JPWO2017122517A1 - Refrigeration cycle apparatus and thermal cycle system - Google Patents

Refrigeration cycle apparatus and thermal cycle system Download PDF

Info

Publication number
JPWO2017122517A1
JPWO2017122517A1 JP2017561569A JP2017561569A JPWO2017122517A1 JP WO2017122517 A1 JPWO2017122517 A1 JP WO2017122517A1 JP 2017561569 A JP2017561569 A JP 2017561569A JP 2017561569 A JP2017561569 A JP 2017561569A JP WO2017122517 A1 JPWO2017122517 A1 JP WO2017122517A1
Authority
JP
Japan
Prior art keywords
hfo
working medium
refrigeration cycle
mass
hfc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017561569A
Other languages
Japanese (ja)
Inventor
洋輝 速水
洋輝 速水
正人 福島
正人 福島
高木 洋一
洋一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2017122517A1 publication Critical patent/JPWO2017122517A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/003Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor

Abstract

圧縮機(10)、凝縮器(20)、減圧機構(30)及び蒸発器(40)を配管で連結して冷凍サイクルを構成し、HFOを含む作動媒体を用いた冷凍サイクル装置であって、前記冷凍サイクル内のいずれかの箇所に、前記冷媒を乾燥剤又は脱酸素剤に接触させる脱酸素部(50)を設ける。A compressor (10), a condenser (20), a decompression mechanism (30) and an evaporator (40) are connected by piping to constitute a refrigeration cycle, and a refrigeration cycle apparatus using a working medium containing HFO, A deoxygenation part (50) for bringing the refrigerant into contact with a desiccant or a deoxidant is provided at any location in the refrigeration cycle.

Description

本発明は、冷凍サイクル装置及び熱サイクルシステムに関する。   The present invention relates to a refrigeration cycle apparatus and a thermal cycle system.

従来から、冷凍機油を封入した冷却用圧縮機と、第一の熱交換器と、キャピラリーチューブや膨張弁等の冷媒流量制御部と、冷凍空調がなされる空間部に設置される第二の熱交換器と、アキュームレータとを配管で連結して冷凍サイクルを構成し、ハイドロフルオロオレフィン(HFO)の単一作動媒体又はハイドロフルオロオレフィンを基本成分とする混合作動媒体を冷媒サイクルに封入し、冷却サイクル中にフッ酸を主成分とする物質を吸着する吸着材を充填した吸着器を備えた冷却サイクル装置が知られている(例えば、特許文献1参照)。   Conventionally, a cooling compressor filled with refrigeration oil, a first heat exchanger, a refrigerant flow control unit such as a capillary tube and an expansion valve, and a second heat installed in a space where refrigeration air conditioning is performed. A refrigeration cycle is configured by connecting an exchanger and an accumulator with piping, and a single working medium of hydrofluoroolefin (HFO) or a mixed working medium mainly composed of hydrofluoroolefin is enclosed in a refrigerant cycle, and a cooling cycle There is known a cooling cycle device including an adsorber filled with an adsorbent that adsorbs a substance mainly containing hydrofluoric acid (see, for example, Patent Document 1).

同様に、炭素と炭素間に二重結合を有するハイドロフルオロオレフィンをベース成分とし、二重結合を有しないハイドロフルオロカーボン(HFC)と混合した作動媒体が循環する冷凍装置であって、圧縮機から凝縮器、膨張機構及び蒸発器を経て該圧縮機に至り、作動媒体が循環する作動媒体循環経路と、前記作動媒体循環経路に配置され、フッ化水素捕捉剤を収容するフッ化水素捕捉部とを備える構成としたものが知られている(例えば、特許文献2参照)。   Similarly, it is a refrigeration system that circulates a working medium mixed with hydrofluorocarbon (HFC) that does not have a double bond, with hydrofluoroolefin having a double bond between carbon as a base component, condensed from the compressor A working medium circulation path through which the working medium circulates, and a hydrogen fluoride scavenging section that is disposed in the working medium circulation path and contains a hydrogen fluoride scavenger. The thing provided with the structure provided is known (for example, refer patent document 2).

特許文献1、2に記載の構成では、作動媒体にハイドロフルオロオレフィンを用いている。ハイドロフルオロオレフィンが水や酸素の影響で分解すると、冷却サイクル又は冷凍サイクル中にフッ酸が発生し、フッ酸が使用部品を劣化させるが、特許文献1、2では、発生したフッ酸を除去することにより、冷却サイクル又は冷凍サイクル内の使用部品の劣化を防止している。   In the configurations described in Patent Documents 1 and 2, hydrofluoroolefin is used as the working medium. When hydrofluoroolefin decomposes under the influence of water or oxygen, hydrofluoric acid is generated during the cooling cycle or refrigeration cycle, and hydrofluoric acid degrades the parts used. In Patent Documents 1 and 2, the generated hydrofluoric acid is removed. This prevents the deterioration of the parts used in the cooling cycle or the refrigeration cycle.

国際公開2010/047116号International Publication No. 2010/047116 日本国特開2010−270957号公報Japanese Unexamined Patent Publication No. 2010-270957

しかしながら、HFOは、高温または高圧下で着火源があると、自己分解する性質を有する。   However, HFO has the property of self-decomposing when there is an ignition source at high temperature or high pressure.

冷凍サイクル及び熱サイクル用の作動媒体としてHFOを含む作動媒体を使用することが検討されてはいるものの、HFOはその反応性のために、装置の状態、例えば、使用環境の温度、酸素などの条件や着火源の存在等によって反応するおそれがあることから対策を講じる必要がある。   Although the use of a working medium containing HFO as a working medium for the refrigeration cycle and the heat cycle has been studied, HFO is responsive to the reactivity of the apparatus, for example, the temperature of the environment of use, oxygen, etc. Countermeasures need to be taken because there is a risk of reaction depending on conditions and the presence of ignition sources.

特許文献1、2の構成では、サイクル内で最終的に発生したフッ酸は除去しているものの、サイクル内における水や酸素の存在は許容している。HFOは、高温度雰囲気下において水や酸素の影響で分解が進み、酸を生じる可能性が高くなる。HFOが分解され発生した酸は、サイクル内の金属部品を腐食し、金属塩の無機性スラッジとなり、それ自体がHFOの分解を促進する触媒となる。   In the configurations of Patent Documents 1 and 2, although hydrofluoric acid finally generated in the cycle is removed, the presence of water and oxygen in the cycle is allowed. HFO decomposes under the influence of water and oxygen in a high temperature atmosphere, and the possibility of generating an acid increases. The acid generated by the decomposition of HFO corrodes the metal parts in the cycle and becomes an inorganic sludge of a metal salt, which itself becomes a catalyst for promoting the decomposition of HFO.

冷凍サイクル内でスラッジが発生すると、冷媒流量制御部を詰まらせ、圧縮機の信頼性が著しく損なわれるという問題がある。   When sludge is generated in the refrigeration cycle, there is a problem that the refrigerant flow rate control unit is clogged and the reliability of the compressor is significantly impaired.

そこで、本発明は、HFOを作動媒体として用いた冷凍サイクル装置及び熱サイクルシステムにおいて、水や酸素をサイクル内から除去し、スラッジの発生を抑制することで、HFOを用いた場合であっても安全に運用することができる熱サイクルシステムの提供を目的とする。   Therefore, the present invention is a refrigeration cycle apparatus and thermal cycle system using HFO as a working medium, even when HFO is used by removing water and oxygen from the cycle and suppressing the generation of sludge. The purpose is to provide a heat cycle system that can be operated safely.

上記目的を達成するため、本発明の一態様に係る冷凍サイクル装置は、圧縮機、凝縮器、減圧機構及び蒸発器を配管で連結して冷凍サイクルを構成し、HFOを含む作動媒体を用いた冷凍サイクル装置であって、
前記冷凍サイクル内のいずれかの箇所に、前記冷媒を乾燥剤又は脱酸素剤に接触させる脱酸素部を設けている。
In order to achieve the above object, a refrigeration cycle apparatus according to an aspect of the present invention uses a working medium containing HFO to form a refrigeration cycle by connecting a compressor, a condenser, a decompression mechanism, and an evaporator with piping. A refrigeration cycle apparatus,
A deoxygenation part for bringing the refrigerant into contact with a desiccant or a deoxidant is provided at any location in the refrigeration cycle.

本発明の他の態様に係る熱サイクルシステムは、前記冷凍サイクル装置が搭載されている。   The thermal cycle system according to another aspect of the present invention is equipped with the refrigeration cycle apparatus.

本発明によれば、冷凍サイクル内におけるスラッジの発生を抑制し、HFOを含む作動媒体を用いた場合であっても安全に運用することができる。   According to the present invention, generation of sludge in the refrigeration cycle is suppressed, and even when a working medium containing HFO is used, it can be safely operated.

本発明の実施形態に係る冷凍サイクル装置の一例を示した全体構成図である。1 is an overall configuration diagram illustrating an example of a refrigeration cycle apparatus according to an embodiment of the present invention. 本発明の実施形態に係る冷凍サイクル装置の脱酸素部の一例を示した図である。It is the figure which showed an example of the deoxidation part of the refrigerating-cycle apparatus which concerns on embodiment of this invention. 図2とは異なる構成の脱酸素部の一例を示した図である。It is the figure which showed an example of the deoxidation part of a structure different from FIG. 図2及び図3とは異なる構成の脱酸素部の一例を示した図である。It is the figure which showed an example of the deoxidation part of a structure different from FIG.2 and FIG.3. 本発明の実施形態に係る熱サイクルシステムの一例である空気調和装置を示した図である。It is the figure which showed the air conditioning apparatus which is an example of the thermal cycle system which concerns on embodiment of this invention.

以下、図面を参照して、本発明を実施するための形態の説明を行う。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る冷凍サイクル装置の一例を示した全体構成図である。図1に示されるように、本実施形態に係る冷凍サイクル装置は、圧縮機10と、凝縮器20と、減圧機構30と、蒸発器40と、脱酸素部50と、配管60とを有する。圧縮機10、凝縮器20、減圧機構30、蒸発器40及び脱酸素部50は、配管60で環状に連結され、全体として冷凍サイクルを構成している。また、本実施形態に係る冷凍サイクル装置では、作動媒体としてHFOを含む作動媒体を使用している。作動媒体の詳細については後述するが、HFOは、冷凍サイクル内に水や酸素が含まれていると分解し易く、スラッジを発生させるおそれがある。本実施形態に係る冷凍サイクル装置は、かかるスラッジの発生を抑制する構成を有する。以下、その具体的内容について説明する。   FIG. 1 is an overall configuration diagram illustrating an example of a refrigeration cycle apparatus according to an embodiment of the present invention. As shown in FIG. 1, the refrigeration cycle apparatus according to the present embodiment includes a compressor 10, a condenser 20, a decompression mechanism 30, an evaporator 40, a deoxygenation unit 50, and a pipe 60. The compressor 10, the condenser 20, the pressure reduction mechanism 30, the evaporator 40, and the deoxygenation part 50 are connected cyclically | annularly by the piping 60, and comprise the refrigerating cycle as a whole. In the refrigeration cycle apparatus according to the present embodiment, a working medium containing HFO is used as the working medium. Although details of the working medium will be described later, HFO is easily decomposed when water or oxygen is contained in the refrigeration cycle, and there is a possibility of generating sludge. The refrigeration cycle apparatus according to the present embodiment has a configuration that suppresses the generation of such sludge. The specific contents will be described below.

圧縮機10は、低温、低圧のガス状の作動媒体を圧縮し、高温、高圧のガス状の作動媒体とする役割を果たす。高温、高圧となったガス状の作動媒体は、凝縮器20に送られる。   The compressor 10 compresses a low-temperature, low-pressure gaseous working medium to serve as a high-temperature, high-pressure gaseous working medium. The gaseous working medium that has reached a high temperature and a high pressure is sent to the condenser 20.

凝縮器20は、圧縮機10から送られてきた高温、高圧のガス状の作動媒体を凝縮し、液状の作動媒体とする役割を果たす。液状の作動媒体は、脱酸素部50に送られる。なお、凝縮器20において、ガス状の作動媒体の熱は空気中に放熱される。   The condenser 20 condenses the high-temperature and high-pressure gaseous working medium sent from the compressor 10 and plays a role as a liquid working medium. The liquid working medium is sent to the deoxygenation unit 50. In the condenser 20, the heat of the gaseous working medium is radiated into the air.

脱酸素部50は、作動媒体から酸素を除去する役割を果たす。ここで、酸素は、酸素成分、即ちO成分という意味であり、酸素Oの他、水HOに含まれる酸素成分Oも含んでいる。脱酸素部50は、内部に乾燥剤又は脱酸素剤を有し、脱酸素部50の内部を通過する作動媒体を乾燥剤又は脱酸素剤に接触させ、作動媒体から酸素成分を除去する。これにより、冷凍サイクル内にスラッジが発生することを抑制することができる。The deoxygenation unit 50 serves to remove oxygen from the working medium. Here, oxygen means an oxygen component, that is, an O component, and includes oxygen component O contained in water H 2 O in addition to oxygen O 2 . The deoxygenation part 50 has a desiccant or a deoxygenating agent inside, makes the working medium which passes the inside of the deoxygenating part 50 contact a desiccant or a deoxidizing agent, and removes an oxygen component from a working medium. Thereby, it can suppress that sludge generate | occur | produces in a refrigerating cycle.

脱酸素部50は、冷凍サイクル内の任意の箇所に設けてよい。いずれの箇所であっても、作動媒体から酸素成分を除去することは可能だからである。しかしながら、酸素除去の効率を考慮すると、凝縮器20と減圧機構30との間に設けることが好ましい。凝縮器20と減圧機構30との間は、作動媒体が液作動媒体の状態であり、作動媒体を効率良く乾燥剤又は脱酸素剤に接触させることができるからである。つまり、ガス状の作動媒体の状態では、作動媒体が拡散しているため、脱酸素部50内に乾燥剤又は脱酸素剤を設けても、作動媒体が確実に乾燥剤又は脱酸素剤に接触するとは限らないが、液体の作動媒体の状態では、流路に乾燥剤又は脱酸素剤を設けておけば、作動媒体が乾燥剤又は脱酸素剤と確実に接触する可能性が高いからである。   The deoxygenation unit 50 may be provided at any location in the refrigeration cycle. This is because it is possible to remove the oxygen component from the working medium at any location. However, in consideration of the efficiency of oxygen removal, it is preferably provided between the condenser 20 and the decompression mechanism 30. This is because the working medium is in the state of a liquid working medium between the condenser 20 and the pressure reducing mechanism 30, and the working medium can be efficiently brought into contact with the desiccant or oxygen scavenger. That is, in the state of the gaseous working medium, since the working medium is diffused, even if a desiccant or a deoxygenating agent is provided in the deoxidizing part 50, the working medium reliably contacts the desiccant or the deoxidizing agent. However, in the state of the liquid working medium, if a desiccant or oxygen scavenger is provided in the flow path, there is a high possibility that the working medium will reliably contact the desiccant or oxygen scavenger. .

なお、脱酸素部50の具体的な構成については後述する。   A specific configuration of the deoxygenation unit 50 will be described later.

減圧機構30は、脱酸素部50を経由して、又は凝縮器20から直接送られてきた液冷媒を、低温、低圧の湿り蒸気にする役割を果たす。これにより、液状の作動媒体はガス状の作動媒体へと再び変換される。なお、減圧機構30は、減圧することにより作動媒体を膨張させるので、膨張機構30と呼んでもよい。   The decompression mechanism 30 serves to convert the liquid refrigerant sent directly from the condenser 20 through the deoxygenation unit 50 into low-temperature, low-pressure wet steam. As a result, the liquid working medium is converted back into a gaseous working medium. The decompression mechanism 30 may be called the expansion mechanism 30 because the working medium is expanded by reducing the pressure.

蒸発器40は、減圧機構30から送られてきた低温、低圧の湿り蒸気の冷媒ガスを蒸発させ、低温、低圧のガス状の作動媒体とする役割を果たす。なお、ガス状の作動媒体は、蒸発器40において、周囲からの熱を吸収して蒸発することになる。   The evaporator 40 plays a role of evaporating the low-temperature, low-pressure wet steam refrigerant gas sent from the decompression mechanism 30 to form a low-temperature, low-pressure gaseous working medium. Note that the gaseous working medium is evaporated by absorbing heat from the surroundings in the evaporator 40.

蒸発器40から送られてきた低温、低圧のガス状の作動媒体は、圧縮機10に吸入され、圧縮されて再び高温、高圧のガス状の作動媒体となる。   The low-temperature and low-pressure gaseous working medium sent from the evaporator 40 is sucked into the compressor 10 and compressed to become a high-temperature and high-pressure gaseous working medium again.

以下、上述の圧縮機10からの冷凍サイクルが繰り返され、作動媒体からの熱の放出、冷媒による熱の吸収が繰り返し行われる。   Hereinafter, the refrigeration cycle from the compressor 10 described above is repeated, and the release of heat from the working medium and the absorption of heat by the refrigerant are repeated.

なお、基本の冷凍サイクルは、圧縮機10、凝縮器20、減圧機構30及び蒸発器40を冷媒が循環することにより行われており、脱酸素部50は、冷凍サイクル中で発生する酸素成分を除去し、冷凍サイクル中のスラッジの発生を抑制する役割を果たしている。よって、脱酸素部50は、冷凍サイクル中の任意の箇所に設置することが可能である。   Note that the basic refrigeration cycle is performed by circulating refrigerant through the compressor 10, the condenser 20, the decompression mechanism 30, and the evaporator 40, and the deoxygenation unit 50 removes oxygen components generated in the refrigeration cycle. It plays the role of removing and suppressing the generation of sludge in the refrigeration cycle. Therefore, the deoxygenation unit 50 can be installed at any location in the refrigeration cycle.

次に、図2を用いて、脱酸素部50の一例の構成について説明する。図2は、本発明の実施形態に係る冷凍サイクル装置の脱酸素部50の一例の構成を示した図である。   Next, the configuration of an example of the oxygen removal unit 50 will be described with reference to FIG. FIG. 2 is a diagram showing an example of the configuration of the deoxygenation unit 50 of the refrigeration cycle apparatus according to the embodiment of the present invention.

図2に示されるように、脱酸素部50は、管状部材51と、入口52と、出口53と、入口側通流面54と、出口側通流面55と、脱酸素剤保持部56と、脱酸素剤57とを有する。   As shown in FIG. 2, the oxygen absorber 50 includes a tubular member 51, an inlet 52, an outlet 53, an inlet-side flow surface 54, an outlet-side flow surface 55, and an oxygen scavenger holding unit 56. And an oxygen scavenger 57.

管状部材51は、脱酸素部50の外形をなす管状の部材であり、配管60に接続され、冷凍サイクルの流路の一部をなすように構成されている。   The tubular member 51 is a tubular member that forms the outer shape of the deoxidation unit 50, and is connected to the pipe 60 and is configured to form a part of the flow path of the refrigeration cycle.

入口52及び出口53は、冷媒の入口と出口であり、配管60に接続される両端部である。つまり、脱酸素部50の入口52及び出口53が配管60に直列接続され、脱酸素部50が冷凍サイクルの流路の一部を構成する。   The inlet 52 and the outlet 53 are an inlet and an outlet for the refrigerant, and are both ends connected to the pipe 60. That is, the inlet 52 and the outlet 53 of the deoxygenation unit 50 are connected in series to the pipe 60, and the deoxygenation unit 50 constitutes a part of the flow path of the refrigeration cycle.

入口側通流面54及び出口側通流面55は、作動媒体が通流可能に構成された一対の面であり、管状部材51の内周面に接合させて設けられる。入口側通流面54及び出口側通流面55は、作動媒体を通流可能な形状を有し、例えば、メッシュ状、格子状等の網目状に開口を有して構成される。   The inlet-side flow surface 54 and the outlet-side flow surface 55 are a pair of surfaces configured to allow the working medium to flow, and are provided to be joined to the inner peripheral surface of the tubular member 51. The inlet-side flow surface 54 and the outlet-side flow surface 55 have a shape that allows the working medium to flow, and are configured to have openings in a mesh shape such as a mesh shape or a lattice shape.

入口側通流面54と出口側通流面55との間の空間は、脱酸素剤保持部56として構成される。脱酸素剤保持部56は、脱酸素剤57を保持する領域である。よって、入口側通流面54及び出口側通流面55の網目をなす開口は、脱酸素剤57を脱酸素剤保持部55内の領域に保持できるように、脱酸素剤57の粒径よりも小さいサイズを有する開口として構成されることが好ましい。   A space between the inlet-side flow surface 54 and the outlet-side flow surface 55 is configured as an oxygen scavenger holding unit 56. The oxygen scavenger holding unit 56 is a region that holds the oxygen scavenger 57. Therefore, the opening forming the mesh of the inlet side flow surface 54 and the outlet side flow surface 55 is larger than the particle size of the oxygen absorber 57 so that the oxygen absorber 57 can be held in the region inside the oxygen absorber holding portion 55. Is preferably configured as an opening having a small size.

脱酸素剤57は、冷媒中の酸素を除去するための粒子状の薬剤である。脱酸素剤57は、冷媒中の酸素を除去できれば、種々の脱酸素剤57を用いることができる。脱酸素剤57は、例えば、鉄粉を用いてもよい。   The oxygen scavenger 57 is a particulate medicine for removing oxygen in the refrigerant. As the oxygen scavenger 57, various oxygen scavengers 57 can be used as long as oxygen in the refrigerant can be removed. As the oxygen scavenger 57, for example, iron powder may be used.

なお、脱酸素剤57は、乾燥剤を用いてもよいことは上述の通りである。乾燥剤も、冷媒中の水を除去できれば、種々の乾燥剤を用いることができる。乾燥剤としては、例えば、無水硫化カルシウム、塩化カルシウム、酸化バリウム、五酸化リン、活性アルミナ、シリカゲル、モレキュラーシーブズを用いることができる。この場合、脱酸素剤保持部56は、乾燥剤保持部56となる。なお、脱酸素剤保持部56と乾燥剤保持部56を纏めて、薬剤保持部56と呼んでもよい。   As described above, the oxygen scavenger 57 may use a desiccant. As the desiccant, various desiccants can be used as long as water in the refrigerant can be removed. As the desiccant, for example, anhydrous calcium sulfide, calcium chloride, barium oxide, phosphorus pentoxide, activated alumina, silica gel, and molecular sieves can be used. In this case, the oxygen scavenger holding unit 56 becomes the desiccant holding unit 56. The oxygen scavenger holding unit 56 and the desiccant holding unit 56 may be collectively referred to as a drug holding unit 56.

また、脱酸素剤57の他に、作動媒体中のフッ化水素を除去するフッ化水素捕捉剤を用いてもよい。フッ化水素捕捉剤としては、フッ化水素と反応するものであればどのようなものが用いられても構わないが、フッ化水素捕捉反応の副生成物が冷凍サイクル内で悪影響をしにくいものを選ぶのが好ましい。その中でも、フッ化水素と反応して逆反応を起こさない、炭酸カルシウム、酸化カルシウム及び水酸化カルシウムを1種または複数種組み合わせて用いるのが好ましい。   In addition to the oxygen scavenger 57, a hydrogen fluoride scavenger that removes hydrogen fluoride in the working medium may be used. Any hydrogen fluoride scavenger may be used as long as it reacts with hydrogen fluoride, but the byproduct of the hydrogen fluoride scavenging reaction is less likely to adversely affect the refrigeration cycle. Is preferred. Among these, it is preferable to use one or a combination of calcium carbonate, calcium oxide and calcium hydroxide that does not react with hydrogen fluoride to cause a reverse reaction.

また、入口側通流面54及び出口側通流面55は、網目状に構成される他、作動媒体を通流させることができれば、作動媒体を透過させる透過性の部材、繊維構造体等であってもよい。   Further, the inlet-side flow surface 54 and the outlet-side flow surface 55 are configured in a mesh shape, and if the working medium can be passed, a permeable member that allows the working medium to pass therethrough, a fiber structure, or the like. There may be.

図3は、図2とは異なる構成の脱酸素部50aの一例を示した図である。脱酸素部50aは、管状部材51、入口52、出口53、入口側通流面54及び脱酸素剤57を備える点では、図2に係る脱酸素部50と同様であるが、出口側通流面55を有さず、バッグ状の脱酸素剤保持部56aを有する点で、図2に係る脱酸素部50と異なっている。このように、脱酸素剤保持部56aをバッグ状に構成し、バッグ内に脱酸素剤57を保持する構成としてもよい。なお、この場合、脱酸素剤保持部56aは、布状であってもよいし、網目状に構成されていてもよい。   FIG. 3 is a view showing an example of the deoxygenation unit 50a having a configuration different from that in FIG. The deoxygenation part 50a is the same as the deoxygenation part 50 according to FIG. 2 in that it includes a tubular member 51, an inlet 52, an outlet 53, an inlet-side flow surface 54, and a deoxygenating agent 57. It differs from the deoxidation part 50 which concerns on FIG. 2 by the point which does not have the surface 55 but has the bag-shaped deoxidation agent holding | maintenance part 56a. As described above, the oxygen scavenger holding part 56a may be configured in a bag shape and the oxygen scavenger 57 may be held in the bag. In this case, the oxygen scavenger holding part 56a may have a cloth shape or a mesh shape.

また、図3では、出口側通流面55が設けられていない例を挙げているが、図3の構成に、出口側通流面55を更に設ける構成としてもよい。   3 shows an example in which the outlet-side flow surface 55 is not provided, but the outlet-side flow surface 55 may be further provided in the configuration of FIG.

なお、脱酸素剤57を乾燥剤としてもよいことは、図1及び図2で説明したのと同様である。   Note that the oxygen scavenger 57 may be used as the desiccant, as described with reference to FIGS.

図4は、図2及び図3とは異なる構成の脱酸素部50bの一例を示した図である。脱酸素部50bは、入口52、出口53、脱酸素剤保持部56及び脱酸素剤57を備える点では、図2に係る脱酸素部50と同様であるが、管状部材51aと、入口側通流面54aと、出口側通流面55aの構成が図2に係る脱酸素部50と異なっている。また、新たにストレーナメッシュ58が管状部材51a内に設けられた点においても、図2に係る脱酸素部50と異なっている。   FIG. 4 is a diagram showing an example of the deoxygenating unit 50b having a configuration different from those in FIGS. The oxygen scavenging part 50b is the same as the oxygen scavenging part 50 according to FIG. 2 in that it includes the inlet 52, the outlet 53, the oxygen scavenger holding part 56, and the oxygen scavenger 57, but the tubular member 51a and the inlet side passage are provided. The structures of the flow surface 54a and the outlet-side flow surface 55a are different from those of the deoxygenation unit 50 according to FIG. Moreover, it differs from the deoxidation part 50 which concerns on FIG. 2 also in the point in which the strainer mesh 58 was newly provided in the tubular member 51a.

まず、管状部材51aは、管径の異なる上流側管状部材51bと、下流側管状部材51cとを有する。上流側管状部材51bの方が、下流側管状部材51cよりも管径が太く構成されている。上流側管状部材51bの下流端と、下流側管状部材51cの上流端とが接続され、一体的に管状部材51aを構成している。   First, the tubular member 51a includes an upstream tubular member 51b and a downstream tubular member 51c having different tube diameters. The upstream tubular member 51b has a larger pipe diameter than the downstream tubular member 51c. The downstream end of the upstream tubular member 51b and the upstream end of the downstream tubular member 51c are connected to form the tubular member 51a integrally.

下流側管状部材51cには、入口側通流面54aと、出口側通流面55aとが設けられ、入口側通流面54aと出口側通流面55aとの間には脱酸素剤保持部56が形成され、脱酸素剤保持部56内に脱酸素剤57が保持されており、この点は、図2に係る脱酸素部50と同様である。図4に係る脱酸素部50bは、入口側通流面54a及び出口側通流面55aがストレーナメッシュで構成されている点で、図2に係る脱酸素部50と異なっている。入口側通流面54a及び出口側通流面55aを構成するストレーナメッシュは、図2に係る脱酸素部50の入口側通流面54及び出口側通流面55と同様、脱酸素剤57を固定する役割を有するので、メッシュ粗さを極端に細かく構成せず、例えば、100メッシュ程度のストレーナメッシュを用いることが好ましい。   The downstream tubular member 51c is provided with an inlet-side flow surface 54a and an outlet-side flow surface 55a, and an oxygen scavenger holding portion is provided between the inlet-side flow surface 54a and the outlet-side flow surface 55a. 56 is formed, and the oxygen scavenger 57 is held in the oxygen scavenger holding part 56. This point is the same as the oxygen scavenging part 50 according to FIG. The oxygen removal part 50b which concerns on FIG. 4 differs from the oxygen removal part 50 which concerns on FIG. 2 by the point by which the inlet side flow surface 54a and the outlet side flow surface 55a are comprised by the strainer mesh. The strainer mesh constituting the inlet-side flow surface 54a and the outlet-side flow surface 55a is similar to the inlet-side flow surface 54 and the outlet-side flow surface 55 of the deoxygenation unit 50 shown in FIG. Since it has a role to fix, it is preferable not to make the mesh roughness extremely fine but to use a strainer mesh of about 100 mesh, for example.

一方、上流側管状部材51bにもストレーナメッシュ58が設けられているが、ストレーナメッシュ58は、入口側通流面54a及び出口側通流面55aを構成するストレーナメッシュよりも細かいメッシュに構成し、上流側でスラッジを捕捉できるように構成することが好ましい。上流側管状部材51bの管径は、下流側管状部材51cの管径よりも大きいため、ストレーナメッシュ58の面積は、入口側通流面54a及び出口側通流面55aよりも大きい。よって、ストレーナメッシュ58にスラッジによる目詰まりが発生した場合でも、目詰まりは部分的なものに留まり、ストレーナメッシュ58の全面に目詰まりが発生することは殆ど無い。よって、ストレーナメッシュ58にスラッジを捕捉する役割を担わせることができ、脱酸素剤57の表面にスラッジが付着することを防止することができる。   On the other hand, the upstream tubular member 51b is also provided with a strainer mesh 58, but the strainer mesh 58 is configured to be a finer mesh than the strainer mesh constituting the inlet-side flow surface 54a and the outlet-side flow surface 55a. It is preferable to configure so that sludge can be captured upstream. Since the tube diameter of the upstream tubular member 51b is larger than the tube diameter of the downstream tubular member 51c, the area of the strainer mesh 58 is larger than the inlet-side flow surface 54a and the outlet-side flow surface 55a. Therefore, even when the strainer mesh 58 is clogged with sludge, the clogging remains partial, and the entire surface of the strainer mesh 58 is hardly clogged. Therefore, the strainer mesh 58 can play a role of trapping sludge, and sludge can be prevented from adhering to the surface of the oxygen scavenger 57.

このように、入口側通流面54a及び出口側通流面55aをストレーナメッシュに構成するとともに、更に上流側にスラッジ捕捉用のストレーナメッシ58を設ける構成としてもよい。   As described above, the inlet-side flow surface 54a and the outlet-side flow surface 55a may be configured as a strainer mesh, and a strainer mesh 58 for capturing sludge may be provided further upstream.

また、上流側にストレーナメッシュ58を設けることなく、図2に係る脱酸素部50の入口側通流面54及び出口側通流面55を、図4の下流側管状部材51cに設けられた入口側通流面54a及び出口側通流面55aのようにストレーナメッシュに構成してもよい。   Further, the inlet-side flow surface 54 and the outlet-side flow surface 55 of the deoxygenating unit 50 according to FIG. 2 are provided in the downstream tubular member 51c of FIG. 4 without providing the strainer mesh 58 on the upstream side. You may comprise a strainer mesh like the side flow surface 54a and the exit side flow surface 55a.

また、いずれの構成の脱酸素部50、50a、50bにおいても、脱酸素剤57の代わりに乾燥剤を用いてもよい点は、これまでの説明と同様である。   Further, in any configuration of the oxygen scavenging sections 50, 50a, 50b, a desiccant may be used in place of the oxygen scavenger 57, as described above.

このように、脱酸素部50、50a、50bは、作動媒体を脱酸素剤57又は乾燥剤に接触させて通過させることができれば、種々の構成とすることができる。また、作動媒体がガス状であるか、液状であるかも考慮し、それに合わせて適切な構成を採用してもよいし、液状の作動媒体とガス状の作動媒体の双方に対応可能な構成としてもよい。図2乃至図4に示した構成は、液状の作動媒体とガス状の作動媒体の双方に適用可能である。   As described above, the deoxygenating units 50, 50a, and 50b can have various configurations as long as the working medium can be brought into contact with the deoxidizing agent 57 or the desiccant. Also, considering whether the working medium is gaseous or liquid, an appropriate configuration may be adopted in accordance with it, or a configuration that can handle both the liquid working medium and the gaseous working medium. Also good. The configuration shown in FIGS. 2 to 4 can be applied to both a liquid working medium and a gaseous working medium.

このように、本実施形態に係る冷凍サイクル装置は、脱酸素部50を冷凍サイクル内に備えることにより、冷凍サイクル内の水及び酸素を除去し、スラッジの発生を抑制することができる。これにより、水及び酸素により溶解し易いHFOを冷媒として用いても、スラッジの発生を抑制することができる。   As described above, the refrigeration cycle apparatus according to the present embodiment includes the deoxygenation unit 50 in the refrigeration cycle, thereby removing water and oxygen in the refrigeration cycle and suppressing generation of sludge. Thereby, even if it uses HFO which is easy to melt | dissolve with water and oxygen as a refrigerant | coolant, generation | occurrence | production of sludge can be suppressed.

また、本実施形態に係る冷凍サイクル装置は、空気調和装置等の熱サイクルシステムに用いることが可能である。以下、図1に係る冷凍サイクルシステムの圧縮機10を圧縮機10a、凝縮器20を室内熱交換器20a、減圧機構30を膨張弁30a、蒸発器40を室外熱交換器40a、脱酸素部50を脱酸素部50cに適用して空気調和装置150を構成した例について説明する。   Moreover, the refrigeration cycle apparatus according to the present embodiment can be used in a heat cycle system such as an air conditioner. Hereinafter, the compressor 10 of the refrigeration cycle system according to FIG. 1 is the compressor 10a, the condenser 20 is the indoor heat exchanger 20a, the decompression mechanism 30 is the expansion valve 30a, the evaporator 40 is the outdoor heat exchanger 40a, and the deoxygenating unit 50. An example in which the air conditioner 150 is configured by applying the above to the deoxygenation unit 50c will be described.

図5は、本発明の実施形態に係る熱サイクルシステムの一例である空気調和装置150の一例を示した図である。   FIG. 5 is a diagram illustrating an example of an air conditioner 150 that is an example of a thermal cycle system according to an embodiment of the present invention.

図5に示すように、空気調和装置150は室外ユニット150aと室内ユニット150bとを有しており、室外ユニット150a内に設けた圧縮機構としての圧縮機10aと、四路切換弁154と、膨張(減圧)機構としての膨張弁30aと、開放弁159と、室外熱交換器40aと、室内ユニット150b内に設けた室内熱交換器20aとを配管60aで接続し冷媒循環の経路61を構成している。また、室内熱交換器20aと膨張弁30aとの間であって、室外ユニット150a内には、脱酸素部50cが設けられている。脱酸素部50cは、乾燥剤を含有していてもよいし、脱酸素剤57を含有していてもよい。また、構成も、図2乃至図4に示した脱酸素部50、50a、50bの構成であってもよいし、他の構成であってもよい。脱酸素部50cを熱サイクルシステム内に設けることにより、熱サイクル内におけるHFOの分解を抑制し、スラッジの発生を抑制することができる。   As shown in FIG. 5, the air conditioner 150 has an outdoor unit 150a and an indoor unit 150b, a compressor 10a as a compression mechanism provided in the outdoor unit 150a, a four-way switching valve 154, an expansion unit An expansion valve 30a, a release valve 159, an outdoor heat exchanger 40a, and an indoor heat exchanger 20a provided in the indoor unit 150b are connected by a pipe 60a to form a refrigerant circulation path 61. ing. Moreover, between the indoor heat exchanger 20a and the expansion valve 30a, the deoxidation part 50c is provided in the outdoor unit 150a. The oxygen scavenging part 50 c may contain a desiccant or may contain an oxygen scavenger 57. Further, the configuration may be the configuration of the deoxidation units 50, 50a, and 50b shown in FIGS. 2 to 4, or other configurations. By providing the deoxygenation part 50c in a heat cycle system, decomposition | disassembly of HFO in a heat cycle can be suppressed, and generation | occurrence | production of sludge can be suppressed.

室外熱交換器40aにはファン160が設けられ、室内ユニット150bにはファン161が設けられており、それぞれのユニットがファン160、161の送風により冷却される。開放弁159は室外ユニット150aの側に設けられており、経路61内を循環する冷媒を室外ユニット150a(装置外)へ放出可能な非常用の弁である。   The outdoor heat exchanger 40 a is provided with a fan 160, and the indoor unit 150 b is provided with a fan 161, and each unit is cooled by blowing air from the fans 160 and 161. The release valve 159 is provided on the outdoor unit 150a side, and is an emergency valve that can discharge the refrigerant circulating in the path 61 to the outdoor unit 150a (outside the apparatus).

この空気調和装置150は上記四路切換弁154の切換動作によって、冷媒の循環方向を反転可能であり、冷暖房運転が可能である。つまり、空気調和装置150は、圧縮機10aと、室外ユニット150a(熱源側)の室外熱交換器40aと、膨張弁30aと、室内ユニット150b(利用側)の室内熱交換器20aとが順に接続されて、作動媒体循環が可逆な作動媒体の経路61を構成している。   The air conditioner 150 can reverse the refrigerant circulation direction by the switching operation of the four-way switching valve 154, and can perform an air conditioning operation. That is, in the air conditioner 150, the compressor 10a, the outdoor heat exchanger 40a of the outdoor unit 150a (heat source side), the expansion valve 30a, and the indoor heat exchanger 20a of the indoor unit 150b (use side) are sequentially connected. Thus, a working medium path 61 in which the working medium circulation is reversible is configured.

また空気調和装置150は制御装置170と、経路61上または各ユニット内に配置された各種センサS1〜S8と、交流電源171からの電源供給により圧縮機10aへ電力を供給するインバータ電源などの電力供給装置172とを備える。   The air conditioner 150 also includes a control device 170, various sensors S1 to S8 disposed on the path 61 or in each unit, and power such as an inverter power source that supplies power to the compressor 10a by power supply from the AC power source 171. Supply device 172.

センサS1、S2は経路61外への冷媒の漏洩を検出(検知)するセンサである。センサS1は室外ユニット150aの内部に設けられている。センサS2は室内ユニット150bの内部に設けられている。   Sensors S <b> 1 and S <b> 2 are sensors that detect (detect) leakage of the refrigerant outside the path 61. The sensor S1 is provided inside the outdoor unit 150a. The sensor S2 is provided inside the indoor unit 150b.

センサS3は圧縮機10aの吐出管を流れる作動媒体の温度を検出するセンサである。センサS4は、熱源側の熱交換器40aと膨張弁30aとの間の配管60aを流れる作動媒体の温度を検出するセンサである。センサS5は膨張弁30aの開度を検出するセンサである。センサS6は、圧縮機10aの駆動部であるモータ(図示せず)の温度を検出するセンサである。センサS7、S8は膨張弁30aの前後(入力端と出力端)に配置されており、経路61(配管60a内)を循環する作動媒体の流量を検出するセンサである。   The sensor S3 is a sensor that detects the temperature of the working medium flowing through the discharge pipe of the compressor 10a. The sensor S4 is a sensor that detects the temperature of the working medium flowing through the pipe 60a between the heat exchanger 40a on the heat source side and the expansion valve 30a. The sensor S5 is a sensor that detects the opening degree of the expansion valve 30a. The sensor S6 is a sensor that detects the temperature of a motor (not shown) that is a drive unit of the compressor 10a. Sensors S7 and S8 are arranged before and after the expansion valve 30a (input end and output end), and are sensors for detecting the flow rate of the working medium circulating in the path 61 (in the pipe 60a).

制御装置170は各種センサS1〜S8により検出された検出情報を基に上記各機器(圧縮機10a、四路切換弁154、膨張弁30a、開放弁159、室外熱交換器40a、室内熱交換器20a、ファン160、161)を制御する。具体的には、制御装置170は、圧縮機10aのモータへ電力を供給する電力供給装置172に対して駆動制御を行うことで、圧縮機10aを駆動する。開放弁159は経路61から分岐したユニット外部への配管58に開放/閉塞可能に設けられており通常は閉塞されている。開放弁159は回避動作の際に制御装置170により開放される。   Based on the detection information detected by the various sensors S1 to S8, the control device 170 uses the above devices (compressor 10a, four-way switching valve 154, expansion valve 30a, release valve 159, outdoor heat exchanger 40a, indoor heat exchanger). 20a, fans 160 and 161) are controlled. Specifically, the control device 170 drives the compressor 10a by performing drive control on the power supply device 172 that supplies power to the motor of the compressor 10a. The release valve 159 is provided in a pipe 58 extending from the path 61 to the outside of the unit so as to be openable / closable, and is normally closed. The release valve 159 is opened by the control device 170 during the avoidance operation.

ここで、空気調和装置150の概要的な運転動作を説明する。   Here, a schematic operation of the air conditioner 150 will be described.

暖房運転では、四路切換弁154が図5に実線で示すように設定される。この状態で圧縮機10aを運転すると、室内熱交換器20aが図1における凝縮器20となり、室外熱交換器40aが蒸発器40となって冷凍サイクルが行われる。   In the heating operation, the four-way switching valve 154 is set as shown by a solid line in FIG. When the compressor 10a is operated in this state, the indoor heat exchanger 20a becomes the condenser 20 in FIG. 1, and the outdoor heat exchanger 40a becomes the evaporator 40 to perform the refrigeration cycle.

圧縮機10aから吐出された高圧冷媒は、四路切換弁154を経て(図5の点d2)、室内熱交換器20aに流れて室内空気へ放熱し凝縮する(図5の点d3)。このとき、凝縮した高圧冷媒は、脱酸素部50cを通過し、高圧冷媒内の酸素成分が除去される。脱酸素部50cを通過した高圧冷媒は、膨張弁30aに流入し、膨張弁30aで減圧されて低圧冷媒となり(図5の点d4)、室外熱交換器40aに流入する。   The high-pressure refrigerant discharged from the compressor 10a passes through the four-way switching valve 154 (point d2 in FIG. 5), flows into the indoor heat exchanger 20a, radiates heat to the indoor air, and condenses (point d3 in FIG. 5). At this time, the condensed high-pressure refrigerant passes through the deoxygenation part 50c, and the oxygen component in the high-pressure refrigerant is removed. The high-pressure refrigerant that has passed through the deoxygenation unit 50c flows into the expansion valve 30a, is decompressed by the expansion valve 30a, becomes low-pressure refrigerant (point d4 in FIG. 5), and flows into the outdoor heat exchanger 40a.

室外熱交換器40aに流入した低圧冷媒は、室外空気から吸熱し蒸発する。蒸発した低圧冷媒は、四路切換弁154を経て図5の点d1を通って圧縮機10aに吸入される。そして、吸入された低圧冷媒は、圧縮されて、再び高圧冷媒となって吐出される。この動作を繰り返すことにより、空気調和装置150の暖房運転が行われる。   The low-pressure refrigerant that has flowed into the outdoor heat exchanger 40a absorbs heat from the outdoor air and evaporates. The evaporated low-pressure refrigerant passes through the four-way switching valve 154 and is sucked into the compressor 10a through the point d1 in FIG. The sucked low-pressure refrigerant is compressed and discharged again as a high-pressure refrigerant. By repeating this operation, heating operation of the air conditioner 150 is performed.

空気調和装置150は、室内熱交換器20aおよび室外熱交換器40aのいずれにおいても冷房運転時の作動媒体流れと暖房運転時の作動媒体流れが逆方向になる。例えば、室内熱交換器20aおよび室外熱交換器40aは、冷房運転時において、作動媒体の流入側が空気の出口側になり、作動媒体の流出側が空気の入口側になる所謂対向流となると、暖房運転時において、作動媒体の流入側が空気の入口側になり、作動媒体の流出側が空気の出口側になる。その際、室外熱交換機40aと膨張弁30aとの間に更に別の脱酸素部50cを設けてもよいし、脱酸素部50cを液冷媒だけでなくガス状の作動媒体にも適用可能に構成し、室内熱交換器20aと膨張弁30aとの間の脱酸素部50cでガス状の作動媒体から乾燥又は脱酸素を行うようにしてもよい。また、図5においては、室内熱交換器20aと膨張弁30aとの間の脱酸素部50cを設けた例を挙げて説明したが、脱酸素部50cは、熱サイクル内の任意の箇所に設けることができる。   In the air conditioner 150, in both the indoor heat exchanger 20a and the outdoor heat exchanger 40a, the working medium flow during the cooling operation and the working medium flow during the heating operation are in opposite directions. For example, in the cooling operation, the indoor heat exchanger 20a and the outdoor heat exchanger 40a are heated when the working medium inflow side becomes an air outlet side and the working medium outflow side becomes a so-called counterflow with the air inlet side. During operation, the working medium inflow side is the air inlet side, and the working medium outflow side is the air outlet side. In that case, another deoxygenation part 50c may be provided between the outdoor heat exchanger 40a and the expansion valve 30a, and the deoxygenation part 50c can be applied not only to the liquid refrigerant but also to a gaseous working medium. And you may make it dry or deoxygenate from a gaseous working medium in the deoxidation part 50c between the indoor heat exchanger 20a and the expansion valve 30a. In FIG. 5, the example in which the deoxygenation part 50c is provided between the indoor heat exchanger 20a and the expansion valve 30a has been described. However, the deoxygenation part 50c is provided at an arbitrary location in the thermal cycle. be able to.

このように、空気調和装置150等の熱サイクルシステムに脱酸素部50cを設けることにより、熱サイクルシステム内の酸素成分を除去し、熱サイクル内におけるスラッジの発生を抑制することができる。   Thus, by providing the deoxidation part 50c in thermal cycle systems, such as the air conditioning apparatus 150, the oxygen component in a thermal cycle system can be removed and generation | occurrence | production of the sludge in a thermal cycle can be suppressed.

次に、本発明の実施形態に係る冷凍サイクル装置及び熱サイクルシステムで用いられる冷媒について説明する。   Next, the refrigerant used in the refrigeration cycle apparatus and the thermal cycle system according to the embodiment of the present invention will be described.

上述のように、本発明の実施形態に係る冷凍サイクル装置及び熱サイクルシステムで用いる作動媒体はハイドロフルオレフィン(HFO)を含む。HFOとしては、トリフルオロエチレン(HFO−1123)、2,3,3,3−テトラフルオロプロペン(HFO−1234yf)、1,2−ジフルオロエチレン(HFO−1132)、2−フルオロプロペン(HFO−1261yf)、1,1,2−トリフルオロプロペン(HFO−1243yc)、トランス−1,2,3,3,3−ペンタフルオロプロペン(HFO−1225ye(E))、シス−1,2,3,3,3−ペンタフルオロプロペン(HFO−1225ye(Z))、トランス−1,3,3,3−テトラフルオロプロペン(HFO−1234ze(E))、シス−1,3,3,3−テトラフルオロプロペン(HFO−1234ze(Z))、3,3,3−トリフルオロプロペン(HFO−1243zf)等が挙げられるが、HFO−1234yf、HFO−1234ze(E)又はHFO−1234ze(Z)を含むことが好ましく、HFO−1234yf又はHFO−1123を含むことがより好ましく、HFO−1123を含むことが特に好ましい。   As described above, the working medium used in the refrigeration cycle apparatus and the thermal cycle system according to the embodiment of the present invention includes hydrofluoroolefin (HFO). Examples of HFO include trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf). ), 1,1,2-trifluoropropene (HFO-1243yc), trans-1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), cis-1,2,3,3 , 3-pentafluoropropene (HFO-1225ye (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), cis-1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)), 3,3,3-trifluoropropene (HFO-1243zf) and the like. HFO-1234yf, preferably comprising HFO-1234ze (E) or HFO-1234ze (Z), more preferably containing HFO-1234yf or HFO-1123, it is particularly preferred that it include a HFO-1123.

本発明で用いる作動媒体は、HFO−1123を含むことが好ましく、さらに、必要に応じて、後述する任意成分を含んでいてもよい。作動媒体の100質量%に対するHFO−1123の含有量は、10質量%以上が好ましく、20〜80質量%がより好ましく、40〜80質量%が一層好ましく、40〜60質量%がさらに好ましい。
(HFO−1123)
HFO−1123の作動媒体としての特性を、特に、R410A(HFC−32とHFC−125との質量比1:1の擬似共沸混合冷媒)との相対比較において表1に示す。サイクル性能は、後述する方法で求められる成績係数と冷凍能力とで示される。HFO−1123の成績係数と冷凍能力とは、R410Aを基準(1.000)とした相対値(以下、相対成績係数および相対冷凍能力という)で示す。地球温暖化係数(GWP)は、気候変動に関する政府間パネル(IPCC)第4次評価報告書(2007年)に示される、または該方法に準じて測定された100年の値である。本明細書において、GWPは特に断りのない限りこの値をいう。作動媒体が混合物からなる場合、後述するとおり温度勾配は、作動媒体を評価する上で重要なファクターとなり、値は小さい方が好ましい。
The working medium used in the present invention preferably contains HFO-1123, and may further contain an optional component described later, if necessary. 10 mass% or more is preferable, as for content of HFO-1123 with respect to 100 mass% of a working medium, 20-80 mass% is more preferable, 40-80 mass% is more preferable, 40-60 mass% is further more preferable.
(HFO-1123)
The characteristics of HFO-1123 as a working medium are shown in Table 1 in a relative comparison with R410A (a pseudo-azeotropic refrigerant mixture of HFC-32 and HFC-125 having a mass ratio of 1: 1). The cycle performance is indicated by a coefficient of performance and a refrigerating capacity obtained by a method described later. The coefficient of performance and the refrigerating capacity of HFO-1123 are expressed as relative values (hereinafter referred to as relative performance coefficient and relative refrigerating capacity) with R410A as a reference (1.000). The global warming potential (GWP) is a value of 100 years indicated in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007) or measured according to the method. In this specification, GWP refers to this value unless otherwise specified. When the working medium is composed of a mixture, the temperature gradient is an important factor in evaluating the working medium as described later, and a smaller value is preferable.

Figure 2017122517
[任意成分]
本発明で用いる作動媒体はHFO−1123を含むことが好ましく、本発明の効果を損なわない範囲でHFO−1123以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。このような任意の化合物(任意成分)としては、例えば、HFC、HFO−1123以外のHFO(炭素−炭素二重結合を有するHFC)、これら以外のHFO−1123とともに気化、液化する他の成分等が挙げられる。任意成分としては、HFC、HFO−1123以外のHFO(炭素−炭素二重結合を有するHFC)が好ましい。
Figure 2017122517
[Optional ingredients]
The working medium used in the present invention preferably contains HFO-1123, and may optionally contain a compound used as a normal working medium in addition to HFO-1123 as long as the effects of the present invention are not impaired. Examples of such an arbitrary compound (optional component) include HFO other than HFC and HFO-1123 (HFC having a carbon-carbon double bond), other components that are vaporized and liquefied together with HFO-1123 other than these, etc. Is mentioned. As an optional component, HFO other than HFC and HFO-1123 (HFC having a carbon-carbon double bond) is preferable.

任意成分としては、例えばHFO−1123と組み合わせて熱サイクルに用いた際に、上記相対成績係数、相対冷凍能力をより高める作用を有しながら、GWPや温度勾配を許容の範囲にとどめられる化合物が好ましい。作動媒体がHFO−1123との組合せにおいてこのような化合物を含むと、GWPを低く維持しながら、より良好なサイクル性能が得られるとともに、温度勾配による影響も少ない。
(温度勾配)
作動媒体が例えばHFO−1123と任意成分とを含有する場合、HFO−1123と任意成分とが共沸組成である場合を除いて相当の温度勾配を有する。作動媒体の温度勾配は、任意成分の種類およびHFO−1123と任意成分との混合割合により異なる。
As an optional component, for example, when used in a heat cycle in combination with HFO-1123, there is a compound that can keep the GWP and temperature gradient within an allowable range while having the effect of further increasing the relative coefficient of performance and the relative refrigeration capacity. preferable. When the working medium contains such a compound in combination with HFO-1123, a better cycle performance can be obtained while keeping the GWP low, and the influence of the temperature gradient is small.
(Temperature gradient)
When the working medium contains, for example, HFO-1123 and an optional component, it has a considerable temperature gradient except when HFO-1123 and the optional component have an azeotropic composition. The temperature gradient of the working medium varies depending on the type of the optional component and the mixing ratio of HFO-1123 and the optional component.

作動媒体として混合物を用いる場合、通常、共沸またはR410Aのような擬似共沸の混合物が好ましく用いられる。非共沸組成物は、圧力容器から冷凍空調機器へ充てんされる際に組成変化を生じる問題点を有している。さらに、冷凍空調機器からの冷媒漏えいが生じた場合、冷凍空調機器内の冷媒組成が変化する可能性が極めて大きく、初期状態への冷媒組成の復元が困難である。一方、共沸または擬似共沸の混合物であれば上記問題が回避できる。   When a mixture is used as the working medium, usually an azeotropic or pseudo-azeotropic mixture such as R410A is preferably used. Non-azeotropic compositions have the problem of causing composition changes when filled from a pressure vessel to a refrigeration air conditioner. Furthermore, when refrigerant leakage from the refrigeration air conditioner occurs, the refrigerant composition in the refrigeration air conditioner is very likely to change, and it is difficult to restore the refrigerant composition to the initial state. On the other hand, the above problem can be avoided if the mixture is azeotropic or pseudo-azeotropic.

混合物の作動媒体における使用可能性をはかる指標として、一般に「温度勾配」が用いられる。温度勾配は、熱交換器、例えば、蒸発器における蒸発の、または凝縮器における凝縮の、開始温度と終了温度とが異なる性質、と定義される。共沸混合物においては、温度勾配は0であり、擬似共沸混合物では、例えばR410Aの温度勾配が0.2であるように、温度勾配は極めて0に近い。   In general, a “temperature gradient” is used as an index for measuring the availability of the mixture in the working medium. A temperature gradient is defined as the property of the start and end temperatures of a heat exchanger, for example, evaporation in an evaporator or condensation in a condenser, differing. In the azeotrope, the temperature gradient is 0, and in the pseudoazeotrope, the temperature gradient is very close to 0, for example, the temperature gradient of R410A is 0.2.

温度勾配が大きいと、例えば、蒸発器における入口温度が低下することで着霜の可能性が大きくなり問題である。さらに、熱サイクルシステムにおいては、熱交換効率の向上をはかるために熱交換器を流れる作動媒体と水や空気等の熱源流体とを対向流にすることが一般的であり、安定運転状態においては該熱源流体の温度差が小さいことから、温度勾配の大きい非共沸混合媒体の場合、エネルギー効率のよい熱サイクルシステムを得ることが困難である。このため、混合物を作動媒体として使用する場合は適切な温度勾配を有する作動媒体が望まれる。
(HFC)
任意成分のHFCとしては、上記観点から選択されることが好ましい。ここで、HFCは、HFO−1123に比べてGWPが高いことが知られている。したがって、HFO−1123と組合せるHFCとしては、上記作動媒体としてのサイクル性能を向上させ、かつ温度勾配を適切な範囲にとどめることに加えて、特にGWPを許容の範囲にとどめる観点から、適宜選択されることが好ましい。
If the temperature gradient is large, for example, the inlet temperature in the evaporator decreases, which increases the possibility of frost formation. Furthermore, in a heat cycle system, in order to improve heat exchange efficiency, it is common to make the working medium flowing through the heat exchanger and a heat source fluid such as water or air counter flow, and in a stable operation state Since the temperature difference of the heat source fluid is small, it is difficult to obtain an energy efficient thermal cycle system in the case of a non-azeotropic mixed medium having a large temperature gradient. For this reason, when a mixture is used as a working medium, a working medium having an appropriate temperature gradient is desired.
(HFC)
The optional HFC is preferably selected from the above viewpoint. Here, HFC is known to have higher GWP than HFO-1123. Therefore, the HFC to be combined with HFO-1123 is appropriately selected from the viewpoint of improving the cycle performance as the working medium and keeping the temperature gradient within an appropriate range, and particularly keeping the GWP within an allowable range. It is preferred that

オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCとして具体的には炭素数1〜5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。   Specifically, an HFC having 1 to 5 carbon atoms is preferable as an HFC that has little influence on the ozone layer and has little influence on global warming. The HFC may be linear, branched, or cyclic.

HFCとしては、HFC−32、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、HFC−125、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。   Examples of the HFC include HFC-32, difluoroethane, trifluoroethane, tetrafluoroethane, HFC-125, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane and the like.

なかでも、HFCとしては、オゾン層への影響が少なく、かつ冷凍サイクル特性が優れる点から、HFC−32、1,1−ジフルオロエタン(HFC−152a)、1,1,1−トリフルオロエタン(HFC−143a)、1,1,2,2−テトラフルオロエタン(HFC−134)、1,1,1,2−テトラフルオロエタン(HFC−134a)、およびHFC−125が好ましく、HFC−32、HFC−152a、HFC−134a、およびHFC−125がより好ましい。   Among these, HFC-32, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC) have a small influence on the ozone layer and excellent refrigeration cycle characteristics as HFC. -143a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,2-tetrafluoroethane (HFC-134a), and HFC-125 are preferred, HFC-32, HFC -152a, HFC-134a, and HFC-125 are more preferred.

HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   One HFC may be used alone, or two or more HFCs may be used in combination.

作動媒体(100質量%)中のHFCの含有量は、作動媒体の要求特性に応じ任意に選択可能である。例えば、HFO−1123とHFC−32とからなる作動媒体の場合、HFC−32の含有量が1〜99質量%の範囲で成績係数および冷凍能力が向上する。HFO−1123とHFC−134aとからなる作動媒体の場合、HFC−134aの含有量が1〜99質量%の範囲で成績係数が向上する。   The content of HFC in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium. For example, in the case of a working medium composed of HFO-1123 and HFC-32, the coefficient of performance and the refrigerating capacity are improved when the content of HFC-32 is in the range of 1 to 99% by mass. In the case of a working medium composed of HFO-1123 and HFC-134a, the coefficient of performance improves when the content of HFC-134a is in the range of 1 to 99% by mass.

また、上記好ましいHFCのGWPは、HFC−32については675であり、HFC−134aについては1430であり、HFC−125については3500である。得られる作動媒体のGWPを低く抑える観点から、任意成分のHFCとしては、HFC−32が最も好ましい。   The preferred HFC GWP is 675 for HFC-32, 1430 for HFC-134a, and 3500 for HFC-125. From the viewpoint of keeping the GWP of the resulting working medium low, the HFC-32 is most preferable as the optional component HFC.

また、HFO−1123とHFC−32とは、質量比で99:1〜1:99の組成範囲で共沸に近い擬似共沸混合物を形成可能であり、両者の混合物はほぼ組成範囲を選ばずに温度勾配が0に近い。この点においてもHFO−1123と組合せるHFCとしてはHFC−32が有利である。   Moreover, HFO-1123 and HFC-32 can form a pseudo-azeotropic mixture close to azeotropic in a composition range of 99: 1 to 1:99 by mass ratio, and the mixture of both does not choose the composition range almost. The temperature gradient is close to zero. Also in this respect, HFC-32 is advantageous as an HFC combined with HFO-1123.

本発明に用いる作動媒体において、HFO−1123とともにHFC−32を用いる場合、作動媒体の100質量%に対するHFC−32の含有量は、具体的には、20質量%以上が好ましく、20〜80質量%がより好ましく、40〜60質量%がさらに好ましい。   In the working medium used in the present invention, when HFC-32 is used together with HFO-1123, the content of HFC-32 with respect to 100% by mass of the working medium is preferably 20% by mass or more, and preferably 20 to 80% by mass. % Is more preferable, and 40 to 60% by mass is more preferable.

本発明に用いる作動媒体において、例えば、HFO―1123を含む場合は、HFO−1123以外のHFOとしては、高い臨界温度を有し、耐久性、成績係数が優れる点から、HFO−1234yf(GWP=4)、HFO−1234ze(E)、HFO−1234ze(Z)((E)体、(Z)体共にGWP=6)が好ましく、HFO−1234yf、HFO−1234ze(E)がより好ましい。HFO−1123以外のHFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。作動媒体(100質量%)中のHFO−1123以外のHFOの含有量は、作動媒体の要求特性に応じ任意に選択可能である。例えば、HFO−1123とHFO−1234yfまたはHFO−1234zeとからなる作動媒体の場合、HFO−1234yfまたはHFO−1234zeの含有量が1〜99質量%の範囲で成績係数が向上する。   In the working medium used in the present invention, for example, when HFO-1123 is included, HFO other than HFO-1123 has a high critical temperature and is excellent in durability and coefficient of performance, so that HFO-1234yf (GWP = 4), HFO-1234ze (E), HFO-1234ze (Z) (GWP = 6 for both (E) and (Z) isomers) are preferred, and HFO-1234yf and HFO-1234ze (E) are more preferred. HFOs other than HFO-1123 may be used alone or in combination of two or more. The content of HFO other than HFO-1123 in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium. For example, in the case of a working medium composed of HFO-1123 and HFO-1234yf or HFO-1234ze, the coefficient of performance improves when the content of HFO-1234yf or HFO-1234ze is in the range of 1 to 99% by mass.

本発明に用いる作動媒体が、HFO−1123およびHFO−1234yfを含む場合の、好ましい組成範囲を組成範囲(S)として以下に示す。   A preferred composition range in the case where the working medium used in the present invention contains HFO-1123 and HFO-1234yf is shown below as a composition range (S).

なお、組成範囲(S)を示す各式において、各化合物の略称は、HFO−1123とHFO−1234yfとその他の成分(HFC−32等)との合計量に対する当該化合物の割合(質量%)を示す。
<組成範囲(S)>
HFO−1123+HFO−1234yf≧70質量%
95質量%≧HFO−1123/(HFO−1123+HFO−1234yf)≧35質量%
組成範囲(S)の作動媒体は、GWPが極めて低く、温度勾配が小さい。また、成績係数、冷凍能力および臨界温度の観点からも従来のR410Aに代替し得る冷凍サイクル性能を発現できる。
In each formula showing the composition range (S), the abbreviation of each compound is the ratio (mass%) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and other components (such as HFC-32). Show.
<Composition range (S)>
HFO-1123 + HFO-1234yf ≧ 70% by mass
95% by mass ≧ HFO-1123 / (HFO-1123 + HFO-1234yf) ≧ 35% by mass
The working medium in the composition range (S) has a very low GWP and a small temperature gradient. In addition, from the viewpoint of coefficient of performance, refrigeration capacity, and critical temperature, refrigeration cycle performance that can be substituted for the conventional R410A can be expressed.

組成範囲(S)の作動媒体において、HFO−1123とHFO−1234yfとの合計量に対するHFO−1123の割合は、40〜95質量%がより好ましく、50〜90質量%がさらに好ましく、50〜85質量%が特に好ましく、60〜85質量%がもっとも好ましい。   In the working medium having the composition range (S), the ratio of HFO-1123 to the total amount of HFO-1123 and HFO-1234yf is more preferably 40 to 95% by mass, further preferably 50 to 90% by mass, and 50 to 85%. Mass% is particularly preferable, and 60 to 85 mass% is most preferable.

また、作動媒体100質量%中のHFO−1123とHFO−1234yfとの合計の含有量は、80〜100質量%がより好ましく、90〜100質量%がさらに好ましく、95〜100質量%が特に好ましい。   Further, the total content of HFO-1123 and HFO-1234yf in 100% by mass of the working medium is more preferably from 80 to 100% by mass, further preferably from 90 to 100% by mass, and particularly preferably from 95 to 100% by mass. .

また、本発明に用いる作動媒体は、HFO−1123とHFC−32とHFO−1234yfとを含むことが好ましく、HFO−1123、HFO−1234yfおよびHFC−32とを含有する場合の好ましい組成範囲(P)を以下に示す。   Moreover, it is preferable that the working medium used for this invention contains HFO-1123, HFC-32, and HFO-1234yf, and the preferable composition range in the case of containing HFO-1123, HFO-1234yf, and HFC-32 (P ) Is shown below.

なお、組成範囲(P)を示す各式において、各化合物の略称は、HFO−1123とHFO−1234yfとHFC−32との合計量に対する当該化合物の割合(質量%)を示す。組成範囲(R)、組成範囲(L)、組成範囲(M)においても同様である。また、以下に記載の組成範囲では、具体的に記載したHFO−1123とHFO−1234yfとHFC−32との合計量が、熱サイクル用作動媒体全量に対して90質量%を超え100質量%以下であることが好ましい。
<組成範囲(P)>
70質量%≦HFO−1123+HFO−1234yf
30質量%≦HFO−1123≦80質量%
0質量%<HFO−1234yf≦40質量%
0質量%<HFC−32≦30質量%
HFO−1123/HFO−1234yf≦95/5質量%
上記組成を有する作動媒体は、HFO−1123、HFO−1234yfおよびHFC−32がそれぞれ有する特性がバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、この作動媒体は、GWPが極めて低く抑えられ、熱サイクルに用いた際に、温度勾配が小さく、一定の能力と効率とを有することで良好なサイクル性能が得られる作動媒体である。ここで、HFO−1123とHFO−1234yfとHFC−32との合計量に対する、HFO−1123とHFO−1234yfとの合計量は70質量%以上であることが好ましい。
In each formula showing the composition range (P), the abbreviation of each compound indicates the ratio (mass%) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32. The same applies to the composition range (R), composition range (L), and composition range (M). Moreover, in the composition range described below, the total amount of HFO-1123, HFO-1234yf, and HFC-32 specifically described exceeds 90% by mass and 100% by mass or less with respect to the total amount of the working medium for heat cycle. It is preferable that
<Composition range (P)>
70% by mass ≦ HFO-1123 + HFO-1234yf
30% by mass ≦ HFO-1123 ≦ 80% by mass
0% by mass <HFO-1234yf ≦ 40% by mass
0% by mass <HFC-32 ≦ 30% by mass
HFO-1123 / HFO-1234yf ≦ 95/5% by mass
The working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the disadvantages of each of them are suppressed. In other words, this working medium is a working medium that has a very low GWP, has a small temperature gradient, and has a certain capacity and efficiency when used in a thermal cycle, and can obtain good cycle performance. Here, the total amount of HFO-1123 and HFO-1234yf with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32 is preferably 70% by mass or more.

また、本発明に用いる作動媒体のより好ましい組成としては、HFO−1123とHFO−1234yfとHFC−32との合計量に対して、HFO−1123を30〜70質量%、HFO−1234yfを4〜40質量%、およびHFC−32を0〜30質量%の割合で含有し、かつ、作動媒体全量に対するHFO−1123の含有量が70モル%以下である組成が挙げられる。前記範囲の作動媒体は、上記の効果が高まるのに加え、HFO−1123の自己分解反応が抑制され、耐久性の高い作動媒体である。相対成績係数の観点からは、HFC−32の含有量は5質量%以上が好ましく、8質量%以上がより好ましい。   Moreover, as a more preferable composition of the working medium used for this invention, 30-70 mass% of HFO-1123 and HFO-1234yf are 4-4 with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32. Examples include a composition containing 40% by mass and HFC-32 in a proportion of 0 to 30% by mass, and the content of HFO-1123 with respect to the total amount of the working medium is 70 mol% or less. The working medium in the above range is a highly durable working medium in which the above effect is enhanced and the self-decomposition reaction of HFO-1123 is suppressed. From the viewpoint of the relative coefficient of performance, the content of HFC-32 is preferably 5% by mass or more, and more preferably 8% by mass or more.

また、本発明に用いる作動媒体がHFO−1123、HFO−1234yfおよびHFC−32を含む場合の、別の好ましい組成を示すが、作動媒体全量に対するHFO−1123の含有量が70モル%以下であれば、HFO−1123の自己分解反応が抑制され、耐久性の高い作動媒体が得られる。   Moreover, although another preferable composition is shown when the working medium used in the present invention contains HFO-1123, HFO-1234yf and HFC-32, the content of HFO-1123 with respect to the total amount of the working medium should be 70 mol% or less. For example, the self-decomposition reaction of HFO-1123 is suppressed, and a highly durable working medium is obtained.

さらに好ましい組成範囲(R)を、以下に示す。
<組成範囲(R)>
10質量%≦HFO−1123<70質量%
0質量%<HFO−1234yf≦50質量%
30質量%<HFC−32≦75質量%
上記組成を有する作動媒体は、HFO−1123、HFO−1234yfおよびHFC−32がそれぞれ有する特性がバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、GWPが低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配が小さく、高い能力と効率を有することで良好なサイクル性能が得られる作動媒体である。
A more preferred composition range (R) is shown below.
<Composition range (R)>
10% by mass ≦ HFO-1123 <70% by mass
0% by mass <HFO-1234yf ≦ 50% by mass
30% by mass <HFC-32 ≦ 75% by mass
The working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the disadvantages of each of them are suppressed. That is, it is a working medium in which good cycle performance can be obtained by having a low temperature gradient and high performance and efficiency when used in a thermal cycle after GWP is kept low and durability is ensured.

上記組成範囲(R)を有する本発明の作動媒体において、好ましい範囲を、以下に示す。   In the working medium of the present invention having the composition range (R), preferred ranges are shown below.

20質量%≦HFO−1123<70質量%
0質量%<HFO−1234yf≦40質量%
30質量%<HFC−32≦75質量%
上記組成を有する作動媒体は、HFO−1123、HFO−1234yfおよびHFC−32がそれぞれ有する特性が特にバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、GWPが低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配がより小さく、より高い能力と効率を有することで良好なサイクル性能が得られる作動媒体である。
20% by mass ≦ HFO-1123 <70% by mass
0% by mass <HFO-1234yf ≦ 40% by mass
30% by mass <HFC-32 ≦ 75% by mass
The working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the disadvantages of each of them are suppressed. That is, it is a working medium in which GWP is kept low and durability is ensured, and when used in a thermal cycle, the temperature gradient is smaller and the cycle performance is higher by having higher capacity and efficiency. is there.

上記組成範囲(R)を有する本発明の作動媒体において、より好ましい組成範囲(L)を、以下に示す。組成範囲(M)がさらに好ましい。
<組成範囲(L)>
10質量%≦HFO−1123<70質量%
0質量%<HFO−1234yf≦50質量%
30質量%<HFC−32≦44質量%
<組成範囲(M)>
20質量%≦HFO−1123<70質量%
5質量%≦HFO−1234yf≦40質量%
30質量%<HFC−32≦44質量%
上記組成範囲(M)を有する作動媒体は、HFO−1123、HFO−1234yfおよびHFC−32がそれぞれ有する特性が特にバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、この作動媒体は、GWPの上限が300以下に低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配が5.8未満と小さく、相対成績係数および相対冷凍能力が1に近く良好なサイクル性能が得られる作動媒体である。
In the working medium of the present invention having the composition range (R), a more preferred composition range (L) is shown below. The composition range (M) is more preferable.
<Composition range (L)>
10% by mass ≦ HFO-1123 <70% by mass
0% by mass <HFO-1234yf ≦ 50% by mass
30% by mass <HFC-32 ≦ 44% by mass
<Composition range (M)>
20% by mass ≦ HFO-1123 <70% by mass
5 mass% ≦ HFO-1234yf ≦ 40 mass%
30% by mass <HFC-32 ≦ 44% by mass
The working medium having the composition range (M) is a working medium in which the characteristics of the HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the disadvantages of the working medium are suppressed. In other words, this working medium has a GWP with an upper limit of 300 or less, and durability is ensured, and when used in a heat cycle, the temperature gradient is less than 5.8, and the relative coefficient of performance and relative This is a working medium having a refrigerating capacity close to 1 and good cycle performance.

この範囲にあると温度勾配の上限が下がり、相対成績係数×相対冷凍能力の下限が上がる。相対成績係数が大きい点から8質量%≦HFO−1234yfがより好ましい。また、相対冷凍能力が大きい点からHFO−1234yf≦35質量%がより好ましい。   Within this range, the upper limit of the temperature gradient is lowered, and the lower limit of the relative coefficient of performance x the relative refrigeration capacity is raised. From the viewpoint of a large relative coefficient of performance, 8% by mass ≦ HFO-1234yf is more preferable. Moreover, HFO-1234yf <= 35 mass% is more preferable from the point with a large relative freezing capacity.

また、本発明に用いる別の作動媒体は、HFO−1123とHFC−134aとHFC−125とHFO−1234yfとを含むことが好ましく、この組成により作動媒体の燃焼性が抑えられる。   Moreover, it is preferable that another working medium used for this invention contains HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the combustibility of a working medium is suppressed by this composition.

さらに好ましくは、HFO−1123とHFC−134aとHFC−125とHFO−1234yfとを含み、作動媒体全量に対するHFO−1123とHFC−134aとHFC−125とHFO−1234yfとの合計量の割合が90質量%を超え100質量%以下であり、HFO−1123とHFC−134aとHFC−125とHFO−1234yfとの合計量に対する、HFO−1123の割合が3質量%以上35質量%以下、HFC−134aの割合が10質量%以上53質量%以下、HFC−125の割合が4質量%以上50質量%以下、HFO−1234yfの割合が5質量%以上50質量%以下であることが好ましい。このような作動媒体とすることにより、作動媒体が不燃性であり、かつ安全性に優れ、オゾン層および地球温暖化への影響をより少なくし、熱サイクルシステムに用いた際により優れたサイクル性能を有する作動媒体とすることができる。   More preferably, it includes HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf to the total amount of the working medium is 90. The ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 3% by mass or more and 35% by mass or less, and HFC-134a. Is preferably 10% by mass to 53% by mass, HFC-125 is preferably 4% by mass to 50% by mass, and HFO-1234yf is preferably 5% by mass to 50% by mass. By using such a working medium, the working medium is non-flammable and excellent in safety, has less influence on the ozone layer and global warming, and has better cycle performance when used in a thermal cycle system. It can be set as the working medium which has these.

最も好ましくは、HFO−1123とHFC−134aとHFC−125とHFO−1234yfとを含み、作動媒体全量に対するHFO−1123とHFC−134aとHFC−125とHFO−1234yfとの合計量の割合が90質量%を超え100質量%以下であり、HFO−1123とHFC−134aとHFC−125とHFO−1234yfとの合計量に対する、HFO−1123の割合が6質量%以上25質量%以下、HFC−134aの割合が20質量%以上35質量%以下、HFC−125の割合が8質量%以上30質量%以下、HFO−1234yfの割合が20質量%以上50質量%以下であることがより一層好ましい。このような作動媒体とすることにより、作動媒体が不燃性であり、かつ安全性により一層優れ、オゾン層および地球温暖化への影響をより一層少なくし、熱サイクルシステムに用いた際により一層優れたサイクル性能を有する作動媒体とすることができる。
(その他の任意成分)
本発明の熱サイクルシステム用組成物に用いる作動媒体は、上記任意成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)、ヒドロクロロフルオロオレフィン(HCFO)等を含有してもよい。その他の任意成分としてはオゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
Most preferably, it contains HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf to the total amount of the working medium is 90. The ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 6% by mass or more and 25% by mass or less, and HFC-134a. It is more preferable that the ratio of HFC-125 is 20% by mass to 35% by mass, the ratio of HFC-125 is 8% by mass to 30% by mass, and the ratio of HFO-1234yf is 20% by mass to 50% by mass. By using such a working medium, the working medium is non-flammable, and is more excellent in safety, has less influence on the ozone layer and global warming, and is even better when used in a heat cycle system. The working medium having a high cycle performance can be obtained.
(Other optional ingredients)
The working medium used in the composition for a heat cycle system of the present invention may contain carbon dioxide, hydrocarbon, chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO) and the like in addition to the above optional components. Other optional components are preferably components that have little influence on the ozone layer and little influence on global warming.

炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。   Examples of the hydrocarbon include propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like.

炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   A hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.

上記作動媒体が炭化水素を含有する場合、その含有量は作動媒体の100質量%に対して10質量%未満であり、1〜5質量%が好ましく、3〜5質量%がさらに好ましい。炭化水素が下限値以上であれば、作動媒体への鉱物系冷凍機油の溶解性がより良好になる。   When the said working medium contains a hydrocarbon, the content is less than 10 mass% with respect to 100 mass% of a working medium, 1-5 mass% is preferable and 3-5 mass% is more preferable. If a hydrocarbon is more than a lower limit, the solubility of the mineral refrigeration oil to a working medium will become more favorable.

CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(CFO−1214ya)、1,3−ジクロロ−1,2,3,3−テトラフルオロプロペン(CFO−1214yb)、1,2−ジクロロ−1,2−ジフルオロエチレン(CFO−1112)が好ましい。   Examples of CFO include chlorofluoropropene and chlorofluoroethylene. As the CFO, 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 is easy to suppress the flammability of the working medium without greatly reducing the cycle performance of the working medium. , 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) and 1,2-dichloro-1,2-difluoroethylene (CFO-1112) are preferred.

CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   One type of CFO may be used alone, or two or more types may be used in combination.

作動媒体がCFOを含有する場合、その含有量は作動媒体の100質量%に対して10質量%未満であり、1〜8質量%が好ましく、2〜5質量%がさらに好ましい。CFOの含有量が下限値以上であれば、作動媒体の燃焼性を抑制しやすい。CFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。   When a working medium contains CFO, the content is less than 10 mass% with respect to 100 mass% of a working medium, 1-8 mass% is preferable, and 2-5 mass% is more preferable. If the CFO content is at least the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of CFO is not more than the upper limit value, good cycle performance can be easily obtained.

HCFOとしては、ヒドロクロロフルオロプロペン、ヒドロクロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、HCFOとしては、1−クロロ−2,3,3,3−テトラフルオロプロペン(HCFO−1224yd)、1−クロロ−1,2−ジフルオロエチレン(HCFO−1122)が好ましい。   Examples of HCFO include hydrochlorofluoropropene and hydrochlorofluoroethylene. As HCFO, 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd), 1-chloro is easily used because flammability of the working medium can be easily suppressed without greatly reducing the cycle performance of the working medium. -1,2-difluoroethylene (HCFO-1122) is preferred.

HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   HCFO may be used alone or in combination of two or more.

上記作動媒体がHCFOを含む場合、作動媒体100質量%中のHCFOの含有量は、10質量%未満であり、1〜8質量%が好ましく、2〜5質量%がさらに好ましい。HCFOの含有量が下限値以上であれば、作動媒体の燃焼性を抑制しやすい。HCFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。   When the said working medium contains HCFO, content of HCFO in 100 mass% of working media is less than 10 mass%, 1-8 mass% is preferable and 2-5 mass% is more preferable. If the content of HCFO is equal to or higher than the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of HCFO is not more than the upper limit value, good cycle performance can be easily obtained.

本発明に用いる作動媒体が上記のようなその他の任意成分を含有する場合、作動媒体におけるその他の任意成分の合計含有量は、作動媒体100質量%に対して10質量%未満であり、8質量%以下が好ましく、5質量%以下がさらに好ましい。   When the working medium used in the present invention contains other optional components as described above, the total content of other optional components in the working medium is less than 10% by mass with respect to 100% by mass of the working medium, and 8% by mass. % Or less is preferable, and 5 mass% or less is more preferable.

本発明の実施形態に係る冷凍サイクル装置及び熱サイクルシステム150によれば、このような自己分解が発生し易い作動冷媒であっても、冷凍サイクル内におけるスラッジの発生を防止し、安定的に冷凍サイクル動作を行うことができる。   According to the refrigeration cycle apparatus and the thermal cycle system 150 according to the embodiment of the present invention, sludge generation in the refrigeration cycle is prevented and stable refrigeration can be achieved even with such a working refrigerant that is susceptible to self-decomposition. Cycle operation can be performed.

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年1月12日出願の日本特許出願(特願2016−3873)、に基づくものであり、その内容はここに参照として取り込まれる。   Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on January 12, 2016 (Japanese Patent Application No. 2016-3873), the contents of which are incorporated herein by reference.

10、10a 圧縮機
20、20a 凝縮器
30、30a 減圧機構
40、40a 蒸発器
50、50a、50b、50c 脱酸素部
51、51a、51b、51c 管状部材
52 入口
53 出口
54、54a 入口側通流面
55、55a 出口側通流面
56、56a 脱酸素剤保持部
57 脱酸素剤
58 ストレーナメッシュ
150 熱サイクルシステム
10, 10a Compressor 20, 20a Condenser 30, 30a Decompression mechanism 40, 40a Evaporator 50, 50a, 50b, 50c Deoxygenation part 51, 51a, 51b, 51c Tubular member 52 Inlet 53 Outlet 54, 54a Inlet side flow Surface 55, 55a Outlet side flow surface 56, 56a Oxygen absorber holding part 57 Oxygen absorber 58 Strainer mesh 150 Thermal cycle system

Claims (12)

圧縮機、凝縮器、減圧機構及び蒸発器を配管で連結して冷凍サイクルを構成し、ハイドロフルオロオレフィン(HFO)を含む作動媒体を用いた冷凍サイクル装置であって、
前記冷凍サイクル内のいずれかの箇所に、前記作動媒体を乾燥剤又は脱酸素剤に接触させる脱酸素部を設けた冷凍サイクル装置。
A refrigeration cycle apparatus using a working medium containing hydrofluoroolefin (HFO) by connecting a compressor, a condenser, a decompression mechanism and an evaporator with piping to constitute a refrigeration cycle,
A refrigeration cycle apparatus in which a deoxygenation unit for bringing the working medium into contact with a desiccant or a deoxidizer is provided at any location in the refrigeration cycle.
前記脱酸素部は、前記凝縮器と前記減圧機構との間に設けられた請求項1に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein the deoxygenation unit is provided between the condenser and the decompression mechanism. 前記脱酸素部は、前記冷凍サイクル内の前記配管に両端が連結された管状の部材として構成されるとともに、
冷媒を通流させる入口側通流面と、
該入口側通流面の下流側に設けられ、前記乾燥剤又は前記脱酸素剤を保持する薬剤保持部と、を有する請求項1又は2に記載の冷凍サイクル装置。
The deoxygenation part is configured as a tubular member having both ends connected to the pipe in the refrigeration cycle,
An inlet-side flow surface through which refrigerant flows,
The refrigeration cycle apparatus according to claim 1, further comprising: a medicine holding unit that is provided on the downstream side of the inlet-side flow surface and holds the desiccant or the oxygen scavenger.
前記入口側通流面は、網目状に構成されている請求項3に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 3, wherein the inlet-side flow surface is configured in a mesh shape. 前記作動媒体を通流させる出口側通流面を更に有し、
前記入口側通流面と該出口側通流面との間に前記薬剤保持部を有する請求項3又は4に記載の冷凍サイクル装置。
An outlet side flow surface through which the working medium flows;
The refrigeration cycle apparatus according to claim 3 or 4, wherein the medicine holding unit is provided between the inlet-side flow surface and the outlet-side flow surface.
前記出口側通流面は網目状に構成されている請求項5に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 5, wherein the outlet-side flow surface is configured in a mesh shape. 前記薬剤保持部は、バッグ状に構成されている請求項3乃至6のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 3 to 6, wherein the medicine holding unit is configured in a bag shape. 前記入口側通流面の上流側には、スラッジ捕捉用のストレーナメッシュが設けられた請求項3乃至7のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 3 to 7, wherein a strainer mesh for capturing sludge is provided on the upstream side of the inlet-side flow surface. 前記ストレーナメッシュの面積は、前記入口側通流面の面積よりも大きい請求項8に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 8, wherein an area of the strainer mesh is larger than an area of the inlet-side flow surface. 前記HFOは、HFO−1123を含む請求項1乃至9のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein the HFO includes HFO-1123. 前記作動媒体は、HFO−1123の単独冷媒、HFO−1123とHFC−32との混合冷媒、HFO−1123とHFO−1234yfとの混合冷媒、又はHFO−1123とHFO−1234yfとHFC−32との混合冷媒である請求項10に記載の冷凍サイクル装置。   The working medium is a single refrigerant of HFO-1123, a mixed refrigerant of HFO-1123 and HFC-32, a mixed refrigerant of HFO-1123 and HFO-1234yf, or HFO-1123, HFO-1234yf, and HFC-32. The refrigeration cycle apparatus according to claim 10, which is a mixed refrigerant. 請求項1乃至11のいずれか一項に記載の冷凍サイクル装置が搭載された熱サイクルシステム。   The thermal cycle system by which the refrigeration cycle apparatus as described in any one of Claims 1 thru | or 11 was mounted.
JP2017561569A 2016-01-12 2016-12-22 Refrigeration cycle apparatus and thermal cycle system Withdrawn JPWO2017122517A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016003873 2016-01-12
JP2016003873 2016-01-12
PCT/JP2016/088446 WO2017122517A1 (en) 2016-01-12 2016-12-22 Refrigeration cycle device and heat cycle system

Publications (1)

Publication Number Publication Date
JPWO2017122517A1 true JPWO2017122517A1 (en) 2018-11-22

Family

ID=59311179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017561569A Withdrawn JPWO2017122517A1 (en) 2016-01-12 2016-12-22 Refrigeration cycle apparatus and thermal cycle system

Country Status (5)

Country Link
US (1) US20180320942A1 (en)
EP (1) EP3404342A4 (en)
JP (1) JPWO2017122517A1 (en)
CN (1) CN109073295A (en)
WO (1) WO2017122517A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
AU2018390660B2 (en) 2017-12-18 2023-01-05 Daikin Industries, Ltd. Refrigeration Cycle Apparatus
CN113637457A (en) 2017-12-18 2021-11-12 大金工业株式会社 Composition containing refrigerant, use thereof, refrigerator having same, and method for operating refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
JP7299453B2 (en) * 2018-04-05 2023-06-28 ダイキン工業株式会社 liquid composition
JP7393667B2 (en) 2018-07-17 2023-12-07 ダイキン工業株式会社 Automotive refrigeration cycle equipment
EP4230707A1 (en) 2018-07-17 2023-08-23 Daikin Industries, Ltd. Refrigerant cycle apparatus
WO2020017386A1 (en) 2018-07-17 2020-01-23 ダイキン工業株式会社 Refrigerant-containing composition, heat transfer medium, and heat cycle system
EP3919593A4 (en) 2019-01-30 2022-12-28 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
CN114656927A (en) 2019-01-30 2022-06-24 大金工业株式会社 Refrigerant-containing composition, and refrigeration method, operation method for refrigeration device, and refrigeration device using same
JP6696633B1 (en) 2019-02-05 2020-05-20 ダイキン工業株式会社 Refrigerant-containing composition, refrigeration method using the composition, refrigeration apparatus operation method, and refrigeration apparatus
EP3922923A4 (en) 2019-02-06 2022-12-07 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
WO2020256131A1 (en) * 2019-06-19 2020-12-24 ダイキン工業株式会社 Refrigerator including difluoroethylene (hfo-1132) as working fluid
WO2021019687A1 (en) * 2019-07-30 2021-02-04 三菱電機株式会社 Air-conditioning device
CN113375397A (en) * 2021-05-27 2021-09-10 五邑大学 Refrigerator based on molecular sieve

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735399B2 (en) * 1996-01-16 2006-01-18 松下電器産業株式会社 Refrigeration cycle
JPH11256177A (en) * 1998-03-13 1999-09-21 Mitsubishi Electric Corp Refrigerant-circulating system
JP2000213830A (en) * 1999-01-22 2000-08-02 Sharp Corp Drier for refrigerating cycle
JP2007315663A (en) * 2006-05-25 2007-12-06 Sanden Corp Refrigeration system
JP2008267680A (en) * 2007-04-19 2008-11-06 Sanden Corp Refrigerating circuit
US20110079040A1 (en) * 2008-06-24 2011-04-07 Mitsubishi Electric Corporation Refrigerating cycle device and air conditioner
JP2010121927A (en) * 2008-10-22 2010-06-03 Panasonic Corp Cooling cycle device
JP2010270957A (en) 2009-05-21 2010-12-02 Panasonic Corp Refrigerating device
JP6657957B2 (en) * 2014-01-31 2020-03-04 Agc株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
EP3109291B1 (en) * 2014-02-20 2023-01-11 AGC Inc. Composition for heat cycle system, and heat cycle system
WO2015136703A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigerating cycle device
JP6493388B2 (en) * 2014-03-17 2019-04-03 Agc株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system

Also Published As

Publication number Publication date
CN109073295A (en) 2018-12-21
EP3404342A4 (en) 2019-08-28
WO2017122517A1 (en) 2017-07-20
EP3404342A1 (en) 2018-11-21
US20180320942A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2017122517A1 (en) Refrigeration cycle device and heat cycle system
JP6680386B2 (en) Composition for heat cycle system and heat cycle system
JP6583521B2 (en) Composition for thermal cycle system and thermal cycle system
JP6657957B2 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2016194847A1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2015115550A1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2015186558A1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2015125534A1 (en) Composition for heat cycle system, and heat cycle system
JP6634393B2 (en) Working medium for air conditioner for electric vehicle and working medium composition for air conditioner for electric vehicle
WO2017145826A1 (en) Refrigeration cycle device
WO2015141676A1 (en) Working medium for heat cycles, composition for heat-cycle systems, and heat-cycle system
JP2016194077A (en) Ternary compositions for low-capacity refrigeration
JP6540685B2 (en) Working medium for thermal cycling, composition for thermal cycling system and thermal cycling system
JP6895622B2 (en) Working medium for refrigeration cycle and refrigeration cycle system
JPWO2018193974A1 (en) Heat cycle system
JP7226623B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
US20180371958A1 (en) Heat cycle system and heat cycle method using the same
US11149178B2 (en) Azeotropic or azeotrope-like composition, working fluid for heat cycle, and heat cycle system
WO2019022139A1 (en) Azeotropic composition, working medium for heat cycle, and heat cycle system
WO2019039510A1 (en) 1-chloro-2,3,3-trifluoropropene-containing working medium for thermal cycling, composition for thermal cycling system, and thermal cycling system
WO2017145713A1 (en) Heat exchange unit
JP6801714B2 (en) Thermal cycle system
WO2019022140A1 (en) Heat cycle system and heat cycle method using same
WO2024090386A1 (en) Heat cycle working medium, and heat cycle system composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200409