WO2019022139A1 - Azeotropic composition, working medium for heat cycle, and heat cycle system - Google Patents

Azeotropic composition, working medium for heat cycle, and heat cycle system Download PDF

Info

Publication number
WO2019022139A1
WO2019022139A1 PCT/JP2018/027904 JP2018027904W WO2019022139A1 WO 2019022139 A1 WO2019022139 A1 WO 2019022139A1 JP 2018027904 W JP2018027904 W JP 2018027904W WO 2019022139 A1 WO2019022139 A1 WO 2019022139A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
composition
azeotropic
azeotrope
tetrafluoropropene
Prior art date
Application number
PCT/JP2018/027904
Other languages
French (fr)
Japanese (ja)
Inventor
正人 福島
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2019022139A1 publication Critical patent/WO2019022139A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention consists of 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd) and (Z) -1,3,3,3-tetrafluoropropene (HFO-1234ze (Z))
  • the present invention relates to an azeotrope-like composition, a working medium for thermal cycling using the same, and a thermal cycling system.
  • working media for heat cycle systems such as refrigerants for refrigerators, refrigerants for air conditioners, working media for power generation systems (waste heat recovery power generation etc), working media for latent heat transport devices (heat pipes etc), secondary cooling media etc.
  • chlorofluoromethane chlorofluorocarbons (CFC) such as dichlorodifluoromethane
  • HCFC hydrochlorofluorocarbons
  • CFCs and HCFCs have been pointed out as their effects on the stratospheric ozone layer and are currently subject to regulation.
  • HFC-32 difluoromethane
  • HFC-125 pentafluoroethane
  • HFC-125 Hydrofluorocarbons
  • R410A an azeotrope-like mixed refrigerant having a mass ratio of 1: 1 of HFC-32 and HFC-125
  • HFC has been pointed out as a possible cause of global warming.
  • 1,1,1,2-tetrafluoroethane which is used as a refrigerant for automobile air conditioners, has a large global warming potential of 1430 (100-year value).
  • a car air conditioner there is a high probability that the refrigerant leaks into the atmosphere from the connection hose, the bearing portion and the like.
  • HFC-134a is also used as a working medium for centrifugal refrigerators (also called turbo refrigerators).
  • centrifugal refrigerators the amount of filling of the working medium is larger than that of other refrigerators and heat pumps.
  • a centrifugal refrigerator having a capacity of 500 refrigeration tons about 700 to 800 kg of a working medium is filled.
  • Centrifugal refrigerators are often installed in a machine room in a building, but if a working medium leaks due to an accident etc., a large amount of working medium may be released to the atmosphere .
  • the working medium used in the centrifugal refrigerator is required to have high safety due to low combustibility and the like, and also to have a small global warming potential from the environmental aspect.
  • Hydrofluoro a working medium that has a carbon-carbon double bond and is easily decomposed by OH radicals in the atmosphere in recent years, so it has a low impact on the ozone layer and a low impact on global warming.
  • Expectations are focused on olefins (HFO), hydrochlorofluoroolefins (HCFO) and chlorofluoroolefins (CFO), ie compounds having carbon-carbon double bonds.
  • HFO hydrochlorofluoroolefins
  • CFO chlorofluoroolefins
  • saturated HFC is referred to as HFC and is used separately from HFO.
  • HFC may be specified as a saturated hydrofluorocarbon.
  • HCFO and CFO are compounds in which the flammability is suppressed because the ratio of halogen in one molecule is large. Therefore, it is considered to use HCFO and CFO as a working medium which has little influence on the ozone layer, little influence on global warming, and reduced flammability.
  • a working medium for example, a working medium using HCFO-1224yd (hereinafter referred to as "1224yd”), which is hydrochlorofluoropropene, is known (see, for example, Patent Document 1).
  • the composition containing a plurality of compounds is a non-azeotropic composition
  • the working medium when this is used as a working medium, the working medium is thermally cycled from a pressure vessel housed for storage and transfer.
  • the composition may change when it is filled (transfer-filled) to a refrigeration air conditioner or the like that is a system device, or when it leaks from the refrigeration air conditioner.
  • the composition of the working medium changes, it is difficult to restore the working medium to the initial composition. Therefore, when the non-azeotropic composition is used as a working medium, there is a problem that the controllability of the working medium is inferior.
  • a non-azeotropic composition when using a non-azeotropic composition as a working medium, the subject that a temperature gradient became large also occurred.
  • the present invention uses an azeotrope-like composition that provides a working medium for thermal cycling that has little influence on global warming, a small compositional change, a small temperature gradient, and excellent cycle performance, and the azeotrope-like composition
  • An object of the present invention is to provide a working medium for thermal cycling and a thermal cycling system.
  • the present invention provides an azeotrope-like composition, a working medium for thermal cycling, and a thermal cycling system having the following configurations.
  • An azeotropic or azeotrope-like composition comprising 1-chloro-2,3,3,3-tetrafluoropropene and (Z) -1,3,3,3-tetrafluoropropene.
  • the content ratio of the 1-chloro-2,3,3,3-tetrafluoropropene and the (Z) -1,3,3,3-tetrafluoropropene in the azeotropic or azeotrope-like composition is 1-chloro-2,3,3,3-tetrafluoropropene: (Z) -1,3,3,3-tetrafluoropropene in a mass ratio of 1:99 to 99: 1 [1]
  • the content ratio of the 1-chloro-2,3,3,3-tetrafluoropropene in the azeotropic or azeotropic composition is 30% by mass with respect to the total amount of the azeotropic or azeotropic composition
  • a working medium for thermal cycling comprising the azeotropic or azeotrope-like composition according to any one of [1] to [3].
  • [7] A thermal cycle system using the thermal cycle working medium according to any one of [4] to [6].
  • the heat cycle system according to [7] which is a refrigeration / refrigerator, an air conditioner, a power generation system, a heat transport device, or a secondary cooler.
  • an azeotrope-like composition that provides a working medium for thermal cycling that has little influence on global warming, a small compositional change, a small temperature gradient, and excellent cycle performance, and the azeotrope-like composition
  • the working medium for thermal cycling used can be provided. Further, according to the present invention, it is possible to provide a thermal cycle system which is excellent in cycle performance.
  • FIG. 6 is a cycle diagram in which a change in the state of a working medium for thermal cycling in the refrigeration cycle system is described on a pressure-enthalpy diagram.
  • the azeotropic or azeotrope-like composition of the present invention can be prepared from 1-chloro-2,3,3,3-tetrafluoropropene (1224yd) and (Z) -1,3,3,3-tetrafluoropropene (HFO- 1234ze (Z), hereinafter referred to as "1234ze (Z)".
  • An azeotropic composition is a mixture of two or more substances that behaves as a single substance and is distilled at a defined and predetermined boiling point (constant boiling point).
  • the azeotropic composition has the same composition of the gas phase and the liquid phase in its vapor-liquid equilibrium state, that is, a mixture of two or more substances is evaporated or condensed without composition change.
  • An azeotrope-like composition is a mixture of two or more substances that behaves essentially as a single substance and evaporates at a substantially fixed predetermined boiling point.
  • the azeotrope-like composition exhibits substantially the same behavior as that of the azeotropic composition at the time of vapor-liquid equilibrium.
  • the azeotrope-like composition has substantially the same composition of the gas phase and the liquid phase in its vapor-liquid equilibrium state. That is, when a mixture of two or more substances forms an azeotrope-like composition, they are evaporated or condensed without substantial composition change.
  • the azeotrope-like composition has substantially the same boiling pressure and dew point pressure of the composition at a certain temperature. Since an azeotrope-like composition can be handled equivalently to an azeotropic composition, the azeotrope-like composition is hereinafter described as including an azeotropic composition.
  • the azeotropic composition and the azeotrope-like composition can be determined, for example, by measuring the effect of vapor leakage on the vapor pressure as follows.
  • the initial mixture is contained in a vessel at any temperature, and the initial vapor pressure of the mixture is measured.
  • the mixture is allowed to leak from the vessel while maintaining the temperature constant until 50% by weight of the initial mixture is removed, at which point the vapor pressure of the mixture remaining in the vessel (residual mixture) is measured. At this time, if there is no change in vapor pressure between the initial mixture and the remaining mixture, the initial mixture has an azeotropic composition.
  • the initial mixture is azeotrope-like in composition.
  • the composition is defined as an azeotrope-like composition when is less than 10%.
  • the mixture of 1224yd and 1234ze (Z) has a mass ratio of 1224yd to 1234ze (Z) (1224yd [mass%]: 1234ze (Z) [mass%]) in the range of 1:99 to 99: 1 , Pressure deviation is 0.7% or less. From these results, it can be seen that 1224yd and 1234ze (Z) have an azeotrope-like composition with a pressure deviation of less than 10% in the range of 1 to 99% by mass of 1224yd.
  • 1224 yd and 1224 yd (Z) and 1224 yd (E) can be used without distinction when constituting the azeotrope-like composition described above. That is, 1224yd in the azeotropic or azeotrope-like composition of the present invention is either 1224yd (E) alone, 1224yd (Z) alone, or a mixture of 1224yd (E) and 1224yd (Z) in any proportion. Even if it forms an azeotrope-like composition of the above composition with 1234ze (Z).
  • the temperature gradient is an index reflecting the azeotropic composition, and if the temperature gradient of the mixture is 1.50 or less, it can be said that the mixture is the azeotropic composition.
  • the boiling points of 1224yd and 1234ze (Z) are values measured at a pressure of 1.013 ⁇ 10 5 Pa, and the boiling point of 1224yd (Z) is 15 ° C., and the boiling point of 1224yd (E) is 19 ° C., respectively.
  • the boiling point of 1234ze (Z) is 10 ° C.
  • the azeotrope-like composition consisting of 1224yd and 1234ze (Z) in the present invention has a mass ratio of 1224yd to 1234ze (Z) (1224yd [mass%]) : 1234ze (Z) [mass%]) is a mixture of 1:99 to 99: 1.
  • the azeotrope-like composition of the present invention is suitable as a working fluid for thermal cycling, and a working fluid for thermal cycling having excellent composition stability can be obtained.
  • the compositions of 1224 yd and 1234ze (Z) can be appropriately adjusted within the range of the azeotrope-like composition according to the application.
  • a composition which can make the above pressure deviation 0.6% or less is preferable, and a composition which can make the pressure deviation 0.5% or less Is more preferable, and the composition which can be 0.4% or less is more preferable.
  • the content ratio of 1224yd in the azeotrope-like composition of the present invention is preferably 20% by mass or more based on the total amount of the azeotrope-like composition from the viewpoint of the flammability described below.
  • the content of 1224yd in the azeotropic composition is more preferably 30% by mass or more.
  • 1234ze (Z) is noncombustible under ordinary conditions, it may become flammable when brought to high pressure and high temperature under high concentration of air. At this time, as shown in Examples described later, if the content ratio of 1234ze (Z) in the azeotrope-like composition consisting of 1224yd and 1234ze (Z) is 80% by mass or less, from 1224yd and 1234ze (Z) The resulting azeotrope-like composition has no flammability when mixed with air in any proportion. In order to obtain higher safety, the content of 1234ze (Z) in the azeotropic composition is more preferably 70% by mass or less.
  • the 1224 yd and 1234ze (Z) contained in the azeotrope-like composition of the present invention have a small global warming potential.
  • the global warming potential (GWP) at a 100-year value shown in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (2013) or measured according to the method is 1224 yd Is 1 or less, and 1234ze (Z) is 1 or less. Therefore, the azeotrope-like composition of the present invention has a very small influence on global warming, and can be suitably used as a working medium for thermal cycling.
  • the working fluid for thermal cycling of the present invention comprises an azeotrope-like composition consisting of 1224yd and 1234ze (Z) described above.
  • the working fluid for thermal cycling of the present invention may optionally contain a compound generally used as a working fluid, as long as the effects of the present invention are not impaired.
  • the working fluid for thermal cycling of the present invention contains the above-described azeotrope-like composition of the present invention, when applied to a thermal cycling system, the composition change upon transfer-filling or leakage from equipment is extremely small. Therefore, extremely stable cycle performance can be obtained in the thermal cycle system. In addition, there is an advantage that management of the thermal cycle working medium is easy, and good cycle performance can be obtained by further increasing the efficiency while maintaining a certain capacity.
  • the thermal cycling working medium of the present invention has an azeotrope-like composition consisting of 1224yd and 1234ze (Z), so the temperature gradient is close to zero. Therefore, as described below, an energy efficient thermal cycle system can be obtained.
  • the "temperature gradient” is one of the indexes for measuring the properties when the mixture is used as a working medium.
  • a temperature gradient is defined as the nature of the start and end temperatures of a heat exchanger, for example of evaporation in an evaporator, or of condensation in a condenser, to be different.
  • FIG. 1 is a schematic block diagram showing an example of the below-mentioned refrigeration cycle system to which the working fluid for thermal cycling of the present invention is applied.
  • the refrigeration cycle system 10 cools and liquefys the working medium vapor B discharged from the compressor 11 by compressing the working medium vapor A into a high temperature and high pressure working medium vapor B, and liquefies it to operate at a low temperature and high pressure A condenser 12 as medium C, an expansion valve 13 expanding the working medium C discharged from the condenser 12 into a low-temperature low-pressure working medium D, and heating the working medium D discharged from the expansion valve 13
  • This system is roughly configured by including an evaporator 14 as a high-temperature low-pressure working medium vapor A, a pump 15 supplying the load fluid E to the evaporator 14, and a pump 16 supplying the fluid F to the condenser 12. is there.
  • the temperature of the working medium rises from the inlet to the outlet of the evaporator 14 during evaporation, and the temperature decreases from the inlet to the outlet of the condenser 12 during condensation.
  • the evaporator 14 and the condenser 12 are configured by performing heat exchange with a heat source fluid such as water or air flowing opposite to a working medium.
  • the heat source fluid is indicated by “E ⁇ E ′” in the evaporator 14 and by “F ⁇ F ′” in the condenser 12 in the refrigeration cycle system 10.
  • the azeotropic composition can be handled almost equally as a working medium of a single composition when used as a working medium because the composition does not change its composition when the composition is repeatedly evaporated and condensed.
  • an azeotrope-like composition has a small compositional fluctuation when evaporation and condensation are repeated, and can be handled as well as an azeotropic composition. Therefore, even when an azeotropic composition or an azeotrope-like composition is used as the working medium, the temperature difference between the outlet temperature and the inlet temperature of the evaporator 14 is substantially constant.
  • the temperature difference is not constant.
  • the inlet temperature becomes lower than 0 ° C., and a problem of frost formation in the evaporator 14 occurs.
  • the larger the temperature gradient the lower the inlet temperature and the greater the possibility of frost formation.
  • the working medium flowing through the heat exchanger such as the evaporator 14 and the condenser 12 always faces the heat source fluid such as water or air. It is devised to improve the heat exchange efficiency by making it flow.
  • the temperature difference between the heat source fluid is small in a stable operation state generally operating for a long time, apart from the start time, the temperature gradient is large in the case of a non-azeotropic composition in which the composition of the gas-liquid phase largely differs. It is difficult to obtain an energy efficient thermal cycle system.
  • an azeotropic composition is used as a working medium, an energy efficient thermal cycle system can be obtained.
  • the azeotrope-like composition having a proportion of 1224 yd of 20% by mass or more with respect to the total amount of 1224 yd and 1234ze (Z) has no flammability. Therefore, the working medium for thermal cycle containing the azeotrope-like composition is extremely safe even when it leaks out of the thermal cycle system. In order to obtain higher safety, the content of 1224yd in the thermal cycle working medium is more preferably 30% by mass or more.
  • the working fluid for thermal cycling of the present invention further comprises an azeotrope-like composition consisting of 1224 yd and 1234ze (Z), the optional ingredient described later
  • the 1234ze (Z) in the working fluid for thermal cycling is When the content ratio is 80% by mass or less, a highly safe working medium for heat cycle can be obtained because it has no combustibility. In order to obtain higher safety, the content of 1234ze (Z) in the working fluid for thermal cycling is more preferably 70% by mass or less.
  • the composition has a combustibility, it can be used in a thermal cycle system by paying careful attention to handling depending on the use conditions.
  • the working medium for thermal cycling of the present invention contains an azeotrope-like composition consisting of 1224yd and 1234ze (Z), it is superior when applied to a thermal cycling system as compared to the working medium for thermal cycling consisting only of 1224yd.
  • Cycle performance coefficient of performance and refrigeration capacity
  • the working medium for thermal cycling of the present invention has an advantage of being able to improve the refrigerating capacity without lowering the coefficient of performance, as compared with the working medium for thermal cycling consisting of only 1224yd.
  • Table 2 shows the coefficient of performance and the refrigerating capacity as the cycle performance as a working medium consisting of each of 1224 yd (Z) and 1234ze (Z).
  • the coefficient of performance and the refrigeration capacity are determined by the method described later (however, evaporation temperature: 5 ° C., condensation completion temperature: 40 ° C., degree of supercooling (SC); 5 ° C., degree of superheat (SH); 5 ° C.).
  • the coefficient of performance and the freezing capacity of each compound are shown as relative values based on 1224 yd (Z) (1.00) (hereinafter referred to as "relative coefficient of performance" or “relative freezing capacity", respectively).
  • the working fluid for thermal cycling of the present invention may optionally contain a compound generally used as a working fluid, in addition to the azeotrope-like composition as long as the effects of the present invention are not impaired.
  • Such optional compounds include, for example, HFC, HFO other than 1234ze (Z), HCFO other than 1224yd, hydrocarbon, carbon dioxide, and other gases such as vaporization and liquefaction with 1224yd and 1234ze (Z) Other ingredients.
  • HFC, HFO other than 1234ze (Z), HCFO other than 1224yd are preferable.
  • a compound which has an action of suppressing the flammability when used in a thermal cycle in combination with 1224yd and 1234ze (Z), and can keep the temperature gradient within an acceptable range while suppressing the GWP low is preferable.
  • the thermal cycle working medium contains such a compound in combination with 1224 yd and 1234ze (Z)
  • better cycle performance can be obtained while suppressing the flammability and keeping the GWP low, and also the influence of the temperature gradient Few.
  • the content of the optional components in total is preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass or less, in the working fluid for thermal cycling (100% by mass). Is more preferred. If the content ratio of the optional components exceeds 10% by mass, the temperature gradient becomes too large, and the composition for the thermal cycle working medium significantly changes if leakage from the thermal cycle equipment occurs in the thermal cycle working medium application Controllability of the working medium may be reduced.
  • HFC HFCs improve the cycle performance of thermal cycling systems.
  • the optional component HFC is preferably selected from the viewpoint of having the effect of suppressing the above-mentioned flammability and keeping the GWP low while keeping the temperature gradient within the allowable range.
  • an HFC having 1 to 5 carbon atoms is preferable in that it has little influence on the ozone layer and little influence on global warming.
  • the HFC may be linear, branched or cyclic.
  • HFC As HFC, HFC-32, difluoroethane, trifluoroethane, tetrafluoroethane, HFC-125, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane and the like can be mentioned.
  • HFC 1,1,2,2-tetrafluoroethane
  • HFC-134a 1,1,1,3,3-pentafluoropropane (HFC-245fa), 1,1,1,3,3-pentafluorobutane (HFC-365mfc) are more preferable
  • HFC-134a, HFC -245fa and HFC-365mfc are more preferable.
  • One of HFCs may be used alone, or two or more thereof may be used in combination.
  • the content ratio of HFC in the working fluid for thermal cycling (100% by mass) used in the present invention is, for example, as follows.
  • the HFC is HFC-134a
  • the refrigerating capacity is improved in the range of 1 to 10% by mass without causing a large decrease in the coefficient of performance.
  • the coefficient of performance is improved in the range of 1 to 10% by mass without causing a significant decrease in refrigeration capacity.
  • Control of the HFC content can be performed according to the required characteristics of the thermal cycle working medium.
  • HFO other than 1234ze (Z) HFO improves the cycling performance of the thermal cycling system. Also, in the case of HFO, GWP is orders of magnitude lower than HFC. Therefore, GWP can be reduced by using HFO.
  • the HFO is also preferably selected from the viewpoint of keeping the temperature gradient within the allowable range while having the action of suppressing the flammability and suppressing the GWP low similarly to the above-mentioned HFC.
  • HFOs 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf), 1,1,2-triphenyl Fluoropropene (HFO-1243yc), (E) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), (Z) -1,2,3,3,3-pentafluoro Propene (HFO-1225ye (Z)), (E) -1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), 3,3,3-trifluoropropene (HFO-1243zf), ( E) -1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (E)), (Z) -1,1,1,4,4,4-hexaf Oro-2-butene (HFO-1336mzz (Z))
  • HFO-1234ze (E), HFO-1234yf, HFO-1336mzz (Z), and HFO-1243zf are preferable, and HFO-1234ze (E), HFO-1234yf, and HFO-1336mzz (Z) are more preferable.
  • the HFO may be used alone or in combination of two or more.
  • the content ratio of HFO in the working fluid for thermal cycling (100% by mass) used in the present invention can be arbitrarily selected according to the required characteristics of the working fluid for thermal cycling. For example, if the content ratio of HFO is 1 to 10% by mass, a thermal cycle system having excellent cycle performance as compared with a working medium composed of an azeotrope-like composition of 1224yd and 1234ze (Z) is provided.
  • the HCFO as an optional component other than 1224 yd also has the action of suppressing the flammability similarly to the above-mentioned HFC, and is preferably selected from the viewpoint of keeping the temperature gradient within the allowable range while suppressing the GWP low.
  • the HCFO's GWP is orders of magnitude lower than that of the HFC. Therefore, GWP can be reduced by containing HCFO.
  • HCFOs other than 1224 yd include 1-chloro-2,2-difluoroethylene (HCFO-1122), 1,2-dichlorofluoroethylene (HCFO-1121), 1-chloro-2-fluoroethylene (HCFO-1131), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) and 1-chloro-3,3,3-tetrafluoropropene (HCFO-1233zd).
  • HCFO other than 1224yd is preferably HCFO-1233zd from the viewpoint of having high critical temperature and being excellent in durability and coefficient of performance.
  • HCFOs other than 1224 yd may be used alone or in combination of two or more.
  • the content of HCFO other than 1224yd is preferably 1 to 10% by mass, and more preferably 1 to 5% by mass in the working medium for thermal cycling (100% by mass). If the content ratio of HCFO is 1 to 10% by mass, it is possible to provide a thermal cycle system which is superior in cycle performance to a thermal cycle working medium composed of an azeotrope-like composition of 1224yd and 1234ze (Z).
  • the working medium used for the heat cycle system of the present invention may contain carbon dioxide, hydrocarbons, chlorofluoroolefin (CFO), etc. in addition to the above-mentioned optional components.
  • CFO chlorofluoroolefin
  • a component which has less influence on the ozone layer and has less influence on global warming is preferable.
  • hydrocarbon propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like can be mentioned.
  • the hydrocarbon may be used alone or in combination of two or more.
  • the working medium for thermal cycling contains a hydrocarbon
  • the content is less than 10% by mass, preferably 1 to 5% by mass, preferably 3 to 5% by mass, with respect to 100% by mass of the thermal cycling working medium. More preferable. If the hydrocarbon is at least the lower limit value, the solubility of the mineral-based refrigerator oil in the thermal cycle working medium becomes better. If the amount of hydrocarbon is less than or equal to the upper limit value, the influence on combustibility is small.
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • CFO 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214 ya) is preferable because the flammability of the working fluid can be easily suppressed without significantly reducing the cycle performance of the working fluid for thermal cycling.
  • CFO-1214yb 1,3-dichloro-1,2,3,3-tetrafluoropropene
  • CFO-1112 1,2-dichloro-1,2-difluoroethylene
  • the CFO may be used alone or in combination of two or more.
  • the working fluid for thermal cycling contains CFO
  • the content thereof is less than 10% by mass, preferably from 1 to 8% by mass, and more preferably from 2 to 5% by mass, with respect to the total amount of the working fluid for thermal cycling. If the content rate of CFO is more than a lower limit, it will be easy to control the combustibility of the working fluid for thermal cycling. If the content rate of CFO is below an upper limit, favorable cycle performance will be easy to be obtained.
  • the content of the azeotropic composition consisting of 1224 yd and 1234ze (Z) with respect to the total amount of thermal cycling working medium is 90% by mass or more in terms of cycle performance. Preferably, 95% by mass or more is more preferable.
  • the working medium for thermal cycling of the present invention contains an azeotrope-like composition consisting of 1224yd and 1234ze (Z), so that the composition change is extremely small, the temperature gradient is small, and a good cycle performance can be obtained. is there.
  • the working medium can be used as a working medium composition, usually mixed with a lubricating oil, for application to a thermal cycling system.
  • the working vehicle composition may further contain known additives such as stabilizers and leak detection substances in addition to these.
  • the lubricating oil As the lubricating oil, a known lubricating oil used in the working medium composition can be adopted without particular limitation, together with the working medium conventionally composed of halogenated hydrocarbons. Specific examples of the lubricating oil include oxygen-containing synthetic oils (ester-based lubricating oils, ether-based lubricating oils and the like), fluorine-based lubricating oils, mineral-based lubricating oils, hydrocarbon-based synthetic oils and the like.
  • ester-based lubricating oils dibasic acid ester oils, polyol ester oils, complex ester oils, polyol carbonate oils and the like can be mentioned.
  • ether-based lubricating oils examples include polyvinyl ether oils and polyoxyalkylene oils such as polyglycol oils.
  • fluorine-based lubricating oils include compounds in which hydrogen atoms of synthetic oils (mineral oil, poly ⁇ -olefin, alkylbenzene, alkylnaphthalene, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, etc.
  • a mineral-based lubricating oil As a mineral-based lubricating oil, a lubricating oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil is subjected to purification treatment (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation
  • purifying, clay treatment etc. are mentioned.
  • hydrocarbon synthetic oils examples include poly ⁇ -olefins, alkylbenzenes and alkylnaphthalenes.
  • the lubricating oils may be used alone or in combination of two or more.
  • the lubricating oil is preferably at least one selected from polyol ester oils, polyvinyl ether oils and polyglycol oils from the viewpoint of compatibility with the working medium.
  • the addition amount of the lubricating oil may be in a range that does not significantly reduce the effects of the present invention, and is preferably 10 to 100 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the working medium.
  • Stabilizers are components that improve the stability of the working medium against heat and oxidation.
  • the stabilizer there are no particular limitations on known stabilizers conventionally used in thermal cycle systems, such as oxidation resistance improvers, heat resistance improvers, metal deactivators, etc., together with the working medium conventionally made of halogenated hydrocarbons. It can be adopted.
  • N N'-diphenyl phenylene diamine, p-octyl diphenylamine, p, p'-dioctyl diphenylamine, N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine N- (p-dodecyl) phenyl-2-naphthylamine, di-1-naphthylamine, di-2-naphthylamine, N-alkylphenothiazine, 6- (t-butyl) phenol, 2,6-di- (t-butyl) And the like) phenol, 4-methyl-2,6-di- (t-butyl) phenol, 4,4'-methylenebis (2,6-di-t-butylphenol) and the like.
  • the oxidation resistance improver and the heat resistance improver one type may be used alone,
  • metal deactivators examples include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimethylcaptothiadiazole, salicylidine-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzamidazole, 3,5- Dimethylpyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic acids or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Amine salts or derivatives thereof.
  • the addition amount of the stabilizer may be within a range not significantly reducing the effects of the present invention, and is preferably 5 parts by mass or less, and more preferably 1 part by mass or less with respect to 100 parts by mass of the working medium.
  • UV fluorescent dye As a leak detection substance, an ultraviolet fluorescent dye, an odor gas, an odor masking agent and the like can be mentioned.
  • Ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-A-10-502737, JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836.
  • Known ultraviolet fluorescent dyes used in thermal cycle systems, as well as working media conventionally comprising halogenated hydrocarbons such as those described in U.S. Pat.
  • a solubilizer may be used to improve the solubility of the leak detection substance in the working medium.
  • solubilizers examples include those described in JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836.
  • the addition amount of the leak detection substance may be within the range not significantly reducing the effects of the present invention, preferably 2 parts by mass or less and more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the working medium.
  • the thermal cycle system of the present invention is obtained by applying the working medium of the present invention to an apparatus and device for thermal cycling.
  • the working medium may be applied to a thermal cycle system as the working medium composition.
  • a thermal cycle system a thermal cycle system using heat exchangers such as a condenser and an evaporator is used without particular limitation.
  • the thermal cycle system of the present invention may be a heat pump system that utilizes the heat obtained by the condenser, or may be a refrigeration cycle system that utilizes the cold obtained by the evaporator.
  • thermal cycle system of the present invention examples include refrigeration and refrigeration equipment, air conditioners, power generation systems, heat transport devices, secondary coolers and the like.
  • the thermal cycle system of the present invention can stably exhibit thermal cycle performance even in a higher temperature operating environment, and therefore, is preferably used as an air conditioner often installed outdoors.
  • the heat cycle system of this invention is used as a freezing / refrigerating apparatus.
  • the power generation system is preferably a Rankine cycle system power generation system.
  • the working medium is heated by geothermal energy, solar heat, middle to high temperature range waste heat at about 50 to 200 ° C. in an evaporator, and the working medium that has become high-temperature high-pressure steam is expanded
  • An example is a system in which adiabatic expansion is performed in a machine, and a work generated by the adiabatic expansion drives a generator to generate electric power.
  • a latent heat transport device As a heat transport device, a latent heat transport device is preferable.
  • the latent heat transport device include a heat pipe for performing latent heat transport utilizing phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device, and a two-phase closed thermosyphon device.
  • the heat pipe is applied to a relatively small cooling device such as a cooling device for a semiconductor element or a heat generating portion of an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for gas-gas heat exchangers, promoting snow melting on roads, preventing freezing and the like.
  • refrigeration / refrigeration equipment examples include showcases (built-in showcases, separately mounted showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
  • air conditioners specifically, room air conditioners, package air conditioners (package air conditioners for buildings, package air conditioners for buildings, equipment package air conditioners, etc.), heat source equipment chilling units, gas engine heat pumps, train air conditioners, car air conditioners Etc.
  • a heat source equipment chilling unit although a volumetric-compression-type refrigerator and a centrifugal refrigerator are mentioned, for example.
  • the centrifugal refrigerator to be described next is preferable because the effect of the present invention can be more remarkably obtained since the filling amount of the working medium is large.
  • centrifugal refrigerator is a refrigerator using a centrifugal compressor.
  • a centrifugal refrigerator is a type of vapor compression refrigerator, and is generally referred to as a turbo refrigerator.
  • a centrifugal compressor includes an impeller and performs compression by discharging a working medium to the outer peripheral portion by the rotating impeller.
  • Centrifugal refrigerators are used in office buildings, district heating and cooling, heating and cooling in hospitals, semiconductor factories, cold water production plants in the petrochemical industry, and the like.
  • the centrifugal refrigerator may be either a low pressure type or a high pressure type, but is preferably a low pressure type centrifugal refrigerator.
  • the low pressure type is, for example, that of the high pressure gas safety method such as trichlorofluoromethane (CFC-11), 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123), HFC-245fa.
  • Working medium which does not receive application that is, “a liquefied gas which has a pressure of 0.2 MPa or more at ordinary temperature, a pressure which is actually 0.2 MPa or more, or a temperature when the pressure is 0.2 MPa or more is”
  • a centrifugal refrigerator that uses a working medium that does not correspond to “liquefied gas at 35 ° C. or less”.
  • a refrigeration cycle system which is an example of a thermal cycle system, will be described with reference to FIG.
  • a gaseous working medium is compressed by a compressor and cooled by a condenser to produce a high pressure liquid, and the expansion valve reduces the pressure, and the evaporator vaporizes at a low temperature and removes heat by heat of vaporization.
  • the working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 to be a high temperature and high pressure working medium vapor B.
  • the working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to form a working medium C of low temperature and high pressure. At this time, the fluid F is heated to become a fluid F ′ and discharged from the condenser 12.
  • the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to form a low-temperature low-pressure working medium D.
  • the working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to be a high-temperature low-pressure working medium vapor A. At this time, the load fluid E is cooled to be a load fluid E ′ and discharged from the evaporator 14.
  • the state change of the working medium in the refrigeration cycle system 10 can be represented as a trapezoid with vertices A, B, C, and D as shown in FIG. 2 when it is described on a pressure-enthalpy chart.
  • the AB process is a process in which adiabatic compression is performed by the compressor 11 to make the high temperature and low pressure working medium vapor A into a high temperature and high pressure working medium vapor B, which is shown by an AB line in FIG. As described later, the working medium vapor A is introduced into the compressor 11 in a superheated state, and the resulting working medium vapor B is also a superheated vapor.
  • the BC process is a process of performing isobaric cooling in the condenser 12 and making the high temperature / high pressure working medium vapor B into a low temperature / high pressure working medium C, and is shown by a BC line in FIG.
  • the pressure at this time is the condensation pressure.
  • Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature.
  • the temperature gradient when the working medium is a non-azeotropic composition is shown as the difference between T 1 and T 2 .
  • the CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 to make the working medium C of low temperature and high pressure into the working medium D of low temperature and low pressure, which is shown by a CD line in FIG. Incidentally, if Shimese the temperature in the working medium C of low temperature and high pressure at T 3, T 2 -T 3 is (i) ⁇ supercooling degree of the working medium in the cycle of (iv) (SC).
  • the DA process is a process in which isobaric heating is performed by the evaporator 14 to return the low-temperature low-pressure working medium D to the high-temperature low-pressure working medium vapor A, which is shown by a DA line in FIG.
  • the pressure at this time is the evaporation pressure.
  • Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA line is evaporating temperature. If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ⁇ superheat of the working medium in the cycle of (iv) (SH).
  • T 4 denotes the temperature of the working medium D.
  • the cycle performance of the thermal cycle working medium is, for example, the refrigeration capacity of the thermal cycle working medium (hereinafter referred to as “Q” as required) and the coefficient of performance (hereinafter referred to as “COP” as required)
  • Q and COP of the working medium for thermal cycling are A (high temperature and low pressure after evaporation), B (high temperature and high pressure after compression), C (low temperature and high pressure after condensation) for thermal cycling working medium, D (low temperature after expansion) each enthalpy in each state of the low pressure), h a, h B, h C, the use of h D, the following equation (1), obtained respectively from (2).
  • the compression work indicated by (h B -h A ) corresponds to the output (kW) of the refrigeration cycle, and the Q shown by (h A -h D ) above is required to operate the compressor, for example
  • the amount of power corresponds to the consumed power (kW).
  • Q means the ability to freeze the load fluid, and a higher Q means more work can be done in the same system. In other words, in the case of having a large Q, it indicates that the target performance can be obtained with a small amount of working medium, and the system can be miniaturized.
  • the inclusion of moisture in the thermal cycling system can cause problems, especially when used at low temperatures. For example, there are problems such as freezing in a capillary tube, hydrolysis of a working medium and lubricating oil, material degradation due to the acid component generated thereby, and generation of contamination.
  • the polyalkylene glycol oil, polyol ester oil, etc. mentioned above have extremely high hygroscopicity, are prone to hydrolytic reaction, deteriorate the properties as a refrigerator oil, and are a major cause of impairing the long-term reliability of the compressor. Become.
  • a method using a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned.
  • a desiccant a zeolitic desiccant is preferable from the viewpoint of the chemical reactivity between the desiccant and the working fluid for thermal cycling and the moisture absorption capacity of the desiccant.
  • the compound represented by the following formula (3) is a main component from the viewpoint of excellent hygroscopicity.
  • Zeolite based desiccants are preferred.
  • M is an element of Group 1 such as Na and K or an element of Group 2 such as Ca
  • n is a valence of M
  • x and y are values determined by the crystal structure.
  • the pore size can be adjusted by changing M.
  • the pore size and the breaking strength are particularly important in the selection of the desiccant.
  • a desiccant having a pore size larger than the molecular diameter of the thermal cycling working medium is used, the thermal cycling working medium is adsorbed in the desiccant, and as a result, the chemical reaction between the thermal cycling working medium and the desiccant As a result, undesirable phenomena such as generation of non-condensable gas, decrease in strength of desiccant, and decrease in adsorption capacity occur.
  • a zeolite-based desiccant with a small pore size.
  • a sodium-potassium A-type synthetic zeolite having a pore size of 3.5 angstroms or less is preferable.
  • the particle size of the zeolitic desiccant is preferably about 0.5 to 5 mm.
  • the shape is preferably granular or cylindrical.
  • the zeolitic desiccant can be made into an arbitrary shape by solidifying powdered zeolite with a binder (bentonite or the like). Other desiccants (silica gel, activated alumina, etc.) may be used in combination as long as the zeolite-based desiccant is mainly used.
  • the use ratio of the zeolitic desiccant to the thermal cycle working medium is not particularly limited.
  • chlorine concentration The presence of chlorine in the thermal cycle system has undesirable effects, such as formation of deposits due to reaction with metals, wear of bearings, decomposition of a working fluid for thermal cycling and refrigerant oil.
  • the chlorine concentration in the thermal cycle system is preferably 100 ppm or less by mass ratio to the thermal cycle working medium, and particularly preferably 50 ppm or less.
  • non-condensable gas concentration If the non-condensable gas is mixed in the thermal cycle system, it has an adverse effect of poor heat transfer in the condenser and the evaporator and an increase in operating pressure, so it is necessary to suppress the mixing as much as possible.
  • oxygen which is one of the non-condensable gases, reacts with the thermal cycle working medium and refrigerator oil to promote decomposition.
  • the noncondensable gas concentration is preferably 1.5% by volume or less by volume ratio to the thermal cycle working medium in the gas phase portion of the thermal cycle working medium, and particularly preferably 0.5% by volume or less.
  • the system can be miniaturized because the thermal cycle working medium of the present invention is excellent in cycle performance and small in composition change and temperature gradient. Moreover, since the working medium for thermal cycling of the present invention is used, the cycle performance is excellent.
  • Examples 1 to 9 The working media for thermal cycling of Examples 1 to 9 were obtained by mixing 1224yd (Z) and 1234ze (Z) in the predetermined ratio shown in Table 3.
  • the working fluid for thermal cycling of Examples 1 to 9 is an azeotrope-like composition comprising 1224 yd (Z) and 1234ze (Z).
  • the flammability and refrigeration cycle performance were evaluated for each thermal cycle working medium.
  • the flammability evaluation was performed using the equipment specified in ASTM E-681. After evacuating the inside of a 12-liter flask controlled to an internal temperature of 60 ° C. and a relative humidity (Rh) of 50%, the heat cycle working medium of Example 1 and air were sealed to atmospheric pressure. Thereafter, in the gas phase near the center in the flask, discharge ignition was performed at 15 kV and 30 mA for 0.4 seconds, and the spread of the flame was visually confirmed. It was judged as combustible (present) when the angle of the flame spread upward was 90 ° or more, and noncombustible (not) when it was less than 90 °. The flammability was similarly evaluated for the heat cycle working media of Examples 2-9. The results are shown in Table 3.
  • the average evaporation temperature of the heat cycle working medium in the evaporator 14 is 5 ° C.
  • the average condensation temperature of the heat cycle working medium in the condenser 12 is 40 ° C.
  • the degree of subcooling of the heat cycle working medium in the condenser 12 was 5 ° C.
  • the refrigeration capacity and coefficient of performance are as follows: A (evaporation high temperature low pressure after evaporation), B (high temperature high pressure after compression), C (low temperature high pressure after condensation), D (low temperature low pressure after expansion) for thermal cycle working medium It calculated
  • thermodynamic properties required to calculate the refrigeration cycle performance were calculated based on the generalized equation of state (Soave-Redlich-Kwong equation) based on the corresponding state principle, and thermodynamic relations. When characteristic values were not available, calculation was performed using the estimation method based on the group contribution method.
  • the working medium for the heat cycle of the present invention includes a refrigerant for a refrigerator, a refrigerant for an air conditioner, a working fluid for a power generation system (such as waste heat recovery power generation), a working medium for a latent heat transport device (such as a heat pipe), a secondary cooling medium, etc. It is useful as a working medium for a refrigerator, a refrigerant for an air conditioner, a working fluid for a power generation system (such as waste heat recovery power generation), a working medium for a latent heat transport device (such as a heat pipe), a secondary cooling medium, etc. It is useful as a working medium for

Abstract

Provided are: an azeotropic composition that provides a working medium that is for a heat cycle and that has little impact on global warming, undergoes little compositional change, has a small temperature gradient, and has excellent cycle performance; a working medium that is for a heat cycle and uses the azeotropic composition; and a heat cycle system. An azeotrope or an azeotropic composition that comprises 1-chloro-2,3,3,3-tetrafluoropropene and (Z)-1,3,3,3-tetrafluoropropene. A working medium that is for a heat cycle and includes the abovementioned azeotrope or azeotropic composition.

Description

共沸様組成物、熱サイクル用作動媒体及び熱サイクルシステムAzeotropic-like composition, working medium for thermal cycling and thermal cycling system
 本発明は、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)及び(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))からなる共沸様組成物、これを用いた熱サイクル用作動媒体及び熱サイクルシステムに関する。 The present invention consists of 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd) and (Z) -1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)) The present invention relates to an azeotrope-like composition, a working medium for thermal cycling using the same, and a thermal cycling system.
 従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクルシステム用の作動媒体としては、クロロトリフルオロメタン、ジクロロジフルオロメタン等のクロロフルオロカーボン(CFC)、クロロジフルオロメタン等のヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFC及びHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっている。 Conventionally, working media for heat cycle systems such as refrigerants for refrigerators, refrigerants for air conditioners, working media for power generation systems (waste heat recovery power generation etc), working media for latent heat transport devices (heat pipes etc), secondary cooling media etc. As chlorofluoromethane, chlorofluorocarbons (CFC) such as dichlorodifluoromethane, and hydrochlorofluorocarbons (HCFC) such as chlorodifluoromethane have been used. However, CFCs and HCFCs have been pointed out as their effects on the stratospheric ozone layer and are currently subject to regulation.
 このような経緯から、熱サイクル用作動媒体としては、CFCやHCFCに代えて、オゾン層への影響が少ない、ジフルオロメタン(HFC-32)、テトラフルオロエタン、ペンタフルオロエタン(HFC-125)等のヒドロフルオロカーボン(HFC)が用いられるようになった。例えば、R410A(HFC-32とHFC-125の質量比1:1の共沸様混合冷媒)等は従来から広く使用されてきた冷媒である。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。 From such a background, as a working medium for thermal cycling, it is replaced with CFC and HCFC, and there is little influence on the ozone layer, difluoromethane (HFC-32), tetrafluoroethane, pentafluoroethane (HFC-125), etc. Hydrofluorocarbons (HFCs) have come to be used. For example, R410A (an azeotrope-like mixed refrigerant having a mass ratio of 1: 1 of HFC-32 and HFC-125) is a refrigerant that has been widely used conventionally. However, HFC has been pointed out as a possible cause of global warming.
 たとえば、自動車空調機器用冷媒として用いられている1,1,1,2-テトラフルオロエタン(HFC-134a)は、地球温暖化係数が1430(100年値)と大きい。しかも、自動車空調機器においては、接続ホース、軸受け部等から冷媒が大気中へ漏洩する確率が高い。 For example, 1,1,1,2-tetrafluoroethane (HFC-134a), which is used as a refrigerant for automobile air conditioners, has a large global warming potential of 1430 (100-year value). Moreover, in the case of a car air conditioner, there is a high probability that the refrigerant leaks into the atmosphere from the connection hose, the bearing portion and the like.
 HFC-134aは、遠心式冷凍機(ターボ冷凍機とも呼ばれている)の作動媒体としても用いられている。遠心式冷凍機では、他の冷凍機やヒートポンプに比べて作動媒体の充填量が多い。例えば、能力が500冷凍トンクラスの遠心式冷凍機においては、700~800kg程度の作動媒体が充填されている。遠心式冷凍機は建屋内の機械室に据付けられる場合が多いが、万一事故等によって作動媒体の漏れが発生した場合には、大気中に作動媒体が大量に放出されてしまう可能性がある。このように、遠心式冷凍機に用いる作動媒体には、燃焼性が低いなどで安全性が高いことや、環境面で地球温暖化係数が小さいこと等が求められている。 HFC-134a is also used as a working medium for centrifugal refrigerators (also called turbo refrigerators). In centrifugal refrigerators, the amount of filling of the working medium is larger than that of other refrigerators and heat pumps. For example, in a centrifugal refrigerator having a capacity of 500 refrigeration tons, about 700 to 800 kg of a working medium is filled. Centrifugal refrigerators are often installed in a machine room in a building, but if a working medium leaks due to an accident etc., a large amount of working medium may be released to the atmosphere . As described above, the working medium used in the centrifugal refrigerator is required to have high safety due to low combustibility and the like, and also to have a small global warming potential from the environmental aspect.
 近年、炭素-炭素二重結合を有しその結合が大気中のOHラジカルによって分解されやすいことから、オゾン層への影響が少なく、かつ地球温暖化への影響が少ない作動媒体である、ヒドロフルオロオレフィン(HFO)、ヒドロクロロフルオロオレフィン(HCFO)及びクロロフルオロオレフィン(CFO)すなわち炭素-炭素二重結合を有する化合物に期待が集まっている。本明細書においては、特に断りのない限り飽和のHFCをHFCといい、HFOとは区別して用いる。また、HFCを飽和のヒドロフルオロカーボンのように明記する場合もある。 Hydrofluoro, a working medium that has a carbon-carbon double bond and is easily decomposed by OH radicals in the atmosphere in recent years, so it has a low impact on the ozone layer and a low impact on global warming. Expectations are focused on olefins (HFO), hydrochlorofluoroolefins (HCFO) and chlorofluoroolefins (CFO), ie compounds having carbon-carbon double bonds. In the present specification, unless otherwise specified, saturated HFC is referred to as HFC and is used separately from HFO. Also, HFC may be specified as a saturated hydrofluorocarbon.
 上記した炭素-炭素二重結合を有するHFO、HCFO、CFOのなかでも、HCFO及びCFOは、一分子中のハロゲンの割合が多いため、燃焼性が抑えられた化合物である。そのため、オゾン層への影響が少なく、かつ地球温暖化への影響が少なく、さらに、燃焼性を抑えた作動媒体として、HCFO、CFOを用いることが検討されている。このような作動媒体として、例えば、ヒドロクロロフルオロプロペンである、HCFO-1224yd(以下「1224yd」という。)を用いる作動媒体が知られている(例えば、特許文献1参照。)。 Among the above-mentioned HFO, HCFO and CFO having a carbon-carbon double bond, HCFO and CFO are compounds in which the flammability is suppressed because the ratio of halogen in one molecule is large. Therefore, it is considered to use HCFO and CFO as a working medium which has little influence on the ozone layer, little influence on global warming, and reduced flammability. As such a working medium, for example, a working medium using HCFO-1224yd (hereinafter referred to as "1224yd"), which is hydrochlorofluoropropene, is known (see, for example, Patent Document 1).
 ここで、作動媒体として複数の化合物を組み合わせて用いて、より性能等を高める試みがなされている。1224ydにおいても、GWPを低いレベルに保ちながら、他の化合物と組み合わせることで、より性能を高めることが求められていた。 Here, attempts have been made to further improve performance etc. by using a plurality of compounds in combination as a working medium. In 1224yd as well, it is required to further improve the performance by combining with other compounds while keeping the GWP at a low level.
 一方で、複数の化合物を含有する組成物が非共沸組成物である場合、これを作動媒体とした際には、作動媒体が、保管や移送のために収容された圧力容器から、熱サイクルシステム機器である冷凍空調機器等へ充てん(移充てん)される際や、冷凍空調機器から漏えいした際に、組成変化を生じることがある。さらに、作動媒体の組成が変化した場合には、作動媒体を初期の組成に復元することが困難である。そのため、非共沸組成物を作動媒体として使用した際には、作動媒体の管理性に劣るという課題があった。また、非共沸組成物を作動媒体として使用した際には、温度勾配が大きくなるという課題もあった。 On the other hand, when the composition containing a plurality of compounds is a non-azeotropic composition, when this is used as a working medium, the working medium is thermally cycled from a pressure vessel housed for storage and transfer. The composition may change when it is filled (transfer-filled) to a refrigeration air conditioner or the like that is a system device, or when it leaks from the refrigeration air conditioner. Furthermore, when the composition of the working medium changes, it is difficult to restore the working medium to the initial composition. Therefore, when the non-azeotropic composition is used as a working medium, there is a problem that the controllability of the working medium is inferior. Moreover, when using a non-azeotropic composition as a working medium, the subject that a temperature gradient became large also occurred.
国際公開第2012/157763号International Publication No. 2012/157763
 本発明は、地球温暖化への影響が少なく、組成変化が小さく、温度勾配が小さく、サイクル性能に優れる熱サイクル用作動媒体を与える共沸様組成物、及び該共沸様組成物を用いた熱サイクル用作動媒体、熱サイクルシステムを提供することを目的とする。 The present invention uses an azeotrope-like composition that provides a working medium for thermal cycling that has little influence on global warming, a small compositional change, a small temperature gradient, and excellent cycle performance, and the azeotrope-like composition An object of the present invention is to provide a working medium for thermal cycling and a thermal cycling system.
 本発明は、以下の構成を有する共沸様組成物、熱サイクル用作動媒体及び熱サイクルシステムを提供する。
 [1] 1-クロロ-2,3,3,3-テトラフルオロプロペン及び(Z)-1,3,3,3-テトラフルオロプロペンからなる共沸又は共沸様組成物。
 [2] 前記共沸又は共沸様組成物における前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記(Z)-1,3,3,3-テトラフルオロプロペンの含有比は、1-クロロ-2,3,3,3-テトラフルオロプロペン:(Z)-1,3,3,3-テトラフルオロプロペンで表わされる質量比で1:99~99:1である[1]に記載の共沸又は共沸様組成物。
 [3] 前記共沸又は共沸様組成物における前記1-クロロ-2,3,3,3-テトラフルオロプロペンの含有割合は、前記共沸又は共沸様組成物の全量に対して30質量%以上である[1]又は[2]に記載の共沸又は共沸様組成物。
The present invention provides an azeotrope-like composition, a working medium for thermal cycling, and a thermal cycling system having the following configurations.
[1] An azeotropic or azeotrope-like composition comprising 1-chloro-2,3,3,3-tetrafluoropropene and (Z) -1,3,3,3-tetrafluoropropene.
[2] The content ratio of the 1-chloro-2,3,3,3-tetrafluoropropene and the (Z) -1,3,3,3-tetrafluoropropene in the azeotropic or azeotrope-like composition is 1-chloro-2,3,3,3-tetrafluoropropene: (Z) -1,3,3,3-tetrafluoropropene in a mass ratio of 1:99 to 99: 1 [1] The azeotropic or azeotrope-like composition according to
[3] The content ratio of the 1-chloro-2,3,3,3-tetrafluoropropene in the azeotropic or azeotropic composition is 30% by mass with respect to the total amount of the azeotropic or azeotropic composition The azeotropic or azeotrope-like composition according to [1] or [2], which is% or more.
 [4] [1]~[3]のいずれかに記載の共沸又は共沸様組成物を含む熱サイクル用作動媒体。
 [5] 前記熱サイクル用作動媒体の全量に対する前記共沸又は共沸様組成物の割合が90質量%以上である[4]に記載の熱サイクル用作動媒体。
 [6] 前記熱サイクル用作動媒体の全量に対する前記(Z)-1,3,3,3-テトラフルオロプロペンの割合が70質量%以下である[4]又は[5]に記載の熱サイクル用作動媒体。
[4] A working medium for thermal cycling comprising the azeotropic or azeotrope-like composition according to any one of [1] to [3].
[5] The working fluid for thermal cycling according to [4], wherein the ratio of the azeotropic or azeotropic composition to the total amount of the working fluid for thermal cycling is 90% by mass or more.
[6] The thermal cycle according to [4] or [5], wherein the ratio of the (Z) -1,3,3,3-tetrafluoropropene to the total amount of the thermal cycle working medium is 70% by mass or less. Working medium
 [7] [4]~[6]のいずれかに記載の熱サイクル用作動媒体を用いた、熱サイクルシステム。
 [8] 冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置又は二次冷却機である[7]に記載の熱サイクルシステム。
 [9] ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機又は自動販売機である[7]又は[8]に記載の熱サイクルシステム。
[7] A thermal cycle system using the thermal cycle working medium according to any one of [4] to [6].
[8] The heat cycle system according to [7], which is a refrigeration / refrigerator, an air conditioner, a power generation system, a heat transport device, or a secondary cooler.
[9] Room air conditioners, package air conditioners for stores, package air conditioners for buildings, package air conditioners for equipment, gas engine heat pumps, air conditioners for trains, air conditioners for automobiles, built-in showcases, separate showcases, freezers and refrigerators for business use The thermal cycle system according to [7] or [8], which is an ice making machine or a vending machine.
 本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記し、必要に応じて化合物名に代えてその略称を用いる。また、化合物名の前又は化合物の略称の後に(E)又は(Z)等の表記があるものは、幾何異性体のE体又はZ体であることを示す。(E)、(Z)の表記がないものは、E体又はZ体、あるいはE体及びZ体の任意の割合の混合物を示す。 In the present specification, for halogenated hydrocarbons, the abbreviation of the compound is indicated in the parenthesis after the compound name, and the abbreviation is used in place of the compound name as necessary. In addition, those having a designation such as (E) or (Z) before or after the compound name indicate that the compound is an E isomer or a Z isomer of a geometric isomer. Those without the notation of (E) and (Z) indicate E form or Z form, or a mixture of E and Z form in any ratio.
 本発明によれば、地球温暖化への影響が少なく、組成変化が小さく、温度勾配が小さく、サイクル性能に優れる熱サイクル用作動媒体を与える共沸様組成物、及び該共沸様組成物を用いた熱サイクル用作動媒体を提供することができる。また、本発明によれば、サイクル性能に優れる熱サイクルシステムを提供することができる。 According to the present invention, an azeotrope-like composition that provides a working medium for thermal cycling that has little influence on global warming, a small compositional change, a small temperature gradient, and excellent cycle performance, and the azeotrope-like composition The working medium for thermal cycling used can be provided. Further, according to the present invention, it is possible to provide a thermal cycle system which is excellent in cycle performance.
冷凍サイクルシステムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of a refrigerating cycle system. 冷凍サイクルシステムにおける熱サイクル用作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。FIG. 6 is a cycle diagram in which a change in the state of a working medium for thermal cycling in the refrigeration cycle system is described on a pressure-enthalpy diagram.
 以下、本発明の実施の形態について説明する。
[共沸又は共沸様組成物]
 本発明の共沸又は共沸様組成物は、1-クロロ-2,3,3,3-テトラフルオロプロペン(1224yd)及び(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z)、以下「1234ze(Z)」という。)からなる。
Hereinafter, embodiments of the present invention will be described.
[Azeotropic or azeotrope-like composition]
The azeotropic or azeotrope-like composition of the present invention can be prepared from 1-chloro-2,3,3,3-tetrafluoropropene (1224yd) and (Z) -1,3,3,3-tetrafluoropropene (HFO- 1234ze (Z), hereinafter referred to as "1234ze (Z)".
 共沸組成物は、単一物質として挙動する2つ以上の物質の混合物であり、定まった所定の沸点(定沸点)で蒸留される。共沸組成物は、その気液平衡状態において、気相と液相の組成が同一である、すなわち、2つ以上の物質の混合物が組成変化なしに蒸発されるか、又は凝縮される。 An azeotropic composition is a mixture of two or more substances that behaves as a single substance and is distilled at a defined and predetermined boiling point (constant boiling point). The azeotropic composition has the same composition of the gas phase and the liquid phase in its vapor-liquid equilibrium state, that is, a mixture of two or more substances is evaporated or condensed without composition change.
 共沸様組成物は、本質的に単一物質として挙動する2つ以上の物質の混合物であり、実質的に定まった所定の沸点で蒸発される。共沸様組成物は、気液平衡時に共沸組成物の前記挙動と略同様の挙動を示す。共沸様組成物は、その気液平衡状態において、気相と液相の組成が実質的に同一である。すなわち、2つ以上の物質の混合物が共沸様組成物を形成する場合、これらは実質的な組成変化なしに蒸発されるか、又は凝縮される。また、共沸様組成物は、ある特定の温度での組成物の沸点圧力及び露点圧力が実質的に同じである。共沸様組成物は、共沸組成物と同等に取り扱えるため、以下、共沸様組成物は共沸組成物を含むものとして説明する。 An azeotrope-like composition is a mixture of two or more substances that behaves essentially as a single substance and evaporates at a substantially fixed predetermined boiling point. The azeotrope-like composition exhibits substantially the same behavior as that of the azeotropic composition at the time of vapor-liquid equilibrium. The azeotrope-like composition has substantially the same composition of the gas phase and the liquid phase in its vapor-liquid equilibrium state. That is, when a mixture of two or more substances forms an azeotrope-like composition, they are evaporated or condensed without substantial composition change. Also, the azeotrope-like composition has substantially the same boiling pressure and dew point pressure of the composition at a certain temperature. Since an azeotrope-like composition can be handled equivalently to an azeotropic composition, the azeotrope-like composition is hereinafter described as including an azeotropic composition.
 共沸組成及び共沸様組成は、例えば、次のように、蒸気漏洩の蒸気圧に対する影響を測定することで、求めることができる。容器に任意の温度で初期混合物を収容し、混合物の初期蒸気圧を測定する。初期混合物の50質量%が除去されるまで、温度を一定に保持しながら、混合物を容器から漏洩させ、その時点で容器に残っている混合物(残留混合物)の蒸気圧を測定する。このとき、初期混合物と残留混合物の間で、蒸気圧の変化がない場合、初期混合物は共沸組成である。 The azeotropic composition and the azeotrope-like composition can be determined, for example, by measuring the effect of vapor leakage on the vapor pressure as follows. The initial mixture is contained in a vessel at any temperature, and the initial vapor pressure of the mixture is measured. The mixture is allowed to leak from the vessel while maintaining the temperature constant until 50% by weight of the initial mixture is removed, at which point the vapor pressure of the mixture remaining in the vessel (residual mixture) is measured. At this time, if there is no change in vapor pressure between the initial mixture and the remaining mixture, the initial mixture has an azeotropic composition.
 また、初期混合物と残留混合物の間で、実質的に蒸気圧の変化がない場合、初期混合物は共沸様組成である。本明細書では、初期混合物の50質量%が蒸発などによって除去された後に、初期混合物と、初期混合物の50質量%が除去された後に残る残留混合物との間の蒸気圧の差(圧力偏差)が10%未満である場合に組成物は共沸様組成物であると定義する。 Also, if there is substantially no change in vapor pressure between the initial mixture and the residual mixture, the initial mixture is azeotrope-like in composition. As used herein, the difference in vapor pressure (pressure deviation) between the initial mixture and the residual mixture remaining after 50% by mass of the initial mixture is removed after 50% by mass of the initial mixture has been removed by evaporation etc. The composition is defined as an azeotrope-like composition when is less than 10%.
 上記の蒸気漏洩の蒸気圧に対する影響に基づいて、1224ydと1234ze(Z)の共沸様組成を求める試験を次のように行った。内部の温度が25℃の容器に1224ydと1234ze(Z)を表1に示す割合で収容し、初期混合物の初期蒸気圧を測定した。次いで、初期混合物を加熱し、50質量%が除去されるまで、温度を一定に保持しながら、混合物を容器から漏洩させた。漏洩後に容器に残っている残留混合物の25℃での蒸気圧を測定した。これらの蒸気圧の測定値から、蒸気漏洩前後の蒸気圧差(圧力偏差)を算出した。結果を表1に示す。 Based on the above-mentioned influence of steam leakage on the vapor pressure, a test for determining the azeotrope-like composition of 1224yd and 1234ze (Z) was performed as follows. In a container with an internal temperature of 25 ° C., 1224 yd and 1234ze (Z) were contained at a ratio shown in Table 1, and the initial vapor pressure of the initial mixture was measured. The initial mixture was then heated and the mixture was allowed to leak out of the vessel, keeping the temperature constant until 50% by weight was removed. The vapor pressure at 25 ° C. of the remaining mixture remaining in the vessel after leakage was measured. From the measured values of the vapor pressure, the vapor pressure difference (pressure deviation) before and after vapor leakage was calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、1224yd及び1234ze(Z)の混合物は、1224ydと1234ze(Z)の質量比(1224yd[質量%]:1234ze(Z)[質量%])が1:99~99:1の範囲で、圧力偏差が0.7%以下である。この結果から、1224ydと1234ze(Z)は、1224ydが1~99質量%の範囲で圧力偏差が10%未満であり、共沸様組成であることがわかる。 From Table 1, the mixture of 1224yd and 1234ze (Z) has a mass ratio of 1224yd to 1234ze (Z) (1224yd [mass%]: 1234ze (Z) [mass%]) in the range of 1:99 to 99: 1 , Pressure deviation is 0.7% or less. From these results, it can be seen that 1224yd and 1234ze (Z) have an azeotrope-like composition with a pressure deviation of less than 10% in the range of 1 to 99% by mass of 1224yd.
 なお、1224ydと、1224yd(Z)及び1224yd(E)は、上記の共沸様組成物を構成する場合に区別なく使用できる。すなわち、本発明の共沸または共沸様組成物における1224ydは、1224yd(E)単体、1224yd(Z)単体、または1224yd(E)および1224yd(Z)の任意の割合の混合物のいずれの場合であっても、1234ze(Z)と上記の組成の共沸様組成物を形成する。 In addition, 1224 yd and 1224 yd (Z) and 1224 yd (E) can be used without distinction when constituting the azeotrope-like composition described above. That is, 1224yd in the azeotropic or azeotrope-like composition of the present invention is either 1224yd (E) alone, 1224yd (Z) alone, or a mixture of 1224yd (E) and 1224yd (Z) in any proportion. Even if it forms an azeotrope-like composition of the above composition with 1234ze (Z).
 また、以下に説明するように、温度勾配は、共沸様組成を反映する指標であり、混合物の温度勾配が1.50以下であれば、当該混合物が共沸様組成であるといえる。なお、1224yd及び1234ze(Z)の沸点は、圧力が1.013×10Paで測定される値で、それぞれ、1224yd(Z)の沸点が15℃、1224yd(E)の沸点が19℃、1234ze(Z)の沸点が10℃である。 Also, as described below, the temperature gradient is an index reflecting the azeotropic composition, and if the temperature gradient of the mixture is 1.50 or less, it can be said that the mixture is the azeotropic composition. The boiling points of 1224yd and 1234ze (Z) are values measured at a pressure of 1.013 × 10 5 Pa, and the boiling point of 1224yd (Z) is 15 ° C., and the boiling point of 1224yd (E) is 19 ° C., respectively. The boiling point of 1234ze (Z) is 10 ° C.
 上記の結果から、本発明における1224yd及び1234ze(Z)からなる共沸様組成物(共沸組成物を含む。以下同じ。)は、1224ydと1234ze(Z)の質量比(1224yd[質量%]:1234ze(Z)[質量%])が1:99~99:1の混合物である。 From the above results, the azeotrope-like composition consisting of 1224yd and 1234ze (Z) in the present invention (including the azeotropic composition, the same applies hereinafter) has a mass ratio of 1224yd to 1234ze (Z) (1224yd [mass%]) : 1234ze (Z) [mass%]) is a mixture of 1:99 to 99: 1.
 1224yd及び1234ze(Z)からなる共沸様組成物は、1224ydと1234ze(Z)の含有割合が上記した範囲であるため、気液両相の組成比の差が極めて小さく、組成の安定性に優れる。 Since the content ratio of 1224yd and 1234ze (Z) is in the above-mentioned range, the difference between the composition ratio of the gas and liquid phases is extremely small, and the azeotrope-like composition consisting of 1224yd and 1234ze (Z) is extremely stable. Excellent.
 そのため、本発明の共沸様組成物は、熱サイクル用作動媒体に好適であり、組成の安定性に優れた熱サイクル用作動媒体を得ることができる。 Therefore, the azeotrope-like composition of the present invention is suitable as a working fluid for thermal cycling, and a working fluid for thermal cycling having excellent composition stability can be obtained.
 本発明の共沸様組成物においては、用途に応じて、上記共沸様組成の範囲内で1224ydと1234ze(Z)の組成を適宜調整できる。例えば、本発明の共沸様組成物において、より組成の安定性が求められる場合に、上記の圧力偏差を0.6%以下とできる組成が好ましく、圧力偏差を0.5%以下とできる組成がより好ましく、0.4%以下とできる組成がさらに好ましい。 In the azeotrope-like composition of the present invention, the compositions of 1224 yd and 1234ze (Z) can be appropriately adjusted within the range of the azeotrope-like composition according to the application. For example, in the azeotrope-like composition of the present invention, when the stability of the composition is further required, a composition which can make the above pressure deviation 0.6% or less is preferable, and a composition which can make the pressure deviation 0.5% or less Is more preferable, and the composition which can be 0.4% or less is more preferable.
 本発明の共沸様組成物における1224ydの含有割合は、以下に説明する燃焼性の観点から共沸様組成物全量に対して20質量%以上であることが好ましい。共沸様組成物における1224ydの含有割合は、30質量%以上であることがより好ましい。 The content ratio of 1224yd in the azeotrope-like composition of the present invention is preferably 20% by mass or more based on the total amount of the azeotrope-like composition from the viewpoint of the flammability described below. The content of 1224yd in the azeotropic composition is more preferably 30% by mass or more.
 1234ze(Z)は通常の条件下では不燃性であるが、高濃度の空気の混入下で高圧、高温にすると可燃性になることがある。このとき、後述の実施例に示すように、1224yd及び1234ze(Z)からなる共沸様組成物中の1234ze(Z)の含有割合が80質量%以下であれば、1224yd及び1234ze(Z)からなる共沸様組成物は、いかなる割合で空気と混合された場合でも、燃焼性を持たない。より高い安全性を得るためには、共沸様組成物における1234ze(Z)の含有割合は、70質量%以下であることがより好ましい。 Although 1234ze (Z) is noncombustible under ordinary conditions, it may become flammable when brought to high pressure and high temperature under high concentration of air. At this time, as shown in Examples described later, if the content ratio of 1234ze (Z) in the azeotrope-like composition consisting of 1224yd and 1234ze (Z) is 80% by mass or less, from 1224yd and 1234ze (Z) The resulting azeotrope-like composition has no flammability when mixed with air in any proportion. In order to obtain higher safety, the content of 1234ze (Z) in the azeotropic composition is more preferably 70% by mass or less.
 本発明の共沸様組成物に含まれる1224ydと、1234ze(Z)は地球温暖化係数が小さい。例えば、気候変動に関する政府間パネル(IPCC)第5次評価報告書(2013年)に示される、又は該方法に準じて測定された100年の値での地球温暖化係数(GWP)は、1224ydが1以下、1234ze(Z)が、1以下である。そのため、本発明の共沸様組成物は地球温暖化への影響が極めて小さく、熱サイクル用作動媒体として好適に使用できる。 The 1224 yd and 1234ze (Z) contained in the azeotrope-like composition of the present invention have a small global warming potential. For example, the global warming potential (GWP) at a 100-year value shown in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (2013) or measured according to the method is 1224 yd Is 1 or less, and 1234ze (Z) is 1 or less. Therefore, the azeotrope-like composition of the present invention has a very small influence on global warming, and can be suitably used as a working medium for thermal cycling.
[熱サイクル用作動媒体]
 本発明の熱サイクル用作動媒体は、上記した1224yd及び1234ze(Z)からなる共沸様組成物を含む。また、本発明の熱サイクル用作動媒体は、本発明の効果を損なわない範囲で、上記共沸様組成物以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。
[Working medium for thermal cycle]
The working fluid for thermal cycling of the present invention comprises an azeotrope-like composition consisting of 1224yd and 1234ze (Z) described above. In addition to the azeotrope-like composition, the working fluid for thermal cycling of the present invention may optionally contain a compound generally used as a working fluid, as long as the effects of the present invention are not impaired.
 本発明の熱サイクル用作動媒体は、上記した本発明の共沸様組成物を含むため、熱サイクルシステムに適用する場合に、移充てん、あるいは機器からの漏えい時の組成変化が極めて小さい。そのため、熱サイクルシステムにおいて極めて安定したサイクル性能が得られる。また、このため、熱サイクル用作動媒体の管理が容易であるという利点を有し、一定の能力を維持しながら効率をより高めることで良好なサイクル性能を得ることができる。 Since the working fluid for thermal cycling of the present invention contains the above-described azeotrope-like composition of the present invention, when applied to a thermal cycling system, the composition change upon transfer-filling or leakage from equipment is extremely small. Therefore, extremely stable cycle performance can be obtained in the thermal cycle system. In addition, there is an advantage that management of the thermal cycle working medium is easy, and good cycle performance can be obtained by further increasing the efficiency while maintaining a certain capacity.
 本発明の熱サイクル用作動媒体は、1224yd及び1234ze(Z)からなる共沸様組成物を含むため、温度勾配が0に近い。したがって、以下に説明するように、エネルギー効率のよい熱サイクルシステムを得ることができる。 The thermal cycling working medium of the present invention has an azeotrope-like composition consisting of 1224yd and 1234ze (Z), so the temperature gradient is close to zero. Therefore, as described below, an energy efficient thermal cycle system can be obtained.
 ここで、「温度勾配」は、混合物を作動媒体として使用した場合における性質をはかる指標の一つである。温度勾配は、熱交換器、例えば、蒸発器における蒸発の、又は凝縮器における凝縮の、開始温度と終了温度が異なる性質、と定義される。 Here, the "temperature gradient" is one of the indexes for measuring the properties when the mixture is used as a working medium. A temperature gradient is defined as the nature of the start and end temperatures of a heat exchanger, for example of evaporation in an evaporator, or of condensation in a condenser, to be different.
 共沸様組成物を作動媒体として用いる場合の熱サイクルシステムにおける温度勾配の影響について、図1に示す熱サイクルシステムに用いた場合を例に以下に説明する。 The influence of the temperature gradient in the thermal cycle system when using the azeotrope-like composition as a working medium will be described below by using the thermal cycle system shown in FIG. 1 as an example.
 図1は、本発明の熱サイクル用作動媒体が適用される後述の冷凍サイクルシステムの一例を示す概略構成図である。冷凍サイクルシステム10は、作動媒体蒸気Aを圧縮して高温高圧の作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された作動媒体蒸気Bを冷却し、液化して低温高圧の作動媒体Cとする凝縮器12と、凝縮器12から排出された作動媒体Cを膨張させて低温低圧の作動媒体Dとする膨張弁13と、膨張弁13から排出された作動媒体Dを加熱して高温低圧の作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16とを具備して概略構成されるシステムである。 FIG. 1 is a schematic block diagram showing an example of the below-mentioned refrigeration cycle system to which the working fluid for thermal cycling of the present invention is applied. The refrigeration cycle system 10 cools and liquefys the working medium vapor B discharged from the compressor 11 by compressing the working medium vapor A into a high temperature and high pressure working medium vapor B, and liquefies it to operate at a low temperature and high pressure A condenser 12 as medium C, an expansion valve 13 expanding the working medium C discharged from the condenser 12 into a low-temperature low-pressure working medium D, and heating the working medium D discharged from the expansion valve 13 This system is roughly configured by including an evaporator 14 as a high-temperature low-pressure working medium vapor A, a pump 15 supplying the load fluid E to the evaporator 14, and a pump 16 supplying the fluid F to the condenser 12. is there.
 冷凍サイクルシステム10において、作動媒体は、蒸発時、蒸発器14の入口から出口に向かい温度が上昇し、反対に凝縮時、凝縮器12の入口から出口に向かい温度が低下する。冷凍サイクルシステム10においては、蒸発器14及び凝縮器12において、作動媒体と対向して流れる水や空気等の熱源流体との間で熱交換を行うことにより構成されている。熱源流体は、冷凍サイクルシステム10において、蒸発器14では「E→E’」で示され、凝縮器12では「F→F’」で示される。 In the refrigeration cycle system 10, the temperature of the working medium rises from the inlet to the outlet of the evaporator 14 during evaporation, and the temperature decreases from the inlet to the outlet of the condenser 12 during condensation. In the refrigeration cycle system 10, the evaporator 14 and the condenser 12 are configured by performing heat exchange with a heat source fluid such as water or air flowing opposite to a working medium. The heat source fluid is indicated by “E → E ′” in the evaporator 14 and by “F → F ′” in the condenser 12 in the refrigeration cycle system 10.
 ここで、単一組成の作動媒体を用いた場合には温度勾配がないため、蒸発器14の出口温度と入口温度との温度差がほぼ一定である。 Here, when there is no temperature gradient when using a single composition working medium, the temperature difference between the outlet temperature and the inlet temperature of the evaporator 14 is almost constant.
 また、共沸組成物は、該組成物を繰り返し蒸発、凝縮させた場合、組成変化がないため、作動媒体として用いる場合に、単一組成の作動媒体とほぼ等しく取り扱える。また、共沸様組成物は、蒸発、凝縮を繰り返した場合の組成の変動が小さく、共沸組成物と同等に取り扱える。したがって、共沸組成物又は共沸様組成物を作動媒体として用いた場合にも、蒸発器14の出口温度と入口温度との温度差がほぼ一定となる。 In addition, the azeotropic composition can be handled almost equally as a working medium of a single composition when used as a working medium because the composition does not change its composition when the composition is repeatedly evaporated and condensed. In addition, an azeotrope-like composition has a small compositional fluctuation when evaporation and condensation are repeated, and can be handled as well as an azeotropic composition. Therefore, even when an azeotropic composition or an azeotrope-like composition is used as the working medium, the temperature difference between the outlet temperature and the inlet temperature of the evaporator 14 is substantially constant.
 一方、非共沸組成物を用いた場合は、温度差が一定とならない。例えば、蒸発器14で、0℃で蒸発させようとした場合、入口温度が0℃よりも低い温度となり、蒸発器14において着霜する問題が生じる。特に、温度勾配が大きいほど、入口温度が低くなり、着霜の可能性が大きくなる。 On the other hand, when a non-azeotropic composition is used, the temperature difference is not constant. For example, when the evaporator 14 tries to evaporate at 0 ° C., the inlet temperature becomes lower than 0 ° C., and a problem of frost formation in the evaporator 14 occurs. In particular, the larger the temperature gradient, the lower the inlet temperature and the greater the possibility of frost formation.
 また、例えば、上記冷凍サイクルシステム10に示されるとおり、通常、熱サイクルシステムにおいては、蒸発器14及び凝縮器12等の熱交換器を流れる作動媒体と水や空気等の熱源流体とは常に対向流にすることにより熱交換効率の向上をはかる工夫がされている。ここで、起動時を別とし、一般に長期稼働する安定運転状態においては熱源流体の温度差が小さいことから、気液両相の組成が大きく異なる非共沸組成物の場合、温度勾配が大きいため、エネルギー効率のよい熱サイクルシステムを得ることが困難である。これに対し、共沸組成物を作動媒体として用いた場合には、エネルギー効率のよい熱サイクルシステムを得ることができる。 Also, for example, as shown in the refrigeration cycle system 10, normally, in a thermal cycle system, the working medium flowing through the heat exchanger such as the evaporator 14 and the condenser 12 always faces the heat source fluid such as water or air. It is devised to improve the heat exchange efficiency by making it flow. Here, since the temperature difference between the heat source fluid is small in a stable operation state generally operating for a long time, apart from the start time, the temperature gradient is large in the case of a non-azeotropic composition in which the composition of the gas-liquid phase largely differs. It is difficult to obtain an energy efficient thermal cycle system. On the other hand, when an azeotropic composition is used as a working medium, an energy efficient thermal cycle system can be obtained.
 また、冷凍サイクルシステム10に気液両相の組成が大きく異なる非共沸組成物を用いた場合、システム10内を循環する非共沸組成物が漏えいした場合に、その前後でシステム10内を循環する非共沸組成物の組成が大きく変化する原因になる。 In addition, when a non-azeotropic composition in which the composition of both gas and liquid phases is largely different is used in the refrigeration cycle system 10, if the non-azeotropic composition circulating in the system 10 leaks, the system 10 is It causes a large change in the composition of the circulating non-azeotropic composition.
 上記したように1224yd及び1234ze(Z)の合計量に対して1224ydの割合が20質量%以上の共沸様組成物は燃焼性を持たない。そのため、当該共沸様組成物を含む熱サイクル用作動媒体は、熱サイクルシステム外に漏洩した場合にも極めて安全性が高い。より高い安全性を得るためには、熱サイクル用作動媒体における1224ydの含有割合は、30質量%以上であることがより好ましい。 As described above, the azeotrope-like composition having a proportion of 1224 yd of 20% by mass or more with respect to the total amount of 1224 yd and 1234ze (Z) has no flammability. Therefore, the working medium for thermal cycle containing the azeotrope-like composition is extremely safe even when it leaks out of the thermal cycle system. In order to obtain higher safety, the content of 1224yd in the thermal cycle working medium is more preferably 30% by mass or more.
 また、本発明の熱サイクル用作動媒体が1224yd及び1234ze(Z)からなる共沸様組成物にさらに、後述する任意成分を含有する場合にも、熱サイクル用作動媒体中の1234ze(Z)の含有割合が80質量%以下であることで、燃焼性を有しないため、安全性の高い熱サイクル用作動媒体を得ることができる。より高い安全性を得るためには、熱サイクル用作動媒体における1234ze(Z)の含有割合は、70質量%以下であることがより好ましい。 In addition, when the working fluid for thermal cycling of the present invention further comprises an azeotrope-like composition consisting of 1224 yd and 1234ze (Z), the optional ingredient described later, the 1234ze (Z) in the working fluid for thermal cycling is When the content ratio is 80% by mass or less, a highly safe working medium for heat cycle can be obtained because it has no combustibility. In order to obtain higher safety, the content of 1234ze (Z) in the working fluid for thermal cycling is more preferably 70% by mass or less.
 なお、本発明の熱サイクル用作動媒体においては、燃焼性を有する組成であっても使用条件によっては取り扱いを十分に注意することで熱サイクルシステムに使用することが可能である。 In the thermal cycle working medium of the present invention, even if the composition has a combustibility, it can be used in a thermal cycle system by paying careful attention to handling depending on the use conditions.
 本発明の熱サイクル用作動媒体は、1224yd及び1234ze(Z)からなる共沸様組成物を含有するため、1224ydのみからなる熱サイクル用作動媒体に比べて、熱サイクルシステムに適用した場合に優れたサイクル性能(成績係数と冷凍能力)を得ることができる。具体的には、本発明の熱サイクル用作動媒体は、1224ydのみからなる熱サイクル用作動媒体に比べて、成績係数を低下させることなく、冷凍能力を向上できるという利点がある。 Since the working medium for thermal cycling of the present invention contains an azeotrope-like composition consisting of 1224yd and 1234ze (Z), it is superior when applied to a thermal cycling system as compared to the working medium for thermal cycling consisting only of 1224yd. Cycle performance (coefficient of performance and refrigeration capacity) can be obtained. Specifically, the working medium for thermal cycling of the present invention has an advantage of being able to improve the refrigerating capacity without lowering the coefficient of performance, as compared with the working medium for thermal cycling consisting of only 1224yd.
 表2に、1224yd(Z)及び1234ze(Z)の各単体からなる作動媒体としてのサイクル性能として、成績係数と冷凍能力を示す。成績係数と冷凍能力は、後述する方法で求められる(ただし、蒸発温度;5℃、凝縮完了温度;40℃、過冷却度(SC);5℃、過熱度(SH);5℃)。各化合物における成績係数と冷凍能力は、1224yd(Z)を基準(1.00)とした相対値(以下、それぞれ「相対成績係数」または「相対冷凍能力」という。)で示す。 Table 2 shows the coefficient of performance and the refrigerating capacity as the cycle performance as a working medium consisting of each of 1224 yd (Z) and 1234ze (Z). The coefficient of performance and the refrigeration capacity are determined by the method described later (however, evaporation temperature: 5 ° C., condensation completion temperature: 40 ° C., degree of supercooling (SC); 5 ° C., degree of superheat (SH); 5 ° C.). The coefficient of performance and the freezing capacity of each compound are shown as relative values based on 1224 yd (Z) (1.00) (hereinafter referred to as "relative coefficient of performance" or "relative freezing capacity", respectively).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(任意成分)
 本発明の熱サイクル用作動媒体は、本発明の効果を損なわない範囲で上記共沸様組成物以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。
(Optional ingredient)
The working fluid for thermal cycling of the present invention may optionally contain a compound generally used as a working fluid, in addition to the azeotrope-like composition as long as the effects of the present invention are not impaired.
 このような任意の化合物(任意成分)としては、例えば、HFC、1234ze(Z)以外のHFO、1224yd以外のHCFO、炭化水素、二酸化炭素、これら以外の、1224yd及び1234ze(Z)とともに気化、液化する他の成分等が挙げられる。任意成分としては、HFC、1234ze(Z)以外のHFO、1224yd以外のHCFOが好ましい。 Such optional compounds (optional components) include, for example, HFC, HFO other than 1234ze (Z), HCFO other than 1224yd, hydrocarbon, carbon dioxide, and other gases such as vaporization and liquefaction with 1224yd and 1234ze (Z) Other ingredients. As optional components, HFC, HFO other than 1234ze (Z), HCFO other than 1224yd are preferable.
 任意成分としては、1224yd及び1234ze(Z)と組み合わせて熱サイクルに用いた際に、燃焼性を抑える作用を有し、GWPを低く抑えながら、温度勾配を許容の範囲にとどめられる化合物が好ましい。熱サイクル用作動媒体が1224yd及び1234ze(Z)との組合せにおいてこのような化合物を含むと、燃焼性を抑え、GWPを低く抑えながら、より良好なサイクル性能が得られるとともに、温度勾配による影響も少ない。 As an optional component, a compound which has an action of suppressing the flammability when used in a thermal cycle in combination with 1224yd and 1234ze (Z), and can keep the temperature gradient within an acceptable range while suppressing the GWP low is preferable. When the thermal cycle working medium contains such a compound in combination with 1224 yd and 1234ze (Z), better cycle performance can be obtained while suppressing the flammability and keeping the GWP low, and also the influence of the temperature gradient Few.
 本発明の熱サイクル用作動媒体において、任意成分の含有割合は合計で、熱サイクル用作動媒体(100質量%)中、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。任意成分の含有割合が10質量%を超えると、温度勾配が大きくなりすぎ、熱サイクル用作動媒体の用途において、熱サイクル機器からの漏えいが生じた場合、熱サイクル用作動媒体の組成変化が大きくなるおそれがある等、作動媒体の管理性が低下することがある。 In the working fluid for thermal cycling of the present invention, the content of the optional components in total is preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass or less, in the working fluid for thermal cycling (100% by mass). Is more preferred. If the content ratio of the optional components exceeds 10% by mass, the temperature gradient becomes too large, and the composition for the thermal cycle working medium significantly changes if leakage from the thermal cycle equipment occurs in the thermal cycle working medium application Controllability of the working medium may be reduced.
(HFC)
 HFCは、熱サイクルシステムのサイクル性能を向上させる。任意成分のHFCとしては、上記燃焼性を抑える作用を有し、GWPを低く抑えながら、温度勾配を許容の範囲にとどめる観点から選択されることが好ましい。
(HFC)
HFCs improve the cycle performance of thermal cycling systems. The optional component HFC is preferably selected from the viewpoint of having the effect of suppressing the above-mentioned flammability and keeping the GWP low while keeping the temperature gradient within the allowable range.
 HFCとしては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さい点で、炭素数1~5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。 As the HFC, an HFC having 1 to 5 carbon atoms is preferable in that it has little influence on the ozone layer and little influence on global warming. The HFC may be linear, branched or cyclic.
 HFCとしては、HFC-32、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、HFC-125、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。 As HFC, HFC-32, difluoroethane, trifluoroethane, tetrafluoroethane, HFC-125, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane and the like can be mentioned.
 なかでも、HFCとしては、オゾン層への影響が少なく、かつ冷凍サイクルにおけるサイクル性能(冷凍能力及び成績係数)が優れる点から、1,1,2,2-テトラフルオロエタン(HFC-134)、HFC-134a、1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)、1,1,1,3,3-ペンタフルオロブタン(HFC-365mfc)がより好ましく、HFC-134a、HFC-245fa、HFC-365mfcがさらに好ましい。HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among them, as HFC, 1,1,2,2-tetrafluoroethane (HFC-134), because it has less influence on the ozone layer and is excellent in cycle performance (refrigerating capacity and coefficient of performance) in the refrigeration cycle. HFC-134a, 1,1,1,3,3-pentafluoropropane (HFC-245fa), 1,1,1,3,3-pentafluorobutane (HFC-365mfc) are more preferable, HFC-134a, HFC -245fa and HFC-365mfc are more preferable. One of HFCs may be used alone, or two or more thereof may be used in combination.
 本発明に用いられる熱サイクル用作動媒体(100質量%)中のHFCの含有割合は、たとえば、下記の通りである。HFCがHFC-134aの場合、1~10質量%の範囲で成績係数の大きな低下を生じることなく冷凍能力が向上する。HFC-245faの場合、1~10質量%の範囲で冷凍能力の大きな低下を生じることなく、成績係数が向上する。熱サイクル用作動媒体の要求特性に応じてHFC含有割合の制御を行うことができる。 The content ratio of HFC in the working fluid for thermal cycling (100% by mass) used in the present invention is, for example, as follows. When the HFC is HFC-134a, the refrigerating capacity is improved in the range of 1 to 10% by mass without causing a large decrease in the coefficient of performance. In the case of HFC-245fa, the coefficient of performance is improved in the range of 1 to 10% by mass without causing a significant decrease in refrigeration capacity. Control of the HFC content can be performed according to the required characteristics of the thermal cycle working medium.
(1234ze(Z)以外のHFO)
 HFOは、熱サイクルシステムのサイクル性能を向上させる。また、HFOであれば、GWPはHFCに比べて桁違いに低い。したがって、HFOを用いることで、GWPを小さくすることができる。HFOについても、上記HFCと同様に、燃焼性を抑える作用を有し、GWPを低く抑えながら、温度勾配を許容の範囲にとどめる観点から選択されることが好ましい。
(HFO other than 1234ze (Z))
HFO improves the cycling performance of the thermal cycling system. Also, in the case of HFO, GWP is orders of magnitude lower than HFC. Therefore, GWP can be reduced by using HFO. The HFO is also preferably selected from the viewpoint of keeping the temperature gradient within the allowable range while having the action of suppressing the flammability and suppressing the GWP low similarly to the above-mentioned HFC.
 HFOとしては、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2-ジフルオロエチレン(HFO-1132)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、3,3,3-トリフルオロプロペン(HFO-1243zf)、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(E))、(Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(Z))が挙げられる。 As HFOs, 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf), 1,1,2-triphenyl Fluoropropene (HFO-1243yc), (E) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), (Z) -1,2,3,3,3-pentafluoro Propene (HFO-1225ye (Z)), (E) -1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), 3,3,3-trifluoropropene (HFO-1243zf), ( E) -1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (E)), (Z) -1,1,1,4,4,4-hexaf Oro-2-butene (HFO-1336mzz (Z)) and the like.
 HFOとしては、HFO-1234ze(E)、HFO-1234yf、HFO-1336mzz(Z)、HFO-1243zfが好ましく、HFO-1234ze(E)、HFO-1234yf、HFO-1336mzz(Z)がより好ましい。HFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the HFO, HFO-1234ze (E), HFO-1234yf, HFO-1336mzz (Z), and HFO-1243zf are preferable, and HFO-1234ze (E), HFO-1234yf, and HFO-1336mzz (Z) are more preferable. The HFO may be used alone or in combination of two or more.
 本発明に用いられる熱サイクル用作動媒体(100質量%)中のHFOの含有割合は、熱サイクル用作動媒体の要求特性に応じ任意に選択可能である。例えば、HFOの含有割合が1~10質量%であれば、1224yd及び1234ze(Z)の共沸様組成物からなる作動媒体に比べ、サイクル性能に優れる熱サイクルシステムを与える。 The content ratio of HFO in the working fluid for thermal cycling (100% by mass) used in the present invention can be arbitrarily selected according to the required characteristics of the working fluid for thermal cycling. For example, if the content ratio of HFO is 1 to 10% by mass, a thermal cycle system having excellent cycle performance as compared with a working medium composed of an azeotrope-like composition of 1224yd and 1234ze (Z) is provided.
(1224yd以外のHCFO)
 1224yd以外の任意成分としてのHCFOについても、上記HFCと同様に燃焼性を抑える作用を有し、GWPを低く抑えながら、温度勾配を許容の範囲にとどめる観点から選択されることが好ましい。なお、HCFOのGWPはHFCのそれに比べて桁違いに低い。したがって、HCFOを含有させることで、GWPを小さくすることができる。
(HCFO other than 1224yd)
The HCFO as an optional component other than 1224 yd also has the action of suppressing the flammability similarly to the above-mentioned HFC, and is preferably selected from the viewpoint of keeping the temperature gradient within the allowable range while suppressing the GWP low. The HCFO's GWP is orders of magnitude lower than that of the HFC. Therefore, GWP can be reduced by containing HCFO.
 1224yd以外のHCFOとしては、1-クロロ-2,2-ジフルオロエチレン(HCFO-1122)、1,2-ジクロロフルオロエチレン(HCFO-1121)、1-クロロ-2-フルオロエチレン(HCFO-1131)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)及び1-クロロ-3,3,3-テトラフルオロプロペン(HCFO-1233zd)が挙げられる。 HCFOs other than 1224 yd include 1-chloro-2,2-difluoroethylene (HCFO-1122), 1,2-dichlorofluoroethylene (HCFO-1121), 1-chloro-2-fluoroethylene (HCFO-1131), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) and 1-chloro-3,3,3-tetrafluoropropene (HCFO-1233zd).
 なかでも、1224yd以外のHCFOとしては、高い臨界温度を有し、耐久性、成績係数が優れる点から、HCFO-1233zdが好ましい。1224yd以外のHCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among them, HCFO other than 1224yd is preferably HCFO-1233zd from the viewpoint of having high critical temperature and being excellent in durability and coefficient of performance. HCFOs other than 1224 yd may be used alone or in combination of two or more.
 1224yd以外のHCFOの含有割合は、熱サイクル用作動媒体(100質量%)中、1~10質量%が好ましく、1~5質量%がより好ましい。HCFOの含有割合が1~10質量%であれば、1224yd及び1234ze(Z)の共沸様組成物からなる熱サイクル用作動媒体に比べ、サイクル性能に優れる熱サイクルシステムを与えることができる。 The content of HCFO other than 1224yd is preferably 1 to 10% by mass, and more preferably 1 to 5% by mass in the working medium for thermal cycling (100% by mass). If the content ratio of HCFO is 1 to 10% by mass, it is possible to provide a thermal cycle system which is superior in cycle performance to a thermal cycle working medium composed of an azeotrope-like composition of 1224yd and 1234ze (Z).
(その他の任意成分)
 本発明の熱サイクルシステムに用いる作動媒体は、上記任意成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)等を含有してもよい。その他の任意成分としてはオゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
(Other optional ingredients)
The working medium used for the heat cycle system of the present invention may contain carbon dioxide, hydrocarbons, chlorofluoroolefin (CFO), etc. in addition to the above-mentioned optional components. As another optional component, a component which has less influence on the ozone layer and has less influence on global warming is preferable.
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As a hydrocarbon, propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like can be mentioned. The hydrocarbon may be used alone or in combination of two or more.
 熱サイクル用作動媒体が炭化水素を含有する場合、その含有割合は熱サイクル用作動媒体の100質量%に対して10質量%未満であり、1~5質量%が好ましく、3~5質量%がさらに好ましい。炭化水素が下限値以上であれば、熱サイクル用作動媒体への鉱物系冷凍機油の溶解性がより良好になる。炭化水素が上限値以下であれば、燃焼性へ与える影響が小さい。 When the working medium for thermal cycling contains a hydrocarbon, the content is less than 10% by mass, preferably 1 to 5% by mass, preferably 3 to 5% by mass, with respect to 100% by mass of the thermal cycling working medium. More preferable. If the hydrocarbon is at least the lower limit value, the solubility of the mineral-based refrigerator oil in the thermal cycle working medium becomes better. If the amount of hydrocarbon is less than or equal to the upper limit value, the influence on combustibility is small.
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。熱サイクル用作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of CFO include chlorofluoropropene and chlorofluoroethylene. As CFO, 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214 ya) is preferable because the flammability of the working fluid can be easily suppressed without significantly reducing the cycle performance of the working fluid for thermal cycling. And 1,3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) and 1,2-dichloro-1,2-difluoroethylene (CFO-1112) are preferred. The CFO may be used alone or in combination of two or more.
 熱サイクル用作動媒体がCFOを含有する場合、その含有割合は熱サイクル用作動媒体の全量に対して10質量%未満であり、1~8質量%が好ましく、2~5質量%がさらに好ましい。CFOの含有割合が下限値以上であれば、熱サイクル用作動媒体の燃焼性を抑制しやすい。CFOの含有割合が上限値以下であれば、良好なサイクル性能が得られやすい。 When the working fluid for thermal cycling contains CFO, the content thereof is less than 10% by mass, preferably from 1 to 8% by mass, and more preferably from 2 to 5% by mass, with respect to the total amount of the working fluid for thermal cycling. If the content rate of CFO is more than a lower limit, it will be easy to control the combustibility of the working fluid for thermal cycling. If the content rate of CFO is below an upper limit, favorable cycle performance will be easy to be obtained.
 熱サイクル用作動媒体が任意成分を含有する場合、熱サイクル用作動媒体の全量に対する1224yd及び1234ze(Z)からなる共沸様組成物の含有割合は、サイクル性能の点で、90質量%以上が好ましく、95質量%以上がより好ましい。 When the thermal cycling working medium contains an optional component, the content of the azeotropic composition consisting of 1224 yd and 1234ze (Z) with respect to the total amount of thermal cycling working medium is 90% by mass or more in terms of cycle performance. Preferably, 95% by mass or more is more preferable.
 本発明の熱サイクル用作動媒体は、1224yd及び1234ze(Z)からなる共沸様組成物を含有することで、組成変化が極めて小さく、温度勾配が小さく、さらに良好なサイクル性能が得られるものである。 The working medium for thermal cycling of the present invention contains an azeotrope-like composition consisting of 1224yd and 1234ze (Z), so that the composition change is extremely small, the temperature gradient is small, and a good cycle performance can be obtained. is there.
[熱サイクルシステムへの適用]
 作動媒体は、熱サイクルシステムへの適用に際して、通常、潤滑油と混合して作動媒体組成物として使用することができる。作動媒体組成物は、これら以外にさらに、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。
[Application to thermal cycle system]
The working medium can be used as a working medium composition, usually mixed with a lubricating oil, for application to a thermal cycling system. The working vehicle composition may further contain known additives such as stabilizers and leak detection substances in addition to these.
(潤滑油)
 潤滑油としては、従来からハロゲン化炭化水素からなる作動媒体とともに、作動媒体組成物に用いられる公知の潤滑油が特に制限なく採用できる。潤滑油として具体的には、含酸素系合成油(エステル系潤滑油、エーテル系潤滑油等)、フッ素系潤滑油、鉱物系潤滑油、炭化水素系合成油等が挙げられる。
(Lubricant)
As the lubricating oil, a known lubricating oil used in the working medium composition can be adopted without particular limitation, together with the working medium conventionally composed of halogenated hydrocarbons. Specific examples of the lubricating oil include oxygen-containing synthetic oils (ester-based lubricating oils, ether-based lubricating oils and the like), fluorine-based lubricating oils, mineral-based lubricating oils, hydrocarbon-based synthetic oils and the like.
 エステル系潤滑油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。 As ester-based lubricating oils, dibasic acid ester oils, polyol ester oils, complex ester oils, polyol carbonate oils and the like can be mentioned.
 エーテル系潤滑油としては、ポリビニルエーテル油や、ポリグリコール油等のポリオキシアルキレン油が挙げられる。 Examples of ether-based lubricating oils include polyvinyl ether oils and polyoxyalkylene oils such as polyglycol oils.
 フッ素系潤滑油としては、合成油(後述する鉱物油、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等。)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。 Examples of fluorine-based lubricating oils include compounds in which hydrogen atoms of synthetic oils (mineral oil, poly α-olefin, alkylbenzene, alkylnaphthalene, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, etc. Be
 鉱物系潤滑油としては、原油を常圧蒸留または減圧蒸留して得られた潤滑油留分を、精製処理(溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。 As a mineral-based lubricating oil, a lubricating oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil is subjected to purification treatment (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation The paraffinic mineral oil, the naphthenic mineral oil, etc. which refine | purified and refine | purified by appropriate | suitably refine | purifying, clay treatment etc. are mentioned.
 炭化水素系合成油としては、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。 Examples of hydrocarbon synthetic oils include poly α-olefins, alkylbenzenes and alkylnaphthalenes.
 潤滑油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 潤滑油としては、作動媒体との相溶性の点から、ポリオールエステル油、ポリビニルエーテル油およびポリグリコール油から選ばれる1種以上が好ましい。
The lubricating oils may be used alone or in combination of two or more.
The lubricating oil is preferably at least one selected from polyol ester oils, polyvinyl ether oils and polyglycol oils from the viewpoint of compatibility with the working medium.
 潤滑油の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、10~100質量部が好ましく、20~50質量部がより好ましい。 The addition amount of the lubricating oil may be in a range that does not significantly reduce the effects of the present invention, and is preferably 10 to 100 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the working medium.
(安定剤)
 安定剤は、熱および酸化に対する作動媒体の安定性を向上させる成分である。安定剤としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が特に制限なく採用できる。
(Stabilizer)
Stabilizers are components that improve the stability of the working medium against heat and oxidation. As the stabilizer, there are no particular limitations on known stabilizers conventionally used in thermal cycle systems, such as oxidation resistance improvers, heat resistance improvers, metal deactivators, etc., together with the working medium conventionally made of halogenated hydrocarbons. It can be adopted.
 耐酸化性向上剤および耐熱性向上剤としては、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)等が挙げられる。耐酸化性向上剤および耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the oxidation resistance improver and heat resistance improver, N, N'-diphenyl phenylene diamine, p-octyl diphenylamine, p, p'-dioctyl diphenylamine, N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine N- (p-dodecyl) phenyl-2-naphthylamine, di-1-naphthylamine, di-2-naphthylamine, N-alkylphenothiazine, 6- (t-butyl) phenol, 2,6-di- (t-butyl) And the like) phenol, 4-methyl-2,6-di- (t-butyl) phenol, 4,4'-methylenebis (2,6-di-t-butylphenol) and the like. As the oxidation resistance improver and the heat resistance improver, one type may be used alone, or two or more types may be used in combination.
 金属不活性剤としては、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメチルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トルトリアゾール、2-メチルベンズアミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩またはそれらの誘導体等が挙げられる。 Examples of metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimethylcaptothiadiazole, salicylidine-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzamidazole, 3,5- Dimethylpyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic acids or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Amine salts or derivatives thereof.
 安定剤の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、5質量部以下が好ましく、1質量部以下がより好ましい。 The addition amount of the stabilizer may be within a range not significantly reducing the effects of the present invention, and is preferably 5 parts by mass or less, and more preferably 1 part by mass or less with respect to 100 parts by mass of the working medium.
(漏れ検出物質)
 漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
 紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来、ハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の紫外線蛍光染料が挙げられる。
(Leakage detection substance)
As a leak detection substance, an ultraviolet fluorescent dye, an odor gas, an odor masking agent and the like can be mentioned.
Ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-A-10-502737, JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836. Known ultraviolet fluorescent dyes used in thermal cycle systems, as well as working media conventionally comprising halogenated hydrocarbons, such as those described in U.S. Pat.
 臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の香料が挙げられる。 As odor masking agents, known perfumes used in heat cycle systems together with working media conventionally comprising halogenated hydrocarbons such as those described in JP-A-2008-500437 and JP-A-2008-531836 are known. It can be mentioned.
 漏れ検出物質を用いる場合には、作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。 When a leak detection substance is used, a solubilizer may be used to improve the solubility of the leak detection substance in the working medium.
 可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等が挙げられる。 Examples of solubilizers include those described in JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836.
 漏れ検出物質の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、2質量部以下が好ましく、0.5質量部以下がより好ましい。 The addition amount of the leak detection substance may be within the range not significantly reducing the effects of the present invention, preferably 2 parts by mass or less and more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the working medium.
(熱サイクルシステム)
 本発明の熱サイクルシステムは、熱サイクル用の機器や装置に本発明の作動媒体を適用して得られる。なお、作動媒体は、上記作動媒体組成物として熱サイクルシステムに適用されてもよい。熱サイクルシステムとしては、凝縮器や蒸発器等の熱交換器による熱サイクルシステムが特に制限なく用いられる。本発明の熱サイクルシステムは、凝縮器で得られる温熱を利用するヒートポンプシステムであってもよく、蒸発器で得られる冷熱を利用する冷凍サイクルシステムであってもよい。
(Thermal cycle system)
The thermal cycle system of the present invention is obtained by applying the working medium of the present invention to an apparatus and device for thermal cycling. The working medium may be applied to a thermal cycle system as the working medium composition. As a thermal cycle system, a thermal cycle system using heat exchangers such as a condenser and an evaporator is used without particular limitation. The thermal cycle system of the present invention may be a heat pump system that utilizes the heat obtained by the condenser, or may be a refrigeration cycle system that utilizes the cold obtained by the evaporator.
 本発明の熱サイクルシステムとして、具体的には、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置及び二次冷却機等が挙げられる。なかでも、本発明の熱サイクルシステムは、より高温の作動環境でも安定して熱サイクル性能を発揮できるため、屋外等に設置されることが多い空調機器として用いられることが好ましい。また、本発明の熱サイクルシステムは、冷凍・冷蔵機器として用いられることも好ましい。 Specific examples of the thermal cycle system of the present invention include refrigeration and refrigeration equipment, air conditioners, power generation systems, heat transport devices, secondary coolers and the like. Among them, the thermal cycle system of the present invention can stably exhibit thermal cycle performance even in a higher temperature operating environment, and therefore, is preferably used as an air conditioner often installed outdoors. Moreover, it is also preferable that the heat cycle system of this invention is used as a freezing / refrigerating apparatus.
 発電システムとしては、ランキンサイクルシステムによる発電システムが好ましい。
 発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。
The power generation system is preferably a Rankine cycle system power generation system.
As a power generation system, specifically, the working medium is heated by geothermal energy, solar heat, middle to high temperature range waste heat at about 50 to 200 ° C. in an evaporator, and the working medium that has become high-temperature high-pressure steam is expanded An example is a system in which adiabatic expansion is performed in a machine, and a work generated by the adiabatic expansion drives a generator to generate electric power.
 熱輸送装置としては、潜熱輸送装置が好ましい。潜熱輸送装置としては、装置内に封入された作動媒体の蒸発、沸騰、凝縮等の現象を利用して潜熱輸送を行うヒートパイプ及び二相密閉型熱サイフォン装置が挙げられる。ヒートパイプは、半導体素子や電子機器の発熱部の冷却装置等、比較的小型の冷却装置に適用される。二相密閉型熱サイフォンは、ウィッグを必要とせず構造が簡単であることから、ガス-ガス型熱交換器、道路の融雪促進及び凍結防止等に広く利用される。 As a heat transport device, a latent heat transport device is preferable. Examples of the latent heat transport device include a heat pipe for performing latent heat transport utilizing phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device, and a two-phase closed thermosyphon device. The heat pipe is applied to a relatively small cooling device such as a cooling device for a semiconductor element or a heat generating portion of an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for gas-gas heat exchangers, promoting snow melting on roads, preventing freezing and the like.
 冷凍・冷蔵機器として、具体的には、ショーケース(内蔵型ショーケース、別置型ショーケース等)、業務用冷凍・冷蔵庫、自動販売機、製氷機等が挙げられる。 Specific examples of the refrigeration / refrigeration equipment include showcases (built-in showcases, separately mounted showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
 空調機器として、具体的には、ルームエアコン、パッケージエアコン(店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン等)、熱源機器チリングユニット、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等が挙げられる。 As air conditioners, specifically, room air conditioners, package air conditioners (package air conditioners for buildings, package air conditioners for buildings, equipment package air conditioners, etc.), heat source equipment chilling units, gas engine heat pumps, train air conditioners, car air conditioners Etc.
 熱源機器チリングユニットとしては、例えば、容積圧縮式冷凍機、遠心式冷凍機が挙げられるが。次に説明する遠心式冷凍機は作動媒体の充填量が多いので、本発明の効果をより顕著に得ることができるため好ましい。 As a heat source equipment chilling unit, although a volumetric-compression-type refrigerator and a centrifugal refrigerator are mentioned, for example. The centrifugal refrigerator to be described next is preferable because the effect of the present invention can be more remarkably obtained since the filling amount of the working medium is large.
 ここで、遠心式冷凍機は、遠心式圧縮機を用いた冷凍機である。遠心式冷凍機は、蒸気圧縮式の冷凍機の一種であり、通常、ターボ冷凍機とも言われる。遠心式圧縮機は、羽根車を備えており、回転する羽根車で作動媒体を外周部へ吐き出すことで圧縮を行う。遠心式冷凍機は、オフィスビル、地域冷暖房、病院での冷暖房の他、半導体工場、石油化学工業での冷水製造プラント等に用いられている。 Here, the centrifugal refrigerator is a refrigerator using a centrifugal compressor. A centrifugal refrigerator is a type of vapor compression refrigerator, and is generally referred to as a turbo refrigerator. A centrifugal compressor includes an impeller and performs compression by discharging a working medium to the outer peripheral portion by the rotating impeller. Centrifugal refrigerators are used in office buildings, district heating and cooling, heating and cooling in hospitals, semiconductor factories, cold water production plants in the petrochemical industry, and the like.
 遠心式冷凍機としては、低圧型、高圧型のいずれであっても良いが、低圧型の遠心式冷凍機であることが好ましい。なお、低圧型とは、例えば、トリクロロフルオロメタン(CFC-11)、2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)、HFC-245faのような高圧ガス保安法の適用を受けない作動媒体、すなわち、「常用の温度において、圧力0.2MPa以上となる液化ガスで現にその圧力が0.2MPa以上であるもの、又は圧力が0.2MPa以上となる場合の温度が35℃以下である液化ガス」に該当しない作動媒体を用いた遠心式冷凍機をいう。 The centrifugal refrigerator may be either a low pressure type or a high pressure type, but is preferably a low pressure type centrifugal refrigerator. The low pressure type is, for example, that of the high pressure gas safety method such as trichlorofluoromethane (CFC-11), 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123), HFC-245fa. Working medium which does not receive application, that is, “a liquefied gas which has a pressure of 0.2 MPa or more at ordinary temperature, a pressure which is actually 0.2 MPa or more, or a temperature when the pressure is 0.2 MPa or more is This refers to a centrifugal refrigerator that uses a working medium that does not correspond to “liquefied gas at 35 ° C. or less”.
 熱サイクルシステムの一例である冷凍サイクルシステムについて図1を参照して説明する。冷凍サイクルにおいては、気体の作動媒体を圧縮機で圧縮し、凝縮器で冷却して圧力が高い液体をつくり、膨張弁で圧力を下げ、蒸発器で低温気化させて気化熱で熱を奪う機構を有する。 A refrigeration cycle system, which is an example of a thermal cycle system, will be described with reference to FIG. In a refrigeration cycle, a gaseous working medium is compressed by a compressor and cooled by a condenser to produce a high pressure liquid, and the expansion valve reduces the pressure, and the evaporator vaporizes at a low temperature and removes heat by heat of vaporization. Have.
 冷凍サイクルシステム10においては、以下のサイクルが繰り返される。
 (i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする。
 (ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される。
 (iii)凝縮器12から排出された作動媒体Cを膨張弁13にて膨張させて低温低圧の作動媒体Dとする。
 (iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される。
In the refrigeration cycle system 10, the following cycles are repeated.
(I) The working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 to be a high temperature and high pressure working medium vapor B.
(Ii) The working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to form a working medium C of low temperature and high pressure. At this time, the fluid F is heated to become a fluid F ′ and discharged from the condenser 12.
(Iii) The working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to form a low-temperature low-pressure working medium D.
(Iv) The working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to be a high-temperature low-pressure working medium vapor A. At this time, the load fluid E is cooled to be a load fluid E ′ and discharged from the evaporator 14.
 冷凍サイクルシステム10における作動媒体の状態変化を圧力-エンタルピ線図上に記載すると図2のように、A、B、C、Dを頂点とする台形として表すことができる。 The state change of the working medium in the refrigeration cycle system 10 can be represented as a trapezoid with vertices A, B, C, and D as shown in FIG. 2 when it is described on a pressure-enthalpy chart.
 AB過程は、圧縮機11で断熱圧縮を行い、高温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする過程であり、図2においてAB線で示される。後述のとおり、作動媒体蒸気Aは過熱状態で圧縮機11に導入され、得られる作動媒体蒸気Bも過熱状態の蒸気である。 The AB process is a process in which adiabatic compression is performed by the compressor 11 to make the high temperature and low pressure working medium vapor A into a high temperature and high pressure working medium vapor B, which is shown by an AB line in FIG. As described later, the working medium vapor A is introduced into the compressor 11 in a superheated state, and the resulting working medium vapor B is also a superheated vapor.
 BC過程は、凝縮器12で等圧冷却を行い、高温高圧の作動媒体蒸気Bを低温高圧の作動媒体Cとする過程であり、図2においてBC線で示される。この際の圧力が凝縮圧である。圧力-エンタルピ線とBC線の交点のうち高エンタルピ側の交点Tが凝縮温度であり、低エンタルピ側の交点Tが凝縮沸点温度である。ここで、作動媒体が非共沸組成物である場合の温度勾配は、TとTの差として示される。 The BC process is a process of performing isobaric cooling in the condenser 12 and making the high temperature / high pressure working medium vapor B into a low temperature / high pressure working medium C, and is shown by a BC line in FIG. The pressure at this time is the condensation pressure. Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature. Here, the temperature gradient when the working medium is a non-azeotropic composition is shown as the difference between T 1 and T 2 .
 CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の作動媒体Cを低温低圧の作動媒体Dとする過程であり、図2においてCD線で示される。なお、低温高圧の作動媒体Cにおける温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過冷却度(SC)となる。 The CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 to make the working medium C of low temperature and high pressure into the working medium D of low temperature and low pressure, which is shown by a CD line in FIG. Incidentally, if Shimese the temperature in the working medium C of low temperature and high pressure at T 3, T 2 -T 3 is (i) ~ supercooling degree of the working medium in the cycle of (iv) (SC).
 DA過程は、蒸発器14で等圧加熱を行い、低温低圧の作動媒体Dを高温低圧の作動媒体蒸気Aに戻す過程であり、図2においてDA線で示される。この際の圧力が蒸発圧である。圧力-エンタルピ線とDA線の交点のうち高エンタルピ側の交点Tは蒸発温度である。作動媒体蒸気Aの温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過熱度(SH)となる。なお、Tは作動媒体Dの温度を示す。 The DA process is a process in which isobaric heating is performed by the evaporator 14 to return the low-temperature low-pressure working medium D to the high-temperature low-pressure working medium vapor A, which is shown by a DA line in FIG. The pressure at this time is the evaporation pressure. Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA line is evaporating temperature. If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ~ superheat of the working medium in the cycle of (iv) (SH). Incidentally, T 4 denotes the temperature of the working medium D.
 ここで、熱サイクル用作動媒体のサイクル性能は、例えば、熱サイクル用作動媒体の冷凍能力(以下、必要に応じて「Q」で示す。)と成績係数(以下、必要に応じて「COP」で示す。)で評価できる。熱サイクル用作動媒体のQとCOPは、熱サイクル用作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態における各エンタルピ、h、h、h、hを用いると、下式(1)、(2)からそれぞれ求められる。 Here, the cycle performance of the thermal cycle working medium is, for example, the refrigeration capacity of the thermal cycle working medium (hereinafter referred to as “Q” as required) and the coefficient of performance (hereinafter referred to as “COP” as required) It can be evaluated by Q and COP of the working medium for thermal cycling are A (high temperature and low pressure after evaporation), B (high temperature and high pressure after compression), C (low temperature and high pressure after condensation) for thermal cycling working medium, D (low temperature after expansion) each enthalpy in each state of the low pressure), h a, h B, h C, the use of h D, the following equation (1), obtained respectively from (2).
 Q=h-h  …(1)
 COP=Q/圧縮仕事=(h-h)/(h-h)  …(2)
Q = h A −h D (1)
COP = Q / compression work = (h A −h D ) / (h B −h A ) (2)
 上記(h-h)で示されるQが冷凍サイクルの出力(kW)に相当し、(h-h)で示される圧縮仕事、例えば、圧縮機を運転するために必要とされる電力量が、消費された動力(kW)に相当する。また、Qは負荷流体を冷凍する能力を意味しており、Qが高いほど同一のシステムにおいて、多くの仕事ができることを意味している。言い換えると、大きなQを有する場合は、少量の作動媒体で目的とする性能が得られることを表しており、システムの小型化が可能となる。 The compression work indicated by (h B -h A ) corresponds to the output (kW) of the refrigeration cycle, and the Q shown by (h A -h D ) above is required to operate the compressor, for example The amount of power corresponds to the consumed power (kW). Also, Q means the ability to freeze the load fluid, and a higher Q means more work can be done in the same system. In other words, in the case of having a large Q, it indicates that the target performance can be obtained with a small amount of working medium, and the system can be miniaturized.
(水分濃度)
 熱サイクルシステム内に水分が混入すると、特に低温で使用される際に問題が生じる場合がある。例えば、キャピラリーチューブ内での氷結、作動媒体や潤滑油の加水分解、これにより発生した酸成分による材料劣化、コンタミナンツの発生等の問題が発生する。特に、上述したポリアルキレングリコール油、ポリオールエステル油等は、吸湿性が極めて高く、また、加水分解反応を生じやすく、冷凍機油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。また、自動車空調機器においては、振動を吸収する目的で使用されている冷媒ホースや圧縮機の軸受け部から水分が混入しやすい傾向にある。したがって、冷凍機油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を抑制する必要がある。
(Water concentration)
The inclusion of moisture in the thermal cycling system can cause problems, especially when used at low temperatures. For example, there are problems such as freezing in a capillary tube, hydrolysis of a working medium and lubricating oil, material degradation due to the acid component generated thereby, and generation of contamination. In particular, the polyalkylene glycol oil, polyol ester oil, etc. mentioned above have extremely high hygroscopicity, are prone to hydrolytic reaction, deteriorate the properties as a refrigerator oil, and are a major cause of impairing the long-term reliability of the compressor. Become. Moreover, in the automotive air conditioner, there is a tendency that moisture is likely to be mixed in from the refrigerant hose or the bearing portion of the compressor used for the purpose of absorbing the vibration. Therefore, in order to suppress the hydrolysis of refrigeration oil, it is necessary to suppress the water concentration in the thermal cycle system.
 熱サイクルシステム内の水分濃度を抑制する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト等)を用いる方法が挙げられる。乾燥剤としては、乾燥剤と熱サイクル用作動媒体との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。 As a method of suppressing the water concentration in the heat cycle system, a method using a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned. As the desiccant, a zeolitic desiccant is preferable from the viewpoint of the chemical reactivity between the desiccant and the working fluid for thermal cycling and the moisture absorption capacity of the desiccant.
 ゼオライト系乾燥剤としては、従来の鉱物系冷凍機油に比べて吸湿量の高い冷凍機油を用いる場合には、吸湿能力に優れる点から、下式(3)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
 M2/nO・Al・xSiO・yHO ・・・(3)。
 ただし、Mは、Na、K等の1族の元素又はCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
When using a refrigeration oil having a high moisture absorption amount as compared with a conventional mineral refrigeration oil as the zeolitic desiccant, the compound represented by the following formula (3) is a main component from the viewpoint of excellent hygroscopicity. Zeolite based desiccants are preferred.
M 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O ··· (3).
However, M is an element of Group 1 such as Na and K or an element of Group 2 such as Ca, n is a valence of M, and x and y are values determined by the crystal structure. The pore size can be adjusted by changing M.
 乾燥剤の選定においては、細孔径及び破壊強度が特に重要である。熱サイクル用作動媒体の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、熱サイクル用作動媒体が乾燥剤中に吸着され、その結果、熱サイクル用作動媒体と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。 The pore size and the breaking strength are particularly important in the selection of the desiccant. When a desiccant having a pore size larger than the molecular diameter of the thermal cycling working medium is used, the thermal cycling working medium is adsorbed in the desiccant, and as a result, the chemical reaction between the thermal cycling working medium and the desiccant As a result, undesirable phenomena such as generation of non-condensable gas, decrease in strength of desiccant, and decrease in adsorption capacity occur.
 したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5オングストローム以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。熱サイクル用作動媒体の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、熱サイクル用作動媒体を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。言い換えると、熱サイクル用作動媒体の乾燥剤への吸着が起こりにくいことから、熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。 Therefore, as the desiccant, it is preferable to use a zeolite-based desiccant with a small pore size. In particular, a sodium-potassium A-type synthetic zeolite having a pore size of 3.5 angstroms or less is preferable. By applying a sodium-potassium type A synthetic zeolite having a pore diameter smaller than the molecular diameter of the working fluid for thermal cycling, it is possible to selectively select only water in the thermal cycling system without adsorbing the working fluid for thermal cycling. It can be removed by adsorption. In other words, since adsorption of the working fluid for thermal cycling to the desiccant is unlikely to occur, thermal decomposition is less likely to occur, and as a result, the deterioration of the materials constituting the thermal cycling system and the generation of contaminants can be suppressed.
 ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの弁や配管細部の詰まりの原因となり、大きすぎると乾燥能力が低下するため、粒度の代表値として約0.5~5mmが好ましい。形状としては、粒状又は円筒状が好ましい。 If the size of the zeolitic desiccant is too small, it may cause clogging of valves and piping details of the thermal cycle system, and if it is too large, the drying ability may be reduced, so the particle size is preferably about 0.5 to 5 mm. The shape is preferably granular or cylindrical.
 ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等)を併用してもよい。熱サイクル用作動媒体に対するゼオライト系乾燥剤の使用割合は、特に限定されない。 The zeolitic desiccant can be made into an arbitrary shape by solidifying powdered zeolite with a binder (bentonite or the like). Other desiccants (silica gel, activated alumina, etc.) may be used in combination as long as the zeolite-based desiccant is mainly used. The use ratio of the zeolitic desiccant to the thermal cycle working medium is not particularly limited.
(塩素濃度)
 熱サイクルシステム内に塩素が存在すると、金属との反応による堆積物の生成、軸受け部の磨耗、熱サイクル用作動媒体や冷凍機油の分解等、好ましくない影響をおよぼす。熱サイクルシステム内の塩素濃度は、熱サイクル用作動媒体に対する質量割合で100ppm以下が好ましく、50ppm以下が特に好ましい。
(Chlorine concentration)
The presence of chlorine in the thermal cycle system has undesirable effects, such as formation of deposits due to reaction with metals, wear of bearings, decomposition of a working fluid for thermal cycling and refrigerant oil. The chlorine concentration in the thermal cycle system is preferably 100 ppm or less by mass ratio to the thermal cycle working medium, and particularly preferably 50 ppm or less.
(不凝縮性気体濃度)
 熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、熱サイクル用作動媒体や冷凍機油と反応し、分解を促進する。不凝縮性気体濃度は、熱サイクル用作動媒体の気相部において、熱サイクル用作動媒体に対する容積割合で1.5体積%以下が好ましく、0.5体積%以下が特に好ましい。
(Condensable gas concentration)
If the non-condensable gas is mixed in the thermal cycle system, it has an adverse effect of poor heat transfer in the condenser and the evaporator and an increase in operating pressure, so it is necessary to suppress the mixing as much as possible. In particular, oxygen, which is one of the non-condensable gases, reacts with the thermal cycle working medium and refrigerator oil to promote decomposition. The noncondensable gas concentration is preferably 1.5% by volume or less by volume ratio to the thermal cycle working medium in the gas phase portion of the thermal cycle working medium, and particularly preferably 0.5% by volume or less.
 以上説明した熱サイクルシステムにあっては、サイクル性能に優れ、組成変化及び温度勾配の小さい本発明の熱サイクル用作動媒体を用いているため、システムを小型化できる。また、本発明の熱サイクル用作動媒体を用いているため、サイクル性能に優れる。 In the thermal cycle system described above, the system can be miniaturized because the thermal cycle working medium of the present invention is excellent in cycle performance and small in composition change and temperature gradient. Moreover, since the working medium for thermal cycling of the present invention is used, the cycle performance is excellent.
 以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
[例1~9]
 1224yd(Z)と1234ze(Z)とを表3に示した所定の比率で混合して、例1~9の熱サイクル用作動媒体を得た。なお、例1~9の熱サイクル用作動媒体は、1224yd(Z)及び1234ze(Z)からなる共沸様組成物である。各熱サイクル用作動媒体について、燃焼性および冷凍サイクル性能を評価した。
[Examples 1 to 9]
The working media for thermal cycling of Examples 1 to 9 were obtained by mixing 1224yd (Z) and 1234ze (Z) in the predetermined ratio shown in Table 3. The working fluid for thermal cycling of Examples 1 to 9 is an azeotrope-like composition comprising 1224 yd (Z) and 1234ze (Z). The flammability and refrigeration cycle performance were evaluated for each thermal cycle working medium.
(燃焼性の評価)
 燃焼性の評価は、ASTM E-681に規定された設備を用いて実施した。内部の温度60℃、相対湿度(Rh)50%に制御された内容積12リットルのフラスコ内を真空排気した後、例1の熱サイクル用作動媒体と空気を、大気圧力まで封入した。その後、該フラスコ内の中心付近の気相において、15kV、30mAで0.4秒間放電着火させた後、火炎の広がりを目視にて確認した。上方への火炎の広がりの角度が90°以上の場合を燃焼性あり(有)、90°未満の場合を燃焼性なし(無)、と判断した。例2~9の熱サイクル用作動媒体についても同様に燃焼性を評価した。結果を表3に示す。
(Evaluation of flammability)
The flammability evaluation was performed using the equipment specified in ASTM E-681. After evacuating the inside of a 12-liter flask controlled to an internal temperature of 60 ° C. and a relative humidity (Rh) of 50%, the heat cycle working medium of Example 1 and air were sealed to atmospheric pressure. Thereafter, in the gas phase near the center in the flask, discharge ignition was performed at 15 kV and 30 mA for 0.4 seconds, and the spread of the flame was visually confirmed. It was judged as combustible (present) when the angle of the flame spread upward was 90 ° or more, and noncombustible (not) when it was less than 90 °. The flammability was similarly evaluated for the heat cycle working media of Examples 2-9. The results are shown in Table 3.
(冷凍サイクル性能の評価)
 表3に示す例1~9の熱サイクル用作動媒体について、サイクル性能の評価を次のように行った。図1の冷凍サイクルシステム10に、各例の熱サイクル用作動媒体をそれぞれ適用して、図2に示す熱サイクル、すなわちAB過程で圧縮機11による断熱圧縮、BC過程で凝縮器12による等圧冷却、CD過程で膨張弁13による等エンタルピ膨張、DA過程で蒸発器14による等圧加熱を実施した場合のサイクル性能(能力及び効率)として冷凍サイクル性能(冷凍能力及び成績係数)を評価した。また、図1の冷凍サイクルシステム10に、各例の熱サイクル用作動媒体をそれぞれ適用した場合の温度勾配を求めた。
(Evaluation of refrigeration cycle performance)
The cycle performance of each of the working media for thermal cycling of Examples 1 to 9 shown in Table 3 was evaluated as follows. The thermal cycle working medium of each example is applied to the refrigeration cycle system 10 of FIG. 1, and the adiabatic compression by the compressor 11 in the thermal cycle shown in FIG. Refrigerating cycle performance (refrigerating capacity and performance coefficient) was evaluated as cycle performance (capability and efficiency) when performing isenthalpy expansion by the expansion valve 13 in the cooling, CD process and isobaric heating by the evaporator 14 in the DA process. Moreover, the temperature gradient at the time of each applying the working medium for a thermal cycle of each case to the refrigeration cycle system 10 of FIG. 1 was determined.
 評価は、蒸発器14における熱サイクル用作動媒体の平均蒸発温度を5℃、凝縮器12における熱サイクル用作動媒体の平均凝縮温度を40℃、凝縮器12における熱サイクル用作動媒体の過冷却度を5℃、蒸発器14における熱サイクル用作動媒体の過熱度を5℃として実施した。また、機器効率及び配管、熱交換器における圧力損失はないものとした。 In the evaluation, the average evaporation temperature of the heat cycle working medium in the evaporator 14 is 5 ° C., the average condensation temperature of the heat cycle working medium in the condenser 12 is 40 ° C., and the degree of subcooling of the heat cycle working medium in the condenser 12 And the degree of superheat of the heat cycle working medium in the evaporator 14 was 5 ° C. In addition, it was assumed that there was no pressure loss in equipment efficiency, piping, and heat exchangers.
 冷凍能力及び成績係数は、熱サイクル用作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態のエンタルピhを用いて、上記式(1)、(2)から求めた。 The refrigeration capacity and coefficient of performance are as follows: A (evaporation high temperature low pressure after evaporation), B (high temperature high pressure after compression), C (low temperature high pressure after condensation), D (low temperature low pressure after expansion) for thermal cycle working medium It calculated | required from said Formula (1), (2) using enthalpy h of a state.
 冷凍サイクル性能の算出に必要となる熱力学性質は、対応状態原理に基づく一般化状態方程式(Soave-Redlich-Kwong式)、及び熱力学諸関係式に基づき算出した。特性値が入手できない場合は、原子団寄与法に基づく推算手法を用い算出を行った。 The thermodynamic properties required to calculate the refrigeration cycle performance were calculated based on the generalized equation of state (Soave-Redlich-Kwong equation) based on the corresponding state principle, and thermodynamic relations. When characteristic values were not available, calculation was performed using the estimation method based on the group contribution method.
 上記と同様の方法で評価した1224yd(Z)からなる作動媒体の冷凍サイクル性能を基準にし、1224yd(Z)からなる作動媒体に対する熱サイクル用作動媒体の冷凍サイクル性能(冷凍能力及び成績係数)の相対性能(各熱サイクル用作動媒体/1224yd(Z))をそれぞれ求めた。結果を表3に示す。 Based on the refrigeration cycle performance of the working medium consisting of 1224 yd (Z) evaluated by the same method as above, the refrigeration cycle performance (refrigerating capacity and coefficient of performance) of the working medium for thermal cycle with respect to the working medium consisting of 1224 yd (Z) The relative performance (working medium for each heat cycle / 1224 yd (Z)) was determined respectively. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、1234ze(Z)が80質量%以下の組成からなる例1~8の熱サイクル用作動媒体は、燃焼性を有しないことが確認された。 From Table 3, it was confirmed that the working media for heat cycle of Examples 1 to 8 having a composition of 80% by mass or less of 1234ze (Z) had no flammability.
 上記表3の結果から、1224yd(Z)及び1234ze(Z)からなる共沸様組成物から構成される例1~9の熱サイクル用作動媒体は、温度勾配が小さいことが分かる。また、1224yd(Z)からなる作動媒体に比べて、成績係数、冷凍能力が向上することが分かる。 From the results in Table 3 above, it can be seen that the working media for thermal cycling of Examples 1 to 9 composed of the azeotrope-like compositions consisting of 1224yd (Z) and 1234ze (Z) have a small temperature gradient. In addition, it is understood that the coefficient of performance and the refrigerating capacity are improved as compared with the working medium consisting of 1224 yd (Z).
 本発明の熱サイクル用作動媒体は、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動流体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の作動媒体として有用である。 The working medium for the heat cycle of the present invention includes a refrigerant for a refrigerator, a refrigerant for an air conditioner, a working fluid for a power generation system (such as waste heat recovery power generation), a working medium for a latent heat transport device (such as a heat pipe), a secondary cooling medium, etc. It is useful as a working medium for
 10…冷凍サイクルシステム、11…圧縮機、12…凝縮器、13…膨張弁、14…蒸発器、15,16…ポンプ、A,B…作動媒体蒸気、C,D…作動媒体、E,E‘…負荷流体,F…流体。 DESCRIPTION OF SYMBOLS 10 ... Refrigeration cycle system, 11 ... Compressor, 12 ... Condenser, 13 ... Expansion valve, 14 ... Evaporator, 15, 16 ... Pump, A, B ... Working medium vapor | steam, C, D ... Working medium, E, E '... Load fluid, F ... fluid.

Claims (9)

  1.  1-クロロ-2,3,3,3-テトラフルオロプロペン及び(Z)-1,3,3,3-テトラフルオロプロペンからなる共沸又は共沸様組成物。 An azeotropic or azeotrope-like composition comprising 1-chloro-2,3,3,3-tetrafluoropropene and (Z) -1,3,3,3-tetrafluoropropene.
  2.  前記共沸又は共沸様組成物における前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記(Z)-1,3,3,3-テトラフルオロプロペンの含有比は、1-クロロ-2,3,3,3-テトラフルオロプロペン:(Z)-1,3,3,3-テトラフルオロプロペンで表わされる質量比で1:99~99:1である請求項1に記載の共沸又は共沸様組成物。 The content ratio of the 1-chloro-2,3,3,3-tetrafluoropropene and the (Z) -1,3,3,3-tetrafluoropropene in the azeotropic or azeotropic-like composition is 1- The compound according to claim 1, wherein the weight ratio of chloro-2,3,3,3-tetrafluoropropene: (Z) -1,3,3,3-tetrafluoropropene is 1:99 to 99: 1. An azeotropic or azeotrope-like composition.
  3.  前記共沸又は共沸様組成物における前記1-クロロ-2,3,3,3-テトラフルオロプロペンの含有割合は、前記共沸又は共沸様組成物の全量に対して30質量%以上である請求項1又は2に記載の共沸又は共沸様組成物。 The content ratio of the 1-chloro-2,3,3,3-tetrafluoropropene in the azeotropic or azeotropic-like composition is 30% by mass or more with respect to the total amount of the azeotropic or azeotropic-like composition The azeotropic or azeotrope-like composition according to claim 1 or 2.
  4.  請求項1~3のいずれか1項に記載の共沸又は共沸様組成物を含む熱サイクル用作動媒体。 A working medium for thermal cycling comprising the azeotropic or azeotropic-like composition according to any one of claims 1 to 3.
  5.  前記熱サイクル用作動媒体の全量に対する前記共沸又は共沸様組成物の割合が90質量%以上である請求項4に記載の熱サイクル用作動媒体。 The working fluid for heat cycling according to claim 4, wherein the ratio of the azeotropic or azeotropic composition to the total amount of the working fluid for thermal cycling is 90% by mass or more.
  6.  前記熱サイクル用作動媒体の全量に対する前記(Z)-1,3,3,3-テトラフルオロプロペンの割合が70質量%以下である請求項4又は5に記載の熱サイクル用作動媒体。 The working medium for heat cycle according to claim 4 or 5, wherein a ratio of the (Z) -1,3,3,3-tetrafluoropropene to the total quantity of the working medium for heat cycle is 70% by mass or less.
  7.  請求項4~6のいずれか1項に記載の熱サイクル用作動媒体を用いた、熱サイクルシステム。 A thermal cycle system using the thermal cycle working medium according to any one of claims 4 to 6.
  8.  冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置又は二次冷却機である請求項7に記載の熱サイクルシステム。 The heat cycle system according to claim 7, which is a refrigeration / refrigeration device, an air conditioner, a power generation system, a heat transport device, or a secondary cooler.
  9.  ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機又は自動販売機である請求項7又は8に記載の熱サイクルシステム。 Room air conditioners, package air conditioners for stores, package air conditioners for buildings, package air conditioners for equipment, gas engine heat pumps, air conditioners for trains, air conditioners for automobiles, built-in showcases, stand-alone showcases, freezers / refrigerators for business use, ice machines 9. The thermal cycle system according to claim 7, which is a vending machine.
PCT/JP2018/027904 2017-07-26 2018-07-25 Azeotropic composition, working medium for heat cycle, and heat cycle system WO2019022139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017144771 2017-07-26
JP2017-144771 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019022139A1 true WO2019022139A1 (en) 2019-01-31

Family

ID=65040688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027904 WO2019022139A1 (en) 2017-07-26 2018-07-25 Azeotropic composition, working medium for heat cycle, and heat cycle system

Country Status (1)

Country Link
WO (1) WO2019022139A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316904A (en) * 2020-10-12 2022-04-12 浙江省化工研究院有限公司 Environment-friendly heat transfer composition
US20220162489A1 (en) * 2020-10-22 2022-05-26 Rpl Holdings Limited Thermal pump refrigerants
US11459497B2 (en) 2017-11-27 2022-10-04 Rpl Holdings Limited Low GWP refrigerant blends

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157763A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2014504675A (en) * 2011-02-04 2014-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions containing certain haloolefins and their use
WO2016171264A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system
WO2016171256A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504675A (en) * 2011-02-04 2014-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions containing certain haloolefins and their use
WO2012157763A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
WO2016171264A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system
WO2016171256A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459497B2 (en) 2017-11-27 2022-10-04 Rpl Holdings Limited Low GWP refrigerant blends
CN114316904A (en) * 2020-10-12 2022-04-12 浙江省化工研究院有限公司 Environment-friendly heat transfer composition
US20220162489A1 (en) * 2020-10-22 2022-05-26 Rpl Holdings Limited Thermal pump refrigerants
WO2022084488A3 (en) * 2020-10-22 2022-07-07 Rpl Holdings Limited Thermal pump refrigerants
US11827834B2 (en) * 2020-10-22 2023-11-28 Rpl Holdings Limited Thermal pump refrigerants

Similar Documents

Publication Publication Date Title
US11421136B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JP6950765B2 (en) Working media for thermal cycles, compositions for thermal cycle systems and thermal cycle systems
CN107614652B (en) Working medium for thermal cycle, composition for thermal cycle system, and thermal cycle system
JP6524995B2 (en) Working medium for thermal cycling, composition for thermal cycling system and thermal cycling system
JP6477679B2 (en) Composition for thermal cycle system and thermal cycle system
US20170058171A1 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
US10144856B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JP2016011423A (en) Working medium for heat cycle, composition for heat cycle system and heat cycle system
JP6540685B2 (en) Working medium for thermal cycling, composition for thermal cycling system and thermal cycling system
JP7226623B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
US20180371958A1 (en) Heat cycle system and heat cycle method using the same
US11149178B2 (en) Azeotropic or azeotrope-like composition, working fluid for heat cycle, and heat cycle system
WO2019022139A1 (en) Azeotropic composition, working medium for heat cycle, and heat cycle system
WO2019039510A1 (en) 1-chloro-2,3,3-trifluoropropene-containing working medium for thermal cycling, composition for thermal cycling system, and thermal cycling system
WO2019022140A1 (en) Heat cycle system and heat cycle method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP