrigerating % (relative 114.2 113.4 112.4 111.2 109.8 115.1 114.5 113.6
    capacity ratio to R410A)
  • TABLE 159
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 57 Example 58 Example 59 Example 60 Example 61 Example 62 Example 63 Example 64
    HFO-1132(E) mass % 40.0 50.0 60.0 10.0 20.0 30.0 40.0 50.0
    HFO-1123 mass % 25.0 15.0 5.0 50.0 40.0 30.0 20.0 10.0
    R32 mass % 35.0 35.0 35.0 40.0 40.0 40.0 40.0 40.0
    GWP 237 237 237 271 271 271 271 271
    COP ratio % (relative 97.1 97.7 98.3 96.6 96.9 97.2 97.7 98.2
    to R410A)
    Refrigerating % (relative 112.6 111.5 110.2 115.1 114.6 113.8 112.8 111.7
    capacity ratio to R410A)
  • TABLE 160
    Example Example Example Example Example Example Example Example
    Item Unit
    27 28 29 30 31 32 33 34
    HFO-1132(E) mass % 38.0 40.0 42.0 44.0 35.0 37.0 39.0 41.0
    HFO-1123 mass % 60.0 58.0 56.0 54.0 61.0 59.0 57.0 55.0
    R32 mass % 2.0 2.0 2.0 2.0 4.0 4.0 4.0 4.0
    GWP 14 14 14 14 28 28 28 28
    COP ratio % (relative 93.2 93.4 93.6 93.7 93.2 93.3 93.5 93.7
    to R410A)
    Refrigerating % (relative 107.7 107.5 107.3 107.2 108.6 108.4 108.2 108.0
    capacity ratio to R410A)
  • TABLE 161
    Example Example Example Example Example Example Example Example
    Item Unit
    35 36 37 38 39 40 41 42
    HFO-1132(E) mass % 43.0 31.0 33.0 35.0 37.0 39.0 41.0 27.0
    HFO-1123 mass % 53.0 63.0 61.0 59.0 57.0 55.0 53.0 65.0
    R32 mass % 4.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0
    GWP 28 41 41 41 41 41 41 55
    COP ratio % (relative 93.9 93.1 93.2 93.4 93.6 93.7 93.9 93.0
    to R410A)
    Refrigerating % (relative 107.8 109.5 109.3 109.1 109.0 108.8 108.6 110.3
    capacity ratio to R410A)
  • TABLE 162
    Example Example Example Example Example Example Example Example
    Item Unit 43 44 45 46 47 48 49 50
    HFO-1132(E) mass % 29.0 31.0 33.0 35.0 37.0 39.0 32.0 32.0
    HFO-1123 mass % 63.0 61.0 59.0 57.0 55.0 53.0 51.0 50.0
    R32 mass % 8.0 8.0 8.0 8.0 8.0 8.0 17.0 18.0
    GWP 55 55 55 55 55 55 116 122
    COP ratio % (relative 93.2 93.3 93.5 93.6 93.8 94.0 94.5 94.7
    to R410A)
    Refrigerating % (relative 110.1 110.0 109.8 109.6 109.5 109.3 111.8 111.9
    capacity ratio to R410A)
  • TABLE 163
    Example Example Example Example Example Example Example Example
    Item Unit 51 52 53 54 55 56 57 58
    HFO-1132(E) mass % 30.0 27.0 21.0 23.0 25.0 27.0 11.0 13.0
    HFO-1123 mass % 52.0 42.0 46.0 44.0 42.0 40.0 54.0 52.0
    R32 mass % 18.0 31.0 33.0 33.0 33.0 33.0 35.0 35.0
    GWP 122 210 223 223 223 223 237 237
    COP ratio % (relative 94.5 96.0 96.0 96.1 96.2 96.3 96.0 96.0
    to R410A)
    Refrigerating % (relative 112.1 113.7 114.3 114.2 114.0 113.8 115.0 114.9
    capacity ratio to R410A)
  • TABLE 164
    Example Example Example Example Example Example Example Example
    Item Unit
    59 60 61 62 63 64 65 66
    HFO-1132(E) mass % 15.0 17.0 19.0 21.0 23.0 25.0 27.0 11.0
    HFO-1123 mass % 50.0 48.0 46.0 44.0 42.0 40.0 38.0 52.0
    R32 mass % 35.0 35.0 35.0 35.0 35.0 35.0 35.0 37.0
    GWP 237 237 237 237 237 237 237 250
    COP ratio % (relative 96.1 96.2 96.2 96.3 96.4 96.4 96.5 96.2
    to R410A)
    Refrigerating % (relative 114.8 114.7 114.5 114.4 114.2 114.1 113.9 115.1
    capacity ratio to R410A)
  • TABLE 165
    Example Example Example Example Example Example Example Example
    Item Unit 67 68 69 70 71 72 73 74
    HFO-1132(E) mass % 13.0 15.0 17.0 15.0 17.0 19.0 21.0 23.0
    HFO-1123 mass % 50.0 48.0 46.0 50.0 48.0 46.0 44.0 42.0
    R32 mass % 37.0 37.0 37.0 0.0 0.0 0.0 0.0 0.0
    GWP 250 250 250 237 237 237 237 237
    COP ratio % (relative 96.3 96.4 96.4 96.1 96.2 96.2 96.3 96.4
    to R410A)
    Refrigerating % (relative 115.0 114.9 114.7 114.8 114.7 114.5 114.4 114.2
    capacity ratio to R410A)
  • TABLE 166
    Example Example Example Example Example Example Example Example
    Item Unit 75 76 77 78 79 80 81 82
    HFO-1132(E) mass % 25.0 27.0 11.0 19.0 21.0 23.0 25.0 27.0
    HFO-1123 mass % 40.0 38.0 52.0 44.0 42.0 40.0 38.0 36.0
    R32 mass % 0.0 0.0 0.0 37.0 37.0 37.0 37.0 37.0
    GWP 237 237 250 250 250 250 250 250
    COP ratio % (relative 96.4 96.5 96.2 96.5 96.5 96.6 96.7 96.8
    to R410A)
    Refrigerating % (relative 114.1 113.9 115.1 114.6 114.5 114.3 114.1 114.0
    capacity ratio to R410A)
  • The above results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, and the point (0.0, 100.0, 0.0) is on the left side are within the range of a figure surrounded by line segments that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point A″ (63.0, 0.0, 37.0),
    point B″ (0.0, 63.0, 37.0), and
    point (0.0, 100.0, 0.0),
    or on these line segments,
    the refrigerant has a GWP of 250 or less.
  • The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point A′ (81.6, 0.0, 18.4),
    point B′ (0.0, 81.6, 18.4), and
    point (0.0, 100.0, 0.0),
    or on these line segments,
    the refrigerant has a GWP of 125 or less.
  • The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point A (90.5, 0.0, 9.5),
    point B (0.0, 90.5, 9.5), and
    point (0.0, 100.0, 0.0),
    or on these line segments,
    the refrigerant has a GWP of 65 or less.
  • The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
  • point C (50.0, 31.6, 18.4),
    point U (28.7, 41.2, 30.1), and
    point D(52.2, 38.3, 9.5),
    or on these line segments,
    the refrigerant has a COP ratio of 96% or more relative to that of R410A.
  • In the above, the line segment CU is represented by coordinates (−0.0538z2+0.7888z+53.701, 0.0538z2−1.7888z+46.299, z), and the line segment UD is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z).
  • The points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the least-square method.
  • The points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the least-square method.
  • The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
  • point E (55.2, 44.8, 0.0),
    point T (34.8, 51.0, 14.2), and
    point F (0.0, 76.7, 23.3),
    or on these line segments,
    the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.
  • In the above, the line segment ET is represented by coordinates (−0.0547z2−0.5327z+53.4, 0.0547z2−0.4673z+46.6, z), and the line segment TF is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z).
  • The points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the least-square method.
  • The points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.
  • The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
  • point G (0.0, 76.7, 23.3),
    point R (21.0, 69.5, 9.5), and
    point H (0.0, 85.9, 14.1),
    or on these line segments,
    the refrigerant has a COP ratio of 93% or more relative to that of R410A.
  • In the above, the line segment GR is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and the line segment RH is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z).
  • The points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the least-square method.
  • The points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the least-square method.
  • In contrast, as shown in, for example, Comparative Examples 8, 9, 13, 15, 17, and 18, when R32 is not contained, the concentrations of HFO-1132(E) and HFO-1123, which have a double bond, become relatively high; this undesirably leads to deterioration, such as decomposition, or polymerization in the refrigerant compound.
  • (6) First Embodiment
  • Hereinafter, an air conditioner 1 that serves as a refrigeration cycle apparatus according to a first embodiment will be described with reference to FIG. 16 that is the schematic configuration diagram of a refrigerant circuit and FIG. 17 that is a schematic control block configuration diagram.
  • The air conditioner 1 is an apparatus that air-conditions a space to be air-conditioned by performing a vapor compression refrigeration cycle.
  • The air conditioner 1 mainly includes an outdoor unit 20, an indoor unit 30, a liquid-side connection pipe 6 and a gas-side connection pipe 5 connecting the outdoor unit 20 and the indoor unit 30, a remote control unit (not shown) serving as an input device and an output device, and a controller 7 that controls the operation of the air conditioner 1.
  • In the air conditioner 1, the refrigeration cycle in which refrigerant sealed in a refrigerant circuit 10 is compressed, cooled or condensed, decompressed, heated or evaporated, and then compressed again is performed. In the present embodiment, the refrigerant circuit 10 is filled with refrigerant for performing a vapor compression refrigeration cycle. The refrigerant is a refrigerant containing 1,2-difluoroethylene, and any one of the above-described refrigerants A to E may be used. The refrigerant circuit 10 is filled with refrigerating machine oil together with the refrigerant.
  • (6-1) Outdoor Unit 20
  • The outdoor unit 20 has substantially a rectangular parallelepiped box shape from its appearance, and has a structure in which a fan chamber and a machine chamber are formed (so-called, trunk structure) when the inside is divided by a partition plate, or the like.
  • The outdoor unit 20 is connected to the indoor unit 30 via the liquid-side connection pipe 6 and the gas-side connection pipe 5, and makes up part of the refrigerant circuit 10. The outdoor unit 20 mainly includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an outdoor fan 25, a liquid-side stop valve 29, and a gas-side stop valve 28.
  • The compressor 21 is a device that compresses low-pressure refrigerant into high pressure in the refrigeration cycle. Here, the compressor 21 is a hermetically sealed compressor in which a positive-displacement, such as a rotary type and a scroll type, compression element (not shown) is driven for rotation by a compressor motor. The compressor motor is used to change the displacement. The operation frequency of the compressor motor is controllable with an inverter. The compressor 21 is provided with an attached accumulator (not shown) at its suction side. The outdoor unit 20 of the present embodiment does not have a refrigerant container larger than the attached accumulator (a low-pressure receiver disposed at the suction side of the compressor 21, a high-pressure receiver disposed at a liquid side of the outdoor heat exchanger 23, or the like).
  • The four-way valve 22 is able to switch between a cooling operation connection state and a heating operation connection state by switching the status of connection. In the cooling operation connection state, a discharge side of the compressor 21 and the outdoor heat exchanger 23 are connected, and the suction side of the compressor 21 and the gas-side stop valve 28 are connected. In the heating operation connection state, the discharge side of the compressor 21 and the gas-side stop valve 28 are connected, and the suction side of the compressor 21 and the outdoor heat exchanger 23 are connected.
  • The outdoor heat exchanger 23 is a heat exchanger that functions as a condenser for high-pressure refrigerant in the refrigeration cycle during cooling operation and that functions as an evaporator for low-pressure refrigerant in the refrigeration cycle during heating operation. The outdoor heat exchanger 23 includes a plurality of heat transfer fins and a plurality of heat transfer tubes fixedly extending through the heat transfer fins.
  • The outdoor fan 25 takes outdoor air into the outdoor unit 20, causes the air to exchange heat with refrigerant in the outdoor heat exchanger 23, and then generates air flow for emitting the air to the outside. The outdoor fan 25 is driven for rotation by an outdoor fan motor. In the present embodiment, only one outdoor fan 25 is provided.
  • The outdoor expansion valve 24 is able to control the valve opening degree, and is provided between a liquid-side end portion of the outdoor heat exchanger 23 and the liquid-side stop valve 29.
  • The liquid-side stop valve 29 is a manual valve disposed at a connection point at which the outdoor unit 20 is connected to the liquid-side connection pipe 6.
  • The gas-side stop valve 28 is a manual valve disposed at a connection point at which the outdoor unit 20 is connected to the gas-side connection pipe 5.
  • The outdoor unit 20 includes an outdoor unit control unit 27 that controls the operations of parts that make up the outdoor unit 20. The outdoor unit control unit 27 includes a microcomputer including a CPU, a memory, and the like. The outdoor unit control unit 27 is connected to an indoor unit control unit 34 of indoor unit 30 via a communication line, and sends or receives control signals, or the like, to or from the indoor unit control unit 34. The outdoor unit control unit 27 is electrically connected to various sensors (not shown), and receives signals from the sensors.
  • (6-2) Indoor Unit 30
  • The indoor unit 30 is placed on a wall surface, or the like, in a room that is the space to be air-conditioned. The indoor unit 30 is connected to the outdoor unit 20 via the liquid-side connection pipe 6 and the gas-side connection pipe 5, and makes up part of the refrigerant circuit 10.
  • The indoor unit 30 includes an indoor heat exchanger 31, an indoor fan 32, and the like.
  • A liquid side of the indoor heat exchanger 31 is connected to the liquid-side connection pipe 6, and a gas side of the indoor heat exchanger 31 is connected to the gas-side connection pipe 5. The indoor heat exchanger 31 is a heat exchanger that functions as an evaporator for low-pressure refrigerant in the refrigeration cycle during cooling operation and that functions as a condenser for high-pressure refrigerant in the refrigeration cycle during heating operation. The indoor heat exchanger 31 includes a plurality of heat transfer fins and a plurality of heat transfer tubes fixedly extending through the heat transfer fins.
  • The indoor fan 32 takes indoor air into the indoor unit 30, causes the air to exchange heat with refrigerant in the indoor heat exchanger 31, and then generates air flow for emitting the air to the outside. The indoor fan 32 is driven for rotation by an indoor fan motor (not shown).
  • The indoor unit 30 includes an indoor unit control unit 34 that controls the operations of the parts that make up the indoor unit 30. The indoor unit control unit 34 includes a microcomputer including a CPU, a memory, and the like. The indoor unit control unit 34 is connected to the outdoor unit control unit 27 via a communication line, and sends or receives control signals, or the like, to or from the outdoor unit control unit 27.
  • The indoor unit control unit 34 is electrically connected to various sensors (not shown) provided inside the indoor unit 30, and receives signals from the sensors.
  • (6-3) Details of Controller 7
  • In the air conditioner 1, the outdoor unit control unit 27 and the indoor unit control unit 34 are connected via the communication line to make up the controller 7 that controls the operation of the air conditioner 1.
  • The controller 7 mainly includes a CPU (central processing unit) and a memory such as a ROM and a RAM. Various processes and controls made by the controller 7 are implemented by various parts included in the outdoor unit control unit 27 and/or the indoor unit control unit 34 functioning together.
  • (6-4) Operation Mode
  • Hereinafter, operation modes will be described.
  • The operation modes include a cooling operation mode and a heating operation mode.
  • The controller 7 determines whether the operation mode is the cooling operation mode or the heating operation mode and performs the selected operation mode based on an instruction received from the remote control unit, or the like.
  • (6-4-1) Cooling Operation Mode
  • In the air conditioner 1, in the cooling operation mode, the status of connection of the four-way valve 22 is set to the cooling operation connection state where the discharge side of the compressor 21 and the outdoor heat exchanger 23 are connected and the suction side of the compressor 21 and the gas-side stop valve 28 are connected, and refrigerant filled in the refrigerant circuit 10 is mainly circulated in order of the compressor 21, the outdoor heat exchanger 23, the outdoor expansion valve 24, and the indoor heat exchanger 31.
  • More specifically, when the cooling operation mode is started, refrigerant is taken into the compressor 21, compressed, and then discharged in the refrigerant circuit 10.
  • In the compressor 21, displacement control commensurate with a cooling load that is required from the indoor unit 30 is performed. Gas refrigerant discharged from the compressor 21 passes through the four-way valve 22 and flows into the gas-side end of the outdoor heat exchanger 23.
  • Gas refrigerant having flowed into the gas-side end of the outdoor heat exchanger 23 exchanges heat in the outdoor heat exchanger 23 with outdoor-side air that is supplied by the outdoor fan 25 to condense into liquid refrigerant and flows out from the liquid-side end of the outdoor heat exchanger 23.
  • Refrigerant having flowed out from the liquid-side end of the outdoor heat exchanger 23 is decompressed when passing through the outdoor expansion valve 24. The outdoor expansion valve 24 is controlled such that the degree of subcooling of refrigerant that passes through a liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition.
  • Refrigerant decompressed in the outdoor expansion valve 24 passes through the liquid-side stop valve 29 and the liquid-side connection pipe 6 and flows into the indoor unit 30.
  • Refrigerant having flowed into the indoor unit 30 flows into the indoor heat exchanger 31, exchanges heat in the indoor heat exchanger 31 with indoor air that is supplied by the indoor fan 32 to evaporate into gas refrigerant, and flows out from the gas-side end of the indoor heat exchanger 31. Gas refrigerant having flowed out from the gas-side end of the indoor heat exchanger 31 flows to the gas-side connection pipe 5.
  • Refrigerant having flowed through the gas-side connection pipe 5 passes through the gas-side stop valve 28 and the four-way valve 22, and is taken into the compressor 21 again.
  • (6-4-2) Heating Operation Mode
  • In the air conditioner 1, in the heating operation mode, the status of connection of the four-way valve 22 is set to the heating operation connection state where the discharge side of the compressor 21 and the gas-side stop valve 28 are connected and the suction side of the compressor 21 and the outdoor heat exchanger 23 are connected, and refrigerant filled in the refrigerant circuit 10 is mainly circulated in order of the compressor 21, the indoor heat exchanger 31, the outdoor expansion valve 24, and the outdoor heat exchanger 23.
  • More specifically, when the heating operation mode is started, refrigerant is taken into the compressor 21, compressed, and then discharged in the refrigerant circuit 10.
  • In the compressor 21, displacement control commensurate with a heating load that is required from the indoor unit 30 is performed. Gas refrigerant discharged from the compressor 21 flows through the four-way valve 22 and the gas-side connection pipe 5 and then flows into the indoor unit 30.
  • Refrigerant having flowed into the indoor unit 30 flows into the gas-side end of the indoor heat exchanger 31, exchanges heat in the indoor heat exchanger 31 with indoor air that is supplied by the indoor fan 32 to condense into refrigerant in a gas-liquid two-phase state or liquid refrigerant, and flows out from the liquid-side end of the indoor heat exchanger 31. Refrigerant having flowed out from the liquid-side end of the indoor heat exchanger 31 flows into the liquid-side connection pipe 6.
  • Refrigerant having flowed through the liquid-side connection pipe 6 is decompressed to a low pressure in the refrigeration cycle in the liquid-side stop valve 29 and the outdoor expansion valve 24. The outdoor expansion valve 24 is controlled such that the degree of subcooling of refrigerant that passes through a liquid-side outlet of the indoor heat exchanger 31 satisfies a predetermined condition. Refrigerant decompressed in the outdoor expansion valve 24 flows into the liquid-side end of the outdoor heat exchanger 23.
  • Refrigerant having flowed in from the liquid-side end of the outdoor heat exchanger 23 exchanges heat in the outdoor heat exchanger 23 with outdoor air that is supplied by the outdoor fan 25 to evaporate into gas refrigerant, and flows out from the gas-side end of the outdoor heat exchanger 23.
  • Refrigerant having flowed out from the gas-side end of the outdoor heat exchanger 23 passes through the four-way valve 22 and is taken into the compressor 21 again.
  • (6-5) Liquid-Side Connection Pipe 6
  • The liquid-side connection pipe 6 of the air conditioner 1 in which the above-described refrigerants A to E are used in the first embodiment has D0 in the range of “2≤D0≤4” where the pipe outer diameter is expressed by D0/8 inches, and has the same pipe outer diameter as a liquid-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the liquid-side connection pipe 6 is set to the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • Specifically, the liquid-side connection pipe 6 of the first embodiment preferably has D0 of 2 (that is, the pipe diameter is ¼ inches).
  • More specifically, the liquid-side connection pipe 6 of the present embodiment more preferably has D0 of 2.5 (that is, the pipe diameter is 5/16 inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 7.5 kW, more preferably has D0 of 2 (that is, the pipe diameter is ¼ inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 2.6 kW and less than 7.5 kW, and more preferably has D0 of 1.5 (that is, the pipe diameter is 3/16 inches) when the rated refrigeration capacity of the air conditioner 1 is less than 2.6 kW.
  • (6-6) Gas-Side Connection Pipe 5
  • The gas-side connection pipe 5 of the air conditioner 1 in which the above-described refrigerants A to E are used in the first embodiment has D0 in the range of “3≤D0≤8” where the pipe outer diameter is expressed by D0/8 inches, and has the same pipe outer diameter as the gas-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the gas-side connection pipe 5 is set to the same pipe outer diameter as the pipe outer diameter of the gas-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • Specifically, the gas-side connection pipe 5 of the first embodiment preferably has D0 of 4 (that is, the pipe diameter is ½ inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 6.0 kW, and preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) when the rated refrigeration capacity of the air conditioner 1 is less than 6.0 kW.
  • More specifically, the gas-side connection pipe 5 of the first embodiment more preferably has D0 of 4 (that is, the pipe diameter is ½ inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 6.0 kW, more preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) when the rated refrigeration capacity of the air conditioner 1 is greater than or equal to 3.2 kW and less than 6.0 kW, and more preferably has D0 of 2.5 (that is, the pipe diameter is 5/16 inches) when the rated refrigeration capacity of the air conditioner 1 is less than 3.2 kW.
  • (6-7) Characteristics of First Embodiment
  • In the above-described air conditioner 1, since refrigerant containing 1,2-difluoroethylene is used, a GWP can be sufficiently reduced.
  • In the air conditioner 1, when the pipe outer diameter of the liquid-side connection pipe 6 and the pipe outer diameter of the gas-side connection pipe 5 each fall within an associated predetermined range, a decrease in capacity can be suppressed even when the specific refrigerants A to E are used.
  • (6-8) Relationship Between Refrigerant and Pipe Outer Diameter of Connection Pipe
  • In the air conditioner 1 of the first embodiment, when not the refrigerants A to E are used but refrigerant R410A or R32 is used, the liquid-side connection pipe 6 and the gas-side connection pipe 5 each having the pipe outer diameter (inches) as shown in the following Table 167 and Table 168 are generally used according to the range of the rated refrigeration capacity.
  • In contrast to this, in the air conditioner 1 of the first embodiment, in the case where the refrigerant A (which also applies to the refrigerants B to E) of the present disclosure, containing 1,2-difluoroethylene, is used, when the liquid-side connection pipe 6 and the gas-side connection pipe 5 having the pipe outer diameters (inches) as shown in the following Table 167 or Table 168 are used according to the range of the rated refrigeration capacity, a decrease in capacity in the case where the refrigerant A (which also applies to the refrigerants B to E) of the present disclosure, containing 1,2-difluoroethylene, is used can be suppressed.
  • Rated R410A, R32 Refrigerant A
    Horse Refrigeration Gas-Side Liquid-Side Gas-Side Liquid-Side
    Power Capacity Connection Connection Connection Connection
    [HP] [kW] Pipe Pipe Pipe Pipe
    0.8 2.2 ¼ ¼
    0.9 2.5 ¼ ¼
    1.0 2.8 ¼ ¼
    1.3 3.6 ¼ ¼
    1.4 4.0 ¼ ¼
    2.0 5.6 ¼ ¼
    2.3 6.3 ½ ¼ ½ ¼
    2.5 7.1 ½ ¼ ½ ¼
    2.9 8.0 ½ ¼ ½ ¼
    3.2 9.0 ½ ¼ ½ ¼
  • Rated R410A, R32 Refrigerant A
    Horse Refrigeration Gas-Side Liquid-Side Gas-Side Liquid-Side
    Power Capacity Connection Connection Connection Connection
    [HP] [kW] Pipe Pipe Pipe Pipe
    0.8 2.2 ¼ 5/16 3/16
    0.9 2.5 ¼ 5/16 3/16
    1.0 2.8 ¼ 5/16 ¼
    1.3 3.6 ¼ ¼
    1.4 4.0 ¼ ¼
    2.0 5.6 ¼ ¼
    2.3 6.3 ½ ¼ ½ ¼
    2.5 7.1 ½ ¼ ½ ¼
    2.9 8.0 ½ ¼ ½ 5/16
    3.2 9.0 ½ ¼ ½ 5/16
  • Here, for cases where refrigerant R410A, refrigerant R32, or the refrigerant A of the present disclosure, containing 1,2-difluoroethylene, is used and the liquid-side connection pipe 6 and the gas-side connection pipe 5 having the pipe outer diameters shown in Table 168 are used in the air conditioner 1 of the first embodiment, FIG. 18 shows a pressure loss in the liquid-side connection pipe 6 during heating operation, and FIG. 19 shows a pressure loss in the gas-side connection pipe 5 during cooling operation. In calculating a pressure loss, controlled target values of a condensation temperature, an evaporating temperature, a degree of subcooling of refrigerant at the condenser outlet, and a degree of superheating of refrigerant at the evaporator outlet are commonalized, and pressure losses of refrigerant in the connection pipes are calculated based on a refrigerant circulation amount that is required for operation at a rated capacity commensurate with a horse power. The unit of horse power is HP.
  • As is apparent from FIG. 18 and FIG. 19, it is found that the refrigerant A of the present disclosure, containing 1,2-difluoroethylene, has an approximate behavior of pressure loss to the behavior of pressure loss of refrigerant R410A and a decrease in capacity can be suppressed when the refrigerant A is used in the air conditioner 1. This point also applies to the refrigerants B to E that are the same in containing 1,2-difluoroethylene.
  • (6-9) Modification A of First Embodiment
  • In the above-described first embodiment, the air conditioner including only one indoor unit is described as an example; however, the air conditioner may include a plurality of indoor units (with no indoor expansion valve) connected in parallel with each other.
  • (7) Second Embodiment
  • Hereinafter, an air conditioner 1 a that serves as a refrigeration cycle apparatus according to a second embodiment will be described with reference to FIG. 20 that is the schematic configuration diagram of a refrigerant circuit and FIG. 21 that is a schematic control block configuration diagram.
  • Hereinafter, mainly, the air conditioner 1 a of the second embodiment will be described with a focus on a portion different from the air conditioner 1 of the first embodiment.
  • In the air conditioner 1 a as well, the refrigerant circuit 10 is filled with a refrigerant mixture that contains 1,2-difluoroethylene and that is any one of the above-described refrigerants A to E as a refrigerant for performing a vapor compression refrigeration cycle. The refrigerant circuit 10 is filled with refrigerating machine oil together with the refrigerant.
  • (7-1) Outdoor Unit 20
  • In the outdoor unit 20 of the air conditioner 1 a of the second embodiment, a first outdoor fan 25 a and a second outdoor fan 25 b are provided as the outdoor fans 25. The outdoor heat exchanger 23 of the outdoor unit 20 of the air conditioner 1 a has a wide heat exchange area so as to adapt to air flow coming from the first outdoor fan 25 a and the second outdoor fan 25 b.
  • In the outdoor unit 20 of the air conditioner 1 a, instead of the outdoor expansion valve 24 of the outdoor unit 20 in the above-described first embodiment, a first outdoor expansion valve 44, an intermediate pressure receiver 41, and a second outdoor expansion valve 45 are sequentially provided between the liquid side of the outdoor heat exchanger 23 and the liquid-side stop valve 29. The first outdoor expansion valve 44 and the second outdoor expansion valve 45 each are able to control the valve opening degree. The intermediate pressure receiver 41 is a container that is able to store refrigerant. Both an end portion of a pipe extending from the first outdoor expansion valve 44 side and an end portion of a pipe extending from the second outdoor expansion valve 45 side are located in the internal space of the intermediate pressure receiver 41. The internal volume of the intermediate pressure receiver 41 is greater than the internal volume of the attached accumulator attached to the compressor 21 and is preferably greater than or equal to twice.
  • The outdoor unit 20 of the second embodiment has substantially a rectangular parallelepiped shape and has a structure in which a fan chamber and a machine chamber are formed (so-called, trunk structure) when divided by a partition plate, or the like, extending vertically.
  • The outdoor heat exchanger 23 includes, for example, a plurality of heat transfer fins and a plurality of heat transfer tubes fixedly extending through the heat transfer fins. The outdoor heat exchanger 23 is disposed in an L-shape in plan view.
  • In the above air conditioner 1 a, in the cooling operation mode, the first outdoor expansion valve 44 is, for example, controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition. In the cooling operation mode, the second outdoor expansion valve 45 is, for example, controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition.
  • In the heating operation mode, the second outdoor expansion valve 45 is, for example, controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the indoor heat exchanger 31 satisfies a predetermined condition. In the heating operation mode, the first outdoor expansion valve 44 is, for example, controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition.
  • (7-2) Indoor Unit 30
  • The indoor unit 30 of the second embodiment is placed so as to be suspended in an upper space in a room that is a space to be air-conditioned or placed at a ceiling surface or placed on a wall surface and used. The indoor unit 30 is connected to the outdoor unit 20 via the liquid-side connection pipe 6 and the gas-side connection pipe 5, and makes up part of the refrigerant circuit 10.
  • The indoor unit 30 includes the indoor heat exchanger 31, the indoor fan 32, and the like.
  • The indoor heat exchanger 31 of the second embodiment includes a plurality of heat transfer fins and a plurality of heat transfer tubes fixedly extending through the heat transfer fins.
  • (7-3) Liquid-Side Connection Pipe 6
  • The liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment may have D0 in the range of “2≤D0≤4” where the pipe outer diameter is expressed by D0/8 inches regardless of the relationship with the pipe outer diameter when R410A or R32 is used.
  • The liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment has D0 in the range of “2≤D0≤4” when the pipe outer diameter is expressed by D0/8 inches (where, “D0−⅛ inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used). Since the above-described refrigerants A to E cause a pressure loss more easily than refrigerant R32 but the pipe outer diameter of the liquid-side connection pipe 6 of the air conditioner 1 a of the second embodiment is greater than or equal to the pipe outer diameter when refrigerant R32 is used, a decrease in capacity can be suppressed. Specifically, the liquid-side connection pipe 6 of the air conditioner 1 a preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) where the pipe outer diameter is expressed by D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used) when the rated refrigeration capacity of the air conditioner 1 a is greater than 5.6 kW and less than 11.2 kW and more preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 6.3 kW and less than or equal to 10.0 kW.
  • The liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment has D0 in the range of “2≤D0≤4” where the pipe outer diameter is expressed by D0/8 inches, and has the same pipe outer diameter as the liquid-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the liquid-side connection pipe 6 is set to the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • Specifically, the liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) where the pipe outer diameter is expressed by D0/8 inches when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 6.3 kW, and preferably has D0 of 2 (that is, the pipe diameter is ¼ inches) when the rated refrigeration capacity of the air conditioner 1 a is less than 6.3 kW, and more preferably has the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe when refrigerant R410A is used in each case.
  • More specifically, the liquid-side connection pipe 6 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) where the pipe outer diameter is expressed by D0/8 inches when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 12.5 kW, preferably has D0 of 2.5 (that is, the pipe diameter is 5/16 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 6.3 kW and less than 12.5 kW, and preferably has D0 of 2 (that is, the pipe diameter is ¼ inches) when the rated refrigeration capacity of the air conditioner 1 a is less than 6.3 kW
  • (7-4) Gas-Side Connection Pipe 5
  • The gas-side connection pipe 5 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment may have D0 in the range of “3≤D0≤8” where the pipe outer diameter is expressed by D0/8 inches regardless of the relationship with the pipe outer diameter when R410A or R32 is used.
  • The gas-side connection pipe 5 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment has D0 in the range of “3≤D0≤8” when the pipe outer diameter is expressed by D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used). Since the above-described refrigerants A to E cause a pressure loss more easily than refrigerant R32 but the pipe outer diameter of the gas-side connection pipe 5 of the air conditioner 1 a of the second embodiment is greater than or equal to the pipe outer diameter when refrigerant R32 is used, a decrease in capacity can be suppressed. Specifically, the gas-side connection pipe 5 of the air conditioner 1 a preferably has D0 of 7 (that is, the pipe diameter is ⅞ inches) where the pipe outer diameter is expressed by D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used) when the rated refrigeration capacity of the air conditioner 1 a is greater than 22.4 kW, preferably has D0 of 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than 14.0 kW and less than 22.4 kW, preferably has D0 of 5 (that is, the pipe diameter is ⅝ inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than 5.6 kW and less than 11.2 kW, and preferably has D0 of 4 (that is, the pipe diameter is ½ inches) when the rated refrigeration capacity of the air conditioner 1 a is less than 4.5 kW In this case, D0 is more preferably 7 (that is, the pipe diameter is ⅞ inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 25.0 kW, D0 is more preferably 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 15.0 kW and less than 19.0 kW, D0 is more preferably 5 (that is, the pipe diameter is ⅝ inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 6.3 kW and less than 10.0 kW, and D0 is more preferably 4 (that is, the pipe diameter is ½ inches) when the rated refrigeration capacity of the air conditioner 1 a is less than 4.0 kW.
  • The gas-side connection pipe 5 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment has D0 in the range of “3≤D0≤8” where the pipe outer diameter is expressed by D0/8 inches, and has the same pipe outer diameter as the gas-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the gas-side connection pipe 5 is set to the same pipe outer diameter as the pipe outer diameter of the gas-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • Specifically, the gas-side connection pipe 5 of the air conditioner 1 a in which the above-described refrigerants A to E are used in the second embodiment preferably has D0 of 7 (that is, the pipe diameter is ⅞ inches) when the pipe outer diameter is expressed by D0/8 inches when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 25.0 kW, preferably has D0 of 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 15.0 kW and less than 25.0 kW, preferably has D0 of 5 (that is, the pipe diameter is ⅝ inches) when the rated refrigeration capacity of the air conditioner 1 a is greater than or equal to 6.3 kW and less than 15.0 kW, preferably has D0 of 4 (that is, the pipe diameter is ½ inches) when the rated refrigeration capacity of the air conditioner 1 a is less than 6.3 kW, and more preferably has the same pipe outer diameter as the pipe outer diameter of the gas-side connection pipe when refrigerant R410A is used in each case.
  • (7-5) Characteristics of Second Embodiment
  • In the above-described air conditioner 1 a according to the second embodiment as well, as well as the air conditioner 1 according to the first embodiment, since refrigerant containing 1,2-difluoroethylene is used, a GWP can be sufficiently reduced.
  • In the air conditioner 1 a, when the pipe outer diameter of the liquid-side connection pipe 6 and the pipe outer diameter of the gas-side connection pipe 5 each fall within an associated predetermined range, a decrease in capacity can be suppressed even when the specific refrigerants A to E are used.
  • (7-6) Relationship Between Refrigerant and Pipe Outer Diameter of Connection Pipe
  • In the air conditioner 1 a of the second embodiment, when not the refrigerants A to E are used but refrigerant R410A or R32 is used, the liquid-side connection pipe 6 and the gas-side connection pipe 5 each having the pipe outer diameter (inches) as shown in the following Table 169 and Table 170 are generally used according to the range of the rated refrigerationg capacity.
  • In contrast to this, in the air conditioner 1 a of the second embodiment, in the case where the refrigerant A (which also applies to the refrigerants B to E) of the present disclosure, containing 1,2-difluoroethylene, is used, when the liquid-side connection pipe 6 and the gas-side connection pipe 5 having the pipe outer diameters (inches) as shown in the following Table 169 or Table 170 according to the range of the rated refrigeration capacity, a decrease in capacity in the case where the refrigerant A (which also applies to the refrigerants B to E) of the present disclosure, containing 1,2-difluoroethylene, is used can be suppressed.
  • Rated R410A R32 Refrigerant A
    Horse Refrigeration Gas-Side Liquid-Side Gas-Side Liquid-Side Gas-Side Liquid-Side
    Power Capacity Connection Connection Connection Connection Connection Connection
    [HP] [kW] Pipe Pipe Pipe Pipe Pipe Pipe
    0.8 2.2 ½ ¼ ¼ ½ ¼
    1.0 2.8 ½ ¼ ¼ ½ ¼
    1.3 3.6 ½ ¼ ¼ ½ ¼
    1.6 4.5 ½ ¼ ½ ¼ ½ ¼
    2.0 5.6 ½ ¼ ½ ¼ ½ ¼
    2.5 7.1 ½ ¼
    2.9 8.0 ½ ¼
    3.2 9.0 ½ ¼
    4.0 11.2
    5.0 14.0
    6.0 16.0 6/8 6/8
    8.0 22.4 6/8 6/8 6/8
    10.0 28.0 6/8
  • Rated R410A R32 Refrigerant A
    Horse Refrigeration Gas-Side Liquid-Side Gas-Side Liquid-Side Gas-Side Liquid-Side
    Power Capacity Connection Connection Connection Connection Connection Connection
    [HP] [kW] Pipe Pipe Pipe Pipe Pipe Pipe
    0.8 2.2 ½ ¼ ¼ ½ ¼
    1.0 2.8 ½ ¼ ¼ ½ ¼
    1.3 3.6 ½ ¼ ¼ ½ ¼
    1.6 4.5 ½ ¼ ½ ¼ ½ ¼
    2.0 5.6 ½ ¼ ½ ¼ ½ ¼
    2.5 7.1 ½ ¼ 5/16
    2.9 8.0 ½ ¼ 5/16
    3.2 9.0 ½ ¼ 5/16
    4.0 11.2 5/16
    5.0 14.0
    6.0 16.0 6/8 6/8
    8.0 22.4 6/8 6/8 6/8
    10.0 28.0 6/8
  • Here, for cases where refrigerant R410A, refrigerant R32, or the refrigerant A of the present disclosure, containing 1,2-difluoroethylene, is used and the liquid-side connection pipe 6 and the gas-side connection pipe 5 having the pipe outer diameters shown in Table 170 are used in the air conditioner 1 a of the second embodiment, FIG. 22 shows a pressure loss in the liquid-side connection pipe 6 during heating operation, and FIG. 23 shows a pressure loss in the gas-side connection pipe 5 during cooling operation. In calculating a pressure loss, controlled target values of a condensation temperature, an evaporating temperature, a degree of subcooling of refrigerant at the condenser outlet, and a degree of superheating of refrigerant at the evaporator outlet are commonalized, and pressure losses of refrigerant in the connection pipes are calculated based on a refrigerant circulation amount that is required for operation at a rated capacity commensurate with a horse power. The unit of horse power is HP.
  • As is apparent from FIG. 22 and FIG. 23, it is found that the refrigerant A of the present disclosure, containing 1,2-difluoroethylene, has an approximate behavior of pressure loss to the behavior of pressure loss of refrigerant R410A and a decrease in capacity can be suppressed when the refrigerant A is used in the air conditioner 1 a. This point also applies to the refrigerants B to E that are the same in containing 1,2-difluoroethylene.
  • (7-7) Modification A of Second Embodiment
  • In the above-described second embodiment, the air conditioner including only one indoor unit is described as an example; however, the air conditioner may include a plurality of indoor units (with no indoor expansion valve) connected in parallel with each other.
  • (8) Third Embodiment
  • Hereinafter, an air conditioner 1 b that serves as a refrigeration cycle apparatus according to a third embodiment will be described with reference to FIG. 24 that is the schematic configuration diagram of a refrigerant circuit and FIG. 25 that is a schematic control block configuration diagram.
  • Hereinafter, mainly, the air conditioner 1 b of the third embodiment will be described with a focus on a portion different from the air conditioner 1 of the first embodiment.
  • In the air conditioner 1 b as well, the refrigerant circuit 10 is filled with a refrigerant mixture that contains 1,2-difluoroethylene and that is any one of the above-described refrigerants A to E as a refrigerant for performing a vapor compression refrigeration cycle. The refrigerant circuit 10 is filled with refrigerating machine oil together with the refrigerant.
  • (8-1) Outdoor Unit 20
  • In the outdoor unit 20 of the air conditioner 1 b of the third embodiment, a low-pressure receiver 26, a subcooling heat exchanger 47, and a subcooling circuit 46 are provided in the outdoor unit 20 in the above-described first embodiment.
  • The low-pressure receiver 26 is a container that is provided between one of connection ports of the four-way valve 22 and the suction side of the compressor 21 and that is able to store refrigerant. In the present embodiment, the low-pressure receiver 26 is provided separately from the attached accumulator of the compressor 21. The internal volume of the low-pressure receiver 26 is greater than the internal volume of the attached accumulator attached to the compressor 21 and is preferably greater than or equal to twice.
  • The subcooling heat exchanger 47 is provided between the outdoor expansion valve 24 and the liquid-side stop valve 29.
  • The subcooling circuit 46 is a circuit that branches off from a main circuit between the outdoor expansion valve 24 and the subcooling heat exchanger 47 and that merges with a portion halfway from one of the connection ports of the four-way valve 22 to the low-pressure receiver 26. A subcooling expansion valve 48 that decompresses refrigerant passing therethrough is provided halfway in the subcooling circuit 46. Refrigerant flowing through the subcooling circuit 46 and decompressed by the subcooling expansion valve 48 exchanges heat with refrigerant flowing through the main circuit side in the subcooling heat exchanger 47. Thus, refrigerant flowing through the main circuit side is further cooled, and refrigerant flowing through the subcooling circuit 46 evaporates.
  • The outdoor unit 20 of the air conditioner 1 b according to the third embodiment may have, for example, a so-called up-blow structure that takes in air from the lower side and discharges air outward from the upper side.
  • (8-2) First Indoor Unit 30 and Second Indoor Unit 35
  • In the air conditioner 1 b according to the third embodiment, instead of the indoor unit 30 in the above-described first embodiment, a first indoor unit 30 and a second indoor unit 35 are provided in parallel with each other.
  • The first indoor unit 30, as well as the indoor unit 30 in the above-described first embodiment, includes a first indoor heat exchanger 31, a first indoor fan 32, and a first indoor unit control unit 34, and further includes a first indoor expansion valve 33 at the liquid side of the first indoor heat exchanger 31. The first indoor expansion valve 33 is able to control the valve opening degree.
  • The second indoor unit 35, as well as the first indoor unit 30, includes a second indoor heat exchanger 36, a second indoor fan 37, a second indoor unit control unit 39, and a second indoor expansion valve 38 provided at the liquid side of the second indoor heat exchanger 36. The second indoor expansion valve 38 is able to control the valve opening degree.
  • The specific structures of the first indoor unit 30 and second indoor unit 35 of the air conditioner 1 b according to the third embodiment each have a similar configuration to the indoor unit 30 of the second embodiment except the above-described first indoor expansion valve 33 and second indoor expansion valve 38.
  • The controller 7 of the third embodiment is made up of the outdoor unit control unit 27, the first indoor unit control unit 34, and the second indoor unit control unit 39 communicably connected to one another.
  • In the above air conditioner 1 b, in the cooling operation mode, the outdoor expansion valve 24 is controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the outdoor heat exchanger 23 satisfies a predetermined condition. In the cooling operation mode, the subcooling expansion valve 48 is controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition. In the cooling operation mode, the first indoor expansion valve 33 and the second indoor expansion valve 38 are controlled to a fully open state.
  • In the heating operation mode, the first indoor expansion valve 33 is controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the first indoor heat exchanger 31 satisfies a predetermined condition. Similarly, the second indoor expansion valve 38 is also controlled such that the degree of subcooling of refrigerant that passes through the liquid-side outlet of the second indoor heat exchanger 36 satisfies a predetermined condition. In the heating operation mode, the outdoor expansion valve 45 is controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition. In the heating operation mode, the subcooling expansion valve 48 is controlled such that the degree of superheating of refrigerant that the compressor 21 takes in satisfies a predetermined condition.
  • (8-3) Liquid-Side Connection Pipe 6
  • The liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment may have D0 in the range of “2≤D0≤4” where the pipe outer diameter is expressed by D0/8 inches regardless of the relationship with the pipe outer diameter when R410A or R32 is used.
  • The liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment has D0 in the range of “2≤D0≤4” when the pipe outer diameter is expressed by D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used). Since the above-described refrigerants A to E cause a pressure loss more easily than refrigerant R32 but the pipe outer diameter of the liquid-side connection pipe 6 of the air conditioner 1 b of the third embodiment is greater than or equal to the pipe outer diameter when refrigerant R32 is used, a decrease in capacity can be suppressed. Specifically, the liquid-side connection pipe 6 of the air conditioner 1 b preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) where the pipe outer diameter is expressed by D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the liquid-side connection pipe when refrigerant R32 is used) when the rated refrigeration capacity of the air conditioner 1 b is greater than 5.6 kW and less than 11.2 kW and more preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW and less than or equal to 10.0 kW.
  • The liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment has D0 in the range of “2≤D0≤4” where the pipe outer diameter is expressed by D0/8 inches, and has the same pipe outer diameter as the liquid-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the liquid-side connection pipe 6 is set to the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • Specifically, the liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) where the pipe outer diameter is expressed by D0/8 inches when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW, and preferably has D0 of 2 (that is, the pipe diameter is ¼ inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 6.3 kW, and more preferably has the same pipe outer diameter as the pipe outer diameter of the liquid-side connection pipe in the case where refrigerant R410A is used in each case.
  • More specifically, the liquid-side connection pipe 6 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment preferably has D0 of 3 (that is, the pipe diameter is ⅜ inches) where the pipe outer diameter is expressed by D0/8 inches when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 12.5 kW, preferably has D0 of 2.5 (that is, the pipe diameter is 5/16 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW and less than 12.5 kW, and preferably has D0 of 2 (that is, the pipe diameter is ¼ inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 6.3 kW
  • (8-4) Gas-Side Connection Pipe 5
  • The liquid-side connection pipe 5 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment may have D0 in the range of “3≤D0≤8” where the pipe outer diameter is expressed by D0/8 inches regardless of the relationship with the pipe outer diameter when R410A or R32 is used.
  • The gas-side connection pipe 5 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment has D0 in the range of “3≤D0≤8” when the pipe outer diameter is expressed by D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used). Since the above-described refrigerants A to E cause a pressure loss more easily than refrigerant R32 but the pipe outer diameter of the gas-side connection pipe 5 of the air conditioner 1 b of the third embodiment is greater than or equal to the pipe outer diameter when refrigerant R32 is used, a decrease in capacity can be suppressed. Specifically, the gas-side connection pipe 5 of the air conditioner 1 b preferably has D0 of 7 (that is, the pipe diameter is ⅞ inches) where the pipe outer diameter is expressed by D0/8 inches (where, “D0-⅛ inches” is the pipe outer diameter of the gas-side connection pipe when refrigerant R32 is used) when the rated refrigeration capacity of the air conditioner 1 b is greater than 22.4 kW, preferably has D0 of 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than 14.0 kW and less than 22.4 kW, preferably has D0 of 5 (that is, the pipe diameter is ⅝ inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than 5.6 kW and less than 11.2 kW, and preferably has D0 of 4 (that is, the pipe diameter is ½ inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 4.5 kW. In this case, D0 is more preferably 7 (that is, the pipe diameter is ⅞ inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 25.0 kW, D0 is more preferably 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 15.0 kW and less than 19.0 kW, D0 is more preferably (that is, the pipe diameter is ⅝ inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW and less than 10.0 kW, and D0 is more preferably 4 (that is, the pipe diameter is ½ inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 4.0 kW.
  • The gas-side connection pipe 5 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment has D0 in the range of “3≤D0≤8” where the pipe outer diameter is expressed by D0/8 inches, and has the same pipe outer diameter as the gas-side connection pipe when refrigerant R410A is used. Since the physical properties such as pressure losses of the above-described refrigerants A to E are approximate to those of refrigerant R410A, when the pipe outer diameter of the gas-side connection pipe 5 is set to the same pipe outer diameter as the pipe outer diameter of the gas-side connection pipe when refrigerant R410A is used, a decrease in capacity can be suppressed.
  • Specifically, the gas-side connection pipe 5 of the air conditioner 1 b in which the above-described refrigerants A to E are used in the third embodiment preferably has D0 of 7 (that is, the pipe diameter is ⅞ inches) when the pipe outer diameter is expressed by D0/8 inches when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 25.0 kW, preferably has D0 of 6 (that is, the pipe diameter is 6/8 inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 15.0 kW and less than 25.0 kW, preferably has D0 of 5 (that is, the pipe diameter is ⅝ inches) when the rated refrigeration capacity of the air conditioner 1 b is greater than or equal to 6.3 kW and less than 15.0 kW, preferably has D0 of 4 (that is, the pipe diameter is ½ inches) when the rated refrigeration capacity of the air conditioner 1 b is less than 6.3 kW, and more preferably has the same pipe outer diameter as the pipe outer diameter of the gas-side connection pipe when refrigerant R410A is used in each case.
  • (8-5) Characteristics of Third Embodiment
  • In the above-described air conditioner 1 b according to the third embodiment as well, as well as the air conditioner 1 according to the first embodiment, since refrigerant containing 1,2-difluoroethylene is used, a GWP can be sufficiently reduced.
  • In the air conditioner 1 b, when the pipe outer diameter of the liquid-side connection pipe 6 and the pipe outer diameter of the gas-side connection pipe 5 each fall within an associated predetermined range, a decrease in capacity can be suppressed even when the specific refrigerants A to E are used.
  • (8-6) Relationship Between Refrigerant and Pipe Outer Diameter of Connection Pipe
  • In the air conditioner 1 b of the third embodiment, when not the refrigerants A to E are used but refrigerant R410A or R32 is used, the liquid-side connection pipe 6 and the gas-side connection pipe 5 each having the pipe outer diameter (inches) as shown in the following Table 171 and Table 172 are generally used according to the range of the rated refrigeration capacity.
  • In contrast to this, in the air conditioner 1 b of the third embodiment, in the case where the refrigerant A (which also applies to the refrigerants B to E) of the present disclosure, containing 1,2-difluoroethylene, is used, when the liquid-side connection pipe 6 and the gas-side connection pipe 5 having the pipe outer diameters (inches) as shown in the following Table 171 or Table 172 are used according to the range of the rated refrigeration capacity, a decrease in capacity in the case where the refrigerant A (which also applies to the refrigerants B to E) of the present disclosure, containing 1,2-difluoroethylene, is used can be suppressed.
  • Rated R410A R32 Refrigerant A
    Horse Refrigeration Gas-Side Liquid-Side Gas-Side Liquid-Side Gas-Side Liquid-Side
    Power Capacity Connection Connection Connection Connection Connection Connection
    [HP] [kW] Pipe Pipe Pipe Pipe Pipe Pipe
    0.8 2.2 ½ ¼ ¼ ½ ¼
    1.0 2.8 ½ ¼ ¼ ½ ¼
    1.3 3.6 ½ ¼ ¼ ½ ¼
    1.6 4.5 ½ ¼ ½ ¼ ½ ¼
    2.0 5.6 ½ ¼ ½ ¼ ½ ¼
    2.5 7.1 ½ ¼
    2.9 8.0 ½ ¼
    3.2 9.0 ½ ¼
    4.0 11.2
    5.0 14.0
    6.0 16.0 6/8 6/8
    8.0 22.4 6/8 6/8 6/8
    10.0 28.0 6/8
  • Rated R410A R32 Refrigerant A
    Horse Refrigeration Gas-Side Liquid-Side Gas-Side Liquid-Side Gas-Side Liquid-Side
    Power Capacity Connection Connection Connection Connection Connection Connection
    [HP] [kW] Pipe Pipe Pipe Pipe Pipe Pipe
    0.8 2.2 ½ ¼ ¼ ½ ¼
    1.0 2.8 ½ ¼ ¼ ½ ¼
    1.3 3.6 ½ ¼ ¼ ½ ¼
    1.6 4.5 ½ ¼ ½ ¼ ½ ¼
    2.0 5.6 ½ ¼ ½ ¼ ½ ¼
    2.5 7.1 ½ ¼ 5/16
    2.9 8.0 ½ ¼ 5/16
    3.2 9.0 ½ ¼ 5/16
    4.0 11.2 5/16
    5.0 14.0
    6.0 16.0 6/8 6/8
    8.0 22.4 6/8 6/8 6/8
    10.0 28.0 6/8
  • Here, for cases where refrigerant R410A, refrigerant R32, or the refrigerant A of the present disclosure, containing 1,2-difluoroethylene, is used and the liquid-side connection pipe 6 and the gas-side connection pipe 5 having the pipe outer diameters shown in Table 172 are used in the air conditioner 1 b of the third embodiment, FIG. 26 shows a pressure loss in the liquid-side connection pipe 6 during heating operation, and FIG. 27 shows a pressure loss in the gas-side connection pipe 5 during cooling operation. In calculating a pressure loss, controlled target values of a condensation temperature, an evaporating temperature, a degree of subcooling of refrigerant at the condenser outlet, and a degree of superheating of refrigerant at the evaporator outlet are commonalized, and pressure losses of refrigerant in the connection pipes are calculated based on a refrigerant circulation amount that is required for operation at a rated capacity commensurate with a horse power. The unit of horse power is HP.
  • As is apparent from FIG. 26 and FIG. 27, it is found that the refrigerant A of the present disclosure, containing 1,2-difluoroethylene, has an approximate behavior of pressure loss to the behavior of pressure loss of refrigerant R410A and a decrease in capacity can be suppressed when the refrigerant A is used in the air conditioner 1 b. This point also applies to the refrigerants B to E that are the same in containing 1,2-difluoroethylene.
  • (9) Others
  • An air conditioner or an outdoor unit may be made up of a combination of the above-described first embodiment to third embodiment and modifications as needed.
  • The embodiments of the present disclosure are described above; however, it is understood that various modifications of modes and details are applicable without departing from the purport or scope of the present disclosure recited in the claims.
  • REFERENCE SIGNS LIST
      • 1, 1 a, 1 b air conditioner (refrigeration cycle apparatus)
      • 5 gas-side connection pipe
      • 6 liquid-side connection pipe
      • 10 refrigerant circuit
      • 20 outdoor unit
      • 21 compressor
      • 23 outdoor heat exchanger (heat source-side heat exchanger)
      • 24 outdoor expansion valve (decompression part)
      • 30 indoor unit, first indoor unit
      • 31 indoor heat exchanger, first indoor heat exchanger (service-side heat exchanger)
      • 35 second indoor unit
      • 36 second indoor heat exchanger (service-side heat exchanger)
      • 44 first outdoor expansion valve (decompression part)
      • 45 second outdoor expansion valve (decompression part)
    CITATION LIST Patent Literature
      • PTL 1 International Publication No. 2015/141678

Claims (39)

1. A refrigeration cycle apparatus comprising a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a decompression part, a liquid-side connection pipe, a service-side heat exchanger, and a gas-side connection pipe are connected, wherein
a refrigerant containing at least 1,2-difluoroethylene is used,
a pipe outer diameter of the liquid-side connection pipe and a pipe outer diameter of the gas-side connection pipe each are D0/8 inches (where, “D0-⅛ inches” is a pipe outer diameter of a connection pipe when refrigerant R32 is used),
in the liquid-side connection pipe, a range of the D0 is “2≤D0≤4”, and
in the gas-side connection pipe, a range of the D0 is “3≤D0≤8”.
2. The refrigeration cycle apparatus according to claim 1, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than 5.6 kW and less than 11.2 kW, and the D0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is ⅜ inches).
3. The refrigeration cycle apparatus according to claim 1, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than 22.4 kW, and the D0 of the gas-side connection pipe is 7 (that is, a pipe diameter is ⅞ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is greater than 14.0 kW and less than 22.4 kW, and the D0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is greater than 5.6 kW and less than 11.2 kW, and the D0 of the gas-side connection pipe is 5 (that is, the pipe diameter is ⅝ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 4.5 kW, and the D0 of the gas-side connection pipe is 4 (that is, the pipe diameter is ½ inches).
4. A refrigeration cycle apparatus comprising a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a decompression part, a liquid-side connection pipe, a service-side heat exchanger, and a gas-side connection pipe are connected, wherein
a refrigerant containing at least 1,2-difluoroethylene is used,
a pipe outer diameter of the liquid-side connection pipe and a pipe outer diameter of the gas-side connection pipe each are D0/8 inches,
in the liquid-side connection pipe, a range of the D0 is “2≤D0≤4”,
in the gas-side connection pipe, a range of the D0 is “3≤D0≤8”, and
the pipe outer diameter of the liquid-side connection pipe and the pipe outer diameter of the gas-side connection pipe are equal to pipe outer diameters of connection pipes when refrigerant R410A is used.
5. The refrigeration cycle apparatus according to claim 4, wherein
the D0 of the liquid-side connection pipe is 2 (that is, a pipe diameter is ¼ inches).
6. The refrigeration cycle apparatus according to claim 4, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW, and the D0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is ⅜ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is ¼ inches).
7. The refrigeration cycle apparatus according to claim 4, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.0 kW, and the D0 of the gas-side connection pipe is 4 (that is, a pipe diameter is ½ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.0 kW, and the D0 of the gas-side connection pipe is 3 (that is, the pipe diameter is ⅜ inches).
8. The refrigeration cycle apparatus according to claim 4, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 25.0 kW, and the D0 of the gas-side connection pipe is 7 (that is, a pipe diameter is ⅞ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 15.0 kW and less than 25.0 kW, and the D0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 15.0 kW, and the D0 of the gas-side connection pipe is 5 (that is, the pipe diameter is ⅝ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D0 of the gas-side connection pipe is 4 (that is, the pipe diameter is ½ inches).
9. A refrigeration cycle apparatus comprising a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a decompression part, a liquid-side connection pipe, a service-side heat exchanger, and a gas-side connection pipe are connected, wherein
a refrigerant containing at least 1,2-difluoroethylene is used,
a pipe outer diameter of the liquid-side connection pipe and a pipe outer diameter of the gas-side connection pipe each are D0/8 inches,
in the liquid-side connection pipe, a range of the D0 is “2≤D0≤4”, and
in the gas-side connection pipe, a range of the D0 is “3≤D0≤8”.
10. The refrigeration cycle apparatus according to claim 9, wherein
the D0 of the liquid-side connection pipe is 2 (that is, a pipe diameter is ¼ inches).
11. The refrigeration cycle apparatus according to claim 9, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 7.5 kW, and the D0 of the liquid-side connection pipe is 2.5 (that is, a pipe diameter is 5/16 inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 2.6 kW and less than 7.5 kW, and the D0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is ¼ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 2.6 kW, and the D0 of the liquid-side connection pipe is 1.5 (that is, the pipe diameter is 3/16 inches).
12. The refrigeration cycle apparatus according to claim 9, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW, and the D0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is ⅜ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is ¼ inches).
13. The refrigeration cycle apparatus according to claim 9, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 12.5 kW, and the D0 of the liquid-side connection pipe is 3 (that is, a pipe diameter is ⅜ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 12.5 kW, and the D0 of the liquid-side connection pipe is 2.5 (that is, the pipe diameter is 5/16 inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D0 of the liquid-side connection pipe is 2 (that is, the pipe diameter is ¼ inches).
14. The refrigeration cycle apparatus according to claim 9, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.0 kW, and the D0 of the gas-side connection pipe is 4 (that is, a pipe diameter is ½ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.0 kW, and the D0 of the gas-side connection pipe is 3 (that is, the pipe diameter is ⅜ inches).
15. The refrigeration cycle apparatus according to claim 9, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.0 kW, and the D0 of the gas-side connection pipe is 4 (that is, a pipe diameter is ½ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 3.2 kW and less than 6.0 kW, and the D0 of the gas-side connection pipe is 3 (that is, the pipe diameter is ⅜ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 3.2 kW, and the D0 of the gas-side connection pipe is 2.5 (that is, the pipe diameter is 5/16 inches).
16. The refrigeration cycle apparatus according to claim 9, wherein
a rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 25.0 kW, and the D0 of the gas-side connection pipe is 7 (that is, a pipe diameter is ⅞ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 15.0 kW and less than 25.0 kW, and the D0 of the gas-side connection pipe is 6 (that is, the pipe diameter is 6/8 inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is greater than or equal to 6.3 kW and less than 15.0 kW, and the D0 of the gas-side connection pipe is 5 (that is, the pipe diameter is ⅝ inches), or
the rated refrigeration capacity of the refrigeration cycle apparatus is less than 6.3 kW, and the D0 of the gas-side connection pipe is 4 (that is, the pipe diameter is ½ inches).
17. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
18. The refrigeration cycle apparatus according to claim 17,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line segments BD, CO, and OA);
the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments BD, CO, and OA are straight lines.
19. The refrigeration cycle apparatus according to claim 17,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
point G (72.0, 28.0, 0.0),
point I (72.0, 0.0, 28.0),
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments IA, BD, and CG);
the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments GI, IA, BD, and CG are straight lines.
20. The refrigeration cycle apparatus according to claim 17,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point N (68.6, 16.3, 15.1),
point K (61.3, 5.4, 33.3),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments JP, BD, and CG are straight lines.
21. The refrigeration cycle apparatus according to claim 17,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments JP, LM, BD, and CG are straight lines.
22. The refrigeration cycle apparatus according to claim 17,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments (excluding the points on the line segment BF);
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
the line segment TP is represented by coordinates x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
the line segments LM and BF are straight lines.
23. The refrigeration cycle apparatus according to claim 17,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point Q (62.8, 29.6, 7.6), and
point R (49.8, 42.3, 7.9),
or on the above line segments;
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment RP is represented by coordinates x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
the line segments LQ and QR are straight lines.
24. The refrigeration cycle apparatus according to claim 17,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
point S (62.6, 28.3, 9.1),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments,
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
the line segment TS is represented by coordinates x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
the line segments SM and BF are straight lines.
25. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
26. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
27. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0-a, 0.0),
or on the straight lines GI and AB (excluding point C; point I, point A, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0-a, 0.0),
or on the straight lines GI and AB (excluding point C; point I, point A, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0-a, 0.0),
or on the straight lines GI and AB (excluding point C; point I, point A, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0-a, 0.0),
or on the straight lines GI and AB (excluding point C, point I, point A, point B, and point W).
28. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,−0.0105a2+0.8577a+33.177),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0-a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0-a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0-a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0-a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
29. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments U, JN, NE, and EI that connect the following 4 points:
point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI;
the line segment U is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
the line segments JN and EI are straight lines.
30. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG; and GM that connect the following 5 points:
point M (52.6, 0.0, 47.4),
point M′(39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM);
the line segment MM′ is represented by coordinates 0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
the line segment M′N is represented by coordinates 0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
the line segments NV and GM are straight lines.
31. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf), wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments;
the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
the line segment UO is a straight line.
32. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments;
the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
the line segment RT is represented by coordinates 0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
the line segment TL is a straight line.
33. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments;
the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
the line segment ST is represented by coordinates 0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
the line segment TP is a straight line.
34. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG; and GI that connect the following 6 points:
point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GI);
the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments KB′ and GI are straight lines.
35. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments U, JR, RG; and GI that connect the following 4 points:
point I (72.0, 28.0, 0.0),
point J (57.7, 32.8, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GI);
the line segment U is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
36. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG; and GM that connect the following 6 points:
point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GM);
the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments PB′ and GM are straight lines.
37. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32), wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG; and GM that connect the following 4 points:
point M (47.1, 52.9, 0.0),
point N (38.5, 52.1, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GM);
the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
38. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (31.8, 49.8, 18.4),
point S (25.4, 56.2, 18.4), and
point T (34.8, 51.0, 14.2),
or on these line segments;
the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
the line segment PS is a straight line.
39. The refrigeration cycle apparatus according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
point Q (28.6, 34.4, 37.0),
point B″ (0.0, 63.0, 37.0),
point D (0.0, 67.0, 33.0), and
point U (28.7, 41.2, 30.1),
or on these line segments (excluding the points on the line segment B″D);
the line segment DU is represented by coordinates (−3.4962z2+210.71 z−3146.1, 3.4962z2−211.71z+3246.1, z),
the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
the line segments QB″ and B″D are straight lines.
US16/954,702 2017-12-18 2018-12-18 Refrigeration cycle apparatus Abandoned US20200362215A1 (en)

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
JP2017-242185 2017-12-18
JP2017242185 2017-12-18
JP2017242186 2017-12-18
JP2017242183 2017-12-18
JP2017-242183 2017-12-18
JP2017242187 2017-12-18
JP2017-242187 2017-12-18
JP2017-242186 2017-12-18
PCT/JP2018/037483 WO2019123782A1 (en) 2017-12-18 2018-10-05 Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
JPPCT/JP2018/037483 2018-10-05
JPPCT/JP2018/038747 2018-10-17
JPPCT/JP2018/038748 2018-10-17
PCT/JP2018/038747 WO2019123805A1 (en) 2017-12-18 2018-10-17 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
PCT/JP2018/038748 WO2019123806A1 (en) 2017-12-18 2018-10-17 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
JPPCT/JP2018/038749 2018-10-17
PCT/JP2018/038746 WO2019123804A1 (en) 2017-12-18 2018-10-17 Refrigerant-containing composition, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
JPPCT/JP2018/038746 2018-10-17
PCT/JP2018/038749 WO2019123807A1 (en) 2017-12-18 2018-10-17 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
PCT/JP2018/046581 WO2019124379A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046581 A-371-Of-International WO2019124379A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/912,166 Continuation-In-Part US20200393178A1 (en) 2017-12-18 2020-06-25 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
US20200362215A1 true US20200362215A1 (en) 2020-11-19

Family

ID=66992715

Family Applications (22)

Application Number Title Priority Date Filing Date
US16/954,651 Abandoned US20200339856A1 (en) 2017-12-18 2018-11-13 Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US16/954,631 Abandoned US20200392389A1 (en) 2017-12-18 2018-11-13 Refrigeration cycle apparatus
US16/954,613 Abandoned US20200309437A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US16/955,465 Abandoned US20210003323A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus
US16/954,973 Abandoned US20200333051A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle
US16/954,669 Abandoned US20210164703A1 (en) 2017-12-18 2018-12-10 Air-conditioning unit
US16/954,956 Abandoned US20200378662A1 (en) 2017-12-18 2018-12-11 Air conditioning apparatus
US16/954,967 Abandoned US20200309411A1 (en) 2017-12-18 2018-12-13 Warm-water generating apparatus
US16/955,218 Abandoned US20200333049A1 (en) 2017-12-18 2018-12-13 Refrigeration apparatus
US16/954,745 Abandoned US20210095897A1 (en) 2017-12-18 2018-12-17 Heat source unit and refrigeration cycle apparatus
US16/954,718 Abandoned US20200386459A1 (en) 2017-12-18 2018-12-17 Heat exchange unit
US16/955,222 Abandoned US20200333041A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/772,927 Abandoned US20210163804A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/955,565 Active US11535781B2 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,961 Abandoned US20210164701A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/954,679 Abandoned US20200309419A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/955,207 Abandoned US20200340714A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/954,702 Abandoned US20200362215A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,953 Abandoned US20210164698A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/772,976 Abandoned US20200393175A1 (en) 2017-12-18 2018-12-18 Compressor
US16/772,986 Abandoned US20200393176A1 (en) 2017-12-18 2018-12-18 Compressor
US17/991,204 Abandoned US20230097829A1 (en) 2017-12-18 2022-11-21 Refrigeration cycle apparatus

Family Applications Before (17)

Application Number Title Priority Date Filing Date
US16/954,651 Abandoned US20200339856A1 (en) 2017-12-18 2018-11-13 Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US16/954,631 Abandoned US20200392389A1 (en) 2017-12-18 2018-11-13 Refrigeration cycle apparatus
US16/954,613 Abandoned US20200309437A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US16/955,465 Abandoned US20210003323A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus
US16/954,973 Abandoned US20200333051A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle
US16/954,669 Abandoned US20210164703A1 (en) 2017-12-18 2018-12-10 Air-conditioning unit
US16/954,956 Abandoned US20200378662A1 (en) 2017-12-18 2018-12-11 Air conditioning apparatus
US16/954,967 Abandoned US20200309411A1 (en) 2017-12-18 2018-12-13 Warm-water generating apparatus
US16/955,218 Abandoned US20200333049A1 (en) 2017-12-18 2018-12-13 Refrigeration apparatus
US16/954,745 Abandoned US20210095897A1 (en) 2017-12-18 2018-12-17 Heat source unit and refrigeration cycle apparatus
US16/954,718 Abandoned US20200386459A1 (en) 2017-12-18 2018-12-17 Heat exchange unit
US16/955,222 Abandoned US20200333041A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/772,927 Abandoned US20210163804A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/955,565 Active US11535781B2 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,961 Abandoned US20210164701A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/954,679 Abandoned US20200309419A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/955,207 Abandoned US20200340714A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus

Family Applications After (4)

Application Number Title Priority Date Filing Date
US16/772,953 Abandoned US20210164698A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/772,976 Abandoned US20200393175A1 (en) 2017-12-18 2018-12-18 Compressor
US16/772,986 Abandoned US20200393176A1 (en) 2017-12-18 2018-12-18 Compressor
US17/991,204 Abandoned US20230097829A1 (en) 2017-12-18 2022-11-21 Refrigeration cycle apparatus

Country Status (9)

Country Link
US (22) US20200339856A1 (en)
EP (19) EP3730569A4 (en)
JP (22) JPWO2019123898A1 (en)
KR (11) KR102655619B1 (en)
CN (21) CN111511874A (en)
AU (11) AU2018390660B2 (en)
BR (10) BR112020011145A2 (en)
PH (10) PH12020550899A1 (en)
WO (1) WO2019124409A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system
US20220389299A1 (en) * 2017-12-18 2022-12-08 Daikin Industries, Ltd. Refrigeration cycle apparatus
KR20200098592A (en) * 2017-12-18 2020-08-20 다이킨 고교 가부시키가이샤 Composition containing a refrigerant, its use, and a refrigerator having the same, and a method of operating the refrigerator
CN113637457A (en) * 2017-12-18 2021-11-12 大金工业株式会社 Composition containing refrigerant, use thereof, refrigerator having same, and method for operating refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
AU2018390660B2 (en) 2017-12-18 2023-01-05 Daikin Industries, Ltd. Refrigeration Cycle Apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
JP6964672B2 (en) * 2018-06-25 2021-11-10 三菱電機株式会社 Rotors, motors, blowers and air conditioners
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
US20220235987A1 (en) * 2019-06-17 2022-07-28 Mitsubishi Electric Corporation Freezing device
US20210003322A1 (en) * 2019-07-02 2021-01-07 Heatcraft Refrigeration Products Llc Cooling System
EP3879207B1 (en) * 2020-03-10 2023-09-06 Trane International Inc. Refrigeration apparatuses and operating method thereof
CN115398163B (en) * 2020-04-20 2023-11-10 三菱电机株式会社 Relay and air conditioner provided with same
CN111555480B (en) * 2020-05-26 2021-04-30 安徽美芝精密制造有限公司 Motor, compressor and refrigeration plant
DE102020115275A1 (en) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Method for operating a compression refrigeration system and compression refrigeration system
CN112290783A (en) * 2020-08-31 2021-01-29 海信(山东)空调有限公司 Air conditioner and IPM module bootstrap circuit pre-charging control method
JP7108208B2 (en) * 2020-10-09 2022-07-28 ダイキン工業株式会社 Compositions containing refrigerants and methods of stabilizing compositions containing refrigerants
CN112396818B (en) * 2020-11-12 2021-09-24 贵州电网有限责任公司 Portable mobile detection terminal
US11913672B2 (en) * 2020-12-21 2024-02-27 Goodman Global Group, Inc. Heating, ventilation, and air-conditioning system with dehumidification
JP7174278B2 (en) * 2021-01-13 2022-11-17 ダイキン工業株式会社 Air conditioner and method for replacing functional parts
US11754316B2 (en) * 2021-04-26 2023-09-12 Villara Corporation Providing domestic hot water from conventional residential split system heat pumps
CN113294884B (en) * 2021-06-21 2022-04-19 宁波奥克斯电气股份有限公司 Heating control method and device and air conditioner
CN113432196B (en) * 2021-06-21 2022-10-18 深圳市科信通信技术股份有限公司 Air conditioning system
US20230015422A1 (en) * 2021-07-16 2023-01-19 Haier Us Appliance Solutions, Inc. Direct current load identification system
CN113864984B (en) * 2021-10-19 2022-11-18 宁波奥克斯电气股份有限公司 APF automatic debugging method and device for air conditioner, computer equipment and storage medium
CN114061143B (en) * 2021-11-18 2023-05-30 深圳职业技术学院 Direct heating type multifunctional heat pump water heater
WO2023164101A1 (en) * 2022-02-25 2023-08-31 The Chemours Company Fc, Llc Compositions of hfo-1234yf, hfo-1132e, and hfc-152a and systems for using the compositions
KR102548607B1 (en) * 2022-10-13 2023-06-28 지에스칼텍스 주식회사 Base oil comprising polyol ester and refrigerating machine oil composition comprising the same
CN115888163B (en) * 2022-11-22 2024-03-01 常州东立冷冻科技有限公司 Assembled full liquid evaporation cold all-in-one
CN117111533A (en) * 2023-10-09 2023-11-24 佛山市芯耀环保科技有限公司 Control circuit of ice machine, PCB and ice machine

Family Cites Families (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190115A (en) 1975-02-05 1976-08-07
FR2314456A1 (en) * 1975-06-09 1977-01-07 Inst Francais Du Petrole COLD PRODUCTION PROCESS
JPS5213025A (en) 1975-07-18 1977-02-01 Nissan Motor Co Ltd Torch ignition engine
JPS57198968A (en) 1981-05-29 1982-12-06 Hitachi Ltd Heat pump type refrigerator
JPS5939790A (en) 1982-08-27 1984-03-05 Agency Of Ind Science & Technol Production of single crystal
JPS6269066A (en) 1985-09-24 1987-03-30 株式会社東芝 Refrigeration cycle device
JPS6369066A (en) 1986-09-09 1988-03-29 Nec Corp Data correcting system on unrewritable medium
JPH024163A (en) 1988-03-08 1990-01-09 Mitsubishi Electric Corp Cooling device for semiconductor element for power
US5185092A (en) 1990-01-31 1993-02-09 Tonen Corporation Lubricating oil for refrigerator
JP2803451B2 (en) 1991-07-12 1998-09-24 三菱電機株式会社 Refrigerant compressor, refrigerator, refrigerating air conditioner, and method of assembling refrigerant compressor
JPH05149605A (en) 1991-11-30 1993-06-15 Toshiba Corp Air conditioner
JPH05264070A (en) 1992-03-17 1993-10-12 Mitsubishi Electric Corp Outdoor apparatus of air conditioner
JP3021947B2 (en) 1992-03-24 2000-03-15 ダイキン工業株式会社 Control method of variable capacity air conditioner
JPH0719627A (en) * 1993-06-30 1995-01-20 Daikin Ind Ltd Heat exchanger for non-azeotrope refrigerant
JPH07190571A (en) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd Refrigerator using non-azeotropic mixture refrigerant
JPH10500719A (en) 1994-05-23 1998-01-20 ヘンケル・コーポレイション Methods for increasing the resistivity of ester lubricants, especially for use with hydrofluorocarbon refrigerants
JPH08200273A (en) 1995-01-30 1996-08-06 Sanyo Electric Co Ltd Scroll compressor
CN1083474C (en) * 1995-10-24 2002-04-24 顾雏军 Improved non-azeotropic operating medium using in thermal circulation
JPH10309050A (en) 1996-05-16 1998-11-17 Matsushita Electric Ind Co Ltd Compressor
JPH1046170A (en) * 1996-08-06 1998-02-17 Kao Corp Working fluid composition for refrigerator
JP3104642B2 (en) 1997-04-25 2000-10-30 ダイキン工業株式会社 Refrigeration equipment
JPH10318564A (en) 1997-05-20 1998-12-04 Fujitsu General Ltd Outdoor unit for air conditioner
JP3936027B2 (en) * 1997-06-23 2007-06-27 松下電器産業株式会社 Air conditioner
JPH11206001A (en) 1998-01-07 1999-07-30 Meidensha Corp Protector for motor
JPH11256358A (en) 1998-03-09 1999-09-21 Sanyo Electric Co Ltd Corrosion resistance copper pipe for heat exchanger
JP2000161805A (en) 1998-11-27 2000-06-16 Daikin Ind Ltd Refrigerating apparatus
JP2000220877A (en) 1999-01-29 2000-08-08 Daikin Ind Ltd Ventilating air conditioner
JP2000234767A (en) 1999-02-10 2000-08-29 Mitsubishi Electric Corp Cooling device and cooling device of air-conditioner
JP2000304302A (en) 1999-04-19 2000-11-02 Daikin Ind Ltd Air conditioner
CN1238442A (en) * 1999-05-08 1999-12-15 三菱电机株式会社 Compressor for closed-lorp refrigenation device and assembling method thereof
KR100671391B1 (en) 1999-05-10 2007-01-22 신닛폰 리카 가부시키가이샤 Lubricating Oil for Refrigerator, Hydraulic Fluid Composition for Refrigerator and Method for Lubrication of Refrigerator
JP4312894B2 (en) * 1999-09-09 2009-08-12 東芝キヤリア株式会社 Air conditioner indoor unit
JP2001194016A (en) 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP3860942B2 (en) * 1999-11-18 2006-12-20 株式会社ジャパンエナジー Lubricating oil composition for refrigeration equipment, working fluid and refrigeration equipment
KR100327551B1 (en) * 1999-12-27 2002-03-15 황한규 Airconditioner for vehicle with dual evaporator ASS'Y
JP3763120B2 (en) 2000-08-09 2006-04-05 三菱電機株式会社 Air conditioner
JP2002089978A (en) 2000-09-11 2002-03-27 Daikin Ind Ltd Paired refrigerating device and multiple refrigerating device
JP3952769B2 (en) 2001-02-19 2007-08-01 株式会社デンソー Heat pump chiller
JP2002257366A (en) 2001-03-02 2002-09-11 Sekisui Chem Co Ltd Hot water supplying/heating system
JP3518518B2 (en) * 2001-03-05 2004-04-12 松下電器産業株式会社 Banknote recognition device
JP2002272043A (en) 2001-03-05 2002-09-20 Daikin Ind Ltd Rotary compressor and air-conditioner provided with the compressor
JP4410957B2 (en) * 2001-03-26 2010-02-10 株式会社ラブアース・テクノロジー Hybrid water heater and method
PT1746706E (en) 2001-03-30 2011-08-17 Sanyo Electric Co Synchronous induction motor
JP2003018776A (en) 2001-03-30 2003-01-17 Sanyo Electric Co Ltd Synchronous induction motor
JP3885535B2 (en) 2001-09-07 2007-02-21 株式会社デンソー Water heater
JP3690341B2 (en) 2001-12-04 2005-08-31 ダイキン工業株式会社 Brushless DC motor driving method and apparatus
TWI288519B (en) 2002-03-27 2007-10-11 Sanyo Electric Co Synchronous induction motor
JP2004028035A (en) 2002-06-28 2004-01-29 Fujitsu General Ltd Enclosed compressor
JP3925383B2 (en) 2002-10-11 2007-06-06 ダイキン工業株式会社 Hot water supply device, air conditioning hot water supply system, and hot water supply system
JP2004215406A (en) 2002-12-28 2004-07-29 Daikin Ind Ltd Motor driver for air conditioner
JP2004251535A (en) 2003-02-20 2004-09-09 Aisin Seiki Co Ltd Air conditioner
JP2004361036A (en) 2003-06-06 2004-12-24 Daikin Ind Ltd Air conditioning system
JP2005061711A (en) 2003-08-12 2005-03-10 Osaka Gas Co Ltd Exhaust heat recovering water heater
JP2005241045A (en) 2004-02-24 2005-09-08 Sanyo Electric Co Ltd Air conditioner
JP4759226B2 (en) 2004-03-31 2011-08-31 株式会社コベルコ マテリアル銅管 Tube expansion tool and tube expansion method using the same
KR20070011337A (en) 2004-04-15 2007-01-24 다이킨 고교 가부시키가이샤 Air conditioner
JP4222273B2 (en) * 2004-08-03 2009-02-12 パナソニック株式会社 Heat pump water heater
JP4555671B2 (en) 2004-12-09 2010-10-06 東芝キヤリア株式会社 Air conditioner
JP2006211824A (en) 2005-01-28 2006-08-10 Mitsubishi Electric Corp Compressor
JP4591112B2 (en) 2005-02-25 2010-12-01 株式会社日立製作所 Permanent magnet rotating machine
ES2580080T3 (en) 2005-03-18 2016-08-19 Carrier Commercial Refrigeration, Inc. Multi-part heat exchanger
JP2006313027A (en) 2005-05-06 2006-11-16 Mitsubishi Electric Corp Ventilation air conditioner
JP2007084481A (en) * 2005-09-22 2007-04-05 Daikin Ind Ltd Preparation method of pentafluoroethane
JP3985834B2 (en) 2005-11-07 2007-10-03 ダイキン工業株式会社 Electrical component assembly, outdoor unit of air conditioner including the same, and air conditioner
CN1987264A (en) * 2005-12-22 2007-06-27 乐金电子(天津)电器有限公司 Air conditioner
JP4893251B2 (en) 2006-07-28 2012-03-07 パナソニック株式会社 Matrix converter and device equipped with the same
JP2008039305A (en) 2006-08-07 2008-02-21 Daikin Ind Ltd Hot water circulation heating system performing heating by circulating hot water in building and water spraying device for evaporator
US8273928B2 (en) * 2006-08-24 2012-09-25 E I Du Pont De Nemours And Company Processes for separation of fluoroolefins from hydrogen fluoride by azeotropic distillation
JP4859694B2 (en) 2007-02-02 2012-01-25 三菱重工業株式会社 Multistage compressor
US8672733B2 (en) 2007-02-06 2014-03-18 Nordyne Llc Ventilation airflow rate control
JP4840215B2 (en) * 2007-03-27 2011-12-21 株式会社日立製作所 Permanent magnet type rotating electric machine and compressor using the same
JP2008286422A (en) * 2007-05-15 2008-11-27 Panasonic Corp Refrigerator
JP2008295161A (en) * 2007-05-23 2008-12-04 Daikin Ind Ltd Power conversion device
JP2009063216A (en) 2007-09-06 2009-03-26 Hitachi Appliances Inc Heat exchanger and air conditioner using the same
JP5050763B2 (en) * 2007-10-05 2012-10-17 パナソニック株式会社 Water heater
JP2009092274A (en) 2007-10-05 2009-04-30 Hitachi Appliances Inc Air conditioner
JP5038105B2 (en) * 2007-11-19 2012-10-03 パナソニック株式会社 Valve device and air conditioner having the same
JP4738401B2 (en) 2007-11-28 2011-08-03 三菱電機株式会社 Air conditioner
JP2009150620A (en) 2007-12-21 2009-07-09 Toshiba Carrier Corp Dual heat pump type air conditioning system
JP5130910B2 (en) * 2007-12-28 2013-01-30 ダイキン工業株式会社 Air conditioner and refrigerant quantity determination method
US8319388B2 (en) 2008-01-25 2012-11-27 Mitsubishi Electric Corporation Induction motor and hermetic compressor
CA2717216A1 (en) * 2008-02-21 2009-08-27 Jeffrey P. Knapp Azeotrope compositions comprising 3,3,3-trifluoropropene and hydrogen fluoride and processes for separation thereof
JP2009219268A (en) * 2008-03-11 2009-09-24 Daikin Ind Ltd Power conversion apparatus
JP5407157B2 (en) * 2008-03-18 2014-02-05 ダイキン工業株式会社 Refrigeration equipment
JP4931848B2 (en) * 2008-03-31 2012-05-16 三菱電機株式会社 Heat pump type outdoor unit for hot water supply
JP4471023B2 (en) 2008-06-12 2010-06-02 ダイキン工業株式会社 Air conditioner
US8496845B2 (en) 2008-07-01 2013-07-30 Daikin Industries, Ltd. Refrigerant composition comprising difluoromethane (HFC32), pentafluoroethane (HFC125) and 2, 3, 3, 3-tetrafluoropropene (HFO1234yf)
JP4654423B2 (en) 2008-07-22 2011-03-23 独立行政法人産業技術総合研究所 Power converter
JP5128424B2 (en) * 2008-09-10 2013-01-23 パナソニックヘルスケア株式会社 Refrigeration equipment
JP2010071530A (en) 2008-09-17 2010-04-02 Daikin Ind Ltd Air conditioner
US20100082162A1 (en) 2008-09-29 2010-04-01 Actron Air Pty Limited Air conditioning system and method of control
JP2010121927A (en) * 2008-10-22 2010-06-03 Panasonic Corp Cooling cycle device
JP2010103346A (en) 2008-10-24 2010-05-06 Daido Steel Co Ltd Magnet for ipm type concentrated winding motor and method of manufacturing the same, and ipm type concentrated winding motor using the magnet
JP2010119190A (en) 2008-11-12 2010-05-27 Toyota Motor Corp Rotor for magnet-embedded motors and magnet-embedded motor
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
JP2010164222A (en) * 2009-01-14 2010-07-29 Panasonic Corp Finned heat exchanger
JP5136495B2 (en) 2009-03-27 2013-02-06 パナソニック株式会社 Heat exchanger
US8783050B2 (en) * 2009-04-17 2014-07-22 Daikin Industries, Ltd. Heat source unit
JP2011004449A (en) 2009-06-16 2011-01-06 Panasonic Corp Matrix converter circuit
US9250001B2 (en) 2009-06-17 2016-02-02 Emerson Electric Co. Control of an expansion valve regulating refrigerant to an evaporator of a climate control system
JP2011043304A (en) * 2009-08-24 2011-03-03 Hitachi Appliances Inc Air conditioner
JP5452138B2 (en) * 2009-09-01 2014-03-26 三菱電機株式会社 Refrigeration air conditioner
CN101649189B (en) * 2009-09-04 2012-05-23 西安交通大学 Environmental mixed refrigerant with trifluoroiodomethane
JP2011094841A (en) 2009-10-28 2011-05-12 Daikin Industries Ltd Refrigerating device
JP5542423B2 (en) * 2009-12-22 2014-07-09 東芝産業機器システム株式会社 Rotating electric machine rotor and rotating electric machine
JP2011202738A (en) 2010-03-25 2011-10-13 Toshiba Carrier Corp Air conditioner
JP2011252636A (en) * 2010-06-01 2011-12-15 Panasonic Corp Hot-water heating hot-water supply apparatus
JP5388969B2 (en) 2010-08-23 2014-01-15 三菱電機株式会社 Heat exchanger and air conditioner equipped with this heat exchanger
CN102401519B (en) * 2010-09-16 2016-08-10 乐金电子(天津)电器有限公司 The off-premises station of air-conditioner
FR2964976B1 (en) * 2010-09-20 2012-08-24 Arkema France COMPOSITION BASED ON 1,3,3,3-TETRAFLUOROPROPENE
JP5595245B2 (en) 2010-11-26 2014-09-24 三菱電機株式会社 Refrigeration equipment
JP2012132637A (en) 2010-12-22 2012-07-12 Daikin Industries Ltd Outdoor unit for air conditioner
JP5716408B2 (en) 2011-01-18 2015-05-13 ダイキン工業株式会社 Power converter
JP5721480B2 (en) * 2011-03-10 2015-05-20 三菱電機株式会社 Refrigeration cycle equipment
JP5821756B2 (en) * 2011-04-21 2015-11-24 株式会社デンソー Refrigeration cycle equipment
WO2012157765A1 (en) 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
EP3854860A1 (en) * 2011-05-19 2021-07-28 Agc Inc. Working medium and heat-cycle system
US9951962B2 (en) 2011-12-06 2018-04-24 Mitsubishi Electric Corporation Heat pump heating and hot-water system
JP6065429B2 (en) 2011-12-08 2017-01-25 パナソニック株式会社 Air conditioner
JP2013126281A (en) 2011-12-14 2013-06-24 Daikin Ind Ltd Method for manufacturing field element, and end plate for field element
JP5506770B2 (en) 2011-12-16 2014-05-28 三菱電機株式会社 Air conditioner
JP5881435B2 (en) 2012-01-27 2016-03-09 三菱電機株式会社 Heat exchanger and air conditioner equipped with the same
JP5867116B2 (en) 2012-01-30 2016-02-24 ダイキン工業株式会社 Refrigeration unit outdoor unit
JP6111520B2 (en) 2012-02-22 2017-04-12 ダイキン工業株式会社 Power converter
US9641032B2 (en) 2012-03-23 2017-05-02 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Motor having magnets embedded in a rotor and electric compressor using same
JP5536817B2 (en) * 2012-03-26 2014-07-02 日立アプライアンス株式会社 Refrigeration cycle equipment
JP2015111012A (en) * 2012-03-26 2015-06-18 東芝キヤリア株式会社 Refrigeration cycle device
KR20130111186A (en) * 2012-03-31 2013-10-10 (주)코스모테크놀로지 Hybrid heating apparatus and method thereof
JPWO2013151043A1 (en) * 2012-04-02 2015-12-17 東芝キヤリア株式会社 Refrigeration cycle equipment
JP5533926B2 (en) 2012-04-16 2014-06-25 ダイキン工業株式会社 Air conditioner
JP2015127593A (en) * 2012-04-27 2015-07-09 東芝キヤリア株式会社 Outdoor unit of air conditioner
US20130283832A1 (en) * 2012-04-30 2013-10-31 Trane International Inc. Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant
JP5500240B2 (en) * 2012-05-23 2014-05-21 ダイキン工業株式会社 Refrigeration equipment
JP5516712B2 (en) 2012-05-28 2014-06-11 ダイキン工業株式会社 Refrigeration equipment
JP5673612B2 (en) * 2012-06-27 2015-02-18 三菱電機株式会社 Refrigeration cycle equipment
JP5805598B2 (en) * 2012-09-12 2015-11-04 三菱電機株式会社 Refrigeration cycle equipment
WO2014045400A1 (en) 2012-09-21 2014-03-27 三菱電機株式会社 Refrigeration device and method for controlling same
JP6044238B2 (en) 2012-09-28 2016-12-14 ダイキン工業株式会社 Air conditioner
WO2014068655A1 (en) 2012-10-30 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, and refrigeration and air conditioning equipment equipped with same
JP5516695B2 (en) 2012-10-31 2014-06-11 ダイキン工業株式会社 Air conditioner
CN103032996B (en) * 2012-12-12 2015-03-11 宁波奥克斯电气有限公司 Parallel compressor selection and configuration method for preventing compressor from being frequently started up and shut down
JP5776746B2 (en) 2013-01-29 2015-09-09 ダイキン工業株式会社 Air conditioner
CN104903661A (en) * 2013-01-31 2015-09-09 日立空调·家用电器株式会社 Refrigeration cycle device
JP2014152999A (en) 2013-02-08 2014-08-25 Daikin Ind Ltd Air conditioner
WO2014128831A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
JP5927339B2 (en) 2013-03-29 2016-06-01 パナソニックヘルスケアホールディングス株式会社 Dual refrigeration equipment
JP6089912B2 (en) 2013-04-17 2017-03-08 三菱電機株式会社 Refrigerant compressor
CN105164227A (en) * 2013-04-30 2015-12-16 旭硝子株式会社 Composition containing trifluoroethylene
WO2014178353A1 (en) 2013-04-30 2014-11-06 旭硝子株式会社 Working medium for heat cycle
CN103363705B (en) * 2013-05-28 2015-05-13 广东美的制冷设备有限公司 Refrigeration system, refrigeration equipment comprising refrigeration system and control method of refrigeration equipment
WO2014203354A1 (en) 2013-06-19 2014-12-24 三菱電機株式会社 Refrigeration cycle device
JP6141429B2 (en) * 2013-06-19 2017-06-07 三菱電機株式会社 Air conditioner
EP3012556B1 (en) * 2013-06-19 2018-12-26 Mitsubishi Electric Corporation Refrigeration cycle device
WO2014203355A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Refrigeration cycle device
BR112015031288B1 (en) 2013-07-12 2021-10-13 AGC Inc. THERMAL CYCLE WORKFLUID, THERMAL CYCLE SYSTEM COMPOSITION AND THERMAL CYCLE SYSTEM
KR101525849B1 (en) * 2013-07-16 2015-06-05 삼성전자 주식회사 Compressor and air conditioning apparatus using the same
JP2015023721A (en) 2013-07-22 2015-02-02 ダイキン工業株式会社 Rotor, motor and compressor
JP6282276B2 (en) * 2013-07-29 2018-02-21 三菱電機株式会社 Heat pump equipment
GB2535383B (en) * 2013-07-30 2016-10-19 Mexichem Amanco Holding Sa Heat transfer compositions
JP6225548B2 (en) * 2013-08-08 2017-11-08 株式会社富士通ゼネラル Air conditioner
JP2015055455A (en) 2013-09-13 2015-03-23 三菱電機株式会社 Outdoor unit and air conditioner
EP3051227B1 (en) * 2013-09-27 2017-12-06 Panasonic Healthcare Holdings Co., Ltd. Refrigerating device
JP2015078789A (en) 2013-10-16 2015-04-23 三菱電機株式会社 Heat exchanger and air conditioning device including heat exchanger
JP6118227B2 (en) 2013-10-22 2017-04-19 株式会社日立産機システム Permanent magnet rotating electric machine and compressor using the same
WO2015071967A1 (en) 2013-11-12 2015-05-21 三菱電機株式会社 Refrigeration system
JP5661903B2 (en) 2013-12-04 2015-01-28 三菱電機株式会社 Compressor
WO2015083274A1 (en) 2013-12-05 2015-06-11 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
KR102135086B1 (en) * 2013-12-10 2020-07-17 엘지전자 주식회사 Motor driving device and air conditioner including the same
JP2015114082A (en) 2013-12-13 2015-06-22 ダイキン工業株式会社 Refrigerant pipeline connection body and manufacturing method thereof
CN109665936A (en) * 2014-01-30 2019-04-23 Agc株式会社 The manufacturing method of trifluoro-ethylene
JP6657957B2 (en) * 2014-01-31 2020-03-04 Agc株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP6252211B2 (en) * 2014-02-03 2017-12-27 ダイキン工業株式会社 Air conditioning system
JP6583261B2 (en) * 2014-02-20 2019-10-02 Agc株式会社 Composition for thermal cycle system and thermal cycle system
EP3812446B1 (en) * 2014-02-20 2023-06-28 Agc Inc. Composition for heat cycle system, and heat cycle system
JP6354616B2 (en) * 2014-02-20 2018-07-11 旭硝子株式会社 Composition for thermal cycle system and thermal cycle system
EP3109292B1 (en) 2014-02-20 2020-09-02 AGC Inc. Working fluid for heat cycle
EP3109301B1 (en) * 2014-02-20 2020-06-03 AGC Inc. Composition for heat cycle system, and heat cycle system
JP6375639B2 (en) 2014-02-21 2018-08-22 ダイキン工業株式会社 Air conditioner
KR101841869B1 (en) * 2014-03-14 2018-05-04 미쓰비시덴키 가부시키가이샤 Refrigeration cycle device
WO2015136981A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Compressor and refrigeration cycle system
AU2014387676B2 (en) * 2014-03-17 2017-11-02 AGC Inc. Refrigeration cycle apparatus
US10001309B2 (en) * 2014-03-17 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus
US20170121581A1 (en) 2014-03-17 2017-05-04 Asahi Glass Company, Limited Heat pump apparatus
EP3121242B1 (en) 2014-03-18 2019-05-08 AGC Inc. Working fluid for heat cycle, composition for heat-cycle systems, and heat-cycle system
JP6105511B2 (en) * 2014-04-10 2017-03-29 三菱電機株式会社 Heat pump equipment
CN103940018A (en) * 2014-05-06 2014-07-23 北京德能恒信科技有限公司 Heat pipe air conditioner all-in-one machine with evaporative condenser
JP5897062B2 (en) 2014-05-08 2016-03-30 三菱電機株式会社 Compressor motor, compressor, refrigeration cycle apparatus, and compressor motor manufacturing method
JP2015218909A (en) 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generation device including the same
JP2015218912A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Air conditioner and load adjustment device used for the same
CN106414655A (en) * 2014-06-06 2017-02-15 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP2015229767A (en) 2014-06-06 2015-12-21 旭硝子株式会社 Actuation medium for heat cycle
CN106414654A (en) * 2014-06-06 2017-02-15 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP2016011423A (en) * 2014-06-06 2016-01-21 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system and heat cycle system
JPWO2015186670A1 (en) * 2014-06-06 2017-04-20 旭硝子株式会社 Composition for thermal cycle system and thermal cycle system
WO2015186671A1 (en) 2014-06-06 2015-12-10 旭硝子株式会社 Composition for heat cycle system and heat cycle system
JP2016001062A (en) 2014-06-11 2016-01-07 パナソニックIpマネジメント株式会社 Inverter control device
JP6519909B2 (en) 2014-07-18 2019-05-29 出光興産株式会社 Refrigerating machine oil composition and refrigerating apparatus
JP2016033426A (en) * 2014-07-31 2016-03-10 日立アプライアンス株式会社 Air conditioner
JP6188951B2 (en) * 2014-07-31 2017-08-30 三菱電機株式会社 Refrigerant distributor, heat exchanger and refrigeration cycle apparatus
WO2016024576A1 (en) * 2014-08-12 2016-02-18 旭硝子株式会社 Heat cycle system
US10295236B2 (en) 2014-08-13 2019-05-21 Trane International Inc. Compressor heating system
JP6543450B2 (en) * 2014-09-29 2019-07-10 Phcホールディングス株式会社 Refrigeration system
US10393391B2 (en) 2014-10-16 2019-08-27 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US9982904B2 (en) 2014-11-07 2018-05-29 Daikin Industries, Ltd. Air conditioning system
JP6320565B2 (en) 2014-12-22 2018-05-09 三菱電機株式会社 Rotating electrical machine rotor
US10539335B2 (en) 2014-12-26 2020-01-21 Daikin Industries, Ltd. Regenerative air conditioner
JP6028815B2 (en) * 2015-01-19 2016-11-24 ダイキン工業株式会社 Heat exchange unit of air conditioner
CN107250315B (en) 2015-02-09 2021-03-02 Agc株式会社 Working medium for air conditioning for electric vehicle and working medium composition for air conditioning for electric vehicle
AU2016221082B2 (en) * 2015-02-19 2018-05-10 Daikin Industries, Ltd. Composition containing mixture of fluorinated hydrocarbons, and method for producing same
CN106032955B (en) * 2015-03-09 2020-06-16 大金工业株式会社 Refrigerant recovery unit and outdoor unit connected to the same
JP2016174461A (en) 2015-03-17 2016-09-29 ダイキン工業株式会社 Rotor
JP6552851B2 (en) * 2015-03-19 2019-07-31 三菱重工サーマルシステムズ株式会社 Compressor driving motor and cooling method thereof
CN204648544U (en) * 2015-03-27 2015-09-16 中国建筑科学研究院 Indoor environmental condition control unit and system and building system and passive type building
JPWO2016157538A1 (en) 2015-04-03 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
WO2016182030A1 (en) 2015-05-14 2016-11-17 旭硝子株式会社 Fluid composition, refrigerant composition, and air conditioner
US10345023B2 (en) 2015-05-22 2019-07-09 Daikin Industries, Ltd. Temperature-adjusting fluid supply apparatus
JP6582236B2 (en) 2015-06-11 2019-10-02 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP6604082B2 (en) * 2015-08-07 2019-11-13 ダイキン工業株式会社 Refrigeration equipment
DE112015006824T5 (en) 2015-08-21 2018-05-03 Mitsubishi Electric Corporation ELECTRICAL ROTATION MACHINE AND AIR CONDITIONER
JP2017046430A (en) 2015-08-26 2017-03-02 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Motor controller, fluid machinery, air conditioner, and program
CN107925285B (en) 2015-09-01 2019-11-15 三菱电机株式会社 Rotor, rotating electric machine, motor compressor and refrigerating air conditioning device
CN204943959U (en) * 2015-09-01 2016-01-06 河北纳森空调有限公司 Environmental protection refrigerant R410A low-temperature air energy heat pump water chiller-heater unit
JP2017053285A (en) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Compressor
JP6733145B2 (en) 2015-09-30 2020-07-29 ダイキン工業株式会社 Water heat exchanger housing unit
JP6274277B2 (en) 2015-09-30 2018-02-07 ダイキン工業株式会社 Refrigeration equipment
CN205261858U (en) * 2015-11-12 2016-05-25 珠海丽日帐篷有限公司 Medium -and -large -sized integral covering or awning on a car, boat, etc. air conditioner for room
JPWO2017115636A1 (en) 2015-12-28 2018-10-18 Agc株式会社 Refrigeration cycle equipment
KR20180040662A (en) 2016-01-07 2018-04-20 미쓰비시덴키 가부시키가이샤 Permanent magnet embedded type electric motor, compressor and refrigeration air-conditioning device
JP6762719B2 (en) 2016-01-08 2020-09-30 株式会社デンソーエアクール How to make a heat exchanger
CN109073295A (en) 2016-01-12 2018-12-21 Agc株式会社 Refrigerating circulatory device and heat circulating system
EP3410041A4 (en) 2016-01-29 2019-09-11 Agc Inc. Refrigeration cycle device
JP2017145975A (en) * 2016-02-15 2017-08-24 三菱電機株式会社 Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device
CN109072900B (en) 2016-02-22 2020-11-10 Agc株式会社 Compressor and heat cycle system
JPWO2017145826A1 (en) * 2016-02-24 2018-12-13 Agc株式会社 Refrigeration cycle equipment
US9976759B2 (en) 2016-02-29 2018-05-22 Johnson Controls Technology Company Rain shield for a heat exchanger component
JP2017192190A (en) 2016-04-12 2017-10-19 日立ジョンソンコントロールズ空調株式会社 Permanent magnet motor, compressor and air conditioner using the same
US11131490B2 (en) * 2016-05-09 2021-09-28 Mitsubishi Electric Corporation Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
EP3477222B1 (en) 2016-06-27 2020-07-29 Mitsubishi Electric Corporation Refrigeration cycle device
JP6455554B2 (en) 2016-07-28 2019-01-23 ダイキン工業株式会社 Multi air conditioner
JP6731865B2 (en) 2017-02-06 2020-07-29 日立ジョンソンコントロールズ空調株式会社 Air conditioner outdoor unit, air conditioner, and air conditioning management method
CN110603716B (en) 2017-05-01 2022-11-18 三菱电机株式会社 Rotor, motor, compressor, and air conditioner
JP6551571B2 (en) 2017-07-24 2019-07-31 ダイキン工業株式会社 Refrigerant composition
CN111033948B (en) 2017-09-05 2022-08-05 三菱电机株式会社 Alternating pole rotor, motor, compressor, blower, and air conditioner
WO2019065232A1 (en) * 2017-09-29 2019-04-04 宇部興産株式会社 Layered tube
WO2019108720A1 (en) * 2017-11-30 2019-06-06 The Lubrizol Corporation Aromatic ester lubricant for use with low global warming potential refrigerants
CN113637457A (en) 2017-12-18 2021-11-12 大金工业株式会社 Composition containing refrigerant, use thereof, refrigerator having same, and method for operating refrigerator
US20200332164A1 (en) 2017-12-18 2020-10-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200333054A1 (en) 2017-12-18 2020-10-22 Daikin Industries, Ltd. Compressor
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US20200326100A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Warm-water generating apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US20200325376A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200393178A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200392388A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigerant-containing composition, use thereof and refrigerator comprising same, and method for operating said refrigerator
US20200392387A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Air conditioner
US20200363106A1 (en) 2017-12-18 2020-11-19 Daikin Industries, Ltd. Refrigeration cycle apparatus
KR20200098592A (en) 2017-12-18 2020-08-20 다이킨 고교 가부시키가이샤 Composition containing a refrigerant, its use, and a refrigerator having the same, and a method of operating the refrigerator
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US20200347283A1 (en) 2017-12-18 2020-11-05 Daikin Industries, Ltd. Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200326110A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Compressor
BR112020010762A2 (en) 2017-12-18 2020-11-24 Daikin Industries, Ltd. composition containing refrigerant, use of said composition, refrigerator having said composition and method for operating said refrigerator
AU2018390660B2 (en) 2017-12-18 2023-01-05 Daikin Industries, Ltd. Refrigeration Cycle Apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
WO2019123805A1 (en) 2017-12-18 2019-06-27 ダイキン工業株式会社 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US20200326103A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle
US20200363112A1 (en) 2017-12-18 2020-11-19 Daikin Industries, Ltd. Air conditioner
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US20200325375A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US10982863B2 (en) 2018-04-10 2021-04-20 Carrier Corporation HVAC fan inlet
WO2020071380A1 (en) 2018-10-01 2020-04-09 Agc株式会社 Composition for heat cycle system, and heat cycle system
JP6696633B1 (en) 2019-02-05 2020-05-20 ダイキン工業株式会社 Refrigerant-containing composition, refrigeration method using the composition, refrigeration apparatus operation method, and refrigeration apparatus

Also Published As

Publication number Publication date
EP3730866A1 (en) 2020-10-28
CN111492188B (en) 2022-06-21
US11535781B2 (en) 2022-12-27
CN111492189A (en) 2020-08-04
EP3730572A1 (en) 2020-10-28
EP3730865A1 (en) 2020-10-28
US20210095897A1 (en) 2021-04-01
EP3730570A4 (en) 2021-11-17
BR112020010607A2 (en) 2020-11-10
AU2018387900A1 (en) 2020-07-23
EP3730576A4 (en) 2021-10-13
JPWO2019123898A1 (en) 2020-12-10
CN111480039A (en) 2020-07-31
KR20200100682A (en) 2020-08-26
CN111492185B (en) 2022-06-17
KR102655619B1 (en) 2024-04-09
US20200309411A1 (en) 2020-10-01
EP3730867A1 (en) 2020-10-28
JP7212265B2 (en) 2023-01-25
US20200309419A1 (en) 2020-10-01
PH12020550912A1 (en) 2021-05-10
BR112020011145A2 (en) 2020-11-17
CN111492185A (en) 2020-08-04
EP3730570A1 (en) 2020-10-28
EP3730571A4 (en) 2021-10-06
EP3730868A1 (en) 2020-10-28
CN111479897A (en) 2020-07-31
CN111480038A (en) 2020-07-31
JPWO2019124230A1 (en) 2021-01-07
JPWO2019124327A1 (en) 2021-01-21
US20200333049A1 (en) 2020-10-22
JPWO2019124362A1 (en) 2021-01-21
PH12020550913A1 (en) 2021-05-17
KR102601018B1 (en) 2023-11-10
KR102655073B1 (en) 2024-04-08
EP3730870A4 (en) 2021-10-27
EP3730593A4 (en) 2021-10-27
CN111479899B (en) 2022-09-20
US20210163804A1 (en) 2021-06-03
PH12020550919A1 (en) 2021-05-17
JPWO2019124330A1 (en) 2021-01-21
CN111527353B (en) 2022-06-21
PH12020550915A1 (en) 2021-05-10
US20210003323A1 (en) 2021-01-07
CN111479899A (en) 2020-07-31
EP3730864A1 (en) 2020-10-28
AU2018388050A1 (en) 2020-07-16
JPWO2019123897A1 (en) 2020-12-24
PH12020550917A1 (en) 2021-05-10
KR20200100740A (en) 2020-08-26
EP3730571A1 (en) 2020-10-28
US20210164703A1 (en) 2021-06-03
US20200378662A1 (en) 2020-12-03
CN111542580A (en) 2020-08-14
CN111511874A (en) 2020-08-07
EP3730864A4 (en) 2021-09-29
EP3730866A4 (en) 2021-10-13
KR20200101401A (en) 2020-08-27
EP3730577A4 (en) 2021-10-13
AU2018387985A1 (en) 2020-07-16
PH12020550920A1 (en) 2021-05-31
JP7284405B2 (en) 2023-05-31
EP3730572A4 (en) 2021-09-29
JPWO2019124328A1 (en) 2020-12-24
BR112020009389A2 (en) 2020-11-03
EP3730869A1 (en) 2020-10-28
US20200393176A1 (en) 2020-12-17
EP3730580A1 (en) 2020-10-28
CN111492186A (en) 2020-08-04
CN111479910A (en) 2020-07-31
JP7303445B2 (en) 2023-07-05
US20200333041A1 (en) 2020-10-22
JPWO2019124146A1 (en) 2021-01-21
EP3730569A4 (en) 2021-12-22
CN111480040A (en) 2020-07-31
JPWO2019124380A1 (en) 2021-01-14
AU2018388034A1 (en) 2020-07-09
EP3730593A1 (en) 2020-10-28
KR102601975B1 (en) 2023-11-14
US20200332166A1 (en) 2020-10-22
CN111492033A (en) 2020-08-04
BR112020010676A2 (en) 2020-11-10
BR112020010388A2 (en) 2020-10-20
AU2018387884B2 (en) 2024-03-14
JPWO2019124395A1 (en) 2020-12-17
PH12020550911A1 (en) 2021-05-17
EP3730871A4 (en) 2021-10-20
JPWO2019124361A1 (en) 2021-01-14
KR20200100716A (en) 2020-08-26
US20200386459A1 (en) 2020-12-10
US20200340714A1 (en) 2020-10-29
BR112020010468A2 (en) 2020-11-24
EP3730867A4 (en) 2021-10-20
AU2018391876B2 (en) 2023-01-05
EP3730865A4 (en) 2021-10-06
KR20200100694A (en) 2020-08-26
AU2018390660B2 (en) 2023-01-05
JPWO2019124409A1 (en) 2021-01-07
US20200393175A1 (en) 2020-12-17
KR20200100718A (en) 2020-08-26
JPWO2019124360A1 (en) 2020-12-24
EP3730569A1 (en) 2020-10-28
CN111480041B (en) 2022-06-21
CN111492188A (en) 2020-08-04
EP3730870A1 (en) 2020-10-28
JPWO2019124329A1 (en) 2021-01-21
EP3730868A4 (en) 2021-10-20
JP7269499B2 (en) 2023-05-09
AU2018391894A1 (en) 2020-07-16
KR20200100689A (en) 2020-08-26
JPWO2019124145A1 (en) 2021-01-28
US20200339856A1 (en) 2020-10-29
BR112020009626A2 (en) 2020-11-03
AU2018391876A1 (en) 2020-07-02
CN111527353A (en) 2020-08-11
EP3730585A1 (en) 2020-10-28
EP3730584A1 (en) 2020-10-28
AU2018390660A1 (en) 2020-07-02
JPWO2019124326A1 (en) 2021-02-04
AU2018387983A1 (en) 2020-07-23
BR112020011168A2 (en) 2020-11-17
JPWO2019124398A1 (en) 2021-01-14
KR20200100143A (en) 2020-08-25
EP3730576A1 (en) 2020-10-28
CN111492183A (en) 2020-08-04
EP3730585A4 (en) 2021-10-20
PH12020550914A1 (en) 2021-05-10
JPWO2019124138A1 (en) 2020-12-10
EP3730871A1 (en) 2020-10-28
CN111492031A (en) 2020-08-04
JP7244763B2 (en) 2023-03-23
KR20200100693A (en) 2020-08-26
EP3730580A4 (en) 2021-10-13
CN111480040B (en) 2022-06-21
EP3730861A1 (en) 2020-10-28
US20210164701A1 (en) 2021-06-03
JPWO2019124229A1 (en) 2020-12-17
PH12020550918A1 (en) 2021-05-17
CN111480041A (en) 2020-07-31
CN111479896A (en) 2020-07-31
BR112020010413A2 (en) 2020-11-24
AU2018387883A1 (en) 2020-07-23
PH12020550899A1 (en) 2021-03-22
BR112020010318A2 (en) 2021-01-05
EP3730861A4 (en) 2021-09-29
CN111527178A (en) 2020-08-11
EP3730869A4 (en) 2021-10-20
KR20200100681A (en) 2020-08-26
EP3730584A4 (en) 2021-10-20
US20200309437A1 (en) 2020-10-01
AU2018391186A1 (en) 2020-07-16
JP7231834B2 (en) 2023-03-02
US20210164698A1 (en) 2021-06-03
CN111480038B (en) 2022-06-21
US20200333051A1 (en) 2020-10-22
JPWO2019124140A1 (en) 2020-12-10
JPWO2019124379A1 (en) 2021-01-14
CN114838515A (en) 2022-08-02
CN111479898A (en) 2020-07-31
US20230097829A1 (en) 2023-03-30
US20200392389A1 (en) 2020-12-17
WO2019124409A1 (en) 2019-06-27
KR20200100688A (en) 2020-08-26
JPWO2019124139A1 (en) 2020-12-17
CN111492189B (en) 2022-06-21
EP3730577A1 (en) 2020-10-28
AU2018387884A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
US20200393178A1 (en) Refrigeration cycle apparatus
US20200362215A1 (en) Refrigeration cycle apparatus
US11435118B2 (en) Heat source unit and refrigeration cycle apparatus
US20200325375A1 (en) Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US20200326103A1 (en) Refrigeration cycle
US11493244B2 (en) Air-conditioning unit
US11820933B2 (en) Refrigeration cycle apparatus
US11506425B2 (en) Refrigeration cycle apparatus
US20200325376A1 (en) Refrigeration cycle apparatus
US11549695B2 (en) Heat exchange unit
WO2019124328A1 (en) Heat source unit and refrigeration cycle device
WO2019124379A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIKIN INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAKURA, EIJI;YAMADA, TAKURO;YOSHIMI, ATSUSHI;AND OTHERS;SIGNING DATES FROM 20190206 TO 20190215;REEL/FRAME:052964/0179

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION