WO2014203354A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2014203354A1
WO2014203354A1 PCT/JP2013/066866 JP2013066866W WO2014203354A1 WO 2014203354 A1 WO2014203354 A1 WO 2014203354A1 JP 2013066866 W JP2013066866 W JP 2013066866W WO 2014203354 A1 WO2014203354 A1 WO 2014203354A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
temperature
refrigeration cycle
discharge
Prior art date
Application number
PCT/JP2013/066866
Other languages
English (en)
French (fr)
Inventor
岡崎 多佳志
英明 前山
加藤 央平
裕樹 宇賀神
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015522419A priority Critical patent/JPWO2014203354A1/ja
Priority to EP13887424.3A priority patent/EP3012557A4/en
Priority to PCT/JP2013/066866 priority patent/WO2014203354A1/ja
Publication of WO2014203354A1 publication Critical patent/WO2014203354A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigeration cycle apparatus using an ethylene-based fluorinated hydrocarbon or a mixture containing the same as a refrigerant.
  • a propylene-based fluorohydrocarbon having a double bond in the composition is characterized by being easily decomposed and polymerized under high temperature conditions due to the presence of the double bond.
  • the structure of the compressor which suppresses decomposition
  • Tetrafluoroethylene (C 2 F 4 ), an ethylene derivative having a molecular structure similar to that of ethylene-based fluorohydrocarbons, is used for the production of fluororesins and fluorine-containing elastomers with excellent heat resistance and chemical resistance. Although it is useful as a monomer, it is known that it is necessary to add a polymerization inhibitor from the production of tetrafluoroethylene in order to suppress the polymerization because it is a substance that is extremely easy to polymerize (see Patent Document 2).
  • JP 2009-299649 A Japanese Patent Laid-Open No. 11-246447
  • HFO-1234yf refrigerant which is a propylene-based fluorinated hydrocarbon, has a high standard boiling point of -29 ° C. Compared to R410A refrigerant (standard boiling point -51 ° C) that has been used in stationary air conditioners, etc. Low operating pressure and low refrigeration capacity per suction volume. In order to obtain a refrigeration capacity equivalent to that of R410A refrigerant using HFO-1234yf refrigerant in a stationary air conditioner, the volume flow rate of the refrigerant must be increased, which is a problem for increasing the displacement of the compressor In addition, there are problems of increase in pressure loss and decrease in efficiency due to increase in volume flow rate.
  • a low GWP refrigerant with a low standard boiling point is suitable, and generally a molecular structure with a small number of carbon atoms is a low boiling point refrigerant. It is known to be. Therefore, the inventors have studied a compound having a molecular structure having a carbon number smaller than that of a conventional propylene fluorocarbon having 3 carbon atoms through trial and error, and selected from among various compounds an ethylene fluoride having 2 carbon atoms. Attempts were made to use hydrocarbons as refrigerants. When this ethylene-based fluorinated hydrocarbon can be used as a refrigerant, it is possible to obtain a refrigerant having low boiling point physical properties equivalent to those of the conventional R410A refrigerant.
  • ethylene-based fluorohydrocarbon when used as a refrigerant, decomposition and polymerization are likely to occur immediately after the generation of the refrigerant, and decomposition and polymerization occur even during storage.
  • the ethylene fluorocarbon refrigerant needs to be added with a polymerization inhibitor that suppresses the polymerization of the refrigerant as shown in Patent Document 2 since the generation of the refrigerant. .
  • the refrigerant circulates in the refrigeration circuit while repeating phase changes with liquid and gas.
  • the refrigerant is vaporized with the polymerization inhibitor added. Then, since the polymerization inhibitor is lost from the sliding part of the compressor and the winding part of the motor together with the vaporized refrigerant, it is difficult to sufficiently obtain the effect of preventing the polymerization of the refrigerant without reaching the high temperature part. It was.
  • the sliding surface becomes hot due to the sliding operation, and the metal of the sliding surface is activated.
  • the activated metal acts as a reaction catalyst and the decomposition is promoted. Therefore, when the polymerization inhibitor is insufficient, there is a problem that the polymerization of the decomposed product is also promoted.
  • the present invention has been made to solve the above-described problems, and suppresses the discharge temperature of the compressor, which is the highest temperature in the refrigeration cycle, to suppress the decomposition and polymerization of the refrigerant, thereby reducing the ethylene-based fluorination. It aims at providing the refrigerating-cycle apparatus which used the hydrocarbon or the mixture containing it as a refrigerant
  • a refrigeration cycle apparatus comprises a refrigerant flow path having at least a compressor, a condenser, an expansion valve, and an evaporator, and a discharge temperature detecting means for detecting a discharge refrigerant temperature of the compressor.
  • the refrigeration cycle apparatus includes an ethylene-based fluorohydrocarbon or a mixture containing an ethylene-based fluorohydrocarbon as a refrigerant, and the discharge refrigerant temperature detected by the discharge temperature detecting means is the first.
  • Discharged refrigerant temperature control means for controlling to be equal to or less than a specified value is provided.
  • the discharge temperature suppressing means for suppressing the discharge temperature of the compressor since the discharge temperature suppressing means for suppressing the discharge temperature of the compressor is provided, the temperature rise of the sliding portion of the compression element is suppressed, and the activation of the metal on the sliding surface is suppressed. Therefore, the decomposition of the refrigerant of the ethylene-based fluorinated hydrocarbon or the mixture containing the activated metal by the activated metal can be suppressed, and the polymerization of the decomposition product of the refrigerant can be suppressed. It becomes possible to use a hydrocarbon or a mixture containing it as a refrigerant.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. FIG. 6 is a diagram showing an example of an ethylene-based fluorinated hydrocarbon used as a refrigerant in the refrigeration cycle apparatuses according to Embodiments 1 to 5 of the present invention. It is a figure which shows the relationship between the discharge refrigerant
  • It is a block diagram of the refrigerating-cycle apparatus provided with the injection circuit which concerns on Embodiment 2 of this invention. It is a block diagram of the refrigerating cycle apparatus of the two-stage compression circuit which concerns on Embodiment 3 of this invention. It is a block diagram of the refrigerating cycle apparatus of the two-stage compression injection circuit which concerns on Embodiment 4 of this invention. It is a block diagram of the binary refrigeration cycle apparatus which concerns on Embodiment 5 of this invention
  • FIG. 1 is a diagram showing a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus according to Embodiment 1 includes a first compressor 1, a condenser 2, a first expansion valve 3, and an evaporator 4. Further, a discharge temperature detecting means 11 for detecting the discharge refrigerant temperature (Td) is provided at the outlet of the first compressor 1.
  • FIG. 2 shows an example of an ethylene-based fluorinated hydrocarbon used as a refrigerant in the refrigeration cycle apparatus according to the present embodiment.
  • trans-1,2 difluoroethylene R1132 (E)
  • ethylene-based fluorocarbons shown in FIG. 2 or other ethylene-based fluorocarbons may be used. it can.
  • R1132 (E) cis-1,2 difluoroethylene (R1132 (Z)), 1,1 difluoroethylene (R1132a), 1,1,2, trifluoroethylene (R1123), fluoroethylene ( R1141), or those in which one of fluorine (F) is substituted with another halogen element (Cl, Br, I, or At) or the like can be used.
  • an electronic expansion valve capable of adjusting the flow rate by changing the opening degree inside the valve is used as the first expansion valve 3.
  • the present invention is not limited to this, and a temperature type expansion valve may be used in which the force of the spring inside the valve is adjusted and a temperature sensing cylinder is provided and the discharged refrigerant temperature (Td) is controlled to be a predetermined value.
  • Td refrigerant temperature
  • the cooling only machine is shown, it is not restricted to this, It is good also as a structure which provides a four-way valve and can switch between cooling and heating.
  • the high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 is condensed and liquefied by the condenser 2, depressurized by the first expansion valve 3, and then evaporated and vaporized by the evaporator 4.
  • the refrigerant temperature is highest in the first compressor 1, and it is necessary to control this temperature to be lower than the limit temperature at which refrigerant decomposition and polymerization occur.
  • Fig. 3 shows the relationship between the discharged refrigerant temperature (Td) and the decomposition rate of the refrigerant.
  • the decomposition rate of the refrigerant generally tends to increase rapidly in a certain temperature range, and increases in the temperature range between the broken lines in FIG.
  • This temperature range is Tdm ⁇ ⁇ , where the discharge refrigerant temperature (Td) corresponding to the median value of the refrigerant decomposition rate is the decomposition central temperature Tdm.
  • the decomposition start temperature Tde is defined as the lower limit value of this temperature range at a temperature that is a constant value ⁇ lower than Tdm. In this case, ⁇ is generally about 10 ° C. although it depends on the operating pressure (high pressure).
  • the temperature of the discharge refrigerant temperature (Td) and the decomposition start temperature (Tde) of each refrigerant itself during normal operation Compare the differences.
  • R410A the discharge refrigerant temperature (Td) during normal operation is R410A. It is slightly lower and slightly higher than R1234yf (depending on operating conditions, for example, R410A: about 100 ° C., R1234yf: about 80 ° C, R1132: about 90 ° C).
  • the decomposition start temperature (Tde) is about 10 to 20 ° C. lower than the R1234yf refrigerant having a double bond in the molecular structure like the R1132 refrigerant (for example, R410A: 180 ° C., R1234yf: 120 ° C.). R1132: 100 ° C).
  • the refrigerant discharge temperature (Td) during normal operation is close to the decomposition start temperature (Tde) of the refrigerant itself (in the above example, ⁇ Tde is R410A: 80 ° C., R1234yf: 40 ° C, R1132: 10 ° C).
  • the decomposition of the refrigerant is considered in comparison with the conventional refrigerant. Strict control of the discharge refrigerant temperature (Td) is required.
  • the lower limit value (T2) of the discharge refrigerant temperature (Td) is defined as the condensation temperature Tc + 10 [° C.].
  • the discharge refrigerant temperature (Td) is detected by the discharge temperature detector 11 as the representative temperature of the high-temperature refrigerant, and the discharge refrigerant temperature (Td) falls within the range of T2 ⁇ Td ⁇ Tde.
  • the refrigeration cycle apparatus is controlled. Examples of the control actuator include the rotation speed of the first compressor 1 and the opening degree of the first expansion valve 3.
  • the discharge refrigerant temperature (Td) can be controlled by the rotational speed of the blower that blows air to the evaporator 4 and the rotational speed of the blower that blows air to the condenser 2.
  • Td discharge refrigerant temperature
  • FIG. FIG. 4 is a diagram showing a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus according to the second embodiment includes a supercooler 5 and a second expansion valve in addition to the configuration of the first embodiment including the first compressor 1, the condenser 2, the first expansion valve 3, and the evaporator 4.
  • An injection circuit having 6 is added.
  • the structure using the supercooler 5 was shown, it may not be in particular, and when there is no supercooler 5, a liquid injection circuit is formed.
  • the high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 is condensed and liquefied by the condenser 2 and further subcooled by the subcooler 5.
  • the supercooled liquid refrigerant is decompressed by the first expansion valve 3, evaporated and vaporized by the evaporator 4, and returned to the first compressor 1.
  • a part of the refrigerant (injection refrigerant) exiting the supercooler 5 is decompressed by the second expansion valve 6 and flows into the low pressure side of the supercooler 5 to be in a gas-liquid two-phase state that has evaporated to some extent.
  • the liquid refrigerant exiting the vessel 2 is supercooled and sucked into the first compressor 1.
  • the refrigerant temperature is highest at the internal temperature of the first compressor 1, and the air injected into the first compressor 1 so that the temperature is lower than the decomposition temperature at which the refrigerant is decomposed and polymerized.
  • the flow rate of the liquid two-phase refrigerant is controlled by the second expansion valve 6.
  • the discharge refrigerant temperature (Td) is detected by the discharge temperature detector 11 as the representative temperature of the high-temperature refrigerant, and the discharge refrigerant temperature (Td) falls within the range of T2 ⁇ Td ⁇ Tde.
  • the flow rate of the injection refrigerant is controlled by the opening of the second expansion valve 6.
  • the injection flow rate is adjusted to suppress the discharge temperature of the first compressor 1, the decomposition and polymerization of the refrigerant can be suppressed, and the ethylene-based fluorinated hydrocarbon refrigerant can be kept in a stable state. It can be applied to a refrigeration cycle apparatus.
  • FIG. FIG. 5 is a diagram showing a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • the refrigeration cycle apparatus according to Embodiment 3 includes a second compressor 7 and an intercooler 8 in the configuration of Embodiment 1 including the first compressor 1, the condenser 2, the first expansion valve 3, and the evaporator 4. Is a configuration of a two-stage compression circuit to which is added.
  • the intermediate cooler 8 is disposed on the windward side of the condenser 2 because the refrigerant temperature in the pipe is low, and the condenser 2 is disposed on the leeward side.
  • the condenser 2 and the intercooler 8 may be arranged in parallel, and both heat exchangers may exchange heat with fresh air.
  • line and subsequent are condensed with an integrated multi-row heat exchanger.
  • the container 2 may be configured.
  • the high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 decreases in temperature to some extent by the intermediate cooler 8 and is sucked into the second compressor 7.
  • the high-temperature and high-pressure refrigerant gas discharged from the second compressor 7 is condensed and liquefied by the condenser 2 and then expanded and vaporized by the evaporator 4 after being expanded by the first expansion valve 3. Return to 1.
  • the discharge refrigerant temperature (Td) is detected by the discharge temperature detector 11 as the representative temperature of the high-temperature refrigerant, and the discharge refrigerant temperature (Td) satisfies T2 ⁇ Td ⁇ Tde.
  • the refrigeration cycle apparatus is controlled so as to fall within the range. Examples of the control actuator include the rotational speed of the first compressor 1, the rotational speed of the second compressor 7, and the opening degree of the first expansion valve 3.
  • the compression ratio between the first compressor 1 and the second compressor 7 is reduced, and the compressor efficiency is improved and the first efficiency is improved. 2
  • the discharge temperature at the outlet of the compressor 7 can be kept low.
  • the intermediate cooler 8 is provided, the temperature of the gas refrigerant sucked into the second compressor 7 can be lowered, and the rise in the discharge refrigerant temperature (Td) of the second compressor 7 can be suppressed. it can. Therefore, decomposition and polymerization of the refrigerant can be suppressed, and the ethylene-based fluorinated hydrocarbon refrigerant can be applied to the refrigeration cycle apparatus in a stable state.
  • FIG. FIG. 6 is a diagram showing a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the refrigeration cycle apparatus according to the fourth embodiment has a two-stage compression circuit configuration in which an injection circuit including a supercooler 5 and a second expansion valve 6 is added to the configuration of the refrigeration cycle apparatus according to the third embodiment.
  • the connection position of the injection circuit is an intermediate pressure portion of the suction portion of the second compressor 7 via the intermediate cooler 8.
  • the high-temperature and high-pressure refrigerant gas discharged from the second compressor 7 is condensed and liquefied by the condenser 2 and further subcooled by the subcooler 5.
  • the supercooled liquid refrigerant is decompressed by the first expansion valve 3, evaporated and vaporized by the evaporator 4, and sucked into the first compressor 1.
  • a part of the refrigerant (injection refrigerant) exiting the supercooler 5 is decompressed by the second expansion valve 6 and flows into the low pressure side of the supercooler 5 to be in a gas-liquid two-phase state that has evaporated to some extent.
  • the liquid refrigerant exiting the cooler 2 is supercooled and flows into the intercooler 8.
  • the injection refrigerant cooled by the intermediate cooler 8 merges with the high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 to cool the gas refrigerant, and is sucked into the second compressor 7.
  • the discharge refrigerant temperature (Td) is detected by the discharge temperature detecting means 11 as the representative temperature of the high-temperature refrigerant, and the discharge refrigerant temperature (Td) satisfies T2 ⁇ Td ⁇ Tde.
  • the flow rate of the injection refrigerant is controlled by the opening of the second expansion valve 6 so as to fall within the range.
  • the fourth embodiment has a two-stage compression configuration in which two compressors are connected in series, the compression ratio between the first compressor 1 and the second compressor 7 is reduced, and the compressor efficiency is improved. 2
  • the discharge refrigerant temperature (Td) at the outlet of the compressor 7 can be kept low.
  • the intermediate cooler 8 is provided to cool the injection refrigerant and merge with the intermediate pressure of the two-stage compression, the temperature of the gas refrigerant sucked into the second compressor 7 can be lowered, and the second compression An increase in the discharge refrigerant temperature (Td) of the machine 7 can be further suppressed. Therefore, decomposition and polymerization of the refrigerant can be suppressed, and the ethylene-based fluorinated hydrocarbon refrigerant can be applied to the refrigeration cycle apparatus in a stable state.
  • FIG. FIG. 7 is a diagram illustrating the refrigeration cycle apparatus of the fifth embodiment.
  • the refrigeration cycle apparatus according to Embodiment 5 has the same configuration as that of Embodiment 1 including the first compressor 1, the first expansion valve 3, and the evaporator 4, but the second compressor 7, the third expansion valve 9, and the high element. It is the structure of the binary compression circuit which added the cascade capacitor 10 which heat-exchanges the refrigerant
  • ethylene-based fluorinated hydrocarbon or a mixture including the same is used on the high-end side.
  • any refrigerant may be used.
  • a plate heat exchanger is used for the cascade condenser 10 so that the operation of the refrigeration cycle on the high side and the low side is optimized, that is, the compression ratio of the high side refrigeration cycle, the compression of the low side refrigeration cycle.
  • the heat transfer area is selected so that the ratios are substantially equal.
  • the high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 is condensed by the cascade condenser 10, expanded by the first expansion valve 3, and then evaporated by the evaporator 4 to be first.
  • the compressor 1 In the operation of the high-side refrigeration cycle, the refrigerant compressed by the second compressor 7 is condensed by the condenser 2, expanded by the third expansion valve 9, evaporated by the cascade condenser 10, and then the second compressor 7. Is sucked again.
  • the discharge refrigerant temperature (Td) is detected by the discharge temperature detecting means 11 as the representative temperature of the high-temperature refrigerant, and the discharge refrigerant temperature (Td) satisfies T2 ⁇ Td ⁇ Tde.
  • the refrigeration cycle apparatus is controlled so as to fall within the range.
  • the control actuator include the rotational speed of the first compressor 1 or the second compressor 7 and the opening degree of the first expansion valve 3 or the third expansion valve 9.
  • the configuration of the dual refrigeration cycle reduces the compression ratio of the first compressor and the second compressor, improves the compressor efficiency, and suppresses the discharge temperature at the outlet of the second compressor 7. Therefore, the decomposition and polymerization of the refrigerant can be suppressed, and the ethylene-based fluorinated hydrocarbon refrigerant can be applied to the refrigeration cycle apparatus in a stable state.

Abstract

 少なくとも圧縮機1と、凝縮器2と、膨張弁3と、蒸発器4と、を有する冷媒流路と、前記圧縮機の吐出冷媒温度を検知する吐出温度検知手段11と、を備えた冷凍サイクル装置であって、冷媒としてエチレン系フッ化炭化水素、または、エチレン系フッ化炭化水素を含む混合物を用いるものであり、前記吐出温度検知手段11で検出した前記吐出冷媒温度が第1規定値以下となるように制御する吐出冷媒温度制御手段を備える。

Description

冷凍サイクル装置
 この発明は、冷媒としてエチレン系のフッ化炭化水素、またはそれを含む混合物を用いた冷凍サイクル装置に関するものである。
 カーエアコンの分野において、低GWP(地球温暖化係数)冷媒として、プロピレン系フッ化炭化水素であるHFO-1234yf(CF3CF=CH2)が使用されている。
 一般的に、組成中に二重結合を有するプロピレン系フッ化炭化水素では、二重結合の存在により、高温条件下で分解や重合が発生しやすいという特徴を有する。このため、圧縮機の中で高温となる金属製の摺動部の表面を非金属部品で構成することで冷媒の分解や重合を抑制する圧縮機の構成が開示されている(特許文献1を参照)。
 また、エチレン系フッ化炭化水素と類似の分子構造を持つエチレンの誘導体であるテトラフルオロエチレン(C)は、耐熱性、耐薬品性等の優れたフッ素樹脂、含フッ素エラストマー製造用のモノマーとして有用であるが、極めて重合しやすい物質なので、その重合を抑制するためにテトラフルオロエチレンの生成時から重合禁止剤を加える必要があることが知られている(特許文献2を参照)。
特開2009-299649号公報 特開平11-246447号公報
 プロピレン系フッ化炭化水素であるHFO-1234yf冷媒では、標準沸点が-29℃と高く、従来、定置式の空気調和機に用いられていたR410A冷媒(標準沸点-51℃)等に比べて、動作圧力が低く吸入容積当たりの冷凍能力が小さい。定置式の空気調和機にて、HFO-1234yf冷媒を使用しR410A冷媒と同等の冷凍能力を得るには、冷媒の体積流量を増大しなければならず、圧縮機の押しのけ量増大のための課題や、体積流量増大に伴う圧力損失の増加、効率低下の課題があった。
 したがって、定置式の空気調和機用に低GWP冷媒を適用するためには、標準沸点の低い低GWP冷媒が適当であり、一般的に、炭素数の少ない分子構造の方が低沸点の冷媒となることが知られている。
 そこで発明者らは、従来の炭素数3のプロピレン系フッ化炭化水素より炭素数の少ない分子構造の化合物を試行錯誤しながら研究し、様々な化合物の中から炭素数が2のエチレン系フッ化炭化水素を冷媒として使用することを試みた。
 このエチレン系フッ化炭化水素を冷媒として使用することができる場合には、従来のR410A冷媒と同等の低沸点の物性を備える冷媒を得ることが可能となる。
 しかしながら、エチレン系フッ化炭化水素は、プロピレン系フッ化炭化水素に比べて反応性が高く、熱的、化学的に不安定で分解や重合を発生しやすいため、特許文献1に示される圧縮機の摺動部の表面を非金属部品で構成することだけでは分解や重合を抑制することが困難となる問題があった。
 また、エチレン系フッ化炭化水素を冷媒として使用する場合、冷媒生成直後から分解や重合を起こし易く、保管時であっても分解や重合が発生する。保管時から冷媒の分解、重合を抑制するために、エチレン系フッ化炭化水素冷媒は、冷媒生成時から特許文献2に示されるような冷媒の重合を抑制する重合禁止剤が添加する必要がある。
 しかし、冷媒に重合禁止剤が添加されていたとしても、冷媒は冷凍回路内で液体、気体と相変化を繰り返しながら循環するので、高温となり重合を起こしやすい圧縮機の摺動部やモータの巻線部では重合禁止剤が添加された状態で冷媒が気化してしまう。
 すると、重合禁止剤は気化した冷媒とともに圧縮機の摺動部やモータの巻線部から失われてしまうため高温部位に行渡らず、冷媒の重合を防止する効果を十分に得ることが困難となっていた。
 特に、摺動部が互いに金属で構成されているとき、摺動動作により、摺動面が高温となり、摺動面の金属が活性化する。エチレン系フッ化炭化水素は、活性化した金属が反応触媒として作用し、分解が促進されるので、重合禁止剤が不十分であると分解物の重合も促進される問題があった。
 このように、エチレン系フッ化炭化水素を冷媒として使用する場合には、高温時における冷媒の物性の不安定さから、冷媒として冷凍サイクル装置に使用することが困難であった。
 本発明は、上記のような課題を解決するためになされたもので、冷凍サイクル中で最も高温となる圧縮機の吐出温度を低く抑え、冷媒の分解や重合を抑制して、エチレン系フッ化炭化水素、またはそれを含む混合物を冷媒として用いた冷凍サイクル装置を提供することを目的とする。
 この発明に係る冷凍サイクル装置は、少なくとも圧縮機と、凝縮器と、膨張弁と、蒸発器と、を有する冷媒流路と、前記圧縮機の吐出冷媒温度を検知する吐出温度検知手段と、を備えた冷凍サイクル装置であって、冷媒としてエチレン系フッ化炭化水素、または、エチレン系フッ化炭化水素を含む混合物を用いるものであり、前記吐出温度検知手段で検出した前記吐出冷媒温度が第1規定値以下となるように制御する吐出冷媒温度制御手段を備えたものである。
 この発明に係る冷凍サイクル装置によれば、圧縮機の吐出温度を抑制する吐出温度抑制手段を設けたので、圧縮要素の摺動部の温度上昇を抑え、摺動面の金属の活性化を抑制することができる、そのため、活性化した金属によるエチレン系フッ化炭化水素、またはそれを含む混合物の冷媒の分解を抑制するとともに、冷媒の分解物の重合を抑制することができ、エチレン系フッ化炭化水素、またはそれを含む混合物を冷媒として使用することが可能となる。
この発明の実施の形態1に係る冷凍サイクル装置の構成図である。 この発明の実施の形態1~5に係る冷凍サイクル装置において冷媒として用いられるエチレン系フッ化炭化水素の一例を示した図である。 この発明の実施の形態1に係る吐出冷媒温度と冷媒の分解率の関係を示す図である。 この発明の実施の形態2に係るインジェクション回路を備える冷凍サイクル装置の構成図である。 この発明の実施の形態3に係る二段圧縮回路の冷凍サイクル装置の構成図である。 この発明の実施の形態4に係る二段圧縮インジェクション回路の冷凍サイクル装置の構成図である。 この発明の実施の形態5に係る二元冷凍サイクル装置の構成図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。
 実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置を示す図である。実施の形態1に係る冷凍サイクル装置は、第1圧縮機1、凝縮器2、第1膨張弁3、蒸発器4から構成されている。また、第1圧縮機1の出口部に吐出冷媒温度(Td)を検知する吐出温度検知手段11を設ける。
 上記の冷媒回路内を循環させる冷媒としては、R410Aと同様に低沸点冷媒である、エチレン系フッ化炭化水素、又はエチレン系フッ化炭化水素を含む混合物が用いられる。図2は、本実施の形態に係る冷凍サイクル装置において冷媒として用いられるエチレン系フッ化炭化水素の一例を示している。本例では、トランス-1,2ジフルオロエチレン(R1132(E))を冷媒として用いているが、図2に示すエチレン系フッ化炭化水素、又はそれ以外のエチレン系フッ化炭化水素を用いることもできる。具体的には、R1132(E)以外に、シス-1,2ジフルオロエチレン(R1132(Z))、1,1ジフルオロエチレン(R1132a)、1,1,2トリフルオロエチレン(R1123)、フルオロエチレン(R1141)、又は、これらの組成においてフッ素(F)のうちの1個が別のハロゲン元素(Cl、Br、I又はAt)と置換されたもの、等を用いることができる。
 また、本実施の形態では、第1膨張弁3として弁内部の開度を変化させて流量調整が可能な電子式膨張弁を用いる。但し、これに限るものではなく、弁内部のバネの力が調整され、感温筒を備えて吐出冷媒温度(Td)が所定値となるように制御される温度式膨張弁でも良い。なお、本実施の形態では、冷房専用機を示しているが、これに限るものではなく、四方弁を設けて冷房と暖房が切り替えられる構成としても良い。
 次に、動作を説明する。第1圧縮機1から吐出された高温、高圧の冷媒ガスは、凝縮器2で凝縮、液化し、第1膨張弁3で減圧されたあと、蒸発器4で蒸発、気化し第1圧縮機1へ戻る。この時、冷媒温度が最も高くなるのは、第1圧縮機1の内部であり、この温度を冷媒の分解、重合が生じる限界温度未満となるように制御する必要がある。
 吐出冷媒温度(Td)と冷媒の分解率の関係を図3に示す。冷媒の分解率は一般的に、ある温度範囲で急激に増加する傾向にあり、図3の破線の間の温度範囲で上昇する。この温度範囲は、冷媒の分解率の中央値に対応する吐出冷媒温度(Td)を分解中央温度Tdmとすると、Tdm±δの範囲となる。分解開始温度Tdeは、この温度範囲の下限値としてTdmから一定値δ低い温度で規定される。このときのδは、動作圧力(高圧)にも依存するが一般に10℃程度である。圧縮機からの吐出冷媒温度(Td)は、この温度範囲の下限値である分解開始温度(Tde=Tdm-δ)未満とする必要がある。
 ここで、エチレン系フッ化炭化水素冷媒とプロピレン系フッ化炭化水素冷媒(R1234yf)とR410A冷媒とにおける、通常運転時の吐出冷媒温度(Td)と各冷媒自身の分解開始温度(Tde)の温度差を比較する。
 エチレン系フッ化炭化水素冷媒であるトランス-1,2ジフルオロエチレン(R1132(E))、シス-1,2ジフルオロエチレン(R1132(Z))では、通常運転時の吐出冷媒温度(Td)がR410Aより若干低く、R1234yfより若干高い程度となる(運転条件に依存するが、例えば R410A:100℃程度に対し、 R1234yf:80℃程度、 R1132:90℃程度)。
 一方で、分解開始温度(Tde)は、R1132冷媒と同様に分子構造内に二重結合を有するR1234yf冷媒よりも10~20℃程度低くなる(例えば、R410A:180℃に対し、R1234yf:120℃、R1132:100℃)。
 すると、エチレン系フッ化炭化水素冷媒は、分解開始温度(Tde)と通常運転時の吐出冷媒温度(Td)との温度差(ΔTde=Tde-Td)が従来の他の冷媒に比べて小さくなり、通常運転時の吐出冷媒温度(Td)が冷媒自身の分解開始温度(Tde)に近くなる(上記例では、ΔTdeがR410A:80℃に対し、 R1234yf:40℃、 R1132:10℃)。
 すなわち、エチレン系フッ化炭化水素冷媒は、吐出冷媒温度(Td)に対して冷媒分解温度(Tde)までの余裕温度差が小さくなるため、従来の冷媒に比べ冷媒の分解を考慮して、より厳格な吐出冷媒温度(Td)の制御が必要となる。
 一方、第1圧縮機1への過度な液戻り防止の観点から、吐出冷媒温度(Td)の下限値(T2)を凝縮温度Tc+10[℃]として規定する。
 従って、本実施の形態1では、高温冷媒の代表温度として吐出温度検知手段11で吐出冷媒温度(Td)を検出し、吐出冷媒温度(Td)がT2<Td<Tdeの範囲に入るように、冷凍サイクル装置を制御するものである。制御のアクチュエータとしては、第1圧縮機1の回転数、第1膨張弁3の開度があげられる。
 具体的には、吐出冷媒温度(Td)が分解開始温度(Tde)を超える場合には、第1圧縮機1の回転数を下げる、もしくは、第1膨張弁3の開度を開く制御を行う。また、吐出冷媒温度(Td)が下限値(T2)を下回る場合には、第1圧縮機1の回転数を上げる、もしくは、第1膨張弁3の開度を絞る制御を行う。
 また、図1に図示していないが、蒸発器4に送風する送風機の回転数、凝縮器2に送風する送風機の回転数で吐出冷媒温度(Td)を制御することもできる。
 以上より、本実施の形態では、エチレン系フッ化炭化水素冷媒を用いる冷凍サイクル装置の吐出冷媒温度(Td)を低く抑え、冷媒の温度上昇による分解を抑制でき、エチレン系フッ化炭化水素冷媒を安定した状態で冷凍サイクル装置に適用することができる。
 実施の形態2.
 図4は、本発明の実施の形態2に係る冷凍サイクル装置を示す図である。実施の形態2に係る冷凍サイクル装置は、第1圧縮機1、凝縮器2、第1膨張弁3、蒸発器4からなる実施の形態1の構成に加え、過冷却器5と第2膨張弁6を備えたインジェクション回路が付加されている。なお、過冷却器5を用いる構成を示したが、特に無くてもよく、過冷却器5がない場合、液インジェクション回路が形成される。
 次に、動作を説明する。第1圧縮機1から吐出された高温・高圧の冷媒ガスは、凝縮器2で凝縮、液化し、過冷却器5で更に過冷却される。過冷却された液冷媒は、第1膨張弁3で減圧されたあと、蒸発器4で蒸発、気化し、第1圧縮機1へ戻る。
 一方、過冷却器5を出た冷媒の一部(インジェクション冷媒)は、第2膨張弁6で減圧されて過冷却器5の低圧側に流入し、ある程度蒸発した気液二相状態となり、凝縮器2を出た液冷媒を過冷却して、第1圧縮機1へ吸入される。
 この時、冷媒温度が最も高くなるのは、第1圧縮機1の内部温度であり、この温度が冷媒の分解、重合が生じる分解温度未満となるように第1圧縮機1へ注入される気液二相冷媒の流量を第2膨張弁6により制御する。
 具体的に本実施の形態2では、高温冷媒の代表温度として吐出温度検知手段11で吐出冷媒温度(Td)を検出し、吐出冷媒温度(Td)がT2<Td<Tdeの範囲に入るように、第2膨張弁6の開度でインジェクション冷媒の流量を制御する。
 本実施の形態2では、インジェクション流量を調整して第1圧縮機1の吐出温度を抑制するようにしたので、冷媒の分解、重合を抑制でき、エチレン系フッ化炭化水素冷媒を安定した状態で冷凍サイクル装置に適用することができる。
 実施の形態3.
 図5は、本発明の実施の形態3に係る冷凍サイクル装置を示す図である。実施の形態3に係る冷凍サイクル装置は、第1圧縮機1、凝縮器2、第1膨張弁3、蒸発器4からなる実施の形態1の構成に、第2圧縮機7、中間冷却器8を付加した二段圧縮回路の構成である。
 中間冷却器8は管内の冷媒温度が低いため凝縮器2の風上側に配置され、風下側に凝縮器2が配置される。もちろん、図示しない室外ユニットの内部スペースに余裕があれば、凝縮器2と中間冷却器8を並列配置とし、両熱交換器とも新鮮空気と熱交換する構成としても良い。また、中間冷却器8と凝縮器2が分離された例を示したが、これに限るものではなく、一体型の多列熱交換器で一列目を中間冷却器8、2列目以降を凝縮器2として構成しても良い。
 次に、動作を説明する。第1圧縮機1から吐出された高温、高圧の冷媒ガスは、中間冷却器8である程度温度が低下し、第2圧縮機7に吸引される。第2圧縮機7から吐出された高温、高圧の冷媒ガスは凝縮器2で凝縮、液化した冷媒は、第1膨張弁3で膨張したあと、蒸発器4で蒸発、気化し、第1圧縮機1へ戻る。
 本実施の形態3では、実施の形態1と同様に、高温冷媒の代表温度として吐出温度検知手段11で吐出冷媒温度(Td)を検出し、吐出冷媒温度(Td)がT2<Td<Tdeの範囲に入るように、冷凍サイクル装置を制御するものである。制御のアクチュエータとしては、第1圧縮機1の回転数、第2圧縮機7の回転数、第1膨張弁3の開度などがあげられる。
 本実施の形態3では、圧縮機を直列に2個接続する二段圧縮構成としたので、第1圧縮機1および第2圧縮機7の圧縮比が小さくなり、圧縮機効率が向上して第2圧縮機7出口の吐出温度を低く抑えることができる。また、中間冷却器8を設けたので、第2圧縮機7に吸引されるガス冷媒の温度を低下させることができ、第2圧縮機7の吐出冷媒温度(Td)の上昇を抑制することができる。よって、冷媒の分解、重合を抑制して、エチレン系フッ化炭化水素冷媒を安定した状態で冷凍サイクル装置に適用することができる。
 実施の形態4.
 図6は、本発明の実施の形態4に係る冷凍サイクル装置を示す図である。本実施の形態4に係る冷凍サイクル装置は、実施の形態3の冷凍サイクル装置の構成に、過冷却器5と第2膨張弁6を備えるインジェクション回路を付加した二段圧縮回路の構成である。インジェクション回路の接続位置は、中間冷却器8を介して第2圧縮機7の吸入部の中間圧部となっている。
 次に、動作を説明する。第2圧縮機7から吐出された高温、高圧の冷媒ガスは、凝縮器2で凝縮、液化し、過冷却器5で更に過冷却される。過冷却状態の液冷媒は、第1膨張弁3で減圧されたあと、蒸発器4で蒸発、気化し、第1圧縮機1へ吸引される。
 一方、過冷却器5を出た冷媒の一部(インジェクション冷媒)は、第2膨張弁6で減圧されて過冷却器5の低圧側に流入し、ある程度蒸発した気液二相状態となり、凝縮器2を出た液冷媒を過冷却して、中間冷却器8に流入する。中間冷却器8で冷却されたインジェクション冷媒は、第1圧縮機1から吐出された高温、高圧のガス冷媒と合流してガス冷媒を冷却し、第2圧縮機7に吸引される。
 本実施の形態4では、実施の形態2と同様に、高温冷媒の代表温度として吐出温度検知手段11で吐出冷媒温度(Td)を検出し、吐出冷媒温度(Td)がT2<Td<Tdeの範囲に入るように、第2膨張弁6の開度でインジェクション冷媒の流量を制御する。
 本実施の形態4は、圧縮機を直列に2個接続する二段圧縮の構成のため、第1圧縮機1および第2圧縮機7の圧縮比が小さくなり、圧縮機効率が向上して第2圧縮機7出口の吐出冷媒温度(Td)を低く抑えることができる。
 また、中間冷却器8を設けてインジェクション冷媒を冷却し、二段圧縮の中間圧に合流させたので、第2圧縮機7に吸引されるガス冷媒の温度を低下させることができ、第2圧縮機7の吐出冷媒温度(Td)の上昇をさらに抑制することができる。
 よって、冷媒の分解、重合を抑制して、エチレン系フッ化炭化水素冷媒を安定した状態で冷凍サイクル装置に適用することができる。
 実施の形態5.
 図7は、実施の形態5の冷凍サイクル装置を示す図である。実施の形態5に係る冷凍サイクル装置は、第1圧縮機1、第1膨張弁3、蒸発器4からなる実施の形態1の構成に、第2圧縮機7、第3膨張弁9、高元側と低元側の冷媒を熱交換させるカスケードコンデンサー10を付加した二元圧縮回路の構成である。
 本実施の形態では、高元側にエチレン系フッ化炭化水素、またはそれを含む混合物を用いる例を示す。この場合、低元側は第1圧縮機1の吐出温度が低く抑えられるため、どのような冷媒を用いても良い。
 カスケードコンデンサー10には、例えばプレート熱交換器が使用され、高元側、低元側の冷凍サイクル動作が最適となるように、すなわち高元側冷凍サイクルの圧縮比、低元側冷凍サイクルの圧縮比が略等しくなるように、伝熱面積が選定される。
 次に、動作を説明する。低元側のサイクル動作は、第1圧縮機1から吐出された高温、高圧の冷媒ガスは、カスケードコンデンサー10で凝縮し、第1膨張弁3で膨張したあと、蒸発器4で蒸発し第1圧縮機1へ戻る。高元側冷凍サイクルの動作は、第2圧縮機7で圧縮された冷媒は、凝縮器2で凝縮し、第3膨張弁9で膨張し、カスケードコンデンサー10で蒸発した後、第2圧縮機7へ再び吸引される。
 本実施の形態5では、実施の形態1と同様に、高温冷媒の代表温度として吐出温度検知手段11で吐出冷媒温度(Td)を検出し、吐出冷媒温度(Td)がT2<Td<Tdeの範囲に入るように、冷凍サイクル装置を制御するものである。制御のアクチュエータとしては、第1圧縮機1または第2圧縮機7の回転数、第1膨張弁3または第3膨張弁9の開度などがあげられる。
 本実施の形態では、二元冷凍サイクルの構成とすることで第1圧縮機および第2圧縮機の圧縮比が小さくなり、圧縮機効率が向上して第2圧縮機7出口の吐出温度が抑制できるため、冷媒の分解、重合を抑制して、エチレン系フッ化炭化水素冷媒を安定した状態で冷凍サイクル装置に適用することができる。
 1 第1圧縮機、2 凝縮器、3 第1膨張弁、4 蒸発器、5 過冷却器、6 第2膨張弁、7 第2圧縮機、8 中間冷却器、9 第3膨張弁、10 カスケードコンデンサー、11 吐出温度検出手段。

Claims (11)

  1.  少なくとも圧縮機と、凝縮器と、膨張弁と、蒸発器と、を有する冷媒流路と、前記圧縮機の吐出冷媒温度を検知する吐出温度検知手段と、を備えた冷凍サイクル装置であって、
     冷媒としてエチレン系フッ化炭化水素、または、エチレン系フッ化炭化水素を含む混合物を用いるものであり、
     前記吐出温度検知手段で検出した前記吐出冷媒温度が第1規定値以下となるように制御する吐出冷媒温度制御手段を備えたことを特徴とする冷凍サイクル装置。
  2.  前記第1規定値は、前記冷媒の分解率の中央値に対応する分解中央温度から一定温度低い閾値として規定されることを特徴とする請求項1に記載の冷凍サイクル装置。
  3.  前記吐出冷媒温度制御手段は、少なくとも前記圧縮機の回転数、または、前記膨張弁の開度のいずれか一方を制御することを特徴とする請求項1または2に記載の冷凍サイクル装置。
  4.  前記冷媒流路の前記凝縮器の出口側から凝縮した液冷媒を分岐し、前記圧縮機に接続するインジェクション回路を備え、前記インジェクション回路には冷媒流量を制御する第2膨張弁を設置し、
     前記吐出冷媒温度制御手段は、少なくとも前記第2膨張弁の開度を制御することを特徴とする請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  5.  前記圧縮機は、第1圧縮機と第2圧縮機を前記冷媒流路上で冷媒が流通する順に直列に接続した二段圧縮機であり、
     前記インジェクション回路は、前記第1圧縮機と前記第2圧縮機の間の前記冷媒流路に接続するとともに、前記吐出温度検知手段は、前記第2圧縮機の吐出冷媒温度を検知することを特徴とする請求項4に記載の冷凍サイクル装置。
  6.  前記インジェクション回路には、前記凝縮器の出口側の液冷媒を過冷却する過冷却器を備えたことを特徴とする請求項4または5に記載の冷凍サイクル装置。
  7.  前記インジェクション回路には、冷媒を冷却する中間冷却器を設けたことを特徴とする請求項4~6のいずれか1項に記載の冷凍サイクル装置。
  8.  前記圧縮機は、第1圧縮機と第2圧縮機を前記冷媒流路上で冷媒が流通する順に直列に接続した二段圧縮機であり、
     前記第1圧縮機の出口側に冷媒を冷却する中間冷却器を備え、前記中間冷却器で冷却した冷媒を前記第2圧縮機に供給するとともに、前記吐出温度検知手段は、前記第2圧縮機の吐出冷媒温度を検知することを特徴とする請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  9.  前記圧縮機と、前記凝縮器と、前記膨張弁と、前記吐出温度検知手段と、を有する冷媒流路を高元側冷凍サイクルとし、前記蒸発器をカスケードコンデンサーとして機能させるカスケード形冷凍サイクルを備えたことを特徴とする請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  10.  前記吐出冷媒温度が第1規定値よりも小さい第2規定値以上となるように制御する吐出冷媒温度制御手段を備えたことを特徴とする請求項1~9のいずれか1項に記載の冷凍サイクル装置。
  11.  前記エチレン系フッ化炭化水素は、フルオロエチレン(R1141)、トランス-1,2ジフルオロエチレン(R1132(E))、シス-1,2ジフルオロエチレン(R1132(Z))、1,1ジフルオロエチレン(R1132a)、1,1,2トリフルオロエチレン(R1123)のいずれか1つを含むことを特徴とする請求項1~10のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2013/066866 2013-06-19 2013-06-19 冷凍サイクル装置 WO2014203354A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015522419A JPWO2014203354A1 (ja) 2013-06-19 2013-06-19 冷凍サイクル装置
EP13887424.3A EP3012557A4 (en) 2013-06-19 2013-06-19 Refrigeration cycle device
PCT/JP2013/066866 WO2014203354A1 (ja) 2013-06-19 2013-06-19 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066866 WO2014203354A1 (ja) 2013-06-19 2013-06-19 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2014203354A1 true WO2014203354A1 (ja) 2014-12-24

Family

ID=52104118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066866 WO2014203354A1 (ja) 2013-06-19 2013-06-19 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3012557A4 (ja)
JP (1) JPWO2014203354A1 (ja)
WO (1) WO2014203354A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312524A4 (en) * 2015-06-18 2018-07-04 Mitsubishi Electric Corporation Refrigeration cycle device
JP2018169052A (ja) * 2017-03-29 2018-11-01 株式会社富士通ゼネラル 空気調和装置
JP2019032108A (ja) * 2017-08-08 2019-02-28 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2019124229A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷凍装置
CN111527353A (zh) * 2017-12-18 2020-08-11 大金工业株式会社 制冷装置
WO2022013981A1 (ja) * 2020-07-15 2022-01-20 三菱電機株式会社 冷凍サイクル装置
WO2022013982A1 (ja) * 2020-07-15 2022-01-20 三菱電機株式会社 冷凍サイクル装置
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220089924A1 (en) * 2019-01-11 2022-03-24 Daikin Industries, Ltd. Composition containing cis-1,2-difluoroethylene

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506131A (ja) * 1994-07-11 1998-06-16 ソルヴェイ 冷媒類
JPH11246447A (ja) 1998-02-26 1999-09-14 Tokuyama Corp テトラフルオロエチレンの精製方法
JP2000249413A (ja) * 1999-03-01 2000-09-14 Daikin Ind Ltd 冷凍装置
JP2009222329A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
JP2009300023A (ja) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2009299649A (ja) 2008-06-17 2009-12-24 Mitsubishi Electric Corp ロータリ圧縮機
JP2012072950A (ja) * 2010-09-28 2012-04-12 Mitsubishi Heavy Ind Ltd 輸送車両用冷凍サイクルシステム、冷凍サイクルシステム
JP2012132578A (ja) * 2010-12-20 2012-07-12 Panasonic Corp 冷凍サイクル装置
JP2012131994A (ja) * 2010-11-30 2012-07-12 Jx Nippon Oil & Energy Corp 冷凍機用作動流体組成物および冷凍機油

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484866B2 (ja) * 1995-08-04 2004-01-06 三菱電機株式会社 冷凍装置
WO2012157765A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506131A (ja) * 1994-07-11 1998-06-16 ソルヴェイ 冷媒類
JPH11246447A (ja) 1998-02-26 1999-09-14 Tokuyama Corp テトラフルオロエチレンの精製方法
JP2000249413A (ja) * 1999-03-01 2000-09-14 Daikin Ind Ltd 冷凍装置
JP2009222329A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
JP2009300023A (ja) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2009299649A (ja) 2008-06-17 2009-12-24 Mitsubishi Electric Corp ロータリ圧縮機
JP2012072950A (ja) * 2010-09-28 2012-04-12 Mitsubishi Heavy Ind Ltd 輸送車両用冷凍サイクルシステム、冷凍サイクルシステム
JP2012131994A (ja) * 2010-11-30 2012-07-12 Jx Nippon Oil & Energy Corp 冷凍機用作動流体組成物および冷凍機油
JP2012132578A (ja) * 2010-12-20 2012-07-12 Panasonic Corp 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3012557A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312524A4 (en) * 2015-06-18 2018-07-04 Mitsubishi Electric Corporation Refrigeration cycle device
JP2018169052A (ja) * 2017-03-29 2018-11-01 株式会社富士通ゼネラル 空気調和装置
JP2019032108A (ja) * 2017-08-08 2019-02-28 パナソニックIpマネジメント株式会社 冷凍サイクル装置
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
JPWO2019124229A1 (ja) * 2017-12-18 2020-12-17 ダイキン工業株式会社 冷凍装置
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
CN111527353B (zh) * 2017-12-18 2022-06-21 大金工业株式会社 制冷装置
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
CN111527353A (zh) * 2017-12-18 2020-08-11 大金工业株式会社 制冷装置
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
WO2019124229A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷凍装置
JP7244763B2 (ja) 2017-12-18 2023-03-23 ダイキン工業株式会社 冷凍装置
JP7367222B2 (ja) 2020-07-15 2023-10-23 三菱電機株式会社 冷凍サイクル装置
WO2022013982A1 (ja) * 2020-07-15 2022-01-20 三菱電機株式会社 冷凍サイクル装置
WO2022013981A1 (ja) * 2020-07-15 2022-01-20 三菱電機株式会社 冷凍サイクル装置
JP7466645B2 (ja) 2020-07-15 2024-04-12 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP3012557A4 (en) 2017-02-22
JPWO2014203354A1 (ja) 2017-02-23
EP3012557A1 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2014203354A1 (ja) 冷凍サイクル装置
GB2530915B (en) Air-conditioning apparatus
US9599395B2 (en) Refrigerating apparatus
JP6157721B2 (ja) 冷凍装置、及び、冷凍装置の制御方法
JP5241872B2 (ja) 冷凍サイクル装置
JP5409715B2 (ja) 空気調和装置
WO2014181399A1 (ja) 二元冷凍装置
JP5049888B2 (ja) 冷凍サイクル装置
WO2013093979A1 (ja) 空気調和装置
WO2013088638A1 (ja) 冷凍サイクル装置
JP6257809B2 (ja) 冷凍サイクル装置
JP6080939B2 (ja) 空気調和装置
JP5627416B2 (ja) 二元冷凍装置
JP2007218460A (ja) 冷凍サイクル装置および保冷庫
JP2006336943A (ja) 冷凍システムおよび保冷庫
JP2008138915A (ja) 冷凍装置
JPH11230626A (ja) 冷凍サイクル装置
WO2014199445A1 (ja) 冷凍装置
WO2015063837A1 (ja) 冷凍サイクル装置
JP5409747B2 (ja) 二元冷凍装置
JP4013875B2 (ja) 冷凍冷蔵庫
JP3966262B2 (ja) 冷凍冷蔵庫
US20140284025A1 (en) Refrigerator
JP2019128069A (ja) 蒸気圧縮式冷凍機
WO2015140950A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522419

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013887424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE