WO2019022140A1 - Heat cycle system and heat cycle method using same - Google Patents

Heat cycle system and heat cycle method using same Download PDF

Info

Publication number
WO2019022140A1
WO2019022140A1 PCT/JP2018/027905 JP2018027905W WO2019022140A1 WO 2019022140 A1 WO2019022140 A1 WO 2019022140A1 JP 2018027905 W JP2018027905 W JP 2018027905W WO 2019022140 A1 WO2019022140 A1 WO 2019022140A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
hcfo
cycle system
thermal cycle
thermal
Prior art date
Application number
PCT/JP2018/027905
Other languages
French (fr)
Japanese (ja)
Inventor
正人 福島
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2019022140A1 publication Critical patent/WO2019022140A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type

Definitions

  • the present invention relates to a thermal cycle system and a thermal cycle method using the thermal cycle system.
  • CFCs chlorofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • HFCs hydrofluorocarbons
  • the working medium used is trichlorofluoromethane (CFC-11) to 1,1,1,2-tetrafluoroethane (HFC) -134a), 1,1,1,3,3-pentafluoropropane (HFC-245fa), etc.
  • the filling amount of the working medium is larger than that of other refrigerators and heat pumps, and in the case where the working medium leaks due to an accident etc., a large amount of working medium is released into the atmosphere. It may be done. Accordingly, it is required that the working medium used in the centrifugal refrigerator, in particular, has a low global warming potential (GWP).
  • GWP global warming potential
  • HFO hydrofluoroolefin
  • CFO chlorofluoroolefins
  • HCFO and CFO are compounds in which the flammability is suppressed because the ratio of halogen in one molecule is large, and are considered as a working medium in which the load on the environment is small and the flammability is suppressed.
  • 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) has been proposed as a low GWP refrigerant for centrifugal refrigerators (see, for example, Patent Document 1).
  • HCFO-1233zd has a problem in thermal stability although it has the same cycle performance as HFC-245fa etc., and a working medium with low GWP and thermal stability is required as an alternative working medium. It was being done.
  • Patent Document 2 describes a working medium using 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd).
  • HCFO-1224yd 1-chloro-2,3,3,3-tetrafluoropropene
  • Patent Document 1 does not describe an example in which HCFO-1224yd is applied to a specific heat cycle system.
  • the present invention is excellent in economics by using a thermal cycle system designed to use HCFO-1233zd as the working medium as it is, and has cycle performance equal to or higher than that using HCFO-1233zd.
  • the thermal cycle system with low load and excellent thermal stability and the economy using the thermal cycle system are excellent, and the cycle performance is equal to or higher than that of the case using HCFO-1233zd, and the thermal stability is low.
  • the present invention provides a thermal cycle system and a thermal cycle method having the following configuration.
  • a thermal cycle system comprising a working medium and a system for thermal cycling, wherein the system for thermal cycling uses 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) as a working medium
  • a thermal cycling system suitable for use in a thermal cycling system the working medium comprising 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd).
  • the heat cycle system according to [1] wherein the content of HCFO-1224yd is 40 to 100% by mass with respect to 100% by mass of the working medium.
  • the thermal cycle system of the present invention is excellent in economy by using a thermal cycle system designed to use HCFO-1233zd as the working medium as it is, and has cycle performance better than when HCFO-1233zd is used. It is a thermal cycle system that is equal to or higher than that, has a low environmental impact, in particular, a low GWP, and is further excellent in thermal stability.
  • the thermal cycle method of the present invention is excellent in economy by using the thermal cycle system of the present invention, and the cycle performance is equal to or higher than that of the case where HCFO-1233zd is used, and the environmental load, particularly GWP It is a thermal cycle method which is low and is further excellent in thermal stability.
  • FIG. 2 is a cycle diagram in which a change in the state of a working medium in the refrigeration cycle system of FIG. 1 is described on a pressure-enthalpy diagram. It is the schematic block diagram which showed the centrifugal refrigerator which is an example of the heat cycle system of this invention.
  • a system for thermal cycling means that a working medium flows in the system so that heat exchange (thermal cycle) can be performed between the working medium and other substances other than the working medium.
  • a thermo cycle system means the system provided with the working medium and the system for thermal cycling with which the working medium was supplied to the system for thermal cycling and the thermal cycle was made executable.
  • Thermal cycle system adopts a thermal cycle system suitable for using HCFO-1233zd as a working medium as a thermal cycle system in a thermal cycle system including a working medium and a system for thermal cycling, and the working medium It is a thermal cycle system using a working medium containing HCFO-1224yd.
  • the thermal cycle system of the present invention is, for example, a thermal cycle system obtained by replacing HCFO-1233zd as a working medium with a working medium containing HCFO-1224yd in a thermal cycle system containing HCFO-1233zd as a working medium. is there.
  • the system for thermal cycling used in the present invention is not particularly limited as long as it is a system for thermal cycling designed to be applicable to HCFO-1233zd as a working medium.
  • a working medium containing HCFO-1224yd is used as a working medium in place of HCFO-1233zd in a system for thermal cycling to which HCFO-1233zd can be applied as a working medium
  • the resulting thermal cycle system is HCFO as described below. It is possible to exhibit the same or more cycle performance as in the case of using ⁇ 1233 zd.
  • HCFO-1224yd used as the working medium has a low GWP, the load on the environment is small even when the working medium leaks.
  • HCFO-1224yd is superior in thermal stability to HCFO-1233zd.
  • the working medium contains HCFO-1224yd.
  • the working medium may contain, in addition to HCFO-1224yd, if necessary, optional components described later. 40 to 100 mass% is preferable, 60 to 100 mass% is more preferable, 80 to 100 mass% is more preferable, and the content ratio of HCFO-1224 yd to 100 mass% of a working medium consists only of HCFO 12 24 yd. Is most preferred. However, depending on the manufacturing process, HCFO-1224yd may contain a slight amount of impurities. In the present invention, such a case is also in the category of “consisting only of HCFO-1224yd”.
  • the content ratio of the impurities is, for example, preferably less than 1% by mass with respect to 100% by mass in total of HCFO-1224yd and the impurities.
  • HCFO-1224yd has halogen which suppresses flammability and a carbon-carbon double bond which is easily decomposed by OH radicals in the atmosphere in its molecule.
  • Properties of HCFO-1224yd as a working medium, specifically, boiling point, cycle performance, GWP, and thermal stability are shown in Table 1 in comparison with HCFO-1233zd.
  • the cycle performance of HCFO-1224yd is a relative value when the value of HCFO-1233zd is 1.00.
  • HCFO-1224yd (E) E-form
  • Z-form HCFO-1224yd (Z)
  • HCFO-1224yd without (E) or (Z) is HCFO-1224yd (E) or HCFO-1224yd (Z), or HCFO-1224yd (E) and HCFO-1224yd ( Z) shows a mixture of any proportions.
  • Table 1 describes the properties of HCFO-1224yd (Z) as representative of HCFO-1224yd.
  • HCFO-1233zd two geometric isomers, an E-form and a Z-form, exist.
  • Table 1 describes the characteristics of HCFO-1233zd (E) as representative of HCFO-1233zd.
  • the cycle performance is indicated by the coefficient of performance and the refrigeration capacity determined by the method described later.
  • the coefficient of performance and the freezing capacity of each compound are shown as relative values based on HCFO-1233zd (E) (1.00) (hereinafter referred to as "relative coefficient of performance” or “relative freezing capacity” respectively).
  • the thermal stability is indicated by the amount of acid generated (the amount of generated acid relative to the amount of sample before heating; mass ppm) measured by the neutralization titration method after heating at 175 ° C. for 14 days.
  • GWP is a 100-year value shown in the Intergovernmental Panel on climate Change (IPCC) Fifth Assessment Report (2014) or measured according to the method. In the present specification, GWP refers to this value unless otherwise noted.
  • HCFO-1224yd (Z) are approximately equivalent to HCFO-1233zd (E).
  • the relative refrigeration capacity of HCFO-1224yd (Z) is superior to HCFO-1233zd (E). If the relative coefficient of performance is substantially equal, it is possible to use a working medium containing HCFO-1224yd instead of HCFO-1233zd as a working medium, as a working medium, for a thermal cycle system to which HCFO-1233zd can be applied.
  • HCFO-1224yd (Z) is significantly superior to HCFO-1233zd (E) in thermal stability.
  • HCFO-1224yd (Z) has higher chemical stability than HCFO 1224yd (E) and is preferable as a working medium. Therefore, the ratio of HCFO-1224yd (Z) and HCFO-1224yd (E) in HCFO-1224yd is such that the mass ratio represented by HCFO-1224yd (Z): HCFO-1224yd (E) is 50:50 to 100: 0. And preferably 70:30 to 100: 0. It is particularly preferred that HCFO-1224yd be composed only of HCFO-1224yd (Z).
  • HCFO-1224yd (Z) HCFO-1224yd (E) is equal to or higher than the above lower limit, that is, the ratio of HCFO-1224yd (Z) to the total 100 mass% of HCFO-1224yd (Z) and HCFO-1224yd (E) is 50 If the content is more than% by mass, the HCFO-1224yd contains a large amount of HCFO-1224yd (Z), so that a stable working medium can be obtained for a longer period of time.
  • HCFO-1224yd is preferably composed only of HCFO-1224yd (Z).
  • Z HCFO-1224yd
  • 5 mass per 100 mass% in total of HCFO 1224yd (Z) and HCFO 1224yd (E) % Or less of HCFO-1224 yd (E) may be contained.
  • cycle performance coefficient of performance (COP), refrigeration capacity (Q)
  • COP coefficient of performance
  • Q refrigeration capacity
  • the refrigeration cycle system 10 shown in FIG. 1 cools and liquefies the working medium vapor B discharged from the compressor 11 by compressing the working medium vapor A into a high temperature and high pressure working medium vapor B and the working medium vapor B discharged from the compressor 11.
  • a condenser 12 as a working medium C of low temperature and high pressure
  • an expansion valve 13 of expanding the working medium C discharged from the condenser 12 to a working medium D of low temperature and low pressure
  • a pump 15 for supplying the load fluid E to the evaporator 14 and a pump 16 for supplying the fluid F to the condenser 12.
  • the working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 to be a high temperature and high pressure working medium vapor B (hereinafter referred to as "AB process").
  • the working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to form a working medium C of low temperature and high pressure. At this time, the fluid F is heated to become fluid F ′ and discharged from the condenser 12 (hereinafter referred to as “BC process”).
  • the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to form a low-temperature low-pressure working medium D (hereinafter referred to as "CD process").
  • the working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to be a high-temperature low-pressure working medium vapor A. At this time, the load fluid E is cooled to be a load fluid E ′ and discharged from the evaporator 14 (hereinafter referred to as “DA process”).
  • the refrigeration cycle system 10 is a cycle system consisting of adiabatic and isentropic changes, isenthalpy changes and isobaric changes.
  • the change in state of the working medium can be represented as a trapezoid with vertices A, B, C, and D, when it is described on the pressure-enthalpy line (curve) diagram shown in FIG.
  • the AB process is a process in which adiabatic compression is performed by the compressor 11 to make the high temperature and low pressure working medium vapor A into a high temperature and high pressure working medium vapor B, which is shown by an AB line in FIG. As described later, the working medium vapor A is introduced into the compressor 11 in a superheated state, and the resulting working medium vapor B is also a superheated vapor.
  • the BC process is a process of performing isobaric cooling in the condenser 12 and making the high temperature / high pressure working medium vapor B into a low temperature / high pressure working medium C, and is shown by a BC line in FIG.
  • the pressure at this time is the condensation pressure.
  • Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature.
  • the CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 to make the working medium C of low temperature and high pressure into the working medium D of low temperature and low pressure, which is shown by a CD line in FIG. Incidentally, if Shimese the temperature in the working medium C of low temperature and high pressure at T 3, T 2 -T 3 is (i) ⁇ supercooling degree of the working medium in the cycle of (iv) (SC).
  • the DA process is a process in which isobaric heating is performed by the evaporator 14 to return the low-temperature low-pressure working medium D to the high-temperature low-pressure working medium vapor A, which is shown by a DA line in FIG.
  • the pressure at this time is the evaporation pressure.
  • Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA line is evaporating temperature. If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ⁇ superheat of the working medium in the cycle of (iv) (SH).
  • T 4 denotes the temperature of the working medium D.
  • the refrigeration capacity (Q) and coefficient of performance (COP) of the working medium are the working medium A (evaporation, high temperature and low pressure), B (compression, high temperature and high pressure after compression), C (condensed, low temperature and high pressure), D (after expansion)
  • Q evaporation, high temperature and low pressure
  • B compression, high temperature and high pressure after compression
  • C condensed, low temperature and high pressure
  • D after expansion
  • thermodynamic properties required to calculate the cycle performance of the working medium can be calculated based on the generalized equation of state (Soave-Redlich-Kwong equation) based on the corresponding state principle, and thermodynamic relations. If the characteristic value can not be obtained, calculation is performed using an estimation method based on the group contribution method.
  • the compression work indicated by (h B -h A ) corresponds to the output (kW) of the refrigeration cycle, and the Q shown by (h A -h D ) above is required to operate the compressor, for example
  • the amount of power corresponds to the consumed power (kW).
  • Q means the ability to freeze the load fluid, and a higher Q means more work can be done in the same system. In other words, if it has a large Q, it indicates that the desired performance can be obtained with a small amount of working medium, and the system can be miniaturized.
  • Evaporation temperature 5 ° C (however, in the case of non-azeotropic mixture, the average temperature of the evaporation start temperature and the evaporation completion temperature)
  • Condensation completion temperature 40 ° C (however, in the case of non-azeotropic mixture, average temperature of condensation start temperature and condensation completion temperature)
  • SC 5 ° C Degree of supercooling
  • SH 5 ° C Degree of superheat
  • Compressor efficiency 0.8
  • the working medium used in the present invention may optionally contain a compound generally used as a working medium, in addition to HCFO-1224yd, as long as the effects of the present invention are not impaired.
  • a compound generally used as a working medium in addition to HCFO-1224yd, as long as the effects of the present invention are not impaired.
  • Such optional compounds (optional components) include, for example, HFC, HFO, HCFO other than HCFO-1224yd, and other optional components which are vaporized and liquefied together with HCFO-1224yd.
  • Preferred optional components are HFC, HFO, and HCFO other than HCFO-1224yd.
  • the relative coefficient of performance is within the range where the working medium can be applied instead of HCFO-1233zd to a thermal cycle system designed for HCFO-1233zd.
  • Preferred are compounds capable of keeping the GWP within an acceptable range while having the effect of further enhancing the relative freezing capacity.
  • the working medium contains such a compound in combination with HCFO-1224yd, better cycle performance is obtained while keeping the GWP low.
  • HFC The HFC as an optional component is preferably selected from the above viewpoint.
  • HFC is known to have a higher GWP than HCFO-1224yd. Therefore, it is preferable that the HFC to be combined with HCFO-1224yd be appropriately selected from the viewpoint of improving the cycle performance as the working medium and keeping the GWP within the allowable range.
  • HFCs having 1 to 5 carbon atoms are preferable as HFCs that have a small impact on the ozone layer and a small impact on global warming.
  • the HFC may be linear, branched or cyclic.
  • difluoromethane, difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane and the like can be mentioned.
  • HFC 1,1,2,2-tetrafluoroethane
  • HFC-134a 1,1,2,2-tetrafluoroethane
  • HFC-245fa 1 from the viewpoint of little influence on the ozone layer and excellent refrigeration cycle characteristics.
  • 1,1,1,3,3-pentafluorobutane (HFC-365mfc) is more preferable, and HFC-134a, HFC-245fa, and HFC-365mfc are more preferable.
  • One of HFCs may be used alone, or two or more thereof may be used in combination.
  • the content of HFC in the working medium (100% by mass) used in the present invention causes a large decrease in the coefficient of performance of the working medium by setting it in the range of 1 to 60% by mass.
  • the refrigeration capacity can be improved without
  • the GWP of HFC-245fa is as high as 1030, the content ratio is appropriately adjusted in consideration of the GWP as the working medium within the range of the content ratio.
  • the content thereof can be appropriately controlled according to the cycle performance required for the GWP and the working medium.
  • HFO The HFO is also preferably selected from the same viewpoint as the above-mentioned HFC.
  • GWP is orders of magnitude lower than HFC. Therefore, it is preferable that the HFO to be combined with the HCFO-1224yd be appropriately selected in consideration of improving the cycle performance as the working medium rather than considering the GWP.
  • HFOs 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf), 1,1,2-triphenyl Fluoropropene (HFO-1243yc), (E) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), (Z) -1,2,3,3,3-pentafluoro Propene (HFO-1225ye (Z)), (E) -1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), (Z) -1,3,3,3-tetrafluoropropene ( HFO-1234ze (Z)), 3,3,3-trifluoropropene (HFO-1243zf), (E) -1,1,1,4,4,4-hexafluoro-2-b Down (HFO-1336mzz (E)), it includes (Z)-1,
  • HFO-1234yf, HFO-1234ze (E), HFO-1234ze (Z), HFO-1336mzz (Z), HFO-1243zf are preferable, and HFO-1234yf, HFO-1234ze (E), HFO-1234ze ( Z), HFO-1336mzz (Z) is more preferred.
  • the HFO may be used alone or in combination of two or more.
  • HCFO other than HCFO-1224yd The HCFO as an optional component other than HCFO-1224yd is also preferably selected from the same viewpoint as the above-mentioned HFC.
  • GWP is orders of magnitude lower than HFC. Therefore, HCFOs other than HCFO-1224yd in combination with HCFO-1224yd are preferably selected appropriately in consideration of improving the cycle performance as the working medium rather than considering GWP.
  • HCFO other than HCFO-1224yd is 1-chloro-2,2-difluoroethylene (HCFO-1122), 1,2-dichlorofluoroethylene (HCFO-1121), 1-chloro-2-fluoroethylene (HCFO-1131) And 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 1-chloro-2,3,3-trifluoro-1-propene (HCFO-1233yd) and HCFO-1233zd.
  • HCFO other than HCFO-1224yd is preferably HCFO-1233zd from the viewpoint of having high critical temperature and being excellent in durability and coefficient of performance.
  • One HCFO other than HCFO-1224yd may be used alone, or two or more HCFOs may be used in combination.
  • the content ratio of HCFO other than HCFO-1224yd in the working medium (100% by mass) used in the present invention is, for example, in the range of 1 to 60% by mass to generate temperature glide. Maintain a high coefficient of performance.
  • HCFO-1233zd is inferior in thermal stability, the content ratio thereof is appropriately adjusted while taking into consideration the stability as a working medium within the above content ratio range.
  • the working medium used in the heat cycle system of the present invention may contain carbon dioxide, hydrocarbons, chlorofluoroolefin (CFO), trans-1,2-dichloroethylene, etc. in addition to the above-mentioned optional components.
  • CFO chlorofluoroolefin
  • trans-1,2-dichloroethylene etc.
  • a component which has less influence on the ozone layer and has less influence on global warming is preferable.
  • hydrocarbon propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like can be mentioned.
  • the hydrocarbon may be used alone or in combination of two or more.
  • the said working medium contains a hydrocarbon
  • less than 10 mass% is preferable with respect to 100 mass% of working media, as for the content rate, 5 mass% or less is more preferable, and 3 mass% or less is more preferable.
  • the solubility of the mineral lubricating oil in the working medium is better.
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • CFO 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 as a CFO, because the flammability of the working medium can be easily suppressed without significantly reducing the cycle performance of the working medium.
  • Preferred is 3, 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) or 1,2-dichloro-1,2-difluoroethylene (CFO-1112).
  • the CFO may be used alone or in combination of two or more.
  • the working fluid contains CFO
  • the content thereof is preferably less than 10% by weight, more preferably 8% by weight or less, and still more preferably 5% by weight or less based on 100% by weight of the working fluid.
  • CFO By containing CFO, it is easy to suppress the combustibility of the working medium. If the content rate of CFO is below an upper limit, favorable cycle performance will be easy to be obtained.
  • the content ratio of the total of the other optional components in the working medium is preferably less than 10% by mass and 100% by mass or less with respect to 100% by mass of the working medium More preferably, 5% by mass or less is more preferable.
  • the working medium can be used as a working medium composition, usually mixed with a lubricating oil, for application to a thermal cycling system.
  • the working vehicle composition may further contain known additives such as stabilizers and leak detection substances in addition to these.
  • the lubricating oil As the lubricating oil, a known lubricating oil used in the working medium composition can be adopted without particular limitation, together with the working medium conventionally composed of halogenated hydrocarbons. Specific examples of the lubricating oil include oxygen-containing synthetic oils (ester-based lubricating oils, ether-based lubricating oils and the like), fluorine-based lubricating oils, mineral-based lubricating oils, hydrocarbon-based synthetic oils and the like.
  • ester-based lubricating oils dibasic acid ester oils, polyol ester oils, complex ester oils, polyol carbonate oils and the like can be mentioned.
  • ether-based lubricating oils examples include polyvinyl ether oils and polyoxyalkylene oils such as polyglycol oils.
  • fluorine-based lubricating oils include compounds in which hydrogen atoms of synthetic oils (mineral oil, poly ⁇ -olefin, alkylbenzene, alkylnaphthalene, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, etc.
  • a mineral-based lubricating oil As a mineral-based lubricating oil, a lubricating oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil is subjected to purification treatment (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation
  • purifying, clay treatment etc. are mentioned.
  • hydrocarbon synthetic oils examples include poly ⁇ -olefins, alkylbenzenes and alkylnaphthalenes.
  • the lubricating oils may be used alone or in combination of two or more.
  • the lubricating oil is preferably at least one selected from polyol ester oils, polyvinyl ether oils and polyglycol oils from the viewpoint of compatibility with the working medium.
  • the addition amount of the lubricating oil may be in a range that does not significantly reduce the effects of the present invention, and is preferably 10 to 100 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the working medium.
  • Stabilizers are components that improve the stability of the working medium against heat and oxidation.
  • the stabilizer there are no particular limitations on known stabilizers conventionally used in thermal cycle systems, such as oxidation resistance improvers, heat resistance improvers, metal deactivators, etc., together with the working medium conventionally made of halogenated hydrocarbons. It can be adopted.
  • N N'-diphenyl phenylene diamine, p-octyl diphenylamine, p, p'-dioctyl diphenylamine, N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine N- (p-dodecyl) phenyl-2-naphthylamine, di-1-naphthylamine, di-2-naphthylamine, N-alkylphenothiazine, 6- (t-butyl) phenol, 2,6-di- (t-butyl) And the like) phenol, 4-methyl-2,6-di- (t-butyl) phenol, 4,4'-methylenebis (2,6-di-t-butylphenol) and the like.
  • the oxidation resistance improver and the heat resistance improver one type may be used alone,
  • metal deactivators examples include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimethylcaptothiadiazole, salicylidine-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzamidazole, 3,5- Dimethylpyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic acids or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Amine salts or derivatives thereof.
  • the addition amount of the stabilizer may be within a range not significantly reducing the effects of the present invention, and is preferably 5 parts by mass or less, and more preferably 1 part by mass or less with respect to 100 parts by mass of the working medium.
  • UV fluorescent dye As a leak detection substance, an ultraviolet fluorescent dye, an odor gas, an odor masking agent and the like can be mentioned.
  • Ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-A-10-502737, JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836.
  • Known ultraviolet fluorescent dyes used in thermal cycle systems, as well as working media conventionally comprising halogenated hydrocarbons such as those described in U.S. Pat.
  • a solubilizer may be used to improve the solubility of the leak detection substance in the working medium.
  • solubilizers examples include those described in JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836.
  • the addition amount of the leak detection substance may be within the range not significantly reducing the effects of the present invention, preferably 2 parts by mass or less and more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the working medium.
  • the thermal cycle system of the present invention is obtained by applying a working medium containing HCFO-1224yd instead of HCFO-1233zd to a thermal cycle system designed to be applicable to HCFO-1233zd. There is no change in the system for thermal cycling on application of the working medium containing HCFO-1224yd to the system for thermal cycling to which HCFO-1233zd is designed to be applicable.
  • the working medium containing HCFO-1224yd may be contained in the thermal cycle system as the working medium composition.
  • cycle performance can be made equal to or better than when using HCFO-1233zd, and thermal stability is further enhanced. Is enhanced.
  • a system for thermal cycling for example, a system for thermal cycling including heat exchangers such as a compressor, a condenser, and an evaporator, to which HCFO-1233zd is applicable, can be mentioned.
  • a thermal cycle system for example, a refrigeration cycle
  • a gaseous working medium is compressed by a compressor, cooled by a condenser to produce a high pressure liquid, reduced by an expansion valve, and vaporized at a low temperature by an evaporator for vaporization.
  • the working medium containing HCFO-1224yd has a coefficient of performance that is substantially the same as that of HCFO-1233zd as described above, in the present invention, the working is included in a system for thermal cycling to which HCFO-1233zd is designed to be applicable.
  • the respective means such as a compressor for supplying the medium to the heat cycle, and a heat exchanger such as a condenser and an evaporator can be used without any change.
  • the thermal cycle system of the present invention is obtained by applying a working medium containing HCFO-1224yd instead of HCFO-1233zd to a thermal cycle system designed to be applicable to HCFO-1233zd.
  • a working medium containing HCFO-1224yd instead of HCFC-123 may be applied to a thermal cycle system designed to be applicable to 2-dichloro-1,1,1-trifluoroethane (HCFC-123) .
  • a working medium including HCFO-1224yd may be applied instead of HFO-1336mzz (Z) to a thermal cycle system designed to be applicable to HFO-1336mzz (Z).
  • thermal cycle system of the present invention in which the working medium containing HCFO-1224yd is applied to a thermal cycle system designed to be applicable to HCFO-1233zd will be described.
  • the thermal cycle system of the present invention may be a heat pump system that utilizes the heat obtained by the condenser, or may be a refrigeration cycle system that utilizes the cold obtained by the evaporator.
  • the thermal cycle system of the present invention may be a flooded evaporator type or a direct expansion type.
  • water or air is preferable as the substance other than the working medium to be heat-exchanged with the working medium.
  • thermal cycle system of the present invention examples include refrigeration and refrigeration equipment, air conditioners, power generation systems, heat transport devices, secondary coolers and the like.
  • the thermal cycle system of the present invention can stably exhibit cycle performance even in a higher temperature operating environment, it is preferably used as an air conditioner which is often installed outdoors or the like.
  • the heat cycle system of this invention is used as a freezing / refrigerating apparatus.
  • the working medium recovery device for recovering the working medium from the thermal cycle system of the present invention can use a conventionally known working medium recovery device.
  • the power generation system is preferably a Rankine cycle system power generation system.
  • the working medium is heated by geothermal energy, solar heat, middle to high temperature range waste heat at about 50 to 200 ° C. in an evaporator, and the working medium that has become high-temperature high-pressure steam is expanded
  • An example is a system in which adiabatic expansion is performed in a machine, and a work generated by the adiabatic expansion drives a generator to generate electric power.
  • the thermal cycle system of the present invention may be a heat transport device.
  • a latent heat transport device As a heat transport device, a latent heat transport device is preferable.
  • the latent heat transport device include a heat pipe that performs latent heat transport utilizing phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device, and a two-phase closed thermosiphon device.
  • the heat pipe is applied to a relatively small cooling device such as a cooling device for a semiconductor element or a heat generating portion of an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for gas-to-gas heat exchangers, snow melting on roads, prevention of freezing, and the like.
  • refrigeration / refrigeration equipment examples include showcases (built-in showcases, separately mounted showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
  • air conditioners specifically, room air conditioners, package air conditioners (package air conditioners for buildings, package air conditioners for buildings, equipment package air conditioners, etc.), heat source equipment chilling units, gas engine heat pumps, train air conditioners, car air conditioners Etc.
  • Examples of the heat source equipment chilling unit include a volumetric compression type refrigerator and a centrifugal type refrigerator. Among them, the centrifugal refrigerator to be described next is preferable because the effect of the present invention can be more remarkably obtained because the filling amount of the working medium is large.
  • centrifugal refrigerator is a refrigerator using a centrifugal compressor.
  • a centrifugal refrigerator is a type of vapor compression refrigerator, and is generally referred to as a turbo refrigerator.
  • a centrifugal compressor includes an impeller and performs compression by discharging a working medium to the outer peripheral portion by the rotating impeller.
  • Centrifugal refrigerators are used in office buildings, district heating and cooling, heating and cooling in hospitals, semiconductor factories, cold water production plants in the petrochemical industry, and the like.
  • the centrifugal refrigerator may be either a low pressure type or a high pressure type, but is preferably a low pressure type centrifugal refrigerator.
  • the low pressure type for example, operation that does not receive the application of high pressure gas safety method such as 2, 2-dichloro-1,1,1-trifluoroethane (HCFC-123), HFC-245fa, HCFO-1233zd Medium, that is, "a liquefied gas which has a pressure of 0.2 MPa or more at ordinary temperature, and which has a pressure of 0.2 MPa or more at present, or a temperature of 35 ° C. or less when the pressure is 0.2 MPa or more
  • the centrifugal refrigerator 100 includes a centrifugal compressor (hereinafter referred to as "compressor") 21, a condenser 22 for condensing a high pressure gas working medium compressed by the compressor 21, and a condenser 22 for condensing the high pressure gas working medium.
  • the expansion valve 23 expands the high pressure liquid working medium, and the evaporator 24 evaporates the low pressure liquid working medium expanded by the expansion valve 23.
  • the working medium contained in the centrifugal refrigerator 100 is a working medium containing the HCFO-1224yd described above.
  • the working medium is a high pressure gas, a high pressure liquid, a low pressure liquid, and a working medium pipe 20 provided to connect the compressor 21, the condenser 22, the expansion valve 23, the evaporator 24, and the compressor 21 in this order. Etc. It circulates in the state of gas phase or liquid phase.
  • the arrows shown with a solid line indicating the working fluid pipe 20 indicate the flow direction of the working fluid.
  • the working medium may be introduced into the centrifugal refrigerator 100 as a working medium composition containing the same.
  • the compressor 21 includes a centrifugal impeller that is rotationally driven by the electric motor 31.
  • the centrifugal impeller is, for example, a two-stage compression type. However, it may be a one-stage compression type or a three or more-stage compression type.
  • An inlet vane 32 is provided at the working medium inlet of the compressor 21 to adjust the working medium flow rate. The opening degree of the inlet vanes 32 is controlled by the controller 33.
  • the input frequency from the power supply 34 is changed by the inverter 35, whereby the rotational speed of the motor 31 is controlled.
  • the instruction frequency sent from the inverter 35 to the electric motor 31 is changed by the rotation speed control unit 33 a provided in the control device 33.
  • the dashed-dotted line in FIG. 3 shows the path
  • route shows direction of this signal.
  • the condenser 22 is provided with a pressure sensor 25 that measures the working medium pressure (condensing pressure) Pc in the condenser 22.
  • the output of the pressure sensor 25 is input to the controller 33.
  • the condenser 22 is provided with a hot water acquisition means 26 a which exchanges heat with the working medium in the condenser 22 to obtain hot water.
  • a hot water outlet temperature sensor 26b is provided at the hot water outlet of the hot water acquisition means 26a, and a hot water inlet temperature sensor 26c is provided at the hot water inlet.
  • the output of the hot water outlet temperature sensor 26 b (hot water outlet temperature) and the output of the hot water inlet temperature sensor 26 c (hot water inlet temperature) are input to the control device 33.
  • the centrifugal refrigerator 100 uses water as a substance that is thus heat-exchanged with the working medium.
  • the hot water acquisition means 26a is indicated by a dotted line
  • the flow direction of the hot water flowing through the hot water acquisition means 26a is indicated by an arrow on the dotted line.
  • the degree of opening of the expansion valve 23 is controlled by an expansion valve opening degree control unit 33 b provided in the control device 33.
  • a hot gas bypass pipe 27 is provided between the condenser 22 and the evaporator 24.
  • the hot gas bypass pipe 27 allows the high pressure working medium gas in the condenser 22 to flow to the evaporator 24.
  • the hot gas bypass pipe 27 is provided with a hot gas bypass valve 28. By adjusting the opening degree of the hot gas bypass valve 28, the working medium flow rate flowing in the hot gas bypass piping 27 is adjusted, and the suction working medium gas flow rate to the compressor 21 at the low refrigeration capacity is secured.
  • the evaporator 24 is provided with a pressure sensor 29 that measures the working medium pressure (evaporation pressure) Pe in the evaporator 24.
  • the output of the pressure sensor 29 is input to the controller 33.
  • the evaporator 24 is provided with cold water acquisition means 30 a which exchanges heat with the working medium in the evaporator 24 to obtain cold water.
  • a cold water outlet temperature sensor 30b is provided at the cold water outlet of the cold water acquisition means 30a, and a cold water inlet temperature sensor 30c is provided at the cold water inlet.
  • the output of the cold water outlet temperature sensor 30 b (cold water outlet temperature) and the output of the cold water inlet temperature sensor 30 c (cold water inlet temperature) are input to the controller 33.
  • the operating point of the centrifugal refrigerator compressor is determined by the flow rate variable ⁇ and the pressure variable ⁇ . Since the flow rate variable ⁇ and the pressure variable ⁇ both include the speed of sound as a parameter, as described below, the speed of sound of the working medium affects the design of the compressor refrigerator impeller of the centrifugal refrigerator.
  • Flow rate variable ⁇ air volume [m 3 / s] / sound velocity [m / s] / (impeller diameter [m]) 2
  • Pressure variable ⁇ adiabatic head [m] ⁇ gravitational acceleration [m / s 2 ] ⁇ (sound velocity [m / s]) 2
  • the working medium containing HCFO-1224yd in particular, since the sound velocity of HCFO-1224yd is equivalent to that of HCFO-1233zd, the design of a centrifugal refrigerator designed for HCFO-1233zd as described above It can be used without changing it.
  • the inclusion of moisture in the thermal cycling system can cause problems, especially when used at low temperatures. For example, there are problems such as freezing in a capillary tube, hydrolysis of a working medium and lubricating oil, material degradation due to the acid component generated thereby, and generation of contamination.
  • the lubricating oil is polyglycol oil, polyol ester oil, etc.
  • the hygroscopicity is extremely high, and the hydrolysis reaction is apt to occur, the characteristics as the lubricating oil deteriorate, and the long-term reliability of the compressor is impaired. It becomes a big cause. Therefore, in order to suppress the hydrolysis of lubricating oil, it is necessary to control the water concentration in the thermal cycle system.
  • a method using a water removing means such as a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned. It is preferable in terms of dewatering efficiency that the desiccant be in contact with a liquid working medium or a working medium composition containing the same. For example, it is preferable to place a desiccant at the outlet of the condenser or at the inlet of the evaporator to contact the working medium or the working medium composition containing it.
  • a desiccant sica gel, activated alumina, zeolite, etc.
  • a zeolitic desiccant is preferred in view of the chemical reactivity between the desiccant and the working medium or the working medium composition containing the same, and the hygroscopic ability of the desiccant.
  • the compound represented by the following formula (C) is the main component from the viewpoint of excellent moisture absorption capacity.
  • Zeolite based desiccants are preferred.
  • M is an element of Group 1 such as Na and K or an element of Group 2 such as Ca
  • n is a valence of M
  • x and y are values determined by the crystal structure.
  • the pore size can be adjusted by changing M.
  • the pore size and the breaking strength are important in the selection of the desiccant.
  • a desiccant having a pore diameter larger than the molecular diameter of the working medium or a component (hereinafter, "working medium etc.") contained in the working medium composition containing the same, the working medium etc. is adsorbed in the desiccant As a result, a chemical reaction between the working medium and the like and the desiccant occurs, which causes undesirable phenomena such as generation of noncondensable gas, reduction in strength of the desiccant, and reduction in adsorption capacity.
  • a zeolite-based desiccant with a small pore size.
  • a sodium-potassium A-type synthetic zeolite having a pore size of 3.5 angstroms or less is preferable.
  • the particle size of the zeolitic desiccant is preferably about 0.5 to 5 mm.
  • the shape is preferably granular or cylindrical.
  • the zeolitic desiccant can be made into an arbitrary shape by solidifying powdered zeolite with a binder (bentonite, etc.).
  • a binder bentonite, etc.
  • Other desiccants silicon gel, activated alumina, etc.
  • the non-condensable gas is mixed in the thermal cycle system, it has an adverse effect of poor heat transfer in the condenser and the evaporator and an increase in operating pressure, so it is necessary to suppress the mixing as much as possible.
  • oxygen which is one of the noncondensable gases, reacts with the working medium and the lubricating oil to promote decomposition.
  • the noncondensable gas concentration is preferably 1.5% by volume or less by volume ratio to the working medium in the gas phase portion of the working medium, and particularly preferably 0.5% by volume or less.
  • the thermal cycling method of the present invention is performed using the thermal cycling system of the present invention in which a working medium containing HCFO-1224yd is used in place of HCFO-1233zd in a thermal cycling system designed to be applicable to HCFO-1233zd. It is a thermal cycle method.
  • the method of the present invention particularly changes the operating conditions when HCFO-1233zd is used as the working medium. It is possible to carry out thermal cycling without In addition, the cycle performance can be made equal to or higher than when HCFO-1233zd is used, and the thermal stability can be further improved.
  • the opening degree of the inlet vane 32 for adjusting the working medium flow rate, the inverter 35 to the motor 31 The HCFO-1233zd is used as the working medium by setting the sent instruction frequency, the control device 33 for controlling the opening degree of the expansion valve 23, and other settings substantially the same as when using the HCFO-1233zd as the working medium. Cycle performance similar to or better than that of the conventional case can be obtained, and the thermal stability is further improved.
  • thermal cycle system of the present invention using the thermal cycle system designed to use HCFO-1233zd as it is is excellent in economy and HCFO-1233zd is used.
  • the cycle performance equal to or more than that in the case of the present invention can be obtained.
  • HCFO-1224yd used as the working medium has a low GWP, the load on the environment is small even when the working medium leaks. Furthermore, HCFO-1224yd is superior in thermal stability to HCFO-1233zd.

Abstract

Provided is a heat cycle system that: achieves excellent economy by using, as is, a system that is for a heat cycle and is designed to use 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) as a working medium; but that has the same or better cycle performance, lower environmental burden, and greater stability compared to when HCFO-1233zd is used. Also provided is a heat cycle method that uses the abovementioned heat cycle system. A heat cycle system that comprises a working medium and a system for a heat cycle. The system for a heat cycle is adapted to using HCFO-1233zd as a working medium, and the working medium includes 1-chloro-2,3,3,3-tetrafluoropropene. A heat cycle method that uses the heat cycle system.

Description

熱サイクルシステムおよびそれを用いた熱サイクル方法Thermal cycle system and thermal cycle method using the same
 本発明は熱サイクルシステムおよび該熱サイクルシステムを用いた熱サイクル方法に関する。 The present invention relates to a thermal cycle system and a thermal cycle method using the thermal cycle system.
 本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。 In the present specification, for halogenated hydrocarbons, the abbreviation of the compound is indicated in the parenthesis after the compound name, but in the present specification, the abbreviation is used in place of the compound name as necessary.
 従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクルシステム用の作動媒体としては、クロロフルオロカーボン(CFC)やヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFCおよびHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっていることから、CFCやHCFCに代えて、オゾン層への影響が少ない、ヒドロフルオロカーボン(HFC)が熱サイクル用の作動媒体として用いられるようになった。 Conventionally, working media for heat cycle systems such as refrigerants for refrigerators, refrigerants for air conditioners, working media for power generation systems (waste heat recovery power generation etc), working media for latent heat transport devices (heat pipes etc), secondary cooling media etc. As chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) have been used. However, CFCs and HCFCs have been identified as having an effect on the stratospheric ozone layer, and are currently subject to regulation, and therefore, instead of CFCs and HCFCs, hydrofluorocarbons (HFCs) with less effect on the ozone layer. Has been used as a working medium for thermal cycling.
 例えば、ビルの冷暖房用、工業用の冷水製造プラントなどに用いられる遠心式冷凍機においては、用いる作動媒体がトリクロロフルオロメタン(CFC-11)から1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)等に転換されてきている。 For example, in a centrifugal refrigerator used for a building cold water production plant for heating and cooling of a building, etc., the working medium used is trichlorofluoromethane (CFC-11) to 1,1,1,2-tetrafluoroethane (HFC) -134a), 1,1,1,3,3-pentafluoropropane (HFC-245fa), etc.
 ここで、遠心式冷凍機では他の冷凍機やヒートポンプに比べて作動媒体の充填量が多く、万一事故等によって作動媒体の漏れが発生した場合には、大気中に作動媒体が大量に放出されてしまう可能性がある。したがって、遠心式冷凍機に用いる作動媒体には、特に地球温暖化係数(GWP)が低いことが求められている。 Here, in a centrifugal refrigerator, the filling amount of the working medium is larger than that of other refrigerators and heat pumps, and in the case where the working medium leaks due to an accident etc., a large amount of working medium is released into the atmosphere. It may be done. Accordingly, it is required that the working medium used in the centrifugal refrigerator, in particular, has a low global warming potential (GWP).
 このような要求に伴い、オゾン層への影響が少なく、かつGWPが低い作動媒体として、大気中のOHラジカルによって分解されやすい炭素-炭素二重結合を有する、ヒドロフルオロオレフィン(HFO)、ヒドロクロロフルオロオレフィン(HCFO)およびクロロフルオロオレフィン(CFO)等に期待が集まっている。本明細書においては、特に断りのない限り飽和のHFCをHFCといい、HFOとは区別して用いる。また、HFCを飽和のヒドロフルオロカーボンのように明記する場合もある。 With such a demand, hydrofluoroolefin (HFO), hydrochloroolefin having a carbon-carbon double bond that is easily decomposed by OH radicals in the atmosphere as a working medium that has less influence on the ozone layer and low GWP. Expectations are focused on fluoroolefins (HCFO) and chlorofluoroolefins (CFO). In the present specification, unless otherwise specified, saturated HFC is referred to as HFC and is used separately from HFO. Also, HFC may be specified as a saturated hydrofluorocarbon.
 なかでも、HCFOおよびCFOは、一分子中のハロゲンの割合が多いため、燃焼性が抑えられた化合物であり、環境への負荷が少なくかつ燃焼性を抑えた作動媒体として検討されている。そして、遠心式冷凍機用低GWP冷媒としては、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)が提案されている(例えば、特許文献1を参照。)。しかしながら、HCFO-1233zdはHFC-245fa等と同程度のサイクル性能を有するものの熱安定性に問題を有しており、これに代わる作動媒体として低GWPでありかつ熱安定性を有する作動媒体が求められていた。 Among them, HCFO and CFO are compounds in which the flammability is suppressed because the ratio of halogen in one molecule is large, and are considered as a working medium in which the load on the environment is small and the flammability is suppressed. Then, 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) has been proposed as a low GWP refrigerant for centrifugal refrigerators (see, for example, Patent Document 1). However, HCFO-1233zd has a problem in thermal stability although it has the same cycle performance as HFC-245fa etc., and a working medium with low GWP and thermal stability is required as an alternative working medium. It was being done.
 また、HCFOとして、例えば、特許文献2には1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)を用いる作動媒体が記載されている。しかしながら、特許文献1には、HCFO-1224ydを具体的な熱サイクルシステムに適用した例について記載がない。 In addition, as the HCFO, for example, Patent Document 2 describes a working medium using 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd). However, Patent Document 1 does not describe an example in which HCFO-1224yd is applied to a specific heat cycle system.
国際公開第2010/077898号WO 2010/077898 国際公開第2012/157763号International Publication No. 2012/157763
 本発明は、作動媒体としてHCFO-1233zdを用いるように設計された熱サイクル用システムをそのまま用いることで経済性に優れるとともに、HCFO-1233zdを用いた場合に比べて、サイクル性能が同等以上かつ環境負荷が低く熱安定性に優れる熱サイクルシステムおよび該熱サイクルシステムを用いた、経済性に優れるとともに、HCFO-1233zdを用いた場合に比べて、サイクル性能が同等以上かつ環境負荷が低く熱安定性に優れる熱サイクル方法を提供することを目的とする。 The present invention is excellent in economics by using a thermal cycle system designed to use HCFO-1233zd as the working medium as it is, and has cycle performance equal to or higher than that using HCFO-1233zd. The thermal cycle system with low load and excellent thermal stability and the economy using the thermal cycle system are excellent, and the cycle performance is equal to or higher than that of the case using HCFO-1233zd, and the thermal stability is low. To provide a thermal cycle method excellent in
 本発明は、以下の構成を有する熱サイクルシステムおよび熱サイクル方法を提供する。
 [1]作動媒体と熱サイクル用システムとを備える熱サイクルシステムであって、前記熱サイクル用システムは1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)を作動媒体として用いるのに適した熱サイクル用システムであり、前記作動媒体は1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)を含む、熱サイクルシステム。
 [2]前記作動媒体の100質量%に対するHCFO-1224ydの含有割合が40~100質量%である[1]に記載の熱サイクルシステム。
 [3]前記作動媒体がHCFO-1224ydのみからなる[1]または[2]に記載の熱サイクルシステム。
 [4]前記HCFO-1224ydにおける(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(Z))および(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(E))の割合は、HCFO-1224yd(Z):HCFO-1224yd(E)で示される質量比で、50:50~100:0である[1]~[3]のいずれかに記載の熱サイクルシステム。
 [5]前記HCFO-1224ydはHCFO-1224yd(Z)のみからなる[4]に記載の熱サイクルシステム。
 [6]前記熱サイクルシステムが冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である[1]~[5]のいずれかに記載の熱サイクルシステム。
 [7]前記熱サイクルシステムが遠心式冷凍機である[1]~[5]のいずれかに記載の熱サイクルシステム。
 [8]前記熱サイクルシステムが低圧型遠心式冷凍機である[1]~[5]のいずれかに記載の熱サイクルシステム。
 [9]前記[1]~[8]のいずれかに記載の熱サイクルシステムを用いた熱サイクル方法。
The present invention provides a thermal cycle system and a thermal cycle method having the following configuration.
[1] A thermal cycle system comprising a working medium and a system for thermal cycling, wherein the system for thermal cycling uses 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) as a working medium A thermal cycling system suitable for use in a thermal cycling system, the working medium comprising 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd).
[2] The heat cycle system according to [1], wherein the content of HCFO-1224yd is 40 to 100% by mass with respect to 100% by mass of the working medium.
[3] The thermal cycle system according to [1] or [2], wherein the working medium consists only of HCFO-1224yd.
[4] (Z) -1-Chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd (Z)) and (E) -1-chloro-2,3,3,3 in the HCFO-1224yd The ratio of 3-tetrafluoropropene (HCFO-1224yd (E)) is 50:50 to 100: 0 in the mass ratio shown by HCFO-1224yd (Z): HCFO-1224yd (E) [1] The thermal cycle system according to any one of [3].
[5] The thermal cycle system according to [4], wherein the HCFO-1224yd consists only of HCFO-1224yd (Z).
[6] The thermal cycle system according to any one of [1] to [5], wherein the thermal cycle system is a refrigeration / refrigerator, an air conditioner, a power generation system, a heat transport device or a secondary cooler.
[7] The heat cycle system according to any one of [1] to [5], wherein the heat cycle system is a centrifugal refrigerator.
[8] The heat cycle system according to any one of [1] to [5], wherein the heat cycle system is a low pressure centrifugal refrigerator.
[9] A thermal cycle method using the thermal cycle system according to any one of the above [1] to [8].
 本発明の熱サイクルシステムは、作動媒体としてHCFO-1233zdを用いるように設計された熱サイクル用システムをそのまま用いることで経済性に優れるとともに、HCFO-1233zdを用いた場合に比べて、サイクル性能が同等以上、かつ環境負荷、特にはGWPが低く、さらに熱安定性に優れる熱サイクルシステムである。本発明の熱サイクル方法は、本発明の熱サイクルシステムを用いることで、経済性に優れるとともに、HCFO-1233zdを用いた場合に比べて、サイクル性能が同等以上、かつ環境負荷、特にはGWPが低く、さらに熱安定性に優れる熱サイクル方法である。 The thermal cycle system of the present invention is excellent in economy by using a thermal cycle system designed to use HCFO-1233zd as the working medium as it is, and has cycle performance better than when HCFO-1233zd is used. It is a thermal cycle system that is equal to or higher than that, has a low environmental impact, in particular, a low GWP, and is further excellent in thermal stability. The thermal cycle method of the present invention is excellent in economy by using the thermal cycle system of the present invention, and the cycle performance is equal to or higher than that of the case where HCFO-1233zd is used, and the environmental load, particularly GWP It is a thermal cycle method which is low and is further excellent in thermal stability.
本発明の熱サイクルシステムに用いる作動媒体を評価する冷凍サイクルシステムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the refrigerating-cycle system which evaluates the working medium used for the heat-cycling system of this invention. 図1の冷凍サイクルシステムにおける作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。FIG. 2 is a cycle diagram in which a change in the state of a working medium in the refrigeration cycle system of FIG. 1 is described on a pressure-enthalpy diagram. 本発明の熱サイクルシステムの一例である遠心式冷凍機を示した概略構成図である。It is the schematic block diagram which showed the centrifugal refrigerator which is an example of the heat cycle system of this invention.
 以下、本発明の実施の形態について説明する。
 本明細書において、「熱サイクル用システム」とは、システム内を作動媒体が流通することで該作動媒体と該作動媒体以外の他の物質との間で熱交換(熱サイクル)が行えるように設計された熱サイクル用のシステムをいう。また、「熱サイクルシステム」とは、熱サイクル用システムに作動媒体が投入されて熱サイクルが実行可能な状態にされた、作動媒体と熱サイクル用システムを備えるシステムをいう。
Hereinafter, embodiments of the present invention will be described.
In the present specification, “a system for thermal cycling” means that a working medium flows in the system so that heat exchange (thermal cycle) can be performed between the working medium and other substances other than the working medium. Refers to a designed system for thermal cycling. Moreover, a "thermal cycle system" means the system provided with the working medium and the system for thermal cycling with which the working medium was supplied to the system for thermal cycling and the thermal cycle was made executable.
[熱サイクルシステム]
 本発明の熱サイクルシステムは、作動媒体と熱サイクル用システムとを備える熱サイクルシステムにおいて、熱サイクル用システムとしてHCFO-1233zdを作動媒体として用いるのに適した熱サイクル用システムを採用し、作動媒体としてHCFO-1224ydを含む作動媒体を使用した熱サイクルシステムである。本発明の熱サイクルシステムは、例えば、HCFO-1233zdを作動媒体として含有する熱サイクルシステムにおいて、作動媒体としてのHCFO-1233zdをHCFO-1224ydを含む作動媒体に置換することで得られる熱サイクルシステムである。
Thermal cycle system
The thermal cycle system of the present invention adopts a thermal cycle system suitable for using HCFO-1233zd as a working medium as a thermal cycle system in a thermal cycle system including a working medium and a system for thermal cycling, and the working medium It is a thermal cycle system using a working medium containing HCFO-1224yd. The thermal cycle system of the present invention is, for example, a thermal cycle system obtained by replacing HCFO-1233zd as a working medium with a working medium containing HCFO-1224yd in a thermal cycle system containing HCFO-1233zd as a working medium. is there.
 本発明に用いる熱サイクル用システムとしては、作動媒体としてHCFO-1233zdが適用可能に設計された熱サイクル用システムであれば特に制限されない。作動媒体としてHCFO-1233zdが適用可能な熱サイクル用システムに、HCFO-1233zdに代えてHCFO-1224ydを含む作動媒体を作動媒体として用いると、以下に説明するとおり、得られる熱サイクルシステムは、HCFO-1233zdを用いた場合と同様以上のサイクル性能を発揮することが可能である。さらに、作動媒体として用いるHCFO-1224ydは低GWPであることから、作動媒体の漏れが発生した場合においても環境に対する負荷は小さい。また、HCFO-1224ydは、HCFO-1233zdに比べて熱安定性に優れる。 The system for thermal cycling used in the present invention is not particularly limited as long as it is a system for thermal cycling designed to be applicable to HCFO-1233zd as a working medium. When a working medium containing HCFO-1224yd is used as a working medium in place of HCFO-1233zd in a system for thermal cycling to which HCFO-1233zd can be applied as a working medium, the resulting thermal cycle system is HCFO as described below. It is possible to exhibit the same or more cycle performance as in the case of using −1233 zd. Furthermore, since HCFO-1224yd used as the working medium has a low GWP, the load on the environment is small even when the working medium leaks. In addition, HCFO-1224yd is superior in thermal stability to HCFO-1233zd.
<作動媒体>
 本発明の熱サイクルシステムにおいて、作動媒体はHCFO-1224ydを含有する。作動媒体はHCFO-1224ydに加えて、必要に応じて、後述する任意成分を含んでいてもよい。作動媒体の100質量%に対するHCFO-1224ydの含有割合は、40~100質量%が好ましく、60~100質量%がより好ましく、80~100質量%がさらに好ましく、作動媒体はHCFO-1224ydのみからなるのが最も好ましい。ただし、製造工程によってはHCFO-1224ydに不純物が若干量含まれてしまう場合もある。本発明においては、そのような場合も「HCFO-1224ydのみからなる」の範疇とする。該不純物の含有割合は、例えば、HCFO-1224ydと不純物の合計100質量%に対して1質量%未満が好ましい。
<Operating medium>
In the thermal cycle system of the present invention, the working medium contains HCFO-1224yd. The working medium may contain, in addition to HCFO-1224yd, if necessary, optional components described later. 40 to 100 mass% is preferable, 60 to 100 mass% is more preferable, 80 to 100 mass% is more preferable, and the content ratio of HCFO-1224 yd to 100 mass% of a working medium consists only of HCFO 12 24 yd. Is most preferred. However, depending on the manufacturing process, HCFO-1224yd may contain a slight amount of impurities. In the present invention, such a case is also in the category of “consisting only of HCFO-1224yd”. The content ratio of the impurities is, for example, preferably less than 1% by mass with respect to 100% by mass in total of HCFO-1224yd and the impurities.
(HCFO-1224yd)
 HCFO-1224ydは、燃焼性を抑えるハロゲンと、大気中のOHラジカルによって分解され易い炭素-炭素二重結合をその分子内に有する。HCFO-1224ydの作動媒体としての特性、具体的には、沸点、サイクル性能、GWP、熱安定性を、HCFO-1233zdとの比較において表1に示す。なお、HCFO-1224ydのサイクル性能は、HCFO-1233zdの値を1.00とした時の相対値である。
(HCFO-1224yd)
HCFO-1224yd has halogen which suppresses flammability and a carbon-carbon double bond which is easily decomposed by OH radicals in the atmosphere in its molecule. Properties of HCFO-1224yd as a working medium, specifically, boiling point, cycle performance, GWP, and thermal stability are shown in Table 1 in comparison with HCFO-1233zd. The cycle performance of HCFO-1224yd is a relative value when the value of HCFO-1233zd is 1.00.
 HCFO-1224ydには、E体(HCFO-1224yd(E))とZ体(HCFO-1224yd(Z))の2つの幾何異性体が存在する。本明細書においては、HCFO-1224ydの(E)、(Z)の表記がないものは、HCFO-1224yd(E)若しくはHCFO-1224yd(Z)、またはHCFO-1224yd(E)およびHCFO-1224yd(Z)の任意の割合の混合物を示す。以下、分子内に二重結合を有し、E体とZ体が存在する他の化合物についても同様に示す。表1には、HCFO-1224ydを代表するものとして、HCFO-1224yd(Z)の特性を記載する。 There are two geometric isomers of E-form (HCFO-1224yd (E)) and Z-form (HCFO-1224yd (Z)) in HCFO-1224yd. In the present specification, HCFO-1224yd without (E) or (Z) is HCFO-1224yd (E) or HCFO-1224yd (Z), or HCFO-1224yd (E) and HCFO-1224yd ( Z) shows a mixture of any proportions. Hereinafter, the same applies to other compounds having double bonds in the molecule and in which E form and Z form are present. Table 1 describes the properties of HCFO-1224yd (Z) as representative of HCFO-1224yd.
 同様にHCFO-1233zdには、E体とZ体の2つの幾何異性体が存在する。表1には、HCFO-1233zdを代表するものとして、HCFO-1233zd(E)の特性を記載する。 Similarly, in HCFO-1233zd, two geometric isomers, an E-form and a Z-form, exist. Table 1 describes the characteristics of HCFO-1233zd (E) as representative of HCFO-1233zd.
 サイクル性能は、後述する方法で求められる成績係数と冷凍能力で示される。各化合物における成績係数と冷凍能力は、HCFO-1233zd(E)を基準(1.00)とした相対値(以下、それぞれ「相対成績係数」または「相対冷凍能力」という。)で示す。熱安定性は、175℃、14日間の加熱後に、中和滴定法により測定された酸分発生量(加熱前の検体量に対する発生した酸分の量;質量ppm)で示す。GWPは、気候変動に関する政府間パネル(IPCC)第5次評価報告書(2014年)に示される、または該方法に準じて測定された100年の値である。本明細書において、GWPは特に断りのない限りこの値をいう。 The cycle performance is indicated by the coefficient of performance and the refrigeration capacity determined by the method described later. The coefficient of performance and the freezing capacity of each compound are shown as relative values based on HCFO-1233zd (E) (1.00) (hereinafter referred to as "relative coefficient of performance" or "relative freezing capacity" respectively). The thermal stability is indicated by the amount of acid generated (the amount of generated acid relative to the amount of sample before heating; mass ppm) measured by the neutralization titration method after heating at 175 ° C. for 14 days. GWP is a 100-year value shown in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (2014) or measured according to the method. In the present specification, GWP refers to this value unless otherwise noted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からHCFO-1224yd(Z)のGWPおよび相対成績係数は、HCFO-1233zd(E)と略同等であることがわかる。また、HCFO-1224yd(Z)の相対冷凍能力はHCFO-1233zd(E)に比べて優れている。なお相対成績係数が略同等であれば、HCFO-1233zdが適用可能な熱サイクル用システムに、HCFO-1233zdに代えてHCFO-1224ydを含む作動媒体を作動媒体として、そのまま用いることが可能である。また、HCFO-1224yd(Z)は、熱安定性が、HCFO-1233zd(E)に比べ大幅に優れている。 It can be seen from Table 1 that the GWP and relative coefficient of performance of HCFO-1224yd (Z) are approximately equivalent to HCFO-1233zd (E). In addition, the relative refrigeration capacity of HCFO-1224yd (Z) is superior to HCFO-1233zd (E). If the relative coefficient of performance is substantially equal, it is possible to use a working medium containing HCFO-1224yd instead of HCFO-1233zd as a working medium, as a working medium, for a thermal cycle system to which HCFO-1233zd can be applied. In addition, HCFO-1224yd (Z) is significantly superior to HCFO-1233zd (E) in thermal stability.
 HCFO-1224yd(Z)は、HCFO-1224yd(E)よりも化学的安定性が高く、作動媒体として好ましい。そのため、HCFO-1224ydにおけるHCFO-1224yd(Z)およびHCFO-1224yd(E)の割合は、HCFO-1224yd(Z):HCFO-1224yd(E)で示される質量比が50:50~100:0であることが好ましく70:30~100:0であることがより好ましい。HCFO-1224ydは、HCFO-1224yd(Z)のみで構成されることが特に好ましい。 HCFO-1224yd (Z) has higher chemical stability than HCFO 1224yd (E) and is preferable as a working medium. Therefore, the ratio of HCFO-1224yd (Z) and HCFO-1224yd (E) in HCFO-1224yd is such that the mass ratio represented by HCFO-1224yd (Z): HCFO-1224yd (E) is 50:50 to 100: 0. And preferably 70:30 to 100: 0. It is particularly preferred that HCFO-1224yd be composed only of HCFO-1224yd (Z).
 HCFO-1224yd(Z):HCFO-1224yd(E)が上記下限値以上、すなわち、HCFO-1224yd(Z)とHCFO-1224yd(E)の合計100質量%に対するHCFO-1224yd(Z)の割合が50質量%以上であれば、HCFO-1224ydがHCFO-1224yd(Z)を多く含むために、より長期間安定な作動媒体が得られる。 HCFO-1224yd (Z): HCFO-1224yd (E) is equal to or higher than the above lower limit, that is, the ratio of HCFO-1224yd (Z) to the total 100 mass% of HCFO-1224yd (Z) and HCFO-1224yd (E) is 50 If the content is more than% by mass, the HCFO-1224yd contains a large amount of HCFO-1224yd (Z), so that a stable working medium can be obtained for a longer period of time.
 上記のとおり作動媒体としての性能の観点から、HCFO-1224ydは、HCFO-1224yd(Z)のみで構成されることが好ましい。しかしながら、HCFO-1224ydのZ体とE体の蒸留分離等による製造コストの増大を抑制する観点からは、HCFO-1224yd(Z)とHCFO-1224yd(E)の合計100質量%に対して5質量%以下のHCFO-1224yd(E)を含有してもよい。 As described above, from the viewpoint of performance as a working medium, HCFO-1224yd is preferably composed only of HCFO-1224yd (Z). However, from the viewpoint of suppressing an increase in production cost due to distillation separation of Z form and E form of HCFO-1224yd, 5 mass per 100 mass% in total of HCFO 1224yd (Z) and HCFO 1224yd (E) % Or less of HCFO-1224 yd (E) may be contained.
(サイクル性能の評価方法)
 作動媒体のサイクル性能(成績係数(COP)、冷凍能力(Q))は、例えば、図1に概略構成図が示される冷凍サイクルシステムを用いて評価できる。
(Evaluation method of cycle performance)
The cycle performance (coefficient of performance (COP), refrigeration capacity (Q)) of the working medium can be evaluated, for example, using a refrigeration cycle system whose schematic configuration is shown in FIG.
 図1に示す冷凍サイクルシステム10は、作動媒体蒸気Aを圧縮して高温高圧の作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された作動媒体蒸気Bを冷却し、液化して低温高圧の作動媒体Cとする凝縮器12と、凝縮器12から排出された作動媒体Cを膨張させて低温低圧の作動媒体Dとする膨張弁13と、膨張弁13から排出された作動媒体Dを加熱して高温低圧の作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16とを具備して概略構成されるシステムである。 The refrigeration cycle system 10 shown in FIG. 1 cools and liquefies the working medium vapor B discharged from the compressor 11 by compressing the working medium vapor A into a high temperature and high pressure working medium vapor B and the working medium vapor B discharged from the compressor 11. A condenser 12 as a working medium C of low temperature and high pressure, an expansion valve 13 of expanding the working medium C discharged from the condenser 12 to a working medium D of low temperature and low pressure, and a working medium D discharged from the expansion valve 13 And a pump 15 for supplying the load fluid E to the evaporator 14 and a pump 16 for supplying the fluid F to the condenser 12. System.
 冷凍サイクルシステム10においては、以下の(i)~(iv)のサイクルが繰り返される。
 (i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする(以下、「AB過程」という。)。
 (ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される(以下、「BC過程」という。)。
In the refrigeration cycle system 10, the following cycles (i) to (iv) are repeated.
(I) The working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 to be a high temperature and high pressure working medium vapor B (hereinafter referred to as "AB process").
(Ii) The working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to form a working medium C of low temperature and high pressure. At this time, the fluid F is heated to become fluid F ′ and discharged from the condenser 12 (hereinafter referred to as “BC process”).
 (iii)凝縮器12から排出された作動媒体Cを膨張弁13にて膨張させて低温低圧の作動媒体Dとする(以下、「CD過程」という。)。
 (iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される(以下、「DA過程」という。)。
(Iii) The working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to form a low-temperature low-pressure working medium D (hereinafter referred to as "CD process").
(Iv) The working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to be a high-temperature low-pressure working medium vapor A. At this time, the load fluid E is cooled to be a load fluid E ′ and discharged from the evaporator 14 (hereinafter referred to as “DA process”).
 冷凍サイクルシステム10は、断熱・等エントロピ変化、等エンタルピ変化および等圧変化からなるサイクルシステムである。作動媒体の状態変化を、図2に示される圧力-エンタルピ線(曲線)図上に記載すると、A、B、C、Dを頂点とする台形として表すことができる。 The refrigeration cycle system 10 is a cycle system consisting of adiabatic and isentropic changes, isenthalpy changes and isobaric changes. The change in state of the working medium can be represented as a trapezoid with vertices A, B, C, and D, when it is described on the pressure-enthalpy line (curve) diagram shown in FIG.
 AB過程は、圧縮機11で断熱圧縮を行い、高温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする過程であり、図2においてAB線で示される。後述のとおり、作動媒体蒸気Aは過熱状態で圧縮機11に導入され、得られる作動媒体蒸気Bも過熱状態の蒸気である。 The AB process is a process in which adiabatic compression is performed by the compressor 11 to make the high temperature and low pressure working medium vapor A into a high temperature and high pressure working medium vapor B, which is shown by an AB line in FIG. As described later, the working medium vapor A is introduced into the compressor 11 in a superheated state, and the resulting working medium vapor B is also a superheated vapor.
 BC過程は、凝縮器12で等圧冷却を行い、高温高圧の作動媒体蒸気Bを低温高圧の作動媒体Cとする過程であり、図2においてBC線で示される。この際の圧力が凝縮圧である。圧力-エンタルピ線とBC線の交点のうち高エンタルピ側の交点Tが凝縮温度であり、低エンタルピ側の交点Tが凝縮沸点温度である。 The BC process is a process of performing isobaric cooling in the condenser 12 and making the high temperature / high pressure working medium vapor B into a low temperature / high pressure working medium C, and is shown by a BC line in FIG. The pressure at this time is the condensation pressure. Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature.
 CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の作動媒体Cを低温低圧の作動媒体Dとする過程であり、図2においてCD線で示される。なお、低温高圧の作動媒体Cにおける温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過冷却度(SC)となる。 The CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 to make the working medium C of low temperature and high pressure into the working medium D of low temperature and low pressure, which is shown by a CD line in FIG. Incidentally, if Shimese the temperature in the working medium C of low temperature and high pressure at T 3, T 2 -T 3 is (i) ~ supercooling degree of the working medium in the cycle of (iv) (SC).
 DA過程は、蒸発器14で等圧加熱を行い、低温低圧の作動媒体Dを高温低圧の作動媒体蒸気Aに戻す過程であり、図2においてDA線で示される。この際の圧力が蒸発圧である。圧力-エンタルピ線とDA線の交点のうち高エンタルピ側の交点Tは蒸発温度である。作動媒体蒸気Aの温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過熱度(SH)となる。なお、Tは作動媒体Dの温度を示す。 The DA process is a process in which isobaric heating is performed by the evaporator 14 to return the low-temperature low-pressure working medium D to the high-temperature low-pressure working medium vapor A, which is shown by a DA line in FIG. The pressure at this time is the evaporation pressure. Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA line is evaporating temperature. If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ~ superheat of the working medium in the cycle of (iv) (SH). Incidentally, T 4 denotes the temperature of the working medium D.
 作動媒体の冷凍能力(Q)と成績係数(COP)は、作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態における各エンタルピ、h、h、h、hを用いると、下式(1)、(2)からそれぞれ求められる。機器効率による損失、および配管、熱交換器における圧力損失はないものとする。 The refrigeration capacity (Q) and coefficient of performance (COP) of the working medium are the working medium A (evaporation, high temperature and low pressure), B (compression, high temperature and high pressure after compression), C (condensed, low temperature and high pressure), D (after expansion) When each enthalpy, h A , h B , h C , h D in each state of low temperature and low pressure) is used, it can be respectively obtained from the following formulas (1) and (2). There shall be no loss due to equipment efficiency, and no pressure loss in piping and heat exchangers.
 作動媒体のサイクル性能の算出に必要となる熱力学性質は、対応状態原理に基づく一般化状態方程式(Soave-Redlich-Kwong式)、および熱力学諸関係式に基づき算出できる。特性値が入手できない場合は、原子団寄与法に基づく推算手法を用い算出を行う。 The thermodynamic properties required to calculate the cycle performance of the working medium can be calculated based on the generalized equation of state (Soave-Redlich-Kwong equation) based on the corresponding state principle, and thermodynamic relations. If the characteristic value can not be obtained, calculation is performed using an estimation method based on the group contribution method.
 Q=h-h  …(1)
 COP=Q/圧縮仕事=(h-h)/(h-h)  …(2)
Q = h A −h D (1)
COP = Q / compression work = (h A −h D ) / (h B −h A ) (2)
 上記(h-h)で示されるQが冷凍サイクルの出力(kW)に相当し、(h-h)で示される圧縮仕事、例えば、圧縮機を運転するために必要とされる電力量が、消費された動力(kW)に相当する。また、Qは負荷流体を冷凍する能力を意味しており、Qが高いほど同一のシステムにおいて、多くの仕事ができることを意味する。言い換えると、大きなQを有する場合は、少量の作動媒体で目的とする性能が得られることを表し、システムの小型化が可能である。 The compression work indicated by (h B -h A ) corresponds to the output (kW) of the refrigeration cycle, and the Q shown by (h A -h D ) above is required to operate the compressor, for example The amount of power corresponds to the consumed power (kW). Also, Q means the ability to freeze the load fluid, and a higher Q means more work can be done in the same system. In other words, if it has a large Q, it indicates that the desired performance can be obtained with a small amount of working medium, and the system can be miniaturized.
 なお、以上の説明は冷凍サイクルの温度条件として以下の温度により評価を行った際の数値に基づくものである。
 蒸発温度;5℃(ただし、非共沸混合物の場合は、蒸発開始温度と蒸発完了温度の平均温度)
 凝縮完了温度;40℃(ただし、非共沸混合物の場合は、凝縮開始温度と凝縮完了温度の平均温度)
 過冷却度(SC);5℃
 過熱度(SH);0℃
 圧縮機効率:0.8
The above description is based on numerical values when the temperature conditions of the refrigeration cycle are evaluated at the following temperatures.
Evaporation temperature; 5 ° C (however, in the case of non-azeotropic mixture, the average temperature of the evaporation start temperature and the evaporation completion temperature)
Condensation completion temperature; 40 ° C (however, in the case of non-azeotropic mixture, average temperature of condensation start temperature and condensation completion temperature)
Degree of supercooling (SC); 5 ° C
Degree of superheat (SH); 0 ° C
Compressor efficiency: 0.8
(任意成分)
 本発明に用いる作動媒体は、本発明の効果を損なわない範囲でHCFO-1224yd以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。このような任意の化合物(任意成分)としては、例えば、HFC、HFO、HCFO-1224yd以外のHCFO、これら以外の、HCFO-1224ydとともに気化、液化するその他の任意成分が挙げられる。任意成分としては、HFC、HFO、HCFO-1224yd以外のHCFOが好ましい。
(Optional ingredient)
The working medium used in the present invention may optionally contain a compound generally used as a working medium, in addition to HCFO-1224yd, as long as the effects of the present invention are not impaired. Such optional compounds (optional components) include, for example, HFC, HFO, HCFO other than HCFO-1224yd, and other optional components which are vaporized and liquefied together with HCFO-1224yd. Preferred optional components are HFC, HFO, and HCFO other than HCFO-1224yd.
 任意成分としては、HCFO-1224ydと組み合わせて作動媒体とした際に、HCFO-1233zd用に設計された熱サイクル用システムに該作動媒体がHCFO-1233zdに代わって適用できる範囲で、上記相対成績係数、相対冷凍能力をより高める作用を有しながら、GWPを許容の範囲にとどめられる化合物が好ましい。作動媒体がHCFO-1224ydとの組合せにおいてこのような化合物を含むと、GWPを低く維持しながら、より良好なサイクル性能が得られる。 As an optional component, when the working medium is combined with HCFO-1224yd, the relative coefficient of performance is within the range where the working medium can be applied instead of HCFO-1233zd to a thermal cycle system designed for HCFO-1233zd. Preferred are compounds capable of keeping the GWP within an acceptable range while having the effect of further enhancing the relative freezing capacity. When the working medium contains such a compound in combination with HCFO-1224yd, better cycle performance is obtained while keeping the GWP low.
(HFC)
 任意成分のHFCとしては、上記観点から選択されることが好ましい。ここで、HFCは、HCFO-1224ydに比べてGWPが高いことが知られている。したがって、HCFO-1224ydと組合せるHFCとしては、上記作動媒体としてのサイクル性能を向上させ、GWPを許容の範囲にとどめる観点から、適宜選択されることが好ましい。
(HFC)
The HFC as an optional component is preferably selected from the above viewpoint. Here, HFC is known to have a higher GWP than HCFO-1224yd. Therefore, it is preferable that the HFC to be combined with HCFO-1224yd be appropriately selected from the viewpoint of improving the cycle performance as the working medium and keeping the GWP within the allowable range.
 オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCとして具体的には炭素数1~5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。 Specifically, HFCs having 1 to 5 carbon atoms are preferable as HFCs that have a small impact on the ozone layer and a small impact on global warming. The HFC may be linear, branched or cyclic.
 HFCとしては、ジフルオロメタン、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。 As HFC, difluoromethane, difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane and the like can be mentioned.
 なかでも、HFCとしては、オゾン層への影響が少なく、かつ冷凍サイクル特性が優れる点から、1,1,2,2-テトラフルオロエタン(HFC-134)、HFC-134a、HFC-245fa、1,1,1,3,3-ペンタフルオロブタン(HFC-365mfc)がより好ましく、HFC-134a、HFC-245fa、HFC-365mfcがさらに好ましい。HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among them, as HFC, 1,1,2,2-tetrafluoroethane (HFC-134), HFC-134a, HFC-245fa, 1 from the viewpoint of little influence on the ozone layer and excellent refrigeration cycle characteristics. 1,1,1,3,3-pentafluorobutane (HFC-365mfc) is more preferable, and HFC-134a, HFC-245fa, and HFC-365mfc are more preferable. One of HFCs may be used alone, or two or more thereof may be used in combination.
 本発明に用いられる作動媒体(100質量%)中のHFCの含有割合は、例えば、HFC-245faの場合、1~60質量%の範囲とすることで、作動媒体の成績係数の大きな低下を生じることなく、冷凍能力を向上できる。ここで、HFC-245faのGWPは1030と高いので、上記含有割合の範囲内で作動媒体としてのGWPを考慮しながらその含有割合を適宜調整する。HFC-245fa以外のHFCを用いる場合においても、GWPと作動媒体に要求されるサイクル性能に応じて適宜その含有量の制御を行うことができる。 In the case of HFC-245fa, for example, the content of HFC in the working medium (100% by mass) used in the present invention causes a large decrease in the coefficient of performance of the working medium by setting it in the range of 1 to 60% by mass. The refrigeration capacity can be improved without Here, since the GWP of HFC-245fa is as high as 1030, the content ratio is appropriately adjusted in consideration of the GWP as the working medium within the range of the content ratio. Even in the case of using HFCs other than HFC-245fa, the content thereof can be appropriately controlled according to the cycle performance required for the GWP and the working medium.
(HFO)
 HFOについても、上記HFCと同様の観点から選択されることが好ましい。なお、HFOであれば、GWPはHFCに比べて桁違いに低い。したがって、HCFO-1224ydと組み合わせるHFOとしては、GWPを考慮するよりも、上記作動媒体としてのサイクル性能を向上させることに留意して、適宜選択されることが好ましい。
(HFO)
The HFO is also preferably selected from the same viewpoint as the above-mentioned HFC. In the case of HFO, GWP is orders of magnitude lower than HFC. Therefore, it is preferable that the HFO to be combined with the HCFO-1224yd be appropriately selected in consideration of improving the cycle performance as the working medium rather than considering the GWP.
 HFOとしては、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2-ジフルオロエチレン(HFO-1132)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、3,3,3-トリフルオロプロペン(HFO-1243zf)、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(E))、(Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(Z))が挙げられる。 As HFOs, 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf), 1,1,2-triphenyl Fluoropropene (HFO-1243yc), (E) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), (Z) -1,2,3,3,3-pentafluoro Propene (HFO-1225ye (Z)), (E) -1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), (Z) -1,3,3,3-tetrafluoropropene ( HFO-1234ze (Z)), 3,3,3-trifluoropropene (HFO-1243zf), (E) -1,1,1,4,4,4-hexafluoro-2-b Down (HFO-1336mzz (E)), it includes (Z)-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (Z)).
 HFOとしては、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)、HFO-1336mzz(Z)、HFO-1243zfが好ましく、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)、HFO-1336mzz(Z)がより好ましい。HFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As HFO, HFO-1234yf, HFO-1234ze (E), HFO-1234ze (Z), HFO-1336mzz (Z), HFO-1243zf are preferable, and HFO-1234yf, HFO-1234ze (E), HFO-1234ze ( Z), HFO-1336mzz (Z) is more preferred. The HFO may be used alone or in combination of two or more.
(HCFO-1224yd以外のHCFO)
 HCFO-1224yd以外の任意成分としてのHCFOについても、上記HFCと同様の観点から選択されることが好ましい。なお、HCFO-1224yd以外であってもHCFOであれば、GWPはHFCに比べて桁違いに低い。したがって、HCFO-1224ydと組合せるHCFO-1224yd以外のHCFOとしては、GWPを考慮するよりも、上記作動媒体としてのサイクル性能を向上させることに留意して、適宜選択されることが好ましい。
(HCFO other than HCFO-1224yd)
The HCFO as an optional component other than HCFO-1224yd is also preferably selected from the same viewpoint as the above-mentioned HFC. In addition, even if it is HCFO other than HCFO-1224yd, GWP is orders of magnitude lower than HFC. Therefore, HCFOs other than HCFO-1224yd in combination with HCFO-1224yd are preferably selected appropriately in consideration of improving the cycle performance as the working medium rather than considering GWP.
 HCFO-1224yd以外のHCFOとしては、1-クロロ-2,2-ジフルオロエチレン(HCFO-1122)、1,2-ジクロロフルオロエチレン(HCFO-1121)、1-クロロ-2-フルオロエチレン(HCFO-1131)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)、1-クロロ-2,3,3-トリフルオロ-1-プロペン(HCFO-1233yd)およびHCFO-1233zdが挙げられる。 HCFO other than HCFO-1224yd is 1-chloro-2,2-difluoroethylene (HCFO-1122), 1,2-dichlorofluoroethylene (HCFO-1121), 1-chloro-2-fluoroethylene (HCFO-1131) And 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 1-chloro-2,3,3-trifluoro-1-propene (HCFO-1233yd) and HCFO-1233zd.
 なかでも、HCFO-1224yd以外のHCFOとしては、高い臨界温度を有し、耐久性、成績係数が優れる点から、HCFO-1233zdが好ましい。HCFO-1224yd以外のHCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among them, HCFO other than HCFO-1224yd is preferably HCFO-1233zd from the viewpoint of having high critical temperature and being excellent in durability and coefficient of performance. One HCFO other than HCFO-1224yd may be used alone, or two or more HCFOs may be used in combination.
 本発明に用いられる作動媒体(100質量%)中のHCFO-1224yd以外のHCFOの含有割合は、例えば、HCFO-1233zdの場合、1~60質量%の範囲とすることで、温度グライドを生じることなく高い成績係数を維持できる。ここで、HCFO-1233zdは熱安定性が劣るので、上記含有割合の範囲内で作動媒体としての安定性を考慮しながらその含有割合を適宜調整する。 In the case of HCFO-1233zd, the content ratio of HCFO other than HCFO-1224yd in the working medium (100% by mass) used in the present invention is, for example, in the range of 1 to 60% by mass to generate temperature glide. Maintain a high coefficient of performance. Here, since HCFO-1233zd is inferior in thermal stability, the content ratio thereof is appropriately adjusted while taking into consideration the stability as a working medium within the above content ratio range.
(その他の任意成分)
 本発明の熱サイクルシステムに用いる作動媒体は、上記任意成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)、トランス-1,2-ジクロロエチレン等を含有してもよい。その他の任意成分としてはオゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
(Other optional ingredients)
The working medium used in the heat cycle system of the present invention may contain carbon dioxide, hydrocarbons, chlorofluoroolefin (CFO), trans-1,2-dichloroethylene, etc. in addition to the above-mentioned optional components. As another optional component, a component which has less influence on the ozone layer and has less influence on global warming is preferable.
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As a hydrocarbon, propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like can be mentioned. The hydrocarbon may be used alone or in combination of two or more.
 上記作動媒体が炭化水素を含有する場合、その含有割合は作動媒体の100質量%に対して10質量%未満が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。炭化水素を含有する場合、作動媒体への鉱物系潤滑油の溶解性がより良好になる。 When the said working medium contains a hydrocarbon, less than 10 mass% is preferable with respect to 100 mass% of working media, as for the content rate, 5 mass% or less is more preferable, and 3 mass% or less is more preferable. When containing a hydrocarbon, the solubility of the mineral lubricating oil in the working medium is better.
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of CFO include chlorofluoropropene and chlorofluoroethylene. As CFO, 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 as a CFO, because the flammability of the working medium can be easily suppressed without significantly reducing the cycle performance of the working medium. Preferred is 3, 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) or 1,2-dichloro-1,2-difluoroethylene (CFO-1112). The CFO may be used alone or in combination of two or more.
 作動媒体がCFOを含有する場合、その含有割合は作動媒体の100質量%に対して10質量%未満が好ましく、8質量%以下がより好ましく、5質量%以下がさらに好ましい。CFOを含有することで、作動媒体の燃焼性を抑制しやすい。CFOの含有割合が上限値以下であれば、良好なサイクル性能が得られやすい。 When the working fluid contains CFO, the content thereof is preferably less than 10% by weight, more preferably 8% by weight or less, and still more preferably 5% by weight or less based on 100% by weight of the working fluid. By containing CFO, it is easy to suppress the combustibility of the working medium. If the content rate of CFO is below an upper limit, favorable cycle performance will be easy to be obtained.
 作動媒体が上記のようなその他の任意成分を含有する場合、作動媒体におけるその他の任意成分の合計の含有割合は、作動媒体100質量%に対して10質量%未満が好ましく、8質量%以下がより好ましく、5質量%以下がさらに好ましい。 When the working medium contains other optional components as described above, the content ratio of the total of the other optional components in the working medium is preferably less than 10% by mass and 100% by mass or less with respect to 100% by mass of the working medium More preferably, 5% by mass or less is more preferable.
<作動媒体組成物>
 作動媒体は、熱サイクルシステムへの適用に際して、通常、潤滑油と混合して作動媒体組成物として使用することができる。作動媒体組成物は、これら以外にさらに、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。
<Working medium composition>
The working medium can be used as a working medium composition, usually mixed with a lubricating oil, for application to a thermal cycling system. The working vehicle composition may further contain known additives such as stabilizers and leak detection substances in addition to these.
(潤滑油)
 潤滑油としては、従来からハロゲン化炭化水素からなる作動媒体とともに、作動媒体組成物に用いられる公知の潤滑油が特に制限なく採用できる。潤滑油として具体的には、含酸素系合成油(エステル系潤滑油、エーテル系潤滑油等)、フッ素系潤滑油、鉱物系潤滑油、炭化水素系合成油等が挙げられる。
(Lubricant)
As the lubricating oil, a known lubricating oil used in the working medium composition can be adopted without particular limitation, together with the working medium conventionally composed of halogenated hydrocarbons. Specific examples of the lubricating oil include oxygen-containing synthetic oils (ester-based lubricating oils, ether-based lubricating oils and the like), fluorine-based lubricating oils, mineral-based lubricating oils, hydrocarbon-based synthetic oils and the like.
 エステル系潤滑油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。 As ester-based lubricating oils, dibasic acid ester oils, polyol ester oils, complex ester oils, polyol carbonate oils and the like can be mentioned.
 エーテル系潤滑油としては、ポリビニルエーテル油や、ポリグリコール油等のポリオキシアルキレン油が挙げられる。 Examples of ether-based lubricating oils include polyvinyl ether oils and polyoxyalkylene oils such as polyglycol oils.
 フッ素系潤滑油としては、合成油(後述する鉱物油、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等。)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。 Examples of fluorine-based lubricating oils include compounds in which hydrogen atoms of synthetic oils (mineral oil, poly α-olefin, alkylbenzene, alkylnaphthalene, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, etc. Be
 鉱物系潤滑油としては、原油を常圧蒸留または減圧蒸留して得られた潤滑油留分を、精製処理(溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。 As a mineral-based lubricating oil, a lubricating oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil is subjected to purification treatment (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation The paraffinic mineral oil, the naphthenic mineral oil, etc. which refine | purified and refine | purified by appropriate | suitably refine | purifying, clay treatment etc. are mentioned.
 炭化水素系合成油としては、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。 Examples of hydrocarbon synthetic oils include poly α-olefins, alkylbenzenes and alkylnaphthalenes.
 潤滑油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 潤滑油としては、作動媒体との相溶性の点から、ポリオールエステル油、ポリビニルエーテル油およびポリグリコール油から選ばれる1種以上が好ましい。
The lubricating oils may be used alone or in combination of two or more.
The lubricating oil is preferably at least one selected from polyol ester oils, polyvinyl ether oils and polyglycol oils from the viewpoint of compatibility with the working medium.
 潤滑油の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、10~100質量部が好ましく、20~50質量部がより好ましい。 The addition amount of the lubricating oil may be in a range that does not significantly reduce the effects of the present invention, and is preferably 10 to 100 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the working medium.
(安定剤)
 安定剤は、熱および酸化に対する作動媒体の安定性を向上させる成分である。安定剤としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が特に制限なく採用できる。
(Stabilizer)
Stabilizers are components that improve the stability of the working medium against heat and oxidation. As the stabilizer, there are no particular limitations on known stabilizers conventionally used in thermal cycle systems, such as oxidation resistance improvers, heat resistance improvers, metal deactivators, etc., together with the working medium conventionally made of halogenated hydrocarbons. It can be adopted.
 耐酸化性向上剤および耐熱性向上剤としては、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)等が挙げられる。耐酸化性向上剤および耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the oxidation resistance improver and heat resistance improver, N, N'-diphenyl phenylene diamine, p-octyl diphenylamine, p, p'-dioctyl diphenylamine, N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine N- (p-dodecyl) phenyl-2-naphthylamine, di-1-naphthylamine, di-2-naphthylamine, N-alkylphenothiazine, 6- (t-butyl) phenol, 2,6-di- (t-butyl) And the like) phenol, 4-methyl-2,6-di- (t-butyl) phenol, 4,4'-methylenebis (2,6-di-t-butylphenol) and the like. As the oxidation resistance improver and the heat resistance improver, one type may be used alone, or two or more types may be used in combination.
 金属不活性剤としては、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメチルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トルトリアゾール、2-メチルベンズアミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩またはそれらの誘導体等が挙げられる。 Examples of metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimethylcaptothiadiazole, salicylidine-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzamidazole, 3,5- Dimethylpyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic acids or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Amine salts or derivatives thereof.
 安定剤の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、5質量部以下が好ましく、1質量部以下がより好ましい。 The addition amount of the stabilizer may be within a range not significantly reducing the effects of the present invention, and is preferably 5 parts by mass or less, and more preferably 1 part by mass or less with respect to 100 parts by mass of the working medium.
(漏れ検出物質)
 漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
 紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来、ハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の紫外線蛍光染料が挙げられる。
(Leakage detection substance)
As a leak detection substance, an ultraviolet fluorescent dye, an odor gas, an odor masking agent and the like can be mentioned.
Ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-A-10-502737, JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836. Known ultraviolet fluorescent dyes used in thermal cycle systems, as well as working media conventionally comprising halogenated hydrocarbons, such as those described in U.S. Pat.
 臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の香料が挙げられる。 As odor masking agents, known perfumes used in heat cycle systems together with working media conventionally comprising halogenated hydrocarbons such as those described in JP-A-2008-500437 and JP-A-2008-531836 are known. It can be mentioned.
 漏れ検出物質を用いる場合には、作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。 When a leak detection substance is used, a solubilizer may be used to improve the solubility of the leak detection substance in the working medium.
 可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等が挙げられる。 Examples of solubilizers include those described in JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836.
 漏れ検出物質の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、2質量部以下が好ましく、0.5質量部以下がより好ましい。 The addition amount of the leak detection substance may be within the range not significantly reducing the effects of the present invention, preferably 2 parts by mass or less and more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the working medium.
<熱サイクルシステム>
 本発明の熱サイクルシステムは、HCFO-1233zdが適用可能に設計された熱サイクル用システムにHCFO-1233zdに代えてHCFO-1224ydを含む作動媒体を適用して得られる。HCFO-1233zdが適用可能に設計された熱サイクル用システムへのHCFO-1224ydを含む作動媒体の適用に際して、熱サイクル用システムに変更はない。なお、HCFO-1224ydを含む作動媒体は、上記作動媒体組成物として熱サイクルシステムに含有されてもよい。HCFO-1233zdが適用可能に設計された熱サイクル用システムにHCFO-1224ydを含む作動媒体を適用することで、HCFO-1233zdを用いる場合に比べて、サイクル性能を同等以上とでき、さらに熱安定性が高められる。
<Thermal cycle system>
The thermal cycle system of the present invention is obtained by applying a working medium containing HCFO-1224yd instead of HCFO-1233zd to a thermal cycle system designed to be applicable to HCFO-1233zd. There is no change in the system for thermal cycling on application of the working medium containing HCFO-1224yd to the system for thermal cycling to which HCFO-1233zd is designed to be applicable. The working medium containing HCFO-1224yd may be contained in the thermal cycle system as the working medium composition. By applying a working medium containing HCFO-1224yd to a system for thermal cycling designed to be applicable to HCFO-1233zd, cycle performance can be made equal to or better than when using HCFO-1233zd, and thermal stability is further enhanced. Is enhanced.
 熱サイクル用システムとしては、例えば、HCFO-1233zdが適用可能に設計された、圧縮機、凝縮器や蒸発器等の熱交換器を含む熱サイクル用システムが挙げられる。熱サイクルシステム、例えば、冷凍サイクルにおいては、気体の作動媒体を圧縮機で圧縮し、凝縮器で冷却して圧力が高い液体をつくり、膨張弁で圧力を下げ、蒸発器で低温気化させて気化熱で熱を奪う機構を有する。HCFO-1224ydを含む作動媒体は、上記のとおりHCFO-1233zdと成績係数が略同等であることから、本発明においては、HCFO-1233zdが適用可能に設計された熱サイクル用システムに含まれる、作動媒体を熱サイクルに供するための圧縮機、凝縮器や蒸発器等の熱交換器等の各手段を、変更することなく使用できるものである。 As a system for thermal cycling, for example, a system for thermal cycling including heat exchangers such as a compressor, a condenser, and an evaporator, to which HCFO-1233zd is applicable, can be mentioned. In a thermal cycle system, for example, a refrigeration cycle, a gaseous working medium is compressed by a compressor, cooled by a condenser to produce a high pressure liquid, reduced by an expansion valve, and vaporized at a low temperature by an evaporator for vaporization. Has a mechanism to take heat with heat. Since the working medium containing HCFO-1224yd has a coefficient of performance that is substantially the same as that of HCFO-1233zd as described above, in the present invention, the working is included in a system for thermal cycling to which HCFO-1233zd is designed to be applicable. The respective means such as a compressor for supplying the medium to the heat cycle, and a heat exchanger such as a condenser and an evaporator can be used without any change.
 また、本発明の熱サイクルシステムは、HCFO-1233zdが適用可能に設計された熱サイクル用システムにHCFO-1233zdに代えてHCFO-1224ydを含む作動媒体を適用して得られるものであるが、2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)が適用可能に設計された熱サイクル用システムにHCFC-123に代えてHCFO-1224ydを含む作動媒体を適用してもよい。また、HFO-1336mzz(Z)が適用可能に設計された熱サイクルシステムにHFO-1336mzz(Z)に代えてHCFO-1224ydを含む作動媒体を適用してもよい。 The thermal cycle system of the present invention is obtained by applying a working medium containing HCFO-1224yd instead of HCFO-1233zd to a thermal cycle system designed to be applicable to HCFO-1233zd. And a working medium containing HCFO-1224yd instead of HCFC-123 may be applied to a thermal cycle system designed to be applicable to 2-dichloro-1,1,1-trifluoroethane (HCFC-123) . In addition, a working medium including HCFO-1224yd may be applied instead of HFO-1336mzz (Z) to a thermal cycle system designed to be applicable to HFO-1336mzz (Z).
 以下、HCFO-1233zdが適用可能に設計された熱サイクル用システムにHCFO-1224ydを含む作動媒体を適用した本発明の熱サイクルシステムの具体的な種類について説明する。 Hereinafter, a specific type of the thermal cycle system of the present invention in which the working medium containing HCFO-1224yd is applied to a thermal cycle system designed to be applicable to HCFO-1233zd will be described.
 本発明の熱サイクルシステムは、凝縮器で得られる温熱を利用するヒートポンプシステムであってもよく、蒸発器で得られる冷熱を利用する冷凍サイクルシステムであってもよい。本発明の熱サイクルシステムは、フラデッドエバポレーター式であってもよく、直接膨張式であってもよい。本発明の熱サイクルシステムにおいて、作動媒体との間で熱交換される作動媒体以外の他の物質は水または空気が好ましい。 The thermal cycle system of the present invention may be a heat pump system that utilizes the heat obtained by the condenser, or may be a refrigeration cycle system that utilizes the cold obtained by the evaporator. The thermal cycle system of the present invention may be a flooded evaporator type or a direct expansion type. In the thermal cycle system of the present invention, water or air is preferable as the substance other than the working medium to be heat-exchanged with the working medium.
 本発明の熱サイクルシステムとして、具体的には、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置および二次冷却機等が挙げられる。なかでも、本発明の熱サイクルシステムは、より高温の作動環境でも安定してサイクル性能を発揮できるため、屋外等に設置されることが多い空調機器として用いられることが好ましい。また、本発明の熱サイクルシステムは、冷凍・冷蔵機器として用いられることも好ましい。 Specific examples of the thermal cycle system of the present invention include refrigeration and refrigeration equipment, air conditioners, power generation systems, heat transport devices, secondary coolers and the like. Among them, since the thermal cycle system of the present invention can stably exhibit cycle performance even in a higher temperature operating environment, it is preferably used as an air conditioner which is often installed outdoors or the like. Moreover, it is also preferable that the heat cycle system of this invention is used as a freezing / refrigerating apparatus.
 本発明の熱サイクルシステムから作動媒体を回収するための作動媒体回収装置は、従来公知の作動媒体回収装置を用いることができる。 The working medium recovery device for recovering the working medium from the thermal cycle system of the present invention can use a conventionally known working medium recovery device.
 発電システムとしては、ランキンサイクルシステムによる発電システムが好ましい。発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。 The power generation system is preferably a Rankine cycle system power generation system. As a power generation system, specifically, the working medium is heated by geothermal energy, solar heat, middle to high temperature range waste heat at about 50 to 200 ° C. in an evaporator, and the working medium that has become high-temperature high-pressure steam is expanded An example is a system in which adiabatic expansion is performed in a machine, and a work generated by the adiabatic expansion drives a generator to generate electric power.
 また、本発明の熱サイクルシステムは、熱輸送装置であってもよい。熱輸送装置としては、潜熱輸送装置が好ましい。潜熱輸送装置としては、装置内に封入された作動媒体の蒸発、沸騰、凝縮等の現象を利用して潜熱輸送を行うヒートパイプおよび二相密閉型熱サイフォン装置が挙げられる。ヒートパイプは、半導体素子や電子機器の発熱部の冷却装置等、比較的小型の冷却装置に適用される。二相密閉型熱サイフォンは、ウィッグを必要とせず構造が簡単であることから、ガス-ガス型熱交換器、道路の融雪促進および凍結防止等に広く利用される。 The thermal cycle system of the present invention may be a heat transport device. As a heat transport device, a latent heat transport device is preferable. Examples of the latent heat transport device include a heat pipe that performs latent heat transport utilizing phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device, and a two-phase closed thermosiphon device. The heat pipe is applied to a relatively small cooling device such as a cooling device for a semiconductor element or a heat generating portion of an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for gas-to-gas heat exchangers, snow melting on roads, prevention of freezing, and the like.
 冷凍・冷蔵機器として、具体的には、ショーケース(内蔵型ショーケース、別置型ショーケース等)、業務用冷凍・冷蔵庫、自動販売機、製氷機等が挙げられる。 Specific examples of the refrigeration / refrigeration equipment include showcases (built-in showcases, separately mounted showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
 空調機器として、具体的には、ルームエアコン、パッケージエアコン(店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン等)、熱源機器チリングユニット、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等が挙げられる。 As air conditioners, specifically, room air conditioners, package air conditioners (package air conditioners for buildings, package air conditioners for buildings, equipment package air conditioners, etc.), heat source equipment chilling units, gas engine heat pumps, train air conditioners, car air conditioners Etc.
 熱源機器チリングユニットとしては、例えば、容積圧縮式冷凍機、遠心式冷凍機が挙げられる。なかでも、次に説明する遠心式冷凍機は作動媒体の充填量が多いので、本発明の効果をより顕著に得ることができるため好ましい。 Examples of the heat source equipment chilling unit include a volumetric compression type refrigerator and a centrifugal type refrigerator. Among them, the centrifugal refrigerator to be described next is preferable because the effect of the present invention can be more remarkably obtained because the filling amount of the working medium is large.
 ここで、遠心式冷凍機は、遠心圧縮機を用いた冷凍機である。遠心式冷凍機は、蒸気圧縮式の冷凍機の一種であり、通常、ターボ冷凍機とも言われる。遠心圧縮機は、羽根車を備えており、回転する羽根車で作動媒体を外周部へ吐き出すことで圧縮を行う。遠心式冷凍機は、オフィスビル、地域冷暖房、病院での冷暖房の他、半導体工場、石油化学工業での冷水製造プラント等に用いられている。 Here, the centrifugal refrigerator is a refrigerator using a centrifugal compressor. A centrifugal refrigerator is a type of vapor compression refrigerator, and is generally referred to as a turbo refrigerator. A centrifugal compressor includes an impeller and performs compression by discharging a working medium to the outer peripheral portion by the rotating impeller. Centrifugal refrigerators are used in office buildings, district heating and cooling, heating and cooling in hospitals, semiconductor factories, cold water production plants in the petrochemical industry, and the like.
 遠心式冷凍機としては、低圧型、高圧型のいずれであってもよいが、低圧型の遠心式冷凍機であることが好ましい。なお、低圧型とは、例えば、2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)、HFC-245fa、HCFO-1233zdのような高圧ガス保安法の適用を受けない作動媒体、すなわち、「常用の温度において、圧力0.2MPa以上となる液化ガスで現にその圧力が0.2MPa以上であるもの、または圧力が0.2MPa以上となる場合の温度が35℃以下である液化ガス」に該当しない作動媒体を用いた遠心式冷凍機をいう。 The centrifugal refrigerator may be either a low pressure type or a high pressure type, but is preferably a low pressure type centrifugal refrigerator. In addition, with the low pressure type, for example, operation that does not receive the application of high pressure gas safety method such as 2, 2-dichloro-1,1,1-trifluoroethane (HCFC-123), HFC-245fa, HCFO-1233zd Medium, that is, "a liquefied gas which has a pressure of 0.2 MPa or more at ordinary temperature, and which has a pressure of 0.2 MPa or more at present, or a temperature of 35 ° C. or less when the pressure is 0.2 MPa or more This refers to a centrifugal refrigerator that uses a working medium that does not fall under the term "liquefied gas".
 以下に、本発明に係る遠心式冷凍機の一実施形態について、図3を用いて説明する。図3には、遠心式冷凍機100の概略構成図が示されている。遠心式冷凍機100は、遠心圧縮機(以下、「圧縮機」という。)21と、該圧縮機21によって圧縮された高圧ガス作動媒体を凝縮する凝縮器22と、該凝縮器22において凝縮した高圧液作動媒体を膨張させる膨張弁23と、該膨張弁23によって膨張した低圧液作動媒体を蒸発させる蒸発器24とを備えている。 Hereinafter, an embodiment of a centrifugal refrigerator according to the present invention will be described with reference to FIG. The schematic block diagram of the centrifugal refrigerator 100 is shown by FIG. The centrifugal refrigerator 100 includes a centrifugal compressor (hereinafter referred to as "compressor") 21, a condenser 22 for condensing a high pressure gas working medium compressed by the compressor 21, and a condenser 22 for condensing the high pressure gas working medium. The expansion valve 23 expands the high pressure liquid working medium, and the evaporator 24 evaporates the low pressure liquid working medium expanded by the expansion valve 23.
 遠心式冷凍機100が含有する作動媒体は、上に説明したHCFO-1224ydを含む作動媒体である。該作動媒体は、圧縮機21、凝縮器22、膨張弁23、蒸発器24、圧縮機21の順にこれらを繋ぐように配設された作動媒体用配管20を、高圧ガス、高圧液、低圧液等の気相または液相の状態で循環する。作動媒体用配管20を示す実線とともに示す矢印は作動媒体の流れの向きを示す。作動媒体は、これを含む作動媒体組成物として遠心式冷凍機100に投入されてもよい。 The working medium contained in the centrifugal refrigerator 100 is a working medium containing the HCFO-1224yd described above. The working medium is a high pressure gas, a high pressure liquid, a low pressure liquid, and a working medium pipe 20 provided to connect the compressor 21, the condenser 22, the expansion valve 23, the evaporator 24, and the compressor 21 in this order. Etc. It circulates in the state of gas phase or liquid phase. The arrows shown with a solid line indicating the working fluid pipe 20 indicate the flow direction of the working fluid. The working medium may be introduced into the centrifugal refrigerator 100 as a working medium composition containing the same.
 圧縮機21は、電動機31によって回転駆動される遠心羽根車を備えている。遠心羽根車は、例えば2段圧縮式とされる。ただし、1段圧縮式であっても、3段以上の圧縮式であってもよい。圧縮機21の作動媒体入口には、作動媒体流量を調節する入口ベーン32が設けられている。この入口ベーン32の開度は、制御装置33によって制御される。 The compressor 21 includes a centrifugal impeller that is rotationally driven by the electric motor 31. The centrifugal impeller is, for example, a two-stage compression type. However, it may be a one-stage compression type or a three or more-stage compression type. An inlet vane 32 is provided at the working medium inlet of the compressor 21 to adjust the working medium flow rate. The opening degree of the inlet vanes 32 is controlled by the controller 33.
 電源34からの入力周波数がインバータ35によって変更されるようになっており、これにより、電動機31の回転数が制御される。インバータ35から電動機31に送られる指示周波数は、制御装置33内に設けられた回転数制御部33aによって変更される。ここで、図3中の一点鎖線は電気信号の経路を示し、該経路(一点鎖線)とともに示す矢印は該信号の向きを示す。 The input frequency from the power supply 34 is changed by the inverter 35, whereby the rotational speed of the motor 31 is controlled. The instruction frequency sent from the inverter 35 to the electric motor 31 is changed by the rotation speed control unit 33 a provided in the control device 33. Here, the dashed-dotted line in FIG. 3 shows the path | route of an electrical signal, The arrow shown with this path | route (dashed-dotted line) shows direction of this signal.
 凝縮器22には、凝縮器22内の作動媒体圧力(凝縮圧力)Pcを計測する圧力センサ25が設けられている。この圧力センサ25の出力は、制御装置33に入力される。また、凝縮器22には、凝縮器22内の作動媒体と熱交換して温水を得る温水取得手段26aが設けられている。この温水取得手段26aの温水出口には温水出口温度センサ26bが、温水入口には温水入口温度センサ26cが、それぞれ設けられている。温水出口温度センサ26bの出力(温水出口温度)および温水入口温度センサ26cの出力(温水入口温度)は、制御装置33に入力される。 The condenser 22 is provided with a pressure sensor 25 that measures the working medium pressure (condensing pressure) Pc in the condenser 22. The output of the pressure sensor 25 is input to the controller 33. Further, the condenser 22 is provided with a hot water acquisition means 26 a which exchanges heat with the working medium in the condenser 22 to obtain hot water. A hot water outlet temperature sensor 26b is provided at the hot water outlet of the hot water acquisition means 26a, and a hot water inlet temperature sensor 26c is provided at the hot water inlet. The output of the hot water outlet temperature sensor 26 b (hot water outlet temperature) and the output of the hot water inlet temperature sensor 26 c (hot water inlet temperature) are input to the control device 33.
 遠心式冷凍機100は、このように作動媒体と熱交換される物質として水を使用している。図3において、温水取得手段26aを点線で示し、温水取得手段26aを流れる温水の流れる向きを点線上に矢印で示した。また、以下の冷水取得手段30aにおいても同様に表示した。 The centrifugal refrigerator 100 uses water as a substance that is thus heat-exchanged with the working medium. In FIG. 3, the hot water acquisition means 26a is indicated by a dotted line, and the flow direction of the hot water flowing through the hot water acquisition means 26a is indicated by an arrow on the dotted line. Moreover, it displayed similarly also in the following cold-water acquisition means 30a.
 膨張弁23は、制御装置33内に設けられた膨張弁開度制御部33bによって、その開度が制御される。凝縮器22と蒸発器24との間には、ホットガスバイパス配管27が設けられている。このホットガスバイパス配管27によって、凝縮器22内にある高圧の作動媒体ガスが蒸発器24へと流されるようになっている。ホットガスバイパス配管27には、ホットガスバイパス弁28が設けられている。このホットガスバイパス弁28の開度調整によって、ホットガスバイパス配管27内を流れる作動媒体流量が調整され、低冷凍能力時の圧縮機21への吸込み作動媒体ガス流量を確保する。 The degree of opening of the expansion valve 23 is controlled by an expansion valve opening degree control unit 33 b provided in the control device 33. A hot gas bypass pipe 27 is provided between the condenser 22 and the evaporator 24. The hot gas bypass pipe 27 allows the high pressure working medium gas in the condenser 22 to flow to the evaporator 24. The hot gas bypass pipe 27 is provided with a hot gas bypass valve 28. By adjusting the opening degree of the hot gas bypass valve 28, the working medium flow rate flowing in the hot gas bypass piping 27 is adjusted, and the suction working medium gas flow rate to the compressor 21 at the low refrigeration capacity is secured.
 蒸発器24には、蒸発器24内の作動媒体圧力(蒸発圧力)Peを計測する圧力センサ29が設けられている。この圧力センサ29の出力は、制御装置33に入力される。また、蒸発器24には、蒸発器24内の作動媒体と熱交換して冷水を得る冷水取得手段30aが設けられている。この冷水取得手段30aの冷水出口には、冷水出口温度センサ30bが、冷水入口には、冷水入口温度センサ30cが設けられている。冷水出口温度センサ30bの出力(冷水出口温度)および冷水入口温度センサ30cの出力(冷水入口温度)は、制御装置33に入力される。 The evaporator 24 is provided with a pressure sensor 29 that measures the working medium pressure (evaporation pressure) Pe in the evaporator 24. The output of the pressure sensor 29 is input to the controller 33. In addition, the evaporator 24 is provided with cold water acquisition means 30 a which exchanges heat with the working medium in the evaporator 24 to obtain cold water. A cold water outlet temperature sensor 30b is provided at the cold water outlet of the cold water acquisition means 30a, and a cold water inlet temperature sensor 30c is provided at the cold water inlet. The output of the cold water outlet temperature sensor 30 b (cold water outlet temperature) and the output of the cold water inlet temperature sensor 30 c (cold water inlet temperature) are input to the controller 33.
 遠心式冷凍機の圧縮機の作動点は、流量変数θと圧力変数Ωで決まる。下記に示す式のとおり、流量変数θおよび圧力変数Ωはどちらも音速をパラメータとして含むため、作動媒体の音速は、遠心式冷凍機の圧縮機の羽根車の設計に影響を及ぼす。
 流量変数θ=風量[m/s]÷音速[m/s]÷(羽根車直径[m])
 圧力変数Ω=断熱ヘッド[m]×重力加速度[m/s]÷(音速[m/s])
The operating point of the centrifugal refrigerator compressor is determined by the flow rate variable θ and the pressure variable Ω. Since the flow rate variable θ and the pressure variable Ω both include the speed of sound as a parameter, as described below, the speed of sound of the working medium affects the design of the compressor refrigerator impeller of the centrifugal refrigerator.
Flow rate variable θ = air volume [m 3 / s] / sound velocity [m / s] / (impeller diameter [m]) 2
Pressure variable Ω = adiabatic head [m] × gravitational acceleration [m / s 2 ] ÷ (sound velocity [m / s]) 2
 本発明においては、HCFO-1224ydを含む作動媒体、特にはHCFO-1224ydの音速がHCFO-1233zdと同等であることから、上記のようにしてHCFO-1233zd用に設計された遠心式冷凍機の設計を変更することなく使用可能である。 In the present invention, the working medium containing HCFO-1224yd, in particular, since the sound velocity of HCFO-1224yd is equivalent to that of HCFO-1233zd, the design of a centrifugal refrigerator designed for HCFO-1233zd as described above It can be used without changing it.
 なお、熱サイクルシステムの稼働に際しては、水分の混入や、酸素等の不凝縮性気体の混入による不具合の発生を避けるために、これらの混入を抑制する手段を設けることが好ましい。 In addition, in order to avoid generation | occurrence | production of the malfunction by mixing of water, and mixing of noncondensable gas, such as oxygen, it is preferable to provide the means to suppress these mixing in the case of operation | movement of a thermal cycle system.
 熱サイクルシステム内に水分が混入すると、特に低温で使用される際に問題が生じる場合がある。例えば、キャピラリーチューブ内での氷結、作動媒体や潤滑油の加水分解、これにより発生した酸成分による材料劣化、コンタミナンツの発生等の問題が発生する。特に、潤滑油がポリグリコール油、ポリオールエステル油等である場合は、吸湿性が極めて高く、また、加水分解反応を生じやすく、潤滑油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。したがって、潤滑油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を制御する必要がある。 The inclusion of moisture in the thermal cycling system can cause problems, especially when used at low temperatures. For example, there are problems such as freezing in a capillary tube, hydrolysis of a working medium and lubricating oil, material degradation due to the acid component generated thereby, and generation of contamination. In particular, when the lubricating oil is polyglycol oil, polyol ester oil, etc., the hygroscopicity is extremely high, and the hydrolysis reaction is apt to occur, the characteristics as the lubricating oil deteriorate, and the long-term reliability of the compressor is impaired. It becomes a big cause. Therefore, in order to suppress the hydrolysis of lubricating oil, it is necessary to control the water concentration in the thermal cycle system.
 熱サイクルシステム内の水分濃度を制御する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト等)等の水分除去手段を用いる方法が挙げられる。乾燥剤は、液状の作動媒体またはこれを含む作動媒体組成物と接触させることが、脱水効率の点で好ましい。例えば、凝縮器の出口、または蒸発器の入口に乾燥剤を配置して、作動媒体またはこれを含む作動媒体組成物と接触させることが好ましい。 As a method of controlling the water concentration in the heat cycle system, a method using a water removing means such as a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned. It is preferable in terms of dewatering efficiency that the desiccant be in contact with a liquid working medium or a working medium composition containing the same. For example, it is preferable to place a desiccant at the outlet of the condenser or at the inlet of the evaporator to contact the working medium or the working medium composition containing it.
 乾燥剤としては、乾燥剤と作動媒体またはこれを含む作動媒体組成物との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。 As the desiccant, a zeolitic desiccant is preferred in view of the chemical reactivity between the desiccant and the working medium or the working medium composition containing the same, and the hygroscopic ability of the desiccant.
 ゼオライト系乾燥剤としては、従来の鉱物系潤滑油に比べて吸湿量の高い潤滑油を用いる場合には、吸湿能力に優れる点から、下式(C)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
 M2/nO・Al・xSiO・yHO  …(C)
 ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
When a lubricating oil having a high moisture absorption amount is used as a zeolite-based desiccant compared to a conventional mineral-based lubricating oil, the compound represented by the following formula (C) is the main component from the viewpoint of excellent moisture absorption capacity. Zeolite based desiccants are preferred.
M 2 / n O · Al 2 O 3 · x SiO 2 · y H 2 O (C)
However, M is an element of Group 1 such as Na and K or an element of Group 2 such as Ca, n is a valence of M, and x and y are values determined by the crystal structure. The pore size can be adjusted by changing M.
 乾燥剤の選定においては、細孔径および破壊強度が重要である。作動媒体やこれを含む作動媒体組成物が含有する成分(以下、「作動媒体等」)の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、作動媒体等が乾燥剤中に吸着され、その結果、作動媒体等と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。 The pore size and the breaking strength are important in the selection of the desiccant. When a desiccant having a pore diameter larger than the molecular diameter of the working medium or a component (hereinafter, "working medium etc.") contained in the working medium composition containing the same, the working medium etc. is adsorbed in the desiccant As a result, a chemical reaction between the working medium and the like and the desiccant occurs, which causes undesirable phenomena such as generation of noncondensable gas, reduction in strength of the desiccant, and reduction in adsorption capacity.
 したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5オングストローム以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。作動媒体等の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、作動媒体等を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。言い換えると、作動媒体等の乾燥剤への吸着が起こりにくいことから、熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。 Therefore, as the desiccant, it is preferable to use a zeolite-based desiccant with a small pore size. In particular, a sodium-potassium A-type synthetic zeolite having a pore size of 3.5 angstroms or less is preferable. By applying the sodium-potassium A-type synthetic zeolite having a pore diameter smaller than the molecular diameter of the working medium or the like, it is possible to selectively adsorb and remove only the water in the heat cycle system without adsorbing the working medium or the like. In other words, since adsorption to the desiccant such as the working medium does not easily occur, thermal decomposition hardly occurs, and as a result, it is possible to suppress the deterioration of the materials constituting the thermal cycle system and the generation of contaminants.
 ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの弁や配管細部の詰まりの原因となり、大きすぎると乾燥能力が低下するため、粒度の代表値として約0.5~5mmが好ましい。形状としては、粒状または円筒状が好ましい。 If the size of the zeolitic desiccant is too small, it may cause clogging of valves and piping details of the thermal cycle system, and if it is too large, the drying ability may be reduced, so the particle size is preferably about 0.5 to 5 mm. The shape is preferably granular or cylindrical.
 ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等。)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等。)を併用してもよい。 The zeolitic desiccant can be made into an arbitrary shape by solidifying powdered zeolite with a binder (bentonite, etc.). Other desiccants (silica gel, activated alumina, etc.) may be used in combination as long as the zeolite-based desiccant is mainly used.
 さらに、熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、作動媒体や潤滑油と反応し、分解を促進する。 Furthermore, if the non-condensable gas is mixed in the thermal cycle system, it has an adverse effect of poor heat transfer in the condenser and the evaporator and an increase in operating pressure, so it is necessary to suppress the mixing as much as possible. In particular, oxygen, which is one of the noncondensable gases, reacts with the working medium and the lubricating oil to promote decomposition.
 不凝縮性気体濃度は、作動媒体の気相部において、作動媒体に対する容積割合で1.5体積%以下が好ましく、0.5体積%以下が特に好ましい。 The noncondensable gas concentration is preferably 1.5% by volume or less by volume ratio to the working medium in the gas phase portion of the working medium, and particularly preferably 0.5% by volume or less.
[熱サイクル方法]
 本発明の熱サイクル方法は、HCFO-1233zdが適用可能に設計された熱サイクル用システムにHCFO-1233zdに代えてHCFO-1224ydを含む作動媒体を適用した本発明の熱サイクルシステムを用いて行われる熱サイクル方法である。
[Thermal cycle method]
The thermal cycling method of the present invention is performed using the thermal cycling system of the present invention in which a working medium containing HCFO-1224yd is used in place of HCFO-1233zd in a thermal cycling system designed to be applicable to HCFO-1233zd. It is a thermal cycle method.
 上記のとおりHCFO-1224ydを含む作動媒体は、HCFO-1233zdと成績係数が略同等であることから、本発明の方法においては、HCFO-1233zdを作動媒体として用いた場合の稼働条件を特に変更することなく熱サイクルを実行できる。また、サイクル性能をHCFO-1233zdを用いた場合と同等またはそれ以上とでき、さらに熱安定性を向上できる。 As described above, since the working medium containing HCFO-1224yd has substantially the same coefficient of performance as HCFO-1233zd, the method of the present invention particularly changes the operating conditions when HCFO-1233zd is used as the working medium. It is possible to carry out thermal cycling without In addition, the cycle performance can be made equal to or higher than when HCFO-1233zd is used, and the thermal stability can be further improved.
 例えば、図3に概略構成図が示されるような本発明の遠心式冷凍機を用いて熱サイクルを行う場合には、作動媒体流量を調節する入口ベーン32の開度、インバータ35から電動機31に送られる指示周波数、膨張弁23の開度等を制御する制御装置33やその他の設定を、HCFO-1233zdを作動媒体として用いた場合と略同様とすることで、HCFO-1233zdを作動媒体として用いた場合と同様またはそれ以上のサイクル性能が得られ、さらに熱安定性が向上する。 For example, when thermal cycling is performed using the centrifugal refrigerator of the present invention as schematically shown in FIG. 3, the opening degree of the inlet vane 32 for adjusting the working medium flow rate, the inverter 35 to the motor 31 The HCFO-1233zd is used as the working medium by setting the sent instruction frequency, the control device 33 for controlling the opening degree of the expansion valve 23, and other settings substantially the same as when using the HCFO-1233zd as the working medium. Cycle performance similar to or better than that of the conventional case can be obtained, and the thermal stability is further improved.
 以上説明した本発明の熱サイクルシステムおよびこれを用いた熱サイクル方法においては、HCFO-1233zdを用いるように設計された熱サイクル用システムをそのまま用いることで経済性に優れるとともに、HCFO-1233zdを用いた場合に比べて、同等またはそれ以上のサイクル性能が得られる。また、作動媒体として用いるHCFO-1224ydは低GWPであることから、作動媒体の漏れが発生した場合においても環境に対する負荷は小さい。さらに、HCFO-1224ydはHCFO-1233zdに比べて熱安定性に優れる。 In the thermal cycle system of the present invention described above and the thermal cycle method using the same, using the thermal cycle system designed to use HCFO-1233zd as it is is excellent in economy and HCFO-1233zd is used. The cycle performance equal to or more than that in the case of the present invention can be obtained. In addition, since HCFO-1224yd used as the working medium has a low GWP, the load on the environment is small even when the working medium leaks. Furthermore, HCFO-1224yd is superior in thermal stability to HCFO-1233zd.
 10…冷凍サイクルシステム、11…圧縮機、12…凝縮器、13…膨張弁、14…蒸発器、15,16…ポンプ
 100…遠心式冷凍機、20…作動媒体用配管、21…遠心圧縮機、22…凝縮器、23…膨張弁、24…蒸発器、31…電動機、32…入口ベーン、33…制御装置、34…電源、35…インバータ。
DESCRIPTION OF SYMBOLS 10 ... Refrigeration cycle system, 11 ... Compressor, 12 ... Condenser, 13 ... Expansion valve, 14 ... Evaporator, 15, 16 ... Pump 100 ... Centrifugal refrigerator, 20 ... Piping for working media, 21 ... Centrifugal compressor , 22: Condenser, 23: Expansion valve, 24: Evaporator, 31: Electric motor, 32: Inlet vane, 33: Control device, 34: Power supply, 35: Inverter.

Claims (9)

  1.  作動媒体と熱サイクル用システムとを備える熱サイクルシステムであって、
     前記熱サイクル用システムは1-クロロ-3,3,3-トリフルオロプロペンを作動媒体として用いるのに適した熱サイクル用システムであり、
     前記作動媒体は1-クロロ-2,3,3,3-テトラフルオロプロペンを含む、
     熱サイクルシステム。
    A thermal cycle system comprising a working medium and a system for thermal cycling, comprising:
    The system for thermal cycling is a system for thermal cycling suitable for using 1-chloro-3,3,3-trifluoropropene as a working medium,
    The working medium comprises 1-chloro-2,3,3,3-tetrafluoropropene,
    Thermal cycle system.
  2.  前記作動媒体の100質量%に対する1-クロロ-2,3,3,3-テトラフルオロプロペンの含有割合が40~100質量%である請求項1に記載の熱サイクルシステム。 The heat cycle system according to claim 1, wherein a content ratio of 1-chloro-2,3,3,3-tetrafluoropropene to 100% by mass of the working medium is 40 to 100% by mass.
  3.  前記作動媒体が1-クロロ-2,3,3,3-テトラフルオロプロペンのみからなる請求項1または2に記載の熱サイクルシステム。 The heat cycle system according to claim 1 or 2, wherein the working medium comprises only 1-chloro-2,3,3,3-tetrafluoropropene.
  4.  前記1-クロロ-2,3,3,3-テトラフルオロプロペンにおける(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペンおよび(E)-1-クロロ-2,3,3,3-テトラフルオロプロペンの割合は、(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン:(E)-1-クロロ-2,3,3,3-テトラフルオロプロペンで示される質量比で、50:50~100:0である請求項1~3のいずれか1項に記載の熱サイクルシステム。 (Z) -1-chloro-2,3,3,3-tetrafluoropropene and (E) -1-chloro-2,3,3 in the above 1-chloro-2,3,3,3-tetrafluoropropene The proportion of 1, 3-tetrafluoropropene is (Z) -1-chloro-2,3,3,3-tetrafluoropropene: (E) -1-chloro-2,3,3,3-tetrafluoropropene The thermal cycle system according to any one of claims 1 to 3, wherein the mass ratio is 50:50 to 100: 0.
  5.  前記1-クロロ-2,3,3,3-テトラフルオロプロペンは(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペンのみからなる請求項4に記載の熱サイクルシステム。 The heat cycle system according to claim 4, wherein the 1-chloro-2,3,3,3-tetrafluoropropene consists only of (Z) -1-chloro-2,3,3,3-tetrafluoropropene.
  6.  前記熱サイクルシステムが冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である請求項1~5のいずれか1項に記載の熱サイクルシステム。 The thermal cycle system according to any one of claims 1 to 5, wherein the thermal cycle system is a refrigeration / refrigerator, an air conditioner, a power generation system, a heat transport device or a secondary cooler.
  7.  前記熱サイクルシステムが遠心式冷凍機である請求項1~5のいずれか1項に記載の熱サイクルシステム。 The thermal cycle system according to any one of claims 1 to 5, wherein the thermal cycle system is a centrifugal refrigerator.
  8.  前記熱サイクルシステムが低圧型遠心式冷凍機である請求項1~5のいずれか1項に記載の熱サイクルシステム。 The thermal cycle system according to any one of claims 1 to 5, wherein the thermal cycle system is a low pressure centrifugal refrigerator.
  9.  請求項1~8のいずれか1項に記載の熱サイクルシステムを用いた熱サイクル方法。 A thermal cycle method using the thermal cycle system according to any one of claims 1 to 8.
PCT/JP2018/027905 2017-07-26 2018-07-25 Heat cycle system and heat cycle method using same WO2019022140A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017144772 2017-07-26
JP2017-144772 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019022140A1 true WO2019022140A1 (en) 2019-01-31

Family

ID=65039821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027905 WO2019022140A1 (en) 2017-07-26 2018-07-25 Heat cycle system and heat cycle method using same

Country Status (1)

Country Link
WO (1) WO2019022140A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3978731A4 (en) * 2019-05-30 2023-06-14 Zhejiang Research Institute of Chemical Industry Co., Ltd. Environment-friendly heat pipe working fluid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157763A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2013249326A (en) * 2012-05-30 2013-12-12 Central Glass Co Ltd Heat transfer medium containing fluoroalkene
WO2013184865A1 (en) * 2012-06-06 2013-12-12 E.I. Du Pont De Nemours And Company PROCESS FOR THE REDUCTION OF RfCCX IMPURITIES IN FLUOROOLEFINS
JP2014504675A (en) * 2011-02-04 2014-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions containing certain haloolefins and their use
WO2014080868A1 (en) * 2012-11-20 2014-05-30 旭硝子株式会社 Working medium for rankine cycle, and rankine cycle system
CN104449580A (en) * 2013-09-24 2015-03-25 中化蓝天集团有限公司 Composition containing HFC-161 and stabilizer
US20160031209A1 (en) * 2014-07-30 2016-02-04 SCREEN Holdings Co., Ltd. Printing apparatus and printing method
WO2016171264A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504675A (en) * 2011-02-04 2014-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions containing certain haloolefins and their use
WO2012157763A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2013249326A (en) * 2012-05-30 2013-12-12 Central Glass Co Ltd Heat transfer medium containing fluoroalkene
WO2013184865A1 (en) * 2012-06-06 2013-12-12 E.I. Du Pont De Nemours And Company PROCESS FOR THE REDUCTION OF RfCCX IMPURITIES IN FLUOROOLEFINS
WO2014080868A1 (en) * 2012-11-20 2014-05-30 旭硝子株式会社 Working medium for rankine cycle, and rankine cycle system
CN104449580A (en) * 2013-09-24 2015-03-25 中化蓝天集团有限公司 Composition containing HFC-161 and stabilizer
US20160031209A1 (en) * 2014-07-30 2016-02-04 SCREEN Holdings Co., Ltd. Printing apparatus and printing method
WO2016171264A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3978731A4 (en) * 2019-05-30 2023-06-14 Zhejiang Research Institute of Chemical Industry Co., Ltd. Environment-friendly heat pipe working fluid

Similar Documents

Publication Publication Date Title
JP6950765B2 (en) Working media for thermal cycles, compositions for thermal cycle systems and thermal cycle systems
JP6521139B2 (en) Composition for thermal cycle system and thermal cycle system
JP6524995B2 (en) Working medium for thermal cycling, composition for thermal cycling system and thermal cycling system
JP6848861B2 (en) Working media for thermal cycles, compositions for thermal cycle systems and thermal cycle systems
CN105940079B (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP6477679B2 (en) Composition for thermal cycle system and thermal cycle system
US20170058171A1 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JP6493388B2 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2015186557A1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP7226623B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
WO2017142072A1 (en) Heat cycle system and heat cycle method using same
US11149178B2 (en) Azeotropic or azeotrope-like composition, working fluid for heat cycle, and heat cycle system
WO2019022139A1 (en) Azeotropic composition, working medium for heat cycle, and heat cycle system
WO2019039510A1 (en) 1-chloro-2,3,3-trifluoropropene-containing working medium for thermal cycling, composition for thermal cycling system, and thermal cycling system
WO2019022140A1 (en) Heat cycle system and heat cycle method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP