JP5038105B2 - 弁装置およびそれを備える空気調和機 - Google Patents

弁装置およびそれを備える空気調和機 Download PDF

Info

Publication number
JP5038105B2
JP5038105B2 JP2007299223A JP2007299223A JP5038105B2 JP 5038105 B2 JP5038105 B2 JP 5038105B2 JP 2007299223 A JP2007299223 A JP 2007299223A JP 2007299223 A JP2007299223 A JP 2007299223A JP 5038105 B2 JP5038105 B2 JP 5038105B2
Authority
JP
Japan
Prior art keywords
valve
housing space
filter
filter housing
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007299223A
Other languages
English (en)
Other versions
JP2009121654A (ja
Inventor
義和 西原
俊之 今坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007299223A priority Critical patent/JP5038105B2/ja
Priority to CN2008102118322A priority patent/CN101441012B/zh
Publication of JP2009121654A publication Critical patent/JP2009121654A/ja
Application granted granted Critical
Publication of JP5038105B2 publication Critical patent/JP5038105B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、弁装置およびそれを備える空気調和機に関する。
室内に2つの熱交換器を設けることにより、除湿運転が可能な空気調和機がある。以下、室内に設けられる2つの熱交換器のうち、一方の熱交換器を第1の熱交換器と呼び、他方の熱交換器を第2の熱交換器と呼ぶ。
この空気調和機により除湿運転を行う場合には、第1の熱交換器により冷却され、除湿された空気が、第2の熱交換器により加熱され、室内空間に供給される。これにより、除湿された空気が冷却された状態で室内空間に供給されることが防止される。
このような空気調和機の冷媒循環系には、上記第1の熱交換器および第2の熱交換器の他、主としてドライ弁、圧縮機、膨張弁、および室外熱交換器等が設けられる。
冷媒循環系において、ドライ弁は、第1の熱交換器と第2の熱交換器との間に設けられる。ドライ弁の開閉状態を制御することにより、第1の熱交換器および第2の熱交換器をそれぞれ蒸発器または凝縮器として機能させることができる。
例えば、冷房運転または暖房運転を行う場合にはドライ弁を開放状態にする。この場合、第1の熱交換器および第2の熱交換器がともに濃縮器または蒸発器として機能する。
一方、除湿運転を行う場合にはドライ弁を閉止状態にする。この場合、ドライ弁は、冷媒の流路を絞りこむ。それにより、上流側に位置する一方の熱交換器(例えば、第2の熱交換器)が凝縮器として機能し、下流側に位置する他方の熱交換器(例えば、第1の熱交換器)が蒸発器として機能する。
特許文献1には、ドライ弁として用いられる双方向電磁弁が記載されている。以下、特許文献1の双方向電磁弁について説明する。
図9は、特許文献1の双方向電磁弁を示す縦断面図である。図9に示すように、この双方向電磁弁900は、第1の出入口ポート912および第2の出入口ポート913が形成された弁ハウジング911を有する。弁ハウジング911内の弁室914には、円筒形状を有する弁座部材915が設けられている。弁座部材915は、その下端部と弁室底部914Aとの間に隙間が形成されるように弁ハウジング911に固定されている。
弁座部材915の内部空間は、第1の出入口ポート912側の空間と第2の出入口ポート913側の空間とを連通させる弁ポート916を構成する。
弁座部材915の上端部の内周縁には、弁室914内で上下動可能に設けられた主弁体927に当接可能な弁座部917が形成されている。弁座部材915の上端部外側には、フランジ部919が一体形成されている。フランジ部919には、フランジ部919の上側の空間と下側の空間とを連通させる複数の連通孔919hが形成されている。
フランジ部919の下側には、弁座部材915の外周面を取り囲むように複数の円筒状部材および環状部材が取り付けられている。具体的には、フランジ部919の下面から弁座部材915の下端にかけて円筒フィルタ部材923、絞りリング部材924、円筒フィルタ部材925およびフランジ部920が、この順で取り付けられている。
絞りリング部材924は、円筒フィルタ部材923が配置される空間と円筒フィルタ部材925が配置される空間との間を連通させる断面環状の絞り流路924fを形成する。また、フランジ部920には、フランジ部920の上側の空間と下側の空間とを連通させる複数の連通孔920hが形成されている。
上記構成を有する双方向電磁弁900は、主弁体927が弁座部917から離間して上方に移動することにより開放状態となる。
この場合、第1の出入口ポート912から弁室914に流れ込む冷媒は、弁座部材915の上端部開口から弁ポート916を通って第2の出入口ポート913に導かれる。逆に、第2の出入口ポート913から弁室914に流れ込む冷媒は、弁座部材915の下端部開口から弁ポート916を通って第1の出入口ポート912に導かれる。
一方、双方向電磁弁900は、主弁体927が下方に移動することにより閉止状態となる。それにより、主弁体927の下端部と弁座部917とが嵌合し、弁座部材915の上端部開口が閉塞される。
この場合、第1の出入口ポート912から弁室914に流れ込む冷媒は、フランジ部919の複数の連通孔919h、円筒フィルタ部材923、絞り流路924f、円筒フィルタ部材925、フランジ部920の複数の連通孔920h、および弁座部材915の下端部と弁室底部914Aとの間の隙間を通って第2の出入口ポート913に導かれる。
特開2003−222444号公報
ところで、上記の2つの円筒フィルタ部材923,925は、冷媒に含まれる異物を捕捉するとともに、液層および気層を含む冷媒の流れを整流するために設けられる。十分な整流が行われることにより、双方向電磁弁900の閉止時に冷媒の流動音が低減される。
しかしながら、上記のように、円筒フィルタ部材923、絞り流路、および円筒フィルタ部材925が弁座部材915の上端から下端にかけて並ぶ構造では、実際には冷媒の流れを十分に整流することは困難である。
このような構造では、冷媒が円筒フィルタ部材923,925の内部を勢いよく通過する。そのため、冷媒の流れを十分に整流するためには、冷媒が円筒フィルタ923,925の内部を通過する距離を長くする必要がある。すなわち、円筒フィルタ部材923,925の軸方向の長さを大きくする必要がある。
それにより、弁ハウジング911が弁座部材915の軸方向に長くなり、双方向電磁弁900が大型化する。
空気調和機において、双方向電磁弁900は室内に設けられる。したがって、双方向電磁弁900が大型化すると、室内に配置される空気調和機も大型化してしまう。
本発明の目的は、大型化することなく内部流体の流動音が十分に低減された弁装置およびそれを備える空気調和機を提供することである。
(1)第1の発明に係る弁装置は、弁室を形成するとともに第1の流体口および第2の流体口を有する弁本体と、一端開口および他端開口を有し、一端開口が第1の流体口側に位置しかつ他端開口が第2の流体口につながるように弁室内に取り付けられた円筒状の弁座部材と、弁室内で弁座部材の一端開口を開放する第1の位置と一端開口を閉塞する第2の位置とに移動可能に設けられた開閉部材とを備え、弁座部材には、第1のフィルタを収容する第1のフィルタ収容空間および第2のフィルタを収容する第2のフィルタ収容空間が形成され、第1のフィルタ収容空間は、弁座部材の一端面で弁室に連通し、第1のフィルタ収容空間から第2のフィルタ収容空間まで弁座部材の周方向に延びるように中継路が形成され、第2のフィルタ収容空間から弁座部材の内周面に貫通する貫通孔が形成され、
弁座部材の他端面が弁本体の第2の流体口側に位置するように弁座部材が弁室内に嵌合され、開閉部材により一端開口が閉塞された状態で、第1のフィルタ収容空間、中継路、第2のフィルタ収容空間および貫通孔が弁室から第2の流体口へ流体を導く連通路を形成し、連通路内の流体の流動方向に直交する方向における中継路の断面積が、流動方向に直交する方向における第1のフィルタ収容空間の断面積および第2のフィルタ収容空間の断面積よりも小さく、弁本体は、弁座部材の外周面に当接する内周面と、弁座部材の他端面に当接する底面とを有し、弁座部材の他端部の外周縁には、面取りにより環状傾斜面が形成され、第1のフィルタ収容空間および第2のフィルタ収容空間は、弁座部材の軸心を挟んで対向するように形成され、中継路は、弁座部材の外周面または他端面に沿って環状に形成され、弁本体の内周面、弁本体の底面、および環状傾斜面により取り囲まれた空間であり、弁座部材の周方向における第1のフィルタ収容空間の一端から第2のフィルタ収容空間の一端につながる一方経路と、弁座部材の周方向における第1のフィルタ収容空間の他端から第2のフィルタ収容空間の他端につながる他方経路とを含むものである。
この弁装置においては、開閉部材が第1の位置に移動することにより弁座部材の一端開口が開放され、開閉部材が第2の位置に移動することにより弁座部材の一端開口が閉塞される。
開閉部材により一端開口が閉塞された状態で、第1の流体口から弁室に流れ込む流体は、弁座部材の一端面から第1のフィルタ収容空間に送られる。流体が第1のフィルタ収容空間内の第1のフィルタ内部を流動することにより、流体に含まれる異物が第1のフィルタにより除去される。それにより、流体が清浄化される。
第1のフィルタにより清浄化された流体は中継路に送られる。ここで、弁本体は、弁座部材の外周面に当接する内周面と、弁座部材の他端面に当接する底面とを有し、弁座部材の他端部の外周縁には、面取りにより環状傾斜面が形成される。中継路は、弁座部材の周方向に延びるように弁座部材の外周面または他端面に沿って環状に形成され、弁本体の内周面、弁本体の底面、および環状傾斜面により取り囲まれた空間である。この場合、弁座部材の外周縁に環状の中継路を容易に形成することができる。
また、第1のフィルタ収容空間および第2のフィルタ収容空間は、弁座部材の軸心を挟んで対向するように形成され、中継路は、弁座部材の周方向における第1のフィルタ収容空間の一端から第2のフィルタ収容空間の一端につながる一方経路と、弁座部材の周方向における第1のフィルタ収容空間の他端から第2のフィルタ収容空間の他端につながる他方経路とを含む。
この場合、第1のフィルタ収容空間の一端から一方経路を流れる流体は、第2のフィルタ収容空間の一端からその内部に流れ込む。また、第1のフィルタ収容空間の他端から他方経路を流れる流体は、第2のフィルタ収容空間の他端からその内部に流れ込む。
第1のフィルタ収容空間および第2のフィルタ収容空間が、弁座部材の軸心を挟んで対向するように形成されているので、一方経路および他方経路の長さは互いにほぼ等しくなる。
したがって、一方経路から第2のフィルタ収容空間に流れ込む流体の流速と、他方経路から第2のフィルタ収容空間に流れ込む流体の流速とがほぼ等しくなる。それにより、第2のフィルタ収容空間の一端から流れ込む流体の流速とその他端から流れ込む流体の流速とが異なることによる乱流の発生が防止される。その結果、第2のフィルタによる整流効果を十分に得ることができる。
このようにして、弁座部材を軸方向に大きくすることなく、中継路の長さを十分に大きくすることができ、流体の流動距離を十分に長くすることができる。それにより、中継路内で流体の流速が十分に低減されるとともに、流体が整流される。
また、連通路内の流体の流動方向に直交する方向における中継路の断面積は、流動方向に直交する方向における第1のフィルタ収容空間の断面積および第2のフィルタ収容空間の断面積よりも小さい。これにより、中継路により流体を十分に絞り込むことができる。それにより、第1の流体口から流入する流体を十分に圧縮するとともに弁座部材の内部空間から第2の流体口に流出する流体を十分に膨張させることができる。
加えて、流体が気泡を含む場合、中継路を流れる気泡は、絞り込まれることにより微細化される。
さらに、流体は中継路から第2のフィルタ収容空間に送られる。中継路により流速が十分に低減された流体が第2のフィルタ収容空間内の第2のフィルタ内部を流動することにより、流体を十分に整流することができる。また、流体が気泡を含む場合、中継路を通過することにより微細化された流体が、第2のフィルタによりさらに微細化される。それにより、流体の流動音を十分に低減しかつ断続的な流動音の発生を十分に抑制することができる。
その後、流体は第2のフィルタ収容空間から貫通孔を通して弁本体の第2の流体口に送られる。
このように、弁装置を大型化することなく内部流体の流動音を十分に低減しつつ流体を圧縮および膨張させることができる。
(2)第2のフィルタ収容空間は、中継路とつながる第1の端部と、中継路と反対側の第2の端部とを有し、貫通孔は、第2のフィルタ収容空間の第1の端部よりも第2の端部に近い位置で第2のフィルタ収容空間につながってもよい。
この場合、中継路を流れる流体は、第1の端部から第2のフィルタ収容空間の内部に流れ込み、貫通孔を通して弁本体の第2の流体口に送られる。ここで、貫通孔が第2のフィルタ収容空間の第1の端部よりも第2の端部に近い位置に形成されるので、第2のフィルタ収容空間に流れ込んだ流体が第2のフィルタ内部のほぼ全体を流動して貫通孔に導かれる。これにより、第2のフィルタにより流体を十分に整流することができる。その結果、流体の流動音をより十分に低減しかつ断続的な流動音の発生をより十分に抑制することができる。
(3)貫通孔は、弁座部材の周方向における第2のフィルタ収容空間の略中央部に形成されてもよい。
この場合、第2のフィルタ収容空間を流れる流体の偏流の発生が抑制され、流体が円滑に貫通孔に導かれる。その結果、第2のフィルタにより流体を十分に整流することができ、流体の流動音を十分かつ確実に低減することができる。
)第1のフィルタの密度は、第2のフィルタの密度よりも小さくてもよい。
この場合、第1のフィルタにおける目詰まりの発生が抑制される。また、第2のフィルタにより流体を十分に整流することができる。それにより、第1のフィルタおよび第2のフィルタの内部で流体を円滑に流動させつつ、流体に含まれる異物を十分に捕捉するとともに流体の流動音を十分に低減することができる。
)流動方向に直交する方向における第1のフィルタ収容空間の断面積が、流動方向に直交する方向における第2のフィルタ収容空間の断面積よりも大きくてもよい。
この場合、流動方向に直交する方向において、第1のフィルタ内を流動する流体の断面積を第2のフィルタ内を流動する流体の断面積よりも大きくすることができる。これにより、第2のフィルタにより流体の整流効果を損なうことなく、第1のフィルタにより流体に含まれる異物を十分に捕捉することができる。
)流動方向に直交する方向における貫通孔の断面積は、流動方向に直交する方向における第1のフィルタ収容空間の断面積および第2のフィルタ収容空間の断面積よりも小さくてもよい。
この場合、第2のフィルタの内部を流動して十分に整流された流体が貫通孔を流れることによりさらに十分に絞り込まれる。それにより、第1の流体口から流入する流体を十分かつ確実に圧縮するとともに弁座部材の内部空間から第2の流体口に流出する流体を十分かつ確実に膨張させることができる。
)第2の発明に係る空気調和機は、圧縮機、室外熱交換器、膨張弁および室内熱交換器が介挿された冷媒循環系を備え、室内熱交換器は、除湿運転時に凝縮器として機能する第1の熱交換器と、除湿運転時に蒸発器として機能する第2の熱交換器と、冷媒循環系における第1の熱交換器と第2の熱交換器との間に設けられる第1の発明に係る弁装置とを備えたものである。
この空気調和機においては、除湿運転時に、第1の熱交換器が凝縮器として機能し、第2の熱交換器が蒸発器として機能する。これにより、第2の熱交換器により冷却され、除湿された空気が、第1の熱交換器により加熱される。したがって、除湿された気体が冷却された状態で室内に供給されることが防止される。
冷媒循環系における第1の熱交換器と第2の熱交換器との間には第1の発明に係る弁装置が設けられる。
この弁装置においては、開閉部材が第1の位置に移動することにより弁座部材の一端開口が開放され、開閉部材が第2の位置に移動することにより弁座部材の一端開口が閉塞される。
開閉部材により一端開口が閉塞された状態で、第1の流体口から弁室に流れ込む流体は、弁座部材の一端面から第1のフィルタ収容空間に送られる。流体が第1のフィルタ収容空間内の第1のフィルタ内部を流動することにより、流体に含まれる異物が第1のフィルタにより除去される。それにより、流体が清浄化される。
第1のフィルタにより清浄化された流体は中継路に送られる。ここで、弁本体は、弁座部材の外周面に当接する内周面と、弁座部材の他端面に当接する底面とを有し、弁座部材の他端部の外周縁には、面取りにより環状傾斜面が形成される。中継路は、弁座部材の周方向に延びるように弁座部材の外周面または他端面に沿って環状に形成され、弁本体の内周面、弁本体の底面、および環状傾斜面により取り囲まれた空間である。この場合、弁座部材の外周縁に環状の中継路を容易に形成することができる。
また、第1のフィルタ収容空間および第2のフィルタ収容空間は、弁座部材の軸心を挟んで対向するように形成され、中継路は、弁座部材の周方向における第1のフィルタ収容空間の一端から第2のフィルタ収容空間の一端につながる一方経路と、弁座部材の周方向における第1のフィルタ収容空間の他端から第2のフィルタ収容空間の他端につながる他方経路とを含む。
この場合、第1のフィルタ収容空間の一端から一方経路を流れる流体は、第2のフィルタ収容空間の一端からその内部に流れ込む。また、第1のフィルタ収容空間の他端から他方経路を流れる流体は、第2のフィルタ収容空間の他端からその内部に流れ込む。
第1のフィルタ収容空間および第2のフィルタ収容空間が、弁座部材の軸心を挟んで対向するように形成されているので、一方経路および他方経路の長さは互いにほぼ等しくなる。
したがって、一方経路から第2のフィルタ収容空間に流れ込む流体の流速と、他方経路から第2のフィルタ収容空間に流れ込む流体の流速とがほぼ等しくなる。それにより、第2のフィルタ収容空間の一端から流れ込む流体の流速とその他端から流れ込む流体の流速とが異なることによる乱流の発生が防止される。その結果、第2のフィルタによる整流効果を十分に得ることができる。
このようにして、弁座部材を軸方向に大きくすることなく、中継路の長さを十分に大きくすることができ、流体の流動距離を十分に長くすることができる。それにより、中継路内で流体の流速が十分に低減されるとともに、流体が整流される。
また、連通路内の流体の流動方向に直交する方向における中継路の断面積は、流動方向に直交する方向における第1のフィルタ収容空間の断面積および第2のフィルタ収容空間の断面積よりも小さい。これにより、中継路により流体を十分に絞り込むことができる。それにより、第1の流体口から流入する流体を十分に圧縮するとともに弁座部材の内部空間から第2の流体口に流出する流体を十分に膨張させることができる。
加えて、流体が気泡を含む場合、中継路を流れる気泡は、絞り込まれることにより微細化される。
さらに、流体は中継路から第2のフィルタ収容空間に送られる。中継路により流速が十分に低減された流体が第2のフィルタ収容空間内の第2のフィルタ内部を流動することにより、流体を十分に整流することができる。また、流体が気泡を含む場合、中継路を通過することにより微細化された流体が、第2のフィルタによりさらに微細化される。それにより、流体の流動音を十分に低減しかつ断続的な流動音の発生を十分に抑制することができる。
その後、流体は第2のフィルタ収容空間から貫通孔を通して弁本体の第2の流体口に送られる。
このように、弁装置を大型化することなく内部流体の流動音を十分に低減しつつ流体を圧縮および膨張させることができる。
本発明に係る弁装置およびそれを備える空気調和機によれば、大型化することなく内部流体の流動音を十分に低減することができる。
本発明の一実施の形態に係る弁装置およびそれを備える空気調和機について説明する。以下では、弁装置の一例として、空気調和機に用いられるドライ弁を説明する。また、空気調和機の一例として、冷房運転、暖房運転および除湿運転を行うことが可能な空気調和機を説明する。
(1)空気調和機の概略構成および動作
図1は、本発明の一実施の形態に係る空気調和機の構成を示す模式図である。図1に示すように、この空気調和機1は、主として圧縮機11、四方切換弁12、室外熱交換器13、膨張弁14、室外ファン19、室内熱交換器20、ドライ弁30および室内ファン40を備える。室内熱交換器20は、熱的に分離された第1の熱交換器21および第2の熱交換器22から構成される。
圧縮機11は、低温低圧のガス状の冷媒(以下、ガス冷媒と呼ぶ。)を高温高圧のガス冷媒にするために用いられる。四方切換弁12は、後述する冷媒循環系において冷媒の流路を切り換えるために用いられる。膨張弁14は、高温高圧の液状の冷媒(以下、液冷媒と呼ぶ。)を低温低圧の液冷媒にするために用いられる。
室外熱交換器13、第1の熱交換器21および第2の熱交換器22は、それぞれ冷媒の凝縮器または蒸発器として用いられる。ドライ弁30は、第1の熱交換器21および第2の熱交換器22の凝縮器または蒸発器としての機能を切り換えるために用いられる。
上記構成要素のうち、圧縮機11、四方切換弁12、室外熱交換器13、膨張弁14および室外ファン19は室外に設けられる。室内熱交換器20、ドライ弁30および室内ファン40は室内に設けられる。
空気調和機1の冷媒循環系において、圧縮機11の冷媒入口p1は、配管aを介して四方切換弁12の第1のポートq1に接続される。圧縮機11の冷媒出口p2は、配管bを介して四方切換弁12の第2のポートq2に接続される。
四方切換弁12の第3のポートq3は、配管cを介して室外熱交換器13の一方のポートに接続される。室外熱交換器13の他方のポートは、配管dを介して膨張弁14の一方のポートに接続される。膨張弁14の他方のポートは、配管eを介して第1の熱交換器21の一方のポートに接続される。
第1の熱交換器21の他方のポートは、配管fを介してドライ弁30の一方のポート(後述する第1の流体口52)に接続される。ドライ弁30の他方のポート(後述する第2の流体口53)は、配管gを介して第2の熱交換器22の一方のポートに接続される。第2の熱交換器22の他方のポートは、配管hを介して四方切換弁12の第4のポートq4に接続される。
空気調和機1の冷房運転時には、四方切換弁12における第1のポートq1と第4のポートq4とが連通し、第2のポートq2と第3のポートq3とが連通する。また、ドライ弁30が後述する開放状態となる。この状態で、圧縮機11が動作する。
この場合、図1の太い実線矢印で示すように、冷媒が圧縮機11から四方切換弁12、室外熱交換器13、膨張弁14、第1の熱交換器21、ドライ弁30、第2の熱交換器22および四方切換弁12の順に流れ、再び圧縮機11に戻る。
このとき、第1の熱交換器21および第2の熱交換器22はともに蒸発器として機能する。これにより、室内では、第1の熱交換器21および第2の熱交換器22により冷却された空気が、室内ファン40により室内全体に供給される。
一方、室外熱交換器13は凝縮器として機能する。そのため、室外では室外熱交換器13で発生する熱が室外ファン19により放散される。
空気調和機1の暖房運転時には、四方切換弁12における第1のポートq1と第3のポートq3とが連通し、第2のポートq2と第4のポートq4とが連通する。また、ドライ弁30が後述する開放状態となる。この状態で圧縮機11が動作する。
この場合、図1の太い点線矢印で示すように、冷媒が圧縮機11から四方切換弁12、第2の熱交換器22、ドライ弁30、第1の熱交換器21、膨張弁14、室外熱交換器13および四方切換弁12の順に流れ、再び圧縮機11に戻る。
このとき、第1の熱交換器21および第2の熱交換器22はともに凝縮器として機能する。これにより、室内では、第1の熱交換器21および第2の熱交換器22により加熱された空気が、室内ファン40により室内全体に供給される。一方、室外熱交換器13は蒸発器として機能する。
空気調和機1の除湿運転時には、四方切換弁12における第1のポートq1と第4のポートq4とが連通し、第2のポートq2と第3のポートq3とが連通する。また、ドライ弁30が後述する閉止状態となる。この状態で圧縮機11が動作する。
この場合、冷房運転時と同様に、図1の太い実線矢印で示すように、冷媒が圧縮機11から四方切換弁12、室外熱交換器13、膨張弁14、第1の熱交換器21、ドライ弁30、第2の熱交換器22および四方切換弁12の順に流れ、再び圧縮機11に戻る。
このとき、上述のように、ドライ弁30は閉止状態となっている。これにより、ドライ弁30では冷媒の流路が絞り込まれる。
それにより、第1の熱交換器21が凝縮器として機能し、第2の熱交換器22が蒸発器として機能する。この場合、室内では、第2の熱交換器22により冷却および除湿された空気が、第1の熱交換器21により加熱され、室内ファン40により室内全体に供給される。このように、空気調和機1の除湿運転時には、第2の熱交換器22により除湿された空気が冷却された状態で室内に供給されることが防止される。
なお、除湿運転時において、膨張弁14は全開状態となり、室外ファン19は停止状態となる。
(2)ドライ弁の構造および動作
(2−1)全体構造および動作
図1のドライ弁30の構造および動作を説明する。図2は図1のドライ弁30が開放状態にあるときの縦断面図であり、図3は図1のドライ弁30が閉止状態にあるときの縦断面図である。
図2および図3に示すように、ドライ弁30は、弁本体部50および電磁駆動部60からなる。弁本体部50は、略円筒形状を有する弁ハウジング50Hを備える。
弁ハウジング50Hの内部には、弁ハウジング50Hの内周面および底面DSにより取り囲まれた弁室51が形成されている。弁室51内の下部には、略円筒形状を有する弁座部材100が、圧入により取り付けられている。これにより、弁座部材100の下端面が弁ハウジング50Hの底面DSに当接する。
弁ハウジング50Hの側面には、弁室51の内部空間と外部空間とを連通させる第1の流体口52が形成されている。この第1の流体口52には、第1の熱交換器21から延びる配管fの一端が取り付けられている。
弁ハウジング50Hの下端には、弁室51の内部空間と外部空間とを連通させる第2の流体口53が形成されている。この第2の流体口53には、第2の熱交換器22に接続される配管gの一端が取り付けられている。
電磁駆動部60は、駆動部ケーシング61を備える。駆動部ケーシング61の内部に、電磁コイル62が設けられている。電磁コイル62の内側には、電磁コイル62の軸心に沿ってプランジャ収容管63が取り付けられている。プランジャ収容管63の下端部は、駆動部ケーシング61の下端から突出し、弁ハウジング50Hの上端部開口に取り付けられている。
駆動部ケーシング61の上部内面には、略円柱形状を有するプランジャガイド64がボルト69により固定されている。プランジャガイド64にプランジャ収容管63が嵌合される。それにより、プランジャ収容管63が駆動部ケーシング61に固定される。
プランジャ収容管63の内部において、略円筒形状を有するプランジャ65がプランジャガイド64に上下動可能に支持されている。プランジャ65の下端部に弁棒66が固定されている。弁棒66の下端部は、プランジャ収容管63の下端部から弁室51内に突出する。
弁室51の内部で、弁棒66の下端部は弁座部材100の上端部に対向する。弁座部材100の上端部の内周縁には、弁座部101が形成されている。弁棒66の下端部の外周縁は、弁座部材100の弁座部101に当接可能に形成されている。
弁棒66を取り囲むように、略筒状のばね受け部材68が設けられている。ばね受け部材68は、プランジャ収容管63の内周面における所定の箇所(本例では、駆動部ケーシング61の下端面とほぼ同じ高さの箇所)で固定されている。プランジャ65とばね受け部材68との間には、ばね67が設けられている。
上記構成を有するドライ弁30において、電磁駆動部60の電磁コイル62に通電が行われないときには、ばね67の弾性力によりプランジャ65が上方に付勢されている。この場合、図2に示すように、弁棒66の下端部は、弁座部101から離間した状態で保持される。その結果、ドライ弁30が開放状態となる。
一方、電磁コイル62に通電が行われると電磁力が発生する。この電磁力は、ばね67の弾性力に抗してプランジャ65を下方へ押し下げるように働く。それにより、図3に示すように、弁棒66の下端部が弁座部101に当接する。その結果、ドライ弁30が閉止状態となる。
(2−2)弁座部材の構造の詳細
弁室51に設けられる弁座部材100の構造について詳細を説明する。図4(a)はドライ弁30に設けられる弁座部材100の上面図であり、図4(b)は図4(a)の弁座部材100のX−X線縦断面図であり、図5は弁座部材100の外観斜視図である。
上述のように、弁座部材100の上端部の内周縁には、弁座部101が形成されている。さらに、図4および図5に示すように、弁座部材100の周壁部内の上部には、上端面100uで開口する縦孔110が形成されている。縦孔110は円形の横断面を有する。
また、弁座部材100周壁部内の下部には、下端面100bで開口する第1のフィルタ収容空間120および第2のフィルタ収容空間130が形成されている。第1のフィルタ収容空間120および第2のフィルタ収容空間130の各々は、長円形の横断面を有する。第1のフィルタ収容空間120および第2のフィルタ収容空間130の横断面積は、縦孔110の横断面積よりも大きく設定される。
なお、第1のフィルタ収容空間120および第2のフィルタ収容空間130の横断面は上記に限定されるものではなく、長方形状であってもよい。また、この横断面は周方向に湾曲してもよい。
ここで、縦孔110および第1のフィルタ収容空間120は、互いに連通するように、弁座部材100の周方向における同じ箇所に形成される。また、第2のフィルタ収容空間130は、弁座部材100の軸心を挟んで第1のフィルタ収容空間120と対向する箇所に形成される。
第1のフィルタ収容空間120および第2のフィルタ収容空間130には、それぞれ第1のフィルタF1および第2のフィルタF2が収容される。
第1のフィルタF1および第2のフィルタF2は、それぞれ第1のフィルタ収容空間120および第2のフィルタ収容空間130の形状に対応する形状を有する。
なお、第2のフィルタF2の上下方向の長さ(高さ)は、第2のフィルタ収容空間130の上下方向の長さ(高さ)よりも小さく設定される。第2のフィルタF2は、第2のフィルタ収容空間130の上端130bに当接するように設けられる。
第1のフィルタF1および第2のフィルタF2としては、例えばステンレス鋼または真鍮等の金属材料からなる多孔質の焼結金属フィルタ、積層金網フィルタ、パンチングメタル、セラミックファイバ、またはセラミック多孔体等を用いることができる。第1のフィルタF1の密度は、第2のフィルタF2の密度よりも小さいことが好ましい。
弁座部材100の下端部の外周縁は面取り加工される。これにより、弁座部材100の下端部の外周縁には、下端面100bおよび外周面100sに対して傾斜した環状テーパー面BVが形成される。
この場合、図4(b)に示すように、第1のフィルタ収容空間120および第2のフィルタ収容空間130の内周面の一部が削り取られることにより、第1のフィルタ収容空間120および第2のフィルタ収容空間130の外周側の下端部に開口部120a,130aがそれぞれ形成されている。
弁座部材100の周壁部の所定の箇所には、弁座部材100の外部空間と、第2のフィルタ収容空間130と、弁座部材100の内部空間とを連通させる貫通孔140が形成されている。貫通孔140の横断面積(垂直方向の断面積)は、後述する環状中継路k(図8)の流路断面積よりも大きい。
貫通孔140は、第2のフィルタ収容空間130の上端130b近傍に形成される。なお、弁座部材100が弁室51に取り付けられる際には、弁座部材100の外周面における貫通孔140の開口が、弁室51の内周面50s(図8)により閉塞される。
弁座部材100の内部空間により第1の冷媒流路FL1(図6)が形成される。また、弁座部材100の縦孔110、第1のフィルタ収容空間120、開口部120a、環状中継路k(図8)、開口部130a、第2のフィルタ収容空間130および貫通孔140により第2の冷媒流路FL2(図7および図8)が形成される。
(2−3)弁座部材が開放状態である場合の冷媒の流れ
上述のように、空気調和機1の冷房運転時および暖房運転時には、弁座部材100が開放状態となる。図6は、図2および図3の弁座部材100が開放状態である場合の冷媒の流れを示す模式図である。
空気調和機1の冷房運転時には、図1の第1の熱交換器21から配管fを通して弁室51に冷媒CLが供給される。この場合、図6に白抜きの矢印で示すように、弁室51に供給された冷媒CLは、弁座部材100の内部空間により形成された第1の冷媒流路FL1を通して第2の流体口53の内部空間に送られる。第2の流体口53に送られた冷媒CLは、配管gを通して図1の第2の熱交換器22に送られる。
一方、空気調和機1の暖房運転時には、図1の第2の熱交換器22から配管gを通して第2の流体口53の内部空間に冷媒CLが供給される。この場合、第2の流体口53の内部空間に供給された冷媒CLは、第1の冷媒流路FL1を通して弁室51に送られる。弁室51に送られた冷媒CLは、第1の流体口52の内部空間に送られる。さらに、その冷媒CLは配管fを通して図1の第1の熱交換器21に送られる。なお、図6では暖房運転時における冷媒CLの流れの図示を省略している。
このように、弁座部材100が開放状態である場合には、冷媒CLが弁座部材100の周壁部内側に形成された第1の冷媒流路FL1を通過する。これにより、冷媒CLの流路断面積が十分に大きく確保される。
(2−4)弁座部材が閉止状態である場合の冷媒の流れ
上述のように、空気調和機1の除湿運転時には、弁座部材100が閉止状態となる。図7は、図2および図3の弁座部材100が閉止状態である場合の冷媒の流れを示す模式図である。
空気調和機1の除湿運転時には、図1の第1の熱交換器21から配管fを通して弁室51に冷媒CLが供給される。このとき、弁座部材100の上端部開口は弁棒66により閉塞されている。
そのため、弁室51に供給された冷媒CLは、図7に太い点線の矢印で示すように、弁座部材100に形成された第2の冷媒流路FL2を通して第1の冷媒流路FL1に流入し、第2の流体口53の内部空間に送られる。第2の流体口53に送られた冷媒CLは、配管gを通して図1の第2の熱交換器22に送られる。
第2の冷媒流路FL2および冷媒CLの流れについて詳細を説明する。図8は、第2の冷媒流路FL2を示す弁座部材100の透過図である。
ここで、上述のように、弁座部材100は、弁ハウジング50Hの内部に圧入により取り付けられる。そのため、弁座部材100の外周面が弁室51の内周面50sに当接し、弁座部材100の下端面100bが弁室51の底面DSに当接する。この場合、弁座部材100の下端部の外周縁に形成された環状テーパー面BVは、弁室51の内周面50sおよび底面DSのいずれにも当接しない。したがって、弁座部材100の下端部の外周縁には、環状テーパー面BV、内周面50sおよび底面DSにより取り囲まれた環状の空間(環状中継路k)が形成される。環状中継路kの流路断面積は、第2の冷媒流路FL2の他の部分の流路断面積よりも小さく設定される。
弁座部材100の上端部開口が閉塞されると、図8に示すように、図7の弁室51に供給された冷媒CLは、縦孔110を通して第1のフィルタ収容空間120に送られる。
第1のフィルタ収容空間120の内部では、冷媒CLが第1のフィルタF1(図4)内を上から下に流動する。これにより、冷媒CLに含まれる異物が第1のフィルタF1により捕捉される。また、ガス冷媒および液冷媒が微細化され、均一に混ざり合う。さらに、冷媒CLの流れが整流される。
第1のフィルタF1内を通過した冷媒CLは、第1のフィルタ収容空間120の外周側の下端部に形成された開口部120aを通して環状中継路kに流入する。環状中継路kに流入した冷媒CLは、開口部120aを中心として環状中継路kの一方側(一方経路k1)および他方側(他方経路k2)に分岐して流動する。
環状中継路kを流れる冷媒CLは、開口部130aを通して第2のフィルタ収容空間130に流入する。このとき、第2のフィルタ収容空間130には、環状中継路kの一方経路k1および他方経路k2からほぼ均等に冷媒CLが流入する。
第2のフィルタ収容空間130の内部では、冷媒CLが第2のフィルタF2(図4)内を下から上に流動する。これにより、冷媒CLの流れが十分に整流される。それにより、冷媒CLの流動音が十分に低減される。
第2のフィルタ収容空間130の上端130bに流れる冷媒CLは、貫通孔140を通して第1の冷媒流路FL1に流れ込み、第2の流体口53(図7)の内部空間に送られる。
このように、弁座部材100が閉止状態である場合には、冷媒CLが第2の冷媒流路FL2を通過する。これにより、冷媒CLに含まれる異物除去、冷媒CLの流れの十分な整流、および冷媒CLの流動音の十分な低減が実現される。
(3)効果
(3−1)
図2および図3のドライ弁30においては、弁棒66により弁座部材100の上端部開口が開放され、弁棒66により弁座部材100の上端部開口が閉塞される。
図1の空気調和機1による除湿運転時には、図3に示すように、弁棒66により弁座部材100の上端部開口が閉塞される。これにより、ドライ弁30が閉止状態となる。この状態で、図7および図8に示すように、第1の流体口52から弁室51に流れ込む冷媒は、弁座部材100の上端面100uに形成された縦孔110を通して第1のフィルタ収容空間120に送られる。第1のフィルタ収容空間120に流れ込む冷媒は、第1のフィルタF1の内部を流動する。これにより、冷媒に含まれる異物が第1のフィルタF1により除去される。それにより、冷媒が清浄化される。
清浄化された冷媒は環状中継路k(図8)に送られる。ここで、環状中継路kは、弁座部材100の下端部の外周縁に沿って環状に形成されている。これにより、弁座部材100の軸方向の長さを大きくすることなく、冷媒の流動距離を十分に長くすることができる。それにより、冷媒が環状中継路kを流れることにより、冷媒の流速が十分に低減されるとともに冷媒が整流される。
上述のように、環状中継路kの流路断面積は、第2の冷媒流路FL2の他の部分の流路断面積よりも小さく設定される。これにより、環状中継路kにより冷媒を十分に絞り込むことができる。それにより、第1の流体口52から弁室51に流れ込む冷媒を十分に圧縮するとともに、弁座部材100の内部空間から第2の流体口に流出する流体を十分に膨張させることができる。
加えて、冷媒がガス冷媒を含む場合、ガス冷媒の気泡は、環状中継路kの内部を流動することにより絞り込まれ、微細化される。
環状中継路kを流れる流体は、第2のフィルタ収容空間130に送られる。第2のフィルタ収容空間130に流れ込む冷媒は、第2のフィルタF2の内部を流動する。このように、流速が十分に低減された冷媒が第2のフィルタF2の内部を流動することにより、冷媒の流れを十分に整流することができる。
さらに、冷媒がガス冷媒を含む場合には、環状中継路kにより微細化されたガス冷媒の気泡が、第2のフィルタF2によりさらに細かく微細化される。それにより、冷媒の流動音を十分に低減しつつ、断続的な流動音の発生を十分に抑制することができる。
第2のフィルタ収容空間130を流れる冷媒は、貫通孔140を通して弁ハウジング50Hの第2の流体口53に送られる。ここで、貫通孔140の横断面積(垂直方向の断面積)は、第1のフィルタ収容空間120および第2のフィルタ収容空間130の横断面積(水平方向の断面積)よりも小さい。これにより、冷媒の流路断面積をさらに十分に絞り込むことができる。
それにより、第1の流体口52から流入する冷媒をさらに十分に圧縮するとともに弁座部材100の弁室51から第2の流体口53に流出する冷媒をさらに十分に膨張させることができる。
このようにして、ドライ弁30を大型化することなく冷媒の流動音を十分に低減することができる。
(3−2)
上記のように、第1のフィルタF1の密度は、第2のフィルタF2の密度よりも小さいことが好ましい。この場合、第1のフィルタF1の目詰まりが抑制される。それにより、第1のフィルタF1内部で冷媒を円滑に流動させつつ、冷媒に含まれる異物を十分に捕捉することができる。
(3−3)
図8に示すように、環状中継路kは、弁座部材100の下端部の外周端部に環状に形成されている。
この場合、弁座部材100を軸方向に大きくすることなく、第1のフィルタ収容空間120と第2のフィルタ収容空間130とをつなぐ第2の冷媒流路FL2を十分に長くすることができる。
それにより、環状中継路kを流れる冷媒の流速を十分に低減することができる。その結果、第2のフィルタF2による冷媒の整流効果を十分に向上させることができる。
また、環状中継路kは、環状テーパー面BV、内周面50sおよび底面DSにより形成されている。環状テーパー面BVは、弁座部材100の下端部の外周縁を面取り加工することにより容易に形成できる。
(3−4)
図8に示すように、環状中継路kは、第1のフィルタ収容空間120から時計回りの方向で第2のフィルタ収容空間130につながる一方経路k1と、第1のフィルタ収容空間120から反時計回りの方向で第2のフィルタ収容空間130につながる他方経路k2とに分割される。
ここで、第1のフィルタ収容空間120および第2のフィルタ収容空間130は、弁座部材100の軸心を挟んで対向する。これにより、一方経路k1および他方経路k2の長さが等しくなる。
したがって、一方経路k1から第2のフィルタ収容空間130に流れ込む冷媒の流速と、他方経路k2から第2のフィルタ収容空間130に流れ込む冷媒の流速とがほぼ等しくなる。それにより、第2のフィルタ収容空間130の内部で乱流が発生することが防止される。その結果、第2のフィルタF2による整流効果を十分に得ることができる。
(3−5)
図8に示すように、環状中継路kは弁座部材100の下端部の外周縁に沿って形成されている。第2のフィルタ収容空間130の上端130b近傍に、貫通孔140が形成されている。
これにより、第2のフィルタ収容空間130には、弁座部材100の下端側から冷媒が流入し、第2のフィルタ収容空間130の上端130bへ流れる。それにより、第2のフィルタ収容空間130の内部では、冷媒が第2のフィルタF2内部のほぼ全体を流動する。その結果、第2のフィルタF2により冷媒の流れを確実かつ十分に整流することができ、冷媒の流動音を十分かつ確実に低減することができる。
(3−6)
貫通孔140は、弁座部材100の周方向における第2のフィルタ収容空間130の略中央部に形成されている。これにより、第2のフィルタ収容空間130に流れ込む冷媒が、第2のフィルタ収容空間130の内部で偏った箇所に流れることが抑制される。それにより、第2のフィルタ収容空間130の内部における偏流の発生が抑制され、冷媒が円滑に貫通孔140に導かれる。
(3−7)
上述のように、第2のフィルタF2の上下方向の長さ(高さ)は、第2のフィルタ収容空間130の上下方向の長さ(高さ)よりも小さく設定される。第2のフィルタF2は、第2のフィルタ収容空間130の上端130bに当接するように設けられる。
この場合、第2のフィルタ収容空間130の下端と第2のフィルタF2の下端との間に隙間が形成される。これにより、環状中継路kから第2のフィルタ収容空間130に冷媒が流入するときには、冷媒が隙間全体に拡がり、第2のフィルタF2の全体に均一に流れ込む。その結果、第2のフィルタF2による十分な整流効果を得ることができる。
(3−8)
弁座部材100は次のように作製される。まず、下端面100bから第1のフィルタ収容空間120および第2のフィルタ収容空間130を形成し、上端面100uから第1のフィルタ収容空間120につながるように縦孔110を形成する。その後、下端部の外周端を面取り加工し、周壁面に貫通孔140を形成する。最後に、第1のフィルタ収容空間120および第2のフィルタ収容空間130に第1のフィルタF1および第2のフィルタF2を挿入する。
このように、本実施の形態に係る弁座部材100は、構造が単純で製造が容易である。したがって、製造コストを十分に低減することができる。
なお、図9に示される従来の双方向電磁弁900においては、フランジ部919、円筒フィルタ部材923、絞りリング部材924、円筒フィルタ部材925およびフランジ部920を弁座部材915の外周面に沿って直列に並べた構成が、冷媒の絞り部として機能する。このような構成は、各部材の高い寸法精度が要求されるとともに、組み立てが複雑である。そのため、低コスト化が困難である。
(4)変形例
上記実施の形態において、第1のフィルタF1の密度を第2のフィルタF2の密度よりも小さくする代わりに、第1のフィルタ収容空間120の横断面積(水平方向の断面積)を第2のフィルタ収容空間130の横断面積よりも大きく形成してもよい。
この場合、第1のフィルタF1を流動する冷媒の流路断面積を第2のフィルタF2を流動する冷媒の流路断面積よりも大きくすることができる。これにより、冷媒が第1のフィルタF1の広い範囲を通過するので、第1のフィルタF1の目詰まりが抑制される。それにより、第1のフィルタF1内部で冷媒を円滑に流動させつつ、冷媒に含まれる異物を十分に捕捉することができる。
さらに、この場合、第1のフィルタF1の大きさが、第2のフィルタF2の大きさよりも大きくなる。これにより、ドライ弁30の製造時、特に弁座部材100への第1のフィルタF1および第2のフィルタF2の取り付け時に、作業者のヒューマンエラーを防止することができる。すなわち、作業者が第1のフィルタ収容空間120に第2のフィルタF2を挿入することを防止できる。また、作業者が第2のフィルタ収容空間130に第1のフィルタF1を挿入することを防止できる。
また、上記実施の形態では、第2の冷媒流路FL2における冷媒の流動経路を長くするために弁座部材100の下端部の外周縁を面取り加工しているが、これに代えて、弁座部材100の外周面に周方向に延びる溝を形成することにより環状中継路kを形成してもよいし、弁座部材100の下端面100bに周方向に延びる溝を形成することにより環状中継路kを形成してもよい。
さらに、上記実施の形態では、弁座部材100の内部空間と第2のフィルタ収容空間130との連通路として、1つの貫通孔140が形成されているが、貫通孔140は、第2のフィルタ収容空間130の内周面に複数形成されてもよい。ただし、この場合、複数の貫通孔は、各貫通孔により形成される冷媒の流路断面積の合計が第1のフィルタ収容空間120および第2のフィルタ収容空間130における冷媒の流路断面積よりも小さくなるように形成される。
図2、図3、図6および図7の例では、縦孔110が第1の流体口52に最も近接するように弁座部材100が弁室51に取り付けられているが、弁室51内部における縦孔110の配置はこれに限定されない。
弁座部材100は、縦孔110が第1の流体口52から最も離れるように弁室51に取り付けられてもよい。この場合、第1の流体口52から弁室51に流入する冷媒は、弁棒66の外周面を回り込み、弁棒66を中心として第1の流体口52と反対側の空間で縦孔110に流入する。
縦孔110に流入した冷媒は、第1の流体口52から最も離れるように配置された第1のフィルタ収容空間120に送られる。そして、環状中継路kを通して第1の流体口52に最も近接するように配置された第2のフィルタ収容空間130に送られる。
(5) 請求項の各構成要素と実施の形態の各部との対応関係
以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
上記実施の形態では、弁ハウジング50Hが弁本体の例であり、弁座部材100の上端部開口が一端開口の例である。
また、弁座部材100の下端部開口が他端開口の例であり、弁座部材100から離間する弁棒66の位置(図2)が第1の位置の例であり、弁座部材100に当接する弁棒66の位置(図3)が第2の位置の例であり、弁棒66が開閉部材の例である。
さらに、上端面100uが弁座部材の一端面の例であり、縦孔110が連通経路の例であり、環状中継路kが中継路の例であり、第2の冷媒流路FL2が連通路の例であり、ドライ弁30が弁装置の例である。
なお、請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
本発明は、除湿運転が可能な空気調和機に有効に利用できる。
本発明の一実施の形態に係る空気調和機の構成を示す模式図 図1のドライ弁が開放状態にあるときの縦断面図 図1のドライ弁が閉止状態にあるときの縦断面図 (a)はドライ弁に設けられる弁座部材の上面図、(b)は(a)の弁座部材のX−X線縦断面図 弁座部材の外観斜視図 図2および図3の弁座部材が開放状態である場合の冷媒の流れを示す模式図 図2および図3の弁座部材が閉止状態である場合の冷媒の流れを示す模式図 第2の冷媒流路を示す弁座部材の透過図 特許文献1の双方向電磁弁を示す縦断面図
符号の説明
11 圧縮機
13 室外熱交換器
14 膨張弁
20 室内熱交換器
21 第1の熱交換器
22 第2の熱交換器22
30 ドライ弁
51 弁室
52 第1の流体口
53 第2の流体口
50H 弁ハウジング
66 弁棒
100 弁座部材
100b 下端面
100s 外周面
100u 上端面
110 縦孔
120 第1のフィルタ収容空間
120a 開口部
130 第2のフィルタ収容空間
130a 開口部
140 貫通孔
F1 第1のフィルタ
F2 第2のフィルタ
FL2 第2の冷媒流路
k 環状中継路

Claims (7)

  1. 弁室を形成するとともに第1の流体口および第2の流体口を有する弁本体と、
    一端開口および他端開口を有し、前記一端開口が前記第1の流体口側に位置しかつ前記他端開口が前記第2の流体口につながるように前記弁室内に取り付けられた円筒状の弁座部材と、
    前記弁室内で前記弁座部材の前記一端開口を開放する第1の位置と前記一端開口を閉塞する第2の位置とに移動可能に設けられた開閉部材とを備え、
    前記弁座部材には、第1のフィルタを収容する第1のフィルタ収容空間および第2のフィルタを収容する第2のフィルタ収容空間が形成され、前記第1のフィルタ収容空間は、前記弁座部材の一端面で前記弁室に連通し、前記第1のフィルタ収容空間から前記第2のフィルタ収容空間まで前記弁座部材の周方向に延びるように中継路が形成され、前記第2のフィルタ収容空間から前記弁座部材の内周面に貫通する貫通孔が形成され、
    前記弁座部材の他端面が前記弁本体の前記第2の流体口側に位置するように前記弁座部材が前記弁室内に嵌合され、前記開閉部材により前記一端開口が閉塞された状態で、前記第1のフィルタ収容空間、前記中継路、前記第2のフィルタ収容空間および前記貫通孔が前記弁室から前記第2の流体口へ流体を導く連通路を形成し、
    前記連通路内の流体の流動方向に直交する方向における前記中継路の断面積が、前記流動方向に直交する方向における前記第1のフィルタ収容空間の断面積および前記第2のフィルタ収容空間の断面積よりも小さく、
    前記弁本体は、前記弁座部材の外周面に当接する内周面と、前記弁座部材の他端面に当接する底面とを有し、
    前記弁座部材の他端部の外周縁には、面取りにより環状傾斜面が形成され、
    前記第1のフィルタ収容空間および前記第2のフィルタ収容空間は、前記弁座部材の軸心を挟んで対向するように形成され、
    前記中継路は、前記弁座部材の外周面または他端面に沿って環状に形成され、前記弁本体の前記内周面、前記弁本体の前記底面、および前記環状傾斜面により取り囲まれた空間であり、前記弁座部材の周方向における前記第1のフィルタ収容空間の一端から前記第2のフィルタ収容空間の一端につながる一方経路と、前記弁座部材の周方向における前記第1のフィルタ収容空間の他端から前記第2のフィルタ収容空間の他端につながる他方経路とを含むことを特徴とする弁装置。
  2. 前記第2のフィルタ収容空間は、前記中継路とつながる第1の端部と、前記中継路と反対側の第2の端部とを有し、
    前記貫通孔は、前記第2のフィルタ収容空間の前記第1の端部よりも前記第2の端部に近い位置で前記第2のフィルタ収容空間につながることを特徴とする請求項1に記載の弁装置。
  3. 前記貫通孔は、前記弁座部材の周方向における前記第2のフィルタ収容空間の略中央部に形成されたことを特徴とする請求項1または2に記載の弁装置。
  4. 前記第1のフィルタの密度は、前記第2のフィルタの密度よりも小さいことを特徴とする請求項1〜3のいずれかに記載の弁装置。
  5. 前記流動方向に直交する方向における前記第1のフィルタ収容空間の断面積が、前記流動方向に直交する方向における前記第2のフィルタ収容空間の断面積よりも大きいことを特徴とする請求項1〜4のいずれかに記載の弁装置。
  6. 前記流動方向に直交する方向における前記貫通孔の断面積は、前記流動方向に直交する方向における前記第1のフィルタ収容空間の断面積および前記第2のフィルタ収容空間の断面積よりも小さいことを特徴とする請求項1〜5のいずれかに記載の弁装置。
  7. 圧縮機、室外熱交換器、膨張弁および室内熱交換器が介挿された冷媒循環系を備え、
    前記室内熱交換器は、除湿運転時に凝縮器として機能する第1の熱交換器と、除湿運転時に蒸発器として機能する第2の熱交換器と、
    前記冷媒循環系における前記第1の熱交換器と前記第2の熱交換器との間に設けられる請求項1〜6のいずれかに記載の弁装置とを備えたことを特徴とする空気調和機。
JP2007299223A 2007-11-19 2007-11-19 弁装置およびそれを備える空気調和機 Expired - Fee Related JP5038105B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007299223A JP5038105B2 (ja) 2007-11-19 2007-11-19 弁装置およびそれを備える空気調和機
CN2008102118322A CN101441012B (zh) 2007-11-19 2008-09-09 阀装置和具备该阀装置的空气调节器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299223A JP5038105B2 (ja) 2007-11-19 2007-11-19 弁装置およびそれを備える空気調和機

Publications (2)

Publication Number Publication Date
JP2009121654A JP2009121654A (ja) 2009-06-04
JP5038105B2 true JP5038105B2 (ja) 2012-10-03

Family

ID=40725556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299223A Expired - Fee Related JP5038105B2 (ja) 2007-11-19 2007-11-19 弁装置およびそれを備える空気調和機

Country Status (2)

Country Link
JP (1) JP5038105B2 (ja)
CN (1) CN101441012B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561055B (zh) * 2008-04-18 2011-08-24 浙江三花股份有限公司 电磁阀
CN108799534B (zh) * 2017-04-28 2019-09-27 浙江三花智能控制股份有限公司 阀装置
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
BR112020010634A2 (pt) 2017-12-18 2020-11-10 Daikin Industries, Ltd. composição compreendendo refrigerante, uso da mesma, máquina de refrigeração tendo a mesma, e método para operação da dita máquina de refrigeração
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
EP3730569A4 (en) * 2017-12-18 2021-12-22 Daikin Industries, Ltd. COOLING CYCLE DEVICE
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
WO2019123898A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465128B2 (ja) * 2001-04-26 2010-05-19 ダイキン工業株式会社 膨張弁および空気調和機
JP2003202167A (ja) * 2001-10-29 2003-07-18 Mitsubishi Electric Corp 流量制御弁および冷凍空調装置および流量制御弁の製造方法
JP4077205B2 (ja) * 2002-01-28 2008-04-16 株式会社鷺宮製作所 双方向型電磁弁および空気調和機

Also Published As

Publication number Publication date
CN101441012A (zh) 2009-05-27
CN101441012B (zh) 2011-04-13
JP2009121654A (ja) 2009-06-04

Similar Documents

Publication Publication Date Title
JP5038105B2 (ja) 弁装置およびそれを備える空気調和機
JP5755711B2 (ja) 絞り弁装置
JP5690705B2 (ja) 除湿弁
CN101571205B (zh) 电磁阀、节流装置和制冷装置
CN101520107A (zh) 电磁阀
CN107489786B (zh) 滑动式切换阀以及冷冻循环系统
CN104729165A (zh) 储液器、空调装置以及储液器的制造方法
WO2015087740A1 (ja) 冷媒流路切換ユニット及び冷媒流路切換ユニットを備える冷凍装置
JP2020034141A (ja) 電動弁及び冷凍サイクルシステム
JP4608395B2 (ja) 弁装置およびその製造方法
JP5497419B2 (ja) 内部熱交換器とアキュムレータの複合装置
JP4465128B2 (ja) 膨張弁および空気調和機
JP3410197B2 (ja) 絞り部内蔵型電磁弁
JP4769036B2 (ja) 絞り装置および流量制御弁ならびにこれを組み込んだ空気調和装置
JP4187034B2 (ja) 空気調和装置の室内ユニット
JP4077205B2 (ja) 双方向型電磁弁および空気調和機
JP2006307964A (ja) 電動制御弁
JP2002213841A (ja) 空気調和機
JP2006349274A (ja) 絞り装置および流量制御弁ならびにこれを組み込んだ空気調和装置
CN101430008A (zh) 一种具有节流、截止双重功能的双向节流截止阀
JP2006098020A (ja) 空気調和機およびストレーナー
CN201129466Y (zh) 一种具有节流、截止双重功能的双向节流截止阀
JP4064762B2 (ja) 絞り弁装置および空気調和機
JP2008051147A (ja) 流量制御弁およびこれを組み込んだ空気調和装置
CN110360364B (zh) 一种全流通电子膨胀阀

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees